Science.gov

Sample records for accelerated test design

  1. Designing Accelerated Tests Of Electromigration

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.

    1991-01-01

    Method for design of accelerated tests of electromigration (as in microscopic conductors in integrated circuits) based partly on simplified mathematical model of electromigration and partly on error analysis. Objective to determine quickly operating life of tested components under normal operating conditions by extrapolation from lifetime measurements at operating stresses greater than normal. Involves compromise between reducing testing time by increasing stresses and reducing uncertainty in extrapolated lifetime by decreasing stresses.

  2. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  3. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  4. Advanced beamline design for Fermilab's Advanced Superconducting Test Accelerator

    NASA Astrophysics Data System (ADS)

    Prokop, Christopher R.

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  5. Next linear collider test accelerator injector design and status

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.; Wang, J.W.

    1994-08-01

    The Next Linear Collider Test Accelerator (NLCTA) being built at SLAC will integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider, demonstrate multibunch beam-loading energy compensation and suppression of higher-order deflecting modes, measure transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator Injector design and simulation results for the NLCTA injector are discussed.

  6. LeRC rail accelerators - Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1984-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. Previously announced in STAR as N83-35053

  7. Electronic accelerator pedal optimal design of intelligent test system

    NASA Astrophysics Data System (ADS)

    Li, Quailing; Lin, Min; Guo, Bin; Luo, Zai

    2010-12-01

    Developed an intelligent test system for the electronic accelerator pedal, and optimized it. The system uses the three-dimensional motion platform driven by servo motor to realize to control the movement of the electronic accelerator pedal automatically and uses the least squares method to optimize the data for the electronic accelerator pedal which is integrated with linear Hall sensors. Carried on the test experiment to the double electric potential signal output electron accelerator pedal and the results show that the system has excellent dynamic and static performance, and the change of motor parameters and load disturbances has strong robustness. Performance indicators have reached the Euro III emission standard configuration of the electronic accelerator pedal and the new technical requirements.

  8. Optimal design of multiple stress constant accelerated life test plan on non-rectangle test region

    NASA Astrophysics Data System (ADS)

    Chen, Wenhua; Gao, Liang; Liu, Juan; Qian, Ping; Pan, Jun

    2012-11-01

    For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method. The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.

  9. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Repar, J.

    1982-01-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  10. Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator

    SciTech Connect

    Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.

  11. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    SciTech Connect

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; Miller, R.; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  12. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  13. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  14. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  15. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  16. Design and testing of a DC ion injector suitable for accelerator-driven transmutation

    NASA Astrophysics Data System (ADS)

    Schneider, J. David; Meyer, Earl; Stevens, Ralph R.; Hansborough, Lash; Sherman, Joseph

    1995-09-01

    For a number of years, Los Alamos personnel have collaborated with a team of experimentalists at Chalk River Labs (CRL) near Deep River, Ontario, Canada who were pursuing the development of the front end of a high power cw proton accelerator. At the termination of this program last year, Los Alamos acquired this equipment. With the help of internal Laboratory funding and modest defense conversion funds, we have set up and operated the accelerator at Los Alamos. Operational equipment includes a slightly modified Chalk River Injector Test Stand (CRITS) including a 50 keV proton injector and a 1.25 MeV radio-frequency quadrupole (RFQ) with a klystrode rf power system. Substantial upgrading and modification of the ac power system was necessary to provide the required ac voltage (2400 vac) and power (2 MVA) needed for the operation of this equipment. A companion paper describes in detail the first ion source and beam-transport measurements at Los Alamos. Many of the challenges involved in operating an rf linear accelerator to provide neutrons for an accelerator-driven reactor are encountered at the front (low energy) end of this system. The formation of the ion beam, the control of the beam parameters, and the focusing and matching of a highly space-charge-dominated beam are major problems. To address the operating problems in this critical front end, the Accelerator Operations and Technology Division at the Los Alamos National Laboratory has designed the APDF (Accelerator Prototype Demonstration Facility). The front end of this facility is a 75 keV, high-current, ion injector which has been assembled and is now being tested. This paper discusses the design modifications required in going from the 50 keV CRITS injector to the higher current, 75 keV injector. Major innovative changes were made in the design of this injector. This design eliminates all the control electronics and most of the ion source equipment at high potential. Also, a new, high-quality, ion

  17. Methodology to improve design of accelerated life tests in civil engineering projects.

    PubMed

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  18. Methodology to Improve Design of Accelerated Life Tests in Civil Engineering Projects

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods. PMID:25111800

  19. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Kafka, Gene

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  20. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  1. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  2. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    NASA Astrophysics Data System (ADS)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  3. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  4. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  5. Design and high order optimization of the Accelerator Test Facility lattices

    NASA Astrophysics Data System (ADS)

    Marin, E.; Tomás, R.; Bambade, P.; Kubo, K.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G. R.; Woodley, M.

    2014-02-01

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction scheme which is implemented in the final focus systems of future linear colliders such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). The ATF2 nominal and ultralow β* lattices are designed to vertically focus the beam at the focal point, or usually referred to as interaction point (IP), down to 37 and 23 nm, respectively. The vertical chromaticities of the nominal and ultralow β* lattices are comparable to those of ILC and CLIC, respectively. When the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design values. In this paper we describe the analysis of the high order aberrations that allows identifying the sources of the observed beam size growth. In order to recover the design spot sizes three solutions are considered, namely final doublet replacement, octupole insertion, and optics modification. Concerning the future linear collider projects, the consequences of magnetic field errors of the focusing quadrupole magnet of the final doublet are also addressed.

  6. Design and operation of a gas scattering energy spectrometer for the ISIS RFQ accelerator test stand

    NASA Astrophysics Data System (ADS)

    Duke, J. P.; Findlay, D. J. S.; Letchford, A. P.; Murdoch, G. R.; Thomason, J. W. G.

    2005-02-01

    The design and operation of an apparatus to measure the beam energy of a radio frequency quadrupole (RFQ) particle accelerator, based on multiple scattering of H - ions in xenon gas, is described. The purpose of the apparatus is to confirm the mean energy and energy spread of the nominal 665 keV beam of H - ions from the ISIS RFQ. This RFQ, after comprehensive testing, is intended to replace the existing Cockcroft-Walton pre-injector on the ISIS spallation neutron source at the Rutherford Appleton Laboratory (RAL). The basis of the apparatus is a set of two cascaded assemblies each consisting of a gas scattering cell, a drift length and three small apertures, which together reduce the peak intensity of the beam current sufficiently to allow a semiconductor charged particle detector to be used to detect individual H - ions and measure their energies.

  7. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  8. Experimental test accelerator (ETA) II

    SciTech Connect

    Fessenden, T.J.; Atchison, W.L.; Birx, D.L.

    1981-03-06

    The Experimental Test Accelerator (ETA) is designed to produce a 10 kAmp electron beam at an energy of 4.5 MeV in 40 nsec pulses at an average rate of 2 pps. The accelerator also operates in bursts of 5 pulses spaced by as little as one millisec at an average rate of 5 pps. The machine is currently operating near 80% of its design values and has accumulated over 2.5 million pulses - mostly at a rate of one pps. The plasma cathode electron source, the remainder of the accelerator, and the operating characteristics of the machine are discussed.

  9. On the design and testing of solid armatures for rail accelerator applications

    NASA Astrophysics Data System (ADS)

    Karthaus, W.; de Zeeuw, W. A.; Kolkert, W. J.

    1991-01-01

    Two different armature designs for rail accelerator applications have been studied during electromagnetic launch experiments: an aluminum multifinger monobloc and a copper fiber brush armature. The aluminum solid monobloc armatures launched with the 3-m rail accelerator of rather loose tolerance in borewidth do not provide the expected solid-solid electrical sliding contacts. Loss of rigidity, mainly due to thermal loading of the finger tips, results in vigorous arcing, evaporation of the armature, and aluminium deposit on the rails. The copper fiber brush armatures launched with the 1-m rail accelerator with tight tolerance in borewidth provide integer solid-solid, current carrying sliding contacts in the initial phase of the acceleration process, followed by a transition to a hybrid form where plasma layers and the solid armature body constitute the current conducting interfaces. At the transition region, armature resistance increases by two orders of magnitude. A major portion of the electrical energy commutated into the rail accelerator is dissipated by ohmic heating of the rails.

  10. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  11. Experimental design and analysis for accelerated degradation tests with Li-ion cells.

    SciTech Connect

    Doughty, Daniel Harvey; Thomas, Edward Victor; Jungst, Rudolph George; Roth, Emanuel Peter

    2003-08-01

    This document describes a general protocol (involving both experimental and data analytic aspects) that is designed to be a roadmap for rapidly obtaining a useful assessment of the average lifetime (at some specified use conditions) that might be expected from cells of a particular design. The proposed experimental protocol involves a series of accelerated degradation experiments. Through the acquisition of degradation data over time specified by the experimental protocol, an unambiguous assessment of the effects of accelerating factors (e.g., temperature and state of charge) on various measures of the health of a cell (e.g., power fade and capacity fade) will result. In order to assess cell lifetime, it is necessary to develop a model that accurately predicts degradation over a range of the experimental factors. In general, it is difficult to specify an appropriate model form without some preliminary analysis of the data. Nevertheless, assuming that the aging phenomenon relates to a chemical reaction with simple first-order rate kinetics, a data analysis protocol is also provided to construct a useful model that relates performance degradation to the levels of the accelerating factors. This model can then be used to make an accurate assessment of the average cell lifetime. The proposed experimental and data analysis protocols are illustrated with a case study involving the effects of accelerated aging on the power output from Gen-2 cells. For this case study, inadequacies of the simple first-order kinetics model were observed. However, a more complex model allowing for the effects of two concurrent mechanisms provided an accurate representation of the experimental data.

  12. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  13. The design and testing of a dual fiber textile matrix for accelerating surface hemostasis.

    PubMed

    Fischer, Thomas H; Vournakis, John N; Manning, James E; McCurdy, Shane L; Rich, Preston B; Nichols, Timothy C; Scull, Christopher M; McCord, Marian G; Decorta, Joseph A; Johnson, Peter C; Smith, Carr J

    2009-10-01

    The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions.

  14. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  15. Test stands for testing serial XFEL accelerator modules

    NASA Astrophysics Data System (ADS)

    Bozhko, Yury; Anashin, Vadim; Belova, Lyudmila; Boeckmann, Torsten Axel; Kholopov, Michail; Konstantinov, Valeriy; Petersen, Bernd; Pivovarov, Sergey; Pyata, Eugeny; Sellmann, Detlef; Wang, Xilong; Zhirnov, Anatoly; Zolotov, Anatoly

    2012-06-01

    The superconducting accelerator module is the key component of the European X-ray Free Electron Laser (XFEL) project to be built at DESY Hamburg. The XFEL linear accelerator will consist of 100 accelerator modules in order to produce pulsed electron beam with the energy of 17.5 GeV. All accelerator modules have to be tested after the assembly and before being installed in the accelerator tunnel. The tests will take place in the Accelerator Module Test Facility (AMTF) being constructed at DESY. Besides test stands for testing superconducting cavities and magnets constituting the accelerator modules, AMTF will come with three test stands for testing the completed accelerator modules. This paper describes layout of the test stands within the AMTF, cryogenic design of the test stand, design issues of principal components and schedule.

  16. Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade

    NASA Astrophysics Data System (ADS)

    Alesini, D.; Bellaveglia, M.; Biagini, M. E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-11-01

    The energy upgrade of the SPARC_LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  17. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    SciTech Connect

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  18. Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

    NASA Astrophysics Data System (ADS)

    Salas Pereira, Ruben Mario

    2003-06-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the

  19. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY.

    SciTech Connect

    HU,J.P.; CASEY,W.R.; HARDER,D.A.; PJEROV,S.; RAKOWSKY,G.; SKARITKA,J.R.

    2002-09-05

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90{sup o} downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety.

  20. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  1. Accelerated Testing Validation

    SciTech Connect

    Mukundan, Rangachary; James, Greg; Davey, John; Langlois, David; Torraco, Dennis; Yoon, Wonseok; Weber, Adam Z; Borup, Rodney L.

    2011-07-01

    The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles.

  2. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  3. The Brookhaven Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S. ); McDonald, K.T.; Russell, D.P. ); Jiang, Z.Y. (State Univ. of New York, Stony Brook, NY (Un

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO{sub 2} laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs.

  4. ESS Accelerator Cryoplant Process Design

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Arnold, P.; Hees, W.; Hildenbeutel, J.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility being built with extensive international collaboration in Lund, Sweden. The ESS accelerator will deliver protons with 5 MW of power to the target at 2.0 GeV, with a nominal current of 62.5 mA. The superconducting part of the accelerator is about 300 meters long and contains 43 cryomodules. The ESS accelerator cryoplant (ACCP) will provide the cooling for the cryomodules and the cryogenic distribution system that delivers the helium to the cryomodules. The ACCP will cover three cryogenic circuits: Bath cooling for the cavities at 2 K, the thermal shields at around 40 K and the power couplers thermalisation with 4.5 K forced helium cooling. The open competitive bid for the ACCP took place in 2014 with Linde Kryotechnik AG being selected as the vendor. This paper summarizes the progress in the ACCP development and engineering. Current status including final cooling requirements, preliminary process design, system configuration, machine concept and layout, main parameters and features, solution for the acceptance tests, exergy analysis and efficiency is presented.

  5. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  6. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  7. Accelerated Test Methods

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph

    1995-01-01

    Neural network systems were evaluated for use in predicting wear of mechanical systems. Three different neural network software simulation packages were utilized in order to create models of tribological wear tests. Representative simple, medium, and high complexity simulation packages were selected. Pin-on-disk, rub shoe, and four-ball tribological test data was used for training, testing, and verification of the neural network models. Results showed mixed success. The neural networks were able to predict results with some accuracy if the number of input variables was low or the amount of training data was high. Increased neural network complexity resulted in more accurate results, however there was a point of diminishing return. Medium complexity models were the best trade off between accuracy and computing time requirements. A NASA Technical Memorandum and a Society of Tribologists and Lubrication Engineers paper are being published which detail the work.

  8. Electromagnetic modeling in accelerator designs

    SciTech Connect

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described.

  9. A Statistical Perspective on Highly Accelerated Testing.

    SciTech Connect

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning the

  10. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  11. Membrane Degradation Accelerated Stress Test

    SciTech Connect

    Mukundan, Rangachary; Borup, Rodney L.

    2015-01-21

    These are a set of slides that deal with membrane degradation accelerated stress test. Specifically, the following topics are covered: membrane degradation FCTT drive cycle; membrane ASTs; current membrane ASTs damage mechanisms; proposed membrane AST, RH cycling in H2/Air; current proposed AST; 2min/2min AST damage mechanism; 30sec/45sec RH cycling at OCV.

  12. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  13. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  14. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    Potential long-term degradation modes for the two types of modules in the Mead array were determined and judgments were made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes were constructed and were pruned of tests judged to be nonessential. Composites of those trees were developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.

  15. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  16. Injector Design for Advanced Accelerators

    NASA Astrophysics Data System (ADS)

    Henestroza, Enrique; Faltens, A.

    1996-11-01

    Accelerator designs intended to provide acceleration at a much lower cost per Joule than the ILSE or ELISE designs are under study. For these designs, which typically have many beams, an injector of significantly lower cost is needed. A goal, which from our design appears to be achievable, is to reduce the transverse dimension to half that of the 2 MeV, 800 mA ILSE injector(E. Henestroza, ``Injectors for Heavy Ion Fusion", Proc. of the 11th International Wkshp. on Laser Interaction and Related Plasma Phenomena, 1993.) while generating about the same current. A single channel of a lower cost injector includes an 800 kV column, accelerating a 700 mA beam extracted from a potassium source of 4 cm radius by a 120 kV electrode. The beam passes into a superconducting 7 T solenoid of 15 cm aperture and 15 cm length. This high-field solenoid provides the focusing needed for a small beam without increasing the electric field gradient. The injector and its matching section, also designed, fit within a 12 cm radius, which is small enough to allow construction of attractive multi-beam injectors. We will present solutions for the generation and transport of 700 mA potassium beams of up to 1.6 MeV within the same transverse constraint.

  17. Procedure for developing experimental designs for accelerated tests for service-life prediction. [for solar cell modules

    NASA Technical Reports Server (NTRS)

    Thomas, R. E.; Gaines, G. B.

    1978-01-01

    Recommended design procedures to reduce the complete factorial design by retaining information on anticipated important interaction effects, and by generally giving up information on unconditional main effects are discussed. A hypothetical photovoltaic module used in the test design is presented. Judgments were made of the relative importance of various environmental stresses such as UV radiation, abrasion, chemical attack, temperature, mechanical stress, relative humidity and voltage. Consideration is given to a complete factorial design and its graphical representation, elimination of selected test conditions, examination and improvement of an engineering design, and parametric study. The resulting design consists of a mix of conditional main effects and conditional interactions and represents a compromise between engineering and statistical requirements.

  18. Accelerated Leach Test(s) Program: Annual report

    SciTech Connect

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms.

  19. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  20. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  1. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  2. Multilayer insulation for the interconnect region in the Accelerator System String Test: A practical engineering approach for a new scheme of design and installation bridges

    SciTech Connect

    Baritchi, D.; Jalloh, A.

    1993-04-01

    In order to minimize the heat leak in the Accelerator System String Test (ASST) inter-connect region, shield bridges and multilayer insulation (MLI) are provided. A sliding joint between shield bridges on adjacent magnets accommodates the contraction that occurs during cooldown. In the original design of the MLI bridges, thermal contraction was provided for by compressing the MLI. During assembly of the interconnect region, it was realized that there was not enough room for the required compression. This resulted in a redesign of the MLI bridges. The new scheme involves splitting and overlapping the MLI. This scheme has worked very well in subsequent assembly of the interconnect region. In this paper, we are going to present the new design scheme. We will also compare this design with the original design and present its advantages.

  3. Accelerated aging test on LEDs life estimation

    NASA Astrophysics Data System (ADS)

    Dong, Yi; Zhang, Shu-sheng; Du, Jiang-qi

    2011-11-01

    Light-emitting diodes(LEDs) have become very attractive in different application field such as Solid State Lighting, automotive and street lights, due to their long operative lifetime, lower energy consumption etc. This paper mainly introduces the accelerated aging test, we focus our attention on the study of a life model for LEDs by relating the time to failure with the supplying condition. The constant accelerated aging experiments were firstly performed on LED samples. Process the experiment data by exploiting the degradation of LED optical power formula and degradation coefficient. Finally, the average lifetime of the samples under normal conditions was calculated via using numerical analytical method. According to data, analysis the test result and the failure mechanism of LED, provide the technical basis to improve product design and quality assurance.

  4. Testing a combined vibration and acceleration environment.

    SciTech Connect

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  5. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  6. Computing tools for accelerator design

    SciTech Connect

    Parsa, Z.

    1986-06-01

    An algorithm has been developed that calculates and obtains information about nonlinear contributions in accelerators. The comparison of the results obtained from this program ''NONLIN'' and HARMON is discussed and illustrated for the SSC-CDR clustered lattices.

  7. Interactive Design of Accelerators (IDA)

    SciTech Connect

    Barton, M.Q.

    1987-06-30

    IDA is a beam transport line calculation program which runs interactively on an IBM PC computer. It can be used for a large fraction of the usual calculations done for beam transport systems or periods of accelerators or storage rings. Because of the interactive screen editor nature of the data input, this program permits one to rather quickly arrive at general properties of a beam line or an accelerator period.

  8. Physics design for the ATA (Advanced Test Accelerator) tapered wiggler 10. 6. mu. FEL (Free-Electron Laser) amplifier experiment

    SciTech Connect

    Fawley, W.M.

    1985-05-09

    The design and construction of a high-gain, tapered wiggler 10.6 ..mu.. Free Electron Laser (FEL) amplifier to operate with the 50 MeV e-beam is underway. This report discussed the FEL simulation and the physics motivations behind the tapered wiggler design and initial experimental diagnostics.

  9. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  10. Testing general relativity on accelerators

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-11-01

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable - maximal energy of the scattered photons - would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  11. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  12. Particle accelerators test cosmological theory

    SciTech Connect

    Schramm, D.N.; Steigman, G.

    1988-06-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs.

  13. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  14. Designing and Running for High Accelerator Availability

    SciTech Connect

    Willeke,F.

    2009-05-04

    The report provides an overview and examples of high availability design considerations and operational aspects making references to some of the available methods to assess and improve on accelerator reliability.

  15. RF pulse compression in the NLC test accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, T. L.

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by x-band klystrons with RF pulse compression. The design of the linac RF system is based on x-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of RF pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by RF phase modulation, intrapulse variations in the linac beam energy.

  16. Small-scale accelerated pavement testing

    SciTech Connect

    Kim, S.M.; Hugo, F.; Roesset, J.M.

    1998-03-01

    This paper presents the results of a study conducted to explore the use of small-scale models of accelerated pavement testing (APT) devices to evaluate the performance of pavements in conjunction with full-scale tests. The motivation for the study was the availability of a model mobile load simulator (MMLS), which had been built originally to illustrate the operation of the full-scale mobile load simulator (MLS) under design at the time. The scaling requirements will be different depending on whether dynamic (inertia), viscous, or gravity effects are important. One must thus decide which one of these effects controls the behavior to try to reproduce it exactly. In the preliminary tests conducted with the MMLS, emphasis had been placed in reproducing accurately the viscoelastic behavior of the asphalt layer. The possibility of obtaining valid results, even if similitude is not maintained in relation to inertia forces, is explored in this paper. The effects of load frequency or velocity and the effects of layer thicknesses are studied. The total thickness of the model pavement, which must be finite, and its effects on displacements and strains are also considered. It is concluded that even when full similitude is not satisfied it is possible to obtain valid results that can be extrapolated to predict prototype performance if one were interested primarily in the behavior of the asphalt layer. Preliminary analyses should be conducted, however, to guide on the selection of the model dimensions.

  17. The deuteron accelerator preliminary design for BISOL

    NASA Astrophysics Data System (ADS)

    Peng, S. X.; Zhu, F.; Wang, Z.; Gao, Y.; Guo, Z. Y.

    2016-06-01

    BISOL, which was named as Beijing_ISOL before (Cui et al., 2013), is the abbreviation of Beijing Isotope-Separation-On-Line neutron beam facility. It is proposed jointly by Peking University (PKU) and China Institute of Atomic Energy (CIAE) for basic science study and application. It is a double driven facility that can be driven by a reactor or a deuteron accelerator. The deuteron driver accelerator should accelerate the deuteron beam up to 40 MeV with maximum beam current of 10 mA. Proton beams up to 33 MeV and He2+ beams up to 81.2 MeV can also be accelerated in this accelerator. The accelerator can be operated on either CW (continuous waveform) or pulsed mode, and the ion energy can be adjusted in a wide range. The accelerator will also allow independent operation of the RIB (Radioactive Ion Beams) system. It will be mainly charged by PKU group. Details of the deuteron accelerator preliminary design for BISOL will be given in this paper.

  18. The Brookhaven National Laboratory (BNL) Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1990-01-01

    The design of the Brookhaven National Laboratory Accelerator Test Facility is presented including the design goals and computational results. The heart of the system is a radiofrequency electron gun utilizing a photo-excited metal cathode followed by a conventional electron linac. The Nd:YAG laser used to drive the cathode with 6 ps long pulses can be synchronized to a high peak power CO{sub 2} laser in order to study laser acceleration of electrons. Current operational status of the project will be presented along with early beam tests.

