Science.gov

Sample records for accelerated stokesian dynamics

  1. Accelerated Stokesian Dynamics: Brownian Suspensions

    NASA Astrophysics Data System (ADS)

    Banchio, Adolfo J.; Brady, John F.

    2001-11-01

    A new Stokesian Dynamics (SD) algorithm for Brownian suspensions is presented. This implementation is based on the recently developed Accelerated Stokesian Dynamics (ASD) simulation method(Sierou, A and Brady, J. F.; J. Fluid Mech., accepted for publication.) for non-Brownian particles. As in ASD, the many-body long-range hydrodynamic interactions are computed using Fast Fourier Transforms and the resistance matrix is inverted iteratively, in order to keep the computational cost of O(N log N). A fast method for computing the Brownian forces acting on the particles is applied by splitting them into near-field and far-field contributions. For the near-field part the forces can be represented as a sum of pairwise contributions with a cost of O(N); and for the far-field part using a Chebyshev polynomial approximation for the inverse of the square root of the mobility matrix results in an order O(N^1.25 log N) computational cost. The overall scaling of the method is roughly of O(N^1.25 log N) and makes possible the simulation of larger systems, necessary for studying dynamical properties and/or polydispersity effects in colloidal suspensions. Also a faster approximate method is presented in which the far-field hydrodynamic contribution to the Brownian forces are treated in a mean-field-like fashion. The accuracy of the approximation is discussed, and results for the dynamics and rheology of Brownian suspensions are presented.

  2. Spectral Ewald Acceleration of Stokesian Dynamics for polydisperse suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Mu; Brady, John F.

    2016-02-01

    In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stokesian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [Lindbo and Tornberg (2010) [29

  3. Active microrheology of Brownian suspensions via Accelerated Stokesian Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Su, Yu; Gu, Kevin; Hoh, Nicholas; Zia, Roseanna

    2015-11-01

    The non-equilibrium rheological response of colloidal suspensions is studied via active microrheology utilizing Accelerated Stokesian Dynamics simulations. In our recent work, we derived the theory for micro-diffusivity and suspension stress in dilute suspensions of hydrodynamically interacting colloids. This work revealed that force-induced diffusion is anisotropic, with qualitative differences between diffusion along the line of the external force and that transverse to it, and connected these effects to the role of hydrodynamic, interparticle, and Brownian forces. This work also revealed that these forces play a similar qualitative role in the anisotropy of the stress and in the evolution of the non-equilibrium osmotic pressure. Here, we show that theoretical predictions hold for suspensions ranging from dilute to near maximum packing, and for a range of flow strengths from near-equilibrium to the pure-hydrodynamic limit.

  4. Stokesian Dynamic Simulations of Colloid Assembly at a Fluid Interface

    NASA Astrophysics Data System (ADS)

    Dani, Archit; Maldarelli, Charles

    2015-11-01

    The collective dynamics and self-assembly of colloids floating at a gas/liquid or a liquid/liquid interface is a balance between deterministic lateral interaction forces, e.g. capillary attraction and dipolar electrostatic repulsion if the particles are charged, viscous resistance to colloid motion along the surface and thermal fluctuations. As the colloid size decreases, thermal (Brownian) forces become important and can affect the self assembly into ordered patterns and crystal structures that are the starting point for materials applications. Stokesian dynamics simulations are presented to describe the lateral organization of particles along the surface in Brownian dominated regimes that includes (using a pairwise approximation) capillary attraction and the hydrodynamic interaction between particles (incorporating the effect of the particle immersion depth) and thermal fluctuations. Clustering, fractal growth and particle ordering are observed at critically large values of the Peclet numbers, while smaller values yield states in which particles remain uncorrelated in space and more widely separated.

  5. Stokesian dynamics optimization of three linked spheres microswimmers

    NASA Astrophysics Data System (ADS)

    Marconi, V. I.; Berdakin, I.; Banchio, A. J.

    2014-03-01

    Self-propulsion of swimmers is only possible due to motility strategies able to overcome the absence of inertia. Only the swimming strategies that are time-irreversible are successful. One of the simplest swimmers fulfilling this requirement is the three-linked-spheres swimmer, TLS, a toy model swimmer built upon three spheres linked by two arms that contracts asynchronously. This TLS has received significant attention because it can be studied both, analytically and numerically. Using stokesian dynamics we investigate in detail the net displacement, velocities, forces and power consumption. We compare two swimming strategies: square and circular phase-space cycles. If the efficiency is defined as the ratio between power dissipation and the work needed to produce the same motion by an external force, we show that the most efficient swimmer is the one with almost maximum (maximum) arms contraction for square (circular) cycles. Interestingly, under these optimum conditions, the analytical predictions based on point force approximations of the hydrodynamic mobility tensor differ significantly from those found in our more accurate simulations. This fact highlights the importance of a proper treatment of the hydrodynamic interactions. Supported by CONICET and SeCyt-UNC, Cordoba, Argentina, and NSF(USA)-CONICET(Argentina).

  6. A scalable parallel Stokesian Dynamics method for the simulation of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Bülow, F.; Hamberger, P.; Nirschl, H.; Dörfler, W.

    2016-07-01

    We have developed a new method for the efficient numerical simulation of colloidal suspensions. This method is designed and especially well-suited for parallel code execution, but it can also be applied to single-core programs. It combines the Stokesian Dynamics method with a variant of the widely used Barnes-Hut algorithm in order to reduce computational costs. This combination and the inherent parallelization of the method make simulations of large numbers of particles within days possible. The level of accuracy can be determined by the user and is limited by the truncation of the used multipole expansion. Compared to the original Stokesian Dynamics method the complexity can be reduced from O(N2) to linear complexity for dilute suspensions of strongly clustered particles, N being the number of particles. In case of non-clustered particles in a dense suspension, the complexity depends on the particle configuration and is between O(N) and O(Pnp,max2) , where P is the number of used processes and np,max = ⌈ N / P ⌉ , respectively.

  7. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  8. An anisotropic-fluid model for inhomogeneous Stokesian suspensions

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2007-11-01

    A constitutive model is proposed for a suspension of rigid spheres with spatially non-uniform strain rate E and particle concentration φ. As in [1], the model involves a 4^th rank viscosity tensor depending on φ and a 2^nd rank structure tensor A determined by a kinematic evolution equations. The particle flux j is a linear function of the spatial gradients in φ, E, & A . In contrast to existing models [2,3], the constitutive equations exhibits Stokesian linearity in E, and all nonlinear suspension-dynamics effects are represented by A and its evolution. An expansion up to third order in A is given, and illustrative calculations are made for oscillatory simple shear based on parameters determined as in [1]. Desirably, the model offers a frame-indifferent description of the effects of streamline curvature on particle flux; and it admits transiently negative particle diffusivities following shear reversal, indicating dominance of Stokesian reversibility over shear-induced memory loss. The main drawback, is the plethora of scalar parameters, and possible simplifications inspired by previous models are discussed briefly. [1] J. D. Goddard, J. Fluid. Mech., 568:1--17, 2006. [2] G. P. Krishnan, et al., J. Fluid Mech., 321:371--93, 1996. [3] R. J. Phillips, et al., Phys. Fluids A, 4(1): 30--40, 1992.

  9. Dynamics of pyroelectric accelerators

    SciTech Connect

    Ghaderi, R.; Davani, F. Abbasi

    2015-01-26

    Pyroelectric crystals are used to produce high energy electron beams. We have derived a method to model electric potential generation on LiTaO{sub 3} crystal during heating cycle. In this method, effect of heat transfer on the potential generation is investigated by some experiments. In addition, electron emission from the crystal surface is modeled by measurements and analysis. These spectral data are used to present a dynamic equation of electric potential with respect to thickness of the crystal and variation of its temperature. The dynamic equation's results for different thicknesses are compared with measured data. As a result, to attain more energetic electrons, best thickness of the crystals could be extracted from the equation. This allows for better understanding of pyroelectric crystals and help to study about current and energy of accelerated electrons.

  10. Dynamics of Radiation Pressure Acceleration

    SciTech Connect

    Macchi, A.; Benedetti, C.; Pegoraro, F.; Veghini, S.

    2010-02-02

    We describe recent theoretical results on Radiation Pressure Acceleration of ions by ultraintense, circularly polarized laser pulses, giving an insight on the underlying dynamics and suggestions for the development of applications. In thick targets, we show how few-cycle pulses may generate single ion bunches in inhomogeneous density profiles. In thin targets, we present a refinement of the simple model of the accelerating mirror and a comparison of its predictions with simulation results, solving an apparent paradox.

  11. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  12. Beam dynamics for induction accelerators

    NASA Astrophysics Data System (ADS)

    Lee, Edward P.

    2014-01-01

    An induction linac uses pulsed power that is applied directly, without any intervening resonant cavities, to accelerate a charged particle pulse. This approach can accommodate a large multiple-beam focusing lattice capable of transporting a large total beam current with a long pulse duration, which may be compressed while accelerating as well as afterward. The mean accelerating gradient is relatively low (less than about 1.5 MV/m), but the potential efficiency of energy transfer can be large up to about 50%. A multiple-beam induction linac is therefore a natural candidate accelerator for a heavy ion fusion (HIF) driver. However, the accelerated beams must meet stringent requirements on occupied phase space volume in order to be focused accurately and with small radius onto the fusion target. Dynamical considerations in the beam injector and linac, as well as in the final compression, final focus, and the fusion chamber, determine the quality of the driver beams as they approach the target. Requirements and tolerances derived from beam dynamics strongly influence the linac configuration and component design.

  13. Dynamically Reconfigurable Systolic Array Accelerator

    NASA Technical Reports Server (NTRS)

    Dasu, Aravind; Barnes, Robert

    2012-01-01

    A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.

  14. The deadly swimming of Cercariae: an unusual Stokesian swimmer

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Krishnamurthy, Deepak

    2014-11-01

    Schistosomiasis, also known as Bilharzia, is a Neglected Tropical Disease (NTD) caused by a parasitic Trematode blood fluke worm. In terms of socio-economic and public health impact, Schistosomiasis is second only to Malaria as the most devastating parasitic disease in tropical countries; with roughly 200 million people infected at any time world-wide and up to 200,000 deaths every year. The infectious form of the parasite, known as Cercariae, emerge from snails into freshwater and infect humans by directly burrowing into the skin. Thus, anyone in contact with infected waters is at risk, which mostly includes children. By establishing a safe experimental means of studying the Cercariae in our lab, we report here their unusual swimming dynamics which include both head-first and tail-first swimming modes. These swimming modes are crucial for the chemotactic activity of Cercariae which allows them to seek out and burrow into human skin. By experimental and analytical means, we demonstrate that Cercariae break symmetry and achieve locomotion at small Reynolds number differently when compared to well-known methods involving traveling waves in the flagellum or chiral beating. Although they utilize the well-known drag anisotropy of a slender body in Stokes flow, the geometry and kinematics of their propulsion mechanism is novel. Based on these results, we propose a new kind of simple Stokesian swimmer (T-joint swimmer) in an attempt to explain the evolutionary advantages of this novel swimming mechanism. Using the above physical insights from a biological and global-health standpoint, we explore ways to hinder the chemotactic capabilities of this parasite.

  15. Techniques to accelerate dynamic psychotherapy.

    PubMed

    Fosha, D; Slowiaczek, M L

    1997-01-01

    The techniques described above outline specific ways to deepen the patient's affective experience within an emotionally close therapeutic relationship. When effective, they all enhance the patient/therapist bond, raise self-esteem, reduce defensiveness and anxiety, and facilitate emotional healing. Psychodynamic treatment, long or short, is a complex process uniquely constructed by each therapist/patient pair. AEDP strategies are not intended as recipes for treatment. Good dynamic work depends on the therapist's ability to grasp the patient's capacities and limitations, understand relational dynamics, and interact with the patient in an empathically attuned, emotionally receptive, and flexible way. In that context, these strategies can be helpful tools to facilitate and accelerate the process. The choices made by AEDP--privileging adaptive strivings over defensive reactions, the stance of emotional engagement rather than neutrality and abstinence, the focus on health and change over pathology and stasis--are informed by traditional STDP aims to maximize depth, effectiveness, and efficiency. AEDP's contribution is a set of techniques relying on a response repertoire that is available to a wide range of therapists. Therapists can use these techniques to be more effective while simultaneously retaining the experience of speaking with patients in an authentic voice.

  16. Introduction to Accelerated Molecular Dynamics

    SciTech Connect

    Perez, Danny

    2012-07-10

    Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

  17. Single particle dynamics in circular accelerators

    SciTech Connect

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  18. Numerical homogenization on approach for stokesian suspensions.

    SciTech Connect

    Haines, B. M.; Berlyand, L. V.; Karpeev, D. A.

    2012-01-20

    swimming resulting from bacterial alignment can significantly alter other macroscopic properties of the suspension, such as the oxygen diffusivity and mixing rates. In order to understand the unique macroscopic properties of active suspensions the connection between microscopic swimming and alignment dynamics and the mesoscopic pattern formation must be clarified. This is difficult to do analytically in the fully general setting of moderately dense suspensions, because of the large number of bacteria involved (approx. 10{sup 10} cm{sup -3} in experiments) and the complex, time-dependent geometry of the system. Many reduced analytical models of bacterial have been proposed, but all of them require validation. While comparison with experiment is the ultimate test of a model's fidelity, it is difficult to conduct experiments matched to these models assumptions. Numerical simulation of the microscopic dynamics is an acceptable substitute, but it runs into the problem of having to discretize the fluid domain with a fine-grained boundary (the bacteria) and update the discretization as the domain evolves (bacteria move). This leads to a prohibitively high number of degrees of freedom and prohibitively high setup costs per timestep of simulation. In this technical report we propose numerical methods designed to alleviate these two difficulties. We indicate how to (1) construct an optimal discretization in terms of the number of degrees of freedom per digit of accuracy and (2) optimally update the discretization as the simulation evolves. The technical tool here is the derivation of rigorous error bounds on the error in the numerical solution when using our proposed discretization at the initial time as well as after a given elapsed simulation time. These error bounds should guide the construction of practical discretization schemes and update strategies. Our initial construction is carried out by using a theoretically convenient, but practically prohibitive spectral basis, which

  19. Tilt perception during dynamic linear acceleration.

    PubMed

    Seidman, S H; Telford, L; Paige, G D

    1998-04-01

    Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith

  20. The modern temperature-accelerated dynamics approach

    DOE PAGES

    Zamora, Richard J.; Uberuaga, Blas P.; Perez, Danny; Voter, Arthur F.

    2016-06-01

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, thesemore » enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. Here, we review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD.« less

  1. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events

    SciTech Connect

    Voter, A.F.

    1997-05-01

    I derive a general method for accelerating the molecular-dynamics (MD) simulation of infrequent events in solids. A bias potential ({Delta}V{sub b}) raises the energy in regions other than the transition states between potential basins. Transitions occur at an accelerated rate and the elapsed time becomes a statistical property of the system. {Delta}V{sub b} can be constructed without knowing the location of the transition states and implementation requires only first derivatives. I examine the diffusion mechanisms of a 10-atom Ag cluster on the Ag(111) surface using a 220 {mu}s hyper-MD simulation. {copyright} {ital 1997} {ital The American Physical Society}

  2. Dynamic hierarchical algorithm for accelerated microfossil identification

    NASA Astrophysics Data System (ADS)

    Wong, Cindy M.; Joseph, Dileepan

    2015-02-01

    Marine microfossils provide a useful record of the Earth's resources and prehistory via biostratigraphy. To study Hydrocarbon reservoirs and prehistoric climate, geoscientists visually identify the species of microfossils found in core samples. Because microfossil identification is labour intensive, automation has been investigated since the 1980s. With the initial rule-based systems, users still had to examine each specimen under a microscope. While artificial neural network systems showed more promise for reducing expert labour, they also did not displace manual identification for a variety of reasons, which we aim to overcome. In our human-based computation approach, the most difficult step, namely taxon identification is outsourced via a frontend website to human volunteers. A backend algorithm, called dynamic hierarchical identification, uses unsupervised, supervised, and dynamic learning to accelerate microfossil identification. Unsupervised learning clusters specimens so that volunteers need not identify every specimen during supervised learning. Dynamic learning means interim computation outputs prioritize subsequent human inputs. Using a dataset of microfossils identified by an expert, we evaluated correct and incorrect genus and species rates versus simulated time, where each specimen identification defines a moment. The proposed algorithm accelerated microfossil identification effectively, especially compared to benchmark results obtained using a k-nearest neighbour method.

  3. Stokesian swimming of a sphere at low Reynolds number by helical surface distortion

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.; Jones, R. B.

    2016-07-01

    Explicit expressions are derived for the matrices determining the mean translational and rotational swimming velocities and the mean rate of dissipation for Stokesian swimming at low Reynolds number of a distorting sphere in a viscous incompressible fluid. As an application, an efficient helical propeller-type stroke is found and its properties are calculated.

  4. Accelerated Molecular Dynamics Simulations of Reactive Hydrocarbon Systems

    SciTech Connect

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  5. Scheme for accelerating quantum tunneling dynamics

    NASA Astrophysics Data System (ADS)

    Khujakulov, Anvar; Nakamura, Katsuhiro

    2016-02-01

    We propose a scheme of the exact fast forwarding of standard quantum dynamics for a charged particle. The present idea allows the acceleration of both the amplitude and the phase of the wave function throughout the fast-forward time range and is distinct from that of Masuda and Nakamura [Proc. R. Soc. A 466, 1135 (2010), 10.1098/rspa.2009.0446], which enabled acceleration of only the amplitude of the wave function on the way. We apply the proposed method to the quantum tunneling phenomena and obtain the electromagnetic field to ensure the rapid penetration of wave functions through a tunneling barrier. Typical examples described here are (1) an exponential wave packet passing through the δ -function barrier and (2) the opened Moshinsky shutter with a δ -function barrier just behind the shutter. We elucidate the tunneling current in the vicinity of the barrier and find a remarkable enhancement of the tunneling rate (tunneling power) due to the fast forwarding. In the case of a very high barrier, in particular, we present the asymptotic analysis and exhibit a suitable driving force to recover a recognizable tunneling current. The analysis is also carried out on the exact acceleration of macroscopic quantum tunneling with use of the nonlinear Schrödinger equation, which accommodates a tunneling barrier.

  6. Influence of emittance on transverse dynamics of accelerated bunches in the plasma-dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kniaziev, R. R.; Sotnikov, G. V.

    2016-09-01

    We study theoretically transverse dynamics of the bunch of charged particles with the finite emittance in the plasma-dielectric wakefield accelerator. Parameters of bunches are chosen the same as available from the 15 MeV Argonne Wakefield Accelerator beamline. The goal of the paper is to study the behavior of bunches of charged particles with different emittances while accelerating these bunches by wakefields in plasma-dielectric structures. Obtained results allow us to determine the limits of the emittance of the bunch where dynamics of the accelerated particles remains stable.

  7. Control of robot dynamics using acceleration control

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Prateru, S.; Li, W.; Hinman, Elaine

    1992-01-01

    Acceleration control of robotic devices can provide improvements to many space-based operations using flexible manipulators and to ground-based operations requiring better precision and efficiency than current industrial robots can provide. This paper reports on a preliminary study of acceleration measurement on robotic motion during parabolic flights on the NASA KC-135 and a parallel study of accelerations with and without gravity arising from computer simulated motions using TREETOPS software.

  8. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    SciTech Connect

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-11-04

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  9. Unveiling the propagation dynamics of self-accelerating vector beams

    PubMed Central

    Bar-David, Jonathan; Voloch-Bloch, Noa; Mazurski, Noa; Levy, Uriel

    2016-01-01

    We study theoretically and experimentally the varying polarization states and intensity patterns of self-accelerating vector beams. It is shown that as these beams propagate, the main intensity lobe and the polarization singularity gradually drift apart. Furthermore, the propagation dynamics can be manipulated by controlling the beams’ acceleration coefficients. We also demonstrate the self-healing dynamics of these accelerating vector beams for which sections of the vector beam are being blocked by an opaque or polarizing obstacle. Our results indicate that the self-healing process is almost insensitive for the obstacles’ polarization direction. Moreover, the spatial polarization structure also shows self- healing properties, and it is reconstructed as the beam propagates further beyond the perturbation plane. These results open various possibilities for generating, shaping and manipulating the intensity patterns and space variant polarization states of accelerating vector beams. PMID:27671745

  10. Accelerating ab initio molecular dynamics simulations by linear prediction methods

    NASA Astrophysics Data System (ADS)

    Herr, Jonathan D.; Steele, Ryan P.

    2016-09-01

    Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.

  11. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems.

    PubMed

    Ceotto, Michele; Ayton, Gary S; Voth, Gregory A

    2008-04-01

    An extension of superposition state molecular dynamics (SSMD) [Venkatnathan and Voth J. Chem. Theory Comput. 2005, 1, 36] is presented with the goal to accelerate timescales and enable the study of "long-time" phenomena for condensed phase systems. It does not require any a priori knowledge about final and transition state configurations, or specific topologies. The system is induced to explore new configurations by virtue of a fictitious (free-particle-like) accelerating potential. The acceleration method can be applied to all degrees of freedom in the system and can be applied to condensed phases and fluids. PMID:26620930

  12. GMRES acceleration of computational fluid dynamics codes

    NASA Technical Reports Server (NTRS)

    Wigton, L. B.; Yu, N. J.; Young, D. P.

    1985-01-01

    The generalized minimal residual algorithm (GMRES) is a conjugate-gradient like method that applies directly to nonsymmetric linear systems of equations. In this paper, GMRES is modified to handle nonlinear equations characteristic of computational fluid dynamics. Attention is devoted to the concept of preconditioning and the role it plays in assuring rapid convergence. A formulation is developed that allows GMRES to be preconditioned by the solution procedures already built into existing computer codes. Examples are provided that demonstrate the ability of GMRES to greatly improve the robustness and rate of convergence of current state-of-the-art fluid dynamics codes. Theoretical aspects of GMRES are presented that explain why it works. Finally, the advantage GMRES enjoys over related methods such as conjugate gradients are discussed.

  13. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  14. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  15. Accelerated Molecular Dynamics Simulation of Alkane Desorption

    NASA Astrophysics Data System (ADS)

    McLaughlin, Kelly; Fichthorn, Kristen

    2006-03-01

    Thermal desorption has been the focus of much surface science research. Studies of alkanes on graphite^1 and gold^2 have shown prefactors that are constant with alkane chain length but vary by over six orders of magnitude. Other studies on magnesium oxide^3 and gold^4 show a prefactor that increases with increasing chain length. We have developed an all-atom model to study alkane desorption from graphite. Transition state theory is used to obtain rate constants from the simulation. Accelerated MD is used to extend the desorption simulation to experimentally relevant temperatures. Our results show a prefactor that increases with increasing chain length. We predict that it will become constant as internal conformational changes occur significantly. We examine the effect of desorption environment through varying the alkane surface coverage. 1. K.R. Paserba and A.J. Gellman, J. Chem. Phys. 115, 6737 (2001). 2. S.M. Wetterer et al., J. Phys. Chem. 102, 9266 (1998). 3. S.L. Tait et al., J. Chem. Phys. 122, 164707 (2005). 4. K.A. Fichthorn and R.A. Miron, Phys. Rev. Lett. 89, 196103 (2002).

  16. Nonlinear dynamics of autonomous vehicles with limits on acceleration

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2014-07-01

    The stability of autonomous vehicle platoons with limits on acceleration and deceleration is determined. If the leading-vehicle acceleration remains within the limits, all vehicles in the platoon remain within the limits when the relative-velocity feedback coefficient is equal to the headway time constant [k=1/h]. Furthermore, if the sensitivity α>1/h, no collisions occur. String stability for small perturbations is assumed and the initial condition is taken as the equilibrium state. Other values of k and α that give stability with no collisions are found from simulations. For vehicles with non-negligible mechanical response, simulations indicate that the acceleration-feedback-control gain might have to be dynamically adjusted to obtain optimal performance as the response time changes with engine speed. Stability is demonstrated for some perturbations that cause initial acceleration or deceleration greater than the limits, yet do not cause collisions.

  17. Acceleration of dynamic fluorescence molecular tomography with principal component analysis

    PubMed Central

    Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen

    2015-01-01

    Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality. PMID:26114027

  18. Constant Acceleration: Experiments with a Fan-Driven Dynamics Cart.

    ERIC Educational Resources Information Center

    Morse, Robert A.

    1993-01-01

    Describes the rebuilding of a Project Physics fan cart on a PASCO dynamics cart chassis for achieving greatly reduced frictional forces. Suggests four experiments for the rebuilt cart: (1) acceleration on a level track, (2) initial negative velocity, (3) different masses and different forces, and (4) inclines. (MVL)

  19. Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

    PubMed Central

    Cai, Nian; Wang, Shengru; Zhu, Shasha

    2013-01-01

    Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method. PMID:24454528

  20. Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics

    PubMed Central

    Mücksch, Christian; Urbassek, Herbert M.

    2013-01-01

    The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces. PMID:23755156

  1. Localization of Millisecond Dynamics: Dihedral Entropy from Accelerated MD.

    PubMed

    Kamenik, Anna S; Kahler, Ursula; Fuchs, Julian E; Liedl, Klaus R

    2016-08-01

    Here, we demonstrate a method to capture local dynamics on a time scale 3 orders of magnitude beyond state-of-the-art simulation approaches. We apply accelerated molecular dynamics simulations for conformational sampling and extract reweighted backbone dihedral distributions. Local dynamics are characterized by torsional probabilities, resulting in residue-wise dihedral entropies. Our approach is successfully validated for three different protein systems of increasing size: alanine dipeptide, bovine pancreatic trypsin inhibitor (BPTI), and the major birch pollen allergen Bet v 1a. We demonstrate excellent agreement of flexibility profiles with both large-scale computer simulations and NMR experiments. Thus, our method provides efficient access to local protein dynamics on extended time scales of high biological relevance. PMID:27322931

  2. Localization of Millisecond Dynamics: Dihedral Entropy from Accelerated MD

    PubMed Central

    2016-01-01

    Here, we demonstrate a method to capture local dynamics on a time scale 3 orders of magnitude beyond state-of-the-art simulation approaches. We apply accelerated molecular dynamics simulations for conformational sampling and extract reweighted backbone dihedral distributions. Local dynamics are characterized by torsional probabilities, resulting in residue-wise dihedral entropies. Our approach is successfully validated for three different protein systems of increasing size: alanine dipeptide, bovine pancreatic trypsin inhibitor (BPTI), and the major birch pollen allergen Bet v 1a. We demonstrate excellent agreement of flexibility profiles with both large-scale computer simulations and NMR experiments. Thus, our method provides efficient access to local protein dynamics on extended time scales of high biological relevance. PMID:27322931

  3. Accelerating chemical reactions: Exploring reactive free-energy surfaces using accelerated ab initio molecular dynamics

    PubMed Central

    Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.

    2011-01-01

    A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673

  4. Lagrangian observations of acceleration and bubble dynamics in plunging breakers

    NASA Astrophysics Data System (ADS)

    Canals, Miguel; Amador, Andre

    2012-11-01

    Understanding the three-dimensional structure of plunging waves is one of the most difficult problems in fundamental fluid dynamics. In this presentation we provide an analysis of field data collected in breaking waves using novel Lagrangian drifters with a diameter of 5-10 cm and equipped with miniature HD cameras and inertial measurement units. These drifters were deployed, using a personal watercraft, into the breaking region of waves ranging from 1-5 meters in height. We analyze in detail the time series of particle acceleration and rotation and how these quantities relate to the imagery captured by the camera aboard the drifters. This data represents the first dedicated study of the three-dimensional particle dynamics of plunging breakers. Going beyond the basic statistical analysis of the acceleration data, we make an attempt at characterizing the intensity of the wave breaking process using the bubble size and characteristics obtained from the HD video images. We also attempt to relate the spectral statistics of acceleration and particle rotation to existing Lagrangian turbulence models in the hopes of obtaining estimates of the kinetic energy dissipation in breaking waves, while taking into account the unsteady and heterogeneous nature of the turbulent flow.

  5. Dynamic magnetic island coalescence and associated electron acceleration

    SciTech Connect

    Tanaka, Kentaro G.; Fujimoto, Masaki; Badman, Sarah V.; Shinohara, Iku

    2011-02-15

    The system size dependence of electron acceleration during large-scale magnetic island coalescence is studied via a two-dimensional particle-in-cell simulation. Using a simulation box that is larger than those used in previous studies, injection by merging line acceleration and subsequent reacceleration inside a merged island are found to be the mechanisms for producing the most energetic electrons. This finding and knowledge of the reacceleration process enable us to predict that the high energy end of the electron energy spectrum continues to expand as the merged island size increases. Both the merging line acceleration and the reacceleration within a merged island require the island coalescence process to be so dynamic as to involve fast in-flow toward the center of a merged island. Once this condition is met in an early stage of the coalescence, it is likely to stay in the subsequent phase. In other words, if the thin elongated current sheet is initially able to host the dynamic magnetic island coalescence process, it will be a site where repeated upgrades in the maximum energy of electrons occur in a systematic manner.

  6. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449

  7. Temperature-accelerated dynamics for simulation of infrequent events

    SciTech Connect

    Soerensen, Mads R.; Voter, Arthur F.

    2000-06-01

    We present a method for accelerating dynamic simulations of activated processes in solids. By raising the temperature, but allowing only those events that should occur at the original temperature, the time scale of a simulation is extended by orders of magnitude compared to ordinary molecular dynamics, while preserving the correct dynamics at the original temperature. The main assumption behind the method is harmonic transition state theory. Importantly, the method does not require any prior knowledge about the transition mechanisms. As an example, the method is applied to a study of surface diffusion, where concerted processes play a key role. In the example, times of hours are achieved at a temperature of 150 K. (c) 2000 American Institute of Physics.

  8. Beam dynamics design for uranium drift tube linear accelerator

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  9. A gas-dynamical approach to radiation pressure acceleration

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Boine-Frankenheim, Oliver

    2016-06-01

    The study of high intensity ion beams driven by high power pulsed lasers is an active field of research. Of particular interest is the radiation pressure acceleration, for which simulations predict narrow band ion energies up to GeV. We derive a laser-piston model by applying techniques for non-relativistic gas-dynamics. The model reveals a laser intensity limit, below which sufficient laser-piston acceleration is impossible. The relation between target thickness and piston velocity as a function of the laser pulse length yields an approximation for the permissible target thickness. We performed one-dimensional Particle-In-Cell simulations to confirm the predictions of the analytical model. These simulations also reveal the importance of electromagnetic energy transport. We find that this energy transport limits the achievable compression and rarefies the plasma.

  10. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect

    Mastoridis, Themistoklis

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  11. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  12. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo.

    PubMed

    White, Alexander J; Gorshkov, Vyacheslav N; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-01

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems. PMID:26156473

  13. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE PAGES

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  14. Characterization of micro- and mesoporous materials using accelerated dynamics adsorption.

    PubMed

    Qajar, Ali; Peer, Maryam; Rajagopalan, Ramakrishnan; Foley, Henry C

    2013-10-01

    Porosimetry is a fundamental characterization technique used in development of new porous materials for catalysis, membrane separation, and adsorptive gas storage. Conventional methods like nitrogen and argon adsorption at cryogenic temperatures suffer from slow adsorption dynamics especially for microporous materials. In addition, CO2, the other common probe, is only useful for micropore characterization unless being compressed to exceedingly high pressures to cover all required adsorption pressures. Here, we investigated the effect of adsorption temperature, pressure, and type of probe molecule on the adsorption dynamics. Methyl chloride (MeCl) was used as the probe molecule, and measurements were conducted near room temperature under nonisothermal condition and subatmospheric pressure. A pressure control algorithm was proposed to accelerate adsorption dynamics by manipulating the chemical potential of the gas. Collected adsorption data are transformed into pore size distribution profiles using the Horvath-Kavazoe (HK), Saito-Foley (SF), and modified Kelvin methods revised for MeCl. Our study shows that the proposed algorithm significantly speeds up the rate of data collection without compromising the accuracy of the measurements. On average, the adsorption rates on carbonaceous and aluminosilicate samples were accelerated by at least a factor of 4-5. PMID:23919893

  15. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  16. The Acceleration Scale, Modified Newtonian Dynamics and Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Diaferio, Antonaldo; Angus, Garry W.

