Science.gov

Sample records for accelerated unit unloading

  1. Discharge pattern of tonically activated motor units during unloading.

    PubMed

    Gerilovsky, L; Struppler, A; Velho, F; Niehage, O

    1990-12-01

    In order to analyse the EMG pattern during unloading of brachial biceps muscle, the interference EMG and single motor unit activity were investigated. The measurements were done on seven healthy subjects with two types of unloading techniques: a) active unloading, when the subjects resisted against an external load (10, 20, 30 and 40 N) which is suddenly released, and b) passive unloading, performed by low inertia torque motors with independently adjustable background extension and suddenly applied flexion torques. Following active unloading the silent period duration, the amplitude of the rebound and its segmentation into consecutive bursts is changing with initial load, whereas the silent period latency remains constant. Following passive unloading the acceleration influences predominantly the amplitude of the rebound, without changing its latency and silent period duration. The initial voluntary activity influences both silent period duration and rebound parameters (latency, amplitude and duration). PMID:2286170

  2. Methane emissions from process equipment at natural gas production sites in the United States: liquid unloadings.

    PubMed

    Allen, David T; Sullivan, David W; Zavala-Araiza, Daniel; Pacsi, Adam P; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Lamb, Brian K; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.

  3. Methane emissions from process equipment at natural gas production sites in the United States: liquid unloadings.

    PubMed

    Allen, David T; Sullivan, David W; Zavala-Araiza, Daniel; Pacsi, Adam P; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Lamb, Brian K; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings. PMID:25488307

  4. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  5. Independent Study Unit on Accelerated Reference Frames

    ERIC Educational Resources Information Center

    Poultney, S. K.

    1973-01-01

    Presents a list of topics, research areas, references, and laboratory equipment which is prepared to facilitate general-science students' understanding of physics aspects in accelerated reference frames after their study of circular motion and Galilean relativity in mechanics. (CC)

  6. Effect of unloading time on interrupted creep in copper

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1994-06-01

    The effect of unloading time on the interrupted creep behavior of polycrystalline copper specimens was investigated over the temperature range 298--773 K. Up to 553 K, cyclic creep acceleration could be explained in terms of deformation and hardening using a dislocation glide model with recovery during unloading being due to dislocation climb. At higher temperatures, recrystallization effects probably influence behavior.

  7. TDRSS momentum unload planning

    NASA Technical Reports Server (NTRS)

    Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.

    1991-01-01

    A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.

  8. The United States Particle Accelerator School: Educating the Next Generation of Accelerator Scientists and Engineers

    SciTech Connect

    Barletta, William A.

    2009-03-10

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator/beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  9. The United States Particle Accelerator School: Educating the next generation of accelerator scientists and engineers

    SciTech Connect

    Barletta, William A.; /MIT

    2008-09-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, crossdisciplinary research areas such as high energy density physics.

  10. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  11. Acceleration units for the Induction Linac Systems Experiment (ILSE)

    SciTech Connect

    Faltens, A.; Brady, V.; Brodzik, D.; Hansen, L.; Laslett, L.J.; Mukherjee, S.; Bubp, D.; Ravenscroft, D.; Reginato, L.

    1989-03-01

    The design of a high current heavy ion induction linac driver for inertial confinement fusion is optimized by adjusting the acceleration units along the length of the accelerator to match the beam current, energy, and pulse duration at any location. At the low energy end of the machine the optimum is a large number of electrostatically focused parallel beamlets, whereas at higher energies the optimum is a smaller number of magnetically focused beams. ILSE parallels this strategy by using 16 electrostatically focused beamlets at the low end followed by 4 magnetically focused beams after beam combining. 3 refs., 2 figs.

  12. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  13. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations. PMID:26406070

  14. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  15. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  16. Graphics processing unit accelerated computation of digital holograms.

    PubMed

    Kang, Hoonjong; Yaraş, Fahri; Onural, Levent

    2009-12-01

    An approximation for fast digital hologram generation is implemented on a central processing unit (CPU), a graphics processing unit (GPU), and a multi-GPU computational platform. The computational performance of the method on each platform is measured and compared. The computational speed on the GPU platform is much faster than on a CPU, and the algorithm could be further accelerated on a multi-GPU platform. In addition, the accuracy of the algorithm for single- and double-precision arithmetic is evaluated. The quality of the reconstruction from the algorithm using single-precision arithmetic is comparable with the quality from the double-precision arithmetic, and thus the implementation using single-precision arithmetic on a multi-GPU platform can be used for holographic video displays.

  17. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. Phloem unloading in developing leaves of sugar beet. II. Termination of phloem unloading

    SciTech Connect

    Schmalstig, J.G.; Geiger, D.R.

    1987-01-01

    Phloem unloading in developing leaves of Beta vulgaris L. occurred from successively higher order branches of veins as leaves matured. Phloem unloading was studied in autoradiographs of leaf samples taken at various times during the arrival of a pulse of /sup 14/C-labeled photoassimilate. Extension of mass flow of sieve element contents into leaf vein branches was determined from the high level of radiolabel in veins soon after first arrival of the pulse. Rapid entry, indicative of mass flow through open sieve pores, occurred down to the fourth division of veins in young, importing leaves and to the fifth or terminal branch in importing regions near the zone of transition from sink to source. The rate of unloading decreased with leaf age, as evidenced by the increased time required for the vein-mesophyll demarcation to become obscured. The rate of import per unit leaf area, measures by steady state labeling with /sup 14/CL/sub 2/ also decreased as a leaf matured. The decline in import appeared to result from progressive changes that increased resistance to unloading of sieve elements and eventually terminated phloem unloading.

  20. Accelerating sparse linear algebra using graphics processing units

    NASA Astrophysics Data System (ADS)

    Spagnoli, Kyle E.; Humphrey, John R.; Price, Daniel K.; Kelmelis, Eric J.

    2011-06-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of over 1 TFLOPS of peak computational throughput at a cost similar to a high-end CPU with excellent FLOPS-to-watt ratio. High-level sparse linear algebra operations are computationally intense, often requiring large amounts of parallel operations and would seem a natural fit for the processing power of the GPU. Our work is on a GPU accelerated implementation of sparse linear algebra routines. We present results from both direct and iterative sparse system solvers. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally. For example, the CPU is responsible for graph theory portion of the direct solvers while the GPU simultaneously performs the low level linear algebra routines.

  1. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, K.M.

    1994-01-04

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  2. SYSTEM FOR UNLOADING REACTORS

    DOEpatents

    Rand, A.C. Jr.

    1961-05-01

    An unloading device for individual vertical fuel channels in a nuclear reactor is shown. The channels are arranged in parallel rows and underneath each is a separate supporting block on which the fuel in the channel rests. The blocks are raounted in contiguous rows on an array of parallel pairs of tracks over the bottom of the reactor. Oblong hollows in the blocks form a continuous passageway through the middle of the row of blocks on each pair of tracks. At the end of each passageway is a horizontal grappling rod with a T- or L extension at the end next to the reactor of a length to permit it to pass through the oblong passageway in one position, but when rotated ninety degrees the head will strike one of the longer sides of the oblong hollow of one of the blocks. The grappling rod is actuated by a controllable reciprocating and rotating device which extends it beyond any individual block desired, rotates it and retracts it far enough to permit the fuel in the vertical channel above the block to fall into a handling tank below the reactor.

  3. REACTOR UNLOADING MEANS

    DOEpatents

    Cooper, C.M.

    1957-08-20

    A means for remotely unloading irradiated fuel slugs from a neutronic reactor core and conveying them to a remote storage tank is reported. The means shown is specifically adapted for use with a reactor core wherein the fuel slugs are slidably held in end to end abutting relationship in the horizontal coolant flow tubes, the slugs being spaced from tae internal walls of the tubes to permit continuous circulation of coolant water therethrough. A remotely operated plunger at the charging ends of the tubes is used to push the slugs through the tubes and out the discharge ends into a special slug valve which transfers the slug to a conveying tube leading into a storage tank. Water under pressure is forced through the conveying tube to circulate around the slug to cool it and also to force the slug through the conveving tube into the storage tank. The slug valve and conveying tube are shielded to prevent amy harmful effects caused by the radioactive slug in its travel from the reactor to the storage tank. With the disclosed apparatus, all the slugs in the reactor core can be conveyed to the storage tank shortly after shutdown by remotely located operating personnel.

  4. Accelerating Cardiac Bidomain Simulations Using Graphics Processing Units

    PubMed Central

    Neic, Aurel; Liebmann, Manfred; Hoetzl, Elena; Mitchell, Lawrence; Vigmond, Edward J.; Haase, Gundolf

    2013-01-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6–20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20GPUs, 476 CPU cores were required on a national supercomputing facility. PMID:22692867

  5. Theseus Engine Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading an engine of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change

  6. Theseus Tail Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The tail of the Theseus prototype research aircraft is seen here being unloaded at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements

  7. Accelerating molecular docking calculations using graphics processing units.

    PubMed

    Korb, Oliver; Stützle, Thomas; Exner, Thomas E

    2011-04-25

    The generation of molecular conformations and the evaluation of interaction potentials are common tasks in molecular modeling applications, particularly in protein-ligand or protein-protein docking programs. In this work, we present a GPU-accelerated approach capable of speeding up these tasks considerably. For the evaluation of interaction potentials in the context of rigid protein-protein docking, the GPU-accelerated approach reached speedup factors of up to over 50 compared to an optimized CPU-based implementation. Treating the ligand and donor groups in the protein binding site as flexible, speedup factors of up to 16 can be observed in the evaluation of protein-ligand interaction potentials. Additionally, we introduce a parallel version of our protein-ligand docking algorithm PLANTS that can take advantage of this GPU-accelerated scoring function evaluation. We compared the GPU-accelerated parallel version to the same algorithm running on the CPU and also to the highly optimized sequential CPU-based version. In terms of dependence of the ligand size and the number of rotatable bonds, speedup factors of up to 10 and 7, respectively, can be observed. Finally, a fitness landscape analysis in the context of rigid protein-protein docking was performed. Using a systematic grid-based search methodology, the GPU-accelerated version outperformed the CPU-based version with speedup factors of up to 60. PMID:21434638

  8. Phloem unloading and cell expansion in pea stems

    SciTech Connect

    Schmalstig, J.G.; Cosgrove, D.J. )

    1989-04-01

    Phloem unloading into elongating stems of dark-grown pea seedlings was greater in regions with higher relative growth rates. Phloem transport was monitored over 1 h by measuring accumulation of radiolabel from {sup 14}C-sucrose added between the cotyledons. The apical hook and plumule and 8 mm of the growing region of an intact plant were sealed in a pressure chamber and the pressure was raised to stop elongation. Phloem unloading was inhibited in the pressurized zone of elongation and accelerated in the apical hook and plumule, with the result that the magnitude of phloem transport into the stem was unchanged. The results demonstrate a coupling between cell expansion and phloem unloading.

  9. Acceleration of the GAMESS-UK electronic structure package on graphical processing units.

    PubMed

    Wilkinson, Karl A; Sherwood, Paul; Guest, Martyn F; Naidoo, Kevin J

    2011-07-30

    The approach used to calculate the two-electron integral by many electronic structure packages including generalized atomic and molecular electronic structure system-UK has been designed for CPU-based compute units. We redesigned the two-electron compute algorithm for acceleration on a graphical processing unit (GPU). We report the acceleration strategy and illustrate it on the (ss|ss) type integrals. This strategy is general for Fortran-based codes and uses the Accelerator compiler from Portland Group International and GPU-based accelerators from Nvidia. The evaluation of (ss|ss) type integrals within calculations using Hartree Fock ab initio methods and density functional theory are accelerated by single and quad GPU hardware systems by factors of 43 and 153, respectively. The overall speedup for a single self consistent field cycle is at least a factor of eight times faster on a single GPU compared with that of a single CPU. PMID:21541963

  10. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    NASA Astrophysics Data System (ADS)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  11. Accelerating Computation of the Unit Commitment Problem (Presentation)

    SciTech Connect

    Hummon, M.; Barrows, C.; Jones, W.