  19. ILC Reference Design Report: Accelerator Executive Summary

    SciTech Connect

    Phinney, Nan; /SLAC

    2007-12-14

    a proposal for a 500 GeV center-of-mass linear collider in 2001 [2]. The concurrent (competing) design work on a normal conducting collider (NLC with X-band [3] and GLC with X- or C-Band [4]), has advanced the design concepts for the ILC injectors, Damping Rings (DR) and Beam Delivery System (BDS), as well as addressing overall operations, machine protection and availability issues. The X- and C-band R&D has led to concepts for the RF power source that may eventually produce either cost and/or performance benefits. Finally, the European XFEL [5] to be constructed at DESY, Hamburg, Germany, will make use of the TESLA linac technology, and represents a significant on-going R&D effort which remains of great benefit for the ILC. The current ILC baseline assumes an accelerating gradient of 31.5 MV/m to achieve a centre-of-mass energy of 500 GeV. The high luminosity requires the use of high power and small emittance beams. The choice of 1.3 GHz SCRF is well suited to the requirements, primarily because the very low power loss in the SCRF cavity walls allows the use of long RF pulses, relaxing the requirements on the peak-power generation, and ultimately leading to high wall-plug to beam transfer efficiency. The primary cost drivers are the SCRF Main Linac technology and the Conventional Facilities (including civil engineering). The choice of gradient is a key cost and performance parameter, since it dictates the length of the linacs, while the cavity quality factor (Q{sub 0}) relates to the required cryogenic cooling power. The achievement of 31.5 MV/m as the baseline average operational accelerating gradient--requiring a minimum performance of 35 MV/m during cavity mass-production acceptance testing--represents the primary challenge to the global ILC R&D With the completion of the RDR, the GDE will shortly begin an engineering design study, closely coupled with a prioritized R&D program. The goal is to produce an Engineering Design Report (EDR) demonstrating readiness

  20. The BNL Accelerator Test Facility control system

    SciTech Connect

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

  1. Object-oriented accelerator design with HPF

    SciTech Connect

    Ji Qiang; Ryne, R.D.; Habib, S.

    1998-12-31

    In this paper, object-oriented design is applied to codes for beam dynamics simulations in accelerators using High Performance Fortran (HPF). This results in good maintainability, reusability, and extensibility of software, combined with the ease of parallel programming provided by HPF.

  2. Computing tools for accelerator design calculations

    SciTech Connect

    Fischler, M.; Nash, T.

    1984-01-01

    This note is intended as a brief, summary guide for accelerator designers to the new generation of commercial and special processors that allow great increases in computing cost effectiveness. New thinking is required to take best advantage of these computing opportunities, in particular, when moving from analytical approaches to tracking simulations. In this paper, we outline the relevant considerations.

  3. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  4. Testing of a high current dc ESQ accelerator

    SciTech Connect

    Kwan, J.W.; Ackerman, G.D.; Ackerman, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Soroka, L.; Steele, W.F.; Wells, R.P.

    1991-05-01

    A high current dc electrostatic quadrupole (ESQ) accelerator is being developed for negative-ion-based neutral beam heating and current drive on the next generation tokamak. Beam energy and current will eventually be in the MeV and multiampere range.l This CCVV (constant- current variable-voltage) accelerator uses a series of identical ESQ modules. We have successfully tested a prototype CCVV accelerator up to 200 keV with a 100 mA He{sub +} beam (with space charge equivalence of 140 mA of D{sup {minus}}) for a pulse length of 1 s. Testing was also done with a 42 mA H{sup {minus}} beam (H{sup {minus}} beam current was limited by source performance). There was almost no beam loss in the ESQ accelerator. no emittance growth was found in the beam injected from the preaccelerator into the ESQ accelerator had low aberration. We are presently designing a proof-of- principle one-channel CCVV accelerator that would accelerate 1.0 A of D{sup {minus}} 1.3 MeV energy. 4 refs., 7 figs.

  5. Ground test accelerator control system software

    SciTech Connect

    Burczyk, L.; Dalesio, R.; Dingler, R.; Hill, J.; Howell, J.A.; Kerstiens, D.; King, R.; Kozubal, A.; Little, C.; Martz, V.; Rothrock, R.; Sutton, J.

    1988-01-01

    The GTA control system provides an environment in which the automation of a state-of-the-art accelerator can be developed. It makes use of commercially available computers, workstations, computer networks, industrial I/O equipment, and software. This system has built-in supervisory control (like most accelerator control systems), tools to support continuous control (like the process control industry), and sequential control for automatic startup and fault recovery (like few other accelerator control systems). Several software tools support these levels of control: a real-time operating system (VxWorks) with a real-time kernel (VRTX), a configuration database, a sequencer, and a graphics editor. VxWorks supports multitasking, fast context-switching, and preemptive scheduling. VxWorks/VRTX is a network-based development environment specifically designed to work in partnership with the UNIX operating system. A database provides the interface to the accelerator components. It consists of a run time library and a database configuration and editing tool. A sequencer initiates and controls the operation of all sequence programs (expressed as state programs). A graphics editor gives the user the ability to create color graphic displays showing the state of the machine in either text or graphics form. 11 refs., 2 figs.

  6. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  7. FFAG Designs for Muon Collider Acceleration

    SciTech Connect

    Berg, J. Scott

    2014-01-13

    I estimate FFAG parameters for a muon collider with a 70mm longitudinal emittance. I do not discuss the lower emittance beam for a Higgs factory. I produce some example designs, giving only parameters relevant to estimating cost and performance. The designs would not track well, but the parameters of a good design will be close to those described. I compare these cost estimates to those for a fast-ramping synchrotron and a recirculating linear accelerator. I conclude that FFAGs do not appear to be cost-effective for the large longitudinal emittance in a high-energy muon collider.

  8. Design Concepts for Muon-Based Accelerators

    SciTech Connect

    Ryne, R. D.; Berg, J. S.; Kirk, H. G.; Palmer, R. B.; Stratkis, D.; Alexahin, Y.; Bross, A.; Gollwitzer, K.; Mokhov, N. V.; Neuffer, D.; Palmer, M. A.; Yonehara, K.; Snopok, P.; Bogacz, A.; Roberts, T. J.; Delahaye, J. -P.

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  9. Accelerating Science Driven System Design With RAMP

    SciTech Connect

    Wawrzynek, John

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  10. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  11. Design of the driver linac for the Rare Isotope Accelerator.

    SciTech Connect

    Ostroumov, P. N.; Nolen, J. A.; Shepard, K. W.; Physics

    2006-01-01

    The proposed design of the Rare Isotope Accelerator (RIA) driver linac is a cw, fully superconducting, 1.4 GV linac capable of accelerating uranium ions up to 400 MeV/u and protons to 1 GeV with 400 kW beam power. An extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems of the RIA facility. In particular, record intensities of heavy ion beams have been demonstrated with the ECR ion source VENUS at LBNL, the driver front end systems including two-charge-state Low Energy Beam Transport (LEBT) and RFQ are being tested, and a set of SC accelerating structures to cover velocity range from 0.02c to 0.7c have been developed and prototyped. Newly developed high-performance SC cavities will provide the required voltage for the driver linac using 300 cavities designed for six different geometrical betas.

  12. Facilitating an accelerated experience-based co-design project.

    PubMed

    Tollyfield, Ruth

    This article describes an accelerated experience-based co-design (AEBCD) quality improvement project that was undertaken in an adult critical care setting and the facilitation of that process. In doing so the aim is to encourage other clinical settings to engage with their patients, carers and staff alike and undertake their own quality improvement project. Patient, carer and staff experience and its place in the quality sphere is outlined and the importance of capturing patient, carer and staff feedback established. Experience-based co-design (EBCD) is described along with the recently tested accelerated version of the process. An overview of the project and outline of the organisational tasks and activities undertaken by the facilitator are given. The facilitation of the process and key outcomes are discussed and reflected on. Recommendations for future undertakings of the accelerated process are given and conclusions drawn.

  13. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  14. Laboratory Test of Newton's Second Law for Small Accelerations

    SciTech Connect

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10{sup -14} m/s{sup 2}.

  15. Laboratory test of Newton's second law for small accelerations.

    PubMed

    Gundlach, J H; Schlamminger, S; Spitzer, C D; Choi, K-Y; Woodahl, B A; Coy, J J; Fischbach, E

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2).

  16. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  17. Accelerated test methods for predicting the life of motor materials exposed to refrigerant/lubricant mixtures. Phase 1, Conceptual design: Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.

    1993-08-18

    The federally mandated phase-out of chlorofluorocarbon refrigerants requires screening tests for motor materials compatibility with alternative refrigerant/lubricant mixtures. In the current phase of the program, ARTI is supporting tests of promising candidate refrigeration/lubricant systems in key refrigeration component systems such as bearings and hermetic motor insulation systems to screen for more subtle detrimental effects and allow estimates of motor-compressor life. This report covers: mechanisms of failure of hermetic motor insulation, current methods for estimation of life of hermetic motors, and conceptual design of improved stator simulator device for testing of alternative refrigerant/lubricant mixtures.

  18. RF pulse compression in the NLC test accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, Theodore L.

    1995-07-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test—the Next Linear Collider Test Accelerator (NLCTA)—which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy.

  19. a Geoscience Accelerator Library - Design and Applications

    NASA Astrophysics Data System (ADS)

    Hill, C.; Richardson, A.

    2010-12-01

    Accelerator technologies such as GPUs are potentially powerful tools for geophysical problems, but programming them still involves somewhat idiosyncratic software practices. In our talk, we will describe a geoscience accelerated kernels library (GeAccKL) we have been developing to allow geoscience fluid algorithms to exploit CUDA and OpenCL based platforms. The GeAccKL library is a collection of tools for building, time-stepping, finite-volume based simulators. At its heart the library consists of functions evaluating discrete forms of key equation kernels that are common to many geoscience codes. We implement kernels for equations by making use of templating and simple compiler techniques to accommodate applications that use a range of data structures and discrete stencils. From these kernel templates we can create specific instances of library code suitable for a particular application scenario. For example we can accommodate different grid staggerings for dynamical variables and different indexing and array layout conventions. The design allows kernels to be chained together so that data structures can persist in device memory between kernel calls. In this way multiple timesteps can be evaluated on a GPU accelerator with minimal device memory to host memory transfer. Parallelism across multiple GPUs is supported through either transfers within multi-threaded process shared memory or through messaging between process address spaces. This allows parallel multi-GPU execution within a single system and across GPUs in a cluster. We will illustrate our library in action in three case studies. First we look at the use of the library to accelerate one part of a time-step in an atmospheric model simulation. Secondly we will look at the use of the library to perform all the intensive computations over several time steps in a time-stepping loop for an ocean transport model. Finally we will look at accelerating the computation of upstream routing calculations in a dynamic

  20. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  1. Induction accelerator test module for HIF

    SciTech Connect

    Faltens, A.

    1991-04-01

    An induction linac test module suitable for investigating the drive requirements and the longitudinal coupling impedance of a high-power ion induction linac has been constructed by the Heavy Ion Fusion (HIF) group at LBL. The induction linac heavy ion driver for inertial confinement fusion (ICF) as presently envisioned uses multiple parallel beams which are transported in separate focusing channels but accelerated together in the induction modules. The resulting induction modules consequently have large beam apertures-1--2 meters in diameter- and correspondingly large outside diameters. The module geometry is related to a low-frequency gap capacity'' and high-frequency structural resonances, which are affected by the magnetic core loading and the module pulser impedance. A description of the test module and preliminary results are presented. 3 figs.

  2. Hurricane Isabel gives accelerators a severe test

    SciTech Connect

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  3. Accelerated Strength Testing of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  4. Planck Scale Gravity Test with Accelerators

    NASA Astrophysics Data System (ADS)

    Gharibyan, V.

    2015-01-01

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10-35m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement since the smallest distance accessible in experiment is about 10-19m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10-31m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  5. Testing Planck-scale gravity with accelerators.

    PubMed

    Gharibyan, Vahagn

    2012-10-01

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10(-35)  m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement, since the smallest distance accessible in experiment is about 10(-19)  m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10(-31)  m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  6. Code comparison for accelerator design and analysis

    SciTech Connect

    Parsa, Z.

    1988-01-01

    We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary in these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.

  7. Computer Designed Instruction & Testing.

    ERIC Educational Resources Information Center

    New Mexico State Univ., Las Cruces.

    Research findings on computer designed instruction and testing at the college level are discussed in 13 papers from the first Regional Conference on University Teaching at New Mexico State University. Titles and authors are as follows: "Don't Bother Me with Instructional Design, I'm Busy Programming! Suggestions for More Effective Educational…

  8. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  9. Testing in a combined vibration and acceleration environment.

    SciTech Connect

    Jepsen, Richard Alan; Romero, Edward F.

    2004-10-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  10. TESLA test facility alternate cryostat design

    SciTech Connect

    Nicol, T.H.

    1996-12-31

    Collaborators on the design of a Tevatron Superconducting Linear Accelerator (TESLA) are working toward construction of a test cell consisting of four full length cryostats, 12 meters long, each consisting of eight, 9-cell superconducting RF cavities. The purpose of this facility is to test all aspects of the accelerator system design; vacuum, cryogenics, RF, and electron source, prior to initiating construction of the full linac. The design for these cryostats pose many interesting challenges to cryostat designers. The systems must be capable of supporting all eight cavity structures within tight alignment tolerances, impose very low thermal heat loads on the 1.8K cryogenic system, provide strength and stiffness to resist structural loads during fabrication, shipping, and installation, and be manufactured at low cost. Several design options are being explored, each of which attempt to address requirements imposed by the reference design guidelines. This paper describes the design and analysis of one design alternative.

  11. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  12. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  13. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  14. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  15. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Accelerated weathering test. 160.072-5 Section 160.072-5... weathering test. (a) Condition the flag, folded to 1/16th its size or as packaged, whichever is smaller, by... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning,...

  16. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  17. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  18. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect

    Patterson, Timothy; Motupally, Sathya

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  19. Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint

    SciTech Connect

    Pesaran, A.; Heon, G. H.; Smith, K.

    2011-01-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  20. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  1. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    SciTech Connect

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  2. Accelerating Corrosion in Solar-Cell Tests

    NASA Technical Reports Server (NTRS)

    Shalaby, H. M.

    1986-01-01

    In simple electrochemical cell, two silicon solar cells serve as anode and cathode, respectively. Electrolytic medium and voltage between them accelerate corrosion and migration interactions between cell metal contacts and plastic encapsulant. Degradation of metal contacts becomes evident in few hours. Although developed specifically for cells with Ti/Pd/Ag contacts, technique readily adapted to other metal combinations.

  3. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  4. Using Accelerated Testing To Predict Module Reliability: Preprint

    SciTech Connect

    Wohlgemuth, J. H.; Kurtz, S.

    2011-07-01

    Long-term reliability is critical to the cost effectiveness and commercial success of photovoltaic (PV) products. Today most PV modules are warranted for 25 years, but there is no accepted test protocol to validate a 25-year lifetime. The qualification tests do an excellent job of identifying design, materials, and process flaws that are likely to lead to premature failure (infant mortality), but they are not designed to test for wear-out mechanisms that limit lifetime. This paper presents a method for evaluating the ability of a new PV module technology to survive long-term exposure to specific stresses. The authors propose the use of baseline technologies with proven long-term field performance as controls in the accelerated stress tests. The performance of new-technology modules can then be evaluated versus that of proven-technology modules. If the new-technology demonstrates equivalent or superior performance to the proven one, there is a high likelihood that they will survive versus the tested stress in the real world.

  5. Testing general relativity with laser accelerated electron beams

    SciTech Connect

    Gergely, L. A.; Harko, T.

    2012-07-09

    Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

  6. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  7. Cold test results of a side-coupled standing-wave electron-accelerating structure

    NASA Astrophysics Data System (ADS)

    Song, Ki Baek; Li, Yonggui; Lee, Sanghyun; Lee, Byeong-No; Park, Hyung Dal; Cha, Sung-Su; Lee, Byung Cheol

    2013-07-01

    The radio-frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) is designed for a cargo inspection system (CIS) at the Korea Atomic Energy Research Institute (KAERI). The cold test results of the electron accelerator structure, which has a side-coupled standing-wave interlaced-pulse dual-energy mode, are described. The design concept, basic structure, microwave-tuning method, and cold-test procedure are described as well. The measured dispersion curve, spectrum characteristics, ρ-f relation of the power coupler, and axial field distribution of the accelerating gradient are provided.

  8. Beam Test of Multi-Bunch Energy Compensation System in the Accelerator Test Facility at KEK

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Shigeru; Hayano, Hitoshi; Kubo, Kiyoshi; Korhonen, Timo; Nakamura, Shogo; Naito, Takashi; Oide, Katsunobu; Takeda, Seishi; Terunuma, Nobuhiro; Urakawa, Junji

    2004-08-01

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the Δ F method with the 2856± 4.327 MHz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam that consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0× 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ± 0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856± 4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using Δ F ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper.

  9. Computing requirements for S. S. C. accelerator design and studies

    SciTech Connect

    Dragt, A.; Talman, R.; Siemann, R.; Dell, G.F.; Leemann, B.; Leemann, C.; Nauenberg, U.; Peggs, S.; Douglas, D.

    1984-01-01

    We estimate the computational hardware resources that will be required for accelerator physics studies during the design of the Superconducting SuperCollider. It is found that both Class IV and Class VI facilities (1) will be necessary. We describe a user environment for these facilities that is desirable within the context of accelerator studies. An acquisition scenario for these facilities is presented.

  10. NWSC nickel cadmium spacecraft cell accelerated life test program data analysis

    NASA Technical Reports Server (NTRS)

    Lander, J.

    1980-01-01

    An analysis of the data leading to a proposed accelerated life test scheme to test a nickel cadmium cell under spacecraft usage conditions is described. The amount and concentration of electrolyte and the amount of precharge in the cell are discussed in relation to the design of the cell and the accelerated test design. A failure analysis of the cell is summarized. The analysis included such environmental test variables as the depth of discharge, the temperature, the amount of recharge and the charge and discharge rate.

  11. Accelerator magnet designs using superconducting magnetic shields

    SciTech Connect

    Brown, B.C.

    1990-10-01

    Superconducting dipoles and quadrupoles for existing accelerators have a coil surrounded by an iron shield. The shield limits the fringe field of the magnet while having minimal effect on the field shape and providing a small enhancement of the field strength. Shields using superconducting materials can be thinner and lighter and will not experience the potential of a large de-centering force. Boundary conditions for these materials, material properties, mechanical force considerations, cryostat considerations and some possible geometrical configurations for superconducting shields will be described. 7 refs., 3 figs., 3 tabs.

  12. Accelerator Tests of the KLEM Prototypes

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.

    2003-01-01

    The Kinematic Lightweight Energy Meter (KLEM) device is planned for direct measurement of the elemental energy spectra of high-energy (10(exp 11)-10(exp 16) eV) cosmic rays. The first KLEM prototype has been tested at CERN with 180 GeV pion beam in 2001. A modified KLEM prototype will be tested in proton and heavy ion beams to give more experimental data on energy resolution and charge resolution with KLEM method. The first test results are presented and compared with simulations.

  13. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  14. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  15. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  16. Unified formulation for linear accelerator design

    SciTech Connect

    Farkas, Z.D.

    1986-05-01

    Expressions for peak and average powers required to produce a given average gradient in an accelerator section are given. They are valid for both lossy and lossless (superconducting) sections, for both traveling wave and standing wave sections, and for pulsed or continuous wave rf input. The expressions are given in terms of structure parameters that are equally applicable to traveling wave or standing wave. These parameters delineate the effect of wall losses and energy required to build up the field. For both traveling wave and standing wave sections it is possible to make the rf pulse length short enough to make the wall losses negligible at the expense of increased peak power requirement. Therefore the expressions will include the effects of pulse compression. 6 refs., 7 figs.

  17. A Components Database Design and Implementation for Accelerators and Detectors

    SciTech Connect

    Chan, A.; Meyer, S.; /SLAC

    2011-08-31

    Many accelerator and detector systems being fabricated for the PEP-II Accelerator and BABAR Detector needed configuration control and calibration measurements tracked for their components. Instead of building a database for each distinct system, a Components Database was designed and implemented that can encompass any type of component and any type of measurement. In this paper we describe this database design that is especially suited for the engineering and fabrication processes of the accelerator and detector environments where there are thousands of unique component types. We give examples of information stored in the Components Database, which includes accelerator configuration, calibration measurements, fabrication history, design specifications, inventory, etc. The World Wide Web interface is used to access the data, and templates are available for international collaborations to collect data off-line.

  18. Experimental test accelerator: description and results of initial experiments

    SciTech Connect

    Fessenden, T.; Birx, D.; Briggs, R.

    1980-06-02

    The ETA is a high current (10,000 Amp) linear induction accelerator that produces short (30 ns) pulses of electrons at 5 MeV twice per second or in bursts of 5 pulses separated by as little as one millisecond. At this time the machine has operated at 65% of its design current and 90% of the design voltage. This report contains a description of the accelerator and its diagnostics; the results of the initial year of operation; a comparison of design codes with experiments on beam transport; and a discussion of some of the special problems and their status.

  19. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  20. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  1. Users' guide for the Accelerated Leach Test Computer Program

    SciTech Connect

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.; Franz, Eena-Mai; Colombo, P.

    1990-11-01

    This report is a step-by-step guide for the Accelerated Leach Test (ALT) Computer Program developed to accompany a new leach test for solidified waste forms. The program is designed to be used as a tool for performing the calculations necessary to analyze leach test data, a modeling program to determine if diffusion is the operating leaching mechanism (and, if not, to indicate other possible mechanisms), and a means to make extrapolations using the diffusion models. The ALT program contains four mathematical models that can be used to represent the data. The leaching mechanisms described by these models are: (1) diffusion through a semi-infinite medium (for low fractional releases), (2) diffusion through a finite cylinder (for high fractional releases), (3) diffusion plus partitioning of the source term, (4) solubility limited leaching. Results are presented as a graph containing the experimental data and the best-fit model curve. Results can also be output as LOTUS 1-2-3 files. 2 refs.

  2. The IFMIF-EVEDA accelerator beam dump design

    NASA Astrophysics Data System (ADS)

    Iglesias, D.; Arranz, F.; Arroyo, J. M.; Barrera, G.; Brañas, B.; Casal, N.; García, M.; López, D.; Martínez, J. I.; Mayoral, A.; Ogando, F.; Parro, M.; Oliver, C.; Rapisarda, D.; Sanz, J.; Sauvan, P.; Ibarra, A.

    2011-10-01

    The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the 40 MeV accelerator design for IFMIF. A beam dump designed for maximum power of 1.12 MW will be used to stop the beam at the accelerator exit. The conceptual design for the IFMIF-EVEDA accelerator beam dump is based on a conical beam stop made of OFE copper. The cooling system uses an axial high velocity flow of water pressurized up to 3.4 × 10 5 Pa to avoid boiling. The design has been shown to be compliant with ASME mechanical design rules under nominal full power conditions. A sensitivity analysis has been performed to take into account the possible margin on the beam properties at the beam dump entrance. This analysis together with the study of the maintenance issues and the mounting and dismounting operations has led to the complete design definition.

  3. Test Design and Speededness

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2011-01-01

    A critical component of test speededness is the distribution of the test taker's total time on the test. A simple set of constraints on the item parameters in the lognormal model for response times is derived that can be used to control the distribution when assembling a new test form. As the constraints are linear in the item parameters, they can…

  4. Evaluation of an Accelerated ELDRS Test Using Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Pease, Ronald L.; Adell, Philippe C.; Rax, Bernard; McClure, Steven; Barnaby, Hugh J.; Kruckmeyer, Kirby; Triggs, B.

    2011-01-01

    An accelerated total ionizing dose (TID) hardness assurance test for enhanced low dose rate sensitive (ELDRS) bipolar linear circuits, using high dose rate tests on parts that have been exposed to molecular hydrogen, has been proposed and demonstrated on several ELDRS part types. In this study several radiation-hardened "ELDRS-free" part types have been tested using this same approach to see if the test is overly conservative.

  5. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  6. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  7. Optics modules for circular accelerator design

    SciTech Connect

    Brown, K.L.; Servranckx, R.V.

    1986-05-01

    The first-order differential equations of motion for a single particle in a closed circular machine are solved, introducing the concepts of phase shift, beta functions, and the Courant-Snyder invariant. The transfer matrix between two points in the machine is derived as a function of the phase shift and the parameters contained in the Courant-Snyder invariant. Typical optical modules used in circular machine designs are introduced and related to their characteristic transfer matrix elements, the phase shift through them, and the Courant-Snyder-Twiss parameters. The systematics of some elementary phase ellipse matching problems between optical modules are discussed. Second-order optical modules are discussed, including how they are used to provide the momentum bandwidth needed for the design of a typical circular machine. (LEW)

  8. A Bridge for Accelerating Materials by Design

    SciTech Connect

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges. In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.