    General relativity is able to describe the dynamics of galaxies and larger cosmic structures only if most of the matter in the universe is dark, namely, it does not emit any electromagnetic radiation. Intriguingly, on the scale of galaxies, there is strong observational evidence that the presence of dark matter appears to be necessary only when the gravitational field inferred from the distribution of the luminous matter falls below an acceleration of the order of 10^{-10} m s^{-2}. In the standard model, which combines Newtonian gravity with dark matter, the origin of this acceleration scale is challenging and remains unsolved. On the contrary, the full set of observations can be neatly described, and were partly predicted, by a modification of Newtonian dynamics, dubbed MOND, that does not resort to the existence of dark matter. On the scale of galaxy clusters and beyond, however, MOND is not as successful as on the scale of galaxies, and the existence of some dark matter appears unavoidable. A model combining MOND with hot dark matter made of sterile neutrinos seems to be able to describe most of the astrophysical phenomenology, from the power spectrum of the cosmic microwave background anisotropies to the dynamics of dwarf galaxies. Whether there exists a yet unknown covariant theory that contains general relativity and Newtonian gravity in the weak field limit and MOND as the ultra-weak field limit is still an open question.

  17. Numerical study of an inextensible, finite swimmer in Stokesian viscoelastic flow

    NASA Astrophysics Data System (ADS)

    Salazar, Daniel; Roma, Alexandre M.; Ceniceros, Hector D.

    2016-06-01

    A numerical investigation of an Immersed Boundary (IB) model of an effectively inextensible, finite swimmer in a Stokesian Oldroyd-B flow is presented. The swimmer model is a two-dimensional sheet of finite extent and its gait is generated by an elastic force which penalizes deviations from a target shape. A non-stiff IB method is employed to remove the impeding time step limitation induced by strong tangential forces on the swimmer. It is found that for a swimmer with a prescribed gait its mean propulsion speed decreases with increasing Deborah number De toward an apparent asymptotic minimal value. However, as the swimmer is allowed to deviate more from the target shape, the monotonic locomotion behavior with De is broken. For a sufficiently flexible swimmer, viscoelasticity can enhance locomotion but the swimmer in the viscoelastic fluid always remains slower than when it is propelling in a Newtonian fluid. Remarkably, the addition of viscoelastic stress diffusion dramatically alters the swimmer propulsion and can lead to a speed-up over the swimmer in the Newtonian fluid.

  18. Front acceleration by dynamic selection in Fisher population waves

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.

    2012-10-01

    We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.

  19. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  20. Accelerated molecular dynamics methods: introduction and recent developments

    SciTech Connect

    Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny; Shim, Y; Amar, J G

    2009-01-01

    reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.

  1. Atmospheric accelerations and the stability of dynamic supergiant atmospheres.

    NASA Astrophysics Data System (ADS)

    Nieuwenhuijzen, H.; de Jager, C.

    1995-10-01

    The goal of this paper is to study instability regions in the HR diagram, through a calculation of the atmospheric accelerations for spherically symmetric stars, in dynamic equilibrium, without using detailed atmospheric models. The input data are five primary data, viz.: the stellar luminosity L, the effective temperature T_eff_, the mass M, the rate of mass loss ˙(M), and the microturbulent velocity component ζmu_, while we assume the temperature for a reference atmospheric layer, an assumption that appears not to be critical. An iterative solution of the momentum equation, simultaneous with some other equations, yields values for the various accelerations acting on a stellar atmosphere and their algebraic sum g_eff_', the predicted effective acceleration. In the first part of the paper we compare this latter quantity with the g_eff_-value derived observationally from spectral studies of nine program stars and we find overall fair agreement. This supports the method as well as the values of the five input data. In part 2 we determine g'_eff_ in same way for the whole upper part of the Hertzsprung-Russell diagram by using statistical primary data on the mass (based on evolutionary calculations), on mass-loss and on microturbulence (shock-strengths). We find as a fairly general rule that, as stars move along their evolutionary track, and for time scales longer than the dynamic time scale of the atmosphere, the atmosphere continuously adapts to the new (L,T_eff_)-values and essentially remains stable. Current practice of determining the stability limit of stellar atmospheres by extrapolating hydrostatic models to the Eddington limit is not justified by this study. There is one exception: we find a small area around T_eff_=8300K and log(L/Lsun_)=5.7, where no solution is possible for evolved stars on their blueward evolutionary track; the stars in this area have in any case effective accelerations <1mm/s^2^: the "Yellow Evolutionary Void". In the third part we

  2. Accelerating ring-polymer molecular dynamics with parallel-replica dynamics

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F.

    2016-06-01

    Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach.

  3. Accelerating ring-polymer molecular dynamics with parallel-replica dynamics.

    PubMed

    Lu, Chun-Yaung; Perez, Danny; Voter, Arthur F

    2016-06-28

    Nuclear quantum effects are important for systems containing light elements, and the effects are more prominent in the low temperature regime where the dynamics also becomes sluggish. We show that parallel replica (ParRep) dynamics, an accelerated molecular dynamics approach for infrequent-event systems, can be effectively combined with ring-polymer molecular dynamics, a semiclassical trajectory approach that gives a good approximation to zero-point and tunneling effects in activated escape processes. The resulting RP-ParRep method is a powerful tool for reaching long time scales in complex infrequent-event systems where quantum dynamics are important. Two illustrative examples, symmetric Eckart barrier crossing and interstitial helium diffusion in Fe and Fe-Cr alloy, are presented to demonstrate the accuracy and long-time scale capability of this approach. PMID:27369499

  4. Accelerated Molecular Dynamics studies of He Bubble Growth in Tungsten

    NASA Astrophysics Data System (ADS)

    Uberuaga, Blas; Sandoval, Luis; Perez, Danny; Voter, Arthur

    2015-11-01

    Understanding how materials respond to extreme environments is critical for predicting and improving performance. In materials such as tungsten exposed to plasmas for nuclear fusion applications, novel nanoscale fuzzes, comprised of tendrils of tungsten, form as a consequence of the implantation of He into the near surface. However, the detailed mechanisms that link He bubble formation to the ultimate development of fuzz are unclear. Molecular dynamics simulations provide insight into the He implantation process, but are necessarily performed at implantation rates that are orders of magnitudes faster than experiment. Here, using accelerated molecular dynamics methods, we examine the role of He implantation rates on the physical evolution of He bubbles in tungsten. We find that, as the He rate is reduced, new types of events involving the response of the tungsten matrix to the pressure in the bubble become competitive and change the overall evolution of the bubble as well as the subsequent morphology of the tungsten surface. We have also examined how bubble growth differs at various microstructural features. These results highlight the importance of performing simulations at experimentally relevant conditions in order to correctly capture the contributions of the various significant kinetic processes and predict the overall response of the material.

  5. Studies of beam dynamics in relativistic klystron two- beam accelerators

    NASA Astrophysics Data System (ADS)

    Lidia, Steven Michael

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain

  6. Dynamics of a current bridge in a coaxial plasma accelerator

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Gusev, V. K.; Kobyakov, S. V.

    2011-07-01

    The pioneering investigation of the behavior of a current bridge in a coaxial accelerator with pulsed delivery of a working gas liberated from titanium hydride by an electrical discharge is reported. A new method to trace the motion of the current bridge using LEDs is suggested. The behavior of the current bridge in accelerators with axial and radial gas injection is studied. The parameters of an accelerator generating a pure plasma jet with a high kinetic energy (such as the size and polarity of electrodes, gas flow direction, and time delay between the delivery of the gas to the accelerator and its ionization) are optimized. The applicability of an electrodynamic model to this type of accelerator is discussed. Good agreement between experimental data and calculation results is obtained.

  7. Impact of trailing wake drag on the statistical properties and dynamics of finite-sized particle in turbulence

    NASA Astrophysics Data System (ADS)

    Calzavarini, Enrico; Volk, Romain; Lévêque, Emmanuel; Pinton, Jean-François; Toschi, Federico

    2012-02-01

    We study by means of an Eulerian-Lagrangian model the statistical properties of velocity and acceleration of a neutrally-buoyant finite-sized particle in a turbulent flow statistically homogeneous and isotropic. The particle equation of motion, besides added mass and steady Stokes drag, keeps into account the unsteady Stokes drag force-known as Basset-Boussinesq history force-and the non-Stokesian drag based on Schiller-Naumann parametrization, together with the finite-size Faxén corrections. We focus on the case of flow at low Taylor-Reynolds number, Reλ≃31, for which fully resolved numerical data which can be taken as a reference are available [Homann H., Bec J. Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J Fluid Mech 651 (2010) 81-91]. Remarkably, we show that while drag forces have always minor effects on the acceleration statistics, their role is important on the velocity behavior. We propose also that the scaling relations for the particle velocity variance as a function of its size, which have been first detected in fully resolved simulations, does not originate from inertial-scale properties of the background turbulent flow but it is likely to arise from the non-Stokesian component of the drag produced by the wake behind the particle. Furthermore, by means of comparison with fully resolved simulations, we show that the Faxén correction to the added mass has a dominant role in the particle acceleration statistics even for particles whose size attains the integral scale.

  8. Static and dynamic characteristics of angular velocity and acceleration transducers based on optical tunneling effect

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Korobkov, V. V.; Htoo Lwin, Naing; Tuan, Phan Anh

    2016-08-01

    Theoretical and experimental analysis of quasi-linear conversion function of angular velocity and acceleration microoptoelectromechnical (MOEM) transducers based on optical tunneling effect (OTE) are conducted. Equivalent oscillating circuit is developed and dynamic characteristics of angular velocity and acceleration MOEM-transducers are investigated.

  9. Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions

    PubMed Central

    Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.

    2012-01-01

    This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288

  10. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  11. Acceleration and holographic studies on different types of dynamization of external fixators of the bones

    NASA Astrophysics Data System (ADS)

    Podbielska, Halina; Kasprzak, Henryk T.; Voloshin, Arkady S.; Pennig, Dietmar; von Bally, Gert

    1992-08-01

    The unilateral axially dynamic fixator (Orthofix) was mounted on a sheep tibial shaft. Three fixation modes: static, dynamic controlled, and dynamic free were examined by means of double exposure holographic interferometry. Simultaneously, the acceleration was measured by an accelerometer and displayed on the monitor together with loading characteristics. The first exposure was made before the acting force was applied to the tibia plateau. The second one after the moment when the acceleration wave started to propagate through the specimen. We stated that in the case of dynamization less torsion occurs at the fracture site. So far, we have not been able to determine any correlation between results of holographic and accelerometric measurements.

  12. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  13. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    2007-01-01

    We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.

  14. Resonance, particle dynamics, and particle transmission in the micro-accelerator platform

    SciTech Connect

    McNeur, J.; Hazra, K. S.; Liu, G.; Sozer, E. B.; Travish, G.; Yoder, R. B.

    2012-12-21

    We describe particle dynamics in the Micro-Accelerator Platform (MAP), a slab-symmetric dielectric laser accelerator (DLA), and model the expected performance of recently fabricated MAP structures. The quality of the structure resonances has been characterized optically, and results are compared with simulation. 3D trajectory analysis is used to model acceleration in those same structures 'as built.' Results are applied to ongoing beam transmission and acceleration tests at NLCTA/E-163, in which transmission of 60 MeV injected electrons through the beam channel of the MAP was clearly observed, despite the overfilling of the structure by the beam.

  15. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  16. An adaptive cryptographic accelerator for network storage security on dynamically reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei

    2008-12-01

    Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.

  17. Beam dynamics in resonant plasma wakefield acceleration at SPARC_LAB

    NASA Astrophysics Data System (ADS)

    Romeo, S.; Anania, M. P.; Chiadroni, E.; Croia, M.; Ferrario, M.; Marocchino, A.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    Strategies to mitigate the increase of witness emittance and energy spread in beam driven plasma wakefield acceleration are investigated. Starting from the proposed resonant wakefield acceleration scheme in quasi-non-linear regime that is going to be carried out at SPARC_LAB, we performed systematic scans of the parameters to be used for drivers. The analysis will show that one of the main requirements to preserve witness quality during the acceleration is to have accelerating and focusing fields that are very stable during all the accelerating length. The difference between the dynamics of the leading bunch and the trailing bunch is pointed out. The classical condition on bunch length kpσz =√{ 2 } seems to be an ideal condition for the first driver within long accelerating lengths. The other drivers show to follow different longitudinal matching conditions. In the end a new method for the investigation of the matching for the first driver is introduced.

  18. Wave and particle dynamics of the beat-wave accelerator

    SciTech Connect

    Gibbon, P. )

    1989-10-15

    We present two-dimensional wave-envelope studies of the interaction between a plasma beat-wave and the laser pumps which drive it. A new method of focusing is demonstrated which requires the plasma wave to be driven slightly below its resonant frequency. Test particles are employed to investigate possible means of extending the accelerator stage length. {copyright} 1989 American Institute of Physics

  19. Electron dynamics in a plasma focus. [electron acceleration

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.; Winters, P. A.

    1977-01-01

    Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.

  20. System modeling for the longitudinal beam dynamics control problem in heavy ion induction accelerators

    SciTech Connect

    Payne, A.N.

    1993-05-17

    We address the problem of developing system models that are suitable for studying the control of the longitudinal beam dynamics in induction accelerators for heavy ions. In particular, we present the preliminary results of our efforts to devise a general framework for building detailed, integrated models of accelerator systems consisting of pulsed power modular circuits, induction cells, beam dynamics, and control system elements. Such a framework will permit us to analyze and design the pulsed power modulators and the control systems required to effect precise control over the longitudinal beam dynamics.

  1. dynamics of armature acceleration in a railgun channel

    NASA Astrophysics Data System (ADS)

    Gendel, Yu. G.; Glushkov, I. S.; Kareev, Yu. A.; Nikolashin, A. A.; Novikov, V. P.; Halimullin, Yu. A.

    2013-04-01

    We have analyzed the results of experiments on the acceleration of an aluminum armature with a mass of about 3 g in a railgun with steel rails. The experiment was aimed at studying processes in a high-velocity contact at a velocity close to the transition value related to the contact velocity skin effect. In the absence of high-current arcs, a velocity of 1.2 km/s has been reached with the aid of armature pressing to the rails. A retarding force that acts upon the armature that moves in the railgun channel has been determined.

  2. Particle acceleration by turbulent magnetohydro-dynamic reconnection

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Ambrosiano, J. J.; Goldstein, M. L.

    1984-01-01

    Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfven transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfven speed, and the ratio of Larmor period to the Alfven transit time.

  3. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    NASA Astrophysics Data System (ADS)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  4. Soft matter dynamics: Accelerated fluid squeeze-out during slip.

    PubMed

    Hutt, W; Persson, B N J

    2016-03-28

    Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.

  5. Soft matter dynamics: Accelerated fluid squeeze-out during slip

    NASA Astrophysics Data System (ADS)

    Hutt, W.; Persson, B. N. J.

    2016-03-01

    Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.

  6. Dynamic characterization of a new accelerated heart valve tester.

    PubMed

    Menzler, F; Haubold, A D; Hwang, N H

    1997-01-01

    This paper presents a new accelerated prosthetic heart valve tester prototype that incorporates a camshaft and poppet valves. A three element Windkessel system is used to mimic the afterload of the human systemic circulation. The device is capable of testing eight valves simultaneously at a rate up to 1,250 cycles/min, while the flow rate, the pressure, and the valve loading can be monitored and adjusted individually. The tester was characterized and calibrated using a set of eight Carpentier-Edwards bioprostheses at a flow rate varying between 3 and 5 L/min. The experiment was carried out with the pressure difference across the closed heart valve maintained between 140 and 190 mmHg. Smooth and complete opening and closing of the valve leaflets was achieved at all cycling rates. This confirms that the velocity profiles approaching the test valves were uniform, an important factor that allows the test valves to open and close synchronously each time.

  7. Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging.

    PubMed

    Feng, Xue; Salerno, Michael; Kramer, Christopher M; Meyer, Craig H

    2013-05-01

    In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-time reconstruction enables immediate visualization during the scan. Commonly used view-sharing techniques suffer from limited temporal resolution, and many of the more advanced reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model capable of real-time reconstruction can be used to increase the spatial and temporal resolution in dynamic MRI reconstruction. The original study describing the use of the Kalman filter in dynamic MRI was limited to non-Cartesian trajectories because of a limitation intrinsic to the dynamic model used in that study. Here the limitation is overcome, and the model is applied to the more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial and temporal resolution and signal-to-noise ratio. Simulations and experiments were conducted to demonstrate that the Kalman filter model can increase the temporal resolution of the image series compared with view-sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The method requires relatively little computation, and thus is suitable for real-time reconstruction.

  8. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    NASA Astrophysics Data System (ADS)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  9. Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning.

    PubMed

    Wu, Haiyong; Chen, Geng; Jin, Yan; Shen, Dinggang; Yap, Pew-Thian

    2016-01-01

    Global tractography estimates brain connectivity by organizing signal-generating fiber segments in an optimal configuration that best describes the measured diffusion-weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinical applications. We present here a reformulation of the global tractography algorithm for fast parallel implementation amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our method is motivated by the key observation that each fiber segment is affected by a limited spatial neighborhood. In other words, a fiber segment is influenced only by the fiber segments that are (or can potentially be) connected to its two ends and also by the diffusion-weighted signal in its proximity. This observation makes it possible to parallelize the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that concurrent updating of independent fiber segments can be carried out. Experiments show that the proposed algorithm can significantly speed up global tractography, while at the same time maintain or even improve tractography performance.

  10. Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning.

    PubMed

    Wu, Haiyong; Chen, Geng; Jin, Yan; Shen, Dinggang; Yap, Pew-Thian

    2016-01-01

    Global tractography estimates brain connectivity by organizing signal-generating fiber segments in an optimal configuration that best describes the measured diffusion-weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinical applications. We present here a reformulation of the global tractography algorithm for fast parallel implementation amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our method is motivated by the key observation that each fiber segment is affected by a limited spatial neighborhood. In other words, a fiber segment is influenced only by the fiber segments that are (or can potentially be) connected to its two ends and also by the diffusion-weighted signal in its proximity. This observation makes it possible to parallelize the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that concurrent updating of independent fiber segments can be carried out. Experiments show that the proposed algorithm can significantly speed up global tractography, while at the same time maintain or even improve tractography performance. PMID:27468263

  11. Ion and neutral dynamics in Hall plasma accelerator ionization instabilities

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2015-09-01

    Hall thrusters, the extensively studied E × B devices used for space propulsion applications, are rife with instabilities and fluctuations. Many are thought to be fundamentally linked to microscopic processes like electron transport across magnetic field lines and propellant ionization that in turn affect macroscopic properties like device performance and lifetime. One of the strongest oscillatory regimes is the ``breathing mode,'' characterized by a propagating ionization front, time-varying ion acceleration profiles, and quasi-periodic 10-50 kHz current oscillations. Determining the temporal and spatial evolution of plasma properties is critical to achieving a fundamental physical understanding of these processes. We present non-intrusive laser-induced fluorescence measurements of the local ion and neutral velocity distribution functions synchronized with the breathing mode oscillations. Measurements reveal strong ion velocity fluctuations, multiple ion populations arising in narrow time windows throughout the near-field plume, and the periodic population and depopulation of neutral excited states. Analyzing these detailed experimental results in the context of the existing literature clarifies the fundamental physical processes underlying the breathing mode. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  12. Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning

    PubMed Central

    Wu, Haiyong; Chen, Geng; Jin, Yan; Shen, Dinggang; Yap, Pew-Thian

    2016-01-01

    Global tractography estimates brain connectivity by organizing signal-generating fiber segments in an optimal configuration that best describes the measured diffusion-weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinical applications. We present here a reformulation of the global tractography algorithm for fast parallel implementation amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our method is motivated by the key observation that each fiber segment is affected by a limited spatial neighborhood. In other words, a fiber segment is influenced only by the fiber segments that are (or can potentially be) connected to its two ends and also by the diffusion-weighted signal in its proximity. This observation makes it possible to parallelize the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that concurrent updating of independent fiber segments can be carried out. Experiments show that the proposed algorithm can significantly speed up global tractography, while at the same time maintain or even improve tractography performance. PMID:27468263

  13. Low-rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI with Separation of Background and Dynamic Components

    PubMed Central

    Otazo, Ricardo; Candès, Emmanuel; Sodickson, Daniel K.

    2014-01-01

    Purpose To apply the low-rank plus sparse (L+S) matrix decomposition model to reconstruct undersampled dynamic MRI as a superposition of background and dynamic components in various problems of clinical interest. Theory and Methods The L+S model is natural to represent dynamic MRI data. Incoherence between k−t space (acquisition) and the singular vectors of L and the sparse domain of S is required to reconstruct undersampled data. Incoherence between L and S is required for robust separation of background and dynamic components. Multicoil L+S reconstruction is formulated using a convex optimization approach, where the nuclear-norm is used to enforce low-rank in L and the l1-norm to enforce sparsity in S. Feasibility of the L+S reconstruction was tested in several dynamic MRI experiments with true acceleration including cardiac perfusion, cardiac cine, time-resolved angiography, abdominal and breast perfusion using Cartesian and radial sampling. Results The L+S model increased compressibility of dynamic MRI data and thus enabled high acceleration factors. The inherent background separation improved background suppression performance compared to conventional data subtraction, which is sensitive to motion. Conclusion The high acceleration and background separation enabled by L+S promises to enhance spatial and temporal resolution and to enable background suppression without the need of subtraction or modeling. PMID:24760724

  14. GPU-accelerated visualization of protein dynamics in ribbon mode

    NASA Astrophysics Data System (ADS)

    Wahle, Manuel; Birmanns, Stefan

    2011-01-01

    Proteins are biomolecules present in living organisms and essential for carrying out vital functions. Inherent to their functioning is folding into different spatial conformations, and to understand these processes, it is crucial to visually explore the structural changes. In recent years, significant advancements in experimental techniques and novel algorithms for post-processing of protein data have routinely revealed static and dynamic structures of increasing sizes. In turn, interactive visualization of the systems and their transitions became more challenging. Therefore, much research for the efficient display of protein dynamics has been done, with the focus being space filling models, but for the important class of abstract ribbon or cartoon representations, there exist only few methods for an efficient rendering. Yet, these models are of high interest to scientists, as they provide a compact and concise description of the structure elements along the protein main chain. In this work, a method was developed to speed up ribbon and cartoon visualizations. Separating two phases in the calculation of geometry allows to offload computational work from the CPU to the GPU. The first phase consists of computing a smooth curve along the protein's main chain on the CPU. In the second phase, conducted independently by the GPU, vertices along that curve are moved to set up the final geometrical representation of the molecule.

  15. Research on Acceleration Disturbance Suppression for Dynamic Detection of Level Attitude

    NASA Astrophysics Data System (ADS)

    Tan, Linxia; Zhang, Fuxue

    The paper presents a new method to eliminate acceleration disturbance in level attitude measurement and control of moving carrier. Output signals of micro-machined inclinometer and gyroscope are analyzed in different states of moving carrier by experimental simulation, results show that gyroscope almost keeps the zero output voltage while inclinometer outputs in significant fluctuations. With the analysis results, a new method on acceleration disturbance suppression is developed base on a combination of inclinometers and gyroscopes, which includes establishment and derivation of its mathematical model and implementation, and an algorithm software design. Finally, tests to the acceleration disturbance suppression effect are demonstrated in line motion, line vibration, angular motion and angular motion plus pitch swing. Experimental results show that the method achieves its expected effect. The inertial system constitutes of inclinometers and gyros interacting with acceleration disturbance suppression method can dynamic detect the level attitude of moving carrier.

  16. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines

    PubMed Central

    Pontrello, Crystal G.; Ethell, Iryna M.

    2010-01-01

    Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines. PMID:20463852

  17. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves. PMID:23155997

  18. Accelerate!

    PubMed

    Kotter, John P

    2012-11-01

    The old ways of setting and implementing strategy are failing us, writes the author of Leading Change, in part because we can no longer keep up with the pace of change. Organizational leaders are torn between trying to stay ahead of increasingly fierce competition and needing to deliver this year's results. Although traditional hierarchies and managerial processes--the components of a company's "operating system"--can meet the daily demands of running an enterprise, they are rarely equipped to identify important hazards quickly, formulate creative strategic initiatives nimbly, and implement them speedily. The solution Kotter offers is a second system--an agile, networklike structure--that operates in concert with the first to create a dual operating system. In such a system the hierarchy can hand off the pursuit of big strategic initiatives to the strategy network, freeing itself to focus on incremental changes to improve efficiency. The network is populated by employees from all levels of the organization, giving it organizational knowledge, relationships, credibility, and influence. It can Liberate information from silos with ease. It has a dynamic structure free of bureaucratic layers, permitting a level of individualism, creativity, and innovation beyond the reach of any hierarchy. The network's core is a guiding coalition that represents each level and department in the hierarchy, with a broad range of skills. Its drivers are members of a "volunteer army" who are energized by and committed to the coalition's vividly formulated, high-stakes vision and strategy. Kotter has helped eight organizations, public and private, build dual operating systems over the past three years. He predicts that such systems will lead to long-term success in the 21st century--for shareholders, customers, employees, and companies themselves.

  19. An accelerated iterative method for the dynamics of constrained multibody systems

    NASA Astrophysics Data System (ADS)

    Lee, Kisu

    1993-01-01

    An accelerated iterative method is suggested for the dynamic analysis of multibody systems consisting of interconnected rigid bodies. The Lagrange multipliers associated with the kinematic constraints are iteratively computed by the monotone reduction of the constraint error vector, and the resulting equations of motion are easily time-integrated by a well established ODE technique. The velocity and acceleration constraints as well as the position constraints are made to be satisfied at the joints at each time step. Exact solution is obtained without the time demanding procedures such as selection of the independent coordinates, decomposition of the constraint Jacobian matrix, and Newton Raphson iterations. An acceleration technique is employed for the faster convergence of the iterative scheme and the convergence analysis of the proposed iterative method is presented. Numerical solutions for the verification problems are presented to demonstrate the efficiency and accuracy of the suggested technique.

  20. On Higher Ground: How Well Can Dynamic Body Acceleration Determine Speed in Variable Terrain?

    PubMed Central

    Bidder, Owen R.; Qasem, Lama A.; Wilson, Rory P.

    2012-01-01

    Introduction Animal travel speed is an ecologically significant parameter, with implications for the study of energetics and animal behaviour. It is also necessary for the calculation of animal paths by dead-reckoning. Dead-reckoning uses heading and speed to calculate an animal’s path through its environment on a fine scale. It is often used in aquatic environments, where transmission telemetry is difficult. However, its adoption for tracking terrestrial animals is limited by our ability to measure speed accurately on a fine scale. Recently, tri-axial accelerometers have shown promise for estimating speed, but their accuracy appears affected by changes in substrate and surface gradients. The purpose of the present study was to evaluate four metrics of acceleration; Overall dynamic body acceleration (ODBA), vectorial dynamic body acceleration (VDBA), acceleration peak frequency and acceleration peak amplitude, as proxies for speed over hard, soft and inclined surfaces, using humans as a model species. Results A general linear model (GLM) showed a significant difference in the relationships between the metrics and speed depending on substrate or surface gradient. When the data from all surface types were considered together, VeDBA had the highest coefficient of determination. Conclusions All of the metrics showed some variation in their relationship with speed according to the surface type. This indicates that changes in the substrate or surface gradient during locomotion by animals would produce errors in speed estimates, and also in dead-reckoned tracks if they were calculated from speeds based entirely on a priori calibrations. However, we describe a method by which the relationship between acceleration metrics and speed can be corrected ad hoc, until tracks accord with periodic ground truthed positions, obtained via a secondary means (e.g. VHF or GPS telemetry). In this way, dead-reckoning provides a means to obtain fine scale movement data for terrestrial

  1. Conformational Changes in Acetylcholine Binding Protein Investigated by Temperature Accelerated Molecular Dynamics

    PubMed Central

    Mohammad Hosseini Naveh, Zeynab; Malliavin, Therese E.; Maragliano, Luca; Cottone, Grazia; Ciccotti, Giovanni

    2014-01-01

    Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit. PMID:24551117

  2. Beam dynamics of a double-gap acceleration cell for ion implantation with multiple atomic species

    SciTech Connect

    Wadlinger, E.A.; Lysenko, W.P.; Rusnak, B.; Saadatmand, K.

    1997-02-01

    As a result of our work on ion implantation, we derived equations for the beam dynamics of a two-gap-resonator cavity for accelerating and bunching various ion species of varying energies with the cavity designed for one particular ion species of a given energy (the design-reference particle). A two gap structure is useful at low resonant frequencies where lumped circuit elements (inductors) can be used and the structure kept small. A single gap structure has the advantage that each gap can be independently phased to produce the desired beam dynamics behavior for various ion species and ion energies. However at low frequencies, single gap resonant structures can be large. We find that the two-gap structure, where the phase difference between gaps, for the design reference particle, is fixed at {pi} radians can give acceptable performance provided that the individual two gap cells in the entire accelerator are optimized for the ion species having the largest mass to charge ratio and having the maximum required output energy. Our equations show how to adjust the cavity phases and electric fields to obtain equivalent first-order accelerator performance for various ion species and energies. These equations allow for the effective evaluation of various accelerator concepts and can facilitate the tuning of a linac when changing energies and ion species. Extensive simulations have confirmed the efficacy of our equations. {copyright} {ital 1997 American Institute of Physics.}

  3. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis.

    PubMed

    Sasagawa, Shun; Shinya, Masahiro; Nakazawa, Kimitaka

    2014-01-01

    Recent studies have demonstrated that human quiet standing is a multijoint movement, whereby the central nervous system (CNS) is required to deal with dynamic interactions among the joints to achieve optimal motor performance. The purpose of this study was to investigate how the CNS deals with such interjoint interaction during quiet standing by examining the relationship between the kinetics (torque) and kinematics (angular acceleration) within the multi-degree of freedom system. We modeled quiet standing as a double-link inverted pendulum involving both ankle and hip joints and conducted an "induced acceleration analysis." We found that the net ankle and hip torques induced angular accelerations of comparable magnitudes to the ankle (3.8 ± 1.4°/s(2) and 3.3 ± 1.2°/s(2)) and hip (9.1 ± 3.2°/s(2) and 10.5 ± 3.5°/s(2)) joints, respectively. Angular accelerations induced by the net ankle and hip torques were modulated in a temporally antiphase pattern to one another in each of the two joints. These quantitative and temporal relationships allowed the angular accelerations induced by the two net torques to countercompensate one another, thereby substantially (∼70%) reducing the resultant angular accelerations of the individual joints. These results suggest that, by taking advantage of the interjoint interaction, the CNS prevents the net torques from producing large amplitudes of the resultant angular accelerations when combined with the kinematic effects of all other torques in the chain.

  4. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis.