    2013-10-01

    Production cost models (PCMs) simulate power system operation at hourly (or higher) resolution. While computation times often extend into multiple days, the sequential nature of PCM's makes parallelism difficult. We exploit the persistence of unit commitment decisions to select partition boundaries for simulation horizon decomposition and parallel computation. Partitioned simulations are benchmarked against sequential solutions for optimality and computation time.

  12. Probabilistic estimates of maximum acceleration and velocity in rock in the contiguous United States

    USGS Publications Warehouse

    Algermissen, Sylvester Theodore; Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Bender, B.L.

    1982-01-01

    Maximum horizontal accelerations and velocities caused by earthquakes are mapped for exposure times of 10, 50 and 250 years at the 90-percent probability level of nonexceedance for the contiguous United States. In many areas these new maps differ significantly from the 1976 probabilistic acceleration map by Algermlssen and Perkins because of the increase in detail, resulting from greater emphasis on the geologic basis for seismic source zones. This new emphasis is possible because of extensive data recently acquired on Holocene and Quaternary faulting in the western United States and new interpretations of geologic structures controlling the seismicity pattern in the central and eastern United States.

  13. Accelerated space object tracking via graphic processing unit

    NASA Astrophysics Data System (ADS)

    Jia, Bin; Liu, Kui; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    In this paper, a hybrid Monte Carlo Gauss mixture Kalman filter is proposed for the continuous orbit estimation problem. Specifically, the graphic processing unit (GPU) aided Monte Carlo method is used to propagate the uncertainty of the estimation when the observation is not available and the Gauss mixture Kalman filter is used to update the estimation when the observation sequences are available. A typical space object tracking problem using the ground radar is used to test the performance of the proposed algorithm. The performance of the proposed algorithm is compared with the popular cubature Kalman filter (CKF). The simulation results show that the ordinary CKF diverges in 5 observation periods. In contrast, the proposed hybrid Monte Carlo Gauss mixture Kalman filter achieves satisfactory performance in all observation periods. In addition, by using the GPU, the computational time is over 100 times less than that using the conventional central processing unit (CPU).

  14. A method for assessment of slope unloading zone based on unloading strain

    NASA Astrophysics Data System (ADS)

    Bao, Han; Wu, Faquan; Xi, Pengcheng

    2016-04-01

    Slope unloading is a process of energy release. During the evolution of slope, unloading deformation appears and unloading zone is formed in shallow slope with rock mass relaxation and extension. In this paper, a new method is proposed to quantify the extent and damage degree of unloading zone according to unloading strain energy which is released in the process of unloading. By using elastic theory and statistical mechanics of rock masses, we establish a relation between accumulative opening displacement of unloading cracks and unloading strain, which is the principle to assess the extent and damage degree of unloading zone. Based on the unloading strain, the degree of unloading zone can be divided into two sub-zones, i.e., strongly unloading zone and slightly unloading zone, and the extent of the two sub-zones can be determined from the accumulative opening displacement curves of cracks. This method is applied to assess the slope unloading zone at a hydropower station dam site in northwest China. Results show that the accumulative opening displacement curves of cracks along adits vary regularly, and the curves can be divided into three parts. The strongly and slightly unloading zones can be recognized from the slope of each part, and their extent is limited by the two inflexions of each curve.

  15. Phloem unloading in tomato fruit

    SciTech Connect

    Damon, S.; Hewitt, J.; Bennett, A.B.

    1986-04-01

    To begin to identify those processes that contribute to the regulation of photosynthate partitioning in tomato fruit the path of phloem unloading in this tissue has been characterized. Assymetrically labelled sucrose (/sup 3/H-fructosyl sucrose) was applied to source leaves. Following translocation to the fruit the apoplast was sampled. The appearance of assymetric sucrose and /sup 3/H-fructose in the apoplast indicates that phloem unloading is apoplastic and that extracellular invertase is active. Estimation of sucrose, glucose, and fructose concentrations in the apoplast were 1 mM, 40 mM, and 40 mM, respectively. Rates of uptake of sucrose, 1-fluorosucrose, glucose, and fructose across the plasma membrane were similar and non-saturating at physiological concentrations. These results suggest that, although extracellular invertase is present, sucrose hydrolysis is not required for uptake into tomato fruit pericarp cells. 1-fluorosucrose is used to investigate the role of sucrose synthase in hydrolysis of imported photosynthate.

  16. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    SciTech Connect

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  17. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-01

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  18. Graphics processing units accelerated semiclassical initial value representation molecular dynamics.

    PubMed

    Tamascelli, Dario; Dambrosio, Francesco Saverio; Conte, Riccardo; Ceotto, Michele

    2014-05-01

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly. PMID:24811627

  19. Accelerating radio astronomy cross-correlation with graphics processing units

    NASA Astrophysics Data System (ADS)

    Clark, M. A.; LaPlante, P. C.; Greenhill, L. J.

    2013-05-01

    We present a highly parallel implementation of the cross-correlation of time-series data using graphics processing units (GPUs), which is scalable to hundreds of independent inputs and suitable for the processing of signals from 'large-Formula' arrays of many radio antennas. The computational part of the algorithm, the X-engine, is implemented efficiently on NVIDIA's Fermi architecture, sustaining up to 79% of the peak single-precision floating-point throughput. We compare performance obtained for hardware- and software-managed caches, observing significantly better performance for the latter. The high performance reported involves use of a multi-level data tiling strategy in memory and use of a pipelined algorithm with simultaneous computation and transfer of data from host to device memory. The speed of code development, flexibility, and low cost of the GPU implementations compared with application-specific integrated circuit (ASIC) and field programmable gate array (FPGA) implementations have the potential to greatly shorten the cycle of correlator development and deployment, for cases where some power-consumption penalty can be tolerated.

  20. Hindlimb unloading alters ligament healing

    NASA Technical Reports Server (NTRS)

    Provenzano, Paolo P.; Martinez, Daniel A.; Grindeland, Richard E.; Dwyer, Kelley W.; Turner, Joanne; Vailas, Arthur C.; Vanderby, Ray Jr

    2003-01-01

    We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.

  1. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  2. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  3. Acceleration of Early-Photon Fluorescence Molecular Tomography with Graphics Processing Units

    PubMed Central

    Wang, Xin; Zhang, Bin; Cao, Xu; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-01-01

    Fluorescence molecular tomography (FMT) with early-photons can improve the spatial resolution and fidelity of the reconstructed results. However, its computing scale is always large which limits its applications. In this paper, we introduced an acceleration strategy for the early-photon FMT with graphics processing units (GPUs). According to the procedure, the whole solution of FMT was divided into several modules and the time consumption for each module is studied. In this strategy, two most time consuming modules (Gd and W modules) were accelerated with GPU, respectively, while the other modules remained coded in the Matlab. Several simulation studies with a heterogeneous digital mouse atlas were performed to confirm the performance of the acceleration strategy. The results confirmed the feasibility of the strategy and showed that the processing speed was improved significantly. PMID:23606899

  4. Graphics processing unit-accelerated double random phase encoding for fast image encryption

    NASA Astrophysics Data System (ADS)

    Lee, Jieun; Yi, Faliu; Saifullah, Rao; Moon, Inkyu

    2014-11-01

    We propose a fast double random phase encoding (DRPE) algorithm using a graphics processing unit (GPU)-based stream-processing model. A performance analysis of the accelerated DRPE implementation that employs the Compute Unified Device Architecture programming environment is presented. We show that the proposed methodology executed on a GPU can dramatically increase encryption speed compared with central processing unit sequential computing. Our experimental results demonstrate that in encryption data of an image with a pixel size of 1000×1000, where one pixel has a 32-bit depth, our GPU version of the DRPE scheme can be approximately two times faster than the advanced encryption standard algorithm implemented on a GPU. In addition, the quality of parallel processing on the presented DRPE acceleration method is evaluated with performance parameters, such as speedup, efficiency, and redundancy.

  5. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-01

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  6. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  7. Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units and a Mixed Precision Matrix Multiplication Library.

    PubMed

    Olivares-Amaya, Roberto; Watson, Mark A; Edgar, Richard G; Vogt, Leslie; Shao, Yihan; Aspuru-Guzik, Alán

    2010-01-12

    Two new tools for the acceleration of computational chemistry codes using graphical processing units (GPUs) are presented. First, we propose a general black-box approach for the efficient GPU acceleration of matrix-matrix multiplications where the matrix size is too large for the whole computation to be held in the GPU's onboard memory. Second, we show how to improve the accuracy of matrix multiplications when using only single-precision GPU devices by proposing a heterogeneous computing model, whereby single- and double-precision operations are evaluated in a mixed fashion on the GPU and central processing unit, respectively. The utility of the library is illustrated for quantum chemistry with application to the acceleration of resolution-of-the-identity second-order Møller-Plesset perturbation theory calculations for molecules, which we were previously unable to treat. In particular, for the 168-atom valinomycin molecule in a cc-pVDZ basis set, we observed speedups of 13.8, 7.8, and 10.1 times for single-, double- and mixed-precision general matrix multiply (SGEMM, DGEMM, and MGEMM), respectively. The corresponding errors in the correlation energy were reduced from -10.0 to -1.2 kcal mol(-1) for SGEMM and MGEMM, respectively, while higher accuracy can be easily achieved with a different choice of cutoff parameter.

  8. Accelerating frequency-domain diffuse optical tomographic image reconstruction using graphics processing units.

    PubMed

    Prakash, Jaya; Chandrasekharan, Venkittarayan; Upendra, Vishwajith; Yalavarthy, Phaneendra K

    2010-01-01

    Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13,377.

  9. Probabilistic earthquake acceleration and velocity maps for the United States and Puerto Rico

    USGS Publications Warehouse

    Algermissen, S.T.; Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Bender, B.L.

    1990-01-01

    The ground-motion maps presented here (maps A-D) show the expected seismic induced or earthquake caused maximum horizontal acceleration and velocity in rock in the contiguous United States, Alaska, Hawaii, and Puerto Rico.  There is a 90 percent probability that the maximum horizontal acceleration and velocity shown on the maps will not be exceeded in the time periods of 50 and 250 years (average return period for the expected ground motion of 474 and 2,372 years).  Rock is taken here to mean material having a shear-wave velocity of between 0.75 and 0.90 kilometers per second. (Algermissen and Perkins, 1976).  

  10. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  11. Open-source graphics processing unit-accelerated ray tracer for optical simulation

    NASA Astrophysics Data System (ADS)

    Mauch, Florian; Gronle, Marc; Lyda, Wolfram; Osten, Wolfgang

    2013-05-01

    Ray tracing still is the workhorse in optical design and simulation. Its basic principle, propagating light as a set of mutually independent rays, implies a linear dependency of the computational effort and the number of rays involved in the problem. At the same time, the mutual independence of the light rays bears a huge potential for parallelization of the computational load. This potential has recently been recognized in the visualization community, where graphics processing unit (GPU)-accelerated ray tracing is used to render photorealistic images. However, precision requirements in optical simulation are substantially higher than in visualization, and therefore performance results known from visualization cannot be expected to transfer to optical simulation one-to-one. In this contribution, we present an open-source implementation of a GPU-accelerated ray tracer, based on nVidias acceleration engine OptiX, that traces in double precision and exploits the massively parallel architecture of modern graphics cards. We compare its performance to a CPU-based tracer that has been developed in parallel.

  12. 78 FR 43055 - Accelerating Improvements in HIV Prevention and Care in the United States Through the HIV Care...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... July 18, 2013 Part III The President Executive Order 13649--Accelerating Improvements in HIV Prevention and Care in the United States Through the HIV Care Continuum Initiative #0; #0; #0; Presidential... Improvements in HIV Prevention and Care in the United States Through the HIV Care Continuum Initiative By...

  13. Interleukin-2 therapy reverses some immunosuppressive effects of skeletal unloading

    NASA Technical Reports Server (NTRS)

    Armstrong, Jason W.; Balch, Signe; Chapes, Stephen K.

    1994-01-01

    Using antiorthostatic suspension, we characterized hematopoietic changes that may be responsible for the detrimental effect of skeletal unloading on macrophage development. Skeletally unloaded mice had suppressed macrophage development in unloaded and loaded bones, which indicated a systemic effect. Bone marrow cells from unloaded mice secreted less macrophage colony-stimulating factor and interleukin-6 than control mice. Additionally, T-lymphocyte proliferation was reduced after skeletal unloading. We show that polyethylene glycol-interleukin-2 therapy reversed the effects of skeletal unloading on macrophage development and cell proliferation.