  9. A Bridge for Accelerating Materials by Design

    DOE PAGES

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges.more » In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.« less

  10. High-Power Testing of 11.424-GHz Dielectric-Loaded Accelerating Structures

    NASA Astrophysics Data System (ADS)

    Gold, Steven; Gai, Wei

    2001-10-01

    Argonne National Laboratory has previously described the design, construction, and bench testing of an X-band traveling-wave accelerating structure loaded with a permittivity=20 dielectric (P. Zou et al., Rev. Sci. Instrum. 71, 2301, 2000.). We describe a new program to build a test accelerator using this structure. The accelerator will be powered by the high-power 11.424-GHz radiation from the magnicon facility at the Naval Research Laboratory ( O.A. Nezhevenko et al., Proc. PAC 2001, in press). The magnicon is expected to provide up to 30 MW from each of two WR-90 output waveguide arms in pulses of up to 1 microsecond duration, permitting tests up to a gradient of 40 MV/m. Still higher power pulses (100-500 MW) may be available at the output of an active pulse compressor driven by the magnicon ( A.L. Vikharev et al., Proc. 9th Workshop on Advanced Accelerator Concepts.).

  11. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  12. Degradation mechanisms and accelerated testing in PEM fuel cells

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  13. Using Approximations to Accelerate Engineering Design Optimization

    NASA Technical Reports Server (NTRS)

    Torczon, Virginia; Trosset, Michael W.

    1998-01-01

    Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic approximations as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current approximation to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the approximation. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.

  14. SCALED SIMULATION DESIGN OF HIGH QUALITY LASER WAKEFIELD ACCELERATOR STAGES

    SciTech Connect

    Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Nieter, C.; Paul, K.; Cary, J.R.

    2009-05-04

    Design of efficient, high gradient laser driven wakefield accelerator (LWFA) stages using explicit particle-incell simulations with physical parameters scaled by plasma density is presented. LWFAs produce few percent energy spread electron bunches at 0.1-1 GeV with high accelerating gradients. Design tools are now required to predict and improve performance and efficiency of future LWFA stages. Scaling physical parameters extends the reach of explicit simulations to address applications including 10 GeV stages and stages for radiation sources, and accurately resolves deep laser depletion to evaluate efficient stages.

  15. Physics design of an accelerator for an accelerator-driven subcritical system

    NASA Astrophysics Data System (ADS)

    Li, Zhihui; Cheng, Peng; Geng, Huiping; Guo, Zhen; He, Yuan; Meng, Cai; Ouyang, Huafu; Pei, Shilun; Sun, Biao; Sun, Jilei; Tang, Jingyu; Yan, Fang; Yang, Yao; Zhang, Chuang; Yang, Zheng

    2013-08-01

    An accelerator-driven subcritical system (ADS) program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs) which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  16. Accelerating Dielectrics Design Using Thinking Machines

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  17. Dust accelerator tests of the LDEX laboratory model

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Hofmann, B.; Horanyi, M.; Sternovsky, Z.; Srama, R.

    2015-10-01

    The LDEX (Lunar Dust EXperiment) sensor onboard lunar orbiter LADEE (Lunar Atmosphere and Dust Environment Explorer) was designed to characterize the size and spatial distributions of micron and sub-micron sized dust grains. Recent results of the data analysis showed strong evidence for the existence of a dust cloud around the moon. LDEX performs in situ measurements of dust impacts along the LADEE or-bit. The impact speed of the observed dust grains is close to 1.7 km/s (the speed of the spacecraft), since the dust grains are considered on bound orbits close to the maximum height of their ballistic motion. LDEX is an impact ionization dust detector for in situ measurements. The detection of a dust grains is based on measuring the charge generated by high speed impacts (>1km/s) on a rhodium coated target. The impact charge Q is a function of both the speed v and the mass m of the impacting dust particle. The characteristic values are dependent on the instrument geometry, the impact surface properties (material), the impact geometry (impact angle) and the particle properties (material, density, speed, mass, shape). In our tests we used PPy-coated olivine and PPy-coated ortho-pyroxene with impact speeds around 1.7 km/s. A LDEX laboratory model was designed and manufactured by the University of Stuttgart. The model is used to support calibration activities of the Univ. of Colorado and to perform special tests (impact angle and impact location variations) at the dust accelerator facility at MPI-K (Heidelberg) which is operated by the IRS of the University of Stuttgart.

  18. The BNL Accelerator Test Facility and experimental program

    SciTech Connect

    Ben-Zvi, I. |

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  19. The BNL Accelerator Test Facility and experimental program

    SciTech Connect

    Ben-Zvi, I. State Univ. of New York, Stony Brook, NY . Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  20. Operational and design aspects of accelerators for medical applications

    NASA Astrophysics Data System (ADS)

    Schippers, Jacobus Maarten; Seidel, Mike

    2015-03-01

    Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.

  1. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  2. rf breakdown tests of mm-wave metallic accelerating structures

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; Clarke, Christine; Hogan, Mark; McCormick, Doug; Novokhatski, Alexander; Spataro, Bruno; Weathersby, Stephen; Tantawi, Sami G.

    2016-01-01

    We are exploring the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wave structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV /m with a peak surface electric field of 1.5 GV /m and a pulse length of about 2.4 ns.

  3. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    SciTech Connect

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  4. Design of a Plasma Injector for a Pulsed Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Cassibry, J. T.; Thio, Y. C. F.; Markusic, T. E.; Sommers, J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    In recent years, a pulsed plasma accelerator has been proposed as a candidate stand-off driver for the formation of an imploding liner in magnetized target fusion. For a near-term physics exploratory experiment to study the feasibility of this standoff approach, a plasma accelerator has been proposed that requires the controlled introduction and preparation of the initial plasma for acceleration. This includes uniform injection of the propellant downstream of the breech with a high degree of ionization. The design of a plasma feed is presented, which injects a high conductivity, highly collisional propellant transverse to the conductor. The plasma injector is designed to establish an initial plasma with a moderate Hall parameter at the trailing edge of the plasma slug, high Hall parameter behind the slug for magnetic insulation, and a short diffusion length in comparison with characteristic dimensions of the plasma slug to avoid propellant loss at the trailing edge.

  5. Superconducting accelerator magnets: A review of their design and training

    SciTech Connect

    Palmer, R.B. |

    1992-08-01

    This paper reviews the basic mechanical designs of most of the superconducting magnets developed for high energy hadron accelerators. The training performance of these magnets is compared with an instability factor defined by the square of the current density in the stabilizing copper divided by the surface-to-volume ratio of the strands. A good correlation is observed.

  6. Development of an accelerated leach test(s) for low-level waste forms

    SciTech Connect

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected. 10 refs., 5 figs.

  7. TRACY: A tool for accelerator design and analysis

    SciTech Connect

    Nishimura, Hiroshi

    1988-06-01

    A simulation code TRACY has been developed for accelerator design and analysis. The code can be used for lattice design work simulation of magnet misalignments, closed orbit calculations and corrections, undulator calculations and particle tracking. TRACY has been used extensively for single particle simulations for the Advanced Light Source (ALS), a 1-2 GeV Synchrotron Radiation Source now under construction at Lawrence Berkeley Laboratory. 9 refs., 2 figs.

  8. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  9. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    SciTech Connect

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-19

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 Multiplication-Sign 300 mm{sup 2}. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  10. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  11. Considerations for design parameters for a dedicated medical accelerator

    SciTech Connect

    Alonso, J.R.

    1980-10-01

    There are only a very few critical parameters which determine the size, performance and cost of a heavy ion accelerator. These are the mass of the heaviest ion desired, the maximum range of this heaviest ion in tissue, and the highest intensity desired. Other parameters, such as beam emittance, beam delivery flexibility, reliability and experimental facility configurations are important, but are not primary driving factors in the design effort. The various clinical applications for a heavy ion accelerator are evaluated, detailing the most desirable beams for each application.

  12. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    SciTech Connect

    Ostroumov, Peter N.; Asseev, Vladislav N.; Mustapha, and Brahim

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modern ion linear accelerators and beam transport systems.

  13. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  14. Design and Fabrication of Racetrack Coil Accelerator Magnets

    SciTech Connect

    Chow, K.; Dietderich, D.R.; Gourlay, S.A.; Gupta, R.; Harnden, W.; Lietzke, A.; McInturff, A.D.; Millos, G.; Morrison, L.; Morrison, M.; Scanlan, R.M.

    1998-11-11

    Most accelerator magnets for applications in the field range up to 9 T utilize NbTi superconductor and a cosine theta coil design. For fields above 9 T, it is necessary to use Nb{sub 3}Sn or other strain sensitive materials, and other coil geometries that are more compatible with these materials must be considered. This paper describes their recent efforts to design a series of racetrack coil magnets that will provide experimental verification of this alternative magnet design for a dual aperture dipole magnet with the goal of reaching a field level of 15 T, will be described. The experimental program, which consists of a series of steps leading to a high field accelerator quality magnet, will be presented. Fabrication of a racetrack dipole magnet utilizing Nb{sub 3}Sn superconductor and a wind and react approach will be presented.

  15. A preliminary design of the collinear dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zholents, A.; Gai, W.; Doran, S.; Lindberg, R.; Power, J. G.; Strelnikov, N.; Sun, Y.; Trakhtenberg, E.; Vasserman, I.; Jing, C.; Kanareykin, A.; Li, Y.; Gao, Q.; Shchegolkov, D. Y.; Simakov, E. I.

    2016-09-01

    A preliminary design of the multi-meter long collinear dielectric wakefield accelerator that achieves a highly efficient transfer of the drive bunch energy to the wakefields and to the witness bunch is considered. It is made from ~0.5 m long accelerator modules containing a vacuum chamber with dielectric-lined walls, a quadrupole wiggler, an rf coupler, and BPM assembly. The single bunch breakup instability is a major limiting factor for accelerator efficiency, and the BNS damping is applied to obtain the stable multi-meter long propagation of a drive bunch. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined.

  16. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  17. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  18. Reproduction of natural corrosion by accelerated laboratory testing methods

    SciTech Connect

    Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

    1996-05-01

    Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

  19. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    PubMed

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. PMID:27522919

  20. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  1. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  2. Design and testing of high-pressure railguns and projectiles

    SciTech Connect

    Peterson, D.R.; Fowler, C.M.; Cummings, C.E.; Kerrisk, J.F.; Parker, J.V.; Marsh, S.P.; Adams, D.F.

    1983-01-01

    The results of high-pressure tests of four railgun designs and four projectile types are presented. All tests were conducted at the Los Alamos explosive magnetic-flux compression facility in Ancho Canyon. The data suggest that the high-strength projectiles have lower resistance to acceleration than the low-strength projectiles, which expand against the bore during acceleration. The railguns were powered by explosive magnetic-flux compression generators. Calculations to predict railgun and power supply performance were performed.

  3. Beam dynamics design for uranium drift tube linear accelerator

    NASA Astrophysics Data System (ADS)

    Dou, Wei-Ping; He, Yuan; Lu, Yuan-Rong

    2014-07-01

    KONUS beam dynamics design of uranium DTL with LORASR code is presented. The 238U34+ beam, whose current is 5.0 emA, is accelerated from injection energy of 0.35 MeV/u to output energy of 1.30 MeV/u by IH-DTL operated at 81.25 MHz in HIAF project at IMP of CAS. It achieves a transmission efficiency of 94.95% with a cavity length of 267.8 cm. The optimization aims are the reduction of emittance growth, beam loss and project costs. Because of the requirements of CW mode operation, the designed average acceleration gradient is about 2.48 MV/m. The maximum axial field is 10.2 MV/m, meanwhile the Kilpatrick breakdown field is 10.56 MV/m at 81.25 MHz.

  4. Rare Isotope Accelerator - Conceptual Design of Target Areas

    SciTech Connect

    Bollen, Georg; Baek, Inseok; Blideanu, Valentin; Lawton, Don; Mantica, Paul F.; Morrissey, David J.; Ronningen, Reginald M.; Sherrill, Bradley S.; Zeller, Albert; Beene, James R; Burgess, Tom; Carter, Kenneth; Carrol, Adam; Conner, David; Gabriel, Tony A; Mansur, Louis K; Remec, Igor; Rennich, Mark J; Stracener, Daniel W; Wendel, Mark W; Ahle, Larry; Boles, Jason; Reyes, Susana; Stein, Werner; Heilbronn, Lawrence

    2006-01-01

    The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA s driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas.

  5. Test Sequence for Superconducting XFEL Cavities in the Accelerator Module Test Facility (AMTF) at DESY

    NASA Astrophysics Data System (ADS)

    Schaffran, J.; Petersen, B.; Reschke, D.; Swierblewski, J.

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2016 onwards, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules with 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF) at DESY. This paper gives an overview of the test sequences for the superconducting cavities, applied in the preparation area and at the two cryostats (XATC) of the AMTF-hall, and describes the complete area. In addition it summarizes the tests and lessons learnt until the middle of 2014.

  6. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    NASA Astrophysics Data System (ADS)

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  7. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2016-07-12

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  8. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  9. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  10. Database requirements for the Advanced Test Accelerator project

    SciTech Connect

    Chambers, F.W.

    1984-11-05

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures.

  11. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  12. Acceleration of degradation by highly accelerated stress test and air-included highly accelerated stress test in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Tanahashi, Tadanori; Doi, Takuya; Masuda, Atsushi

    2016-02-01

    We examined the effects of hyper-hygrothermal stresses with or without air on the degradation of crystalline silicon (c-Si) photovoltaic (PV) modules, to shorten the required duration of a conventional hygrothermal-stress test [i.e., the “damp heat (DH) stress test”, which is conducted at 85 °C/85% relative humidity for 1,000 h]. Interestingly, the encapsulant within a PV module becomes discolored under the air-included hygrothermal conditions achieved using DH stress test equipment and an air-included highly accelerated stress test (air-HAST) apparatus, but not under the air-excluded hygrothermal conditions realized using a highly accelerated stress test (HAST) machine. In contrast, the reduction in the output power of the PV module is accelerated irrespective of air inclusion in hyper-hygrothermal test atmosphere. From these findings, we conclude that the required duration of the DH stress test will at least be significantly shortened using air-HAST, but not HAST.

  13. Accelerator shield design of KIPT neutron source facility

    SciTech Connect

    Zhong, Z.; Gohar, Y.

    2013-07-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  14. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained. PMID:21361622

  15. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  16. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-01-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided. PMID:26927478

  17. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  18. A polymer dataset for accelerated property prediction and design

    PubMed Central

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-01-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided. PMID:26927478

  19. Shielding design of the linear accelerator at RAON: Accelerator tunnel and utility gallery

    NASA Astrophysics Data System (ADS)

    Kim, Suna; Kang, Bo Sun; Lee, Sangjin; Nam, Shinwoo; Chung, Yeonsei

    2015-10-01

    RAON is the first Korean heavy-ion accelerator for various rare-isotope experiments and will be constructed by the year of 2021. The building for the about 550-m-long superconducting linear accelerator at RAON has three divisions in the vertical layout: accelerator tunnel, intermediate tunnel, and utility gallery. One of the requirements for the building design is that the effective dose rate in the utility gallery should be well below the dose limit for workers. Other parts of the building underground are classified as high-radiation zones where access is strictly controlled. The radiation dose distribution in the building has been calculated by using the Monte Carlo transport code MCNPX including the radiation streaming effects through the intermediate tunnel and penetrating holes. We have applied a point beam loss model in which the continuous beam loss along the beam line is treated as an equivalent point loss with a simple target. We describe the details of the calculation and discuss the results.

  20. The Advanced Photon Source (APS) Linear Accelerator: design and performance

    SciTech Connect

    White, M.M.

    1996-06-01

    The Advanced Photon Source linear accelerator (linac) system consists of a 200-MeV, 2856-MHz S-band electron linac and a 2-radiation-length- thick tungsten target followed by a 450-MeV positron linac. The linac system has operated 24 hours per day for the past two years to support accelerator commissioning and beam studies, and to provide beam for the experimental program. It achieves the design goal for positron current of 8 mA, and produces electron energies up to 650 MeV without the target in place. The linac is described, and its operation and performance are discussed. 9 refs., 3 figs., 1 tab.

  1. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  2. Design of a Ram Accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Ram Accelerator, a chemically propelled, impulsive mass launch system, is presented as a viable concept for directly launching acceleration-insensitive payloads into low Earth orbit. The principles of propulsion are based on those of an airbreathing supersonic ramjet. The payload vehicle acts as the ramjet centerbody and travels through a fixed launch tube that acts as the ramjet outer cowling. The launch tube is filled with premixed gaseous fuel and oxidizer mixtures that combust at the base of the vehicle and produce thrust. Two modes of in-tube propulsion involving ramjet cycles are used in sequence to accelerate the vehicle from 0.7 km/sec to 9 km/sec. Requirements for placing a 2000 kg vehicle into a 500-km circular orbit, with a minimum amount of onboard rocket propellant for orbital maneuvers, are examined. It is shown that in-tube propulsion requirements dictate a launch tube length of 5.1 km to achieve an exit velocity of 9 km/sec, with peak accelerations not to exceed 1000 g's. Aerodynamic heating due to atmospheric transit requires minimal ablative protection and the vehicle retains a large percentage of its exit velocity. An indirect orbital insertion maneuver with aerobraking and two apogee burns is examined to minimize the required onboard propellant mass. An appropriate onboard propulsion system design to perform the required orbital maneuvers with minimum mass requirements is also determined. The structural designs of both the launch tube and the payload vehicle are examined using simple structural and finite element analysis for various materials.

  3. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  4. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    SciTech Connect

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk; Valishev, A.

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  5. Testing and commissioning of the HI-13 tandem accelerator

    NASA Astrophysics Data System (ADS)

    Qin, Jiuchang; Yu, Juexian; Yang, Suichun; Du, Xueren; Liu, Zhengying; Wang, Haipeng; Chen, Wenkui; Hu, Yaoming; Zhang, Guilian; Yang, Bingfan; Yu, Yunfeng; Guan, Xialing; Ning, Shulan; Yang, Weimin; Ge, Jiyun; Bi, Decai; Zheng, Zhanyi

    1988-05-01

    In this paper we report the results of the commissioning and the acceptance tests of the HI-13 tandem accelerator in IAE. We have achieved up to now a terminal voltage of 13.4 MV, a proton beam current of 10 μA at 7.5 MV, and we have had a pulsed proton beam on target with a pulse width of 1 ns and a peak current of 1.05 mA at a terminal voltage of 13 MV.

  6. Metal and elastomer seal tests for accelerator applications

    SciTech Connect

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs.

  7. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; Ng, Cho -Kuen; Qi, Minghao H.; England, Robert J.

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  8. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices.

  9. Shielding design for a laser-accelerated proton therapy system.

    PubMed

    Fan, J; Luo, W; Fourkal, E; Lin, T; Li, J; Veltchev, I; Ma, C-M

    2007-07-01

    In this paper, we present the shielding analysis to determine the necessary neutron and photon shielding for a laser-accelerated proton therapy system. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. A special particle selection and collimation device is needed to generate desired proton beams for energy- and intensity-modulated proton therapy. A great number of unwanted protons and even more electrons as a side-product of laser acceleration have to be stopped by collimation devices and shielding walls, posing a challenge in radiation shielding. Parameters of primary particles resulting from the laser-target interaction have been investigated by particle-in-cell simulations, which predicted energy spectra with 300 MeV maximum energy for protons and 270 MeV for electrons at a laser intensity of 2 x 10(21) W cm(-2). Monte Carlo simulations using FLUKA have been performed to design the collimators and shielding walls inside the treatment gantry, which consist of stainless steel, tungsten, polyethylene and lead. A composite primary collimator was designed to effectively reduce high-energy neutron production since their highly penetrating nature makes shielding very difficult. The necessary shielding for the treatment gantry was carefully studied to meet the criteria of head leakage <0.1% of therapeutic absorbed dose. A layer of polyethylene enclosing the whole particle selection and collimation device was used to shield neutrons and an outer layer of lead was used to reduce photon dose from neutron capture and electron bremsstrahlung. It is shown that the two-layer shielding design with 10-12 cm thick polyethylene and 4 cm thick lead can effectively absorb the unwanted particles to meet the shielding requirements. PMID:17664585

  10. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  11. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  12. A microwiggler Free-Electron Laser at the Brookhaven Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Kirk, H.; Pellegrini, C.; Vansteenbergen, A.; Bhowmik, A.

    1989-09-01

    The design and status of an FEL experiment at the Brookhaven National Laboratory Accelerator Test Facility is reported. A 50 MeV high brightness electron beam will be utilized for an oscillator experiment in the visible wavelength region. The microwiggler to be used is a superferric planar undulator with a 0.88 cm period, 60 cm length and K = 0.35. The optical cavity is a 368 cm long stable resonator with broadband dielectric coated mirrors.

  13. Comparison of Accelerated Testing with Modeling to Predict Lifetime of CPV Solder Layers (Presentation)

    SciTech Connect

    Silverman, T. J.; Bosco, N.; Kurtz, S.

    2012-03-01

    Concentrating photovoltaic (CPV) cell assemblies can fail due to thermomechanical fatigue in the die-attach layer. In this presentation, we show the latest results from our computational model of thermomechanical fatigue. The model is used to estimate the relative lifetime of cell assemblies exposed to various temperature histories consistent with service and with accelerated testing. We also present early results from thermal cycling experiments designed to help validate the computational model.

  14. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  15. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    SciTech Connect

    Kempe, M.

    2014-03-01

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  16. Ares I Static Tests Design

    NASA Technical Reports Server (NTRS)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.

    2009-01-01

    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  17. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  18. Design of a relativistic Klystron Two-Beam Accelerator Prototype

    SciTech Connect

    Westenskow, G.; Caporaso, G.; Chen, Y.; Houck, T.; Yu, S.; Chattopadhyay, S.; Henestroza, E.; Li, H.; Peters, C.; Reginato, L.; Sessler, Andrew M.

    1995-04-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.

  19. Design of a relativistic klystron two-beam accelerator prototype

    SciTech Connect

    Westenskow, G.; Caporaso, G.; Chen, Y.

    1995-10-01

    We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.

  20. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  1. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  2. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  3. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  4. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  5. Practical Solutions for the Design of Accelerated In Situ Bioremediation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yoshikawa, M.; Takeuchi, M.; Komai, T.

    2010-12-01

    Bioremediation is potentially a cost-effective and environmentally friendly approach for clean-up of hazardous chemicals from polluted geoenvironments, especially toxic organic compounds, like perchloroethene (PCE) and trichloroethene (TCE) from low-permeability strata at depths. The use of Hydrogen Release Compound (HRC) or Oxygen Release Compound (ORC) is a common practice to accelerate anaerobic bioremediation or aerobic bioremediation, depending on the chemical forms of pollutants to be treated. An effective remediation, however, needs effective mixing of, and interaction between the bacteria, target compound(s), injected HRC or ORC as well as other substances if necessary. An understanding of migration behavior of dissolved hydrogen and dissolved oxygen in geological formations is, therefore, an important research subject for predicting potential areas of remediation during acceptable time periods. In this study, 3 practical solutions to the plane source, point source and line source diffusions which correspond to the semi-infinite, spherical and cylindrical models were derived and used to discuss the diffusive transport through low permeability geological media. A series of parameter studies using feasible values for the diffusion coefficient obtained from both literature survey and independent laboratory experiments were performed. Expected areas of hydrogen or oxygen migration were assumed to be from several tens of centimeters to a few meters with consideration of practical pollution problems, and acceptable remediation time periods were considered to be from several months to the maximum of 10-15 years. The results obtained from this study illustrated that transport of chemical substances, like dissolved hydrogen or oxygen used for accelerated bioremediation, due to diffusion is very sensitive to the magnitude of diffusion coefficient. The area of migration due to natural diffusion could be very limited. To effectively design and perform an accelerated

  6. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    PubMed Central

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-01-01

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well. PMID:26876223

  7. A comprehensive polymer dataset for accelerated property prediction and design

    NASA Astrophysics Data System (ADS)

    Tran, Huan; Kumar Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Oilania, Ghanshyam; Ramprasad, Rampi

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. In principle, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to rapidly predict the properties of materials not already in the dataset, thus accelerating the design of materials with preferable properties. Here, we report the development of a dataset of 1,065 polymers and related materials, which is available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. The dataset will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided. We discuss some information ``learned`` from the dataset and suggest that it may be used as the playground for further data-mining work.