    PubMed

    Sasagawa, Shun; Shinya, Masahiro; Nakazawa, Kimitaka

    2014-01-01

    Recent studies have demonstrated that human quiet standing is a multijoint movement, whereby the central nervous system (CNS) is required to deal with dynamic interactions among the joints to achieve optimal motor performance. The purpose of this study was to investigate how the CNS deals with such interjoint interaction during quiet standing by examining the relationship between the kinetics (torque) and kinematics (angular acceleration) within the multi-degree of freedom system. We modeled quiet standing as a double-link inverted pendulum involving both ankle and hip joints and conducted an "induced acceleration analysis." We found that the net ankle and hip torques induced angular accelerations of comparable magnitudes to the ankle (3.8 ± 1.4°/s(2) and 3.3 ± 1.2°/s(2)) and hip (9.1 ± 3.2°/s(2) and 10.5 ± 3.5°/s(2)) joints, respectively. Angular accelerations induced by the net ankle and hip torques were modulated in a temporally antiphase pattern to one another in each of the two joints. These quantitative and temporal relationships allowed the angular accelerations induced by the two net torques to countercompensate one another, thereby substantially (∼70%) reducing the resultant angular accelerations of the individual joints. These results suggest that, by taking advantage of the interjoint interaction, the CNS prevents the net torques from producing large amplitudes of the resultant angular accelerations when combined with the kinematic effects of all other torques in the chain. PMID:24089399

  5. Predictive Simulation and Design of Materials by Quasicontinuum and Accelerated Dynamics Methods

    SciTech Connect

    Luskin, Mitchell; James, Richard; Tadmor, Ellad

    2014-03-30

    This project developed the hyper-QC multiscale method to make possible the computation of previously inaccessible space and time scales for materials with thermally activated defects. The hyper-QC method combines the spatial coarse-graining feature of a finite temperature extension of the quasicontinuum (QC) method (aka “hot-QC”) with the accelerated dynamics feature of hyperdynamics. The hyper-QC method was developed, optimized, and tested from a rigorous mathematical foundation.

  6. Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings

    SciTech Connect

    Balandin, Vladimir; Golubeva, Nina

    1997-02-01

    The equations of classical spin-orbit motion can be extended to a Hamiltonian system in 9-dimensional phase space by introducing a coupled spin-orbit Poisson bracket and Hamiltonian function. After this extension it becomes possible to apply the methods of the theory of Hamiltonian systems to the study of polarized particles beam dynamics in circular accelerators and storage rings. Some of those methods have been implemented in the computer code FORGET-ME-NOT.

  7. MuSTAR MD: multi-scale sampling using temperature accelerated and replica exchange molecular dynamics.

    PubMed

    Yamamori, Yu; Kitao, Akio

    2013-10-14

    A new and efficient conformational sampling method, MuSTAR MD (Multi-scale Sampling using Temperature Accelerated and Replica exchange Molecular Dynamics), is proposed to calculate the free energy landscape on a space spanned by a set of collective variables. This method is an extension of temperature accelerated molecular dynamics and can also be considered as a variation of replica-exchange umbrella sampling. In the MuSTAR MD, each replica contains an all-atom fine-grained model, at least one coarse-grained model, and a model defined by the collective variables that interacts with the other models in the same replica through coupling energy terms. The coarse-grained model is introduced to drive efficient sampling of large conformational space and the fine-grained model can serve to conduct more accurate conformational sampling. The collective variable model serves not only to mediate the coarse- and fine-grained models, but also to enhance sampling efficiency by temperature acceleration. We have applied this method to Ala-dipeptide and examined the sampling efficiency of MuSTAR MD in the free energy landscape calculation compared to that for replica exchange molecular dynamics, replica exchange umbrella sampling, temperature accelerated molecular dynamics, and conventional MD. The results clearly indicate the advantage of sampling a relatively high energy conformational space, which is not sufficiently sampled with other methods. This feature is important in the investigation of transition pathways that go across energy barriers. MuSTAR MD was also applied to Met-enkephalin as a test case in which two Gō-like models were employed as the coarse-grained model.

  8. Closing the Gap between Experiment and Theory: Crystal Growth by Temperature Accelerated Dynamics

    SciTech Connect

    Montalenti, F.; Sorensen, M. R.; Voter, A. F.

    2001-09-17

    We present atomistic simulations of crystal growth where realistic experimental deposition rates are reproduced, without needing any a priori information on the relevant diffusion processes. Using the temperature accelerated dynamics method, we simulate the deposition of 4 monolayers (ML) of Ag/Ag(100) at the rate of 0.075 ML/s, thus obtaining a boost of several orders of magnitude with respect to ordinary molecular dynamics. In the temperature range analyzed (0--70 K), steering and activated mechanisms compete in determining the surface roughness.

  9. Accelerated electronic structure-based molecular dynamics simulations of shock-induced chemistry

    NASA Astrophysics Data System (ADS)

    Cawkwell, Marc

    2015-06-01

    The initiation and progression of shock-induced chemistry in organic materials at moderate temperatures and pressures are slow on the time scales available to regular molecular dynamics simulations. Accessing the requisite time scales is particularly challenging if the interatomic bonding is modeled using accurate yet expensive methods based explicitly on electronic structure. We have combined fast, energy conserving extended Lagrangian Born-Oppenheimer molecular dynamics with the parallel replica accelerated molecular dynamics formalism to study the relatively sluggish shock-induced chemistry of benzene around 13-20 GPa. We model interatomic bonding in hydrocarbons using self-consistent tight binding theory with an accurate and transferable parameterization. Shock compression and its associated transient, non-equilibrium effects are captured explicitly by combining the universal liquid Hugoniot with a simple shrinking-cell boundary condition. A number of novel methods for improving the performance of reactive electronic structure-based molecular dynamics by adapting the self-consistent field procedure on-the-fly will also be discussed. The use of accelerated molecular dynamics has enabled us to follow the initial stages of the nucleation and growth of carbon clusters in benzene under thermodynamic conditions pertinent to experiments.

  10. Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry

    NASA Astrophysics Data System (ADS)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2011-08-01

    Many physiological flows are driven by waves of muscular contractions passed along a tubular structure. This peristaltic pumping plays a role in ovum transport in the oviduct and in rapid sperm transport through the uterus. As such, flow due to peristalsis has been a central theme in classical biological fluid dynamics. Analytical approaches and numerical methods have been used to study flow in two-dimensional channels and three-dimensional tubes. In two dimensions, the effect of asymmetry due to a phase shift between the channel walls has been examined. However, in three dimensions, peristalsis in a non-axisymmetric tube has received little attention. Here, we present a computational model of peristaltic pumping of a viscous fluid in three dimensions based upon the method of regularized Stokeslets. In particular, we study the flow structure and mean flow in a three-dimensional tube whose asymmetry is governed by a single phase-shift parameter. We view this as a three-dimensional analog of the phase-shifted two-dimensional channel. We find that the maximum mean flow rate is achieved for the parameter that results in an axisymmetric tube. We also validate this approach by comparing our computational results with classical long-wavelength theory for the three-dimensional axisymmetric tube. This computational framework is easily implemented and may be adapted to more comprehensive physiological models where the kinematics of the tube walls are not specified a priori, but emerge due to the coupling of its passive elastic properties, force generating mechanisms, and the surrounding viscous fluid.

  11. A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.

    PubMed

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2015-06-25

    The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid.

  12. A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.

    PubMed

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2015-06-25

    The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid. PMID:25817334

  13. Particle acceleration in the dynamic magnetotail: Orbits in self-consistent three-dimensional MHD fields

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Hesse, Michael

    1994-01-01

    The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.

  14. A two-fluid model for particle acceleration and dynamics in black-hole accretion flows

    NASA Astrophysics Data System (ADS)

    Lee, Jason P.

    Hot, tenuous Advection-Dominated Accretion Flows (ADAFs) are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disk. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, due to the pressure of the relativistic particles, has not been previously considered, as this effect can have a significant influence on the disk structure. We reexamine the problem by creating a new two-fluid model that includes the dynamical effect of the relativistic particle pressure, as well as the background (thermal) gas pressure. The new model is analogous to the incorporation of the cosmic-ray pressure in the two-fluid model of cosmic-ray-modified supernova shock waves. We derive a new set of shock jump conditions and obtain dynamical solutions that describe the structure of the disk, the discontinuous shock, and the outflow. From this, we show that smooth (shock-free) global flows are impossible when relativistic particle diffusion is included in the dynamical model.

  15. Heavy-ion beam dynamics in the RIA post-accelerator.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Aseev, V. N.; Physics

    2005-01-01

    The RIA post-accelerator (RIB) includes three main sections: a room temperature injector with design ion charge-to-mass ratio 1/240 and output energy of {approx} 93 keV/u, a superconducting (SC) linac for ions with charge-to-mass ratio 1/66 or higher up to an energy of {approx} 1 MeV/u and a higher energy SC linac including existing ATLAS to produce 10 MeV/u beams up to uranium. Two strippers are installed between the sections. Extensive accelerator design studies and end-to-end beam dynamics simulations have been performed to minimize the cost of the linac while providing high-quality and high-intensity radioactive beams. Specifically, we have found that cost-effective acceleration in the front end can be provided by several hybrid RFQs proposed and developed for acceleration of low-velocity heavy ions. For beam focusing in the second section it is appropriate to use electrostatic lenses and SC quadrupoles inside common cryostats with the resonators.

  16. Dynamics of Double Layers, Ion Acceleration, and Heat Flux Suppression during Solar Flares

    NASA Astrophysics Data System (ADS)

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2014-09-01

    Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger systems where, instead of a single DL, multiple DLs are generated. The primary DL accelerates return current electrons, resulting in high velocity electron beams that interact with ambient ions. This forms a Buneman unstable system that spawns more DLs. Trapping of heated return current electrons between multiple DLs strongly suppresses electron transport. DLs also accelerate ambient ions and produce strong ion flows over an extended region. This clarifies the mechanism by which hot electrons in the corona couple to and accelerate ions to form the solar wind. These new dynamics in larger systems reveal a more likely picture of DL development and their impact on the ambient plasma in the solar corona. They are applicable to the preparation for in situ coronal space missions like the Solar Probe Plus.

  17. Dynamics of double layers, ion acceleration, and heat flux suppression during solar flares

    SciTech Connect

    Li, T. C.; Drake, J. F.; Swisdak, M.

    2014-09-20

    Observations of flare-heated electrons in the corona typically suggest confinement of electrons. The confinement mechanism, however, remains unclear. The transport of coronal hot electrons into ambient plasma was recently investigated by particle-in-cell (PIC) simulations. Electron transport was significantly suppressed by the formation of a highly localized, nonlinear electrostatic potential in the form of a double layer (DL). In this work large-scale PIC simulations are performed to explore the dynamics of DLs in larger systems where, instead of a single DL, multiple DLs are generated. The primary DL accelerates return current electrons, resulting in high velocity electron beams that interact with ambient ions. This forms a Buneman unstable system that spawns more DLs. Trapping of heated return current electrons between multiple DLs strongly suppresses electron transport. DLs also accelerate ambient ions and produce strong ion flows over an extended region. This clarifies the mechanism by which hot electrons in the corona couple to and accelerate ions to form the solar wind. These new dynamics in larger systems reveal a more likely picture of DL development and their impact on the ambient plasma in the solar corona. They are applicable to the preparation for in situ coronal space missions like the Solar Probe Plus.

  18. Molecular dynamics-based virtual screening: accelerating the drug discovery process by high-performance computing.

    PubMed

    Ge, Hu; Wang, Yu; Li, Chanjuan; Chen, Nanhao; Xie, Yufang; Xu, Mengyan; He, Yingyan; Gu, Xinchun; Wu, Ruibo; Gu, Qiong; Zeng, Liang; Xu, Jun

    2013-10-28

    High-performance computing (HPC) has become a state strategic technology in a number of countries. One hypothesis is that HPC can accelerate biopharmaceutical innovation. Our experimental data demonstrate that HPC can significantly accelerate biopharmaceutical innovation by employing molecular dynamics-based virtual screening (MDVS). Without using HPC, MDVS for a 10K compound library with tens of nanoseconds of MD simulations requires years of computer time. In contrast, a state of the art HPC can be 600 times faster than an eight-core PC server is in screening a typical drug target (which contains about 40K atoms). Also, careful design of the GPU/CPU architecture can reduce the HPC costs. However, the communication cost of parallel computing is a bottleneck that acts as the main limit of further virtual screening improvements for drug innovations.

  19. Electron-beam dynamics for an advanced flash-radiography accelerator

    SciTech Connect

    Ekdahl, Carl August Jr.

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  20. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    SciTech Connect

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.

  1. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    SciTech Connect

    Ekdahl, Carl

    2015-12-01

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.

  2. Beam dynamics studies for the relativistic klystron two-beam accelerator experiment

    NASA Astrophysics Data System (ADS)

    Lidia, Steven M.

    2001-04-01

    Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band \\(~8-12 GHz\\) through Ka-band \\(~30-35 GHz\\) frequency regions. The relativistic klystron two-beam accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described, and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent calculations of the beam dynamics and of the rf cavity output are presented and discussed together with a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beam line.

  3. Acceleration of conventional data acquisition in dynamic contrast enhancement: comparing keyhole approaches with compressive sensing.

    PubMed

    Geethanath, Sairam; Gulaka, Praveen K; Kodibagkar, Vikram D

    2014-01-01

    Dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) has become a valuable clinical tool for cancer diagnosis and prognosis. DCE MRI provides pharmacokinetic parameters dependent on the extravasation of small molecular contrast agents, and thus high temporal resolution and/or spatial resolution is required for accurate estimation of parameters. In this article we investigate the efficacy of 2 undersampling approaches to speed up DCE MRI: a conventional keyhole approach and compressed sensing-based imaging. Data reconstructed from variants of these methods has been compared with the full k-space reconstruction with respect to data quality and pharmacokinetic parameters Ktrans and ve. Overall, compressive sensing provides better data quality and reproducible parametric maps than key-hole methods with higher acceleration factors. In particular, an undersampling mask based on a priori precontrast data showed high fidelity of reconstructed data and parametric maps up to 5× acceleration.

  4. Radiative damping and electron beam dynamics in plasma-based accelerators.

    PubMed

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  5. Radiative damping and electron beam dynamics in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  6. Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations

    PubMed Central

    2011-01-01

    Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations. PMID:22241967

  7. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting.

    PubMed

    Stone, John E; McGreevy, Ryan; Isralewitz, Barry; Schulten, Klaus

    2014-01-01

    Hybrid structure fitting methods combine data from cryo-electron microscopy and X-ray crystallography with molecular dynamics simulations for the determination of all-atom structures of large biomolecular complexes. Evaluating the quality-of-fit obtained from hybrid fitting is computationally demanding, particularly in the context of a multiplicity of structural conformations that must be evaluated. Existing tools for quality-of-fit analysis and visualization have previously targeted small structures and are too slow to be used interactively for large biomolecular complexes of particular interest today such as viruses or for long molecular dynamics trajectories as they arise in protein folding. We present new data-parallel and GPU-accelerated algorithms for rapid interactive computation of quality-of-fit metrics linking all-atom structures and molecular dynamics trajectories to experimentally-determined density maps obtained from cryo-electron microscopy or X-ray crystallography. We evaluate the performance and accuracy of the new quality-of-fit analysis algorithms vis-à-vis existing tools, examine algorithm performance on GPU-accelerated desktop workstations and supercomputers, and describe new visualization techniques for results of hybrid structure fitting methods. PMID:25340325

  8. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting.

    PubMed

    Stone, John E; McGreevy, Ryan; Isralewitz, Barry; Schulten, Klaus

    2014-01-01

    Hybrid structure fitting methods combine data from cryo-electron microscopy and X-ray crystallography with molecular dynamics simulations for the determination of all-atom structures of large biomolecular complexes. Evaluating the quality-of-fit obtained from hybrid fitting is computationally demanding, particularly in the context of a multiplicity of structural conformations that must be evaluated. Existing tools for quality-of-fit analysis and visualization have previously targeted small structures and are too slow to be used interactively for large biomolecular complexes of particular interest today such as viruses or for long molecular dynamics trajectories as they arise in protein folding. We present new data-parallel and GPU-accelerated algorithms for rapid interactive computation of quality-of-fit metrics linking all-atom structures and molecular dynamics trajectories to experimentally-determined density maps obtained from cryo-electron microscopy or X-ray crystallography. We evaluate the performance and accuracy of the new quality-of-fit analysis algorithms vis-à-vis existing tools, examine algorithm performance on GPU-accelerated desktop workstations and supercomputers, and describe new visualization techniques for results of hybrid structure fitting methods.

  9. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts.

    PubMed

    Kitamura, Kei-ichiro; Takahira, Koh; Inari, Masato; Satoh, Yusuke; Hayakawa, Kazuichi; Tabuchi, Yoshiaki; Ogai, Kazuhiro; Nishiuchi, Takumi; Kondo, Takashi; Mikuni-Takagaki, Yuko; Chen, Wenxi; Hattori, Atsuhiko; Suzuki, Nobuo

    2013-09-01

    Zebrafish scales consist of bone-forming osteoblasts, bone-resorbing osteoclasts, and calcified bone matrix. To elucidate the underlying molecular mechanism of the effects induced by dynamic and static acceleration, we investigated the scale osteoblast- and osteoclast-specific marker gene expression involving osteoblast-osteoclast communication molecules. Osteoblasts express RANKL, which binds to the osteoclast surface receptor, RANK, and stimulates bone resorption. OPG, on the other hand, is secreted by osteoblast as a decoy receptor for RANKL, prevents RANKL from binding to RANK and thus prevents bone resorption. Therefore, the RANK-RANKL-OPG pathway contributes to the regulation of osteoclastogenesis by osteoblasts. Semaphorin 4D, in contrast, is expressed on osteoclasts, and binding to its receptor Plexin-B1 on osteoblasts results in suppression of bone formation. In the present study, we found that both dynamic and static acceleration at 3.0×g decreased RANKL/OPG ratio and increased osteoblast-specific functional mRNA such as alkaline phosphatase, while static acceleration increased and dynamic acceleration decreased osteoclast-specific mRNA such as cathepsin K. Static acceleration increased semaphorin 4D mRNA expression, while dynamic acceleration had no effect. The results of the present study indicated that osteoclasts have predominant control over bone metabolism via semaphorin 4D expression induced by static acceleration at 3.0×g.

  10. Hamiltonian methods for the study of polarized proton beam dynamics in accelerators and storage rings

    SciTech Connect

    Balandin, V. |; Golubeva, N.

    1997-02-01

    The equations of classical spin-orbit motion can be extended to a {bold Hamiltonian system} in 9-dimensional phase space by introducing a coupled spin-orbit {bold Poisson bracket} (3) and {bold Hamiltonian function} (5). After this extension it becomes possible to apply the {bold methods of the theory of Hamiltonian systems} to the study of polarized particles beam dynamics in circular accelerators and storage rings. Some of those methods have been implemented in the computer code {bold FORGET-ME-NOT} [1], [2]. {copyright} {ital 1997 American Institute of Physics.}

  11. Ion dynamics in an E × B Hall plasma accelerator

    SciTech Connect

    Young, Christopher V. Lucca Fabris, Andrea; Cappelli, Mark A.

    2015-01-26

    We show the time evolution of the ion velocity distribution function in a Hall plasma accelerator during a 20 kHz natural, quasi-periodic plasma oscillation. We apply a time-synchronized laser induced fluorescence technique at different locations along the channel midline, obtaining time- and spatially resolved ion velocity measurements. Strong velocity and density fluctuations and multiple ion populations are observed throughout the so-called “breathing mode” ionization instability, opening an experimental window into the detailed ion dynamics and physical processes at the heart of such devices.

  12. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1994-02-01

    We investigate particle dynamics that is governed by a nonstandard kinetic action of a special form. We are guided by a phenomenological scheme-the modified dynamics (MOND)-that imputes the mass discrepancy, observed in galactic systems, not to the presence of dark matter, but to a departure from Newtonian dynamics below a certain scale of accelerations, a0. The particle's equation of motion in a potential φ is derived from an action, S, of the form S ~ Sk[r(t), a0] - ∫ φ dt. The limit a0 --> 0 corresponds to Newtonian dynamics, and there the kinetic action Sk must take the standard form. In the opposite limit, a0 --> ∞ we require Sk --> 0-and more specifically, for circular orbits Sk ~ a-10-in order to attain the phenomenological success of MOND. Galilei-invariant such theories must be strongly nonlocal. This is a blessing, as such theories need not suffer from the illnesses that are endemic to higher-derivative theories. We comment on the possibility that such a modified law of motion is an effective theory resulting from the elimination of degrees of freedom pertaining to the universe at large (the near equality a0 ≍ cH0 being a trace of that connection). We derive a general virial relation for bounded trajectories. Exact solutions are obtained for circular orbits, which pertain to rotation curves of disk galaxies. We also explore, in passing, theories that depart from the conventional Newtonian dynamics for very low frequencies.

  13. Dynamic visual acuity during linear acceleration along the inter-aural axis.

    PubMed

    Schmäl, F; Kunz, R; Stoll, W

    2000-01-01

    We investigated visual-vestibular interactions during linear acceleration along the inter-aural axis. Eighteen healthy volunteers and two patients with central neurological diseases were subjected to transaural linear acceleration in the direction of gravity force (frequency: 0.5-1.5 Hz; amplitude: 5 cm). During linear acceleration, eye movements were recorded under three test conditions: eyes closed (EC), while staring at an imaginary target (IT) and during the testing of dynamic visual acuity (DVA). As parameters of evaluation we used the amplitude of horizontal eye movements, phase shift and the decrease of DVA threshold (DVAT). Under all test conditions, eye amplitude increased with rising stimulus frequency and exceeded, especially in the higher frequency range, a hypothetically calculated eye amplitude for smooth pursuit. The combination of a visual and vestibular input (DVA and IT) led to a better compensation (lower phase shift) than under vestibular stimulation alone (EC). Eye movements during low-frequency stimulation depended more on the visual system while responses in the higher frequency range were mainly triggered by the otolith organ. At 1.5 Hz the compensatory function of the visual-vestibular system was limited (rising phase shift) and DVAT decreased even in a significant number of healthy subjects. Patients with diseases of the central nervous system showed a higher phase shift and thus a stronger decrease of DVAT (two levels) already at a stimulus frequency of 1.25 Hz.

  14. Dynamic response of a poroelastic half-space to accelerating or decelerating trains

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Boström, Anders

    2013-05-01

    The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.

  15. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  16. Dynamic inversion method based on the time-staggered stereo-modeling scheme and its acceleration

    NASA Astrophysics Data System (ADS)

    Jing, Hao; Yang, Dinghui; Wu, Hao

    2016-09-01

    A set of second-order differential equations describing the space-time behavior of derivatives of displacement with respect to model parameters (i.e. waveform sensitivities) is obtained via taking the derivative of the original wave equations. The dynamic inversion method obtains sensitivities of the seismic displacement field with respect to earth properties directly by solving differential equations for them instead of constructing sensitivities from the displacement field itself. In this study, we have taken a new perspective on the dynamic inversion method and used acceleration approaches to reduce the computational time and memory usage to improve its ability of performing high-resolution imaging. The dynamic inversion method, which can simultaneously use different waves and multi-component observation data, is appropriate for directly inverting elastic parameters, medium density or wave velocities. Full wave-field information is utilized as much as possible at the expense of a larger amount of calculations. To mitigate the computational burden, two ways are proposed to accelerate the method from a computer-implementation point of view. One is source encoding which uses a linear combination of all shots, and the other is to reduce the amount of calculations on forward modeling. We applied a new finite difference method to the dynamic inversion to improve the computational accuracy and speed up the performance. Numerical experiments indicated that the new finite difference method can effectively suppress the numerical dispersion caused by the discretization of wave equations, resulting in enhanced computational efficiency with less memory cost for seismic modeling and inversion based on the full wave equations. We present some inversion results to demonstrate the validity of this method through both checkerboard and Marmousi models. It shows that this method is also convergent even with big deviations for the initial model. Besides, parallel calculations can be

  17. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units.

    PubMed

    Lindert, Steffen; Bucher, Denis; Eastman, Peter; Pande, Vijay; McCammon, J Andrew

    2013-11-12

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling.

  18. Counting calories in cormorants: dynamic body acceleration predicts daily energy expenditure measured in pelagic cormorants.

    PubMed

    Stothart, Mason R; Elliott, Kyle H; Wood, Thomas; Hatch, Scott A; Speakman, John R

    2016-07-15

    The integral of the dynamic component of acceleration over time has been proposed as a measure of energy expenditure in wild animals. We tested that idea by attaching accelerometers to the tails of free-ranging pelagic cormorants (Phalacrocorax pelagicus) and simultaneously estimating energy expenditure using doubly labelled water. Two different formulations of dynamic body acceleration, [vectorial and overall DBA (VeDBA and ODBA)], correlated with mass-specific energy expenditure (both R(2)=0.91). VeDBA models combining and separately parameterizing flying, diving, activity on land and surface swimming were consistently considered more parsimonious than time budget models and showed less variability in model fit. Additionally, we observed evidence for the presence of hypometabolic processes (i.e. reduced heart rate and body temperature; shunting of blood away from non-essential organs) that suppressed metabolism in cormorants while diving, which was the most metabolically important activity. We concluded that a combination of VeDBA and physiological processes accurately measured energy expenditure for cormorants. PMID:27207639

  19. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    SciTech Connect

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-15

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common 'bead-on-the-wire' approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their 'falling' on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  20. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    NASA Astrophysics Data System (ADS)

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-01

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common “bead-on-the-wire” approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their “falling” on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  1. Dynamical analysis of an accelerator-based fluid-fueled subcritical radioactive waste burning system

    NASA Astrophysics Data System (ADS)

    Woosley, Michael Louis, Jr.

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned. In particular, new applications have focused on the destruction of high-level radioactive waste. Systems can be designed to quickly destroy the actinides and long-lived fission products from light water reactor fuel, weapons plutonium, and other high-level defense wastes. The proposed development of these systems is used to motivate the need for the development of dynamic analysis methods for their nuclear kinetics. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes three elements: A discrete ordinates model is used to calculate the flux distribution for the source-driven system; A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity; A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model. Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. Modest initiating events can cause significant swings in system temperature and power. The circulation of the fluid fuel can lead to oscillations on the relatively short scale of the loop circulation time. The system responds quickly to reactivity changes because the large neutron source overwhelms the damping effect of delayed

  2. TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    SciTech Connect

    Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; Perez, Danny; Eidenbenz, Stephan J.

    2015-04-16

    Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family of molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.

  3. TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    DOE PAGES

    Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; Perez, Danny; Eidenbenz, Stephan J.

    2015-04-16

    Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family ofmore » molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.« less

  4. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  5. Generating relevant kinetic Monte Carlo catalogs using temperature accelerated dynamics with control over the accuracy

    SciTech Connect

    Chatterjee, Abhijit; Voter, Arthur

    2009-01-01

    We develop a variation of the temperature accelerated dynamics (TAD) method, called the p-TAD method, that efficiently generates an on-the-fly kinetic Monte Carlo (KMC) process catalog with control over the accuracy of the catalog. It is assumed that transition state theory is valid. The p-TAD method guarantees that processes relevant at the timescales of interest to the simulation are present in the catalog with a chosen confidence. A confidence measure associated with the process catalog is derived. The dynamics is then studied using the process catalog with the KMC method. Effective accuracy of a p-TAD calculation is derived when a KMC catalog is reused for conditions different from those the catalog was originally generated for. Different KMC catalog generation strategies that exploit the features of the p-TAD method and ensure higher accuracy and/or computational efficiency are presented. The accuracy and the computational requirements of the p-TAD method are assessed. Comparisons to the original TAD method are made. As an example, we study dynamics in sub-monolayer Ag/Cu(110) at the time scale of seconds using the p-TAD method. It is demonstrated that the p-TAD method overcomes several challenges plaguing the conventional KMC method.

  6. Dynamic analysis of six-strut supporting system for accelerator magnet

    SciTech Connect

    Leung, K.K.

    1993-04-01

    A six-strut magnet support system designed by Lawrence Berkeley Laboratory (LBL) is considered as an alternative to the current SSC magnet support system. The LBL designed a six-strut support system based on the kinematics mount concept that is generally used in the optical and the laser communication industries. The six-strut system is defined by six static degrees of freedom that constrain a point in space with no redundant restraint. Adjustment of any strut's length means redefining the translation or rotational degree of freedom of the mounting point and produces the desirable movement of the magnet system. The accurately operated six-strut mounting system used in the Berkeley's Advance Light Source (AILS) magnet support is able to maintain the magnet system structural integrity to survive a 7 earthquake, position the magnet to high tolerances, have a small footprint, simple to operate, and adjust to a micron level of accuracy. Though finite element simulation has been used for years in safety analysis, such as seismic dynamic response analysis in nuclear reactor and piping supports, in late 1970, it was employed in the dynamic study for a magnet system in Lawrence Berkeley Laboratory in the late eighties. The modeling methodology developed in LBL for the six-strut system desip, especially for the critical mounting joint design under dynamic loads, is presented in this paper and may be employed for prospective SSC accelerator magnet supporting system design.

  7. Dynamic analysis of six-strut supporting system for accelerator magnet

    SciTech Connect

    Leung, K.K.

    1993-04-01

    A six-strut magnet support system designed by Lawrence Berkeley Laboratory (LBL) is considered as an alternative to the current SSC magnet support system. The LBL designed a six-strut support system based on the kinematics mount concept that is generally used in the optical and the laser communication industries. The six-strut system is defined by six static degrees of freedom that constrain a point in space with no redundant restraint. Adjustment of any strut`s length means redefining the translation or rotational degree of freedom of the mounting point and produces the desirable movement of the magnet system. The accurately operated six-strut mounting system used in the Berkeley`s Advance Light Source (AILS) magnet support is able to maintain the magnet system structural integrity to survive a 7 earthquake, position the magnet to high tolerances, have a small footprint, simple to operate, and adjust to a micron level of accuracy. Though finite element simulation has been used for years in safety analysis, such as seismic dynamic response analysis in nuclear reactor and piping supports, in late 1970, it was employed in the dynamic study for a magnet system in Lawrence Berkeley Laboratory in the late eighties. The modeling methodology developed in LBL for the six-strut system desip, especially for the critical mounting joint design under dynamic loads, is presented in this paper and may be employed for prospective SSC accelerator magnet supporting system design.

  8. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    NASA Astrophysics Data System (ADS)

    Tygier, S.; Appleby, R. B.; Garland, J. M.; Hock, K.; Owen, H.; Kelliher, D. J.; Sheehy, S. L.

    2015-03-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.

  9. Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator

    DOE PAGES

    Ekdahl, Carl

    2015-11-17

    Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less

  10. Accelerated dynamics of blast wave driven Rayleigh-Taylor instabilities in high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Swisher, N.; Kuranz, C.; Drake, R. P.; Abarzhi, S. I.

    2014-10-01

    We report the systematic analysis of experimental data describing the late time evolution of the high Mach number and high Reynolds number Rayleigh-Taylor instability which is driven by a blast wave. The parameter regime is relevant to high energy density plasmas and astrophysics. The experiments have been conducted at the Omega laser facility. By processing the experimental x-ray images, we quantified the delicate features of RT dynamics, including the measurements of the curvature of the transmitted shock and the interface envelopes, the positions of RT bubbles and spikes, and the quantification of statistics of RT mixing. The measurements were performed at four time steps and for three different initial perturbations of the target (single mode and two two-mode). We found that within the noise level the curvatures of the shock and interface envelope evolve steadily and are an imprint of laser imperfections. At late times, the bubble merge does not occur, and the flow keeps significant degree of order. Yet, the blast-wave-driven RT spikes do accelerate with the power-law exponent smaller than that in case of sustained acceleration. We compared the experimental results with the momentum model of RT mixing and stochastic model achieving good agreement. The work is supported by the US National Science Foundation.

  11. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  12. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  13. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  14. Accelerated Molecular Dynamics Study of the Effects of Surface Hydrophilicity on Protein Adsorption.

    PubMed

    Mücksch, Christian; Urbassek, Herbert M

    2016-09-13

    The adsorption of streptavidin is studied on two surfaces, graphite and titanium dioxide, using accelerated molecular dynamics. Adsorption on graphite leads to strong conformational changes while the protein spreads out over the surface. Interestingly, also adsorption on the highly hydrophilic rutile surface induces considerable spreading of the protein. We pin down the cause for this unfolding to the interaction of the protein with the ordered water layers above the rutile surface. For special orientations, the protein penetrates the ordered water layers and comes into direct contact with the surface where the positively charged amino acids settle in places adjacent to the negatively charged top surface atom layer of rutile. We conclude that for both surface materials studied, streptavidin changes its conformation so strongly that it loses its potential for binding biotin. Our results are in good qualitative agreement with available experimental studies. PMID:27533302

  15. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  16. E-beam dynamics calculations and comparison with measurements of a high duty accelerator at Boeing

    SciTech Connect

    Parazzoli, C.G.; Dowell, D.H.