  14. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units.

    PubMed

    Lindert, Steffen; Bucher, Denis; Eastman, Peter; Pande, Vijay; McCammon, J Andrew

    2013-11-12

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling.

  15. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units

    PubMed Central

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A.; Anastasio, Mark A.

    2013-01-01

    Purpose: Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Methods: Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. Results: The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Conclusions: Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction. PMID:23387778

  16. GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS

    SciTech Connect

    Schive, H.-Y.; Tsai, Y.-C.; Chiueh Tzihong

    2010-02-01

    We present the newly developed code, GPU-accelerated Adaptive-MEsh-Refinement code (GAMER), which adopts a novel approach in improving the performance of adaptive-mesh-refinement (AMR) astrophysical simulations by a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing total variation diminishing scheme for the hydrodynamic solver and a multi-level relaxation scheme for the Poisson solver. Both solvers have been implemented in GPU, by which hundreds of patches can be advanced in parallel. The computational overhead associated with the data transfer between the CPU and GPU is carefully reduced by utilizing the capability of asynchronous memory copies in GPU, and the computing time of the ghost-zone values for each patch is diminished by overlapping it with the GPU computations. We demonstrate the accuracy of the code by performing several standard test problems in astrophysics. GAMER is a parallel code that can be run in a multi-GPU cluster system. We measure the performance of the code by performing purely baryonic cosmological simulations in different hardware implementations, in which detailed timing analyses provide comparison between the computations with and without GPU(s) acceleration. Maximum speed-up factors of 12.19 and 10.47 are demonstrated using one GPU with 4096{sup 3} effective resolution and 16 GPUs with 8192{sup 3} effective resolution, respectively.

  17. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    PubMed

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches. PMID:24298424

  18. Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations.

    PubMed

    Miao, Yipu; Merz, Kenneth M

    2013-02-12

    Electron repulsion integral (ERI) calculation on graphical processing units (GPUs) can significantly accelerate quantum chemical calculations. Herein, the ab initio self-consistent-field (SCF) calculation is implemented on GPUs using recurrence relations, which is one of the fastest ERI evaluation algorithms currently available. A direct-SCF scheme to assemble the Fock matrix efficiently is presented, wherein ERIs are evaluated on-the-fly to avoid CPU-GPU data transfer, a well-known architectural bottleneck in GPU specific computation. Realized speedups on GPUs reach 10-100 times relative to traditional CPU nodes, with accuracies of better than 1 × 10(-7) for systems with more than 4000 basis functions. PMID:26588740

  19. Evolution of Rock Cracks Under Unloading Condition

    NASA Astrophysics Data System (ADS)

    Huang, R. Q.; Huang, D.

    2014-03-01

    Underground excavation normally causes instability of the mother rock due to the release and redistribution of stress within the affected zone. For gaining deep insight into the characteristics and mechanism of rock crack evolution during underground excavation, laboratory tests are carried out on 36 man-made rock specimens with single or double cracks under two different unloading conditions. The results show that the strength of rock and the evolution of cracks are clearly influenced by both the inclination angle of individual cracks with reference to the unloading direction and the combination geometry of cracks. The peak strength of rock with a single crack becomes smaller with the inclination angle. Crack propagation progresses intermittently, as evidenced by a sudden increase in deformation and repeated fluctuation of measured stress. The rock with a single crack is found to fail in three modes, i.e., shear, tension-shear, and splitting, while the rock bridge between two cracks is normally failed in shear, tension-shear, and tension. The failure mode in which a crack rock or rock bridge behaves is found to be determined by the inclination angle of the original crack, initial stress state, and unloading condition. Another observation is that the secondary cracks are relatively easily created under high initial stress and quick unloading.

  20. System modeling speeds clamshell unloader delivery

    SciTech Connect

    Schuster, J.W.; Zirkler, A.H.; Duke, G.

    1995-04-01

    This article describes how enhanced dust control concepts and design studies found best method to ensure quick, safe clamshell unloader transport and assembly. A new facility, US Generating Co.`s Logan Generating Station, was built in New Jersey, along the Delaware River and four miles from Chester, Pa. At the outset, concerns arose over possible unusual regulatory issues because the plant`s coal barge unloading system extends into the river where it falls under the jurisdiction of the State of Delaware. However, the project contract with the equipment supplier avoided complications by calling for a turnkey project, including erection, start-up, commissioning and training. The supplier responded by using a modeling technique to ensure environmental compatibility. The contract called for one stationary-clamshell bucket grab unloader, complete with a dust control system, barge haul and barge breasting systems, and auxiliary cranes for handling the barge haul lines. Bucket coal capacity is 10 tons at 50 pounds per cubic foot density. When operating on a 40-second duty cycle, the unloader is rated at 910 tons per hour free digging capacity. Under dry, high dust conditions, the duty cycle is extended to 50 seconds to allow for pause time after the bucket closes and while over the hopper prior to bucket discharge.

  1. Hindlimb unloading rodent model: technical aspects

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Globus, Ruth K.

    2002-01-01

    Since its inception at the National Aeronautics and Space Administration (NASA) Ames Research Center in the mid-1970s, many laboratories around the world have used the rat hindlimb unloading model to simulate weightlessness and to study various aspects of musculoskeletal loading. In this model, the hindlimbs of rodents are elevated to produce a 30 degrees head-down tilt, which results in a cephalad fluid shift and avoids weightbearing by the hindquarters. Although several reviews have described scientific results obtained with this model, this is the first review to focus on the technical aspects of hindlimb unloading. This review includes a history of the technique, a brief comparison with spaceflight data, technical details, extension of the model to mice, and other important technical considerations (e.g., housing, room temperature, unloading angle, the potential need for multiple control groups, age, body weight, the use of the forelimb tissues as internal controls, and when to remove animals from experiments). This paper is intended as a reference for researchers, reviewers of manuscripts, and institutional animal care and use committees. Over 800 references, related to the hindlimb unloading model, can be accessed via the electronic version of this article.

  2. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING SHIP UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING SHIP UNLOADING IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  3. Acceleration of iterative Navier-Stokes solvers on graphics processing units

    NASA Astrophysics Data System (ADS)

    Tomczak, Tadeusz; Zadarnowska, Katarzyna; Koza, Zbigniew; Matyka, Maciej; Mirosław, Łukasz

    2013-04-01

    While new power-efficient computer architectures exhibit spectacular theoretical peak performance, they require specific conditions to operate efficiently, which makes porting complex algorithms a challenge. Here, we report results of the semi-implicit method for pressure linked equations (SIMPLE) and the pressure implicit with operator splitting (PISO) methods implemented on the graphics processing unit (GPU). We examine the advantages and disadvantages of the full porting over a partial acceleration of these algorithms run on unstructured meshes. We found that the full-port strategy requires adjusting the internal data structures to the new hardware and proposed a convenient format for storing internal data structures on GPUs. Our implementation is validated on standard steady and unsteady problems and its computational efficiency is checked by comparing its results and run times with those of some standard software (OpenFOAM) run on central processing unit (CPU). The results show that a server-class GPU outperforms a server-class dual-socket multi-core CPU system running essentially the same algorithm by up to a factor of 4.

  4. The design of the electron beam dump unit of Turkish Accelerator Center (TAC)

    NASA Astrophysics Data System (ADS)

    Cite, L. H.; Yilmaz, M.

    2016-03-01

    The required simulations of the electron beam interactions for the design of electron beam dump unit for an accelerator which will operate to get two Infra-Red Free Electron Lasers (IR-FEL) covering the range of 3-250 microns is presented in this work. Simulations have been carried out to understand the interactions of a bulk of specially shaped of four different and widely used materials for the dump materials for a 77 pC, 40 MeV, 13 MHz repetition rate e-beam. In the simulation studies dump materials are chosen to absorb the 99% of the beam energy and to restrict the radio-isotope production in the bulk of the dump. A Lead shielding also designed around the dump core to prevent the leakage out of the all the emitted secondary radiations, e.g., neutrons, photons. The necessary dump material requirements, for the overall design considerations and the possible radiation originated effects on the dump unit, are discussed and presented.

  5. 49 CFR 179.500-11 - Loading and unloading valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Loading and unloading valves. 179.500-11 Section... 107A) § 179.500-11 Loading and unloading valves. (a) Loading and unloading valve or valves shall be mounted on the cover or threaded into the marked end of tank. These valves shall be of approved type,...

  6. 49 CFR 179.500-11 - Loading and unloading valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Loading and unloading valves. 179.500-11 Section...-113 and 107A) § 179.500-11 Loading and unloading valves. (a) Loading and unloading valve or valves shall be mounted on the cover or threaded into the marked end of tank. These valves shall be of...

  7. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  8. Genetic and tissue level muscle-bone interactions during unloading and reambulation.

    PubMed

    Judex, S; Zhang, W; Donahue, L R; Ozcivici, E

    2016-01-01

    Little is known about interactions between muscle and bone during the removal and application of mechanical signals. Here, we applied 3wk of hindlimb unloading followed by 3wk of reambulation to a genetically heterogeneous population of 352 adult mice and tested the hypothesis that changes in muscle are associated with changes in bone at the level of the tissue and the genome. During unloading and relative to normally ambulating control mice, most mice lost muscle and cortical bone with large variability across the population. During reambulation, individual mice regained bone and muscle at different rates. Across mice, changes in muscle and trabecular/cortical bone were not correlated to each other during unloading or reambulation. For unloading, we found one significant quantitative trait locus (QTL) for muscle area and five QTLs for cortical bone without overlap between mechano-sensitive muscle and cortical bone QTLs (but some overlap between muscle and trabecular QTLs). The low correlations between morphological changes in muscle and bone, together with the largely distinct genetic regulation of the response indicate that the premise of a muscle-bone unit that co-adjusts its size during (un)loading may need to be reassessed. PMID:27609032

  9. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC.

  10. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  11. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  12. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.

    PubMed

    Miao, Yipu; Merz, Kenneth M

    2015-04-14

    We present an efficient implementation of ab initio self-consistent field (SCF) energy and gradient calculations that run on Compute Unified Device Architecture (CUDA) enabled graphical processing units (GPUs) using recurrence relations. We first discuss the machine-generated code that calculates the electron-repulsion integrals (ERIs) for different ERI types. Next we describe the porting of the SCF gradient calculation to GPUs, which results in an acceleration of the computation of the first-order derivative of the ERIs. However, only s, p, and d ERIs and s and p derivatives could be executed simultaneously on GPUs using the current version of CUDA and generation of NVidia GPUs using a previously described algorithm [Miao and Merz J. Chem. Theory Comput. 2013, 9, 965-976.]. Hence, we developed an algorithm to compute f type ERIs and d type ERI derivatives on GPUs. Our benchmarks shows the performance GPU enable ERI and ERI derivative computation yielded speedups of 10-18 times relative to traditional CPU execution. An accuracy analysis using double-precision calculations demonstrates that the overall accuracy is satisfactory for most applications. PMID:26574356

  13. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC. PMID:24009129

  14. Self-unloading, reusable, lunar lander project

    NASA Technical Reports Server (NTRS)

    Arseculeratne, Ruwan; Cavazos, Melissa; Euker, John; Ghavidel, Fred; Hinkel, Todd J.; Hitzfelder, John; Leitner, Jesse; Nevik, James; Paynter, Scott; Zolondek, Allen

    1990-01-01

    In the early 21st century, NASA will return to the Moon and establish a permanent base. To achieve this goal safely and economically, B&T Engineering has designed an unmanned, reusable, self-unloading lunar lander. The lander is designed to deliver 15,000 kg payloads from an orbit transfer vehicle (OTV) in a low lunar polar orbit and an altitude of 200 km to any location on the lunar surface.