  8. A polymer dataset for accelerated property prediction and design

    DOE PAGES

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less

  9. Machine learning strategy for accelerated design of polymer dielectrics

    DOE PAGES

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-02-15

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further,more » a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. Furthermore, while this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.« less

  10. Machine Learning Strategy for Accelerated Design of Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan; Lookman, Turab; Ramprasad, Rampi

    2016-02-01

    The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data given time and computational/experimental constraints. Here, we address the issue of accelerating polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-art first principles computations for polymers occupying an important part of the chemical subspace. The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are mapped to the properties of interest using a machine learning algorithm to develop an on-demand property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent blocks in an evolutionary manner, thus directly leading to the design of polymers with given target properties. While this philosophy of learning to make instant predictions and design is demonstrated here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

  11. Review of accelerator conceptual design for the International Fusion Materials Irradiation Facility (IFMIF)

    SciTech Connect

    Berwald, D.H.; Rathke, J.W.; Bruhwiler, D.L.

    1996-12-31

    A Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) will be completed in December 1996. The IFMIF accelerator system, comprising two 125 mA, 40 MeV deuterium accelerators is a key element of the IFMIF facility. This paper describes the status of the accelerator design as of June, 1996. 7 refs., 3 figs., 1 tab.

  12. Closeout Report for the Refractory Metal Accelerated Heat Pipe Life Test Activity

    NASA Technical Reports Server (NTRS)

    Martin, J.; Reid, R.; Stewart, E.; Hickman, R.; Mireles, O.

    2013-01-01

    With the selection of a gas-cooled reactor, this heat pipe accelerated life test activity was closed out and its resources redirected. The scope of this project was to establish the long-term aging effects on Mo-44.5%Re sodium heat pipes when subjected to space reactor temperature and mass fluences. To date, investigators have demonstrated heat pipe life tests of alkali metal systems up to .50,000 hours. Unfortunately, resources have not been available to examine the effect of temperature, mass fluence, or impurity level on corrosion or to conduct post-test forensic examination of heat pipes. The key objective of this effort was to establish a cost/time effective method to systematically test alkali metal heat pipes with both practical and theoretical benefits. During execution of the project, a heat pipe design was established, a majority of the laboratory test equipment systems specified, and operating and test procedures developed. Procurements for the heat pipe units and all major test components were underway at the time the stop work order was issued. An extremely important outcome was the successful fabrication of an annular wick from Mo-5%Re screen (the single, most difficult component to manufacture) using a hot isostatic pressing technique. This Technical Publication (TP) includes specifics regarding the heat pipe calorimeter water-cooling system, vendor design for the radio frequency heating system, possible alternative calorimeter designs, and progress on the vanadium equilibration technique. The methods provided in this TP and preceding project documentation would serve as a good starting point to rapidly implement an accelerated life test. Relevant test data can become available within months, not years, and destructive examination of the first life test heat pipe might begin within 6 months of test initiation. Final conclusions could be drawn in less than a quarter of the mission duration for a long-lived, fission-powered, deep space probe.

  13. Shielding design for multiple-energy linear accelerators.

    PubMed

    Barish, Robert J

    2014-05-01

    The introduction of medical linear accelerators (linacs) capable of producing three different x-ray energies has complicated the process of designing shielding for these units. The conventional approach for the previous generation of dual-energy linacs relied on the addition of some amount of supplementary shielding to that calculated for the higher-energy beam, where the amount of that supplement followed the historical "two-source" rule, also known as the "add one HVL rule," a practice derived from other two-source shielding considerations. The author describes an iterative approach that calculates shielding requirements accurately for any number of multiple beam energies assuming the workload at each energy can be specified at the outset. This method is particularly useful when considering the requirements for possible modifications to an existing vault when new equipment is to be installed as a replacement for a previous unit.

  14. Conceptual design of industrial free electron laser using superconducting accelerator

    SciTech Connect

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N.

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  15. Design of Accelerator Online Simulator Server Using Structured Data

    SciTech Connect

    Shen, Guobao; Chu, Chungming; Wu, Juhao; Kraimer, Martin; /Argonne

    2012-07-06

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describes the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.

  16. Accelerated aging and flashover tests on 138 kV nonceramic line post insulators

    SciTech Connect

    Schneider, H.M.; Guidi, W.W. ); Burnham, J.T. ); Gorur, R.S. ); Hall, J.F. )

    1993-01-01

    The behavior of 138 kV nonceramic line post insulators is investigated by means of clean fog tests conducted before and after aging in a specially designed accelerated aging chamber. The laboratory aging cycles are justified on the basis of actual weather in the coastal regions of Florida. Analytical measurements quantifying the degree of artificial aging are discussed and comparisons of artificial aging with service experience are presented. Observations of audible noise and radio influence voltage during the clean fog tests are reported.

  17. Designing Instruction for Speed: Qualitative Insights into Instructional Design for Accelerated Online Graduate Coursework

    ERIC Educational Resources Information Center

    Trekles, Anastasia M.; Sims, Roderick

    2013-01-01

    The purpose of this exploratory case study was to explore instructional design strategies and characteristics of online, asynchronous accelerated courses and students' choices of deep or surface learning approaches within this environment. An increasing number of university programs, particularly at the graduate level, are moving to an…

  18. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  19. Inverse Cherenkov and inverse FEL accelerator experiments at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.V.; vanSteenbergen, A.; Babzien, M.

    1995-12-31

    Status update on the ongoing inverse Cherenkov acceleration experiment and prospects to its 100 MeV short-term upgrade. The first report on 1 MeV electron acceleration with the 0.5 GW CO{sub 2} laser used in the inverse FEL scheme. (author). 22 refs., 8 figs., 1 tab.

  20. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  1. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  2. Construction and testing of an 11.4 GHz dielectric structure based traveling wave accelerator

    NASA Astrophysics Data System (ADS)

    Zou, P.; Gai, W.; Konecny, R.; Sun, X.; Wong, T.; Kanareykin, A.

    2000-06-01

    We report on the design, numerical modeling, and experimental testing of a cylindrical dielectric loaded traveling wave structure for charged particle beam acceleration. This type of structure has similar accelerating properties to disk-loaded metal slow wave structures but with some distinct advantages in terms of simplicity of fabrication and suppression of parasitic wakefield effects. Efficient coupling of external rf power to the cylindrical dielectric waveguide is a technical challenge, particularly with structures of very high dielectric constant ɛ. We have designed and constructed an X-band structure loaded with a permittivity ɛ=20 dielectric to be powered by an external rf power source. We have attained high efficiency broadband rf coupling by using a combination of a tapered dielectric end section and a carefully adjusted coupling slot. Bench testing using a network analyzer has demonstrated a power coupling efficiency in excess of 95% with bandwidth of 30 MHz, thus providing a necessary basis for construction of an accelerator using this device. We have also simulated the parameters of this structure using a finite difference time domain electromagnetic solver. Within the limits of the approximations used, the results are in reasonable agreement with the bench measurements.

  3. Computer control of large accelerators design concepts and methods

    SciTech Connect

    Beck, F.; Gormley, M.

    1984-05-01

    Unlike most of the specialities treated in this volume, control system design is still an art, not a science. These lectures are an attempt to produce a primer for prospective practitioners of this art. A large modern accelerator requires a comprehensive control system for commissioning, machine studies and day-to-day operation. Faced with the requirement to design a control system for such a machine, the control system architect has a bewildering array of technical devices and techniques at his disposal, and it is our aim in the following chapters to lead him through the characteristics of the problems he will have to face and the practical alternatives available for solving them. We emphasize good system architecture using commercially available hardware and software components, but in addition we discuss the actual control strategies which are to be implemented since it is at the point of deciding what facilities shall be available that the complexity of the control system and its cost are implicitly decided. 19 references.

  4. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  5. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  6. Development and beam test of a continuous wave radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Ostroumov, P. N.; Mustapha, B.; Barcikowski, A.; Dickerson, C.; Kolomiets, A. A.; Kondrashev, S. A.; Luo, Y.; Paskvan, D.; Perry, A.; Schrage, D.; Sharamentov, S. I.; Sommer, R.; Toter, W.; Zinkann, G.

    2012-11-01

    The front end of any modern ion accelerator includes a radio frequency quadrupole (RFQ). While many pulsed ion linacs successfully operate RFQs, several ion accelerators worldwide have significant difficulties operating continuous wave (CW) RFQs to design specifications. In this paper we describe the development and results of the beam commissioning of a CW RFQ designed and built for the National User Facility: Argonne Tandem Linac Accelerator System (ATLAS). Several innovative ideas were implemented in this CW RFQ. By selecting a multisegment split-coaxial structure, we reached moderate transverse dimensions for a 60.625-MHz resonator and provided a highly stabilized electromagnetic field distribution. The accelerating section of the RFQ occupies approximately 50% of the total length and is based on a trapezoidal vane tip modulation that increased the resonator shunt impedance by 60% in this section as compared to conventional sinusoidal modulation. To form an axially symmetric beam exiting the RFQ, a very short output radial matcher with a length of 0.75βλ was developed. The RFQ is designed as a 100% oxygen-free electronic (OFE) copper structure and fabricated with a two-step furnace brazing process. The radio frequency (rf) measurements show excellent rf properties for the resonator, with a measured intrinsic Q equal to 94% of the simulated value for OFE copper. An O5+ ion beam extracted from an electron cyclotron resonance ion source was used for the RFQ commissioning. In off-line beam testing, we found excellent coincidence of the measured beam parameters with the results of beam dynamics simulations performed using the beam dynamics code TRACK, which was developed at Argonne. These results demonstrate the great success of the RFQ design and fabrication technology developed here, which can be applied to future CW RFQs.

  7. Design and operation of a laminar-flow electrostatic-quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-06-20

    This report deals with the design principles involved in the design of a laminar-flow electrostatic-quadrupole-focused acceleration column. In particular, attention will be paid to making the parameters suitable for incorporation into a DC MEQALAC design.

  8. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  9. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  10. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGES

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  11. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  12. Nanoelectronic circuit design and test

    NASA Astrophysics Data System (ADS)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  13. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively. PMID:27661576

  14. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  15. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  16. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  17. Accelerated search for materials with targeted properties by adaptive design

    NASA Astrophysics Data System (ADS)

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-04-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ~800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

  18. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    SciTech Connect

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  19. Accelerated search for materials with targeted properties by adaptive design.

    PubMed

    Xue, Dezhen; Balachandran, Prasanna V; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  20. Accelerated search for materials with targeted properties by adaptive design.

    PubMed

    Xue, Dezhen; Balachandran, Prasanna V; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-04-15

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

  1. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  2. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.

    1995-04-19

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPMs) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  3. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures

    NASA Astrophysics Data System (ADS)

    Ellis, P. F., II; Ferguson, A. F.

    1995-04-01

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPM's) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  4. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials.

  5. Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

    NASA Astrophysics Data System (ADS)

    Fridrichová, Marcela; Dvořák, Karel; Gazdič, Dominik

    2016-03-01

    The single most reliable indicator of a material's durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite's decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method

  6. Design and testing of high-pressure railguns and projectiles

    NASA Technical Reports Server (NTRS)

    Peterson, D. R.; Fowler, C. M.; Cummings, C. E.; Kerrisk, J. F.; Parker, J. V.; Marsh, S. P.; Adams, D. F.

    1984-01-01

    Attention is given to the results of high-pressure tests involving four railgun designs and four projectile types. Explosive magnetic-flux compression generators were employed to power the railguns. On the basis of the experimental data, it appears that the high-strength projectiles have lower resistance to acceleration than low-strength projectiles, which expand against the bore during acceleration. While confined in the bore, polycarbonate projectiles can be subjected to pressures as high as 1.3 GPa without shattering. In multishot railguns, it is important to prevent an accumulation of sooty material from the plasma armature in railgun seams.

  7. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  8. Temperature and current accelerated lifetime conditions and testing of laser diodes for ESA BepiColombo space mission

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Cohen, Shalom; Rech, Markus; Weidlich, Kai

    2011-03-01

    System designers and end users of diode pumped solid state lasers often require knowledge of the operability limits of QCW laser diode pump sources and their predicted reliability performance as a function of operating conditions. Accelerated ageing at elevated temperatures, duty cycles and/or currents allows extended lifetime testing of diode stacks to be executed on compressed timescales with high confidence. We present a novel, time-efficient technique for the determination of accelerated lifetime test conditions using degradation rate data, rather than the traditionally used failures against time data. To assess the effect of thermally accelerated ageing, 4 groups of 4 stacks each were operated for 60 million pulses at different temperature stress levels by varying the pulse repetition rate from 100Hz to 250Hz. The measured power degradation rates fitted to an Arrhenius type model, result in activation energy of 0.47- 0.74eV, apparently indicating two thermally activated degradation modes with different activation energies. Similarly, for current accelerated ageing, another 4 groups of 4 stacks were tested at operation currents from 120A to 150A. The optical power degradation rates due to current stress follow a power law behavior with a current acceleration factor of 1.7. The obtained acceleration parameters allowed considerable reduction of the lifetime test duration, which would have otherwise taken an unacceptably long time under nominal operating conditions. The successful results of the accelerated lifetime have been a major milestone enabling qualification of SCD stacks as pump sources for the laser altimeter in ESA Bepi-Colombo space mission. The presented reliability analysis allows life test qualification programs to be accelerated for generic QCW stacks and their lifetime to be predicted in various operating environments.

  9. A New Cavity Design For Medium Beta Acceleration

    SciTech Connect

    He, Feisi; Wang, Haipeng; Rimmer, Robert A.

    2014-02-01

    Heavy duty or cw, superconducting proton and heavy ion accelerators are being proposed and constructed worldwide. The total length of the machine is one of the main drivers in terms of cost. Thus hwr and spoke cavities at medium beta are usually optimized to achieve low surface field and high gradient. A novel accelerating structure at beta=0.5 evolved from spoke cavity is proposed, with lower surface fields but slightly higher heat load. It would be an interesting option for pulsed and cw accelerators with beam energy of more than 200mev/u.

  10. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  11. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  12. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  13. Accelerator production of tritium plant design and supporting engineering development and demonstration work

    SciTech Connect

    Lisowski, P.W.

    1997-11-01

    Tritium is an isotope of hydrogen with a half life of 12.3 years. Because it is essential for US thermonuclear weapons to function, tritium must be periodically replenished. Since K reactor at Savannah River Site stopped operating in 1988, tritium has been recycled from dismantled nuclear weapons. This process is possible only as long as many weapons are being retired. Maintaining the stockpile at the level called for in the present Strategic Arms Reduction Treaty (START-I) will require the Department of Energy to have an operational tritium production capability in the 2005--2007 time frame. To make the required amount of tritium using an accelerator based system (APT), neutrons will be produced through high energy proton reactions with tungsten and lead. Those neutrons will be moderated and captured in {sup 3}He to make tritium. The APT plant design will use a 1,700 MeV linear accelerator operated at 100 mA. In preparation for engineering design, starting in October 1997 and subsequent construction, a program of engineering development and demonstration is underway. That work includes assembly and testing of the first 20 MeV of the low energy plant linac at 100 mA, high-energy linac accelerating structure prototyping, radiofrequency power system improvements, neutronic efficiency measurements, and materials qualifications.

  14. OPSAID Initial Design and Testing Report.

    SciTech Connect

    Hurd, Steven A.; Stamp, Jason Edwin; Chavez, Adrian R.

    2007-11-01

    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS and

  15. Accelerating Design of Batteries Using Computer-Aided Engineering Tools (Presentation)

    SciTech Connect

    Pesaran, A.; Kim, G. H.; Smith, K.

    2010-11-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  16. Development of a 20 MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Kinkead, Allen K.; Gai Wei; Power, John G.; Konecny, Richard; Jing Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, Ralph W.; Bruce, Robert L.; Lewis, David III

    2004-12-07

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the StanFord Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron injector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  17. Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.G.; Tantawi, S.G.; Nantista, C.D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, R.W.; Bruce, R.L.; Fliflet, A.W.; Lewis, D.; /Naval Research Lab, Wash., D.C. /LET Corp., Washington /Argonne /SLAC /Tsinghua U., Beijing

    2005-06-22

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron inector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx} 8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRl, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  18. New linear accelerator (Linac) design based on C-band accelerating structures for SXFEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Gu, Qiang

    2011-11-01

    A C-band accelerator structure is one promising technique for a compact XFEL facility. It is also attractive in beam dynamics in maintaining a high quality electron beam, which is an important factor in the performance of a free electron laser. In this paper, a comparison between traditional S-band and C-band accelerating structures is made based on the linac configuration of a Shanghai Soft X-ray Free Electron Laser (SXFEL) facility. Throughout the comprehensive simulation, we conclude that the C-band structure is much more competitive.

  19. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace

    PubMed Central

    Fadde, Peter J.

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team

  20. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace.

    PubMed

    Fadde, Peter J

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team

  1. Instructional Design for Accelerated Macrocognitive Expertise in the Baseball Workplace.

    PubMed

    Fadde, Peter J

    2016-01-01

    The goal of accelerating expertise can leave researchers and trainers in human factors, naturalistic decision making, sport science, and expertise studies concerned about seemingly insufficient application of expert performance theories, findings and methods for training macrocognitive aspects of human performance. Video-occlusion methods perfected by sports expertise researchers have great instructional utility, in some cases offering an effective and inexpensive alternative to high-fidelity simulation. A key problem for instructional designers seems to be that expertise research done in laboratory and field settings doesn't get adequately translated into workplace training. Therefore, this article presents a framework for better linkage of expertise research/training across laboratory, field, and workplace settings. It also uses a case study to trace the development and implementation of a macrocognitive training program in the very challenging workplace of the baseball batters' box. This training, which was embedded for a full season in a college baseball team, targeted the perceptual-cognitive skill of pitch recognition that allows expert batters to circumvent limitations of human reaction time in order to hit a 90 mile-per-hour slider. While baseball batting has few analogous skills outside of sports, the instructional design principles of the training program developed to improve batting have wider applicability and implications. Its core operational principle, supported by information processing models but challenged by ecological models, decouples the perception-action link for targeted part-task training of the perception component, in much the same way that motor components routinely are isolated to leverage instructional efficiencies. After targeted perceptual training, perception and action were recoupled via transfer-appropriate tasks inspired by in situ research tasks. Using NCAA published statistics as performance measures, the cooperating team

  2. Program Helps Design Tests Of Developmental Software

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1994-01-01

    Computer program called "A Formal Test Representation Language and Tool for Functional Test Designs" (TRL) provides automatic software tool and formal language used to implement category-partition method and produce specification of test cases in testing phase of development of software. Category-partition method useful in defining input, outputs, and purpose of test-design phase of development and combines benefits of choosing normal cases having error-exposing properties. Traceability maintained quite easily by creating test design for each objective in test plan. Effort to transform test cases into procedures simplified by use of automatic software tool to create cases based on test design. Method enables rapid elimination of undesired test cases from consideration and facilitates review of test designs by peer groups. Written in C language.

  3. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  4. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  5. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  6. Comparison of online and offline tests in LED accelerated reliability tests under temperature stress.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Gao, Qun; Wang, Yao; Hao, Jian; Sun, Qiang; Xu, Zhi-Jun

    2015-11-20

    Accelerated aging tests are the main method used in the evaluation of LED reliability, and can be performed in either online or offline modes. The goal of this study is to provide the difference between the two test modes. In the experiments, the sample is attached to different heat sinks to acquire the optical parameters under different junction temperatures of LEDs. By measuring the junction temperature in the aging process (Tj1), and the junction temperature in the testing process (Tj2), we achieve consistency with an online test of Tj1 and Tj2 and a difference with an offline test of Tj1 and Tj2. Experimental results show that the degradation rate of the luminous flux rises as Tj2 increases, which yields a difference of projected life L(70%) of 8% to 13%. For color shifts over 5000 h of aging, the online test shows a larger variation of the distance from the Planckian locus, about 40% to 50% more than the normal test at an ambient temperature of 25°C. PMID:26836556

  7. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  8. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE PAGES

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.; Calvey, J. R.; Palmer, M. A.

    2016-04-28

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  9. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: electron cloud diagnostics

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.; Calvey, J. R.; Palmer, M. A.

    2016-04-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  10. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  11. Test particle acceleration in a magnetotail reconnection configuration

    SciTech Connect

    Sachsenweger, D.; Scholer, M.; Mobius, E. )

    1989-09-01

    AMPTE/IRM measurements during a period of strong magnetic activity on April 8, 1985 exhibit a significant hardening of the energy spectra of all detected ion species (H{sup +}, He{sup 2+}, He{sup +}, O{sup +}) following substorm expansion. In order to explain these observations in the framework of the substorm neutral line model, single-particle trajectories of various ions (H{sup +}, He{sup 2+}, O{sup +}) are followed numerically in the time-dependent electric and magnetic fields obtained from a two-dimensional magnetohydrodynamic simulation of magnetotail reconnection. Current sheet acceleration of a suitable plasma sheet ion distribution can explain the observed ordering of the flux increase of the various species in energy per charge. Starting from a cold lobe population, however, current sheet acceleration cannot account for the differential ion intensities observed after substorm expansion. {copyright} American Geophysical Union 1989

  12. Designing special test instruments for preventive maintenance.

    PubMed

    McCullough, C E; Baker, L S

    1979-01-01

    Periodic performance testing of biomedical equipment can be made considerably more efficient by careful design of test procedures and by fabrication of special test instruments which are designed for those procedures. The design philosophy behind such procedures and instruments and its applicability to a wide variety of biomedical devices is discussed. As a practical example, an ECG machine/patient monitor test system is described and construction details are given. PMID:10241383

  13. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Astrophysics Data System (ADS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  14. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    SciTech Connect

    Krause, David L.; Kantzos, Pete T.

    2006-01-20

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  15. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  16. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  17. Scaled Accelerator Test for the DARHT-II Downstream Transport System

    SciTech Connect

    Chen, Y; Blackfield, D T; Caporaso, G J; Guethlein, G; McCarrick, J F; Paul, A C; Watson, J A; Weir, J T

    2005-10-03

    The second axis of the Dual Axial radiography Hydrodynamic Test (DARHT-II) facility at LANL is currently in the commissioning phase[1]. The beam parameters for the DARHT-II machine will be nominally 18 MeV, 2 kA and 1.6 {micro}s. This makes the DARHT-II downstream system the first system ever designed to transport a high current, high energy and long pulse beam [2]. We will test these physics issues of the downstream transport system on a scaled DARHT-II accelerator with a 7.8-MeV and 660-A beam at LANL before commissioning the machine at its full energy and current. The scaling laws for various physics concerns and the beam parameters selection is discussed in this paper.

  18. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  19. Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Aprile, D.; Antoni, V.; Cavenago, M.; Chitarin, G.; de Esch, H. P. L.; De Lorenzi, A.; Fonnesu, N.; Gambetta, G.; Hemsworth, R. S.; Kashiwagi, M.; Marconato, N.; Marcuzzi, D.; Pilan, N.; Sartori, E.; Serianni, G.; Singh, M.; Sonato, P.; Spada, E.; Toigo, V.; Veltri, P.; Zaccaria, P.

    2016-01-01

    The ITER Neutral Beam Test Facility (PRIMA) is presently under construction at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: an ITER-size ion source with low voltage extraction, called SPIDER, and the full prototype of the whole ITER Heating Neutral Beams (HNBs), called MITICA. The purpose of MITICA is to demonstrate that all operational parameters of the ITER HNB accelerator can be experimentally achieved, thus establishing a large step forward in the performances of neutral beam injectors in comparison with the present experimental devices. The design of the MITICA extractor and accelerator grids, here described in detail, was developed using an integrated approach, taking into consideration at the same time all the relevant physics and engineering aspects. Particular care was taken also to support and validate the design on the basis of the expertise and experimental data made available by the collaborating neutral beam laboratories of CEA, IPP, CCFE, NIFS and JAEA. Considering the operational requirements and the other physics constraints of the ITER HNBs, the whole design has been thoroughly optimized and improved. Furthermore, specific innovative concepts have been introduced.