    1995-12-31

    The electron dynamics in the photoinjector cavities and through the beamline for a high duty factor electron accelerator are computed. The particle in a cell code ARGUS, is first used in the low energy (< 2 MeV) region of the photoinjector, then the ARGUS-generated phase space at the photoinjector exit is used as input in the standard particle pusher code PARMELA, and the electron beam properties at the end of the beamline computed. Comparisons between the calculated and measured electron bea mradial profiles and emittances are presented for different values of the electron pulse charge. A discussion of the methodology used and on the accuracy of PARMELA in the low energy region of the photoinjector is given.

  17. Dynamic changes of DNA epigenetic marks in mouse oocytes during natural and accelerated aging.

    PubMed

    Qian, Yan; Tu, Jiajie; Tang, Nelson Leung Sang; Kong, Grace Wing Shan; Chung, Jacqueline Pui Wah; Chan, Wai-Yee; Lee, Tin-Lap

    2015-10-01

    Aging is a complex time-dependent biological process that takes place in every cell and organ, eventually leading to degenerative changes that affect normal biological functions. In the past decades, the number of older parents has increased significantly. While it is widely recognized that oocyte aging poses higher birth and reproductive risk, the exact molecular mechanisms remain largely elusive. DNA methylation of 5-cytosine (5mC) and histone modifications are among the key epigenetic mechanisms involved in critical developmental processes and have been linked to aging. However, the impact of oocyte aging on DNA demethylation pathways has not been examined. The recent discovery of Ten-Eleven-Translocation (TET) family proteins, thymine DNA glycosylase (TDG) and the demethylation intermediates 5hmC, 5fC and 5caC has provided novel clues to delineate the molecular mechanisms in DNA demethylation. In this study, we examined the cellular level of modified cytosines (5mC, 5hmC, 5fC and 5caC) and Tet/Tdg expression in oocytes obtained from natural and accelerated oocyte aging conditions. Here we show all the DNA demethylation marks are dynamically regulated in both aging conditions, which are associated with Tet3 over-expression and Tdg repression. Such an aberrant expression pattern was more profound in accelerated aging condition. The results suggest that DNA demethylation may be actively involved in oocyte aging and have implications for development of potential drug targets to rejuvenate aging oocytes. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

  18. k-t Group sparse: a method for accelerating dynamic MRI.

    PubMed

    Usman, M; Prieto, C; Schaeffter, T; Batchelor, P G

    2011-10-01

    Compressed sensing (CS) is a data-reduction technique that has been applied to speed up the acquisition in MRI. However, the use of this technique in dynamic MR applications has been limited in terms of the maximum achievable reduction factor. In general, noise-like artefacts and bad temporal fidelity are visible in standard CS MRI reconstructions when high reduction factors are used. To increase the maximum achievable reduction factor, additional or prior information can be incorporated in the CS reconstruction. Here, a novel CS reconstruction method is proposed that exploits the structure within the sparse representation of a signal by enforcing the support components to be in the form of groups. These groups act like a constraint in the reconstruction. The information about the support region can be easily obtained from training data in dynamic MRI acquisitions. The proposed approach was tested in two-dimensional cardiac cine MRI with both downsampled and undersampled data. Results show that higher acceleration factors (up to 9-fold), with improved spatial and temporal quality, can be obtained with the proposed approach in comparison to the standard CS reconstructions. PMID:21394781

  19. Exploring ligand dissociation pathways from aminopeptidase N using random acceleration molecular dynamics simulation.

    PubMed

    Liu, Ya; Tu, GuoGang; Lai, XiaoPing; Kuang, BinHai; Li, ShaoHua

    2016-10-01

    Aminopeptidase N (APN) is a zinc-dependent ectopeptidase involved in cell proliferation, secretion, invasion, and angiogenesis, and is widely recognized as an important cancer target. However, the mechanisms whereby ligands leave the active site of APN remain unknown. Investigating ligand dissociation processes is quite difficult, both in classical simulation methods and in experimental approaches. In this study, random acceleration molecular dynamics (RAMD) simulation was used to investigate the potential dissociation pathways of ligand from APN. The results revealed three pathways (channels A, B and C) for ligand release. Channel A, which matches the hypothetical channel region, was the most preferred region for bestatin to dissociate from the enzyme, and is probably the major channel for the inner bound ligand. In addition, two alternative channels (channels B and C) were shown to be possible pathways for ligand egression. Meanwhile, we identified key residues controlling the dynamic features of APN channels. Identification of the dissociation routes will provide further mechanistic insights into APN, which will benefit the development of more promising APN inhibitors. Graphical Abstract The release pathways of bestatin inside active site of aminopeptidase N were simulated using RAMD simulation. PMID:27624165

  20. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation. PMID:26871161

  1. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank G.; Schneider, Kai; Bos, Wouter J. T.; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  2. A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors.

    PubMed

    Glowacki, David R; O'Connor, Michael; Calabró, Gaetano; Price, James; Tew, Philip; Mitchell, Thomas; Hyde, Joseph; Tew, David P; Coughtrie, David J; McIntosh-Smith, Simon

    2014-01-01

    With advances in computational power, the rapidly growing role of computational/simulation methodologies in the physical sciences, and the development of new human-computer interaction technologies, the field of interactive molecular dynamics seems destined to expand. In this paper, we describe and benchmark the software algorithms and hardware setup for carrying out interactive molecular dynamics utilizing an array of consumer depth sensors. The system works by interpreting the human form as an energy landscape, and superimposing this landscape on a molecular dynamics simulation to chaperone the motion of the simulated atoms, affecting both graphics and sonified simulation data. GPU acceleration has been key to achieving our target of 60 frames per second (FPS), giving an extremely fluid interactive experience. GPU acceleration has also allowed us to scale the system for use in immersive 360° spaces with an array of up to ten depth sensors, allowing several users to simultaneously chaperone the dynamics. The flexibility of our platform for carrying out molecular dynamics simulations has been considerably enhanced by wrappers that facilitate fast communication with a portable selection of GPU-accelerated molecular force evaluation routines. In this paper, we describe a 360° atmospheric molecular dynamics simulation we have run in a chemistry/physics education context. We also describe initial tests in which users have been able to chaperone the dynamics of 10-alanine peptide embedded in an explicit water solvent. Using this system, both expert and novice users have been able to accelerate peptide rare event dynamics by 3-4 orders of magnitude.

  3. A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors.

    PubMed

    Glowacki, David R; O'Connor, Michael; Calabró, Gaetano; Price, James; Tew, Philip; Mitchell, Thomas; Hyde, Joseph; Tew, David P; Coughtrie, David J; McIntosh-Smith, Simon

    2014-01-01

    With advances in computational power, the rapidly growing role of computational/simulation methodologies in the physical sciences, and the development of new human-computer interaction technologies, the field of interactive molecular dynamics seems destined to expand. In this paper, we describe and benchmark the software algorithms and hardware setup for carrying out interactive molecular dynamics utilizing an array of consumer depth sensors. The system works by interpreting the human form as an energy landscape, and superimposing this landscape on a molecular dynamics simulation to chaperone the motion of the simulated atoms, affecting both graphics and sonified simulation data. GPU acceleration has been key to achieving our target of 60 frames per second (FPS), giving an extremely fluid interactive experience. GPU acceleration has also allowed us to scale the system for use in immersive 360° spaces with an array of up to ten depth sensors, allowing several users to simultaneously chaperone the dynamics. The flexibility of our platform for carrying out molecular dynamics simulations has been considerably enhanced by wrappers that facilitate fast communication with a portable selection of GPU-accelerated molecular force evaluation routines. In this paper, we describe a 360° atmospheric molecular dynamics simulation we have run in a chemistry/physics education context. We also describe initial tests in which users have been able to chaperone the dynamics of 10-alanine peptide embedded in an explicit water solvent. Using this system, both expert and novice users have been able to accelerate peptide rare event dynamics by 3-4 orders of magnitude. PMID:25340458

  4. A method for accelerating the molecular dynamics simulation of infrequent events

    SciTech Connect

    Voter, A.F.

    1997-03-01

    For infrequent-event systems, transition state theory (TST) is a powerful approach for overcoming the time scale limitations of the molecular dynamics (MD) simulation method, provided one knows the locations of the potential-energy basins (states) and the TST dividing surfaces (or the saddle points) between them. Often, however, the states to which the system will evolve are not known in advance. We present a new, TST-based method for extending the MD time scale that does not require advanced knowledge of the states of the system or the transition states that separate them. The potential is augmented by a bias potential, designed to raise the energy in regions {ital other} than at the dividing surfaces. State to state evolution on the biased potential occurs in the proper sequence, but at an accelerated rate with a nonlinear time scale. Time is no longer an independent variable, but becomes a statistically estimated property that converges to the exact result at long times. The long-time dynamical behavior is exact if there are no TST-violating correlated dynamical events, and appears to be a good approximation even when this condition is not met. We show that for strongly coupled (i.e., solid state) systems, appropriate bias potentials can be constructed from properties of the Hessian matrix. This new {open_quotes}hyper-MD{close_quotes} method is demonstrated on two model potentials and for the diffusion of a Ni atom on a Ni(100) terrace for a duration of 20 {mu}s. {copyright} {ital 1997 American Institute of Physics.}

  5. A novel protocol to accelerate dynamic combinatorial chemistry via isolation of ligand-target adducts from dynamic combinatorial libraries: a case study identifying competitive inhibitors of lysozyme.

    PubMed

    Fang, Zheng; He, Wei; Li, Xin; Li, Zhengjiang; Chen, Beining; Ouyang, Pingkai; Guo, Kai

    2013-09-15

    A novel protocol based on size-exclusion chromatography (SEC) and MS was established to accelerate dynamic combinatorial chemistry (DCC) in this study. By isolating ligand-target adducts from the dynamic combinatorial library (DCL), ligands could be identified directly by MS after denaturation. Three new inhibitors for lysozyme were discovered by this SEC-MS protocol in a case study. Km Data for these new inhibitors was also determined.

  6. Studies of beam dynamics in relativistic klystron two-beam accelerators

    SciTech Connect

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band ({approximately}8-12 GHz) through Ka band ({approximately} 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional

  7. Computer analysis applied to particle accelerator beam dynamics. January 1970-February 1981 (citations from the NTIS Data Base). Report for Jan 70-Feb 81

    SciTech Connect

    Not Available

    1981-03-01

    Citations in this retrospective bibliography cover computerized simulation, mathematical modeling, computer programming, and calculations applied to beam dynamics in particle accelerators,e.g., linear accelerators, cyclotrons, and betatrons. Theoretical, experimental, and applied beam dynamics are included. (Contains 37 citations fully indexed and including a title list.)

  8. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

    NASA Astrophysics Data System (ADS)

    Skolnick, Jeffrey

    2016-09-01

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.

  9. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules.

    PubMed

    Skolnick, Jeffrey

    2016-09-14

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.

  10. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules

    PubMed Central

    Skolnick, Jeffrey

    2016-01-01

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes. PMID:27634243

  11. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules.

    PubMed

    Skolnick, Jeffrey

    2016-09-14

    An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes. PMID:27634243

  12. Extended temperature-accelerated dynamics: Enabling long-time full-scale modeling of large rare-event systems

    SciTech Connect

    Bochenkov, Vladimir; Suetin, Nikolay; Shankar, Sadasivan

    2014-09-07

    A new method, the Extended Temperature-Accelerated Dynamics (XTAD), is introduced for modeling long-timescale evolution of large rare-event systems. The method is based on the Temperature-Accelerated Dynamics approach [M. Sørensen and A. Voter, J. Chem. Phys. 112, 9599 (2000)], but uses full-scale parallel molecular dynamics simulations to probe a potential energy surface of an entire system, combined with the adaptive on-the-fly system decomposition for analyzing the energetics of rare events. The method removes limitations on a feasible system size and enables to handle simultaneous diffusion events, including both large-scale concerted and local transitions. Due to the intrinsically parallel algorithm, XTAD not only allows studies of various diffusion mechanisms in solid state physics, but also opens the avenue for atomistic simulations of a range of technologically relevant processes in material science, such as thin film growth on nano- and microstructured surfaces.

  13. TEXES OBSERVATIONS OF M SUPERGIANTS: DYNAMICS AND THERMODYNAMICS OF WIND ACCELERATION

    SciTech Connect

    Harper, Graham M.; Richter, Matthew J.; Ryde, Nils; Brown, Alexander; Brown, Joanna; Greathouse, Thomas K.; Strong, Shadrian

    2009-08-20

    We have detected [Fe II] 17.94 {mu}m and 24.52 {mu}m emission from a sample of M supergiants ({mu} Cep, {alpha} Sco, {alpha} Ori, CE Tau, AD Per, and {alpha} Her) using the Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility. These low opacity emission lines are resolved at R {approx_equal} 50, 000 and provide new diagnostics of the dynamics and thermodynamics of the stellar wind acceleration zone. The [Fe II] lines, from the first excited term (a {sup 4} F), are sensitive to the warm plasma where energy is deposited into the extended atmosphere to form the chromosphere and wind outflow. These diagnostics complement previous Kuiper Airborne Observatory and Infrared Space Observatory observations which were sensitive to the cooler and more extended circumstellar envelopes. The turbulent velocities of V{sub turb} {approx_equal} 12-13 km s{sup -1} observed in the [Fe II] a {sup 4} F forbidden lines are found to be a common property of our sample, and are less than that derived from the hotter chromospheric C II] 2325 A lines observed in {alpha} Ori, where V{sub turb} {approx_equal} 17-19 km s{sup -1}. For the first time, we have dynamically resolved the motions of the dominant cool atmospheric component discovered in {alpha} Ori from multiwavelength radio interferometry by Lim et al. Surprisingly, the emission centroids are quite Gaussian and at rest with respect to the M supergiants. These constraints combined with model calculations of the infrared emission line fluxes for {alpha} Ori imply that the warm material has a low outflow velocity and is located close to the star. We have also detected narrow [Fe I] 24.04 {mu}m emission that confirms Fe II is the dominant ionization state in {alpha} Ori's extended atmosphere.

  14. Examining the limits of time reweighting and Kramers' rate theory to obtain correct kinetics from accelerated molecular dynamics.

    PubMed

    Xin, Yao; Doshi, Urmi; Hamelberg, Donald

    2010-06-14

    Accelerated molecular dynamics simulations are routinely being used to recover the correct canonical probability distributions corresponding to the original potential energy landscape of biomolecular systems. However, the limits of time reweighting, based on transition state theory, in obtaining true kinetic rates from accelerated molecular dynamics for biomolecular systems are less obvious. Here, we investigate this issue by studying the kinetics of cis-trans isomerization of peptidic omega bond by accelerated molecular dynamics. We find that time reweighting is valid for obtaining true kinetics when the original potential is not altered at the transition state regions, as expected. When the original potential landscape is modified such that the applied boost potential alters the transition state regions, time reweighting fails to reproduce correct kinetics and the reweighted rate is much slower than the true rate. By adopting the overdamped limit of Kramers' rate theory, we are successful in recovering correct kinetics irrespective of whether or not the transition state regions are modified. Furthermore, we tested the validity of the acceleration weight factor from the path integral formalism for obtaining the correct kinetics of cis-trans isomerization. It was found that this formulation of the weight factor is not suitable for long time scale processes such as cis-trans isomerization with high energy barriers.

  15. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  16. Molecular dynamics simulations of aqueous ions at the liquid-vapor interface accelerated using graphics processors.

    PubMed

    Bauer, Brad A; Davis, Joseph E; Taufer, Michela; Patel, Sandeep

    2011-02-01

    Molecular dynamics (MD) simulations are a vital tool in chemical research, as they are able to provide an atomistic view of chemical systems and processes that is not obtainable through experiment. However, large-scale MD simulations require access to multicore clusters or supercomputers that are not always available to all researchers. Recently, scientists have returned to exploring the power of graphics processing units (GPUs) for various applications, such as MD, enabled by the recent advances in hardware and integrated programming interfaces such as NVIDIA's CUDA platform. One area of particular interest within the context of chemical applications is that of aqueous interfaces, the salt solutions of which have found application as model systems for studying atmospheric process as well as physical behaviors such as the Hoffmeister effect. Here, we present results of GPU-accelerated simulations of the liquid-vapor interface of aqueous sodium iodide solutions. Analysis of various properties, such as density and surface tension, demonstrates that our model is consistent with previous studies of similar systems. In particular, we find that the current combination of water and ion force fields coupled with the ability to simulate surfaces of differing area enabled by GPU hardware is able to reproduce the experimental trend of increasing salt solution surface tension relative to pure water. In terms of performance, our GPU implementation performs equivalent to CHARMM running on 21 CPUs. Finally, we address possible issues with the accuracy of MD simulaions caused by nonstandard single-precision arithmetic implemented on current GPUs. PMID:20862755

  17. Impedance Dynamics in the Self-Magnetic Pinch (SMP) Diode on the RITS-6 Accelerator

    NASA Astrophysics Data System (ADS)

    Renk, Timothy; Johnston, Mark; Leckbee, Joshua; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark; Bennett, Nichelle

    2014-10-01

    The RITS-6 inductive voltage adder (IVA) accelerator (3.5-8.5 MeV) at Sandia National Laboratories produces high-power (TW) focused electron beams (<3 mm diameter) for flash x-ray radiography applications. The Self-Magnetic Pinch (SMP) diode utilizes a hollowed metal cathode to produce a pinched focus onto a high Z metal converter. The electron flow from the IVA driver into the load region complicates understanding of diode evolution. There is growing evidence that reducing cathode size below some ``optimum'' value in order to achieve desired spot size reduction results in pinch instabilities leading to either reduced dose-rate, early radiation power termination, or both. We are studying evolving pinch dynamics with current and x-ray monitors, optical diagnostics, and spectroscopy, as well as with LSP [1] code simulations. We are also planning changes to anode-cathode materials as well as changes to the diode aspect ratio in an attempt to mitigate the above trends and improve pinch stability while achieving simultaneous spot size reduction. Experiments are ongoing, and latest results will be reported [1]. LSP is a software product of ATK Mission Research, Albuquerque, NM. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Adminis-tration under Contract DE-AC04-94AL85000.

  18. Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics

    PubMed Central

    Wang, Kai; Yang, Yanzhi; Chodera, John D.; Shirts, Michael R.

    2014-01-01

    We present a method to identify small molecule ligand binding sites and orientations to a given protein crystal structure using GPU-accelerated Hamiltonian replica exchange molecular dynamics simulations. The Hamiltonians used vary from the physical end state of protein interacting with the ligand to a unphysical end state where the ligand does not interact with the protein. As replicas explore the space of Hamiltonians interpolating between these states the ligand can rapidly escape local minima and explore potential binding sites. Geometric restraints keep the ligands within the protein volume, and a potential energy pathway designed to increase phase space overlap between intermediates ensures good mixing. Because of the rigorous statistical mechanical nature of the Hamiltonian exchange framework, we can also extract binding free energy estimates at all putative binding sites, which agree well with free energies computed from occupation probabilities. We present results of this methodology on the T4 lysozyme L99A model system with four ligands, including one non-binder as a control. We find that our methodology identifies the crystallographic binding sites consistently and accurately for the small number of ligands considered here and gives free energies consistent with experiment. We are also able to analyze the contribution of individual binding sites on the overall binding affinity. Our methodology points to near term potential applications in early-stage drug discovery. PMID:24297454

  19. Accelerated Molecular Dynamics Simulation of Hypersonic Flow Features in Dilute Gases

    NASA Astrophysics Data System (ADS)

    Schwartzentruber, Thomas; Valentini, Paolo

    2009-11-01

    Accurate simulation of high-altitude hypersonic flows requires advanced physical models capable of predicting the transfer of energy between translational, rotational, vibrational, and chemical modes of a gas in strong thermochemical non-equilibrium. A combined Event-Driven / Time-Driven (ED/TD) Molecular Dynamics (MD) algorithm is presented that greatly accelerates the MD simulation of dilute gases. The goal of this research is to utilize advances in computational chemistry to study thermochemical non-equilibrium processes in hypersonic flows. The ED/TD MD method identifies impending collisions (including multi-body collisions) and advances molecules directly to their next interaction, however, then integrates each interaction accurately using an arbitrary interatomic potential via conventional MD with small timesteps. First, the ED/TD MD algorithm and efficiency will be detailed. Next, ED/TD MD simulations of normal shock waves in dilute argon will be validated with experiment and direct simulation Monte Carlo simulations employing the variable-hard-sphere collision model. Profiling of the code reveals that the relative computational time required for the MD integration of collisions is extremely low and the potential for incorporating advanced classical and first-principles interatomic potentials within the ED/TD MD method will be discussed.

  20. Three-Dimensional Dynamics of Breakout Afterburner Ion Acceleration Using High-Contrast Short-Pulse Laser and Nanoscale Targets

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Bowers, K. J.; Jung, D.; Fernández, J. C.; Hegelich, B. M.

    2011-07-01

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  1. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets.

    PubMed

    Yin, L; Albright, B J; Bowers, K J; Jung, D; Fernández, J C; Hegelich, B M

    2011-07-22

    Breakout afterburner (BOA) laser-ion acceleration has been demonstrated for the first time in the laboratory. In the BOA, an initially solid-density target undergoes relativistically induced transparency, initiating a period of enhanced ion acceleration. First-ever kinetic simulations of the BOA in three dimensions show that the ion beam forms lobes in the direction orthogonal to laser polarization and propagation. Analytic theory presented for the electron dynamics in the laser ponderomotive field explains how azimuthal symmetry breaks even for a symmetric laser intensity profile; these results are consistent with recent experiments at the Trident laser facility.

  2. Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators

    SciTech Connect

    Ellison, James; Lau, Stephen; Heinemann, Klaus; Bizzozero, David

    2015-03-12

    Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused

  3. Robust pole assignment using velocity-acceleration feedback for second-order dynamical systems with singular mass matrix.

    PubMed

    Abdelaziz, Taha H S

    2015-07-01

    In this paper the robust pole assignment problem using combined velocity and acceleration feedback for second-order linear systems with singular mass matrix is illustrated. This is promising for better applicability in several practical applications where the acceleration signals are easier to obtain than the proportional ones. First, the explicit parametric expressions of both the feedback gain controller and the eigenvector matrix are derived. The parametric solution involves manipulations only on the original second-order model. The available degrees of freedom offered by the velocity-acceleration feedback in selecting the associated eigenvectors are utilized to improve robustness of the closed-loop system. Straight-forward computational algorithms are introduced to demonstrate the effectiveness of the proposed approach. These algorithms are applicable for a dynamical system with mass matrices that can be either singular or nonsingular. Numerical examples are provided to illustrate the application of the proposed procedure. PMID:25724296

  4. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  5. The Computer Program LIAR for Beam Dynamics Calculations in Linear Accelerators

    SciTech Connect

    Assmann, R.W.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.H.; Thompson, K.; /SLAC

    2011-08-26

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. We present a new program LIAR ('LInear Accelerator Research code') that includes wakefield effects, a 6D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. The program is available for UNIX workstations and Windows PC's. It can be applied to a broad range of accelerators. We present examples of simulations for SLC and NLC.

  6. Non-actively controlled double-inverted-pendulum-like dynamics can minimize center of mass acceleration during human quiet standing.

    PubMed

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2015-08-01

    Multiple joint movements during human quiet standing exhibit characteristic inter-joint coordination, shortly referred to as reciprocal relationship, in which angular acceleration of the hip joint is linearly and negatively correlated with that of the ankle joint (antiphase coordination) and, moreover, acceleration of the center of mass (CoM) of the double-inverted-pendulum (DIP) model of the human body is close to zero constantly. A question considered in this study is whether the reciprocal relationship is established by active neural control of the posture, or rather it is a biomechanical consequence of non-actively controlled body dynamics. To answer this question, we consider a DIP model of quiet standing, and show that the reciprocal relationship always holds by Newton's second law applied to the DIP model with human anthropometric dimensions, regardless of passive and active joint torque patterns acting on the ankle and hip joints. We then show that characteristic frequencies included in experimental sway trajectories with the reciprocal relationship match with harmonics of the eigenfrequency of the stable antiphase eigenmode of the non-actively controlled DIP-like unstable body dynamics. The results suggest that non-actively controlled DIP-like mechanical dynamics is a major cause of the minimization of the CoM acceleration during quiet standing, which is consistent with a type of control strategy that allows switching off active neural control intermittently for suitable periods of time during quiet standing.

  7. Non-actively controlled double-inverted-pendulum-like dynamics can minimize center of mass acceleration during human quiet standing.

    PubMed

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2015-08-01

    Multiple joint movements during human quiet standing exhibit characteristic inter-joint coordination, shortly referred to as reciprocal relationship, in which angular acceleration of the hip joint is linearly and negatively correlated with that of the ankle joint (antiphase coordination) and, moreover, acceleration of the center of mass (CoM) of the double-inverted-pendulum (DIP) model of the human body is close to zero constantly. A question considered in this study is whether the reciprocal relationship is established by active neural control of the posture, or rather it is a biomechanical consequence of non-actively controlled body dynamics. To answer this question, we consider a DIP model of quiet standing, and show that the reciprocal relationship always holds by Newton's second law applied to the DIP model with human anthropometric dimensions, regardless of passive and active joint torque patterns acting on the ankle and hip joints. We then show that characteristic frequencies included in experimental sway trajectories with the reciprocal relationship match with harmonics of the eigenfrequency of the stable antiphase eigenmode of the non-actively controlled DIP-like unstable body dynamics. The results suggest that non-actively controlled DIP-like mechanical dynamics is a major cause of the minimization of the CoM acceleration during quiet standing, which is consistent with a type of control strategy that allows switching off active neural control intermittently for suitable periods of time during quiet standing. PMID:26736538

  8. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.

    PubMed

    Sisto, Aaron; Glowacki, David R; Martinez, Todd J

    2014-09-16

    ("fragmenting") a molecular system and then stitching it back together. In this Account, we address both of these problems, the first by using graphical processing units (GPUs) and electronic structure algorithms tuned for these architectures and the second by using an exciton model as a framework in which to stitch together the solutions of the smaller problems. The multitiered parallel framework outlined here is aimed at nonadiabatic dynamics simulations on large supramolecular multichromophoric complexes in full atomistic detail. In this framework, the lowest tier of parallelism involves GPU-accelerated electronic structure theory calculations, for which we summarize recent progress in parallelizing the computation and use of electron repulsion integrals (ERIs), which are the major computational bottleneck in both density functional theory (DFT) and time-dependent density functional theory (TDDFT). The topmost tier of parallelism relies on a distributed memory framework, in which we build an exciton model that couples chromophoric units. Combining these multiple levels of parallelism allows access to ground and excited state dynamics for large multichromophoric assemblies. The parallel excitonic framework is in good agreement with much more computationally demanding TDDFT calculations of the full assembly. PMID:25186064

  9. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Carlson, K.; McGee, M. W.; Nobrega, L. E.; Romanov, A. L.; Ruan, J.; Valishev, A.; Noll, D.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  10. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect

    Downer, Michael C.

    2014-04-30

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10

  11. Neuromuscular onset succession of high level gymnasts during dynamic leg acceleration phases on high bar.

    PubMed

    von Laßberg, Christoph; Rapp, Walter; Mohler, Betty; Krug, Jürgen

    2013-10-01

    In several athletic disciplines there is evidence that for generating the most effective acceleration of a specific body part the transfer of momentum should run in a "whip-like" consecutive succession of body parts towards the segment which shall be accelerated most effectively (e.g. the arm in throwing disciplines). This study investigated the question how this relates to the succession of neuromuscular activation to induce such "whip like" leg acceleration in sports like gymnastics with changed conditions concerning the body position and momentary rotational axis of movements (e.g. performing giant swings on high bar). The study demonstrates that during different long hang elements, performed by 12 high level gymnasts, the succession of the neuromuscular activation runs primarily from the bar (punctum fixum) towards the legs (punctum mobile). This demonstrates that the frequently used teaching instruction, first to accelerate the legs for a successful realization of such movements, according to a high level kinematic output, is contradictory to the neuromuscular input patterns, being used in high level athletes, realizing these skills with high efficiency. Based on these findings new approaches could be developed for more direct and more adequate teaching methods regarding to an earlier optimization and facilitation of fundamental movement requirements.

  12. Electron Acceleration in a Dynamically Evolved Current Sheet Under Solar Coronal Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Du, A. M.; Feng, Xueshang; Cao, Xin; Lu, Quanming; Yang, Liping; Chen, Gengxiong; Zhang, Ying

    2014-05-01

    Electron acceleration in a drastically evolved current sheet under solar coronal conditions is investigated via the combined 2.5-dimensional (2.5D) resistive magnetohydrodynamics (MHD) and test-particle approaches. Having a high magnetic Reynolds number (105), the long, thin current sheet is torn into a chain of magnetic islands, which grow in size and coalesce with each other. The acceleration of electrons is explored in three typical evolution phases: when several large magnetic islands are formed (phase 1), two of these islands are approaching each other (phase 2), and almost merging into a "monster" magnetic island (phase 3). The results show that for all three phases electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20 % of the electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The lower-energy electrons are located away from the magnetic separatrices and the higher-energy electrons are inside the magnetic islands. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to appear in the small secondary magnetic islands. It is the trapping effect of the magnetic islands and the distributions of E p that determine the acceleration and spatial distributions of the energetic electrons.

  13. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    SciTech Connect

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-14

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 10{sup 11} n/cm{sup 2}/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  14. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  15. Plasma Accelerator Development for Dynamic Formation of Plasma Liners: A Status Report

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  16. Progress In Plasma Accelerator Development for Dynamic Formation of Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Cassibry, Jason T.; Griffin, Steven; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a coaxial pulsed plasma thruster (Figure 1). It has been tested experimentally and plasma jet velocities of approx.50 km/sec have been obtained. The plasma jet has been photographed with 10-ns exposure times to reveal a stable and repeatable plasma structure (Figure 2). Data for velocity profile information has been obtained using light pipes and magnetic probes embedded in the gun walls to record the plasma and current transit respectively at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.

  17. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    SciTech Connect

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  18. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    DOE PAGES

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature driftmore » of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less

  19. Electron Acceleration in a Dynamically Evolved Current Sheet of Solar Coronal Conditions

    NASA Astrophysics Data System (ADS)

    Shaohua, Z.; Du, A.; Feng, X.

    2012-12-01

    Electron acceleration in a drastically evolved current sheet of solar coronal conditions is investigated via the combined resistive Magnetohydrodynamics (MHD) and test particle approaches. With high magnetic Reynolds number, the long-thin current sheet is tearing into a chain of magnetic islands, which grow in size and coalesce together. The acceleration of electrons are explored in three typical evolvement phases: when several large magnetic islands are formed (phase1), two of them are approaching each other (phase2) and almost merging into a "monster" magnetic island (phase3). The results show that for all the three phases electrons with an initially Maxwellian distribution evolve into a heavy-tailed distribution and more than 20% of the electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. Most of the energetic electrons move around the magnetic islands in clockwise direction (anti-parallel to the magnetic field lines), drifting in the -Z direction. The energetic electrons with 10 keV < Ek < 200 keV are located outside the magnetic separatrices, where parallel electric field (Ep) is small. The electrons with 200 keV < Ek < 5000 keV are distributed inside the magnetic islands where Ep is moderate large but have complex structures. The electrons with Ek > 5000 keV are located around the outer regions of the magnetic islands or at the core regions of the magnetic islands. Some of the most energetic electrons even appear in the small secondary magnetic islands that are embedded in the diusion regions in between the magnetic islands. It is the trapping eect of the magnetic islands and the distributions of Ep that determine the acceleration processes and space distribution of the energetic electrons.