  15. The response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Halloran, B. P.

    1999-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During spaceflight bone is lost principally from the bones most loaded in the 1-g environment, and some redistribution of bone from the lower extremities to the head appears to take place. Although changes in calcitropic hormones have been demonstrated during skeletal unloading (PTH and 1,25(OH)2D decrease), it remains unclear whether such changes account for or are in response to the changes in bone formation and resorption. Bed rest studies with human volunteers and hindlimb elevation studies with rats have provided useful data to help explain the changes in bone formation during spaceflight. These models of skeletal unloading reproduce a number of the conditions associated with microgravity, and the findings from such studies confirm many of the observations made during spaceflight. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. Such investigations couple biophysics to biochemistry to cell and molecular biology. Although studies with cell cultures have revealed biochemical responses to mechanical loads comparable to that seen in intact bone, it seems likely that matrix-cell interactions underlie much of the mechanocoupling. The role for systemic hormones such as PTH, GH, and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs, and TGF-beta in modulating the cellular response to load remains unclear. As the mechanism(s) by which bone responds to mechanical load with increased bone formation are further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, with

  16. The temporal response of bone to unloading

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    Rats were suspended by their tails with the forelimbs bearing the weight load to simulate the weightlessness of space flight. Growth in bone mass ceased by 1 week in the hindlimbs and lumbar vertebrae in growing rats, while growth in the forelimbs and cervical vertebrae remained unaffected. The effects of selective skeletal unloading on bone formation during 2 weeks of suspension was investigated using radio iostope incorporation (with Ca-45 and H-3 proline) and histomorphometry (with tetracycline labeling). The results of these studies were confirmed by histomorphometric measurements of bone formation using triple tetracycline labeling. This model of simulated weightlessness results in an initial inhibition of bone formation in the unloaded bones. This temporary cessation of bone formation is followed in the accretion of bone mass, which then resumes at a normal rate by 14 days, despite continued skeletal unloading. This cycle of inhibition and resumption of bone formation has profound implication for understanding bone dynamics durng space flight, immobilization, or bed rest and offers an opportunity to study the hormonal and mechanical factors that regulate bone formation.

  17. Investigation of Accelerated Partial Breast Patient Alignment and Treatment With Helical Tomotherapy Unit

    SciTech Connect

    Langen, Katja M. Buchholz, Daniel J.; Burch, Doug R. C.; Burkavage, Rob C.; Limaye, Arti U.; Meeks, Sanford L.; Kupelian, Patrick A.; Ruchala, Kenneth J.; Haimerl, Jason; Henderson, Doug; Olivera, Gustavo H.

    2008-03-15

    Purpose: To determine the precision of megavoltage computed tomography (MVCT)-based alignment of the seroma cavity for patients undergoing partial breast irradiation; and to determine whether accelerated partial breast irradiation (APBI) plans can be generated for TomoTherapy deliveries that meet the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39/Radiation Therapy Oncology Group (RTOG) 0413 protocol guidelines for target coverage and normal tissue dose limitations. Methods and Materials: We obtained 50 MVCT images from 10 patients. An interuser study was designed to assess the alignment precision. Using a standard helical and a fixed beam prototype ('topotherapy') optimizer, two APBI plans for each patient were developed. Results: The precision of the MVCT-based seroma cavity alignment was better than 2 mm if averaged over the patient population. Both treatment techniques could be used to generate acceptable APBI plans for patients that fulfilled the recommended NSABP B-39/RTOG-0413 selection criteria. For plans of comparable treatment time, the conformation of the prescription dose to the target was greater for helical deliveries, while the ipsilateral lung dose was significantly reduced for the topotherapy plans. Conclusions: The inherent volumetric imaging capabilities of a TomoTherapy Hi-Art unit allow for alignment of patients undergoing partial breast irradiation that is determined from the visibility of the seroma cavity on the MVCT image. The precision of the MVCT-based alignment was better than 2 mm ({+-} standard deviation) when averaged over the patient population. Using the NSABP B-39/RTOG-0413 guidelines, acceptable APBI treatment plans can be generated using helical- or topotherapy-based delivery techniques.

  18. Accelerating POCS interpolation of 3D irregular seismic data with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Qin; Gao, Xing; Yao, Zhen-Xing

    2010-10-01

    Seismic trace interpolation is necessary for high-resolution imaging when the acquired data are not adequate or when some traces are missing. Projection-onto-convex-sets (POCS) interpolation can gradually recover missing traces with an iterative algorithm, but its computational cost in a 3D CPU-based implementation is too high for practical applications. We present a computing scheme to speedup 3D POCS interpolation with graphics processing units (GPUs). We accelerate the most time-consuming part of the 3D POCS algorithm (i.e. Fourier transforms) by taking advantage of a GPU-based Fourier transform library. Other parts are fine-tuned to maximize the utilization of GPU computing resources. We upload the whole input data set to the global memory of the GPUs and reuse it until the final result is obtained. This can avoid low-bandwidth data transfer between CPU and GPUs. We minimize the number of intermediate 3D arrays to save GPU global memory by optimizing the algorithm implementation. This allows us to handle a much larger input data set. When reducing the runtime of our GPU implementation, the coalescing of global memory access and the 3D CUFFT library provides us with the greatest performance improvements. Numerical results show that our scheme is 3-29× times faster than the optimized CPU-based implementation, depending on the size of 3D data set. Our GPU computing scheme allows a significant reduction of computational cost and would facilitate 3D POCS interpolation for practical applications.

  19. Skeletal muscle responses to unloading in humans

    NASA Technical Reports Server (NTRS)

    Dudley, G.; Tesch, P.; Hather, B.; Adams, G.; Buchanan, P.

    1992-01-01

    This study examined the effects of unloading on skeletal muscle structure. Method: Eight subjects walked on crutches for six weeks with a 110 cm elevated sole on the right shoe. This removed weight bearing by the left lower limb. Magnetic resonance imaging of both lower limbs and biopsies of the left m. vastus laterallis (VL) were used to study muscle structure. Results: Unloading decreased (P less than 0.05) muscle cross-sectional areas (CSA) of the knee extensors 16 percent. The knee flexors showed about 1/2 of this response (-7 percent, P less than 0.05). The three vasti muscles each showed decreases (P less than 0.05) of about 15 percent. M. rectus femoris did not change. Mean fiber CSA in VL decreased (P less than 0.05) 14 percent with type 2 and type 1 fibers showing reductions of 15 and 11 percent respectively. The ankle extensors showed a 20 percent decrease (P less than 0.05) in CSA. The reduction for the 'fast' m. gastrocnemius was 27 percent compared to the 18 percent decrease for the 'slow' soleus. Summary: The results suggest that decreases in muscle CSA are determined by the relative change in impact loading history because atrophy was (1) greater in extensor than flexor muscles, (2) at least as great in fast as compared to slow muscles or fibers, and (3) not dependent on single or multi-joint function. They also suggest that the atrophic responses to unloading reported for lower mammals are quantitatively but not qualitatively similar to those of humans.

  20. Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework.

    PubMed

    Sisto, Aaron; Glowacki, David R; Martinez, Todd J

    2014-09-16

    ("fragmenting") a molecular system and then stitching it back together. In this Account, we address both of these problems, the first by using graphical processing units (GPUs) and electronic structure algorithms tuned for these architectures and the second by using an exciton model as a framework in which to stitch together the solutions of the smaller problems. The multitiered parallel framework outlined here is aimed at nonadiabatic dynamics simulations on large supramolecular multichromophoric complexes in full atomistic detail. In this framework, the lowest tier of parallelism involves GPU-accelerated electronic structure theory calculations, for which we summarize recent progress in parallelizing the computation and use of electron repulsion integrals (ERIs), which are the major computational bottleneck in both density functional theory (DFT) and time-dependent density functional theory (TDDFT). The topmost tier of parallelism relies on a distributed memory framework, in which we build an exciton model that couples chromophoric units. Combining these multiple levels of parallelism allows access to ground and excited state dynamics for large multichromophoric assemblies. The parallel excitonic framework is in good agreement with much more computationally demanding TDDFT calculations of the full assembly. PMID:25186064

  1. 27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW SKIP TIES UP AT DOCK. THE UNLOADERS OPERATE ALMOST CONTINUOUSLY DURING THE SHIPPING SEASON, WHICH USUALLY RUNS FROM APRIL UNTIL LATE DECEMBER OR EARLY JANUARY. VIEW HERE IS LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Administration requirements in 29 CFR 1910.119 and 1910.120) in a location where they are immediately available... must be observed: (a) General requirements. (1) Unloading operations must be performed by hazmat... section. (2) Each hazmat employee who is responsible for unloading must apply the handbrake and block...

  3. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Administration requirements in 29 CFR 1910.119 and 1910.120) in a location where they are immediately available... must be observed: (a) General requirements. (1) Unloading operations must be performed by hazmat... section. (2) Each hazmat employee who is responsible for unloading must apply the handbrake and block...

  4. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Administration requirements in 29 CFR 1910.119 and 1910.120) in a location where they are immediately available... must be observed: (a) General requirements. (1) Unloading operations must be performed by hazmat... section. (2) Each hazmat employee who is responsible for unloading must apply the handbrake and block...

  5. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Administration requirements in 29 CFR 1910.119 and 1910.120) in a location where they are immediately available... must be observed: (a) General requirements. (1) Unloading operations must be performed by hazmat... section. (2) Each hazmat employee who is responsible for unloading must apply the handbrake and block...

  6. 24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT END AND REAR LEGS OF THE HULETT UNLOADERS ARE LAID ON THE DOCK AND REAR WALLS, RESPECTIVELY; BOTH WALLS ARE MADE OF REINFORCED CONCRETE SUPPORTED ON CONCRETE PILES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  7. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  8. Bone Proteoglycan Changes During Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Uzawa, K.; Pornprasertsuk, S.; Arnaud, S.; Grindeland, R.; Grzesik, W.

    1999-01-01

    Skeletal adaptability to mechanical loads is well known since the last century. Disuse osteopenia due to the microgravity environment is one of the major concerns for space travelers. Several studies have indicated that a retardation of the mineralization process and a delay in matrix maturation occur during the space flight. Mineralizing fibrillar type I collagen possesses distinct cross-linking chemistries and their dynamic changes during mineralization correlate well with its function as a mineral organizer. Our previous studies suggested that a certain group of matrix proteoglycans in bone play an inhibitory role in the mineralization process through their interaction with collagen. Based on these studies, we hypothesized that the altered mineralization during spaceflight is due in part to changes in matrix components secreted by cells in response to microgravity. In this study, we employed hindlimb elevation (tail suspension) rat model to study the effects of skeletal unloading on matrix proteoglycans in bone.

  9. Hindlimb unloading: rodent analog for microgravity.

    PubMed

    Globus, Ruth K; Morey-Holton, Emily

    2016-05-15

    The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development. PMID:26869711

  10. Grain Unloading of Arsenic Species in Rice

    SciTech Connect

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-11

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a {+-} stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

  11. Hindlimb unloading elicits anhedonia and sympathovagal imbalance.

    PubMed

    Moffitt, Julia A; Grippo, Angela J; Beltz, Terry G; Johnson, Alan Kim

    2008-10-01

    The hindlimb-unloaded (HU) rat model elicits cardiovascular deconditioning and simulates the physiological adaptations to microgravity or prolonged bed rest in humans. Although psychological deficits have been documented following bed rest and spaceflight in humans, few studies have explored the psychological effects of cardiovascular deconditioning in animal models. Given the bidirectional link established between cardiac autonomic imbalance and psychological depression in both humans and in animal models, we hypothesized that hindlimb unloading would elicit an alteration in sympathovagal tone and behavioral indexes of psychological depression. Male, Sprague-Dawley rats confined to 14 days of HU displayed anhedonia (a core feature of human depression) compared with casted control (CC) animals evidenced by reduced sucrose preference (CC: 81 +/- 2.9% baseline vs. HU: 58 +/- 4.5% baseline) and reduced (rightward shift) operant responding for rewarding electrical brain stimulation (CC: 4.4 +/- 0.3 muA vs. 7.3 +/- 1.0 muA). Cardiac autonomic blockade revealed elevated sympathetic [CC: -54 +/- 14.1 change in (Delta) beats/min vs. HU: -118 +/- 7.6 Delta beats/min] and reduced parasympathetic (CC: 45 +/- 11.8 Delta beats/min vs. HU: 8 +/- 7.3 Delta beats/min) cardiac tone in HU rats. Heart rate variability was reduced (CC: 10 +/- 1.4 ms vs. HU: 7 +/- 0.7 ms), and spectral analysis of blood pressure indicated loss of total, low-, and high-frequency power, consistent with attenuated baroreflex function. These data indicate that cardiovascular deconditioning results in sympathovagal imbalance and behavioral signs consistent with psychological depression. These findings further elucidate the pathophysiological link between cardiovascular diseases and affective disorders.