  20. An efficient parallel algorithm for accelerating computational protein design

    PubMed Central

    Zhou, Yichao; Xu, Wei; Donald, Bruce R.; Zeng, Jianyang

    2014-01-01

    Motivation: Structure-based computational protein design (SCPR) is an important topic in protein engineering. Under the assumption of a rigid backbone and a finite set of discrete conformations of side-chains, various methods have been proposed to address this problem. A popular method is to combine the dead-end elimination (DEE) and A* tree search algorithms, which provably finds the global minimum energy conformation (GMEC) solution. Results: In this article, we improve the efficiency of computing A* heuristic functions for protein design and propose a variant of A* algorithm in which the search process can be performed on a single GPU in a massively parallel fashion. In addition, we make some efforts to address the memory exceeding problem in A* search. As a result, our enhancements can achieve a significant speedup of the A*-based protein design algorithm by four orders of magnitude on large-scale test data through pre-computation and parallelization, while still maintaining an acceptable memory overhead. We also show that our parallel A* search algorithm could be successfully combined with iMinDEE, a state-of-the-art DEE criterion, for rotamer pruning to further improve SCPR with the consideration of continuous side-chain flexibility. Availability: Our software is available and distributed open-source under the GNU Lesser General License Version 2.1 (GNU, February 1999). The source code can be downloaded from http://www.cs.duke.edu/donaldlab/osprey.php or http://iiis.tsinghua.edu.cn/∼compbio/software.html. Contact: zengjy321@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931991

  1. Ground motions and its effects in accelerator design

    SciTech Connect

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators. (GHT)

  2. A3 Subscale Diffuser Test Article Design

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.

    2009-01-01

    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  3. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Carlson, K.; McGee, M. W.; Nobrega, L. E.; Romanov, A. L.; Ruan, J.; Valishev, A.; Noll, D.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  4. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  5. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as...

  6. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  7. Accelerated testing of an optimized closing system for automotive fuel tank

    NASA Astrophysics Data System (ADS)

    Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.

    2015-11-01

    Taking into account the legal prescriptions which are in force and the new regulatory requirements that will be mandatory to implement in the near future regarding testing characteristics of automotive fuel tanks, resulted the necessity to develop a new testing methodology which allows to estimate the behaviour of the closing system of automotive fuel tank over a long period of time (10-15 years). Thus, were designed and conducted accelerated tests under extreme assembling and testing conditions (high values for initial tightening torques, extreme values of temperature and pressure). In this paper are presented two of durability tests which were performed on an optimized closing system of fuel tank: (i) the test of exposure to temperature with cyclical variation and (ii) the test of continuous exposure to elevated temperature. In these experimental tests have been used main components of the closing system manufactured of two materials variants, both based on the polyoxymethylene, material that provides higher mechanical stiffness and strength in a wide temperature range, as well as showing increased resistance to the action of chemical agents and fuels. The tested sample included a total of 16 optimized locking systems, 8 of each of 2 versions of material. Over deploying the experiments were determined various parameters such as: the initial tightening torque, the tightening torque at different time points during measurements, the residual tightening torque, defects occurred in the system components (fissures, cracks, ruptures), the sealing conditions of system at the beginning and at the end of test. Based on obtained data were plotted the time evolution diagrams of considered parameter (the residual tightening torque of the system consisting of locking nut and threaded ring), in different temperature conditions, becoming possible to make pertinent assessments on the choice between the two types of materials. By conducting these tests and interpreting the

  8. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.; Henke, H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum.

  9. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and...

  10. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... constructed to test the effectiveness of backfill placement and compaction procedures against...

  11. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... constructed to test the effectiveness of backfill placement and compaction procedures against...

  12. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.; Long, J.; Tantawi, S.G.; Nantista, C.D.; Fliflet, A.W.; Lombardi, M.; Lewis, D.; Bruce, R.W.; /Unlisted

    2007-04-13

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  13. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-11-27

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  14. Accelerated and environmental module stress testing at NREL

    SciTech Connect

    Osterwald, C.R.; Basso, T.S.; del Cueto, J.A.; McMahon, T.J.; Pruett, J.; Trudell, D.

    1999-03-01

    This paper presents an overview of the Module Testing and Technology Validation task at the National Renewable Energy Laboratory. The extensive module testing capabilities at the Outdoor Test Facility are outlined, emphasizing the test facilities, equipment, and analytical services available. Highlights and results of several recent testing efforts are then presented, followed by a list of the external programs supported by the task. The paper concludes with a brief description of the new testing programs that are planned for the near future. {copyright} {ital 1999 American Institute of Physics.}

  15. Testing Cosmic-Ray Acceleration in Young, Embedded Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Nukri, Komin; Marcowith, Alexandre; Lamanna, Giovanni; Maurin, Gilles; Krayzel, Fabien

    2016-07-01

    Most of the massive stars appear grouped in clusters located in giant molecular clouds. Their strong wind activity generates large structures known as stellar wind bubbles and induces collective effects which could accelerate particles up to high energy and produce gamma-rays. The best objects to observe these effects are young massive star clusters in which no supernova explosion has occurred yet. We model these star clusters as a spherical leaky box (the molecular cloud) surrounding a central cosmic ray source (the stellar cluster). We developed a phenomenological model to estimate the cosmic and gamma-ray production for a set of 8 selected clusters. We compare the predicted gamma-ray emission with data obtained with the Fermi-LAT telescope. No significant emission has been detected from any of the selected cluster. Comparing the upper limit on the gamma-ray flux with the prediction from our phenomenological model indicates that not more than 10% of the stellar wind luminosity of the stellar clusters is converted into cosmic rays. If all O-type stars do not contribute more than 10% of their stellar wind luminosity to cosmic-ray acceleration they do not contribute to more than on percent of the total cosmic-ray luminosity.

  16. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2015-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from strata such as coal beds, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reliable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can inform and constrain larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. The CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length, and a maximum total stress of ~2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the permeability. Vertical hydraulic conductivity (Kv) results from CP testing of cores from three sites within the same regional clayey silt formation varied (10-7 to 10-9 m s-1, n = 14). Results at one of these sites (1.1 × 10-10 to 3.5 × 10-9 m s-1, n = 5) that were obtained in < 24 h were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses over several weeks within a 30 m clayey sequence. Core scale and in situ Kv results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. More reliable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with advanced geostatistical and numerical methods.

  17. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    ScienceCinema

    None

    2016-07-12

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  18. AT2 DS II - Accelerator System Design (Part II) - CCC Video Conference

    SciTech Connect

    2010-12-17

    Discussion Session - Accelerator System Design (Part II) Tutors: C. Darve, J. Weisend II, Ph. Lebrun, A. Dabrowski, U. Raich Video Conference with the CERN Control Center. Experts in the field of Accelerator science will be available to answer the students questions. This session will link the CCC and SA (using Codec VC).

  19. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  20. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  1. Life prediction of 808nm high power semiconductor laser by accelerated life test of constant current stress

    NASA Astrophysics Data System (ADS)

    Yao, Nan; Li, Wei; Zhao, Yihao; Zhong, Li; Liu, Suping; Ma, Xiaoyu

    2015-10-01

    High power semiconductor laser is widely used because of its high transformation efficiency, good working stability, compact volume and simple driving requirements. Laser's lifetime is very long, but tests at high levels of stress can speed up the failure process and shorten the times to failure significantly. So accelerated life test is used here for forecasting the lifetime of 808nm CW GaAs/AlGaAs high power semiconductor laser that has an output power of 1W under 1.04A. Accelerated life test of constant current stress based on the Inverse Power Law Relationship was designed. Tests were conducted under 1.3A, 1.6A and 1.9A at room temperature. It is the first time that this method is used in the domestic research of laser's lifetime prediction. Applying Weibull Distribution to describe the lifetime distribution and analyzing the data of times to failure, characteristics lifetime's functional relationship model with current is achieved. Then the characteristics lifetime under normal current is extrapolated, which is 9473h. Besides, to confirm the validity of the functional relationship model, we conduct an additional accelerated life test under 1.75A. Based on this experimental data we calculated the characteristics lifetime corresponding to 1.75A that is 171h, while the extrapolated characteristics lifetime from the former functional relationship model is 162h. The two results shows 5% deviation that is very low and acceptable, which indicates that the test design is reasonable and authentic.

  2. Further Analysis of Accelerated Exposure Testing of Thin-Glass Mirror Matrix

    SciTech Connect

    Kennedy, C. E.; Terwilliger, K.; Jorgensen, G. J.

    2007-01-01

    Concentrating solar power (CSP) companies have deployed thin-glass mirrors produced by wet-silver processes on {approx}1-mmthick, relatively lightweight glass. These mirrors are bonded to metal substrates in commercial installations and have the confidence of the CSP industry. Initial hemispherical reflectance is {approx}93%-96%, and the cost is {approx}$16.1/m{sup 2}-$43.0/m{sup 2}. However, corrosion was observed in mirror elements of operational solar systems deployed outdoors for 2 years. National Renewable Energy Laboratory (NREL) Advanced Materials Team has been investigating this problem. First, it was noted that this corrosion is very similar to the corrosion bands and spots observed on small (45 mm x 67 mm) thin-glass mirrors laminated to metal substrates with several different types of adhesives and subjected to accelerated exposure testing (AET) at NREL. The corrosion appears as dark splotches in the center of the mirror, with a corresponding 5%-20% loss in reflectivity. Secondly, two significant changes in mirror manufacture have occurred in the wet-chemistry process because of environmental concerns. The first is the method of forming a copper-free reflective mirror, and the second is the use of lead-free paints. However, the copper-free process requires stringent quality control and the lead-free paints were developed for interior applications. A test matrix of 84 combinations of sample constructions (mirror type/backprotective paint/adhesive/substrate) was devised for AET as a designed experiment to identify the most-promising mirrors, paints, and adhesives for use with concentrator designs. Two types of accelerated exposure were used: an Atlas Ci5000 WeatherOmeter (CI5000) and a BlueM damp-heat chamber. Based on an analysis of variance (ANOVA), the various factors and interactions were modeled. These samples now have more than 36 months of accelerated exposure, and most samples have completed their test cycle. We will discuss the results of the

  3. Designing the Fitness Testing Environment.

    ERIC Educational Resources Information Center

    Petray, Clayre; And Others

    1989-01-01

    This article provides teachers with strategies for planning and organizing a positive, efficient physical fitness testing environment for K-12 students, including students with special needs. Methods of class organization and scheduling suggestions are presented. Sample record and score sheets are included. (IAH)

  4. Development of a Compact Dielectric-Loaded Test Accelerator at 11.4 GHz

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.

    2009-01-22

    This paper presents a progress report on the development of a dielectric-loaded test accelerator in the Magnicon Facility at the Naval Research Laboratory (NRL). The accelerator will be powered by an 11.4-GHz magnicon amplifier that provides up to 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator includes a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate dielectric-loaded accelerating (DLA) structures of up to 0.5 m in length. The DLA structures are being developed by Argonne National Laboratory and Euclid Techlabs, and shorter test structures fabricated from a variety of dielectric materials have undergone rf testing at NRL at accelerating gradients up to 15 MV/m. The first stage of the accelerator, including the 5-MeV injector, has recently begun operation, and initial operation of the complete dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  5. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  6. Test Information Targeting Strategies for Adaptive Multistage Testing Designs.

    ERIC Educational Resources Information Center

    Luecht, Richard M.; Burgin, William

    Adaptive multistage testlet (MST) designs appear to be gaining popularity for many large-scale computer-based testing programs. These adaptive MST designs use a modularized configuration of preconstructed testlets and embedded score-routing schemes to prepackage different forms of an adaptive test. The conditional information targeting (CIT)…

  7. Design and Preliminary Testing Plan of Electronegative Ion Thruster

    NASA Technical Reports Server (NTRS)

    Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.

  8. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 2: vacuum modifications

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Li, Y.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the second in a series of four, discusses the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CESR-TA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. A separate paper describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESR-TA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESR-TA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  9. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  10. Status of the 1 MeV Accelerator Design for ITER NBI

    SciTech Connect

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.

    2011-09-26

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D{sup -} at 1 MeV for 3600 sec. In order to realize the beam source, design and R and D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  11. Status of the 1 MeV Accelerator Design for ITER NBI

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.

    2011-09-01

    The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.

  12. Accelerated thermal and mechanical testing of CSP assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2000-01-01

    Chip Scale Packages (CSP) are now widely used for many electronic applications including portable and telecommunication products. A test vehicle (TV-1) with eleven package types and pitches was built and tested by the JPL MicrotypeBGA Consortium during 1997 to 1999. Lessons learned by the team were published as a guidelines document for industry use. The finer pitch CSP packages which recently became available were indluded in the next test vehicle of the JPL CSP Consortium.

  13. Formal functional test designs with a test representation language

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1993-01-01

    The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.

  14. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    NASA Astrophysics Data System (ADS)

    Jabbari, Iraj; Poursaleh, Ali Mohammad; Khalafi, Hossein

    2016-08-01

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  15. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-01-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  16. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-07-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  17. Design of On-chip Power Transport and Coupling Components for a Silicon Woodpile Accelerator

    SciTech Connect

    Wu, Ziran; Ng, C.; McGuinness, C.; Colby, E.; /SLAC

    2011-05-23

    Three-dimensional woodpile photonic bandgap (PBG) waveguide enables high-gradient and efficient laser driven acceleration, while various accelerator components, including laser couplers, power transmission lines, woodpile accelerating and focusing waveguides, and energy recycling resonators, can be potentially integrated on a single monolithic structure via lithographic fabrications. This paper will present designs of this on-chip accelerator based on silicon-on-insulator (SOI) waveguide. Laser power is coupled from free-space or fiber into SOI waveguide by grating structures on the silicon surface, split into multiple channels to excite individual accelerator cells, and eventually gets merged into the power recycle pathway. Design and simulation results will be presented regarding various coupling components involved in this network.

  18. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and

  19. Formal Functional Test Designs: Bridging the Gap Between Test Requirements and Test Specifications

    NASA Technical Reports Server (NTRS)

    Hops, Jonathan

    1993-01-01

    This presentation describes the testing life cycle, the purpose of the test design phase, and test design methods and gives an example application. Also included is a description of Test Representation Language (TRL), a summary of the language, and an example of an application of TRL. A sample test requirement and sample test design are included.

  20. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  1. Fabrication and testing of Rutherford-type cables for react and wind accelerator magnets

    SciTech Connect

    Bauer, P.; Ambrosio, G.; Andreev, N.; Barzi, E.; Dietderich, D.; Ewald, K.; Fratini, M.; Ghosh, A.K.; Higley, H.C.; Kim, S.W.; Miller, G.; Miller, J.; Ozelis, J.; Scanlan, R.M.

    2000-09-11

    A common coil design for a high-field accelerator dipole magnet using a Nb{sub 3}Sn cable with the React-and-Wind approach is pursued by a collaboration between Fermilab and LBNL. The design requirements for the cable include a high operating current so that a field of 10-11 T can be produced, together with a low critical current degradation due to bending around a 90 mm radius. A program, using ITER strands of the internal tin type, was launched to develop the optimal cable design for React-and-Wind common coil magnets. Three prototype cable designs, all 15 mill wide, were fabricated: a 41-strand cable with 0.7 mm diameter strands; a 57-strand cable with 0.5 mm diameter strands; and a 259 strand multi-level cable with a 6-around-1 sub-element using 0.3 mm diameter wire. Two versions of these cables were fabricated: one with no core and one with a stainless steel core. Additionally, the possibility of a wide (22 mm) cable made from 0.7 mm strand was explored. This paper describes the first results of the cable program including reports on cable fabrication and reaction, first winding tests and first results of the measurement of the critical current degradation due to cabling and bending.

  2. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  3. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  4. 10 CFR 60.142 - Design testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of... thermal interaction effects of the waste packages, backfill, rock, and groundwater shall be conducted....

  5. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  6. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  7. 10 CFR 63.133 - Design testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early...

  8. 78 FR 76410 - Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Strategies to Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models (78 FR 60998... Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success (PFS... period on its request for information on Strategies to Accelerate the Testing and Adoption of Pay...

  9. SP-100 liquid metal test loop design

    NASA Astrophysics Data System (ADS)

    Fallas, T. Ted; Kruger, Gordon B.; Wiltshire, Frank R.; Jensen, Grant C.; Clay, Harold; Upton, Hugh A.; Gamble, Robert E.; Kjaer-Olsen, Christian; Lee, Keith

    1992-01-01

    The SP-100 Power System Qualification (PSO) program validates the technology readiness of the SP-100 Generic Flight System (GFS). As part of the PSQ, the GFS reactor, heat transport and power generation systems are being validated, by test, in high temperature liquid metal test loops. The liquid metal test loop program consists of two test loops. The first, a natural circulation material test loop (MTL), has been successfully operating for the last year at GE's test facility in San Jose. The second, a forced circulation Component Test Loop (CTL) is in the preliminary design phase. Fabrication of the CTL and modifications to the Test Facility will be completed in FY94 with component testing scheduled to begin in FY95. The CTL is a Nb-1Zr test loop with an Electromagnetic (EM) pump providing forced circulation for the liquid lithium coolant. The CTL test program is comprised of a series of individual component tests. Test components containing thermoelectric cells will have their cold side ducts piped to an existing heat rejection loop external to the CTL vacuum vessel. The test assembly and test components are being designed by GE. The detail design of several loop components is being performed by Westinghouse Atomic Energy Systems (WAES). The CTL will be assembled and the test performed at GE's facilties in San Jose, California.

  10. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  11. Honors biomedical instrumentation--a course model for accelerated design.

    PubMed

    Madhok, Jai; Smith, Ryan J; Thakor, Nitish V

    2009-01-01

    A model for a 16-week Biomedical Instrumentation course is outlined. The course is modeled in such a way that students learn about medical devices and instrumentation through lecture and laboratory sessions while also learning basic design principles. Course material covers a broad range of topics from fundamentals of sensors and instrumentation, guided laboratory design experiments, design projects, and eventual protection of intellectual property, regulatory considerations, and entry into the commercial market. Students eventually complete two design projects in the form of a 'Challenge' design project as well as an 'Honors' design project. Sample problems students solve during the Challenge project and examples of past Honors projects from the course are highlighted. PMID:19964766

  12. Accelerated aging for testing polymeric biomaterials and medical devices.

    PubMed

    Hukins, D W L; Mahomed, A; Kukureka, S N

    2008-12-01

    Elevated temperature is frequently used to accelerate the aging process in polymers that are associated with medical devices and other applications. A common approach is to assume that the rate of aging is increased by a factor of 2(DeltaT/10), where DeltaT is the temperature increase. This result is a mathematical expression of the empirical observation that increasing the temperature by about 10 degrees C roughly doubles the rate of many polymer reactions. It is equivalent to assuming that the aging process is a first order chemical reaction with an activation energy of 10R/log(e)2, where R is the universal gas constant. A better approach would be to determine the activation energy for the process being considered but this is not always practicable. The simple approach does not depend on the temperature increase, provided that it is not so great that it initiates any physical or chemical process that is unlikely to be involved in normal aging. If a temperature increment theta were to increase a given polymer reaction rate n times, then an elevated temperature would increase the rate of aging by a factor of n(DeltaT/theta).

  13. On designing a control system for a new generation of accelerators

    SciTech Connect

    Schaller, S.C.; Schultz, D.E.

    1987-01-01

    A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs.

  14. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  15. The Experimental Design Ability Test (EDAT)

    ERIC Educational Resources Information Center

    Sirum, Karen; Humburg, Jennifer

    2011-01-01

    Higher education goals include helping students develop evidence based reasoning skills; therefore, scientific thinking skills such as those required to understand the design of a basic experiment are important. The Experimental Design Ability Test (EDAT) measures students' understanding of the criteria for good experimental design through their…

  16. Prototype of a test bench for applied research on Extracted beams of the nuclotron accelerator complex

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Bradnova, V.; Butenko, A. V.; Fedorov, A. N.; Kudashkin, I. V.

    2016-05-01

    The results of the development and testing of elements of a test bench for investigating the impact of accelerated particle beams on biological objects, electronics, and other targets are presented. The systems for beam monitoring and target positioning were tested on extracted argon beams in the framework of experiments on studying the radiation hardness of electronic components.

  17. Accelerated irradiation test of Gundremmingen reactor vessel trepan material

    SciTech Connect

    Hawthorne, J.R.

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279{degrees}C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed.

  18. A Non-scaling Fixed Field Alternating Gradient Accelerator for the Final Acceleration Stage of the International Design Study of the Neutrino Factory.

    SciTech Connect

    Berg, J.S.; Aslaninejad, M.; Pasternak, J.; Witte, H.; Bliss, N. Cordwell M.; Jones, T.; Muir, A., Kelliher, D.; Machida, S.

    2011-09-04

    The International Design Study of the Neutrino Factory (IDS-NF) has recently completed its Interim Design Report (IDR), which presents our current baseline design of the neutrino factory. To increase the efficiency and reduce the cost of acceleration, the IDR design uses a linear non-scaling fixed field alternating gradient accelerator (FFAG) for its final acceleration stage. We present the current lattice design of that FFAG, including the main ring plus its injection and extraction systems. We describe parameters for the main ring magnets, kickers, and septa, as well as the power supplies for the kickers. We present a first pass at an engineering layout for the ring and its subsystems.

  19. A powerful test for Balaam's design.

    PubMed

    Mori, Joji; Kano, Yutaka

    2015-01-01

    The crossover trial design (AB/BA design) is often used to compare the effects of two treatments in medical science because it performs within-subject comparisons, which increase the precision of a treatment effect (i.e., a between-treatment difference). However, the AB/BA design cannot be applied in the presence of carryover effects and/or treatments-by-period interaction. In such cases, Balaam's design is a more suitable choice. Unlike the AB/BA design, Balaam's design inflates the variance of an estimate of the treatment effect, thereby reducing the statistical power of tests. This is a serious drawback of the design. Although the variance of parameter estimators in Balaam's design has been extensively studied, the estimators of the treatment effect to improve the inference have received little attention. If the estimate of the treatment effect is obtained by solving the mixed model equations, the AA and BB sequences are excluded from the estimation process. In this study, we develop a new estimator of the treatment effect and a new test statistic using the estimator. The aim is to improve the statistical inference in Balaam's design. Simulation studies indicate that the type I error of the proposed test is well controlled, and that the test is more powerful and has more suitable characteristics than other existing tests when interactions are substantial. The proposed test is also applied to analyze a real dataset.

  20. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  1. Spallation Target Design for Accelerator-Driven Systems

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry

    2010-06-01

    A design methodology for the lead-bismuth eutectic (LBE) spallation target has been developed and applied. This methodology includes the target interface with the subcritical assembly and the different engineering aspects of the target design, physics, heat-transfer, hydraulics, structural, radiological, and safety analyses. Several design constrains were defined and utilized for the target design process to satisfy different engineering requirements and to minimize the time and the cost of the design development. Target interface requirements with the subcritical assembly were defined based on performance parameters and material damage issues to enhance the lifetime of the target structure. Different structural materials were considered to define the most promising candidate based on the current database including radiation effects.

  2. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  3. Design, fabrication and testing of single spoke resonators at Fermilab

    SciTech Connect

    Ristori, L.; Apollinari, G.; Borissov, E.; Gonin, I.V.; Khabiboulline, T.N.; Mukherjee, A.; Nicol, T.H.; Ozelis, J.; Pischalnikov, Y.; Sergatskov, D.A.; Wagner, R.; /Fermilab

    2009-09-01

    The Fermilab High Intensity Neutrino Source (HINS) linac R&D program is building a pulsed 30 MeV superconducting H- linac. The linac incorporates superconducting solenoids, high power RF vector modulators and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linac. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. In this paper we present the RF design, the mechanical design, the fabrication, the chemistry and testing of the first two SSR1 (Single Spoke Resonator type-1) prototype cavities that were built. These cavities operate at 325 MHz with {beta} = 0.21. The design and testing of the input coupler and the tuning mechanism are also discussed.

  4. Conservatism implications of shock test tailoring for multiple design environments

    NASA Technical Reports Server (NTRS)

    Baca, Thomas J.; Bell, R. Glenn; Robbins, Susan A.