  20. Theta dynamics in rat: speed and acceleration across the Septotemporal axis.

    PubMed

    Long, Lauren L; Hinman, James R; Chen, Chi-Ming; Escabi, Monty A; Chrobak, James J

    2014-01-01

    Theta (6-12 Hz) rhythmicity in the local field potential (LFP) reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long) axis of the hippocampus (HPC). The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG) sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions.

  1. Accelerated direct semiclassical molecular dynamics using a compact finite difference Hessian scheme.

    PubMed

    Ceotto, Michele; Zhuang, Yu; Hase, William L

    2013-02-01

    This paper shows how a compact finite difference Hessian approximation scheme can be proficiently implemented into semiclassical initial value representation molecular dynamics. Effects of the approximation on the monodromy matrix calculation are tested by propagating initial sampling distributions to determine power spectra for analytic potential energy surfaces and for "on the fly" carbon dioxide direct dynamics. With the approximation scheme the computational cost is significantly reduced, making ab initio direct semiclassical dynamics computationally more feasible and, at the same time, properly reproducing important quantum effects inherent in the monodromy matrix and the pre-exponential factor of the semiclassical propagator. PMID:23406107

  2. Accelerated direct semiclassical molecular dynamics using a compact finite difference Hessian scheme

    NASA Astrophysics Data System (ADS)

    Ceotto, Michele; Zhuang, Yu; Hase, William L.

    2013-02-01

    This paper shows how a compact finite difference Hessian approximation scheme can be proficiently implemented into semiclassical initial value representation molecular dynamics. Effects of the approximation on the monodromy matrix calculation are tested by propagating initial sampling distributions to determine power spectra for analytic potential energy surfaces and for "on the fly" carbon dioxide direct dynamics. With the approximation scheme the computational cost is significantly reduced, making ab initio direct semiclassical dynamics computationally more feasible and, at the same time, properly reproducing important quantum effects inherent in the monodromy matrix and the pre-exponential factor of the semiclassical propagator.

  3. Dynamics of ponderomotive ion acceleration in a laser-plasma channel

    SciTech Connect

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-04-15

    Analytical solution to the Cauchy problem for the kinetic equation describing the radial acceleration of ions under the action of the ponderomotive force of a laser beam undergoing guided propagation in transparent plasma is constructed. Spatial and temporal dependences of the ion distribution function and the integral ion characteristics, such as the density, average velocity, and energy spectrum, are obtained for an axisymmetric laser-plasma channel. The formation of a density peak near the channel boundary and the effect of ion flow breaking for a quasi-stationary laser beam are described analytically.

  4. Phase-space dynamics of ionization injection in plasma-based accelerators.

    PubMed

    Xu, X L; Hua, J F; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Joshi, C; Mori, W B

    2014-01-24

    The evolution of beam phase space in ionization injection into plasma wakefields is studied using theory and particle-in-cell simulations. The injection process involves both longitudinal and transverse phase mixing, leading initially to a rapid emittance growth followed by oscillation, decay, and a slow growth to saturation. An analytic theory for this evolution is presented and verified through particle-in-cell simulations. This theory includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces, and it also shows how ultralow emittance beams can be produced using ionization injection methods.

  5. Beam dynamics studies for the relativistic klystron two-beam accelerator experiment

    SciTech Connect

    Lidia, Steven M.

    2001-06-22

    Two-beam accelerators based upon relativistic klystron s (RK s) have been proposed as power sources for future generation linear electron-positron colliders. These drivers are known to suffer from several transverse beam break-up (BBU) instabilities. A program to study a particular technique (the betatron node scheme ) for ameliorating the high frequency BBU is under way at LBNL. Central to this study are the pillbox RF cavities and RF beam position monitors (BPM s) employed. This paper describes the design, fabrication, and testing of the RF components. Performance details during operation are also discussed.

  6. Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy.

    PubMed

    Sävert, A; Mangles, S P D; Schnell, M; Siminos, E; Cole, J M; Leier, M; Reuter, M; Schwab, M B; Möller, M; Poder, K; Jäckel, O; Paulus, G G; Spielmann, C; Skupin, S; Najmudin, Z; Kaluza, M C

    2015-07-31

    We present few-femtosecond shadowgraphic snapshots taken during the nonlinear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma-wave period is induced by a lengthening of the first plasma period. Three-dimensional particle-in-cell simulations support our observations. PMID:26274425

  7. Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy.

    PubMed

    Sävert, A; Mangles, S P D; Schnell, M; Siminos, E; Cole, J M; Leier, M; Reuter, M; Schwab, M B; Möller, M; Poder, K; Jäckel, O; Paulus, G G; Spielmann, C; Skupin, S; Najmudin, Z; Kaluza, M C

    2015-07-31

    We present few-femtosecond shadowgraphic snapshots taken during the nonlinear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma-wave period is induced by a lengthening of the first plasma period. Three-dimensional particle-in-cell simulations support our observations.

  8. Electron dynamics and acceleration study in a magnetized plasma-filled cylindrical waveguide

    SciTech Connect

    Kumar, Sandeep; Yoon, Moohyun

    2008-01-15

    In this article, EH{sub 01} field components are evaluated in a cylindrical waveguide filled with plasma in the presence of external static magnetic field applied along the direction of the mode propagation. The electron acceleration inside the plasma-filled cylindrical waveguide is investigated numerically for a single-electron model. It is found that the electron acceleration is very sensitive to the initial phase of mode-field components, external static magnetic field, plasma density, point of injection of the electron, and microwave power density. The maximum amplitude of the EH{sub 01} mode's field components is approximately 100 times greater than the vacuum-waveguide case for operating microwave frequency f=7.64 GHz, plasma density n{sub 0}=1.08x10{sup 17} m{sup -3}, initial phase angle {phi}{sub 0}=60 deg., and microwave power {approx}14 MW in a cylindrical waveguide with a radius of 2.1 cm. An electron with 100 keV gets 27 MeV energy gain in 2.5 cm along the waveguide length in the presence of external power {approx}14 MW with a microwave frequency of 7.64 GHz. The electron trajectory is also analyzed under the effects of magnetic field when the electron is injected in the waveguide at r=R/2.

  9. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).

    PubMed

    Ganesan, Narayan; Bauer, Brad A; Lucas, Timothy R; Patel, Sandeep; Taufer, Michela

    2011-11-15

    We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral

  10. Accelerated dynamics in active media: from Turing patterns to sparkling waves.

    PubMed

    Carballido-Landeira, Jorge; Muñuzuri, Alberto P

    2015-03-17

    We report the destabilization of stationary Turing patterns and the subsequent emergence of fast spatiotemporal dynamics due to reactant consumption. The localized hexagonal Turing spots switch from a stationary regime to a dynamics state by exhibiting spatial oscillations with two characteristic wavelengths and one representative temporal period. These oscillatory Turing spots are not temporally stable and evolve into traveling spiral tips that, in addition to the unexpected birth of spots, rapidly transform into target patterns and originate multiple collisions and wave breakups due to their proximity, degenerating into a chaotic scenario. PMID:25726959

  11. APT: An Autonomous Tool for Measuring Acceleration, Pressure, and Temperature with Large Dynamic Range and Bandwidth

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.

    2015-12-01

    We describe a new tool developed to facilitate the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a novel tri-axial accelerometer developed by Quartz Seismic Sensors, Inc, a pressure sensor developed by Paroscientific Inc., and a low-power, high-precision frequency counter and data logger built by RBR, Ltd. The sensors, counters, and loggers are housed in a 7 cm o.d., 70 cm long pressure case designed for use in up to 12 km of water. Sampling intervals are programmable from 0.1 s to 1 hr; standard memory can store up to 30 million samples; total power consumption is roughly 115 mW when operating continuously (1 s.p.s. or higher) and proportionately lower when operating intermittently (e.g., 2 mW at 1 sample per min.). Serial and USB communications protocols allow a variety of download and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., 4000 m water depth, 1 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.1 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient at a level of roughly 2 cm; long-term variations in horizontal acceleration are sensitive to tilt at a level of 0.01 μRad. With these sensitivities and the broad bandwidth (5 Hz to DC), ground motion associated with microseisms and seismic waves, tidal loading, and slow and rapid geodynamic deformation normally studied by disparate instruments can be observed with a single tool. The first c. 1-year deployment with the instrument connected to the Ocean Networks Canada NEPTUNE observatory cable is underway to study interseismic deformation of the Cascadia subduction zone. It will then be deployed at the Hikurangi subduction zone to study episodic slow slip. Deployment of the tool for the initial test was accomplished by pushing the tool vertically below the seafloor with the remotely operated vehicle Jason, with no profile

  12. Gas-dynamic acceleration of laser-ablation plumes: Hyperthermal particle energies under thermal vaporization

    SciTech Connect

    Morozov, A. A.; Evtushenko, A. B.; Bulgakov, A. V.

    2015-02-02

    The expansion of a plume produced by low-fluence laser ablation of graphite in vacuum is investigated experimentally and by direct Monte Carlo simulations in an attempt to explain hyperthermal particle energies for thermally vaporized materials. We demonstrate that the translation energy of neutral particles, ∼2 times higher than classical expectations, is due to two effects, hydrodynamic plume acceleration into the forward direction and kinetic selection of fast particles in the on-axis region. Both effects depend on the collision number within the plume and on the particles internal degrees of freedom. The simulations allow ablation properties to be evaluated, such as ablation rate and surface temperature, based on time-of-flight measurements. Available experimental data on kinetic energies of various laser-produced particles are well described by the presented model.

  13. Hierarchical incremental path planning and situation-dependent optimized dynamic motion planning considering accelerations.

    PubMed

    Lai, Xue-Cheng; Ge, Shuzhi Sam; Al Mamun, Abdullah

    2007-12-01

    This paper studies a hierarchical approach for incrementally driving a nonholonomic mobile robot to its destination in unknown environments. The A* algorithm is modified to handle a map containing unknown information. Based on it, optimal (discrete) paths are incrementally generated with a periodically updated map. Next, accelerations in varying velocities are taken into account in predicting the robot pose and the robot trajectory resulting from a motion command. Obstacle constraints are transformed to suitable velocity limits so that the robot can move as fast as possible while avoiding collisions when needed. Then, to trace the discrete path, the system searches for a waypoint-directed optimized motion in a reduced 1-D translation or rotation velocity space. Various situations of navigation are dealt with by using different strategies rather than a single objective function. Extensive simulations and experiments verified the efficacy of the proposed approach.

  14. GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA

    NASA Astrophysics Data System (ADS)

    Spiechowicz, J.; Kostur, M.; Machura, L.

    2015-06-01

    This work presents an updated and extended guide on methods of a proper acceleration of the Monte Carlo integration of stochastic differential equations with the commonly available NVIDIA Graphics Processing Units using the CUDA programming environment. We outline the general aspects of the scientific computing on graphics cards and demonstrate them with two models of a well known phenomenon of the noise induced transport of Brownian motors in periodic structures. As a source of fluctuations in the considered systems we selected the three most commonly occurring noises: the Gaussian white noise, the white Poissonian noise and the dichotomous process also known as a random telegraph signal. The detailed discussion on various aspects of the applied numerical schemes is also presented. The measured speedup can be of the astonishing order of about 3000 when compared to a typical CPU. This number significantly expands the range of problems solvable by use of stochastic simulations, allowing even an interactive research in some cases.

  15. Acceleration of the KINETICS Integrated Dynamical/Chemical Computational Model Using MPI

    NASA Technical Reports Server (NTRS)

    Grossman, Max; Willacy, Karen; Allen, Mark

    2011-01-01

    Understanding the evolution of a planet's atmosphere not only provides a better theoretical understanding of planetary physics and the formation of planets, but also grants useful insight into Earth's own atmosphere. One of the tools used at JPL for the modeling of planetary atmospheres and protostellar disks is KINETICS. KINETICS can simulate years of complex dynamics and chemistry.

  16. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  17. Design study of longitudinal dynamics of the drive beam in 1 TeV relativistic klystron two-beam accelerator

    SciTech Connect

    Li, H.; Yu, S.S.; Sessler, A.M.

    1994-10-01

    In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunches desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the {open_quotes}adiabatic capture{close_quotes} scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the {open_quotes}after burner{close_quotes} scheme which is implemented in their RK-TBA design for efficiency enhancement.

  18. Noninteracting control of dynamically tuned dry gyro and its application to measurement of two-axis angular accelerations

    NASA Astrophysics Data System (ADS)

    Shingu, H.; Otsuki, M.

    This paper presents a method of reducing the interaction effect between the input and output peculiar to the dynamically tuned dry gyro (TDG), and the possibility of measuring angular accelerations about two axes, through improvements of the rebalance control circuit (RCC) installed on the TDG. First, the use of the TDG as a two-axis rate sensor is shown along with direct and cross transfer functions relating two outputs and two inputs; and it is shown that the TDG makes it possible to simultaneously measure two-axis angular velocities and two-axis angular accelerations if the RCC is improved to facilitate noninteracting control. Next, the design procedure and the results of the trial manufacture on the hardware of each element of the RCC necessary to meet its capability are shown. Third, from the results of the experiments using this manufactured RCC it is clarified that the frequency characteristics of direct transfer functions which prescribe the system performance are hardly influenced by the manufacturing accuracy of the RCC, but the gain characteristics of cross transfer functions, which correspond to the degree of reduction of the interaction effect, are significantly influenced by the manufacturing accuracy.

  19. Studies of the chromatic properties and dynamic aperture of the BNL colliding-beam accelerator. [PATRICIA particle tracking code

    SciTech Connect

    Dell, G.F.

    1983-01-01

    The PATRICIA particle tracking program has been used to study chromatic effects in the Brookhaven CBA (Colliding Beam Accelerator). The short term behavior of particles in the CBA has been followed for particle histories of 300 turns. Contributions from magnet multipoles characteristic of superconducting magnets and closed orbit errors have been included in determining the dynamic aperture of the CBA for on and off momentum particles. The width of the third integer stopband produced by the temperature dependence of magnetization induced sextupoles in the CBA cable dipoles is evaluated for helium distribution systems having periodicity of one and six. The stopband width at a tune of 68/3 is naturally zero for the system having a periodicity of six and is approx. 10/sup -4/ for the system having a periodicity of one. Results from theory are compared with results obtained with PATRICIA; the results agree within a factor of slightly more than two.

  20. A Method to Simulate Linear Stability of Impulsively Accelerated Density Interfaces in Ideal-MHD and Gas Dynamics

    SciTech Connect

    Ravi Samtaney

    2009-02-10

    We present a numerical method to solve the linear stability of impulsively accelerated density interfaces in two dimensions such as those arising in the Richtmyer-Meshkov instability. The method uses an Eulerian approach, and is based on an unwind method to compute the temporally evolving base state and a flux vector splitting method for the perturbations. The method is applicable to either gas dynamics or magnetohydrodynamics. Numerical examples are presented for cases in which a hydrodynamic shock interacts with a single or double density interface, and a doubly shocked single density interface. Convergence tests show that the method is spatially second order accurate for smooth flows, and between first and second order accurate for flows with shocks.

  1. Highly accelerated 3D dynamic contrast enhanced MRI from sparse spiral sampling using integrated partial separability model and JSENSE

    NASA Astrophysics Data System (ADS)

    Lyu, Jingyuan; Spincemaille, Pascal; Wang, Yi; Zhou, Yihang; Ren, Fuquan; Ying, Leslie

    2014-05-01

    Dynamic contrast enhanced MRI requires high spatial resolution for morphological information and high temporal resolution for contrast pharmacokinetics. The current techniques usually have to compromise the spatial information for the required temporal resolution. This paper presents a novel method that effectively integrates sparse sampling, parallel imaging, partial separable (PS) model, and sparsity constraints for highly accelerated DCE-MRI. Phased array coils were used to continuously acquire data from a stack of variable-density spiral trajectory with a golden angle. In reconstruction, the sparsity constraints, the coil sensitivities, spatial and temporal bases of the PS model are jointly estimated through alternating optimization. Experimental results from in vivo DCE liver imaging data show that the proposed method is able to achieve high spatial and temporal resolutions at the same time.

  2. Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering.

    PubMed

    Zhang, Qi; Eagleson, Roy; Peters, Terry M

    2009-09-01

    Intraoperative cardiac monitoring, accurate preoperative diagnosis, and surgical planning are important components of minimally-invasive cardiac therapy. Retrospective, electrocardiographically (ECG) gated, multidetector computed tomographical (MDCT), four-dimensional (3D + time), real-time, cardiac image visualization is an important tool for the surgeon in such procedure, particularly if the dynamic volumetric image can be registered to, and fused with the actual patient anatomy. The addition of stereoscopic imaging provides a more intuitive environment by adding binocular vision and depth cues to structures within the beating heart. In this paper, we describe the design and implementation of a comprehensive stereoscopic 4D cardiac image visualization and manipulation platform, based on the opacity density radiation model, which exploits the power of modern graphics processing units (GPUs) in the rendering pipeline. In addition, we present a new algorithm to synchronize the phases of the dynamic heart to clinical ECG signals, and to calculate and compensate for latencies in the visualization pipeline. A dynamic multiresolution display is implemented to enable the interactive selection and emphasis of volume of interest (VOI) within the entire contextual cardiac volume and to enhance performance, and a novel color and opacity adjustment algorithm is designed to increase the uniformity of the rendered multiresolution image of heart. Our system provides a visualization environment superior to noninteractive software-based implementations, but with a rendering speed that is comparable to traditional, but inferior quality, volume rendering approaches based on texture mapping. This retrospective ECG-gated dynamic cardiac display system can provide real-time feedback regarding the suspected pathology, function, and structural defects, as well as anatomical information such as chamber volume and morphology.

  3. Earthquake Dynamics in Laboratory Model and Simulation - Accelerated Creep as Precursor of Instabilities

    NASA Astrophysics Data System (ADS)

    Grzemba, B.; Popov, V. L.; Starcevic, J.; Popov, M.

    2012-04-01

    Shallow earthquakes can be considered as a result of tribological instabilities, so called stick-slip behaviour [1,2], meaning that sudden slip occurs at already existing rupture zones. From a contact mechanics point of view it is clear, that no motion can arise completely sudden, the material will always creep in an existing contact in the load direction before breaking loose. If there is a measureable creep before the instability, this could serve as a precursor. To examine this theory in detail, we built up an elementary laboratory model with pronounced stick-slip behaviour. Different material pairings, such as steel-steel, steel-glass and marble-granite, were analysed at different driving force rates. The displacement was measured with a resolution of 8 nm. We were able to show that a measureable accelerated creep precedes the instability. Near the instability, this creep is sufficiently regular to serve as a basis for a highly accurate prediction of the onset of macroscopic slip [3]. In our model a prediction is possible within the last few percents of the preceding stick time. We are hopeful to extend this period. Furthermore, we showed that the slow creep as well as the fast slip can be described very well by the Dieterich-Ruina-friction law, if we include the contribution of local contact rigidity. The simulation meets the experimental curves over five orders of magnitude. This friction law was originally formulated for rocks [4,5] and takes into account the dependency of the coefficient of friction on the sliding velocity and on the contact history. The simulations using the Dieterich-Ruina-friction law back up the observation of a universal behaviour of the creep's acceleration. We are working on several extensions of our model to more dimensions in order to move closer towards representing a full three-dimensional continuum. The first step will be an extension to two degrees of freedom to analyse the interdependencies of the instabilities. We also plan

  4. Unraveling Entropic Rate Acceleration Induced by Solvent Dynamics in Membrane Enzymes

    PubMed Central

    Kürten, Charlotte; Syrén, Per-Olof

    2016-01-01

    Enzyme catalysis evolved in an aqueous environment. The influence of solvent dynamics on catalysis is, however, currently poorly understood and usually neglected. The study of water dynamics in enzymes and the associated thermodynamical consequences is highly complex and has involved computer simulations, nuclear magnetic resonance (NMR) experiments, and calorimetry. Water tunnels that connect the active site with the surrounding solvent are key to solvent displacement and dynamics. The protocol herein allows for the engineering of these motifs for water transport, which affects specificity, activity and thermodynamics. By providing a biophysical framework founded on theory and experiments, the method presented herein can be used by researchers without previous expertise in computer modeling or biophysical chemistry. The method will advance our understanding of enzyme catalysis on the molecular level by measuring the enthalpic and entropic changes associated with catalysis by enzyme variants with obstructed water tunnels. The protocol can be used for the study of membrane-bound enzymes and other complex systems. This will enhance our understanding of the importance of solvent reorganization in catalysis as well as provide new catalytic strategies in protein design and engineering. PMID:26862836

  5. Accelerating Molecular Dynamics Simulations to Investigate Shock Response at the Mesoscales

    NASA Astrophysics Data System (ADS)

    Dongare, Avinash; Agarwal, Garvit; Valisetty, Ramakrishna; Namburu, Raju; Rajendran, Arunachalam

    The capability of large-scale molecular dynamics (MD) simulations to model dynamic response of materials is limited to system sizes at the nanoscales and the nanosecond timescales. A new method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of MD simulations to the mesoscales. The QCGD method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and retaining the energetics of these atoms as would be predicted in MD simulations. The QCGD method allows the modeling of larger size systems and larger time-steps for simulations and thus is able to extend the capabilities of MD simulations to model materials behavior at mesoscales. The success of the QCGD method is demonstrated by reproducing the shock propagation and failure behavior of single crystal and nanocrystalline Al microstructures as predicted using MD simulations and also modeling the shock response and failure behavior of Al microstructures at the micron length scales. The scaling relationships, the hugoniot behavior, and the predicted spall strengths using the MD and the QCGD simulations will be presented. This work is sponsored by the US Army Research Office under Contract# W911NF-14-1-0257.

  6. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension

    PubMed Central

    Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung

    2012-01-01

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises. PMID:22908254

  7. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    SciTech Connect

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  8. AWE-WQ: fast-forwarding molecular dynamics using the accelerated weighted ensemble.

    PubMed

    Abdul-Wahid, Badi'; Feng, Haoyun; Rajan, Dinesh; Costaouec, Ronan; Darve, Eric; Thain, Douglas; Izaguirre, Jesús A

    2014-10-27

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.

  9. AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble

    PubMed Central

    2015-01-01

    A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy. PMID:25207854

  10. Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI

    PubMed Central

    Lingala, Sajan Goud; DiBella, Edward; Jacob, Mathews

    2015-01-01

    We propose a novel deformation corrected compressed sensing (DC-CS) framework to recover contrast enhanced dynamic magnetic resonance images from undersampled measurements. We introduce a formulation that is capable of handling a wide class of sparsity/compactness priors on the deformation corrected dynamic signal. In this work, we consider example compactness priors such as sparsity in temporal Fourier domain, sparsity in temporal finite difference domain, and nuclear norm penalty to exploit low rank structure. Using variable splitting, we decouple the complex optimization problem to simpler and well understood sub problems; the resulting algorithm alternates between simple steps of shrinkage based denoising, deformable registration, and a quadratic optimization step. Additionally, we employ efficient continuation strategies to reduce the risk of convergence to local minima. The decoupling enabled by the proposed scheme enables us to apply this scheme to contrast enhanced MRI applications. Through experiments on numerical phantom and in vivo myocardial perfusion MRI datasets, we observe superior image quality of the proposed DC-CS scheme in comparison to the classical k-t FOCUSS with motion estimation/correction scheme, and demonstrate reduced motion artifacts over classical compressed sensing schemes that utilize the compact priors on the original deformation uncorrected signal. PMID:25095251

  11. Statistical Method for Nonequilibrium Systems with Application to Accelerator Beam Dynamics

    NASA Astrophysics Data System (ADS)

    Meller, Robert Edwin

    In this thesis, a method is developed for calculating the limit cycle distribution of a many-particle system in weak contact with a heat bath. Both externally driven systems and unstable systems with mean-field collective interaction are considered. The system is described by a Fokker-Planck equation, and then the single particle motion is transformed to action -angle coordinates to separate the thermal and mechanical time dependencies. The equation is then averaged over angle variables to remove the mechanical motion and produce an equation with only thermal motion in action space. The limit cycle is the time-independent solution of the averaged equation. As an example of a driven system, the distribution of driven oscillators is calculated in the region of action space near a nonlinear resonance, and the perpetual currents known as resonance streaming are shown. As an example of collective instability, the thermodynamic stability of a system of oscillators with a long range cosine potential is considered. For the case of an attractive potential, time dependent limit cycles are found with lower free energy than equilibrium. Hence, this is a conservative many-body system which oscillates spontaneously when placed in contact with a heat bath. This prediction is verified with numerical simulations. The phenomenon of accelerator bunch lengthening is then explained as an example of thermal instability which has been enhanced by the nonconservative nature of the wake field coupling force. The threshold of thermal instability is shown to be related to the total energy loss of the charge bunch, rather than to the collective frequency shift as predicted for the threshold of mechanical instability by the linearized Vlasov equation. Numerical calculations of bunch lengthening in the electron storage ring SPEAR are presented, and compared with simulations.

  12. A coupled ordinates method for solution acceleration of rarefied gas dynamics simulations

    SciTech Connect

    Das, Shankhadeep; Mathur, Sanjay R.; Alexeenko, Alina; Murthy, Jayathi Y.

    2015-05-15

    Non-equilibrium rarefied flows are frequently encountered in a wide range of applications, including atmospheric re-entry vehicles, vacuum technology, and microscale devices. Rarefied flows at the microscale can be effectively modeled using the ellipsoidal statistical Bhatnagar–Gross–Krook (ESBGK) form of the Boltzmann kinetic equation. Numerical solutions of these equations are often based on the finite volume method (FVM) in physical space and the discrete ordinates method in velocity space. However, existing solvers use a sequential solution procedure wherein the velocity distribution functions are implicitly coupled in physical space, but are solved sequentially in velocity space. This leads to explicit coupling of the distribution function values in velocity space and slows down convergence in systems with low Knudsen numbers. Furthermore, this also makes it difficult to solve multiscale problems or problems in which there is a large range of Knudsen numbers. In this paper, we extend the coupled ordinates method (COMET), previously developed to study participating radiative heat transfer, to solve the ESBGK equations. In this method, at each cell in the physical domain, distribution function values for all velocity ordinates are solved simultaneously. This coupled solution is used as a relaxation sweep in a geometric multigrid method in the spatial domain. Enhancements to COMET to account for the non-linearity of the ESBGK equations, as well as the coupled implementation of boundary conditions, are presented. The methodology works well with arbitrary convex polyhedral meshes, and is shown to give significantly faster solutions than the conventional sequential solution procedure. Acceleration factors of 5–9 are obtained for low to moderate Knudsen numbers on single processor platforms.

  13. Accelerated molecular dynamics simulations of the octopamine receptor using GPUs: discovery of an alternate agonist-binding position.

    PubMed

    Kastner, Kevin W; Izaguirre, Jesús A

    2016-10-01

    Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc. PMID:27318014

  14. Accelerated molecular dynamics simulations of the octopamine receptor using GPUs: discovery of an alternate agonist-binding position.

    PubMed

    Kastner, Kevin W; Izaguirre, Jesús A

    2016-10-01

    Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc.

  15. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Mason, Nigel J.; Currell, Fred J.; Solov'yov, Andrey V.

    2016-09-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey V. Solov'yov, Pablo Villarreal, Rita Prosmiti.

  16. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Mason, Nigel J.; Currell, Fred J.; Solov'yov, Andrey V.

    2016-09-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model.

  17. Acceleration Sensing, Feedback Cooling, and Nonlinear Dynamics with Nanoscale Cavity-Optomechanical Devices

    NASA Astrophysics Data System (ADS)

    Krause, Alexander Grey

    Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg). In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10. In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to

  18. The behavior of active diffusiophoretic suspensions: An accelerated Laplacian dynamics study

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John F.

    2016-10-01

    Diffusiophoresis is the process by which a colloidal particle moves in response to the concentration gradient of a chemical solute. Chemically active particles generate solute concentration gradients via surface chemical reactions which can result in their own motion — the self-diffusiophoresis of Janus particles — and in the motion of other nearby particles — normal down-gradient diffusiophoresis. The long-range nature of the concentration disturbance created by a reactive particle results in strong interactions among particles and can lead to the formation of clusters and even coexisting dense and dilute regions often seen in active matter systems. In this work, we present a general method to determine the many-particle solute concentration field allowing the dynamic simulation of the motion of thousands of reactive particles. With the simulation method, we first clarify and demonstrate the notion of "chemical screening," whereby the long-ranged interactions become exponentially screened, which is essential for otherwise diffusiophoretic suspensions would be unconditionally unstable. Simulations show that uniformly reactive particles, which do not self-propel, form loosely packed clusters but no coexistence is observed. The simulations also reveal that there is a stability threshold — when the "chemical fuel" concentration is low enough, thermal Brownian motion is able to overcome diffusiophoretic attraction. Janus particles that self-propel show coexistence, but, interestingly, the stability threshold for clustering is not affected by the self-motion.

  19. The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Sibo; Xu, Junbo; Wen, Hao

    2014-12-01

    The heavy crude oil consists of thousands of compounds and much of them have large molecular weights and complex structures. Studying the aggregation and diffusion behavior of asphaltenes can facilitate the understanding of the heavy crude oil. In previous studies, the fused aromatic rings were treated as rigid bodies so that dissipative particle dynamics (DPD) integrated with the quaternion method can be used to study asphaltene systems. In this work, DPD integrated with the quaternion method is implemented on graphics processing units (GPUs). Compared with the serial program, tens of times speedup can be achieved when simulations performed on a single GPU. Using multiple GPUs can provide faster computation speed and more storage space for simulations of significant large systems. By using large systems, simulations of the asphaltene-toluene system at extremely dilute concentrations can be performed. The determined diffusion coefficients of asphaltenes are similar to that in experimental studies. At last, the aggregation behavior of asphaltenes in heptane was investigated, and the simulation results agreed with the modified Yen model. Monomers, nanoaggregates and clusters were observed from the simulations at different concentrations.

  20. Dynamics of neutralized electrons and the focusability of intenseion beams in HIF accelerating structures

    SciTech Connect

    Lifschitz, A.F.; Maynard, G.; Vay, J.-V.

    2005-01-18

    In most of the proposals for HIF reactors, beams propagate ballistically through the containment chamber. To get the required final radius ({approx} 3 mm), the charge of the beam must be neutralized to some extent. Several neutralization schemes are possible, as co-injection of negative-ions beams, inclusion of external sources of electrons, or it can be provided by electrons coming from ionization of the background gas. In this work, we study the role of the electron dynamic on the neutralization and final radius of the beam. This is done by performing fully-electromagnetic PIC simulations of the beam ballistic transport using the BPIC code[1]. In agreement with previous works we found that the evolution of an isolated beam is well described as a bidimensional adiabatic compression, and the beam neutralization degree and final radius can be estimated from the initial electron transversal temperature. When a background gas is present the evolution differs significantly from an adiabatic compression. Even for low gas densities, the continuous electrons flow coming from gas ionization limits efficiently the compressional heating, thus reducing the final radius. Aspects of beam neutralization by background gas ionization are discussed.