  12. Right Ventricular Dysfunction During Intensive Pharmacologic Unloading Persists After Mechanical Unloading

    PubMed Central

    Palardy, Maryse; Nohria, Anju; Rivero, Jose; Lakdawala, Neal; Campbell, Patricia; Kato, Mahoto; Griffin, Leslie M.; Smith, Colleen M.; Couper, Gregory S.; Stevenson, Lynne W.; Givertz, Michael M.

    2014-01-01

    Background Right ventricular (RV) dysfunction is associated with adverse outcomes in heart failure (HF). Mechanical unloading should be more effective than pharmacologic therapy to reduce RV afterload and improve RV function. We compared RV size and function after aggressive medical unloading therapy to that achieved in the same patients after 3 months of left ventricular assist device (LVAD) support. Methods and Results We studied twenty patients who underwent isolated LVAD placement (9 pulsatile and 11 axial flow). Echocardiograms were performed after inpatient optimization with diuretic and inotropic therapy and compared to studies done after 3 months of LVAD support. After medical optimization right atrial pressure was 11±5 mm Hg, mean pulmonary artery pressure 36±11 mm Hg, pulmonary capillary wedge pressure 23±9 mm Hg, and cardiac index 2.0±0.6 L/min/m2. Pre-operatively, RV dysfunction was moderate (2.6 ±0.9 on 0-4 scale), RV diameter at the base was 3.1±0.6 cm, and mid-RV was 3.5±0.6 cm. After median LVAD support of 123 days (92-170), RV size and global RV dysfunction (2.6 ±0.9) failed to improve, despite reduced RV afterload. Conclusions RV dysfunction seen on intensive medical therapy persisted after 3 months of LVAD unloading therapy. Selection of candidates for isolated LV support should anticipate persistence of RV dysfunction observed on inotropic therapy. PMID:20206896

  13. Evaluation of dry versus wet unloading of spent nuclear fuel shipping casks

    SciTech Connect

    Allen, Jr., G. C.; Lambert, R. W.; Larkin, D. J.

    1980-01-01

    The Transportation Technology Center at Sandia National Laboratories completed an evaluation of unloading methods for spent fuel by sponsoring technical programs at Exxon Nuclear Company, Inc., and General Electric Corporation. These programs provided a comprehensive assessment of the relative merits, capabilities, and limitations of dry and wet unloading methods. The results of this evaluation, when continued, are expected to impact the development of future spent fuel and waste transportation systems. In addition, final conclusions of the evaluation will provide input to designers of future receiving and shipping interfaces at away-from-reactor spent fuel storage facilities and geologic nuclear waste repositories in the United States. The results presented here apply to the case where uncanistered spent fuel from light water reactors is to be handled. The conclusions may be different if uncontaminated canistered waste forms are considered in the future.

  14. Hardware acceleration of PIC codes: tapping into the power of state of the art processing units

    NASA Astrophysics Data System (ADS)

    Fonseca, R. A.; Abreu, P.; Martins, S. F.; Silva, L. O.

    2008-11-01

    There are many astrophysical and laboratory scenarios where kinetic effects play an important role. Further understanding of these scenarios requires detailed numerical modeling using fully relativistic three-dimensional kinetic code such as OSIRIS [1]. However, these codes are computationally heavy. Explicitly using available hardware resources such as SIMD units (Altivec/SSE3) [2], cell processors or graphics processing units (GPUs) may allow us to significantly boost performance of these codes. For the most cases, the processing units are limited to single precision arithmetic, and require specific C/C++ code to be used. We present a comparison between double precision and single precision results, focusing both on performance and on the effects on the simulation in terms of algorithm properties. Details on a framework allowing the integration of hardware optimized routines with existing high performance codes in languages other than C is given. Finally, initial results of high performance modules of the PIC algorithm using SIMD units and GPU's will also be presented. [1] R. A. Fonseca et al., LNCS 2331, 342, (2002) [2] K. J. Bowers et al., Phys Plasmas vol. 15 (5) pp. 055703 (2008)

  15. CLOSE UP VIEW OF MILL FROM KEKAHA ROAD, WITH UNLOADER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE UP VIEW OF MILL FROM KEKAHA ROAD, WITH UNLOADER AND CRUSHING MILL WING IN THE FOREGROUND. VIEW FROM THE NORTHEAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  16. VIEW OF UNLOADING STATION THAT WAS ADDED IN 1997. SUGAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF UNLOADING STATION THAT WAS ADDED IN 1997. SUGAR BIN AND MILL IN RIGHT BACKGROUND. VIEW FROM THE NORTHEAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  17. CONTEXT VIEW FROM SOUTHERNMOST HULETT, SHOWING UNLOADER AND CLEVELAND BULK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW FROM SOUTHERN-MOST HULETT, SHOWING UNLOADER AND CLEVELAND BULK TERMINAL BUILDINGS IN ASSOCIATION. LOOKING SOUTH. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. Looking southeast at coal conveyor leading from the coal unloading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at coal conveyor leading from the coal unloading station to the coal elevator. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  19. VIEW OF FEEDER TABLE WITH THE BOOM OF THE UNLOADER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FEEDER TABLE WITH THE BOOM OF THE UNLOADER IN BACKGROUND. THE CASE HYDRAULIC BOOM HOIST IS TO THE RIGHT. VIEW FROM THE SOUTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  20. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    SciTech Connect

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. )

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  1. Accelerated Clean-up of the United States Department of Energy, Mound Nuclear Weapons Facility in Miamisburg, Ohio

    SciTech Connect

    Lehew, J.G.; Bradford, J.D.; Cabbil, C.C.

    2006-07-01

    CH2M HILL is executing a performance-based contract with the United States Department of Energy to accelerate the safe closure of the nuclear facilities at the former Mound plant in Miamisburg, Ohio. The contract started in January 2003 with a target completion date of March 31, 2006. Our accelerated baseline targets completion of the project 2 years ahead of the previous baseline schedule, by spring 2006, and for $200 million less than previous estimates. This unique decommissioning and remediation project is located within the City of Miamisburg proper and is designed for transfer of the property to the Miamisburg Mound Community Improvement Corporation for industrial reuse. The project is being performed with the Miamisburg Mound Community Improvement Corporation and their tenants co-located on the site creating significant logistical, safety and stakeholder challenges. The project is also being performed in conjunction with the United States Department of Energy, United States Environmental Protection Agency, and the Ohio Environmental Protection Agency under the Mound 2000 regulatory cleanup process. The project is currently over 95% complete. To achieve cleanup and closure of the Mound site, CH2M HILL's scope includes: - Demolition of 64 nuclear, radiological and commercial facilities - Preparation for Transfer of 9 facilities (including a Category 2 nuclear facility) to the Miamisburg Mound Community Improvement Corporation for industrial reuse - Removal of all above ground utility structures and components, and preparation for transfer of 9 utility systems to Miamisburg Mound Community Improvement Corporation - Investigation, remediation, closure, and documentation of all known Potential Release Sites contaminated with radiological and chemical contamination (73 identified in original contract) - Storage, characterization, processing, packaging and shipment of all waste and excess nuclear materials - Preparation for Transfer of the 306 acre site to the

  2. 49 CFR 173.30 - Loading and unloading of transport vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Loading and unloading of transport vehicles. 173... § 173.30 Loading and unloading of transport vehicles. A person who is subject to the loading and unloading regulations in this subchapter must load or unload hazardous materials into or from a...

  3. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    PubMed

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2)). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments.

  4. Concurrent Validity of Accelerations Measured Using a Tri-Axial Inertial Measurement Unit while Walking on Firm, Compliant and Uneven Surfaces

    PubMed Central

    Cole, Michael H.; van den Hoorn, Wolbert; Kavanagh, Justin K.; Morrison, Steven; Hodges, Paul W.; Smeathers, James E.; Kerr, Graham K.

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s−2). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: −0.05 to 0.06 vs. 0.00 to 0.14 m.s−2), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: −0.16 to −0.02 vs. −0.07 to 0.07 m.s−2). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments. PMID:24866262

  5. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces.

    PubMed

    Cole, Michael H; van den Hoorn, Wolbert; Kavanagh, Justin K; Morrison, Steven; Hodges, Paul W; Smeathers, James E; Kerr, Graham K

    2014-01-01

    Although accelerometers are extensively used for assessing gait, limited research has evaluated the concurrent validity of these devices on less predictable walking surfaces or the comparability of different methods used for gravitational acceleration compensation. This study evaluated the concurrent validity of trunk accelerations derived from a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces and contrasted two methods used to remove gravitational accelerations; i) subtraction of the best linear fit from the data (detrending); and ii) use of orientation information (quaternions) from the inertial measurement unit. Twelve older and twelve younger adults walked at their preferred speed along firm, compliant and uneven walkways. Accelerations were evaluated for the thoracic spine (T12) using a tri-axial inertial measurement unit and an eleven-camera Vicon system. The findings demonstrated excellent agreement between accelerations derived from the inertial measurement unit and motion analysis system, including while walking on uneven surfaces that better approximate a real-world setting (all differences <0.16 m.s(-2)). Detrending produced slightly better agreement between the inertial measurement unit and Vicon system on firm surfaces (delta range: -0.05 to 0.06 vs. 0.00 to 0.14 m.s(-2)), whereas the quaternion method performed better when walking on compliant and uneven walkways (delta range: -0.16 to -0.02 vs. -0.07 to 0.07 m.s(-2)). The technique used to compensate for gravitational accelerations requires consideration in future research, particularly when walking on compliant and uneven surfaces. These findings demonstrate trunk accelerations can be accurately measured using a wireless inertial measurement unit and are appropriate for research that evaluates healthy populations in complex environments. PMID:24866262

  6. The Energetic Heavy Ion Sensor (EHIS) for GOES-R: Accelerator Calibrations of Flight Unit 1

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2014-12-01

    The Energetic Heavy Ion Sensor (EHIS) instruments for GOES-R will provide high resolution measurement of energetic ions (Solar energetic particles and cosmic rays) from hydrogen (H) through nickel (Ni) for space weather monitoring and scientific research. Measurements are taken in five approximately logarithmically spaced energy intervals from 10-200 MeV/u for hydrogen and helium (He) and comparable penetrations for heavier elements. The Angle Detecting Inclined Sensors (ADIS) technique is used to provide single element resolution by determining the angle of incidence with a very simple telescope design using Si solid state detectors. The ADIS system also facilitates on-board event identification of ion species. During high flux conditions, EHIS can identify the elemental composition of ~2000 events per seconds. Elemental charge histograms are compiled on-board and reported via telemetry once per minute providing an unprecedented combination of statistical resolution and high cadence. The first of four flight instruments (FM1) has been completed. FM1 underwent heavy ion accelerator calibration at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF) at Michigan State University in February 2013, and proton calibration at the Massachusetts General Hospital's (MGH) Burr Proton Therapy Center in April 2013. The heavy ion calibration included both Ni primary and secondary fragments runs down to H. Results of these calibration runs will be presented.

  7. Method of loading and unloading a furnace

    SciTech Connect

    Aldridge, R.E.; Elloway, R.; Fritz, W.O.; Goff, R.D.; Herera, M.J.