    1987-01-01

    A method for analyzing shock conservation in test specifications that have been tailored to qualify a structure for multiple design environments is discussed. Shock test conservation is qualified for shock response spectra, shock intensity spectra and ranked peak acceleration data in terms of an Index of Conservation (IOC) and an Overtest Factor (OTF). The multi-environment conservation analysis addresses the issue of both absolute and average conservation. The method is demonstrated in a case where four laboratory tests have been specified to qualify a component which must survive seven different field environments. Final judgment of the tailored test specification is shown to require an understanding of the predominant failure modes of the test item.

  5. Design of a 1-MV induction injector for the Relativistic Klystron Two-Beam Accelerator

    SciTech Connect

    Anderson, D.E.; Eylon, S.; Lidia, S.; Reginato, L.; Vanecek, D.; Yu, S.; Houck, T.; Westenskow, G.A.; Henestroza, E.

    1997-05-01

    A Relativistic Klystron Two-Beam Accelerator (RK-TBA) is envisioned as a rf power source upgrade of the Next Linear Collider. Construction of a prototype, called the RTA, based on the RK-TBA concept has commenced at the Lawrence Berkeley National Laboratory. This prototype will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. The first half of the injector, a 1 MeV, 1.2 kA, 300 ns induction electron gun, has been built and is presently being tested. The design of the injector cells and the pulsed power drive units are presented in this paper.

  6. Origami Optimization: Role of Symmetry in Accelerating Design

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Durstock, Michael; Reich, Gregory; Joo, James; Vaia, Richard

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. Design optimization tools have recently been developed to predict optimal fold patterns with mechanics-based metrics, such as the maximal energy storage, auxetic response and actuation. Origami actuator design problems possess inherent symmetries associated with the grid, mechanical boundary conditions and the objective function, which are often exploited to reduce the design space and computational cost of optimization. However, enforcing symmetry eliminates the prediction of potentially better performing asymmetric designs, which are more likely to exist given the discrete nature of fold line optimization. To better understand this effect, actuator design problems with different combinations of rotation and reflection symmetries were optimized while varying the number of folds allowed in the final design. In each case, the optimal origami patterns transitioned between symmetric and asymmetric solutions depended on the number of folds available for the design, with fewer symmetries present with more fold lines allowed. This study investigates the interplay of symmetry and discrete vs continuous optimization in origami actuators and provides insight into how the symmetries of the reference grid regulate the performance landscape. This work was supported by the Air Force Office of Scientific Research.

  7. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz. PMID:24593537

  8. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy

    SciTech Connect

    Inoue, T. Sugimoto, S.; Sasai, K.; Hattori, T.

    2014-02-15

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  9. Prototype 1.75 MV X-band linear accelerator testing for medical CT and industrial nondestructive testing applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Vanderet, Steven; Zentai, George; Star-Lack, Josh; LaFave, Richard; Virshup, Gary

    2015-03-01

    Flat panel imagers based on amorphous silicon technology (a-Si) for digital radiography are accepted by the medical and industrial community as having several advantages over radiographic film-based systems. Use of Mega-voltage x-rays with these flat panel systems is applicable to both portal imaging for radiotherapy and for nondestructive testing (NDT) and security applications. In the medical field, one potential application that has not been greatly explored is to radiotherapy treatment planning. Currently, such conventional computed tomographic (CT) data acquired at kV energies is used to help delineate tumor targets and normal structures that are to be spared during treatment. CT number accuracy is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kV X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Using the X-ray treatment beams, having energies typically >=6MV, to acquire the CT data may not be practical if it is desired to maintain contrast sensitivity at a sufficiently low dose. Nondestructive testing imaging systems can expand their application space with the development of the higher energy accelerator for use in pipeline, and casting inspection as well as certain cargo screening applications that require more penetration. A new prototype x-band BCL designed to operate up to 1.75 MV has been designed built and tested. The BCL was tested with a prototype portal imager and medical phantoms to determine artifact reductions and a PaxScan 2530HE industrial imager to demonstrate resolution is maintained and penetration is improved.

  10. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  11. 10-GW CO{sub 2} laser system at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Pogorelsky, I.; Fischer, J.; Fisher, A.S.

    1993-12-31

    Design and performance of a high peak-power CO{sub 2} laser system to produce subnanosecond IR pulses for electron acceleration experiment are presented. We discuss theoretical aspects of the picosecond laser pulse propagation in a molecular amplifier and a design approach towards compact Terawatt CO{sub 2} laser systems.

  12. Design and Testing of a Small Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.

    2015-01-01

    The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.

  13. Developing an accelerated test of coking tendencies of alternative fuels

    SciTech Connect

    Clevenger, M.D.; Bagby, M.O.; Schwab, A.W.; Goering, C.E.; Savage, L.D.

    1988-07-01

    Burning vegetable oils in direct-injected diesel engines leads to nozzle and combustion chamber coking and eventually to engine damage. Because typical durability tests to detect coking tendencies of fuels are expensive, a one-cylinder diesel engine was instrumented and automated to enable external detection of engine coking in only 5 h. The heat release pattern revealed shifts to later burning as coke accumulated in the engine, but exhaust emissions showed little correlation with coke accumulation.

  14. Strength prediction of fly ash concretes by accelerated testing

    SciTech Connect

    Tokyay, M.

    1999-11-01

    Relationships between standard compressive strength at 7, 28, and 90 days and early strength attained by (1) autogeneous curing, (2) warm water curing, and (3) boiling water curing were obtained and a regression expression to predict the strength of concretes containing high-lime and low-lime fly ashes as partial cement replacement are proposed. The control concretes were designed for 28-day characteristic compressive strengths, f{sub ck28} = 40, 60, 65, and 70 MPa. All concretes were proportioned to keep the slump at 80--100 mm. The curing methods used were in accordance with the relevant ASTM and Turkish standards.

  15. Spiral 2 cryogenic system overview: Design, construction and performance test

    NASA Astrophysics Data System (ADS)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-01

    The new particle accelerator project Spiral 2 at GANIL ("Grand Accélérateur d'Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  16. Spiral 2 cryogenic system overview: Design, construction and performance test

    SciTech Connect

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  17. Investigation of hypersonic ramjet propulsion cycles using a ram accelerator test facility

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Chew, G.; De Turenne, J. A.; Dunmire, B.

    1991-01-01

    Experimental research on hypersonic propulsion using a ram accelerator test facility is presented. The gasdynamics of the ram accelerator has been studied experimentally in a 38-mm bore facility over the Mach number range of 2.5 to 8.5, using methane- and ethylene-based propellant mixtures. Three different propulsive modes, centered on the Chapman-Jouguet (C-J) detonation speed of the combustible gas, have been experimentally observed. Projectiles have been accelerated smoothly from velocities below to above the C-J speed within a single propellant mixture.

  18. Using Globular Clusters to Test Gravity in the Weak Acceleration Regime

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Marconi, Gianni; Gilmozzi, Roberto; Carraro, Giovanni

    2007-06-01

    We report on the results from an ongoing programme aimed at testing Newton's law of gravity in the low acceleration regime using globular clusters. We find that all clusters studied so far behave like galaxies, that is, their velocity dispersion profiles flatten out at large radii where the acceleration of gravity goes below 10 8 cm s 2, instead of following the expected Keplerian fall-off. In galaxies this behaviour is ascribed to the existence of a dark matter halo. Globular clusters, however, are not supposed to contain dark matter, hence this result might indicate that our present understanding of gravity in the weak regime of accelerations is incomplete and possibly incorrect.

  19. High irradiance UV/condensation testers allow faster accelerated weathering test results

    SciTech Connect

    Brennan, P.J.; Fedor, G.R.

    1993-12-31

    Because outdoor exposures are so time consuming, accelerated laboratory testing is used extensively by industry. One of the more popular laboratory weathering testers is the ASTM G53 UV/Condensation device, also known as the QUV. This paper examines an enhancement to the G53 weather tester that allows precise control of light output and higher than previous light intensity levels. Data is presented on the accelerating effect of higher irradiance on several common polymers.

  20. Degradation Mechanisms and Accelerated Testing in PEM Fuel Cells

    SciTech Connect

    Borup, Rodney L.

    2011-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel or oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability.

  1. High power testing of a fused quartz-based dielectric-loaded accelerating structure.

    SciTech Connect

    Power, J. G.; Konecny, R.; Gai, W.; Yusof, Z.; Gold, S. H.; Kinkead, A.; Dolgashev, V.; Tantawi, S. G.; Jing, C.; High Energy Physics; Euclid techlabs, LLC; LET Corp.; SLAC; NRL

    2008-01-01

    We report on the most recent results from a series of high power tests being carried out on rf-driven dielectric-loaded accelerating (DLA) structures. The purpose of these tests is to determine the viability of the DLA as a traveling-wave accelerator and is a collaborative effort between Argonne National Laboratory (ANL), Naval Research Laboratory (NRL), and Stanford Linear Accelerator Center (SLAC). In this paper, we report on the recent high power tests of a fused quartz-based DLA structure that was carried out at incident powers of up to 12 MW at NRL and 37 MW at SLAC. We also report on test results of a TiN coated quartz structure, that exhibits good multipactor suppression.

  2. High Power Testing of A Fused Quartz-based Dielectric-Loaded Accelerating Structure

    SciTech Connect

    Jing, C.; Power, J.G.; Konecny, R.; Gai, W.; Yusof, Z.; Gold, S.H.; Kinkead, A.K.; Dolgashev, V.; Tantawi, S.G.; /SLAC

    2007-11-07

    We report on the most recent results from a series of high power tests being carried out on rf-driven dielectric loaded accelerating (DLA) structures. The purpose of these tests is to determine the viability of the DLA as a traveling-wave accelerator and is a collaborative effort between Argonne National Laboratory (ANL), Naval Research Laboratory (NRL), and Stanford Linear Accelerator Center (SLAC). In this paper, we report on the recent high power tests of a fused quartz-based DLA structure that was carried out at incident powers of up to 12 MW at NRL and 37 MW at SLAC. We also report on test results of a TiN coated quartz structure, that exhibits good multipactor suppression.

  3. 2D accelerator design for SITEX negative ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined.

  4. Kangaroo rat locomotion: design for elastic energy storage or acceleration?

    PubMed

    Biewener, A A; Blickhan, R

    1988-11-01

    Mechanical stresses (force/cross-sectional area) acting in muscles, tendons and bones of the hindlimbs of kangaroo rats (Dipodomys spectabilis) were calculated during steady-speed hops and vertical jumps. Stresses were determined from both high-speed ciné films (light and X-ray) and force plate recordings, as well as from in vivo tendon force recordings. Stresses in each hindlimb support element during hopping (1.6-3.1 m s-1) were generally only 33% of those acting during jumping (greater than or equal to 40 cm height): ankle extensor muscles, 80 +/- 12 (S.D.) versus 297 +/- 42 kPa; ankle extensor tendons, 7.9 +/- 1.5 versus 32.7 +/- 4.8 MPa; tibia, -29 +/- 5 versus -110 +/- 25 MPa (all values are for hopping versus jumping). The magnitude of stress in each structure during these locomotor activities was similarly matched to the strength of each element, so that a consistent safety factor to failure is achieved for the hindlimb as a whole (1.5-2.0). The large stresses during jumping were correlated with a three-fold increase in ground reaction forces exerted on the ground compared with the fastest steady hopping speeds. We conclude that, for its size, the kangaroo rat has disproportionately large hindlimb muscles, tendons and bones to withstand the large forces associated with rapid acceleration to avoid predation, which limits their ability to store and recover elastic strain energy. Middle ear morphology and behavioural observations of kangaroo rats jumping vertically to avoid predation by owls and rattlesnakes support this view.

  5. Designing a Gas Test Loop for the Advanced Test Reactor

    SciTech Connect

    James R. Parry

    2005-11-01

    The Generation IV Reactor Program and the Advanced Fuel Cycle Initiative are investigating some new reactor concepts which require extensive materials and fuels testing in a fast neutron spectrum. The capability to test materials and fuels in a fast neutron flux in the United States is very limited to non-existent. It has been proposed to install a gas test loop (GTL) in one of the lobes of the Advanced Test Reactor (ATR) at the Idaho National Laboratory and harden the spectrum to provide some fast neutron flux testing capabilities in the United States. This paper describes the neutronics investigation into the design of the GTL for the ATR.

  6. Variable frequency heavy-ion linac, RILAC I. Design, construction and operation of its accelerating structure

    NASA Astrophysics Data System (ADS)

    Odera, Masatoshi; Chiba, Yoshiaki; Tonuma, Tadao; Hemmi, Masatake; Miyazawa, Yoshitoshi; Inoue, Toshihiko; Kambara, Tadashi; Kase, Masayuki; Kubo, Toshiyuki; Yoshida, Fusako

    1984-11-01

    A variable frequency linear accelerator at RIKEN (IPCR), which is named RILAC, is designed to accelerate ions of almost every element in the periodic table. In this report, the design, construction and performance of the resonator cavities of this linac are described. A new accelerating structure was developed for the variable frequency scheme. The principal aim of the development was to obtain a configuration within the cavity to keep a uniform voltage distribution along the accelerating axis over the wide range of resonant frequencies required. The final form adopted is a coaxial quarter-wave type resonator with a race-track-like cross section for its coaxial inner and outer conductors. It has a movable shorting device as a frequency tuner and its open end is enlarged and loaded with drift tubes, connected to the inner and outer conductors alternatingly. The structure can maintain the required uniformity of the accelerating voltage within 10% in spite of resonant frequency tuning between 17 and 45 MHz. A relatively modest accelerating gradient was chosen so that cw operation could be realized. The RILAC is composed of six such cavities which are independently excited and it succeeded in the acceleration of a beam through all the cavities in 1981.

  7. LLNL Precision Compton Scattering Light Source: X-band RF Photoinjector and Accelerator Design

    NASA Astrophysics Data System (ADS)

    Marsh, Roark; Anderson, S. G.; Gibson, D. J.; Wu, S. S.; Hartemann, F. V.; Houck, T. L.; Ebbers, C.; Scarpetti, R. D.; Barty, C. P. J.; Adolphsen, C.; Chu, T. S.; Li, Z.; Tantawi, S. G.; Vlieks, A. E.; Wang, J. W.; Raubenheimer, T. O.

    2010-11-01

    The design and optimization of a Mono-Energetic Gamma-Ray (MEGa-Ray) Compton scattering source are presented. This precision light source with up to 2.5 MeV photon energy is currently being built at LLNL using high gradient X-band accelerator technology in collaboration with SLAC. The design of a high brightness 5.59 cell X-band RF photoinjector will be presented. An ``early light'' machine has been designed using the 250 pC, <1mm-mrad electron bunches from the photoinjector, a single T53 traveling wave accelerator section, and Joule-class diode pumped laser pulses to produce diagnostic Compton scattered photons. Design of this ``early-light'' machine will be presented with discussion of the various components, layout considerations, and plans for the full 250 MeV linear accelerator.

  8. Computerized Adaptive Testing System Design: Preliminary Design Considerations.

    ERIC Educational Resources Information Center

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  9. Sensitivity of 30-cm mercury bombardment ion thruster characteristics to accelerator grid design

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1978-01-01

    The design of ion optics for bombardment thrusters strongly influences overall performance and lifetime. The operation of a 30 cm thruster with accelerator grid open area fractions ranging from 43 to 24 percent, was evaluated and compared with experimental and theoretical results. Ion optics properties measured included the beam current extraction capability, the minimum accelerator grid voltage to prevent backstreaming, ion beamlet diameter as a function of radial position on the grid and accelerator grid hole diameter, and the high energy, high angle ion beam edge location. Discharge chamber properties evaluated were propellant utilization efficiency, minimum discharge power per beam amp, and minimum discharge voltage.

  10. Mechanical Component Lifetime Estimation Based on Accelerated Life Testing with Singularity Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Chuckpaiwong, I.; Liang, S. Y.; Seth, B. B.

    2002-07-01

    Life testing under nominal operating conditions of mechanical parts with high mean lifetime between failure (MTBF) often consumes a significant amount of time and resources, rendering such procedures expensive and impractical. As a result, the technology of accelerated life testing (ALT) has been developed for testing at high stress levels (e.g. temperature, voltage, pressure, corrosive media, load, vibration amplitude, etc.) so that it can be extrapolated—through a physically reasonable statistical model—to obtain estimations of life at lower, normal stress levels or even limit stress levels. However, the issue of prediction accuracy associated with extrapolating data outside the range of testing, or even to a singularity level (no stress), has not yet been fully addressed. In this research, an accelerator factor is introduced into an inverse power law model to estimate the life distribution in terms of time and stresses. Also, a generalized Eyring model is set up for singularity extrapolation in handling limit stress level conditions. The procedure to calibrate the associated shape factors based on the maximum likelihood principle is also formulated. The methodology implementation, based on a one-main-step, multiple-step-stress test scheme, is experimentally illustrated with tapered roller bearing under the stress of environmental corrosion as a case study. The experimental results show that the developed accelerated life test model can effectively evaluate the life probability of a bearing based on accelerated testing data when extrapolating to the stress levels within or outside the range of testing.

  11. ACCELERATORS: Study of the design of CSNS MEBT

    NASA Astrophysics Data System (ADS)

    Ouyang, Hua-Fu; Liu, Hua-Chang; Fu, Shi-Nian

    2009-07-01

    The design of CSNS MEBT has two objectives: (1) to match the beam both in the transversal direction and the longitudinal direction from RFQ into DTL; (2) to further chop the beam into the required time structure asked by RCS. It is very difficult and critical to control well the emittance growth and in the meantime to match and chop the beam. Firstly, the optical design is done and optimized, and the multi-particle simulations show that the maximum emittance growth is successfully controlled within 14%. Secondly, based on the different beam envelopes obtained by TRACE-3D and PARMELA, the least deflecting angle of the chopper is determined by TRACE-3D. At last, the field of steering magnet is determined through simulations.

  12. Accelerator production of tritium pollution prevention design assessment

    SciTech Connect

    Reynolds, R.; Nowacki, P.; Sheetz, S.O.; Lanik, P.

    1997-09-18

    This Pollution Prevention Design Assessment (PPDA) provides data for cost-benefit analysis of the potential environmental impact of the APT, is an integral part of pollution prevention/waste minimization, and is required by DOE for any activity generating radioactive, hazardous, and mixed wastes. It will also better position the APT to meet future requirements, since it is anticipated that regulatory and other requirements will continue to become more restrictive and demanding.

  13. Los Alamos Novel Rocket Design Flight Tested

    SciTech Connect

    Tappan, Bryce

    2014-10-23

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  14. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2016-07-12

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  15. Transvers Impedance Measurements of the Modified DARHT-2Accelerator Cell Design

    SciTech Connect

    Briggs, Dick; Waldron, Will

    2005-11-30

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at {approx}300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program.

  16. Testing Multiple Outcomes in Repeated Measures Designs

    ERIC Educational Resources Information Center

    Lix, Lisa M.; Sajobi, Tolulope

    2010-01-01

    This study investigates procedures for controlling the familywise error rate (FWR) when testing hypotheses about multiple, correlated outcome variables in repeated measures (RM) designs. A content analysis of RM research articles published in 4 psychology journals revealed that 3 quarters of studies tested hypotheses about 2 or more outcome…

  17. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  18. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  19. Globular Clusters as a Test for Gravity in the Weak Acceleration Regime

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Marconi, Gianni; Gilmozzi, Roberto

    2006-03-01

    Non-baryonic Dark Matter (DM) appears in galaxies and other cosmic structures when and only when the acceleration of gravity, as computed considering only baryons, goes below a well defined value a0 = 1.2 × 10-8 cm s-2. This fact is extremely important and suggestive of the possibility of a breakdown of Newton's law of gravity (or inertia) below a0. It is therefore important to verify whether Newton's law of gravity holds in this regime of accelerations. In order to do this, one has to study the dynamics of objects that do not contain significant amounts of DM and therefore should follow Newton's prediction for whatever small accelerations. Globular clusters are believed, even by strong supporters of DM, to contain negligible amounts of DM and therefore are ideal for testing Newtonian dynamics in the low acceleration limit. Here, we discuss the status of an ongoing program aimed to do this test. Compared to other studies of globular clsuters, the novelty is that we trace the velocity dispersion profile of globular clusters far enough from the center to probe gravitational accelerations well below a0. In all three clusters studied so far the velocity dispersion is found to remain constant at large radii rather than follow the Keplerian falloff. On average, the flattening occurs at the radius where the cluster internal acceleration of gravity is 1.8 +/- 0.4 × 10-8 cm s-2, fully consistent with MOND predictions.

  20. Predicting in-service fatigue life of flexible pavements based on accelerated pavement testing

    NASA Astrophysics Data System (ADS)

    Guo, Runhua

    Pavement performance prediction in terms of fatigue cracking and surface rutting are essential for any mechanistically-based pavement design method. Traditionally, the estimation of the expected fatigue field performance has been based on the laboratory bending beam test. Full-scale Accelerated Pavement Testing (APT) is an alternative to laboratory testing leading to advances in practice and economic savings for the evaluation of new pavement configurations, stress level related factors, new materials and design improvements. This type of testing closely simulates field conditions; however, it does not capture actual performance because of the limited ability to address long-term phenomena. The same pavement structure may exhibit different response and performance under APT than when in-service. Actual field performance is better captured by experiments such as Federal Highway Administration's Long-Term Pavement Performance (LTPP) studies. Therefore, to fully utilize the benefits of APT, there is a need for a methodology to predict the long-term performance of in-service pavement structures from the results of APT tests that will account for such differences. Three models are generally suggested to account for the difference: shift factors, statistical and mechanistic approaches. A reliability based methodology for fatigue cracking prediction is proposed in this research, through which the three models suggested previously are combined into one general approach that builds on their individual strengths to overcome some of the shortcomings when the models are applied individually. The Bias Correction Factor (BCF) should account for all quantifiable differences between the fatigue life of the pavement site under APT and in-service conditions. In addition to the Bias Correction Factor, a marginal shifty factor, M, should be included to account for the unquantifiable differences when predicting the in-service pavement fatigue life from APT. The Bias Correction Factor

  1. The mechatronic design of a fast wire scanner in IHEP U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Baranov, V. T.; Makhov, S. S.; Savin, D. A.; Terekhov, V. I.

    2016-10-01

    This paper presents the mechatronic design of a fast wire scanner based on a servomotor. The design of the wire scanner is motivated by the need to measure the transverse profile of the high power proton and carbon beams at the IHEP U-70 accelerator. This paper formulates the requirements to the fast wire scanner system for the high intensity proton beam at the U-70 accelerator. The results on the design of electro-mechanical device for the wire scanner with a wire traveling speed 10-20 m/s are presented. The solution consists in a brushless servomotor and standard motor control electronics. High radiation levels in the accelerator enclosure dictate the use of a resolver as the position feedback element.

  2. Design of a non-scaling FFAG accelerator for proton therapy

    SciTech Connect

    Trbojevic, D.; Ruggiero, A.G.; Keil, E.; Neskovic, N.; Belgrade, Vinca; Sessler, A.

    2005-04-01

    In recent years there has been a revival of interest in Fixed Field Alternating Gradient (FFAG) accelerators. In Japan a number have been built, or are under construction. A new non-scaling approach to the FFAG reduces the required orbit offsets during acceleration and the size of the required aperture, while maintaining the advantage of the low cost magnets associated with fixed fields. An advantage of the non-scaling FFAG accelerator, with respect to synchrotrons, is the fixed field and hence the possibility of high current and high repetition rate for spot scanning. There are possible advantages of the nonscaling design with respect to fixed-field cyclotrons. The non-scaling FFAG allows strong focusing and hence smaller aperture requirements compared to scaling designs, thus leading to very low losses and better control over the beam. We present, here, a non-scaling FFAG designed to be used for proton therapy.

  3. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    SciTech Connect

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-02-06

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator.

  4. Overview of the IFMIF test cell design

    SciTech Connect

    Moeslang, A.; Daum, E.; Haines, J.R.; Williams, D.M.; Jitsukawa, S.; Noda, K.; Viola, R.