  1. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  2. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  3. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  4. Accelerators (5/5)

    SciTech Connect

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  5. Accelerators (4/5)

    SciTech Connect

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Accelerators (3/5)

    SciTech Connect

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  7. FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators

    SciTech Connect

    Cary, John R

    2014-09-08

    During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

  8. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George Em

    2014-11-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been

  9. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. I. Fluoropolymer binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two polymer bonded explosives, LX-10-1 and PBX-9502, maintained at 23, 60, and 74/sup 0/C for 3 years were studied. LX-10-1 is 94.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive bonded together with 5.5% Viton A fluoropolymer. PBX-9502 is 95% triaminotrinitrobenzene explosive bonded with 5% Kel-F-800 fluoropolymer. There are two mechanical relaxations in the LX-10-1 in the military temperature range. The relaxation at -10/sup 0/C is associated with the glass transition temperature of the Viton A binder. A second weak relaxation occurs at about 30/sup 0/C in all LX-10-1 samples tested. This relaxation is probably associated with small amounts of crystallinity in the binder although this has not been demonstrated. There is a slight increase in modulus of the LX-10-1 with accelerated aging temperature. Changes in the dynamic mechanical properties of PBX-9502 are ascribed to crystallization of the chlorotrifluoroethylene component of the Kel-F-800 binder. The molecular weight of the Viton A binder decreased slight with increasing aging temperature. Using the kinetics of random scission the activation energy for polymer degradation in the presence of the explosive was 1.19 kcal/mole. The Arrhenius preexponential term and activation energy predict an expected use-life in excess of 60 years for LX-10-1. The Kel-F-800 in PBX-9502 is also extremely stable.

  10. Application of overall dynamic body acceleration as a proxy for estimating the energy expenditure of grazing farm animals: relationship with heart rate.

    PubMed

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use.

  11. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate

    PubMed Central

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use. PMID:26030931

  12. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  13. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  14. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator

    SciTech Connect

    Rihaoui, M.; Gai, W.; Kim, K.-J.; Power, J. G.; Piot, P.; Sun, Y.-E.

    2009-01-22

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  15. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator.

    SciTech Connect

    Gao, F.; Gai, W.; Power, J. G.; Kim, K. J.; Sun, Y. E.; Piot, P.; Rihaoui, M.; High Energy Physics; Northern Illinois Univ.; FNAL

    2009-01-01

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  16. Beam dynamics simulations of the transverse-to-longitudinal emittance exchange proof-of-principle experiment at the Argonne Wakefield Accelerator

    SciTech Connect

    Rihaoui, M.; Gai, W.; Kim, K.J.; Piot, Philippe; Power, John Gorham; Sun, Y.E.; /Fermilab

    2009-01-01

    Transverse-to-longitudinal emittance exchange has promising applications in various advanced acceleration and light source concepts. A proof-of-principle experiment to demonstrate this phase space manipulation method is currently being planned at the Argonne Wakefield Accelerator. The experiment focuses on exchanging a low longitudinal emittance with a high transverse horizontal emittance and also incorporates room for possible parametric studies e.g. using an incoming flat beam with tunable horizontal emittance. In this paper, we present realistic start-to-end beam dynamics simulation of the scheme, explore the limitations of this phase space exchange.

  17. Tri-Axial Dynamic Acceleration as a Proxy for Animal Energy Expenditure; Should We Be Summing Values or Calculating the Vector?

    PubMed Central

    Qasem, Lama; Cardew, Antonia; Wilson, Alexis; Griffiths, Iwan; Halsey, Lewis G.; Shepard, Emily L. C.; Gleiss, Adrian C.; Wilson, Rory

    2012-01-01

    Dynamic body acceleration (DBA) has been used as a proxy for energy expenditure in logger-equipped animals, with researchers summing the acceleration (overall dynamic body acceleration - ODBA) from the three orthogonal axes of devices. The vector of the dynamic body acceleration (VeDBA) may be a better proxy so this study compared ODBA and VeDBA as proxies for rate of oxygen consumption using humans and 6 other species. Twenty-one humans on a treadmill ran at different speeds while equipped with two loggers, one in a straight orientation and the other skewed, while rate of oxygen consumption () was recorded. Similar data were obtained from animals but using only one (straight) logger. In humans, both ODBA and VeDBA were good proxies for with all r2 values exceeding 0.88, although ODBA accounted for slightly but significantly more of the variation in than did VeDBA (P<0.03). There were no significant differences between ODBA and VeDBA in terms of the change in estimated by the acceleration data in a simulated situation of the logger being mounted straight but then becoming skewed (P = 0.744). In the animal study, ODBA and VeDBA were again good proxies for with all r2 values exceeding 0.70 although, again, ODBA accounted for slightly, but significantly, more of the variation in than did VeDBA (P<0.03). The simultaneous contraction of muscles, inserted variously for limb stability, may produce muscle oxygen use that at least partially equates with summing components to derive DBA. Thus, a vectorial summation to derive DBA cannot be assumed to be the more ‘correct’ calculation. However, although within the limitations of our simple study, ODBA appears a marginally better proxy for . In the unusual situation where researchers are unable to guarantee at least reasonably consistent device orientation, they should use VeDBA as a proxy for . PMID:22363576

  18. Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator

    SciTech Connect

    McBride, R. D.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Greenly, J. B.; Kusse, B. R.; Douglass, J. D.; Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.

    2009-01-15

    Experimental results are presented that characterize the implosion dynamics and radiation output of wire-array Z pinches on the 1-MA, 100-ns rise-time Cornell Beam Research Accelerator (COBRA) [J. B. Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]. The load geometries investigated include 20-mm-tall cylindrical arrays ranging from 4 to 16 mm in diameter, and consisting of 8, 16, or 32 wires of either tungsten, aluminum, or Invar (64% iron, 36% nickel). Diagnostics fielded include an optical streak camera, a time-gated extreme-ultraviolet framing camera, a laser shadowgraph system, time-integrated pinhole cameras, an x-ray wide-band focusing spectrograph with spatial resolution, an x-ray streak camera, a load voltage monitor, a Faraday cup, a bolometer, silicon diodes, and diamond photoconducting detectors. The data produced by the entire suite of diagnostics are analyzed and presented to provide a detailed picture of the overall implosion process and resulting radiation output on COBRA. The highest x-ray peak powers (300-500 GW) and total energy yields (6-10 kJ) were obtained using 4-mm-diameter arrays that stagnated before peak current. Additional findings include a decrease in soft x-ray radiation prior to stagnation as the initial wire spacing was changed from 1.6 mm to 785 {mu}m, and a timing correlation between the onset of energetic electrons, hard x-ray generation, and the arrival of trailing current on axis - a correlation that is likely due to the formation of micropinches. The details of these and other findings are presented and discussed.

  19. Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Greenly, J. B.; Kusse, B. R.; Douglass, J. D.; Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.

    2009-01-01

    Experimental results are presented that characterize the implosion dynamics and radiation output of wire-array Z pinches on the 1-MA, 100-ns rise-time Cornell Beam Research Accelerator (COBRA) [J. B. Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]. The load geometries investigated include 20-mm-tall cylindrical arrays ranging from 4to16mm in diameter, and consisting of 8, 16, or 32 wires of either tungsten, aluminum, or Invar (64% iron, 36% nickel). Diagnostics fielded include an optical streak camera, a time-gated extreme-ultraviolet framing camera, a laser shadowgraph system, time-integrated pinhole cameras, an x-ray wide-band focusing spectrograph with spatial resolution, an x-ray streak camera, a load voltage monitor, a Faraday cup, a bolometer, silicon diodes, and diamond photoconducting detectors. The data produced by the entire suite of diagnostics are analyzed and presented to provide a detailed picture of the overall implosion process and resulting radiation output on COBRA. The highest x-ray peak powers (300-500GW) and total energy yields (6-10kJ) were obtained using 4-mm-diameter arrays that stagnated before peak current. Additional findings include a decrease in soft x-ray radiation prior to stagnation as the initial wire spacing was changed from 1.6mmto785μm, and a timing correlation between the onset of energetic electrons, hard x-ray generation, and the arrival of trailing current on axis—a correlation that is likely due to the formation of micropinches. The details of these and other findings are presented and discussed.

  20. Got a Match? Ion Extraction GC-MS Characterization of Accelerants Adsorbed in Charcoal Using Negative Pressure Dynamic Headspace Concentration

    ERIC Educational Resources Information Center

    Anzivino, Barbara; Tilley, Leon J.; Ingalls, Laura R.; Hall, Adam B.; Drugan, John E.

    2009-01-01

    An undergraduate organic chemistry experiment demonstrating real-life application of GC-MS to arson accelerant identification is described. Students are given the task of comparing a sample recovered from a "crime scene" to that from a "suspect's clothing". Accelerants subjected to different conditions are recovered using a quick and simple…

  1. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    SciTech Connect

    Khabarova, O.; Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A.; Malandraki, O. E.

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  2. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. I. Dynamics of Magnetic Islands Near the Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Khabarova, O.; Zank, G. P.; Li, G.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Malandraki, O. E.

    2015-08-01

    Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  3. Design study of beam dynamics issues for 1 TeV next linear collider based upon the relativistic-klystron two-beam accelerator

    SciTech Connect

    Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.; Houck, T.; Westenskow, G.

    1994-11-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. The author present, in this paper, the beam dynamics part of this study. They have achieved in their design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA.

  4. Design study of beam dynamics issues for a one TeV next linear collider based upon the relativistic klystron two-beam accelerator

    SciTech Connect

    Li, H.; Houck, T.; Goffeney, N.; Henestroza, E.; Sessler, A.; Westenskow, G.; Yu, S.

    1995-06-01

    A design study has recently been conducted for exploring the feasibility of a relativistic-klystron two-beam accelerator (RK-TBA) system as a rf power source for a 1 TeV linear collider. We present, in this paper, the beam dynamics part of this study. We have achieved in our design study acceptable transverse and longitudinal beam stability properties for the resulting high efficiency and low cost RK-TBA. {copyright} 1995 {ital American Institute of Physics}.

  5. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  6. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  8. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    SciTech Connect

    Mills, F.; Makino, Kyoko; Berz, Martin; Johnstone, C.

    2010-09-01

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  9. Start-to-end beam dynamics simulation of double triangular current profile generation in Argonne Wakefield Accelerator

    SciTech Connect

    Ha, G.; Power, J.; Kim, S. H.; Gai, W.; Kim, K.-J.; Cho, M. H.; Namkung, W.

    2012-12-21

    Double triangular current profile (DT) gives a high transformer ratio which is the determining factor of the performance of collinear wakefield accelerator. This current profile can be generated using the emittance exchange (EEX) beam line. Argonne Wakefield Accelerator (AWA) facility plans to generate DT using the EEX beam line. We conducted start-to-end simulation for the AWA beam line using PARMELA code. Also, we discuss requirements of beam parameters for the generation of DT.

  10. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  11. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Deng, Aihua; Nakajima, Kazuhisa; Liu, Jiansheng; Shen, Baifei; Zhang, Xiaomei; Yu, Yahong; Li, Wentao; Li, Ruxin; Xu, Zhizhan

    2012-08-01

    In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1-100GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate RT=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  12. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  13. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  14. Transverse characteristics of short-pulse laser-produced ion beams: a study of the acceleration dynamics.

    PubMed

    Brambrink, E; Schreiber, J; Schlegel, T; Audebert, P; Cobble, J; Fuchs, J; Hegelich, M; Roth, M

    2006-04-21

    We report on first measurements of the transverse characteristics of laser-produced energetic ion beams in direct comparison to results for laser accelerated proton beams. The experiments show the same low emittance for ion beams as already found for protons. Additionally, we demonstrate that the divergence is influenced by the charge over mass ratio of the accelerated species. From these observations we deduced scaling laws for the divergence of ions as well as the temporal evolution of the ion source size. PMID:16712164

  15. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?

    PubMed

    Qasem, Lama; Cardew, Antonia; Wilson, Alexis; Griffiths, Iwan; Halsey, Lewis G; Shepard, Emily L C; Gleiss, Adrian C; Wilson, Rory

    2012-01-01

    Dynamic body acceleration (DBA) has been used as a proxy for energy expenditure in logger-equipped animals, with researchers summing the acceleration (overall dynamic body acceleration--ODBA) from the three orthogonal axes of devices. The vector of the dynamic body acceleration (VeDBA) may be a better proxy so this study compared ODBA and VeDBA as proxies for rate of oxygen consumption using humans and 6 other species. Twenty-one humans on a treadmill ran at different speeds while equipped with two loggers, one in a straight orientation and the other skewed, while rate of oxygen consumption (VO2) was recorded. Similar data were obtained from animals but using only one (straight) logger. In humans, both ODBA and VeDBA were good proxies for VO2 with all r(2) values exceeding 0.88, although ODBA accounted for slightly but significantly more of the variation in VO2 than did VeDBA (P<0.03). There were no significant differences between ODBA and VeDBA in terms of the change in VO2 estimated by the acceleration data in a simulated situation of the logger being mounted straight but then becoming skewed (P = 0.744). In the animal study, ODBA and VeDBA were again good proxies for VO2 with all r(2) values exceeding 0.70 although, again, ODBA accounted for slightly, but significantly, more of the variation in VO2 than did VeDBA (P<0.03). The simultaneous contraction of muscles, inserted variously for limb stability, may produce muscle oxygen use that at least partially equates with summing components to derive DBA. Thus, a vectorial summation to derive DBA cannot be assumed to be the more 'correct' calculation. However, although within the limitations of our simple study, ODBA appears a marginally better proxy for VO2. In the unusual situation where researchers are unable to guarantee at least reasonably consistent device orientation, they should use VeDBA as a proxy for VO2.

  16. Development of PUNDA (Parametric Universal Nonlinear Dynamics Approximator) Models for Self-Validating Knowledge-Guided Modelling of Nonlinear Processes in Particle Accelerators \\& Industry

    SciTech Connect

    Sayyar-Rodsari, Bijan; Schweiger, Carl; Hartman, Eric

    2007-10-07

    The difficult problems being tackled in the accelerator community are those that are nonlinear, substantially unmodeled, and vary over time. Such problems are ideal candidates for model-based optimization and control if representative models of the problem can be developed that capture the necessary mathematical relations and remain valid throughout the operation region of the system, and through variations in system dynamics. The goal of this proposal is to develop the methodology and the algorithms for building high-fidelity mathematical representations of complex nonlinear systems via constrained training of combined first-principles and neural network models.

  17. Flocculant in wastewater affects dynamics of inorganic N and accelerates removal of phenanthrene and anthracene in soil.

    PubMed

    Fernandez-Luqueno, F; Thalasso, F; Luna-Guido, M L; Ceballos-Ramírez, J M; Ordoñez-Ruiz, I M; Dendooven, L

    2009-06-01

    Recycling of municipal wastewater requires treatment with flocculants, such as polyacrylamide. It is unknown how polyacrylamide in sludge affects removal of polycyclic aromatic hydrocarbons (PAH) from soil. An alkaline-saline soil and an agricultural soil were contaminated with phenanthrene and anthracene. Sludge with or without polyacrylamide was added while emission of CO(2) and concentrations of NH(4)(+), NO(3)(-), NO(2)(-), phenanthrene and anthracene were monitored in an aerobic incubation experiment. Polyacrylamide in the sludge had no effect on the production of CO(2), but it reduced the concentration of NH(4)(+), increased the concentration of NO(3)(-) in the Acolman soil and NO(2)(-) in the Texcoco soil, and increased N mineralization compared to the soil amended with sludge without polyacrylamide. After 112d, polyacrylamide accelerated the removal of anthracene from both soils and that of phenanthrene in the Acolman soil. It was found that polyacrylamide accelerated removal of phenanthrene and anthracene from soil.

  18. Computations of longitudinal electron dynamics in the recirculating cw RF accelerator-recuperator for the high average power FEL

    NASA Astrophysics Data System (ADS)

    Sokolov, A. S.; Vinokurov, N. A.

    1994-03-01

    The use of optimal longitudinal phase-energy motion conditions for bunched electrons in a recirculating RF accelerator gives the possibility to increase the final electron peak current and, correspondingly, the FEL gain. The computer code RECFEL, developed for simulations of the longitudinal compression of electron bunches with high average current, essentially loading the cw RF cavities of the recirculator-recuperator, is briefly described and illustrated by some computational results.

  19. Estimating dynamic external hand forces during manual materials handling based on ground reaction forces and body segment accelerations.

    PubMed

    Faber, Gert S; Chang, Chien-Chi; Kingma, Idsart; Dennerlein, Jack T

    2013-10-18

    Direct measurement of hand forces during assessment of manual materials handling is infeasible in most field studies and some laboratory studies (e.g., during patient handling). Therefore, this study proposed and evaluated the performance of a novel hand force estimation method based on ground reaction forces (GRFs) and body segment accelerations. Ten male subjects performed a manual lifting/carrying task while an optoelectronic motion tracking system measured 3D full body kinematics, a force plate measured 3D GRFs and an instrumented box measured 3D hand forces. The estimated 3D hand forces were calculated by taking the measured GRF vector and subtracting the force vectors due to weight and acceleration of all body segments. Root-mean-square difference (RMSD) between estimated and measured hand forces ranged from 11 to 27N. When ignoring the segment accelerations (just subtracting body weight from the GRFs), the hand force estimation errors were much higher, with RMSDs ranging from 21 to 101N. Future studies should verify the performance of the proposed hand force estimation method when using an ambulatory field measurement system.

  20. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring

    NASA Astrophysics Data System (ADS)

    Smyth, Andrew; Wu, Meiliang

    2007-02-01

    Many damage detection and system identification approaches benefit from the availability of both acceleration and displacement measurements. This is particularly true in the case of suspected non-linear behavior and permanent deformations. In civil and mechanical structural modeling accelerometers are most often used, however displacement sensors, such as non-contact optical techniques as well as GPS-based methods for civil structures are becoming more common. It is suggested, where possible, to exploit the inherent redundancy in the sensor information and combine the collocated acceleration and displacement measurements in a manner which yields highly accurate motion data. This circumvents problematic integration of accelerometer data that causes low-frequency noise amplification, and potentially more problematic differentiation of displacement measurements which amplify high-frequency noise. Another common feature of displacement-based sensing is that the high-frequency resolution is limited, and often relatively low sampling rates are used. In contrast, accelerometers are often more accurate for higher frequencies and higher sampling rates are often available. The fusion of these two data types must, therefore, combine data sampled at different frequencies. A multi-rate Kalman filtering approach is proposed to solve this problem. In addition, a smoothing step is introduced to obtain improved accuracy in the displacement estimate when it is sampled at lower rates than the corresponding acceleration measurement. Through trials with simulated data the procedure's effectiveness is shown to be quite robust at a variety of noise levels and relative sample rates for this practical problem.

  1. Dynamic design, numerical solution and effective verification of acceleration-level obstacle-avoidance scheme for robot manipulators

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Zhang, Yunong

    2016-03-01

    For avoiding obstacles and joint physical constraints of robot manipulators, this paper proposes and investigates a novel obstacle avoidance scheme (termed the acceleration-level obstacle-avoidance scheme). The scheme is based on a new obstacle-avoidance criterion that is designed by using the gradient neural network approach for the first time. In addition, joint physical constraints such as joint-angle limits, joint-velocity limits and joint-acceleration limits are incorporated into such a scheme, which is further reformulated as a quadratic programming (QP). Two important 'bridge' theorems are established so that such a QP can be converted equivalently to a linear variational inequality and then equivalently to a piecewise-linear projection equation (PLPE). A numerical algorithm based on a PLPE is thus developed and applied for an online solution of the resultant QP. Four path-tracking tasks based on the PA10 robot in the presence of point and window-shaped obstacles demonstrate and verify the effectiveness and accuracy of the acceleration-level obstacle-avoidance scheme. Besides, the comparisons between the non-obstacle-avoidance and obstacle-avoidance results further validate the superiority of the proposed scheme.

  2. Evidence for wind-like regions, acceleration of shocks in the deep corona, and relevance of 1/f dynamic spectra to coronal type II bursts

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili; Cairns, Iver; Robinson, Peter

    Type II radio bursts are produced near the local plasma frequency fp and near 2fp by shocks moving through the corona and solar wind. In the present paper 8 well-defined coronal type II radio bursts (30-300 MHz) are analyzed. Three results are presented. First, it is found that the dependence of the central frequency on time can be fitted to a power-law model, f ∝ (t-t0 )-α , with 0.6 ≤ α ≤ 1.3. Assuming a constant shock velocity, these results provide evidence that the density profile ne (r) in the type II source regions closely resembles the solar wind, with ne (r) ∝ r-2 . One possible interpretation is that the solar wind starts within a few solar radii of the photosphere, most probably within 1 solar radius. Another relies on a gasdynamic Whitham analysis and demonstrates a possibility for blast shocks to accelerate, thereby reducing apparent power-law indices to solar-wind-like values. Second, for the events considered it is found that radio burst emission in the form of 1/f vs. t dynamic spectra closely follows straight lines. In future this will allow much more objective identification of type IIs in solar radio data and plausibly real-time correlation with coronagraph and other solar radar. Third, it is demonstrated that 1/f vs. t dynamic spectra can provide direct evidence for acceleration of the shock deep in the corona, thus complementing coronagraph studies.

  3. Evidence for Wind-like Regions, Acceleration of Shocks in the Deep Corona, and Relevance of 1/f Dynamic Spectra to Coronal Type II Bursts

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, Iver H.; Robinson, P. A.

    2008-04-01

    Type II radio bursts are produced near the local plasma frequency fp and near 2fp by shocks moving through the corona and solar wind. In the present Letter eight well-defined coronal type II radio bursts (30-300 MHz) are analyzed. Three results are presented. First, it is found that the dependence of the central frequency on time can be fitted to a power-law model, f propto (t - t0)-α, with 0.6 <= α <= 1.3. Assuming a constant shock velocity, these results provide evidence that the density profile ne(r) in the type II source regions closely resembles the solar wind, with ne(r) propto r-2. One possible interpretation is that the solar wind starts within a few solar radii of the photosphere, most probably within 1 solar radius. Another relies on a gasdynamic Whitham analysis and demonstrates a possibility for blast shocks to accelerate, thereby reducing apparent power-law indices to solar wind-like values. Second, for the events considered it is found that radio burst emission in the form of 1/f versus t dynamic spectra closely follows straight lines. In future this will allow much more objective identification of type II bursts in solar radio data and plausibly real-time correlation with coronagraph and other solar radar. Third, it is demonstrated that 1/f versus t dynamic spectra can provide direct evidence for acceleration of the shock deep in the corona, thus complementing coronagraph studies.

  4. Development and application of compact and on-chip electron linear accelerators for dynamic tracking cancer therapy and DNA damage/repair analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.

    2015-06-01

    We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.

  5. Nonrelativistic Perpendicular Shocks Modeling Young Supernova Remnants: Nonstationary Dynamics and Particle Acceleration at Forward and Reverse Shocks

    NASA Astrophysics Data System (ADS)

    Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi

    2016-03-01

    For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.

  6. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  7. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential.

    PubMed

    Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  8. GPU-Accelerated Molecular Dynamics Simulation to Study Liquid Crystal Phase Transition Using Coarse-Grained Gay-Berne Anisotropic Potential

    PubMed Central

    Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi

    2016-01-01

    Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851

  9. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. I. Correlation of response dynamics with receptor innervation.

    PubMed

    O'Leary, D P; Dunn, R F

    1976-05-01

    The small-signal linear characteristics of afferent responses from the isolated semicircular canal were described by the use of white-noise rotational acceleration inputs. The results, based on cross-correlation analysis, showed a striking and systematic variation in linear system impulse response characteristics from afferents which innervated different regions of the receptor. Afferents from centrally located nerve bundles innervating the crest region of the crista exhibited an initial maximum response amplitude followed by a rapid decay. In contrast, afferents from extreme rostral and caudal nerve bundles innervating the crista slopes exhibited an initial rise up to a low-amplitude maximum followed by a slower decay. These results imply that the afferents innervating a single canal do not merely carry redundant information concerning current head acceleration, but could be considered an ensemble of specific classes of filters that are tuned individually to specific classes of head movements. On the basis of these considerations, a new hypothesis of matched filter detection was proposed as relevant to information processing and dynamic control in central vestibular pathways. PMID:948010

  10. Accelerated dynamic cardiac MRI exploiting sparse-Kalman-smoother self-calibration and reconstruction (k  -  t SPARKS)

    NASA Astrophysics Data System (ADS)

    Park, Suhyung; Park, Jaeseok

    2015-05-01

    Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k  -  t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k  -  t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k  -  t SPARKS incorporates Kalman-smoother self-calibration in k  -  t space and sparse signal recovery in x  -   f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k  -  t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k  -  t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors.

  11. Accelerated dynamic cardiac MRI exploiting sparse-Kalman-smoother self-calibration and reconstruction (k  -  t SPARKS).

    PubMed

    Park, Suhyung; Park, Jaeseok

    2015-05-01

    Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k  -  t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k  -  t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k  -  t SPARKS incorporates Kalman-smoother self-calibration in k  -  t space and sparse signal recovery in x  -   f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k  -  t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k  -  t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors.

  12. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  13. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  14. Study of vortex ring dynamics in the nonlinear Schrodinger equation utilizing GPU-accelerated high-order compact numerical integrators

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald Meyer

    We numerically study the dynamics and interactions of vortex rings in the nonlinear Schrodinger equation (NLSE). Single ring dynamics for both bright and dark vortex rings are explored including their traverse velocity, stability, and perturbations resulting in quadrupole oscillations. Multi-ring dynamics of dark vortex rings are investigated, including scattering and merging of two colliding rings, leapfrogging interactions of co-traveling rings, as well as co-moving steady-state multi-ring ensembles. Simulations of choreographed multi-ring setups are also performed, leading to intriguing interaction dynamics. Due to the inherent lack of a close form solution for vortex rings and the dimensionality where they live, efficient numerical methods to integrate the NLSE have to be developed in order to perform the extensive number of required simulations. To facilitate this, compact high-order numerical schemes for the spatial derivatives are developed which include a new semi-compact modulus-squared Dirichlet boundary condition. The schemes are combined with a fourth-order Runge-Kutta time-stepping scheme in order to keep the overall method fully explicit. To ensure efficient use of the schemes, a stability analysis is performed to find bounds on the largest usable time step-size as a function of the spatial step-size. The numerical methods are implemented into codes which are run on NVIDIA graphic processing unit (GPU) parallel architectures. The codes running on the GPU are shown to be many times faster than their serial counterparts. The codes are developed with future usability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with a MEX-compiler interface. Reproducibility of results is achieved by combining the codes into a code package called NLSEmagic which is freely distributed on a dedicated website.

  15. Exploration of the antagonist CP-376395 escape pathway for the corticotropin-releasing factor receptor 1 by random acceleration molecular dynamics simulations.

    PubMed

    Bai, Qifeng; Shi, Danfeng; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun

    2014-07-01

    Corticotropin-releasing factor receptor 1 (CRF1R), a member of class B G-protein-coupled receptors (GPCRs), plays an important role in the treatment of osteoporosis, diabetes, depression, migraine and anxiety. To explore the escape pathway of the antagonist CP-376395 in the binding pocket of CRF1R, molecular dynamics (MD) simulations, dynamical network analysis, random acceleration molecular dynamics (RAMD) simulations and adaptive biasing force (ABF) calculations were performed on the crystal structure of CRF1R in complex with CP-376395. The results of dynamical network analysis show that TM7 of CRF1R has the strongest edges during MD simulation. The bent part of TM7 forms a V-shape pocket with Gly356(7.50). Asn283(5.50) has high hydrogen bond occupancy during 100 ns MD simulations and is the key interaction residue with the antagonist in the binding pocket of CRF1R. RAMD simulation has identified three possible pathways (PW1, PW2 and PW3) for CP-376395 to escape from the binding pocket of CRF1R. The PW3 pathway was proved to be the most likely escape pathway for CP-376395. The free energy along the PW3 pathway was calculated by using ABF simulations. Two energy barriers were found along the reaction coordinates. Residues Leu323(6.49), Asn283(5.50) and Met206(3.47) contribute to the steric hindrance for the first energy barrier. Residues His199(3.40) and Gln355(7.49) contribute to the second energy barrier through the hydrogen bonding interaction between CP-376395 and CRF1R. The results of our study can not only provide useful information to understand the interaction mechanism between CP-376395 and CRF1R, but also provide the details about the possible escape pathway and the free energy profile of CP-376395 in the pocket of CRF1R.

  16. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate

  17. Stokesian locomotion in elastic fluids: Experiments

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Lauga, Eric

    2010-11-01

    In many instances of biological relevance, self-propelled cells have to swim through non-Newtonian fluids. In order to provide fundamental understanding on the effect of such non-Newtonian stresses on locomotion, we have studied the motion an oscillating magnetic swimmer immersed in both Newtonian and non-Newtonian liquids at small Reynolds numbers. The swimmer is made with a small rare earth (Neodymium-Iron-Boron) magnetic rod (3 mm) to which a flexible tail was glued. This array was immersed in cylindrical container (50 mm diameter) in which the test fluid was contained. A nearly uniform oscillating magnetic field was created with a Helmholtz coil (R=200mm) and a AC power supply. For the Newtonian case, a 30,000 cSt silicon oil was used. In the non-Newtonian case, a fluid with nearly constant viscosity and large first normal stress difference (highly elastic) was used; this fluid was made with Corn syrup with a small amount of polyacrylamide. The swimming speed was measured, for different amplitudes and frequencies, using a digital image analysis. The objective of the present investigation is to determine whether the elastic effects of the fluid improve or not the swimming performance. Some preliminary results will be presented and discussed.

  18. A method for estimation of accuracy of dose delivery with dynamic slit windows in medical linear accelerators.

    PubMed

    Ravichandran, R; Binukumar, J P; Sivakumar, S S; Krishnamurthy, K; Davis, C A

    2008-07-01

    Intensity-modulated radiotherapy (IMRT) clinical dose delivery is based on computer-controlled multileaf movements at different velocities. To test the accuracy of modulation of the beam periodically, quality assurance (QA) methods are necessary. Using a cylindrical phantom, dose delivery was checked at a constant geometry for sweeping fields. Repeated measurements with an in-house designed methodology over a period of 1 year indicate that the method is very sensitive to check the proper functioning of such dose delivery in medical linacs. A cylindrical perspex phantom with facility to accurately position a 0.6-cc (FC 65) ion chamber at constant depth at isocenter, (SA 24 constancy check tool phantom for MU check, Scanditronix Wellhofer) was used. Dosimeter readings were integrated for 4-mm, 10-mm, 20-mm sweeping fields and for 3 angular positions of the gantry periodically. Consistency of standard sweeping field output (10-mm slit width) and the ratios of outputs against other slit widths over a long period were reported. A 10-mm sweeping field output was found reproducible within an accuracy of 0.03% (n = 25) over 1 year. Four-millimeter, 20-mm outputs expressed as ratio with respect to 10-mm sweep output remained within a mean deviation of 0.2% and 0.03% respectively. Outputs at 3 gantry angles remained within 0.5%, showing that the effect of dynamic movements of multileaf collimator (MLC) on the output is minimal for angular positions of gantry. This method of QA is very simple and is recommended in addition to individual patient QA measurements, which reflect the accuracy of dose planning system. In addition to standard output and energy checks of linacs, the above measurements can be complemented so as to check proper functioning of multileaf collimator for dynamic field dose delivery.

  19. Perturbations for transient acceleration

    SciTech Connect

    Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S. E-mail: hipolito@ceunes.ufes.br

    2012-04-01

    According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested against the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.

  20. Development of hardware accelerator for molecular dynamics simulations: a computation board that calculates nonbonded interactions in cooperation with fast multipole method.