    1987-01-13

    A method is described of loading and unloading semiconductor wafer boats from a furnace having a processing tube provided with an opening through which the boats are transported, and having a door which is moveable by a control means for sealingly closing the opening when the wafers are being processed. The method comprises: (a) placing at least one of the boats on a support which is moveable by a motor along a path through the opening into and out of the furnace and to any of a plurality of selectable locations along the path; (b) selecting a first location of the support along the path outside the furnace which is related to a position where the boats are to be placed on and removed from the support respectively before and after the wafers are introduced into the furnace; (c) moving the support along the path to the first selected location; (d) generating a first set of data representing the first selected location; (e) storing the first set of data in a memory; (f) selecting a location of the support along the path outside the furnace where the support clears the door; (g) moving the support along the path to the clear-of-door location; (h) generating a clear-of-door set of data representing the location where the support clears the door; (i) storing the clear-of-door set of data in a memory; (j) selecting a second location of the support along the path inside the furnace which is related to a position where the boats are deposited in and picked up from the furnace; (k) moving the support along the path to the second selected location; and (l) generating a second set of data representing the second selection location.

  8. Theseus Nose and Pod Cones Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading the nose and pod cones of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  9. Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units.

    PubMed

    Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming

    2011-02-01

    High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.

  10. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units.

    PubMed

    Man, Pascal P; Bonhomme, Christian; Babonneau, Florence

    2014-01-01

    We present a post-processing method that decreases the NMR spectrum noise without line shape distortion. As a result the signal-to-noise (S/N) ratio of a spectrum increases. This method is called Cadzow enhancement procedure that is based on the singular-value decomposition of time-domain signal. We also provide software whose execution duration is a few seconds for typical data when it is executed in modern graphic-processing unit. We tested this procedure not only on low sensitive nucleus (29)Si in hybrid materials but also on low gyromagnetic ratio, quadrupole nucleus (87)Sr in reference sample Sr(NO3)2. Improving the spectrum S/N ratio facilitates the determination of T/Q ratio of hybrid materials. It is also applicable to simulated spectrum, resulting shorter simulation duration for powder averaging. An estimation of the number of singular values needed for denoising is also provided. PMID:24880899

  11. Using general-purpose computing on graphics processing units (GPGPU) to accelerate the ordinary kriging algorithm

    NASA Astrophysics Data System (ADS)

    Gutiérrez de Ravé, E.; Jiménez-Hornero, F. J.; Ariza-Villaverde, A. B.; Gómez-López, J. M.

    2014-03-01

    Spatial interpolation methods have been applied to many disciplines, the ordinary kriging interpolation being one of the methods most frequently used. However, kriging comprises a computational cost that scales as the cube of the number of data points. Therefore, one most pressing problems in geostatistical simulations is that of developing methods that can reduce the computational time. Weights calculation and then the estimate for each unknown point is the most time-consuming step in ordinary kriging. This work investigates the potential reduction in execution time by selecting the suitable operations involved in this step to be parallelized by using general-purpose computing on graphics processing units (GPGPU) and Compute Unified Device Architecture (CUDA). This study has been performed by taking into account comparative studies between graphic and central processing units on two different machines, a personal computer (GPU, GeForce 9500, and CPU, AMD Athlon X2 4600) and a server (GPU, Tesla C1060, and CPU, Xeon 5600). In addition, two data types (float and double) have been considered in the executions. The experimental results indicate that parallel implementation of matrix inverse by using GPGPU and CUDA will be enough to reduce the execution time of weights calculation and estimation for each unknown point and, as a result, the global performance time of ordinary kriging. In addition, suitable array dimensions for using the available parallelized code have been determined for each case. Thus, it is possible to obtain relevant saved times compared to those resulting from considering wider parallelized extension. This fact demonstrates the convenience of carrying out this kind of study in other interpolation calculation methodologies using matrices.

  12. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated

  13. MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail.

    PubMed

    Slavin, James A; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel M; Zurbuchen, Thomas H

    2010-08-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetic tail increased by factors of 2 to 3.5 over intervals of 2 to 3 minutes. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is lower by a factor of approximately 10 and typical durations are approximately 1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of substorms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines the substorm time scale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby. PMID:20647422

  14. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Nittler, Larry R.; Raines, Jim M.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Starr, Richard D.; Travnicek, Pavel M.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  15. Analysis of Acceleration, Airspeed, and Gust-Velocity Data From a Four-Engine Transport Airplane Operating Over a Northwestern United States Alaska Route

    NASA Technical Reports Server (NTRS)

    Engel, Jerome N.; Copp, Martin R.

    1959-01-01

    Acceleration, airspeed, and altitude data obtained with an NACA VGH recorder from a four-engine commercial transport airplane operating over a northwestern United States-Alaska route were evaluated to determine the magnitude and frequency of occurrence of gust and maneuver accelerations., operating airspeeds, and gust velocities. The results obtained were then compared with the results previously reported in NACA Technical Note 3475 for two similar airplanes operating over transcontinental routes in the United States. No large variations in the gust experience for the three operations were noted. The results indicate that the gust-load experience of the present operation closely approximated that of the central transcontinental route in the United States with which it is compared and showed differences of about 4 to 1 when compared with that of the southern transcontinental route in the United States. In general, accelerations due to gusts occurred much more frequently than those due to operational maneuvers. At a measured normal-acceleration increment of 0.5g, accelerations due to gusts occurred roughly 35 times more frequently than those due to operational maneuvers.

  16. Graphic processing unit accelerated real-time partially coherent beam generator

    NASA Astrophysics Data System (ADS)

    Ni, Xiaolong; Liu, Zhi; Chen, Chunyi; Jiang, Huilin; Fang, Hanhan; Song, Lujun; Zhang, Su

    2016-07-01

    A method of using liquid-crystals (LCs) to generate a partially coherent beam in real-time is described. An expression for generating a partially coherent beam is given and calculated using a graphic processing unit (GPU), i.e., the GeForce GTX 680. A liquid-crystal on silicon (LCOS) with 256 × 256 pixels is used as the partially coherent beam generator (PCBG). An optimizing method with partition convolution is used to improve the generating speed of our LC PCBG. The total time needed to generate a random phase map with a coherence width range from 0.015 mm to 1.5 mm is less than 2.4 ms for calculation and readout with the GPU; adding the time needed for the CPU to read and send to LCOS with the response time of the LC PCBG, the real-time partially coherent beam (PCB) generation frequency of our LC PCBG is up to 312 Hz. To our knowledge, it is the first real-time partially coherent beam generator. A series of experiments based on double pinhole interference are performed. The result shows that to generate a laser beam with a coherence width of 0.9 mm and 1.5 mm, with a mean error of approximately 1%, the RMS values needed 0.021306 and 0.020883 and the PV values required 0.073576 and 0.072998, respectively.

  17. Acceleration and solar origin of solar energetic particles observed by SREM units

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Georgoulis, M.; Daglis, I.; Sandberg, I.; Nieminen, P.

    2013-09-01

    Within the previous solar cycle 23, SREM units onboard ESA's INTEGRAL and Rosetta spacecraft detected several tens of Solar Energetic Particle Events (SEPEs) and accurately pinpointed their onset, rise, and decay times. We have undertaken a detailed study to determine the solar sources and the subsequent interplanetary coronal mass ejections (ICMEs) that gave rise to these events, as well as the timing of SEPEs with regard to the onset of possible geomagnetic activity triggered by these ICMEs. We find that virtually all SREM SEPEs can be associated with CME-driven shocks. Moreover, for a number of wellstudied INTEGRAL/SREM SEPEs we see an association between the SEPE peak and the shock passage at L1, subject to the heliographic location of the source solar active region. Shortly after the SEPE peak (typically within a few hours), the ICMEdriven modulation of the magnetosphere kicks in, often associated with a dip of the Dst index, indicating storm conditions in geospace. In essence we find that SREM SEPEs can be seamlessly fit into a coherent and consistent heliophysical interpretation of solar eruptions all the way from Sun to Earth. Their contribution to space-weather forecasting may be significant and warrants additional investigation.

  18. Grid-based algorithm to search critical points, in the electron density, accelerated by graphics processing units.

    PubMed

    Hernández-Esparza, Raymundo; Mejía-Chica, Sol-Milena; Zapata-Escobar, Andy D; Guevara-García, Alfredo; Martínez-Melchor, Apolinar; Hernández-Pérez, Julio-M; Vargas, Rubicelia; Garza, Jorge

    2014-12-01

    Using a grid-based method to search the critical points in electron density, we show how to accelerate such a method with graphics processing units (GPUs). When the GPU implementation is contrasted with that used on central processing units (CPUs), we found a large difference between the time elapsed by both implementations: the smallest time is observed when GPUs are used. We tested two GPUs, one related with video games and other used for high-performance computing (HPC). By the side of the CPUs, two processors were tested, one used in common personal computers and other used for HPC, both of last generation. Although our parallel algorithm scales quite well on CPUs, the same implementation on GPUs runs around 10× faster than 16 CPUs, with any of the tested GPUs and CPUs. We have found what one GPU dedicated for video games can be used without any problem for our application, delivering a remarkable performance, in fact; this GPU competes against one HPC GPU, in particular when single-precision is used. PMID:25345784

  19. Predictors of success for Saudi Arabian students enrolled in an accelerated baccalaureate degree program in nursing in the United States.

    PubMed

    Carty, Rita M; Moss, Margaret M; Al-Zayyer, Wael; Kowitlawakul, Yanika; Arietti, Lesley

    2007-01-01

    In the mid 1980s, a professional nursing education program was initiated between the Kingdom of Saudi Arabia and the United States. Based on a perceived and documented need, a collaborative education and research program was established with George Mason University in Fairfax, Virginia, to begin building a community of new scholars to assist in the advancement of professional nursing in the Kingdom of Saudi Arabia. Four cohorts of Saudi citizens from three institutions (King Faisal Specialist Hospital and Research Center, Saudi Arabia National Guard Hospital, and Ministry of Aviation and Defense Hospital), who held a degree in science or a related field, were enrolled in an accelerated baccalaureate program leading to a bachelor of science in nursing degree. This project was funded by Saudi Arabian sources. A descriptive research study was conducted to identify predictors of success in the program. Results indicated a rate of program completion that was higher than expected. Some of the first graduates went on for a doctor of philosophy degree, but not all enrolled completed the program. Many countries around the world are seeking ways to upgrade and increase the supply of qualified nurses within their own borders. This study identified those factors that were predictors of success for Saudi Arabian students who completed a baccalaureate degree in nursing program in the United States.

  20. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  1. Loading and unloading of freeze-dryers: airborne contamination risks for aseptically manufactured sterile drug products.

    PubMed

    Ljungqvist, Bengt; Reinmüller, Berit

    2007-01-01

    In pharmaceutical manufacturing, freeze-drying processes can be adversely affected by temperature differences relative to the surrounding air. Loading and unloading of freeze-dryers are performed either without or with temperature differences between the cleanroom and the chamber of the freeze-dryer. This operation can cause a flow of room air through the opening, creating a contamination risk, especially when manual handling of material is performed in this area. To minimize this risk, a high-efficiency particulate air (HEPA) filter unit should be installed above the opening to provide clean air and protect the opening. Here the theoretical relationships are discussed and design criteria are presented.

  2. Loading and unloading of freeze-dryers: airborne contamination risks for aseptically manufactured sterile drug products.

    PubMed

    Ljungqvist, Bengt; Reinmüller, Berit

    2007-01-01

    In pharmaceutical manufacturing, freeze-drying processes can be adversely affected by temperature differences relative to the surrounding air. Loading and unloading of freeze-dryers are performed either without or with temperature differences between the cleanroom and the chamber of the freeze-dryer. This operation can cause a flow of room air through the opening, creating a contamination risk, especially when manual handling of material is performed in this area. To minimize this risk, a high-efficiency particulate air (HEPA) filter unit should be installed above the opening to provide clean air and protect the opening. Here the theoretical relationships are discussed and design criteria are presented. PMID:17390703

  3. Loading-unloading hysteresis loop of randomly rough adhesive contacts.

    PubMed

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process.

  4. Loading-unloading hysteresis loop of randomly rough adhesive contacts.

    PubMed

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process. PMID:26764700

  5. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats

    NASA Technical Reports Server (NTRS)

    Smith, Brenda J.; King, Jarrod B.; Lucas, Edralin A.; Akhter, Mohammed P.; Arjmandi, Bahram H.; Stoecker, Barbara J.