    1996-10-01

    The Conceptual Design Activity (CDA) for the International Fusion Materials Irradiation Facility (IFMIF) has entered its second and final year, and an outline design has been developed. Initial evaluations of the potential of this high flux, high intensity D-Li source have shown that the main materials testing needs can be fulfilled. According to these needs, Vertical Test Assemblies will accommodate test modules for the high flux (0.5 liter, 20 dpa/a, 250-1000 C), the medium flux (6 liter, 1-20 dpa/a, 250-1000 C), the low flux (7.5 liter, 0.1-1 dpa/a), and the very low flux (> 100 liter, 0.01-0.1 dpa/a) regions. Detailed test matrices have been defined for the high and medium flux regions, showing that on the basis of small specimen test technologies, a database for an engineering design of an advanced fusion reactor (DEMO) can be established for a variety of structural materials and ceramic breeders. The design concepts for the Test Cell, including test assemblies, remote handling equipment and Hot Cell Facilities with capacity for investigating all irradiation specimens at the IFMIF site are described.

  5. Production and test results of SC 3.9-GHz accelerating cavity at Fermilab

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charlie; Edwards, Helen; Foley, Mike; Gonin, Ivan; Mitchell, Donald; Olis, D.; Rowe, Allan; Salman, Tariq; Solyak, Nikolay; /Fermilab

    2006-08-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances for TTF-FEL facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. In this paper we discuss the status of the cavity and coupler production and the first result of cavity tests. It is hoped that this project will be completed during the first half of 2007 and the cryomodule delivered to DESY in this time span.

  6. Construction and testing of an 11.4 GHz dielectric structure based travelling wave accelerator.

    SciTech Connect

    Gai, W.; Konecny, R.; Wong, T.; Zou, P.

    1999-03-26

    One major challenge in constructing a dielectric loaded traveling wave accelerator powered by an external rf power source is the difficulty in achieving efficient coupling. In this paper, we report that we have achieved high efficiency broadband coupling by using a combination of a tapered dielectric section and a carefully adjusted coupling slot. We are currently constructing an 11.4 GHz accelerator structure loaded with a permitivity=20 dielectric. Bench testing has demonstrated a coupling efficiency in excess of 95% with bandwidth of 600 MHz. The final setup will be tested at high power at SLAC using an X-band klystron rf source.

  7. Recent advances in software for beamline design, accelerator operations and personnel training

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.; Martono, Hendy; Moore, John M.

    2000-03-01

    Accelerators are finding new applications in research, industry, medicine, as well as other fields, and there is a growing need for new tools to improve the productivity of scientists and engineers involved with these emerging accelerator applications. Several advances in computer software have been made that focus on meeting those needs. This paper summarizes recent work in the development of a unique software framework designed specifically to support the accelerator community: the Multi-Platform Shell for Particle Accelerator Related Codes (SPARC MP). SPARC MP includes a sophisticated beamline object model, an extensive library of GUI components, and supports a variety of particle optics codes and add-on tools. This framework has been used to create the Particle Beam Optics Laboratory (PBO Lab TM) family of software applications. PBO Lab has been used for beamline design, as a computer aid for teaching particle optics, and to support accelerator operations. Several popular charged particle optics programs, including MARYLIE, TRANSPORT, TURTLE and TRACE 3-D, have been integrated with a new version of PBO Lab. The modeling and simulation capabilities of these codes allow PBO Lab to support a wide spectrum of accelerator types. New external data interface tools are available to import beamline parameters from other sources, for example, to utilize magnet strengths generated by a control system. An overview of the new version of PBO Lab is presented.

  8. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  9. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads.

    PubMed

    Cassanto, J M; Ziserman, H I; Chapman, D K; Korszun, Z R; Todd, P

    1988-01-01

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 x g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 x g maximum in one case and 4 x g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the "Materials Dispersion Apparatus" of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  10. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  11. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  12. Experimental Testing of a Micron-Scale Laser-Powered Accelerator

    SciTech Connect

    Travish, G.; Arab, E.; Lacroix, U. H.; Rosenzweig, J. B.; Vartanian, N.; Yoder, R. B.

    2009-01-22

    An experimental program to develop, perfect, and demonstrate a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The effort includes parallel development of a particle source to be integrated with the accelerator, forming a monolithic radiation source. We present results from first-round cold tests of the structure resonance on a simplified metal-walled device, containing >100 structure periods in an area of 100x20 {mu}m. The resonance frequency and strength can be observed via reflection and transmission measurements on the drive laser. Initial measurements may be consistent with simulation. We also report on the status of the electron source development and on work toward an acceleration test in an all-dielectric structure.

  13. Current Lead Design for the Accelerator Project for Upgrade of LHC

    SciTech Connect

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  14. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  15. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  16. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-20

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  17. Status and Plans for the Accelerator Working Group of the International Design Study of the Neutrino Factory

    SciTech Connect

    Berg, J. Scott

    2010-03-30

    The purpose of the International Design Study of the Neutrino Factory (IDS-NF) is to produce a design report for a neutrino factory in 2013. I report the status of the accelerator design and plans for future studies.

  18. Design of a MeV, 4kA linear induction accelerator for flash radiography

    SciTech Connect

    Kulke, B.; Brier, R.; Chapin, W.

    1981-02-10

    For verifying the hydrodynamics of nuclear weapons design it is useful to have flash x-ray machines that can deliver a maximum dose in a minimum pulse length and with very high reliability. At LLNL, such a requirement was identified some years ago as 500 roentgens at one meter, in a 60 nsec pulse length. In response to this requirement, a linear induction accelerator was proposed to and funded by DOE in 1977. The design of this machine, called FXR, has now been completed and construction has begun. The FXR design extends the parameters of a similar machine that had been built and operated at LBL, Berkeley, some ten years ago. Using a cold cathode injector followed by 48 accelerator modules rated at 400 kV each, the FXR machine will accelerate a 4 kA electron beam pulse to 20 MeV final energy. Key design features are the generation and the stable transport of a low emittance (100 mr-cm) beam from a field emitter diode, the design of reliable, compact energy storage components such as Blumleins, feedlines and accelerator modules, and a computer-assisted control system.

  19. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    SciTech Connect

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H.; Dmitruk, P.; Greco, A.

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  20. Designing surveys for tests of gravity.

    PubMed

    Jain, Bhuvnesh

    2011-12-28

    Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several distinct signatures of gravity theories exist outside the 'linear' regime, especially owing to the screening mechanism that operates inside halos such as the Milky Way to ensure that gravity tests in the solar system are satisfied. This opens up several decades in length scale and classes of galaxies at low redshift that can be exploited by surveys. While theoretical work on models of gravity is in the early stages, we can already identify new regimes that cosmological surveys could target to test gravity. These include: (i) a small-scale component that focuses on the interior and vicinity of galaxy and cluster halos, (ii) spectroscopy of low-redshift galaxies, especially galaxies smaller than the Milky Way, in environments that range from voids to clusters, and (iii) a programme of combining lensing and dynamical information, from imaging and spectroscopic surveys, respectively, on the same (or statistically identical) sample of galaxies.

  1. Designing surveys for tests of gravity.

    PubMed

    Jain, Bhuvnesh

    2011-12-28

    Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several distinct signatures of gravity theories exist outside the 'linear' regime, especially owing to the screening mechanism that operates inside halos such as the Milky Way to ensure that gravity tests in the solar system are satisfied. This opens up several decades in length scale and classes of galaxies at low redshift that can be exploited by surveys. While theoretical work on models of gravity is in the early stages, we can already identify new regimes that cosmological surveys could target to test gravity. These include: (i) a small-scale component that focuses on the interior and vicinity of galaxy and cluster halos, (ii) spectroscopy of low-redshift galaxies, especially galaxies smaller than the Milky Way, in environments that range from voids to clusters, and (iii) a programme of combining lensing and dynamical information, from imaging and spectroscopic surveys, respectively, on the same (or statistically identical) sample of galaxies. PMID:22084295

  2. Designing, engineering, and testing wood structures

    NASA Technical Reports Server (NTRS)

    Gorman, Thomas M.

    1992-01-01

    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  3. DTL cavity design and beam dynamics for a TAC linear proton accelerator

    NASA Astrophysics Data System (ADS)

    Caliskan, A.; Yılmaz, M.

    2012-02-01

    A 30 mA drift tube linac (DTL) accelerator has been designed using SUPERFISH code in the energy range of 3-55 MeV in the framework of the Turkish Accelerator Center (TAC) project. Optimization criteria in cavity design are effective shunt impedance (ZTT), transit-time factor and electrical breakdown limit. In geometrical optimization we have aimed to increase the energy gain in each RF gap of the DTL cells by maximizing the effective shunt impedance (ZTT) and the transit-time factor. Beam dynamics studies of the DTL accelerator have been performed using beam dynamics simulation codes of PATH and PARMILA. The results of both codes have been compared. In the beam dynamical studies, the rms values of beam emittance have been taken into account and a low emittance growth in both x and y directions has been attempted.

  4. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  5. Accelerating Universe from Gravitational Leakage into Extra Dimensions: Testing with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zhu, Zong-Hong; Alcaniz, Jailson S.

    2005-02-01

    There is mounting observational evidence that the expansion of our universe is undergoing an acceleration. A dark energy component has usually been invoked as the most feasible mechanism for the acceleration. However, it is desirable to explore alternative possibilities motivated by particle physics before adopting such an untested entity. In this work, we focus our attention on an acceleration mechanism arising from gravitational leakage into extra dimensions. We test this scenario with high-z Type Ia supernovae compiled by Tonry and coworkers and recent measurements of the X-ray gas mass fractions in clusters of galaxies published by Allen and coworkers. A combination of the two databases gives, at a 99% confidence level, Ωm=0.29+0.04-0.02, Ωrc=0.21+/-0.08, and Ωk=-0.36+0.31-0.35, indicating a closed universe. We then constrain the model using the test of the turnaround redshift, zq=0, at which the universe switches from deceleration to acceleration. We show that, in order to explain that acceleration happened earlier than zq=0=0.6 within the framework of gravitational leakage into extra dimensions, a low matter density, Ωm<0.27, or a closed universe is necessary.

  6. Results of metallographical diagnostic examination of Navy half-watt thermoelectric converters degraded by accelerated tests

    NASA Technical Reports Server (NTRS)

    Rosell, F. E., Jr.; Rouklove, P. G.

    1977-01-01

    To verify the 15-year reliability of the Navy half-watt radioisotope thermoelectric generator (RTG), bismuth-telluride thermoelectric converters were submitted to testing at high temperatures which accelerated the degradation and caused failure of the converters. Metallographic diagnostic examination of failed units verified failure mechanisms. Results of diagnostic examinations are presented.

  7. HEART Pathway Accelerated Diagnostic Protocol Implementation: Prospective Pre-Post Interrupted Time Series Design and Methods

    PubMed Central

    Wells, Brian J

    2016-01-01

    Background Most patients presenting to US Emergency Departments (ED) with chest pain are hospitalized for comprehensive testing. These evaluations cost the US health system >$10 billion annually, but have a diagnostic yield for acute coronary syndrome (ACS) of <10%. The history/ECG/age/risk factors/troponin (HEART) Pathway is an accelerated diagnostic protocol (ADP), designed to improve care for patients with acute chest pain by identifying patients for early ED discharge. Prior efficacy studies demonstrate that the HEART Pathway safely reduces cardiac testing, while maintaining an acceptably low adverse event rate. Objective The purpose of this study is to determine the effectiveness of HEART Pathway ADP implementation within a health system. Methods This controlled before-after study will accrue adult patients with acute chest pain, but without ST-segment elevation myocardial infarction on electrocardiogram for two years and is expected to include approximately 10,000 patients. Outcomes measures include hospitalization rate, objective cardiac testing rates (stress testing and angiography), length of stay, and rates of recurrent cardiac care for participants. Results In pilot data, the HEART Pathway decreased hospitalizations by 21%, decreased hospital length (median of 12 hour reduction), without increasing adverse events or recurrent care. At the writing of this paper, data has been collected on >5000 patient encounters. The HEART Pathway has been fully integrated into health system electronic medical records, providing real-time decision support to our providers. Conclusions We hypothesize that the HEART Pathway will safely reduce healthcare utilization. This study could provide a model for delivering high-value care to the 8-10 million US ED patients with acute chest pain each year. ClinicalTrial Clinicaltrials.gov NCT02056964; https://clinicaltrials.gov/ct2/show/NCT02056964 (Archived by WebCite at http://www.webcitation.org/6ccajsgyu) PMID:26800789

  8. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Liejin; Liu, Hongtan

    2015-11-01

    The mechanisms of performance recovery after accelerated stress test (AST) in proton exchange membrane fuel cells (PEMFCs) are systematically studied. Experiments are carried out by incorporating a well-designed performance recovery procedure right after the AST protocol. The experiment results show that the cell performance recovers significantly from the degraded state after the AST procedure. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements further show that the performance recovery can be divided into kinetic and mass transport recoveries. It is further determined that the kinetic recovery, i.e. the recovery of electrochemical active area (ECA), is due to two distinct mechanisms: the reduction of platinum oxide and the re-attachment of detached platinum nanoparticles onto the carbon surface. The mass transport resistance is probably due to reduction of hydrophilic oxide groups on the carbon surface and the microstructure change that alleviates flooding. Performance comparisons show that the recovery procedure is highly effective, indicating the results of AST significantly over-estimate the true degradation in a PEM fuel cell. Therefore, a recovery procedure is highly recommended when an AST protocol is used to evaluate cell degradations to avoid over-estimating true performance degradations in PEMFCs.

  9. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  10. Accelerated Stress Testing of Thin-Film Modules with SnO2:F Transparent Conductors

    SciTech Connect

    Osterwald, C. R.; McMahon, T. J.; del Cueto, J. A.; Adelstein, J.; Puett, J.

    2003-05-01

    This paper reviews a testing program conducted at NREL for the past two years that applied voltage, water vapor, and light stresses to thin-film photovoltaic (PV) modules with SnO2:F transparent conducting oxides (TCOs) deposited on soda-lime glass superstrates. Electrochemical corrosion at the glass-TCO interface was observed to result in delamination of the thin-film layers. Experimental testing was directed toward accelerating the corrosion and understanding the nature of the resulting damage.

  11. Design of 57.5 MHz cw RFQ structure for the rare isotope accelerator facility.

    SciTech Connect

    Ostroumov, P. N.; Kolomiets, A. A.; Kashinsky, D. A.; Minaev, S. A.; Pershin, V. I.; Yaramishev, S. G.; Tretyakova, T. E.

    2002-01-29

    The Rare Isotope Accelerator (RIA) facility includes a driver linac for production of 400 kW CW heavy-ion beams. The initial acceleration of heavy-ions delivered from an ECR ion source can be effectively performed by a 57.5 MHz four-meter long RFQ. The principal specifications of the RFQ are: (1) formation of extremely low longitudinal emittance; (2) stable operation over a wide range of voltage for acceleration of various ion species needed for RIA operation; (3) simultaneous acceleration of two-charge states of uranium ions. CW operation of an accelerating structure leads to a number of requirements for the resonators such as high shunt impedance, efficient water cooling of all parts of the resonant cavity, mechanical stability together with precise alignment, reliable rf contacts, a stable operating mode and fine tuning of the resonant frequency during operation. To satisfy these requirements a new resonant structure has been developed. This paper discusses beam dynamics and electrodynamics design of the RFQ cavity, as well as, some aspects of the mechanical design of this low-frequency CW RFQ.

  12. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Blomberg, Ben; Mihalcea, Daniel; Panuganti, Harsha; Piot, Philippe; Brau, Charles; Choi, Bo; Gabella, William; Ivanov, Borislav; Mendenhall, Marcus; Lynn, Christopher; Sen, Tanaji; Wagner, Wolfgang

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  13. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  14. Siemens SOFC Test Article and Module Design

    SciTech Connect

    2011-03-31

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  15. Development of backsheet tests and measurements to improve correlation of accelerated exposures to fielded modules

    NASA Astrophysics Data System (ADS)

    Felder, Thomas C.; Gambogi, William J.; Kopchick, James G.; Amspacher, Lucas; Peacock, R. Scott; Foltz, Benjamin; Stika, Katherine M.; Bradley, Alexander Z.; Hamzavy, Babak; Yu, Bao-Ling; Garreau-iles, Lucie; Fu, Oakland; Hu, Hongjie; Trout, T. John

    2015-09-01

    Matching accelerated test results to field observations is an important objective in the photovoltaic industry. We continue to develop test methods to strengthen correlations. We have previously reported good correlation of FTIR spectra between accelerated tests and field measurements. The availability of portable FTIR spectrometers has made measurement in the field convenient and reliable. Recently, nano-indentation has shown promise to correlate changes in backsheet mechanical properties. A precisely shaped stylus is pressed into a sample, load vs displacement recorded and mechanical properties of interest calculated in a nondestructive test. This test can be done on full size modules, allowing area variations in mechanical properties to be recorded. Finally, we will discuss optical profilometry. In this technique a white light interferogram of a surface is Fourier transformed to produce a three-dimensional image. Height differences from 1 nm to 5 mm can be detected over an area of a few cm. This technique can be used on minimodules, and is useful to determine crack and defect dimensions. Results will be presented correlating accelerated tests with fielded modules covering spectroscopic, mechanical, and morphological changes.

  16. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  17. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  18. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  19. Conceptual design of thorium-fuelled Mitrailleuse accelerator-driven subcritical reactor using D-Be neutron source

    SciTech Connect

    Kokubo, Y.; Kamei, T.

    2012-07-01

    A distributed accelerator is a charged-particle accelerator that uses a new acceleration method based on repeated electrostatic acceleration. This method offers outstanding benefits not possible with the conventional radio-frequency acceleration method, including: (1) high acceleration efficiency, (2) large acceleration current, and (3) lower failure rate made possible by a fully solid-state acceleration field generation circuit. A 'Mitrailleuse Accelerator' is a product we have conceived to optimize this distributed accelerator technology for use with a high-strength neutron source. We have completed the conceptual design of a Mitrailleuse Accelerator and of a thorium-fuelled subcritical reactor driven by a Mitrailleuse Accelerator. This paper presents the conceptual design details and approach to implementing the subcritical reactor core. We will spend the next year or so on detailed design work, and then will start work on developing a prototype for demonstration. If there are no obstacles in setting up a development organization, we expect to finish verifying the prototype's performance by the third quarter of 2015. (authors)

  20. Design and Analysis of a Micro-Optical Position Readout for Acceleration Sensing

    SciTech Connect

    Dickey, Fred M.; Holswade, Scott C.; Shagam, Richard N.

    1999-07-08

    Sandia National Laboratories is developing a MEMS-based trajectory safety subsystem, which allows enablement of critical functions only after a particular acceleration environment has been achieved. The device, known as an Environmental Sensing Device (ESD), consists of a suspended moving shuttle that translates a given distance when exposed to an appropriate acceleration environment. The shuttle contains an embedded code, consisting of grating structures, that is illuminated and optically read using a semiconductor laser and detector integrated together in a GaAs-based Photonic Integrated Circuit (PIC) flip-chip bonded to the assembly. This paper will describe the optical design and performance analysis of the embedded code features in the shuttle.

  1. Design of a grating for studying Smith-Purcell radiation and electron acceleration

    SciTech Connect

    Fernow, R.C.

    1989-01-01

    We describe work on the design of a diffraction grating which we intend to use for studying the production of Smith-Purcell radiation and the acceleration of electrons. We have developed computer codes based on the solution of the appropriate Maxwell's equations. A specific grating profile is given which is feasible to construct and which supports enhanced surface accelerating modes. We examine the possibility of using the Smith-Purcell effect to make a beam position monitor. 13 refs., 10 figs., 2 tabs.

  2. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) collaboration is developing sophisticated software tools to help improve and accelerate battery design and boost the performance and consumer appeal of electric-drive vehicles with the ultimate goal of diminishing petroleum consumption and polluting emissions.

  3. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator.

    PubMed

    Kim, Y; Choi, S; Hong, I S

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  4. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  5. A Computerized Test of Design Fluency

    PubMed Central

    Woods, David L.; Wyma, John M.; Herron, Timothy J.; Yund, E. William

    2016-01-01

    Tests of design fluency (DF) assess a participant’s ability to generate geometric patterns and are thought to measure executive functions involving the non-dominant frontal lobe. Here, we describe the properties of a rapidly administered computerized design-fluency (C-DF) test that measures response times, and is automatically scored. In Experiment 1, we found that the number of unique patterns produced over 90 s by 180 control participants (ages 18 to 82 years) correlated with age, education, and daily computer-use. Each line in the continuous 4-line patterns required approximately 1.0 s to draw. The rate of pattern production and the incidence of repeated patterns both increased over the 90 s test. Unique pattern z-scores (corrected for age and computer-use) correlated with the results of other neuropsychological tests performed on the same day. Experiment 2 analyzed C-DF test-retest reliability in 55 participants in three test sessions at weekly intervals and found high z-score intraclass correlation coefficients (ICC = 0.79). Z-scores in the first session did not differ significantly from those of Experiment 1, but performance improved significantly over repeated tests. Experiment 3 investigated the performance of Experiment 2 participants when instructed to simulate malingering. Z-scores were significantly reduced and pattern repetitions increased, but there was considerable overlap with the performance of the control population. Experiment 4 examined performance in veteran patients tested more than one year after traumatic brain injury (TBI). Patients with mild TBI performed within the normal range, but patients with severe TBI showed reduced z-scores. The C-DF test reliably measures visuospatial pattern generation ability and reveals performance deficits in patients with severe TBI. PMID:27138985

  6. Bayesian Analysis of Step-Stress Accelerated Life Test with Exponential Distribution

    SciTech Connect

    Lee, J.; Pan, R.

    2012-04-01

    In this article, we propose a general Bayesian inference approach to the step-stress accelerated life test with type II censoring. We assume that the failure times at each stress level are exponentially distributed and the test units are tested in an increasing order of stress levels. We formulate the prior distribution of the parameters of life-stress function and integrate the engineering knowledge of product failure rate and acceleration factor into the prior. The posterior distribution and the point estimates for the parameters of interest are provided. Through the Markov chain Monte Carlo technique, we demonstrate a nonconjugate prior case using an industrial example. It is shown that with the Bayesian approach, the statistical precision of parameter estimation is improved and, consequently, the required number of failures could be reduced.

  7. New Accelerated Testing and Lifetime Modeling Methods Promise Faster Development of More Durable MEAs

    SciTech Connect

    Pierpont, D. M.; Hicks, M. T.; Turner, P. L.; Watschke, T. M.

    2005-11-01

    For the successful commercialization of fuel cell technology, it is imperative that membrane electrode assembly (MEA) durability is understood and quantified. MEA lifetimes of 40,000 hours remain a key target for stationary power applications. Since it is impractical to wait 40,000 hours for durability results, it is critical to learn as much information as possible in as short a time period as possible to determine if an MEA sample will survive past its lifetime target. Consequently, 3M has utilized accelerated testing and statistical lifetime modeling tools to develop a methodology for evaluating MEA lifetime. Construction and implementation of a multi-cell test stand have allowed for multiple accelerated tests and stronger statistical data for learning about durability.

  8. Correlating outdoor exposure with accelerated aging tests for aluminum solar reflectors

    NASA Astrophysics Data System (ADS)

    Wette, Johannes; Sutter, Florian; Fernández-García, Aránzazu

    2016-05-01

    Guaranteeing the durability of concentrated solar power (CSP) components is crucial for the success of the technology. The reflectors of the solar field are a key component of CSP plants, requiring reliable methods for service lifetime prediction. So far, no proven correlations exist to relate accelerated aging test results in climate chambers with relevant CSP exposure sites. In this work, correlations have been derived for selected testing conditions that excite the same degradation mechanisms as for outdoor exposure. Those testing conditions have been identified by performing an extensive microscopic comparison of the appearing degradation mechanisms on reference samples that have been weathered outdoors with samples that underwent a high variety of accelerated aging experiments. The herein developed methodology is derived for aluminum reflectors and future work will study its applicability to silvered-glass mirrors.

  9. OUTER GALACTIC DISKS AND A QUANTITATIVE TEST OF GRAVITY AT LOW ACCELERATIONS

    SciTech Connect

    Zaritsky, Dennis; Psaltis, Dimitrios E-mail: psaltis@as.arizona.ed

    2010-09-01

    We use the recent measurement of the velocity dispersion of star-forming, outer-disk knots by Herbert-Fort et al. in the nearly face-on galaxy NGC 628, in combination with other data from the literature, to execute a straightforward test of gravity at low accelerations. Specifically, the rotation curve at large radius sets the degree of non-standard acceleration and then the predicted scale height of the knots at that radius provides the test of the scenario. For our demonstration, we presume that the H{alpha} knots, which are young (age < 10 Myr), are distributed like the gas from which they have recently formed and find a marginal (>97% confidence) discrepancy with a modified gravity scenario given the current data. More interestingly, we demonstrate that there is no inherent limitation that prevents such a test from reaching possible discrimination at the >4{sigma} level with a reasonable investment of observational resources.