    PubMed

    Amisaki, Takashi; Toyoda, Shinjiro; Miyagawa, Hiroh; Kitamura, Kunihiro

    2003-04-15

    Evaluation of long-range Coulombic interactions still represents a bottleneck in the molecular dynamics (MD) simulations of biological macromolecules. Despite the advent of sophisticated fast algorithms, such as the fast multipole method (FMM), accurate simulations still demand a great amount of computation time due to the accuracy/speed trade-off inherently involved in these algorithms. Unless higher order multipole expansions, which are extremely expensive to evaluate, are employed, a large amount of the execution time is still spent in directly calculating particle-particle interactions within the nearby region of each particle. To reduce this execution time for pair interactions, we developed a computation unit (board), called MD-Engine II, that calculates nonbonded pairwise interactions using a specially designed hardware. Four custom arithmetic-processors and a processor for memory manipulation ("particle processor") are mounted on the computation board. The arithmetic processors are responsible for calculation of the pair interactions. The particle processor plays a central role in realizing efficient cooperation with the FMM. The results of a series of 50-ps MD simulations of a protein-water system (50,764 atoms) indicated that a more stringent setting of accuracy in FMM computation, compared with those previously reported, was required for accurate simulations over long time periods. Such a level of accuracy was efficiently achieved using the cooperative calculations of the FMM and MD-Engine II. On an Alpha 21264 PC, the FMM computation at a moderate but tolerable level of accuracy was accelerated by a factor of 16.0 using three boards. At a high level of accuracy, the cooperative calculation achieved a 22.7-fold acceleration over the corresponding conventional FMM calculation. In the cooperative calculations of the FMM and MD-Engine II, it was possible to achieve more accurate computation at a comparable execution time by incorporating larger nearby

  1. Dynamical Simulations of Extrasolar Planetary Systems with Debris Disks Using a GPU Accelerated N-Body Code

    NASA Astrophysics Data System (ADS)

    Moore, Alexander

    This thesis begins with a description of a hybrid symplectic integrator named QYMSYM which is capable of planetary system simulations. This integrator has been programmed with the Compute Unified Device Architecture (CUDA) language which allows for implementation on Graphics Processing Units (GPUs). With the enhanced compute performance made available by this choice, QYMSYM was used to study the effects debris disks have on the dynamics of the extrasolar planetary systems HR 8799 and KOI-730. The four planet system HR 8799 was chosen because it was known to have relatively small regions of stability in orbital phase space. Using this fact, it can be shown that a simulated debris disk of moderate mass around HR 8799 can easily pull this system out of these regions of stability. In other cases it is possible to migrate the system to a region of stability - although this requires significantly more mass and a degree of fine tuning. These findings suggest that previous studies on the stability of HR 8799 which do not include a debris disk may not accurately report on the size and location of the stable orbital phase space available for the planets. This insight also calls into question the practice of using dynamical simulations to help constrain observed planetary orbital data. Next, by studying the stability of another four planet system, KOI-730, whose planets are in an 8:6:4:3 mean motion resonance, we were additionally able to determine mass constraints on debris disks for KOI-730 like Kepler objects. Noting that planet inclinations increase by a couple of degrees when migrating through a Neptune mass debris disk, and that planet candidates discovered by the Kepler Space Telescope are along the line of site, it is concluded that significant planetary migration did not occur among the Kepler objects. This result indicates that Kepler objects like KOI-730 have relatively small or stable debris disks which did not cause migration of their planets - ruling out late

  2. GPU-accelerated atom and dynamic bond visualization using hyperballs: a unified algorithm for balls, sticks, and hyperboloids.

    PubMed

    Chavent, Matthieu; Vanel, Antoine; Tek, Alex; Levy, Bruno; Robert, Sophie; Raffin, Bruno; Baaden, Marc

    2011-10-01

    Ray casting on graphics processing units (GPUs) opens new possibilities for molecular visualization. We describe the implementation and calculation of diverse molecular representations such as licorice, ball-and-stick, space-filling van der Waals spheres, and approximated solvent-accessible surfaces using GPUs. We introduce HyperBalls, an improved ball-and-stick representation replacing tubes, linking the atom spheres by hyperboloids that can smoothly connect them. This type of depiction is particularly useful to represent dynamic phenomena, such as the evolution of noncovalent bonds. It is furthermore well suited to represent coarse-grained models and spring networks. All these representations can be defined by a single general algebraic equation that is adapted for the ray-casting technique and is well suited for execution on the GPU. Using GPU capabilities, this implementation can routinely, accurately, and interactively render molecules ranging from a few atoms up to huge macromolecular assemblies with more than 500,000 particles. In simple cases, based only on spheres, we have been able to display up to two million atoms smoothly.

  3. k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  4. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  5. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems. PMID:24809307

  6. Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rankin, R.; Zong, Q.-G.

    2014-11-01

    We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a "test-kinetic model") with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90° from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energies between 500 keV and 1.5 MeV near geosynchronous orbit. We also demonstrate that electrons in this energy range satisfy the drift resonance condition for the ULF waves produced by the MHD model. This confirms the conclusions reached by Tan et al. (2011), that the energization process in this case is dominated by drift-resonant interactions between electrons and MHD fast mode waves, produced by fluctuations in solar wind dynamic pressure.

  7. Abdominal 4D Flow MR Imaging in a Breath Hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition

    PubMed Central

    Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir

    2015-01-01

    Purpose To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. Materials and Methods This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30–70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. Results There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: −8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95

  8. General purpose programmable accelerator board

    DOEpatents

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  9. Proceedings of the 1987 IEEE particle accelerator conference: Volume 2

    SciTech Connect

    Lindstrom, E.R.; Taylor, L.S.

    1987-01-01

    This report contains papers from the IEEE particle accelerator conference. This second volume of three covers the following main topics: Instrumentation and control, accelerators for medium energies and nuclear physics, high current accelerators, and beam dynamics. (LSP)

  10. SU-E-J-156: Preclinical Inverstigation of Dynamic Tumor Tracking Using Vero SBRT Linear Accelerator: Motion Phantom Dosimetry Study

    SciTech Connect

    Mamalui-Hunter, M; Wu, J; Li, Z; Su, Z

    2014-06-01

    Purpose: Following the ‘end-to-end testing’ paradigm of Dynamic Target Tracking option in our Image-Guided dedicated SBRT VeroTM linac, we verify the capability of the system to deliver planned dose to moving targets in the heterogeneous thorax phantom (CIRSTM). The system includes gimbaled C-band linac head, robotic 6 degree of freedom couch and a tumor tracking method based on predictive modeling of target position using fluoroscopically tracked implanted markers and optically tracked infrared reflecting external markers. Methods: 4DCT scan of the motion phantom with the VisicoilTM implanted marker in the close vicinity of the target was acquired, the ‘exhale’=most prevalent phase was used for planning (iPlan by BrainLabTM). Typical 3D conformal SBRT treatment plans aimed to deliver 6-8Gy/fx to two types of targets: a)solid water-equivalent target 3cm in diameter; b)single VisicoilTM marker inserted within lung equivalent material. The planning GTV/CTV-to-PTV margins were 2mm, the block margins were 3 mm. The dose calculated by MonteCarlo algorithm with 1% variance using option Dose-to-water was compared to the ion chamber (CC01 by IBA Dosimetry) measurements in case (a) and GafchromicTM EBT3 film measurements in case (b). During delivery, the target 6 motion patterns available as a standard on CIRSTM motion phantom were investigated: in case (a), the target was moving along the designated sine or cosine4 3D trajectory; in case (b), the inserted marker was moving sinusoidally in 1D. Results: The ion chamber measurements have shown the agreement with the planned dose within 1% under all the studied motion conditions. The film measurements show 98.1% agreement with the planar calculated dose (gamma criteria: 3%/3mm). Conclusion: We successfully verified the capability of the SBRT VeroTM linac to perform real-time tumor tracking and accurate dose delivery to the target, based on predictive modeling of the correlation between implanted marker motion and

  11. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  12. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  13. QM/MM Protocol for Direct Molecular Dynamics of Chemical Reactions in Solution: The Water-Accelerated Diels-Alder Reaction.

    PubMed

    Yang, Zhongyue; Doubleday, Charles; Houk, K N

    2015-12-01

    We describe a solvent-perturbed transition state (SPTS) sampling scheme for simulating chemical reaction dynamics in condensed phase. The method, adapted from Truhlar and Gao's ensemble-averaged variational transition state theory, includes the effect of instantaneous solvent configuration on the potential energy surface of the reacting system (RS) and allows initial conditions for the RS to be sampled quasiclassically by TS normal mode sampling. We use a QM/MM model with direct dynamics, in which QM forces of the RS are computed at each trajectory point. The SPTS scheme is applied to the acceleration of the Diels-Alder reaction of cyclopentadiene (CP) + methyl vinyl ketone (MVK) in water. We explored the effect of the number of SPTS and of solvent box size on the distribution of bond lengths in the TS. Statistical sampling of the sampling was achieved when distribution of forming bond lengths converged. We describe the region enclosing the partial bond lengths as the transition zone. Transition zones in the gas phase, SMD implicit solvent, QM/MM, and QM/MM+QM (3 water molecules treated by QM) vary according to the ability of the medium to stabilize zwitterionic structures. Mean time gaps between formation of C-C bonds vary from 11 fs for gas phase to 25 fs for QM/MM+QM. Mean H-bond lengths to O(carbonyl) in QM/MM+QM are 0.14 Å smaller at the TS than in MVK reactant, and the mean O(carbonyl)-H(water)-O(water) angle of H-bonds at the TS is 10° larger than in MVK reactant.

  14. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. II. A poly(ester-urethane) binder

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The molecular weight distribution and dynamic mechanical properties of an experimental polymer-bonded explosive, X-0282, maintained at 23, 60, and 74/sup 0/C for 3.75 y were examined, X-0282 is 95.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane explosive and 4.5% Estane 5703, a segmented poly(ester-urethane). Two mechanical relaxations at about -24 and 42/sup 0/C were found in the X-0282 aged at room temperature for 3.75 years. A third relaxation at about 85/sup 0/C was found in X-0282 aged at 60 and 74/sup 0/C. The relaxation at -24/sup 0/C is associated with the soft segment glass transition of the binder. The relaxation at 42/sup 0/C is associated with the soft segment melting and may also contain a component due to the hard segment glass transition. The relaxation at 85/sup 0/C is probably associated with improved soft segment crystallite perfection. The molecular weight of the poly(ester-urethane) binder decreased significantly with increasing accelerated aging temperature. A simple random chain scission model of the urethane degradation kinetics in the presence of explosive yields an activation energy of 11.6 kcal/mole. This model predicts a use life of about 17.5 years under the worst military operating conditions (continuous operation at 74/sup 0/C).

  15. Dynamics of high-energy proton beam acceleration and focusing from advanced hemisphere-cone target by high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Foord, M. E.; Stephens, R. B.; Wei, M. S.; Patel, P.; McLean, H.; Key, M.; Beg, F. N.

    2012-10-01

    The ability to focus intense proton beam to higher intensities and smaller focal diameters makes it very attractive for the applications ranging from isochoric heating of plasma [1], imaging implosion dynamics [2], to proton fast ignition (FI) [3], opening a new avenue of research for high energy density physics (HEDP). The roles of the laser-heated electrons in determining conversion efficiency and focus have not been previously considered [4]. In this talk, we shall present the recent theoretical and numerical calculations that self-consistently describe the evolution of the proton beam starting with the laser-generation of electrons and continuing through to ballistic proton motion, 15ps later. An analytical model is given for the electrostatic field in the plasma during acceleration, which determines the focusing characteristics of the beam.[4pt] [1] P. K. Patel et al., PRL 91, 125004 (2003).[0pt] [2] M. Borghesi, et al., PPCF 43, A267 (2001).[0pt] [3] M. Roth et al., PRL 86, 436 (2001).[0pt] [4] T. Bartal et al., Nat. Phys. 8, 139 (2012).

  16. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  17. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  18. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  19. 'Light Sail' Acceleration Reexamined

    SciTech Connect

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  20. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  1. Megavoltage Image-Based Dynamic Multileaf Collimator Tracking of a NiTi Stent in Porcine Lungs on a Linear Accelerator

    SciTech Connect

    Poulsen, Per R.; Carl, Jesper; Nielsen, Jane; Nielsen, Martin S.; Thomsen, Jakob B.; Jensen, Henrik K.; Kjaergaard, Benedict; Zepernick, Peter R.; Worm, Esben; Fledelius, Walther; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2012-02-01

    Purpose: To investigate the accuracy and potential limitations of MV image-based dynamic multileaf collimator (DMLC) tracking in a porcine model on a linear accelerator. Methods and Materials: A thermo-expandable NiTi stent designed for kilovoltage (kV) X-ray visualization of lung lesions was inserted into the bronchia of three anaesthetized Goettingen minipigs. A four-dimensional computed tomography scan was used for planning a five-field conformal treatment with circular multileaf collimator (MLC) apertures. A 22.5 Gy single fraction treatment was delivered to the pigs. The peak-to-peak stent motion was 3 to 8 mm, with breathing periods of 1.2 to 4 s. Before treatment, X-ray images were used for image-guided setup based on the stent. During treatment delivery, continuous megavoltage (MV) portal images were acquired at 7.5 Hz. The stent was segmented in the images and used for continuous adaptation of the MLC aperture. Offline, the tracking error in beam's eye view of the treatment beam was calculated for each MV image as the difference between the MLC aperture center and the segmented stent position. The standard deviations of the systematic error {Sigma} and the random error {sigma} were determined and compared with the would-be errors for a nontracking treatment with pretreatment image-guided setup. Results: Reliable stent segmentation was obtained for 11 of 15 fields. Segmentation failures occurred when image contrast was dominated by overlapping anatomical structures (ribs, diaphragm) rather than by the stent, which was designed for kV rather than MV X-ray visibility. For the 11 fields with reliable segmentation, {Sigma} was 0.5 mm/0.4 mm in the two imager directions, whereas {sigma} was 0.5 mm/1.1 mm. Without tracking, {Sigma} and {sigma} would have been 1.7 mm/1.4 mm and 0.8 mm/1.4 mm, respectively. Conclusion: For the first time, in vivo DMLC tracking has been demonstrated on a linear accelerator showing the potential for improved targeting accuracy. The

  2. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    SciTech Connect

    Xu, Zuwei; Zhao, Haibo Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  3. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Zuwei; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance-rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are

  4. Beamlets from stochastic acceleration.

    PubMed

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  5. Development of a new combined test setup for accelerated dynamic pH-controlled in vitro calcification of porcine heart valves.

    PubMed

    Kriegs, Martin; Kanellopoulou, Dimitra; Koutsoukos, Petros G; Mavrilas, Dimosthenis; Glasmacher, Birgit

    2009-11-01

    Fifty years after their first implantation, bioprosthetic heart valves still suffer from tissue rupture and calcification. Since new bioprostheses exhibit a lower risk of calcification, fast and reliable in vitro methods need to be evaluated for testing the application of new anti-calcification techniques. This report describes a modification of the well-known in vitro dynamic calcification test method (Glasmacher et al, Leibniz University Hannover (LUH)), combined with the pH-controlled, constant solution supersaturation (CSS) method (University of Patras (UP)). The CSS method is based on monitoring the pH of the solution and the addition of calcium and phosphate ion solutions through the implementation of two syringe pumps. The pH and the activities of all ions in the solutions are thus kept constant, resulting in higher calcification rates compared to conventional in vitro methods in which solution supersaturation is allowed to decrease without any further control. To verify this hypothesis, five glutaraldehyde preserved porcine aortic valves were tested. Three of the valves were tested according to a free-drift methodology: the valves were immersed in a supersaturated calcification solution, with an initial total calcium times total phosphate product of (CaxP)=10.5 (mmol/L)2, renewed weekly. Two valves were tested by the new pH-controlled loop system, implementing the CSS methodology. All valves were tested for a 4-week period, loaded at 300 cycles per minute, resulting in a total of 12 million cycles at the end of the testing period. The degree of calcification was determined weekly by means of mux-ray, and by conventional, clinical and micro-computer tomography (CT, muCT). The results showed that the valves mineralizing at constant solution supersaturation in vitro yielded higher rates of calcification compared to the valves tested at conditions of decreasing solution supersaturation without any control, indicating the development of a new, accelerated

  6. The redundancy of NMR restraints can be used to accelerate the unfolding behavior of an SH3 domain during molecular dynamics simulations

    PubMed Central

    2011-01-01

    1 Abstract Background The simulation of protein unfolding usually requires recording long molecular dynamics trajectories. The present work aims to figure out whether NMR restraints data can be used to probe protein conformations in order to accelerate the unfolding simulation. The SH3 domain of nephrocystine (nph SH3) was shown by NMR to be destabilized by point mutations, and was thus chosen to illustrate the proposed method. Results The NMR restraints observed on the WT nph SH3 domain were sorted from the least redundant to the most redundant ones. Protein NMR conformations were then calculated with: (i) the set full including all NMR restraints measured on nph SH3, (ii) the set reduced where the least redundant restraints with respect to the set full were removed, (iii) the sets random where randomly picked-up restraints were removed. From each set of conformations, we recorded series of 5-ns MD trajectories. The β barrel architecture of nph SH3 in the trajectories starting from sets (i) and (iii) appears to be stable. On the contrary, on trajectories based on the set (ii), a displacement of the hydrophobic core residues and a variation of the β barrel inner cavity profile were observed. The overall nph SH3 destabilization agrees with previous experimental and simulation observations made on other SH3 domains. The destabilizing effect of mutations was also found to be enhanced by the removal of the least redundant restraints. Conclusions We conclude that the NMR restraint redundancy is connected to the instability of the SH3 nph domain. This restraint redundancy generalizes the contact order parameter, which is calculated from the contact map of a folded protein and was shown in the literature to be correlated to the protein folding rate. The relationship between the NMR restraint redundancy and the protein folding is also reminiscent of the previous use of the Gaussian Network Model to predict protein folding parameters. PMID:22115427

  7. Accelerated expansion through interaction

    SciTech Connect

    Zimdahl, Winfried

    2009-05-01

    Interactions between dark matter and dark energy with a given equation of state are known to modify the cosmic dynamics. On the other hand, the strength of these interactions is subject to strong observational constraints. Here we discuss a model in which the transition from decelerated to accelerated expansion of the Universe arises as a pure interaction phenomenon. Various cosmological scenarios that describe a present stage of accelerated expansion, like the {lambda}CDM model or a (generalized) Chaplygin gas, follow as special cases for different interaction rates. This unifying view on the homogeneous and isotropic background level is accompanied by a non-adiabatic perturbation dynamics which can be seen as a consequence of a fluctuating interaction rate.

  8. TH-C-12A-09: Planning and Delivery of the Fully Dynamic Trajectory Modulated Arc Therapy: Application to Accelerated Partial Breast Irradiation

    SciTech Connect

    Liang, J; Atwood, T; Fahimian, B; Chin, E; Hristov, D; Otto, K

    2014-06-15

    Purpose: A novel trajectory modulated arc therapy (TMAT) system was developed that uses source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement. MLC motion and dose rate were fully optimized for dynamic beam delivery. This work presents a platform for planning deliverable TMAT on a collision free coronal trajectory and evaluates its benefit for accelerated partial breast irradiation (APBI) in a prone position. Methods: The TMAT algorithm was built on VMAT with modifications (physical properties on couch movement were defined) and enhancements (pencil beam dose calculation engine to support extended SSDs) to make it feasible for TMAT delivery. A Matlab software environment for TMAT optimization and dose calculation was created to allow any user specified motion axis. TMAT delivery was implemented on Varian TrueBeamTM STx via XML scripts. 10 prone breast irradiation cases were evaluated in VMAT and compared with a 6- field non-coplanar IMRT plan. Patient selection/exclusion criteria and structure contouring followed the guidelines of NSABP B-39/RTOG 0413 protocol. Results: TMAT delivery time was ∼4.5 minutes. 251.5°±7.88° of non-isocentric couch arc was achieved by the optimized trajectory with 180– 210 control points at 1°–2° couch increments. The improved dose distribution by TMAT was most clearly observed by the marked reduction in the volume of irradiated normal breast tissue in the high dose region. The ratios of the normal breast tissue volume receiving more than 50%, 80% and 100% of the prescription dose for TMAT versus IMRT were: V50%(TMAT/IMRT) = 78.38%±13.03%, V80%(TMAT/IMRT) = 44.19%±9.04% and V100% (TMAT/IMRT) = 9.96%±7.55%, all p≤0.01. Conclusion: The study is the first demonstration of planning and delivery implementation of a fully dynamic APBI TMAT system with continuous couch motion. TMAT achieved significantly improved dosimetry over noncoplanar IMRT on dose volume parameters

  9. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  10. Acceleration Measurements During Landings of a 1/5.5-Size Dynamic Model of the Columbia XJL-1 Amphibian in Smooth Water and in Waves: Langley Tank Model 208M, TED No. NACA 2336

    NASA Technical Reports Server (NTRS)

    Clement, Eugene P.; Havens, Robert F.

    1947-01-01

    A 1/5.5-size powered dynamic model of the Columbia XJL-1 amphibian was landed in Langley tank no. 1 in smooth water and in oncoming waves of heights from 2.1 feet to 6.4 feet (full-size) and lengths from 50 feet to 264 feet (full-size). The motions and the vertical accelerations of the model were continuously recorded. The greatest vertical acceleration measured during the smooth-water landings was 3.1g. During landings in rough water the greatest vertical acceleration measured was 15.4g, for a landing in 6.4-foot by 165-foot waves. The impact accelerations increased with increase in wave height and, in general, decreased with increase in wave length. During the landings in waves the model bounced into the air at stalled attitudes at speeds below flying speed. The model trimmed up to the mechanical trim stop (20 deg) during landings in waves of heights greater than 2.0 feet. Solid water came over the bow and damaged the propeller during one landing in 6.4-foot waves. The vertical acceleration coefficients at first impact from the tank tests of a 1/5.5-size model were in fair agreement with data obtained at the Langley impact basin during tests of a 1/2-size model of the hull.

  11. Modulational effects in accelerators

    SciTech Connect

    Satogata, T.

    1997-12-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

  12. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  13. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  14. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  15. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  16. PROBING DYNAMICS OF ELECTRON ACCELERATION WITH RADIO AND X-RAY SPECTROSCOPY, IMAGING, AND TIMING IN THE 2002 APRIL 11 SOLAR FLARE

    SciTech Connect

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.; Kontar, Eduard P.

    2013-05-10

    Based on detailed analysis of radio and X-ray observations of a flare on 2002 April 11 augmented by realistic three-dimensional modeling, we have identified a radio emission component produced directly at the flare acceleration region. This acceleration region radio component has distinctly different (1) spectrum, (2) light curves, (3) spatial location, and, thus, (4) physical parameters from those of the separately identified trapped or precipitating electron components. To derive evolution of physical parameters of the radio sources we apply forward fitting of the radio spectrum time sequence with the gyrosynchrotron source function with five to six free parameters. At the stage when the contribution from the acceleration region dominates the radio spectrum, the X-ray- and radio-derived electron energy spectral indices agree well with each other. During this time the maximum energy of the accelerated electron spectrum displays a monotonic increase with time from {approx}300 keV to {approx}2 MeV over roughly one minute duration indicative of an acceleration process in the form of growth of the power-law tail; the fast electron residence time in the acceleration region is about 2-4 s, which is much longer than the time of flight and so requires a strong diffusion mode there to inhibit free-streaming propagation. The acceleration region has a relatively strong magnetic field, B {approx} 120 G, and a low thermal density, n{sub e} {approx}< 2 Multiplication-Sign 10{sup 9} cm{sup -3}. These acceleration region properties are consistent with a stochastic acceleration mechanism.

  17. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  18. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  19. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy

    SciTech Connect

    Yue, Ning J.; Haffty, Bruce G.; Goyal, Sharad

    2013-02-15

    Purpose: The purpose of the present study was to perform an analysis of the changes in the dynamic seroma cavity based on fiducial markers in early stage breast cancer patients treated with accelerated partial breast irradiation (APBI) using three-dimensional conformal external beam radiotherapy (3D-CRT). Methods: A prospective, single arm trial was designed to investigate the utility of gold fiducial markers in image guided APBI using 3D-CRT. At the time of lumpectomy, four to six suture-type gold fiducial markers were sutured to the walls of the cavity. Patients were treated with a fractionation scheme consisting of 15 fractions with a fractional dose of 333 cGy. Treatment design and planning followed NSABP/RTOG B-39 guidelines. During radiation treatment, daily kV imaging was performed and the markers were localized and tracked. The change in distance between fiducial markers was analyzed based on the planning CT and daily kV images. Results: Thirty-four patients were simulated at an average of 28 days after surgery, and started the treatment on an average of 39 days after surgery. The average intermarker distance (AiMD) between fiducial markers was strongly correlated to seroma volume. The average reduction in AiMD was 19.1% (range 0.0%-41.4%) and 10.8% (range 0.0%-35.6%) for all the patients between simulation and completion of radiotherapy, and between simulation and beginning of radiotherapy, respectively. The change of AiMD fits an exponential function with a half-life of seroma shrinkage. The average half-life for seroma shrinkage was 15 days. After accounting for the reduction which started to occur after surgery through CT simulation and treatment, radiation was found to have minimal impact on the distance change over the treatment course. Conclusions: Using the marker distance change as a surrogate for seroma volume, it appears that the seroma cavity experiences an exponential reduction in size. The change in seroma size has implications in the size of

  20. Sloshing of Cryogenic Helium Driven by Lateral Impulse/Gravity Gradient-Dominated/or g-Jitter-Dominated Accelerations and Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.; Zu, G. J.

    1996-01-01

    The coupling of slosh dynamics within a partially filled rotating dewar of superfluid helium 11 with spacecraft orbital dynamics is investigated in response to the environmental disturbances of (a) lateral impulses, (b) gravity gradients and (c) g-jitter forces. The purpose of this study is to investigate how the coupling of helium 11 fluid slosh dynamics driven by three cases of environmental force with spacecraft dynamics can affect the bubble deformations and their associated fluid and spacecraft mass centre fluctuations. The numerical computation of slosh dynamics is based on a rotational frame, while the spacecraft dynamics is associated with a non-rotational frame. Results show that the major contribution of orbital dynamics is driven by coupling with slosh dynamics. Neglecting the effect of slosh dynamics acting on the spacecraft may lead to the wrong results for the development of orbital and attitude control techniques.

  1. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  2. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  3. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  4. Is the Universe's Acceleration Eternal?

    NASA Astrophysics Data System (ADS)

    Bean, Rachel; Magueijo, Joao; Barrow, John

    2002-12-01

    We present a new interpretation of recent observations suggesting that the expansion of the Universe has recently started to accelerate. First we introduce a cosmological model with a minimally coupled quintessence field driven by a potential motivated by M-theory. We find that late-time acceleration does not have to lead to the usual predictions of perpetual acceleration. The model allows another broad class of scenarios in which today's acceleration is a transient phenomenon which is succeeded by a return to matter domination and decelerating expansion. Quintessence scenarios provide a simple explanation for the observed acceleration of the Universe. Yet, explaining why acceleration did not start a long time ago remains a challenge. The idea that the transition from radiation to matter domination played a dynamical role in triggering acceleration has been put forward in various guises. We, secondly, propose a simple dilaton-derived quintessence model in which temporary vacuum domination is naturally triggered by the radiation to matter transition. In this model Einstein's gravity is preserved but quintessence couples non-minimally to the cold dark matter, but not to "visible" matter. Such couplings have been attributed to the dilaton in the low-energy limit of string theory beyond tree level.

  5. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  6. Accelerator Physics Code Web Repository

    SciTech Connect

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  7. Radiative damping in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  8. Shoreline retreat and sediment release in response to accelerating sea level rise: Measuring and modelling cliffline dynamics on the Suffolk Coast, UK

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spencer, T.

    2012-01-01

    Contemporary and historic data for shoreline retreat are used to evaluate and test a range of models that predict shoreline response to accelerating sea level rise. Models are tested against the known record of sea level rise acceleration over the twentieth century on the cliffline position of a series of soft rock cliffs located along the Suffolk Coast, UK. These cliffs have experienced high retreat rates throughout the twentieth century (between 2 and 4.5 m a - 1 ). The shoreline response model most suited to such an assessment is the SCAPE model, with a close fit between actual and modelled shoreline positions. Retreating shorelines also have associated changes in alongshore elevation, an aspect of shoreline retreat that has attracted little attention. Recently acquired IfSar data now permit detailed and accurate assessment of ground elevation from which the elevation of future clifflines can be derived. Combining elevation data with future shoreline retreat, also predicted using the SCAPE model, enables future sediment release from the cliffs to be evaluated. The methodology has the ability to take into account alongshore variability in retreat rates, where previously most studies focus upon a single rate for a given shoreline. This paper thereby identifies behaviour based around "switching on", "no change" and "switching off" in cliff systems. Volumes of sediment released in the twenty first century in response to accelerating sea level rise are likely to be considerable (up to 300 000 m 3 a - 1 ) for the Suffolk study area, and around an order of magnitude above the sediment release estimates for the early twentieth century under lower rates of sea level rise. The implications for shoreline protection offered from additional sediment in the nearshore zone are discussed.

  9. Electron Cloud Effects in Accelerators

    SciTech Connect

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  10. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Drabczuk, Randall P.; Rolader, G.; Dash, S.; Sinha, N.; York, B.

    1993-01-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the USAF Armament Directorate ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, and high pressure thermo-chemistry. Selected ram accelerator simulations are presented that serve to exhibit the CRAFT code capabilities and identify some of the principle research/design Issues.

  11. Transient simulation of ram accelerator flowfields

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-10-01

    This paper describes the development of an advanced computational fluid dynamic (CFD) simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  12. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  13. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  14. Beam dynamics enhancement due to accelerating field symmetrization in the BNL/SLAC/UCLA 1.6 cell S-band photocathode RF gun

    SciTech Connect

    Palmer, D.T.; Miller, R.H.; Wang, X.J.; Ben-Zvi, I.

    1997-07-01

    A 1.6 cell photocathode S-Band gun developed by the BNL/SLAC/UCLA collaboration is now in operation at the Brookhaven Accelerator Test Facility (ATF). One of the main features of this RF gun is the symmetrization of the RF coupling iris with an identical vacuum pumping port located in the full cell. The effects of the asymmetry caused by the RF coupling iris were experimentally investigated by positioning a metallic plunger at the back wall of the vacuum port iris. The higher order modes produced were studied using electron beamlets with 8-fold symmetry. The 8-fold beamlets were produced by masking the laser beam. These experimental results indicate that the integrated electrical center and the geometrical center of the gun are within 175 {micro}m. Which is within the laser alignment tolerance of 250 {micro}m.

  15. Compensation Techniques in Accelerator Physics

    SciTech Connect

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  16. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  17. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  18. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  19. The role of perilymph in the response of the semicircular canals to angular acceleration. [dynamic model for perilymph induced displacement of cupula

    NASA Technical Reports Server (NTRS)

    Anliker, M.; Vanbuskirk, W.

    1973-01-01

    A new model for the response of the semicircular canals to angular motion is postulated. This model is based on evidence that the bony canal is not compartmentalized and assumes that the ampulla wall is highly flexible. It is shown that the perilymph induces a cupula displacement far greater than that produced by the endolymph alone. The predicted dynamic behavior of the canals on the basis of this model is found to be consistent with experimental observations.

  20. Three-dimensional dynamics of break-out afterburner ion acceleration using high-contrast short-pulse laser and nano-scale targets

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Jung, D.; Bowers, K. J.; Fernandez, J. C.; Hegelich, B. M.

    2010-11-01

    Ultra-intense laser interaction with solid density carbon targets is examined in 3D VPIC simulations. It is shown that a linearly polarized laser pulse at >10^20 W/cm^2 intensity will turn a solid density, nm-scale target relativistically transparent and begin an epoch of dramatic acceleration of ions. Called the Break-Out-Afterburner (BOA) [L. Yin, et al., Phys. Plasmas 14, 056706 (2007)], this mechanism leads to order-of-magnitude greater ion energy and beam currents. The BOA lasts until the electron density in the expanding target reduces to the non-relativistic critical density. A striking feature of the BOA mechanism is that the ion beam symmetry is broken, with the production of lobes in the direction orthogonal to the laser polarization and propagation directions, along which the highest ion beam energy is observed. These ion beam lobes have been measured on recent Trident experiments. An analytic theory for the production of ion beam lobes has been obtained and has been shown to be in good agreement with simulations. Moreover, other features of the BOA, e.g., the existence of an optimal target thickness for given laser and target density and the propagation of light and heavy ion species at comparable speed have been demonstrated in simulations and experiments.