    2002-01-01

    This study was designed to examine the skeletal response to copper depletion and mechanical unloading in mature animals. In a 2 x 2 experimental design, 5.5-mo-old male Sprague-Dawley rats (n = 36) consumed either the control (AIN-93M) or Cu-depletion ((-)Cu) diet beginning 21 d before suspension and throughout the remainder of the study. Half of the rats in each dietary treatment group were either tail-suspended (TS) or kept ambulatory (AMB) for 28 d. Lower bone mineral densities (BMD) of 5th lumbar vertebra (L5) (P < 0.05) and femur were observed with (-)Cu and TS, but no differences were noted in the BMD of the humerus. Mechanical strength in the femur and vertebra decreased in response to TS, but were unaffected by copper depletion. Urinary deoxypyridinoline, an index of bone resorption, was significantly greater in TS rats, but unaltered by (-)Cu. No changes in serum or bone alkaline phosphatase activity, an indicator of bone formation, were observed. Our findings suggest that TS and (-)Cu decreased BMD in unloaded femur and vertebra but had no effect on normally loaded humerus. Bone loss with TS appeared to be related to accelerated bone resorption. Alterations in bone metabolism and bone mechanical properties in the mature skeleton resulting from (-)Cu warrant further investigation.

  6. Impact of skeletal unloading on bone formation: Role of systemic and local factors

    NASA Astrophysics Data System (ADS)

    Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily

    We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.

  7. 4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PACK TRAIN WAITING TO BE UNLOADED AT FOOT OF YAKI TRAIL. APPROXIMATELY TWO-AND-ONE-HALF TONS OF STEEL ON ANIMALS SHOWN. NOTE COIL OF 1-1/2' WIND CABLE IN FOREGROUND. - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ

  8. 49 CFR 174.67 - Tank car unloading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Administration requirements in 29 CFR 1910.119 and 1910.120) in a location where they are immediately available... § 174.67, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... must be observed: (a) General requirements. (1) Unloading operations must be performed by...

  9. 18. THREEQUARTER VIEW OF HULETT UNLOADERS, LOOKING NORTHEAST. IF INCOMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. THREE-QUARTER VIEW OF HULETT UNLOADERS, LOOKING NORTHEAST. IF INCOMING ORE IS NOT TO BE SHIPPED IMMEDIATELY, THE 'LARRYMAN' MOVES HIS CARLOAD OF ORE ALONG THE CANTILEVER AT THE REAR OF THE HULETT AND DEPOSITS IT INTO THE STORAGE YARD. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  10. 29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE M. HUMPHREY'S' CARGO OF 25,000. TONS OF ORE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  11. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  12. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTH. INL PHOTO NUMBER HD-54-17-1. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CRANE LOADING AND UNLOADING AREA OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING NORTH. INL PHOTO NUMBER HD-54-17-4. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    NASA Technical Reports Server (NTRS)

    English, Kirk L.; Mulavara, Ajitkumar; Bloomberg, Jacob J.; Ploutz-Snyder, Lori L.

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions

  15. Skeletal unloading decreases production of 1,25-dihydroxyvitamin D

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Foskett, H. C.; Morey-Holton, E.

    1993-01-01

    The plasma concentration of 1,25-dihydroxyvitamin D [1,25(OH)2D] decreases during skeletal unloading and increases when normal weight bearing is restored. To determine whether these changes in plasma 1,25(OH)2D reflect changes in production, metabolic clearance, or both we measured the kinetics of 1,25(OH)2D metabolism in rats whose skeletons were normally loaded, unloaded, or reloaded after a period of nonweight bearing. Skeletal unloading produced a transient but striking fall in the production (-73%) and plasma concentration (-72%) of 1,25(OH)2D without having a significant effect (< 20%) on metabolic clearance. Skeletal reloading returned production to normal. Bone formation predictably decreased during unloading and returned to normal after return to weight bearing. No consistent changes in blood ionized calcium, plasma immunoreactive parathyroid hormone (irPTH), or plasma phosphorus occurred. These data suggest that the changes in plasma 1,25-(OH)2D associated with changes in skeletal weight bearing primarily reflect changes in 1,25(OH)2D production. The data provide no evidence that the changes in 1,25(OH)2D production are a consequence of changes in blood ionized calcium, plasma irPTH, or phosphorus.

  16. 29 CFR 784.125 - Loading and unloading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC PRODUCTS Exemptions Provisions Relating to Fishing and Aquatic Products General Character and Scope of the Section 13(a)(5) Exemption § 784.125 Loading and unloading. The term “loading and unloading” applies to activities connected with the removal of...

  17. Calf Strength Loss During Mechanical Unloading: Does It Matter?

    NASA Technical Reports Server (NTRS)

    English, K. L.; Mulavara, A.; Bloomberg, J.; Ploutz-Snyder, LL

    2016-01-01

    During the mechanical unloading of spaceflight and its ground-based analogs, muscle mass and muscle strength of the calf are difficult to preserve despite exercise countermeasures that effectively protect these parameters in the thigh. It is unclear what effects these local losses have on balance and whole body function which will be essential for successful performance of demanding tasks during future exploration missions.

  18. 2. PHOSPHATE UNLOADING BUILDING. VIEW IS TO THE NORTH. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PHOSPHATE UNLOADING BUILDING. VIEW IS TO THE NORTH. THIS STRUCTURE WAS RELOCATED TO THE SOUTH OF ITS ORIGINAL SITE IN 1993 FOR USE AS A DECONTAMINATION FACILITY WITHIN THE BUNKER HILL SUPERFUND SITE. - North Idaho Phosphate Company, Silver King Community, Kellogg, Shoshone County, ID

  19. Mobile Quarantine Facility unloaded at Ellington Air Force Base, Texas

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A Mobile Quarantine Facility, with the three Apollo 11 crewmen inside, is unloaded from a U.S. Air Force C141 transport at Ellington Air Force Base early Sunday after a flight from Hawaii. A large crowd was present to welcome Astronauts Neil Armstrong, Michael Collins and Edwin Aldrin Jr. back to Houston following their historic lunar landing mission.

  20. 1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF LOG POND AND BOOM FOR UNLOADING CEDAR LOGS FROM TRUCKS AT LOG DUMP, ADJACENT TO MILL; TRUCKS FORMERLY USED TRIP STAKES, THOUGH FOR SAFER HANDLING OF LOGS WELDED STAKES ARE NOW REQUIRED; AS A RESULT LOADING IS NOW DONE WITH A CRANE - Lester Shingle Mill, 1602 North Eighteenth Street, Sweet Home, Linn County, OR

  1. 39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. 40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-39) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  3. Vulnerability to dysfunction and muscle injury after unloading

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Tesch, P. A.; Hather, B. M.; Dudley, G. A.

    1996-01-01

    OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle

  4. Observations on the Nonlinear Unloading Behavior of Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Pavlina, Erik J.; Lee, Myoung-Gyu; Barlat, Frédéric

    2015-01-01

    The unloading behavior was compared for three different steel grades: a dual-phase steel, a transformation-induced plasticity steel, and a twinning-induced plasticity steel. Steels that harden by phase transformation or deformation twinning exhibited a smaller component of microplastic strain during unloading and a smaller reduction in the chord modulus compared to the conventional hardening steel. As a result, unloading is closer to pure elastic unloading when the TRIP effect or TWIP effect is active.

  5. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L.; Nittler, Larry R.; Raines, Jim M.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Starr, Richard D.; Travnicek, Pavel M.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury, a series of 2-3 minute long enhancements of the magnetic field in the planet's magnetotail were observed. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approximately 10 times less and the durations are 1 hr. These observations of extreme loading imply that the relative intensity of substorms at Mercury must be much larger than at Earth. The correspondence between the duration of tail enhancements and the calculated approximately 2 min Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles. Such signatures are puzzlingly absent from the MESSENGER flyby measurements.

  6. Rat limb unloading - Soleus histochemistry, ultrastructure, and electromyography

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, G. R.; Bain, J. L. W.; Sedlak, F. R.; Sowa, T. E.

    1990-01-01

    The effects of hindlimb unloading on rat-soleus histochemisty, ultrastructure, and electromyogram (EMG) activity were investigated. It was found that, after 14 days of tail suspension, the area of type I and type IIa muscle fibers decreased by 63 and 47 percent, respectively, mainly due to the degradation of subsarcolemmal mitochondria and myofibrils. After 10 days, 3 percent of type IIa fibers exhibited segmental necrosis. After four days, video monitoring revealed abnormal plantar flexion of the hindfeet, which shortened the soleus working range. The EMG activity shifted from tonic to phasic, and aggregate activity decreased drastically after only seven days. The results indictate that the pathological changes in the soleus resulted from unloaded contractions, reduced use, compromised blood flow, and shortened working length.

  7. Unloading behavior of dislocations emitted from a crack

    NASA Astrophysics Data System (ADS)

    Zhao, Rui-Huan; Li, J. C. M.

    1985-12-01

    Upon unloading, dislocations emitted from a crack can be retracted partially (stationary crack with lattice friction for dislocation motion) or completely (moving crack or zero friction for dislocation motion). The behavior of the plastic zone, the dislocation distribution, and the dislocation-free zone during the retraction process are studied by computer simulation. A propagating crack always moves forward upon unloading until all the dislocations are retracted. Its speed could be much faster during retraction than during the emission of dislocations. The rate of dislocation retraction or crack motion is slow in the beginning but then suddenly the crack jumps forward to retract all the rest of dislocations. This incubation period before the sudden crack surge seems to depend on the size of the dislocation-free zone.

  8. Pressure surge analysis in tanker loading/unloading systems

    SciTech Connect

    El-Oun, Z.; Stephens, P.

    1995-12-31

    Surge pressures are generated in any pipeline system where there is a sudden change in flow. This may be caused by either the opening or closing of a valve, the start up or shutdown of a pump or a combination of the two. If the pressure surge in the pipeline results in stresses in excess of the strength of the pipeline results in stresses in excess of the strength of the pipe or its components, then there may be a rupture leading to an oil spillage which could have major economic and environmental implications. Offshore loading/unloading facilities (cargo transfer systems) incorporating onshore tankage and pipework together with loading/unloading arrangements (via fixed jetty or CALM system) are in use worldwide and, in view of the fact that such systems are often composed of system components having different pressure ratings, susceptibility to damage due to excessive surge is a major factor to be considered in the design.

  9. No-dependent signaling pathways in unloaded skeletal muscle

    PubMed Central

    Shenkman, Boris S.; Nemirovskaya, Tatiana L.; Lomonosova, Yulia N.

    2015-01-01

    The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle. PMID:26582991

  10. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  11. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  12. Self-unloading, unmanned, reusable lunar lander project

    NASA Technical Reports Server (NTRS)

    Cowan, Kevin; Lewis, Ron; Mislinski, Philip; Rivers, Donna; Smith, Solar; Vasicek, Clifford; Verona, Matt

    1991-01-01

    A payload delivery system will be required to support the buildup and operation of a manned lunar base. In response, a self-unloading, unmanned, reusable lunar lander was conceptually designed. The lander will deliver a 7000 kg payload, with the same dimensions as a space station logistics module, from low lunar orbit to any location on the surface of the moon. The technical aspects of the design is introduced as well as the management structure and project cost.

  13. Biochemical response to chronic shortening in unloaded soleus muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Fagan, J. M.; Tischler, M. E.

    1985-01-01

    One leg of tail-casted suspended rats was immobilized in a plantar-flexed position to test whether chronic shortening of posterior leg muscles affected the metabolic response to unloading. The immobilized plantaris and gastrocnemius muscles of these animals showed approximately 20 percent loss of muscle mass in contrast to simply a slower growth rate with unloading. Loss of mass of the soleus muscle during suspension was not accentuated by chronic shortening. Although protein degradation in the isolated soleus muscle of the plantar-flexed limb was slightly faster than in the contralateral free limb, this difference was offset by faster synthesis of the myofibrillar protein fraction of the chronically shortened muscle. Total adenine nucleotides were 17 percent lower (P less than 0.005) in the chronically shortened soleus muscle following incubation. Glutamate, glutamine, and alanine metabolism showed little response to chronic shortening. These results suggest that, in the soleus muscle, chronic shortening did not alter significantly the metabolic responses to unloading and reduced activity.