  10. Design and Test of an Electrometer Test Track

    NASA Astrophysics Data System (ADS)

    Lui, C.

    2010-12-01

    I worked on a experiment that would help on testing the parts of the MSRG satellite of Stanford. The goal of my experiment is to figure out how far a probe can be moved from a piece of mass to still be able to measure the potential (voltage) between the two.A model designed in Solidworks will be used; this model is put in a vacuum chamber for precise results.

  11. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  12. Severe Accident Test Station Design Document

    SciTech Connect

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  13. An investigation of the NOCSAE linear impactor test method based on in vivo measures of head impact acceleration in American football.

    PubMed

    Gwin, Joseph T; Chu, Jeffery J; Diamond, Solomon G; Halstead, P David; Crisco, Joseph J; Greenwald, Richard M

    2010-01-01

    The performance characteristics of football helmets are currently evaluated by simulating head impacts in the laboratory using a linear drop test method. To encourage development of helmets designed to protect against concussion, the National Operating Committee for Standards in Athletic Equipment recently proposed a new headgear testing methodology with the goal of more closely simulating in vivo head impacts. This proposed test methodology involves an impactor striking a helmeted headform, which is attached to a nonrigid neck. The purpose of the present study was to compare headform accelerations recorded according to the current (n=30) and proposed (n=54) laboratory test methodologies to head accelerations recorded in the field during play. In-helmet systems of six single-axis accelerometers were worn by the Dartmouth College men's football team during the 2005 and 2006 seasons (n=20,733 impacts; 40 players). The impulse response characteristics of a subset of laboratory test impacts (n=27) were compared with the impulse response characteristics of a matched sample of in vivo head accelerations (n=24). Second- and third-order underdamped, conventional, continuous-time process models were developed for each impact. These models were used to characterize the linear head/headform accelerations for each impact based on frequency domain parameters. Headform linear accelerations generated according to the proposed test method were less similar to in vivo head accelerations than headform accelerations generated by the current linear drop test method. The nonrigid neck currently utilized was not developed to simulate sport-related direct head impacts and appears to be a source of the discrepancy between frequency characteristics of in vivo and laboratory head/headform accelerations. In vivo impacts occurred 37% more frequently on helmet regions, which are tested in the proposed standard than on helmet regions tested currently. This increase was largely due to the

  14. Consequences of bounds on longitudinal emittance growth for the design of recirculating linear accelerators

    SciTech Connect

    Berg, J. S.

    2015-05-03

    Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.

  15. Design of post linac to driver linac transport beam line in rare isotope accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San

    2015-07-01

    We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state 132Sn+45,+46,+47 beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

  16. To study the emittance dilution in Superconducting Linear Accelerator Design for International Linear Collider (ILC)

    NASA Astrophysics Data System (ADS)

    Ranjan, Kirti; Solyak, Nikolay; Tenenbaum, Peter

    2005-04-01

    Recently the particle physics community has chosen a single technology for the new accelerator, opening the way for the world community to unite and concentrate resources on the design of an International Linear collider (ILC) using superconducting technology. One of the key operational issues in the design of the ILC will be the preservation of the small beam emittances during passage through the main linear accelerator (linac). Sources of emittance dilution include incoherent misalignments of the quadrupole magnets and rf-structure misalignments. In this work, the study of emittance dilution for the 500-GeV center of mass energy main linac of the Superconducting Linear Accelerator design, based on adaptation of the TESLA TDR design is performed using LIAR simulation program. Based on the tolerances of the present design, effect of two important Beam-Based steering algorithms, Flat Steering and Dispersion Free Steering, are compared with respect to the emittance dilution in the main linac. We also investigated the effect of various misalignments on the emittance dilution for these two steering algorithms.

  17. Design of post linac to driver linac transport beam line in rare isotope accelerator.

    PubMed

    Kim, Chanmi; Kim, Eun-San

    2015-07-01

    We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state (132)Sn(+45,+46,+47) beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

  18. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  19. Design of an accelerating cavity for the Superconducting Super Collider Low-Energy Booster

    SciTech Connect

    Friedrichs, C.C.; Walling, L. ); Campbell, B.M. )

    1991-01-01

    This paper presents the history and current status of the design of the accelerator cavity to be incorporated into the Low-Energy Booster (LEB) of the Superconducting Super Collider (SSC). The LEB is a proton synchrotron, 540 meters in circumference, and having 108 buckets around the ring. Acceleration programs, each 50 msec long, take place at a rate of 10 per second. The beta change of the particles from injection to extraction is from 0.8 to 0.997. Since the rf excitation frequency must track beta, the rf frequency must shift from 47.5 to 60 MHz over the 50-msec acceleration program. The cavity will use ferrite in a perpendicular control bias mode to effect the require tuning. 4 refs., 1 fig.

  20. Spacecraft load, design and test philosophies

    NASA Technical Reports Server (NTRS)

    Wada, B. K.

    1986-01-01

    The development of spacecraft loads, design and test philosophies at the Jet Propulsion Laboratory (JPL) during the past 25 years is presented. Examples from the JPL's Viking, Voyager and Galileo spacecraft are used to explain the changes in philosophy necessary to meet the program requirements with a reduction in cost and schedule. Approaches to validate mathematical models of large structures which can't be ground tested as an overall system because of size and/or adverse effects of terrestrial conditions such as gravity are presented.

  1. Design desiderata for a laminar flow quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-01-01

    The Pierce design acceleration column has been widely used to accelerate high current beams. It operates well in the space charge limited condition, and will produce beams with a temperature comparable with that of the source. It is restricted in current density, however, by the Child-Langmuir relation. If the ion source itself is not the limiting constraint, then the achievable current density is limited by the electric field at which sparking occurs. One sees clearly that the achievable current density decreases as one goes to higher voltages. This can be easily overcome by using electrostatic quadrupole focusing in the acceleration column. Now it can be shown that the space charge limited current density in a constant energy quadrupole transport channel is greater than that if one assumes that the electric fields on the quadrupoles can be as high in the ion source extraction electric fields. In practice, this is a conservative assumption. It follows that if the beam can be transported a large distance at the C-L current density limit, it can surely be accelerated as it goes from quadrupole to quadrupole. Hence, the necessity of having a high gradient acceleration column goes away.

  2. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  3. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Barnard, J. J.; Briggs, R. J.; Davidson, R. C.; Dorf, M.; Grote, D. P.; Henestroza, E.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Sefkow, A. B.; Sharp, W. M.; Waldron, W. L.; Welch, D. R.; Yu, S. S.

    2009-07-01

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity "tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ˜30 nC pulse of Li+ ions to ˜3 MeV, then compresses it to ˜1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  4. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  5. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  6. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r2 = 0.954) and testing duration can be shortened.

  7. Ceramic high temperature receiver design and tests

    NASA Technical Reports Server (NTRS)

    Davis, S. B.

    1982-01-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectagular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable; and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  8. Ceramic high temperature receiver design and tests

    SciTech Connect

    Davis, S.B.

    1982-07-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectangular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable, and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  9. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect

    Benson, C.H.; Waugh, W.J.; Albright, W.H.; Smith, G.M.; Bush, R.P.

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  10. Repeatable electrical measurement instrumentation for use in the accelerated stress testing of thin film solar cells

    NASA Technical Reports Server (NTRS)

    Davis, C. W.; Lathrop, J. W.

    1985-01-01

    Attention is given to the construction, calibration, and performance of a repeatable measurement system for use in conjunction with the accelerated stress testing of a-Si:H cells. A filtered diode array is utilized to approximate the spectral response of any type of solar cell in discrete portions of the spectrum. It is noted that in order to achieve the necessary degree of overall repeatability, it is necessary to pay particular attention to methods of contacting and positioning the cells.

  11. Wrapped multilayer insulation design and testing

    NASA Astrophysics Data System (ADS)

    Dye, S. A.; Tyler, P. N.; Mills, G. L.; Kopelove, A. B.

    2014-11-01

    New vehicles need improved cryogenic propellant storage and transfer capabilities for long duration missions. Multilayer insulation (MLI) for cryogenic propellant feedlines is much less effective than MLI tank insulation, with heat leak into spiral wrapped MLI on pipes 3-10 times higher than conventional tank MLI. Better insulation for cryogenic feed lines is an important enabling technology that could help NASA reach cryogenic propellant storage and transfer requirements. Improved insulation for Ground Support Equipment could reduce cryogen losses during launch vehicle loading. Wrapped-MLI (WMLI) is a high performance multilayer insulation using innovative discrete spacer technology specifically designed for cryogenic transfer lines and Vacuum Jacketed Pipe (VJP) to reduce heat flux. The poor performance of traditional MLI wrapped on feed lines is due in part to compression of the MLI layers, with increased interlayer contact and heat conduction. WMLI uses discrete spacers that maintain precise layer spacing, with a unique design to reduce heat leak. A Triple Orthogonal Disk spacer was engineered to minimize contact area/length ratio and reduce solid heat conduction for use in concentric MLI configurations. A new insulation, WMLI, was developed and tested. Novel polymer spacers were designed, analyzed and fabricated; different installation techniques were examined; and rapid prototype nested shell components to speed installation on real world piping were designed and tested. Prototypes were installed on tubing set test fixtures and heat flux measured via calorimetry. WMLI offered superior performance to traditional MLI installed on cryogenic pipe, with 2.2 W/m2 heat flux compared to 26.6 W/m2 for traditional spiral wrapped MLI (5 layers, 77-295 K). WMLI as inner insulation in VJP can offer heat leaks as low as 0.09 W/m, compared to industry standard products with 0.31 W/m. WMLI could enable improved spacecraft cryogenic feedlines and industrial hot/cold transfer

  12. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    SciTech Connect

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-12-31

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

  13. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    NASA Astrophysics Data System (ADS)

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  14. BaBar superconducting coil: design, construction and test

    SciTech Connect

    Bell, R A; Berndt, M; Burgess, W; Craddock, W; Dormicchi, O; Fabbricatore, P; Farinon, S; Keller, L; Moreschi, P; Musenich, R; O'Connor, T G; Penco, R; Priano, C; Shen, S; Valente, P

    2001-01-26

    The BABAR Detector, located in the PEP-II B-Factory at the Stanford Linear Accelerator Center, includes a large 1.5 Tesla superconducting solenoid, 2.8 m bore and length 3.7 m. The two layer solenoid is wound with an aluminum stabilized conductor which is graded axially to produce a {+-} 3% field uniformity in the tracking region. This paper summarizes the 3 year design, fabrication and testing program of the superconducting solenoid. The work was carried out by an international collaboration between INFN, LLNL and SLAC. The coil was constructed by Ansaldo Energia. Critical current measurements of the superconducting strand, cable and conductor, cool-down, operation with the thermo-siphon cooling, fast and slow discharges, and magnetic forces are discussed in detail.

  15. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    SciTech Connect

    Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  16. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  17. Design of ferrite-tuned accelerator cavities using perpendicular-biased high-Q ferrites

    SciTech Connect

    Kaspar, K.

    1984-11-01

    Microwave ferrites with dc bias fields perpendicular to the rf fields exhibit magnetic and dielectric quality factors 1 order of magnitude above that of ferrites used in ferrite-tuned synchrotron accelerating cavities built in the past. For the LAMPF II project, these ferrites appear to allow the design of synchrotron cavities with high gap voltages and high efficiency. A simple coaxial quarter-wave-resonator geometry, first considered only as a model for preliminary studies, turned out to be a good basis for the solution of most technical problems such as generation of the bias field, cooling of the ferrites, and installation of a generous high-voltage gap design. Two quarter-wave resonators combined to form one accelerating unit of about 2.5-m length and 0.6-m diameter should be capable of delivering 120 kV of accelerating voltage in the tuning range 50-60 MHz, up to 200 kV in the range 59-60 MHz. The main advantage of the given resonator design is its full rotational symmetry, which allows calculation and optimization of all electrical properties with maximum reliability.

  18. Particle optics and accelerator modeling software for industrial and laboratory beamline design

    NASA Astrophysics Data System (ADS)

    Gillespie, George H.; Hill, Barrey W.

    1998-04-01

    The expanding variety of accelerator applications in research and industry places increased demands upon scientists and engineers involved in developing new accelerator and beamline designs. Computer codes for particle optics simulation have always played an important role in the design process and enhanced software tools offer the promise of improved productivity for beamline designers. This paper summarizes recent work on the development of advanced graphic user interface (GUI) software components, that can be linked directly to many of the standard particle optics programs used in the accelerator community, and which are aimed at turning that promise of improved productivity into a reality. An object oriented programming (OOP) approach has been adopted and a number of GUI components have been developed that run on several different operating systems. The emphasis is on assisting users in the setup and running of the optics programs without requiring any knowledge of the format, syntax, or similar requirements of the input. The components are being linked with several popular optics programs, including TRANSPORT, TURTLE, TRACE 3-D and PARMILA, to form integrated easy-to-use applications. Several advanced applications linking the GUI components with Lie algebra and other high-order simulation codes, as well as system level and facility modeling codes, are also under development. An overview of the work completed to date is presented, and examples of the new tools running on the Windows 95 operating system are illustrated.

  19. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy.

  20. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. PMID:26305166

  1. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    NASA Astrophysics Data System (ADS)

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural design of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of this new generation of single spoke cavities with values of maximum allowable working pressure that exceeds the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  2. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    SciTech Connect

    Zhang, W; Sandberg, J; Parson, W M; Walstrom, P; Murray, M M; Cook, E; Hartouni, E

    2001-06-12

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  3. DESIGN CONSIDERATIONS OF FAST KICKER SYSTEMS FOR HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; PARSONS,W.M.; WALSTROM,P.; MURRAY,M.M.; COOK,E.; HARTOUNI,E.

    2001-06-17

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed.

  4. Insights Gained from Testing Alternate Cell Designs

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable

    2009-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi

  5. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  6. Long life nickel electrodes for a nickel-hydrogen cell. III - Results of an accelerated test and failure analyses

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Verzwyvelt, S. A.

    Nineteen different designs of nickel electrodes were tested in Ni/H2 boiler plate cells in an accelerated low earth orbit cycle regime to the end of their life. The failure analyses of these cells showed that the major performance changes due to the cycling was a severe reduction of their high rate discharge capability rather than an absolute capacity reduction. Many physical changes of the nickel electrodes were observed after the cycling test. These changes include dimensional expansion, sinter rupture, loose black powdering of the active material, morphology changes, active material migration, increase of pore volume, change of pore distribution, and increase of surface area. All of these were caused by active material expansion with cycling. Among these changes, the morphology change which involves migration of active material away from the current collecting nickel sinter appears to be that most responsible for the reduction of the rate capability.

  7. Long life nickel electrodes for a nickel-hydrogen cell. III - Results of an accelerated test and failure analyses

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1984-01-01

    Nineteen different designs of nickel electrodes were tested in Ni/H2 boiler plate cells in an accelerated low earth orbit cycle regime to the end of their life. The failure analyses of these cells showed that the major performance changes due to the cycling was a severe reduction of their high rate discharge capability rather than an absolute capacity reduction. Many physical changes of the nickel electrodes were observed after the cycling test. These changes include dimensional expansion, sinter rupture, loose black powdering of the active material, morphology changes, active material migration, increase of pore volume, change of pore distribution, and increase of surface area. All of these were caused by active material expansion with cycling. Among these changes, the morphology change which involves migration of active material away from the current collecting nickel sinter appears to be that most responsible for the reduction of the rate capability.

  8. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    SciTech Connect

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  9. Electromagnetic Design of RF Cavities for Accelerating Low-Energy Muons

    SciTech Connect

    Kurennoy, Sergey S.

    2012-05-14

    A high-gradient linear accelerator for accelerating low-energy muons and pions in a strong solenoidal magnetic field has been proposed for homeland defense and industrial applications. The acceleration starts immediately after collection of pions from a target in a solenoidal magnetic field and brings decay muons, which initially have kinetic energies mostly around 15-20 MeV, to 200 MeV over a distance of {approx}10 m. At this energy, both ionization cooling and further, more conventional acceleration of the muon beam become feasible. A normal-conducting linac with external-solenoid focusing can provide the required large beam acceptances. The linac consists of independently fed zero-mode (TM{sub 010}) RF cavities with wide beam apertures closed by thin conducting edge-cooled windows. Electromagnetic design of the cavity, including its RF coupler, tuning and vacuum elements, and field probes, has been developed with the CST MicroWave Studio, and is presented.

  10. Predictive Simulation and Design of Materials by Quasicontinuum and Accelerated Dynamics Methods

    SciTech Connect

    Luskin, Mitchell; James, Richard; Tadmor, Ellad

    2014-03-30

    This project developed the hyper-QC multiscale method to make possible the computation of previously inaccessible space and time scales for materials with thermally activated defects. The hyper-QC method combines the spatial coarse-graining feature of a finite temperature extension of the quasicontinuum (QC) method (aka “hot-QC”) with the accelerated dynamics feature of hyperdynamics. The hyper-QC method was developed, optimized, and tested from a rigorous mathematical foundation.

  11. Design of a High Field Stress, Velvet Cathode for the Flash X-Ray (FXR) Induction Accelerator

    SciTech Connect

    Houck, T; Brown, C; Fleming, D; Kreitzer, B; Lewis, K; Ong, M; Zentler, J

    2007-06-08

    A new cathode design has been proposed for the Flash X-Ray (FXR) induction linear accelerator with the goal of lowering the beam emittance. The original design uses a conventional Pierce geometry and applies a peak field of 134 kV/cm (no beam) to the velvet emission surface. Voltage/current measurements indicate that the velvet begins emitting near this peak field value and images of the cathode show a very non-uniform distribution of plasma light. The new design has a flat cathode/shroud profile that allows for a peak field stress of 230 kV/cm on the velvet. The emission area is reduced by about a factor of four to generate the same total current due to the greater field stress. The relatively fast acceleration of the beam, approximately 2.5 MeV in 10 cm, reduces space charge forces that tend to hollow the beam for a flat, non-Pierce geometry. The higher field stress achieved with the same rise time is expected to lead to an earlier and more uniform plasma formation over the velvet surface. Simulations and initial testing are presented.

  12. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries

    SciTech Connect

    Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Pesaran, Ahmad A.

    2015-05-03

    This presentation provides an overview of the mechanical electrochemical-thermal (M-ECT) modeling efforts. The physical phenomena occurring in a battery are many and complex and operate at different scales (particle, electrodes, cell, and pack). A better understanding of the interplay between different physics occurring at different scales through modeling could provide insight to design improved batteries for electric vehicles. Work funded by the U.S. DOE has resulted in development of computer-aided engineering (CAE) tools to accelerate electrochemical and thermal design of batteries; mechanical modeling is under way. Three competitive CAE tools are now commercially available.

  13. TFE sheath insulator in-reactor test design

    NASA Astrophysics Data System (ADS)

    Miskolczy, Gabor; Lee, Celia; Lieb, David

    A description is given of the Instrumental Fast-Reactor Accelerated Component-Sheath Insulator (IFAC-SI) test, which allows a set of selected sheath insulators to be tested in a fast reactor environment while monitoring temperature, voltage, and current for the life of the experiment. Two buffered heat pipes control the temperature of the sheath insulators. Gamma heating provides the input power to the heat pipes, and heat is rejected via radiation to the outer container and a copper conduction fin at the condenser area of each heat pipe. Computer thermal models of the IFAC-SI experiment were developed to investigate the effect of heat input variation, and to determine the effectiveness of the copper fin. These preliminary laboratory tests of the heat pipe and of the heat rejection system were designed for comparison to thermal model results. The results of the low power fin tests are presented. Preliminary experiment results show that the heat rejection is below that predicted by the computer model.

  14. Accelerated life tests on a new water tree retardant insulation for power cables

    SciTech Connect

    Sarma, H.

    1997-04-01

    This paper describes the results of an investigation in which 15 kV rated cables insulated with a new water tree retardant cross-linked polyethylene (TR XLPE) were subjected to accelerated aging tests under a controlled voltage stress and thermal load cycle conditions. Cables insulated with conventional XLPE and a commercially available TR XLPE were used as reference test populations to affirm the test methodology. Under the chosen conditions, cable life of the new TR XLPE as calculated using Weibull and log normal statistical distributions, was more than twice that for the reference TRXLPE. Extensive diagnostic measurements (water content, dissipation factor, water tree analysis) were performed on failed cable samples to bring out the differences between the three insulations. Electron micrographic investigations revealed the size and distribution of micro voids in the new TR XLPE to be smaller supporting its extended life under these tests. The experimental details of the accelerated life tests are also documented in a clear manner facilitating any archival of the data for future analysis and comparison.

  15. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  16. ACCESS: Design, Strategy, and Test Performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Pelton, R. S.; Feldman, P. D.; Moos, H. W.; Riess, A. G.; Benford, D. J.; Foltz, R.; Gardner, J. P.; Mott, D. B.; Wen, Y.; Woodgate, B. E.; Bohlin, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Kurucz, R. L.; Lampton, M.; Perlmutter, S.

    2013-01-01

    Improvements in the astrophysical flux scale are needed to answer fundamental scientific questions ranging from cosmology to stellar physics. In particular, the precise calibration of the flux scale across the visible-NIR bandpass is fundamental to the precise determination of dark energy parameters based on SNeIa photometry. ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass. The telescope is a Dall-Kirkham Cassegrain with a 15.5-inch primary. The spectrograph is a Rowland circle design, with the grating operating as a low order (m=1-4) echelle, a Fery prism provides cross dispersion, and a HST/WFC3 heritage HAWAII-1R HgCdTe detector is used across the full spectral bandpass. The telescope mirrors have received their flight coatings. The flight detector and detector spare have been integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been performed. Detector characterization testing is in progress (Morris et al.). Fabrication, integration, and automation of the ground-based calibration subsystems are also in progress. The ACCESS design, calibration strategy, and ground-based integration and test results will be presented. Launch is expected this year. NASA sounding rocket grant NNX08AI65G and DOE DE-FG02-07ER41506 support this work.

  17. Development of a quantitative accelerated sulphate attack test for mine backfill

    NASA Astrophysics Data System (ADS)

    Shnorhokian, Shahe

    Mining operations produce large amounts of tailings that are either disposed of in surface impoundments or used in the production of backfill to be placed underground. Their mineralogy is determined by the local geology, and it is not uncommon to come across tailings with a relatively high sulphide mineral content, including pyrite and pyrrhotite. Sulphides oxidize in the presence of oxygen and water to produce sulphate and acidity. In the concrete industry, sulphate is known to produce detrimental effects by reacting with the cement paste to produce the minerals ettringite and gypsum. Because mine backfill uses tailings and binders---including cement---it is therefore prone to sulphate attack where the required conditions are met. Currently, laboratory tests on mine backfill mostly measure mechanical properties such as strength parameters, and the study of the chemical aspects is restricted to the impact of tailings on the environment. The potential of sulphate attack in mine backfill has not been studied at length, and no tests are conducted on binders used in backfill for their resistance to attack. Current ASTM guidelines for sulphate attack tests have been deemed inadequate by several authors due to their measurement of only expansion as an indicator of attack. Furthermore, the tests take too long to perform or are restricted to cement mortars only, and not to mixed binders that include pozzolans. Based on these, an accelerated test for sulphate attack was developed in this work through modifying and compiling procedures that had been suggested by different authors. Small cubes of two different binders were fully immersed in daily-monitored sodium sulphate and sulphuric acid solutions for a total of 28 days, after 7 days of accelerated curing at 50°C. In addition, four binders were partially immersed in the same solutions for 8 days for an accelerated attack process. The two procedures were conducted in tandem with leach tests using a mixed solution of

  18. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Lewis, D. III

    2006-01-03

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to {approx}8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  19. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    DOE PAGES

    Passarelli, Donato; Wands, Robert H.; Merio, Margherita; Ristori, Leonardo

    2016-10-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of suchmore » unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.« less

  20. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.