  1. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect

    Spentzouris, Panagiotis; Cary, John; Mcinnes, Lois Curfman; Mori, Warren; Ng, Cho; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  2. Community petascale project for accelerator science and simulation : Advancing computational science for future accelerators and accelerator technologies.

    SciTech Connect

    Spentzouris, P.; Cary, J.; McInnes, L. C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R & D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  3. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect

    Spentzouris, Panagiotis; Cary, John; Mcinnes, Lois Curfman; Mori, Warren; Ng, Cho; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  4. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  5. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  6. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  7. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  8. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    SciTech Connect

    Omelyan, Igor E-mail: omelyan@icmp.lviv.ua; Kovalenko, Andriy

    2013-12-28

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  9. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    NASA Astrophysics Data System (ADS)

    Omelyan, Igor; Kovalenko, Andriy

    2013-12-01

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  10. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  11. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  12. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  13. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  14. Relativistic klystron two-beam accelerator

    SciTech Connect

    Westenskow, G.A.; Houck, T.L. )

    1994-10-01

    Relativistic klystrons (RKs) are being developed as an RF power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. In a relativistic klystron two-beam accelerator (RK-TBA), the drive beam passes through a large number of RF output structures. High conversion efficiency of electron beam energy to RF energy is achieved in this concept by reacceleration of the modulated drive beam between output structures. The authors have conducted experiments studying the RF power extracted from various RK structures driven by modulated induction accelerator current pulses; the studies include work on improving the transport dynamics of the drive beam. They have started a demonstration in which the modulated induction beam current is reaccelerated by passage through subsequent induction accelerator cells.

  15. Photon acceleration in plasma wake wave

    SciTech Connect

    Bu, Zhigang; Shen, Baifei Yi, Longqing; Zhang, Hao; Huang, Shan; Li, Shun

    2015-04-15

    The photon acceleration effect in a laser wake field is investigated based on photon Hamiltonian dynamics. A test laser pulse is injected into a plasma wave at an incident angle θ{sub i}, which could slow down the photon velocity along the propagating direction of the wake wave so as to increase the acceleration distance for the photons. The photon trapping condition is analyzed in detail, and the maximum frequency shift of the trapped photon is obtained. The acceleration gradient and dephasing length are emphatically studied. The compression of the test laser pulse is examined and used to interpret the acceleration process. The limit of finite transverse width of the wake wave on photon acceleration is also discussed.

  16. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  17. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  18. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  19. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  20. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  1. Centrifuge Study of Pilot Tolerance to Acceleration and the Effects of Acceleration on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Creer, Brent Y.; Smedal, Harald A.; Wingrove, Rodney C.

    1960-01-01

    A research program the general objective of which was to measure the effects of various sustained accelerations on the control performance of pilots, was carried out on the Aviation Medical Acceleration Laboratory centrifuge, U.S. Naval Air Development Center, Johnsville, PA. The experimental setup consisted of a flight simulator with the centrifuge in the control loop. The pilot performed his control tasks while being subjected to acceleration fields such as might be encountered by a forward-facing pilot flying an atmosphere entry vehicle. The study was divided into three phases. In one phase of the program, the pilots were subjected to a variety of sustained linear acceleration forces while controlling vehicles with several different sets of longitudinal dynamics. Here, a randomly moving target was displayed to the pilot on a cathode-ray tube. For each combination of acceleration field and vehicle dynamics, pilot tracking accuracy was measured and pilot opinion of the stability and control characteristics was recorded. Thus, information was obtained on the combined effects of complexity of control task and magnitude and direction of acceleration forces on pilot performance. These tests showed that the pilot's tracking performance deteriorated markedly at accelerations greater than about 4g when controlling a lightly damped vehicle. The tentative conclusion was also reached that regardless of the airframe dynamics involved, the pilot feels that in order to have the same level of control over the vehicle, an increase in the vehicle dynamic stability was required with increases in the magnitudes of the acceleration impressed upon the pilot. In another phase, boundaries of human tolerance of acceleration were established for acceleration fields such as might be encountered by a pilot flying an orbital vehicle. A special pilot restraint system was developed to increase human tolerance to longitudinal decelerations. The results of the tests showed that human tolerance

  2. Radiative Damping in Plasma-Based Accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-11-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. It is shown that the radiation could significantly affect the beam properties (e.g., increased relative energy spread) in plasma wakefield accelerators.

  3. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  4. Global ballistic acceleration in a bouncing-ball model

    NASA Astrophysics Data System (ADS)

    Kroetz, Tiago; Livorati, André L. P.; Leonel, Edson D.; Caldas, Iberê L.

    2015-07-01

    The ballistic increase for the velocity of a particle in a bouncing-ball model was investigated. The phenomenon is caused by accelerating structures in phase space known as accelerator modes. They lead to a regular and monotonic increase of the velocity. Here, both regular and ballistic Fermi acceleration coexist in the dynamics, leading the dynamics to two different growth regimes. We characterized deaccelerator modes in the dynamics, corresponding to unstable points in the antisymmetric position of the accelerator modes. In control parameter space, parameter sets for which these accelerations and deaccelerations constitute structures were obtained analytically. Since the mapping is not symplectic, we found fractal basins of influence for acceleration and deacceleration bounded by the stable and unstable manifolds, where the basins affect globally the average velocity of the system.

  5. Laser acceleration in novel media

    NASA Astrophysics Data System (ADS)

    Tajima, T.

    2014-05-01

    With newly available compact laser technology [1] we are capable of producing 100 PW-class laser pulses with a single-cycle duration on the femtosecond timescale. With this fs intense laser we can produce a coherent X-ray pulse that is also compressed, well into the hard X-ray regime (˜10 keV) and with a power up to as much as 10 Exawatts. We suggest utilizing these coherent X-rays to drive the acceleration of particles. Such X-rays are focusable far beyond the diffraction limit of the original laser wavelength and when injected into a crystal it forms a metallic-density electron plasma ideally suited for laser wakefield acceleration. If the X-ray field is limited by the Schwinger field at the focal size of ˜100 nm, the achievable energy is 1 PeV over 50 m. (If the X-rays are focused further, much higher energies beyond this are possible). These processes are not limited to only electron acceleration, and if ions are pre-accelerated to beyond GeV they are capable of being further accelerated using a LWFA scheme [2] to similar energies as electrons over the same distance-scales. Such high energy proton (and ion) beams can induce copious neutrons, which can also give rise to intense compact muon beams and neutrino beams that may be portable. High-energy gamma rays can also be efficiently emitted with a bril- liance many orders of magnitude above the brightest X-ray sources by this accelerating process, from both the betatron radiation as well as the dominant radiative-damping dynamics. With the exceptional conditions enabled by this technology we envision a whole scope of new physical phenomena, including: the possibility of laser self-focus in the vacuum, neutron manipulation by the beat of such lasers, zeptosecond spectroscopy of nuclei, etc. Further, we now introduce along with the idea of vacuum as a nonlinear medium, the Schwinger Fiber Accelerator. This is a self-organized vacuum fiber acceleration concept, in which the repeated process of self-focusing and

  6. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  7. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  8. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  9. Airbreathing Acceleration Toward Earth Orbit

    SciTech Connect

    Whitehead, J C

    2007-05-09

    As flight speed increases, aerodynamic drag rises more sharply than the availability of atmospheric oxygen. The ratio of oxygen mass flux to dynamic pressure cannot be improved by changing altitude. The maximum possible speed for airbreathing propulsion is limited by the ratio of air capture area to vehicle drag area, approximately Mach 6 at equal areas. Simulation of vehicle acceleration shows that the use of atmospheric oxygen offers a significant potential for minimizing onboard consumables at low speeds. These fundamental calculations indicate that a practical airbreathing launch vehicle would accelerate to near steady-state speed while consuming only onboard fuel, then transition to rocket propulsion. It is suggested that an aircraft carrying a rocket-propelled vehicle to approximately Mach 5 could be a realistic technical goal toward improving access to orbit.

  10. Accelerating optimization by tracing valley

    NASA Astrophysics Data System (ADS)

    Li, Qing-Xiao; He, Rong-Qiang; Lu, Zhong-Yi

    2016-06-01

    We propose an algorithm to accelerate optimization when an objective function locally resembles a long narrow valley. In such a case, a conventional optimization algorithm usually wanders with too many tiny steps in the valley. The new algorithm approximates the valley bottom locally by a parabola that is obtained by fitting a set of successive points generated recently by a conventional optimization method. Then large steps are taken along the parabola, accompanied by fine adjustment to trace the valley bottom. The effectiveness of the new algorithm has been demonstrated by accelerating the Newton trust-region minimization method and the Levenberg-Marquardt method on the nonlinear fitting problem in exact diagonalization dynamical mean-field theory and on the classic minimization problem of the Rosenbrock's function. Many times speedup has been achieved for both problems, showing the high efficiency of the new algorithm.

  11. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  12. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  13. Acceleration amplifications in nif structures subjected to earthquake base motions

    SciTech Connect

    McCallen, D

    1999-11-29

    NIF technical staff have questioned the possibility of obtaining acceleration amplifications (i.e. amplification of the ground acceleration values) in a structure which are significantly higher than the acceleration amplification exhibited across the period range in the input response spectrum. This note utilizes a simple example to illustrate that the acceleration amplification resulting from the dynamic response of a structural system can indeed be significantly higher than the amplifications indicated in the response spectrum, and that the GEMINI program is computing the appropriate acceleration levels for a simple MDOF system.

  14. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  15. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  16. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  17. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  18. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  19. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  1. A Brownian dynamics study on ferrofluid colloidal dispersions using an iterative constraint method to satisfy Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Dubina, Sean Hyun; Wedgewood, Lewis Edward

    2016-07-01

    Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell's equations. An iterative constraint method was developed to satisfy Maxwell's equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished by allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell's equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material's magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.

  2. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  3. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  4. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  5. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  6. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  7. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  8. Accelerated and Airy-Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-09-01

    A quantum particle subjected to a constant force undergoes an accelerated motion following a parabolic path, which differs from the classical motion just because of wave packet spreading (quantum diffusion). However, when a periodic potential is added (such as in a crystal) the particle undergoes Bragg scattering and an oscillatory (rather than accelerated) motion is found, corresponding to the famous Bloch oscillations (BOs). Here, we introduce an exactly-solvable quantum Hamiltonian model, corresponding to a generalized Wannier-Stark Hamiltonian Ĥ, in which a quantum particle shows an intermediate dynamical behavior, namely an oscillatory motion superimposed to an accelerated one. Such a novel dynamical behavior is referred to as accelerated BOs. Analytical expressions of the spectrum, improper eigenfunctions and propagator of the generalized Wannier-Stark Hamiltonian Ĥ are derived. Finally, it is shown that acceleration and quantum diffusion in the generalized Wannier-Stark Hamiltonian are prevented for Airy wave packets, which undergo a periodic breathing dynamics that can be referred to as Airy-Bloch oscillations.

  9. Accelerating Climate Simulations Through Hybrid Computing

    NASA Technical Reports Server (NTRS)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  10. Self-accelerating the normal DGP branch

    SciTech Connect

    Bouhmadi-López, Mariam

    2009-11-01

    We propose a generalised induced gravity brane-world model where the brane action contains an arbitrary f(R) term, R being the scalar curvature of the brane. We show that the effect of the f(R) term on the dynamics of a homogeneous and isotropic brane is twofold: 1. an evolving induced gravity parameter and; 2. a shift on the energy density of the brane. This new shift term, which is absent on the Dvali, Gabadadze and Porrati (DGP) model, plays a crucial role to self-accelerate the generalised normal DGP branch of our model. We analyse as well the stability of de Sitter self-accelerating solutions under homogeneous perturbations and compare our results with the standard 4-dimensional one. Finally, we obtain power law solutions which either correspond to conventional acceleration or super-acceleration of the brane. In the latter case, no phantom matter is invoked on the brane nor in the bulk.

  11. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  12. (U) Computation acceleration using dynamic memory

    SciTech Connect

    Hakel, Peter

    2014-10-24

    Many computational applications require the repeated use of quantities, whose calculations can be expensive. In order to speed up the overall execution of the program, it is often advantageous to replace computation with extra memory usage. In this approach, computed values are stored and then, when they are needed again, they are quickly retrieved from memory rather than being calculated again at great cost. Sometimes, however, the precise amount of memory needed to store such a collection is not known in advance, and only emerges in the course of running the calculation. One problem accompanying such a situation is wasted memory space in overdimensioned (and possibly sparse) arrays. Another issue is the overhead of copying existing values to a new, larger memory space, if the original allocation turns out to be insufficient. In order to handle these runtime problems, the programmer therefore has the extra task of addressing them in the code.

  13. Space experiments with particle accelerators

    SciTech Connect

    Obayashi, T.

    1981-11-01

    The purpose of space experiments with particle accelerators (SEPAC) is to carry out active and interactive experiments on and in the Earth's ionosphere and magnetosphere. It is also intended to make an initial performance test for an overall program of Spacelab/SEPAC experiments. The instruments to be used are an electron beam accelerator, magnetoplasma dynamic arcjet, and associated diagnostic equipment. The accelerators are installed on the pallet, with monitoring and diagnostic observations being made by the gas plume release, beam-monitor TV, and particle-wave measuring instruments also mounted on the pallet. Command and display systems are installed in the module. Three major classes of investigations to be performed are vehicle charge neutralization, beam plasma physics, and beam atmosphere interactions. The first two are mainly onboard plasma physics experiments to measure the effect of phenomena in the vicinity of Spacelab. The last one is concerned with atmospheric modification and is supported by other Spacelab 1 investigations as well as by ground-based, remote sensing observations.

  14. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  15. Object-oriented accelerator design with HPF

    SciTech Connect

    Ji Qiang; Ryne, R.D.; Habib, S.

    1998-12-31

    In this paper, object-oriented design is applied to codes for beam dynamics simulations in accelerators using High Performance Fortran (HPF). This results in good maintainability, reusability, and extensibility of software, combined with the ease of parallel programming provided by HPF.

  16. Trajectory Modulated Arc Therapy: A Fully Dynamic Delivery With Synchronized Couch and Gantry Motion Significantly Improves Dosimetric Indices Correlated With Poor Cosmesis in Accelerated Partial Breast Irradiation

    SciTech Connect

    Liang, Jieming; Atwood, Todd; Eyben, Rie von; Fahimian, Benjamin; Chin, Erika; Horst, Kathleen; Otto, Karl; Hristov, Dimitre

    2015-08-01

    Purpose: To develop planning and delivery capabilities for linear accelerator–based nonisocentric trajectory modulated arc therapy (TMAT) and to evaluate the benefit of TMAT for accelerated partial breast irradiation (APBI) with the patient in prone position. Methods and Materials: An optimization algorithm for volumetrically modulated arc therapy (VMAT) was generalized to allow for user-defined nonisocentric TMAT trajectories combining couch rotations and translations. After optimization, XML scripts were automatically generated to program and subsequently deliver the TMAT plans. For 10 breast patients in the prone position, TMAT and 6-field noncoplanar intensity modulated radiation therapy (IMRT) plans were generated under equivalent objectives and constraints. These plans were compared with regard to whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose. Results: For TMAT APBI, nonisocentric collision-free horizontal arcs with large angular span (251.5 ± 7.9°) were optimized and delivered with delivery time of ∼4.5 minutes. Percentage changes of whole breast tissue volume receiving more than 100%, 80%, 50%, and 20% of the prescription dose for TMAT relative to IMRT were −10.81% ± 6.91%, −27.81% ± 7.39%, −14.82% ± 9.67%, and 39.40% ± 10.53% (P≤.01). Conclusions: This is a first demonstration of end-to-end planning and delivery implementation of a fully dynamic APBI TMAT. Compared with IMRT, TMAT resulted in marked reduction of the breast tissue volume irradiated at high doses.

  17. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  18. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  19. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  20. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  1. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  2. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  3. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  4. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  5. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  6. Experimental Plans to Explore Dielectric Wakefield Acceleration in the THZ Regime

    SciTech Connect

    Lemery, F.; Mihalcea, D.; Piot, P.; Behrens, C.; Elsen, E.; Flottmann, K.; Gerth, C.; Kube, G.; Schmidt, B.; Osterhoff, J.; Stoltz, P.

    2011-09-07

    Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate the performances of a possible experiment under consideration at the FLASH facility in DESY to explore wakefield acceleration with an enhanced transformer ratio. The experiment capitalizes on a unique pulse shaping capability recently demonstrated at this facility. In addition, the facility incorporates a superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of potential dynamical effects in dielectric wakefield accelerators.

  7. Tripartite entanglement of fermionic system in accelerated frames

    SciTech Connect

    Khan, Salman

    2014-09-15

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.

  8. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  9. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  10. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  11. Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.

    2015-09-01

    As a consequence of the evolutionary conditions [28; 29], shock waves can generate high levels of downstream vortical turbulence. Simulations [32-34] and observations [30; 31] support the idea that downstream magnetic islands (also called plasmoids or flux ropes) result from the interaction of shocks with upstream turbulence. Zank et al. [18] speculated that a combination of diffusive shock acceleration (DSA) and downstream reconnection-related effects associated with the dynamical evolution of a “sea of magnetic islands” would result in the energization of charged particles. Here, we utilize the transport theory [18; 19] for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets to investigate a combined DSA and downstream multiple magnetic island charged particle acceleration mechanism. We consider separately the effects of the anti-reconnection electric field that is a consequence of magnetic island merging [17], and magnetic island contraction [14]. For the merging plasmoid reconnection- induced electric field only, we find i) that the particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory, and ii) that the solution is constant downstream of the shock. For downstream plasmoid contraction only, we find that i) the accelerated particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory; ii) for a given energy, the particle intensity peaks downstream of the shock, and the peak location occurs further downstream of the shock with increasing particle energy, and iii) the particle intensity amplification for a particular particle energy, f(x, c/c0)/f(0, c/c0), is not 1, as predicted by DSA theory, but increases with increasing particle energy. These predictions can be tested against observations of electrons and ions accelerated at interplanetary shocks and the heliospheric

  12. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    NASA Astrophysics Data System (ADS)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  13. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  14. Twisted waveguide accelerating structure.

    SciTech Connect

    Kang, Y. W.

    2000-08-15

    A hollow waveguide with a uniform cross section may be used for accelerating charged particles if the phase velocity of an accelerating mode is equal to or less than the free space speed of light. Regular straight hollow waveguides have phase velocities of propagating electromagnetic waves greater than the free-space speed of light. if the waveguide is twisted, the phase velocities of the waveguide modes become slower. The twisted waveguide structure has been modeled and computer simulated in 3-D electromagnetic solvers to show the slow-wave properties for the accelerating mode.

  15. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  16. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  17. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2016-07-12

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  18. Charged particle accelerator grating

    DOEpatents

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  19. Non-accelerator experiments

    SciTech Connect

    Goldhaber, M.

    1986-01-01

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay.

  20. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  1. CLASHING BEAM PARTICLE ACCELERATOR

    DOEpatents

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  2. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  3. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  4. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  5. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  6. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  7. Stability of non-linear integrable accelerator

    SciTech Connect

    Batalov, I.; Valishev, A.; /Fermilab

    2011-09-01

    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.

  8. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  9. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  10. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  11. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  12. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  13. Microwave inverse Cerenkov accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.; LaPointe, M. A.; Hirshfield, J. L.

    1997-03-01

    A Microwave Inverse Cerenkov Accelerator (MICA) is currently under construction at the Yale Beam Physics Laboratory. The accelerating structure in MICA consists of an axisymmetric dielectrically lined waveguide. For the injection of 6 MeV microbunches from a 2.856 GHz RF gun, and subsequent acceleration by the TM01 fields, particle simulation studies predict that an acceleration gradient of 6.3 MV/m can be achieved with a traveling-wave power of 15 MW applied to the structure. Synchronous injection into a narrow phase window is shown to allow trapping of all injected particles. The RF fields of the accelerating structure are shown to provide radial focusing, so that longitudinal and transverse emittance growth during acceleration is small, and that no external magnetic fields are required for focusing. For 0.16 nC, 5 psec microbunches, the normalized emittance of the accelerated beam is predicted to be less than 5πmm-mrad. Experiments on sample alumina tubes have been conducted that verify the theoretical dispersion relation for the TM01 mode over a two-to-one range in frequency. No excitation of axisymmetric or non-axisymmetric competing waveguide modes was observed. High power tests showed that tangential electric fields at the inner surface of an uncoated sample of alumina pipe could be sustained up to at least 8.4 MV/m without breakdown. These considerations suggest that a MICA test accelerator can be built to examine these predictions using an available RF power source, 6 MeV RF gun and associated beam line.

  14. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  15. Laser Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    The continuing development of powerful laser systems has permitted to extend the interaction of laser beams with matter far into the relativistic domain, and to demonstrate new approaches for producing energetic particle beams. The extremely large electric fields, with amplitudes exceeding the TV/m level, that are produced in plasma medium are of relevance particle acceleration. Since the value of this longitudinal electric field, 10,000 times larger than those produced in conventional radio-frequency cavities, plasma accelerators appear to be very promising for the development of compact accelerators. The incredible progresses in the understanding of laser plasma interaction physic, allows an excellent control of electron injection and acceleration. Thanks to these recent achievements, laser plasma accelerators deliver today high quality beams of energetic radiation and particles. These beams have a number of interesting properties such as shortness, brightness and spatial quality, and could lend themselves to applications in many fields, including medicine, radio-biology, chemistry, physics and material science,security (material inspection), and of course in accelerator science.

  16. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  17. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  18. Accelerator Technology Program. Status report, April-September 1985

    SciTech Connect

    Jameson, R.A.; Schriber, S.O.

    1986-09-01

    This report presents highlights of major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Radio-frequency and microwave technology are dealt with. The p-bar gravity experiment, accelerator theory and simulation activities, the Proton Storage Ring, and the Fusion Materials Irradiation Test accelerator are discussed. Activities on the proposed LAMPF II accelerator, the BEAR (Beam Experiment Aboard Rocket) project, beam dynamics, the National Bureau of Standards racetrack microtron, and the University of Illinois racetrack microtron are covered. Papers published by AT-Division personnel during this reporting period are listed.

  19. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  20. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  1. Space station dynamics

    NASA Technical Reports Server (NTRS)

    Berka, Reg

    1990-01-01

    Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

  2. Particle Acceleration in Shock-Shock Interaction

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru

    2015-04-01

    Collisionless shock waves play a crucial role in producing high energy particles. One of the most plausible acceleration mechanisms is the first order Fermi acceleration in which non-thermal particles statistically gain energy while scattered by MHD turbulence both upstream and downstream of a shock. Indeed, X-ray emission from energetic particles accelerated at supernova remnant shocks is often observed [e.g., Uchiyama et al., 2007]. Most of the previous studies on shock acceleration assume the presence of a single shock. In space, however, two shocks frequently come close to or even collide with each other. For instance, it is observed that a CME (coronal mass ejection) driven shock collides with the earth's bow shock [Hietala et al., 2011], or interplanetary shocks pass through the heliospheric termination shock [Lu et al., 1999]. Colliding shocks are observed also in high power laser experiments [Morita et al., 2013]. It is expected that shock-shock interactions efficiently produce high energy particles. A previous work using hybrid simulation [Cargill et al., 1986] reports efficient ion acceleration when supercritical two shocks collide. In the hybrid simulation, however, the electron dynamics cannot be resolved so that electron acceleration cannot be discussed in principle. Here, we perform one-dimensional full Particle-in-Cell (PIC) simulations to examine colliding two symmetric oblique shocks and the associated electron acceleration. In particular, the following three points are discussed in detail. 1. Energetic electrons are observed upstream of the two shocks before their collision. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). 2. The reflected electrons excite large amplitude upstream waves. Electron beam cyclotron instability [Hasegawa, 1975] and electron fire hose instability [Li et al., 2000] appear to occur. 3. The large amplitude waves can scatters energetic electrons in

  3. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    PubMed

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  4. Advanced Microgravity Acceleration Measurement Systems Being Developed

    NASA Technical Reports Server (NTRS)

    Sicker, Ronald J.; Kacpura, Thomas J.

    2002-01-01

    The Advanced Microgravity Acceleration Measurement Systems (AMAMS) project at the NASA Glenn Research Center is part of the Instrument Technology Development program to develop advanced sensor systems. The primary focus of the AMAMS project is to develop microelectromechanical (MEMS) acceleration sensor systems to replace existing electromechanical-sensor-based systems presently used to assess relative gravity levels aboard spacecraft. These systems are used in characterizing both vehicle and payload responses to low-gravity vibroacoustic environments. The collection of microgravity acceleration data has cross-disciplinary utility to the microgravity life and physical sciences and the structural dynamics communities. The inherent advantages of semiconductor-based systems are reduced size, mass, and power consumption, while providing enhanced stability.

  5. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    PubMed

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating. PMID:25215682

  6. High-acceleration mass drivers

    NASA Technical Reports Server (NTRS)

    Oneill, G. K.; Kolm, H. H.

    1979-01-01

    High-acceleration mass drivers are discussed including the MD2 model of axial geometry, with individually powered drive coils of 13.1 cm diameter. Timing is derived through the interruption of light beams by the moving armature (bucket). Electric power is provided by the resonant discharge of sector capacitor banks through silicon-controlled rectifiers in a two-phase, quadrature circuit. The bucket flies in vacuum, guided by passive dynamic eddy-current magnetic forces, those currents flowing in strip conductors lining the inside of a nonconducting vacuum pipe. Quantitative measurements are obtained with a solid bucket carrying two superconducting coils with a current density of 25 kA/sq cm. A cryogenic station for cooling the bucket to liquid helium temperature is connected to the vacuum pipe.

  7. FEL-accelerator related diagnostics

    SciTech Connect

    Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

    2007-08-02

    Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

  8. OpenMM accelerated MMTK

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin P.; Constable, Steve; Faruk, Nabil F.; Roy, Pierre-Nicholas

    2015-06-01

    In this work, we provide an interface developed to link the Molecular Modelling toolkit (MMTK) with OpenMM in order to take advantage of the fast evaluation techniques of OpenMM. This interface allows MMTK scripts using the Langevin dynamics integrator, for both classical and path integral simulations, to be executed on a variety of hardware including graphical processing units via OpenMM. The interface has been developed using Python and Cython to take advantage of the high level abstraction thanks to the MMTK and OpenMM software packages. We have tested the interface on a number of systems to observe which systems benefit most from the acceleration libraries of OpenMM.

  9. Electrostatic Plasma Accelerator (EPA)

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.

  10. Acceleration Measurements During Landing in Rough Water of a 1/7-Scale Dynamic Model of Grumman XJR2F-1 Amphibian - Langley Tank Model 212, TED No. NACA 2378

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Zeck, Howard

    1947-01-01

    Tests of a 1/7 size model of the Grumman XJR2F-1 amphibian were made in Langley tank no.1 to examine the landing behavior in rough water and to measure the normal and angular accelerations experienced by the model during these landings. All landings were made normal to the direction of wave advance, a condition assumed to produce the greatest accelerations. Wave heights of 4.4 and 8.0 inches (2.5 and 4.7 ft, full size) were used in the tests and the wave lengths were varied between 10 and 50 feet (70 and 350 ft, full size). Maximum normal accelerations of about 6.5g were obtained in 4.4 inch waves and 8.5g were obtained in 8.0 inch waves. A maximum angular acceleration corresponding to 16 radians per second per second, full size, was obtained in the higher waves. The data indicate that the airplane will experience its greatest accelerations when landing in waves of about 20 feet (140 ft, full size) in length.

  11. Plasma-based accelerator structures

    SciTech Connect

    Schroeder, Carl B.

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  12. Acceleration radioisotope production simulations

    SciTech Connect

    Waters, L.S.; Wilson, W.B.

    1996-12-31

    We have identified 96 radionuclides now being used or under consideration for use in medical applications. Previously, we calculated the production of {sup 99}Mo from enriched and depleted uranium targets at the 800-MeV energy used in the LAMPF accelerator at Los Alamos. We now consider the production of isotopes using lower energy beams, which may become available as a result of new high-intensity spallation target accelerators now being planned. The production of four radionuclides ({sup 7}Be, {sup 67}Cu, {sup 99}Mo, and {sup 195m}Pt) in a simplified proton accelerator target design is being examined. The LAHET, MCNP, and CINDER90 codes were used to model the target, transport a beam of protons and secondary produced particles through the system, and compute the nuclide production from spallation and low-energy neutron interactions. Beam energies of 200 and 400 MeV were used, and several targets were considered for each nuclide.

  13. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  14. Laser acceleration with open waveguides

    SciTech Connect

    Xie, Ming

    1999-03-01

    A unified framework based on solid-state open waveguides is developed to overcome all three major limitations on acceleration distance and hence on the feasibility of two classes of laser acceleration. The three limitations are due to laser diffraction, acceleration phase slippage, and damage of waveguide structure by high power laser. The two classes of laser acceleration are direct-field acceleration and ponderomotive-driven acceleration. Thus the solutions provided here encompass all mainstream approaches for laser acceleration, either in vacuum, gases or plasmas.

  15. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  16. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  17. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  18. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  19. Photocathodes in accelerator applications

    SciTech Connect

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs/sub 3/Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera.

  20. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  1. Particle acceleration from reconnection in the geomagnetic tail

    SciTech Connect

    Birn, J.; Borovsky, J.E.; Thomsen, M.F.; McComas, D.J.; Reeves, G.D.; Belian, R.D.; Hesse, M.; Schindler, K.

    1997-08-01

    Acceleration of charged particles in the near geomagnetic tail, associated with a dynamic magnetic reconnection process, was investigated by a combined effort of data analysis, using Los Alamos data from geosynchronous orbit, MHD modeling of the dynamic evolution of the magnetotail, and test particle tracing in the electric and magnetic fields obtained from the MHD simulation.

  2. Acceleration and localization of matter in a ring trap

    SciTech Connect

    Bludov, Yu. V.; Konotop, V. V.

    2007-05-15

    A toroidal trap combined with external time-dependent electric field can be used for implementing different dynamical regimes of matter waves. In particular, we show that dynamical and stochastic acceleration, localization, and implementation of the Kapitza pendulum can be originated by means of proper choice of the external force.

  3. Advanced concepts for high-gradient acceleration

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The promise of high-gradient accelerator research is a future for physics beyond the 5-TeV energy scale. Looking beyond what can be engineered today, the authors examine basic research directions for colliders of the future, from mm-waves to lasers, and from solid-state to plasmas, with attention to material damage, beam-dynamics, a workable collision scheme, and energetics.

  4. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  5. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  6. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  7. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  8. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  9. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  10. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  11. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  12. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Gu, Qiang

    2011-11-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility. It is also attractive in beam dynamics in maintaining a high quality electron beam, which is an important factor in the performance of a free electron laser. In this paper, a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility. Throughout the comprehensive simulation, we conclude that the C-band structure is much more competitive.

  13. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  14. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and

  15. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  16. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-03-10

    We use two-dimensional and three-dimensional hybrid (kinetic ions-fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfvénic Mach numbers, produces universal power-law spectra ∝p {sup –4}, where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10%-20% of the bulk kinetic energy can be converted to energetic particles and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shock drift acceleration, but they only gain a factor of a few in momentum and their maximum energy does not increase with time. These findings are consistent with the degree of polarization and the morphology of the radio and X-ray synchrotron emission observed, for instance, in the remnant of SN 1006. We also discuss the transition from thermal to non-thermal particles in the ion spectrum (supra-thermal region) and we identify two dynamical signatures peculiar of efficient particle acceleration, namely, the formation of an upstream precursor and the alteration of standard shock jump conditions.

  17. Accelerator research studies

    SciTech Connect

    Not Available

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks.

  18. Accelerators for Cancer Therapy

    DOE R&D Accomplishments Database

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  19. SUPERDIFFUSIVE SHOCK ACCELERATION

    SciTech Connect

    Perri, S.; Zimbardo, G.

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  20. Hardware Accelerated Simulated Radiography

    SciTech Connect

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.