  14. Efficacy of Unloader Bracing in Reducing Symptoms of Knee Osteoarthritis.

    PubMed

    Ostrander, Roger V; Leddon, Charles E; Hackel, Joshua G; O'Grady, Christopher P; Roth, Charles A

    2016-01-01

    Braces designed to unload the more diseased compartment of the knee have been used to provide symptomatic relief from osteoarthritis (OA). Research on the efficacy of these braces is needed. Thirty-one patients with knee OA were randomized to receive an unloader brace (n = 16) or not to receive a brace (control group, n = 15). Knee Injury and Osteoarthritis Outcomes Score (KOOS) and visual analog scale (VAS) scores were used to evaluate outcomes. KOOS results showed that the brace group had significantly less pain (P < .001), fewer arthritis symptoms (P = .007), and better ability to engage in activities of daily living (P = .008). There was no difference in function in sport and recreation (P = .402) or in knee-related quality of life (P = .718). VAS results showed that the brace group had significantly less pain throughout the day (P = .021) and had improved activity levels (P = .035). There was no difference in ability to sleep (P = .117) or in use of nonsteroidal anti-inflammatory drugs (P = .138). Our study results showed that use of an unloader brace for medial compartment knee OA led to significant improvements in pain, arthritis symptoms, and ability to engage in activities.

  15. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  16. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading

    NASA Astrophysics Data System (ADS)

    Walb, M. C.; Black, P. J.; Payne, V. S.; Munley, M. T.; Willey, J. S.

    2015-07-01

    Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm × 30.5 cm × 40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this

  17. Spinal shrinkage in unloaded and loaded drop-jumping.

    PubMed

    Fowler, N E; Lees, A; Reilly, T

    1994-01-01

    Plyometric activities, engaging the muscle in a stretch-shortening cycle, are widely used in athletic training. One such plyometric exercise is drop-jumping, where the athlete drops from a raised platform and immediately on landing performs a maximal vertical jump. These actions are also performed with the athlete externally loaded by the addition of weights to provide greater resistance. Exercises which involve repeated impacts have been shown to give rise to a loss of stature (shrinkage) which can be measured by means of a sensitive stadiometer. This study examined the shrinkage induced by unloaded and loaded drop-jumping from a height of 26 cm. Eight male subjects, aged 20-24 years, performed the test protocol three times, at the same time of day on each occasion. Fifty drop-jumps from a height of 26 cm were performed with no additional load and with a load of 8.5 kg carried in a weighted vest. The third condition was a standing trial where the subject stood for 10 min (the time taken to perform the jumps) wearing the weighted vest. Stature was measured before exercise, immediately after exercise and after a 20 min standing recovery. On a separate occasion the regimen was performed and the vertical reaction force was measured using a Kistler force platform. The mean change in stature for the two jump conditions showed shrinkages of 0.62 (+/- 0.43) mm for unloaded and 2.14 (+/- 1.56) mm for the loaded (p < 0.05). The variance in shrinkage was greater in the loaded case compared to the unloaded condition (p < 0.05) indicating a wider range of jumping strategies.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8112268

  18. The impact of skeletal unloading on bone formation.

    PubMed

    Bikle, Daniel D; Sakata, Takeshi; Halloran, Bernard P

    2003-06-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.

  19. Skeletal muscle responses to unloading with special reference to man

    NASA Technical Reports Server (NTRS)

    Dudley, G. A.; Hather, B. M.; Buchanan, P.

    1992-01-01

    The limited space flight data suggest that exposure to microgravity decreases muscle strength in humans and muscle mass in lower mammals. Several earth-based models have been used to address the effect of unloading on the human neuromuscular system due to the limited access of biological research to long-term space flight. Bedrest eliminates body weight bearing of both lower limbs. Unilateral lower limb suspension (ULLS), where all ambulatory activity is performed on crutches with an elevated sole on the shoe of one foot, has recently been used to unload one lower limb. The results from studies using these two models support their efficacy. The decrease in strength of m. quadriceps femoris, for example, after four to six weeks of bedrest, ULLS or space flight is 20 to 25 percent. The results from the earth-based studies show that this response can be attributed in part to a decrease in the cross-sectional area of the KE which reflects muscle fiber atrophy. The results from the ground based studies also support the limited flight data and show that reductions in strength are larger in lower than upper limbs and in extensor than flexor muscle groups. They also raise issue with the generally held concept that postural muscle is most affected by unweighting. Slow-twitch fibers in lower limb muscles of mixed fiber type composition and muscle composed mainly of slow-twitch fibers do not preferentially atrophy after bedrest or ULLS. Taken together, the data suggest that unloading causes remarkable adaptations in the neuromuscular system of humans. It should be appreciated, however, that this area of research is in its infancy.

  20. The impact of skeletal unloading on bone formation

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.

    2003-01-01

    Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.

  1. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    SciTech Connect

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.

  2. Optimal control of hopper unloading on collection conveyor

    SciTech Connect

    Bernshtein, A.I.

    1987-11-01

    This article describes a computer simulation and control approach for optimizing the configuration of a hopper-belt conveyor system for the excavation of coal from underground mine workings. The purpose of the approach is to optimize the placement of hoppers along the conveyor route for maximum load capacity and optimal load distribution. The simulation is based on linear programming and has been implemented to control hopper loading and unloading in the Krasnoarmeiskaya mine No. 1 of the Krasnoarmeiskugol' Coal Production Association. Input criteria are given.

  3. Deoxypyridinoline in the Urine of Rats with Unloaded Hindlimbs

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Navidi, M.; Wren, J.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    The urinary excretion of deoxypyridinoline (U-Dpd), a nonreducible collagen crosslink in bone released by osteoclastic activity, is thought to be an accurate marker of bone resorption. The role of increased resorption in the osteopenia of a space flight model which unloads the hindlimbs by suspending the tail is controversial. To assess skeletal resorption in the model we measured U-Dpd (Pyrilinks-D, Metro Biosystems, Inc.) in serial 24 hour urine specimens collected from 250 a (Y) and 450 a (M) male rats with unloaded hindlimbs for four weeks. Both groups of rats were fed AIN76 diets with calcium restricted to 0.2% in Y and to 0.1 % in M. Blood was obtained after 28 days for parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25-D) and alkaline phosphatase (Alkptase). Basal U-Dpd was higher and more variable in Y than M (475+/-200 vs 67+/-9, nM/mM creatinine, p<.001). Repeated measures ANOVA in Y revealed decreases in U-Dpd, 36% in control (C) and 24% in unloaded (S) rats (p<.005). There was a nadir in YS on the 14th day not observed in YC (p<.05). U-Dpd in MC showed no change, but increased in MS by the 14th day and remained elevated. At the end of the experiment, body weights in both Y and M were less in S than C (337+/-16 vs 306+/-12g and 485+/-10 vs 461+/-6g, p=.002). Bill was inversely related to U-Dpd only in M (r=0.699, p=.024). PTH, similar in C and S in Y (52+/-15 vs 42+/-7pg/ml, NS) and M (68+/-13 vs 61+/-12, NS), was unrelated to U-Dpd. 1,25-D tended toward higher values in YC than YS (197+/-103 vs 119+/-30, NS) and correlated with U-Dpd (0.773, p=.015). Alkptase, 1.3 times higher in Y than M, was similar in C and S at the end of unloading. These findings indicate that bone resorption, as reflected by U-Dpd, is suppressed in young and stimulated in mature rats exposed to a space flight model. U-Dpd reflects reduced growth from the diet change in young control and experimental rats and loss of Bill in mature animals exposed to the space flight model, 2

  4. Effects of ice-cap unloading on shallow magmatic reservoirs

    NASA Astrophysics Data System (ADS)

    Bakker, Richard; Frehner, Marcel; Lupi, Matteo

    2015-04-01

    One of the effects of global warming is the increase of volcanic activity. Glacial melting has been shown to cause visco-elastic relaxation of the upper mantle, which in turn promotes upwelling of magmas through the crust. To date, the effects of ice-cap melting on shallow (i.e., less than 10 km depth) plumbing systems of volcanoes are still not clear. We investigate the pressure changes due to glacial unloading around a magmatic reservoir by combining laboratory and numerical methods. As a case study we focus on Snæfellsjökull, a volcano in Western Iceland whose ice cap is currently melting 1.25 meters (thickness) per year. Our approach is as follows: we obtain representative rock samples from the field, preform tri-axial deformation tests at relevant pressure and temperature (PT) conditions and feed the results into a numerical model in which the stress fields before and after ice cap removal are compared. A suite of deformation experiments were conducted using a Paterson-type tri-axial deformation apparatus. All experiments were performed at a constant strain rate of 10-5 s-1, while varying the PT conditions. We applied confining pressures between 50 and 150 MPa and temperatures between 200 and 1000 ° C. Between 200 and 800 ° C we observe a localized deformation and a slight decrease of the Young's modulus from 41 to 38 GPa. Experiments at 900 and 1000 ° C exhibit macroscopically ductile behavior and a marked reduction of the Young's modulus down to 4 GPa at 1000 ° C. These results are used to construct a numerical finite-element model in which we approximate the volcanic edifice and basement by a 2D axisymmetric half-space. We first calculate the steady-state temperature field in the volcanic system and assign the laboratory-derived temperature-dependent Young's modulus to every element of the model. Then the pressure in the edifice is calculated for two scenarios: with and without ice cap. The comparison between the two scenarios allows us estimate the

  5. Graphics processing unit-accelerated non-rigid registration of MR images to CT images during CT-guided percutaneous liver tumor ablations

    PubMed Central

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G.; Shekhar, Raj; Hata, Nobuhiko

    2015-01-01

    Rationale and Objectives Accuracy and speed are essential for the intraprocedural nonrigid MR-to-CT image registration in the assessment of tumor margins during CT-guided liver tumor ablations. While both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique based on volume subdivision with hardware acceleration using a graphical processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Materials and Methods Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD)), and total processing time including contouring of ROIs and computation were compared using a paired Student’s t-test. Results Accuracy of the GPU-accelerated registrations and B-spline registrations, respectively were 88.3 ± 3.7% vs 89.3 ± 4.9% (p = 0.41) for DSC and 13.1 ± 5.2 mm vs 11.4 ± 6.3 mm (p = 0.15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 s vs 557 ± 116 s (p < 0.000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (p = 0.71). Conclusion The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated

  6. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  7. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  8. Caldera collapse unloading volcanoes: the textbook case of Fernandina, Galapagos

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Rivalta, E.; Pinel, V.; Maccaferri, F.; Acocella, V.

    2014-12-01

    Calderas are topographical depressions resulting from the yielding of magma chambers roof after large eruptions or intrusive events. On the outer slope, most calderas display radial fissures and, in limited cases, also circumferential fissures. Despite many hypotheses, the conditions controlling the formation of radial and/or circumferential fissures, and thus the shallow magma transfer within the volcano slopes, are still poorly understood. Here we demonstrate with numerical and analog models that the mass redistribution associated with caldera formation promotes shallow sill-shaped magma chambers and controls the orientation of eruptive fissures. We find that depending on the initial injection depth, dikes will bend or twist about an axis parallel to propagation resulting in circumferential and radial eruptive fissures, respectively. This mechanism is governed by the competition between gravitational unloading pressure and dike overpressure. We apply our results to Fernandina (Galapagos, Ecuador), the best case of caldera with radial and circumferential fissures, showing that the predicted stress field caused by the caldera unloading is consistent with the pattern of eruptive fissures and the dynamics of magma propagation.

  9. New histone supply regulates replication fork speed and PCNA unloading

    PubMed Central

    Mejlvang, Jakob; Feng, Yunpeng; Alabert, Constance; Neelsen, Kai J.; Jasencakova, Zuzana; Zhao, Xiaobei; Lees, Michael; Sandelin, Albin; Pasero, Philippe; Lopes, Massimo

    2014-01-01

    Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibition of canonical histone biosynthesis impaired replication fork progression and reduced nucleosome occupancy on newly synthesized DNA. Replication forks initially remained stable without activation of conventional checkpoints, although prolonged histone deficiency generated DNA damage. PCNA accumulated on newly synthesized DNA in cells lacking new histones, possibly to maintain opportunity for CAF-1 recruitment and nucleosome assembly. Consistent with this, in vitro and in vivo analysis showed that PCNA unloading is delayed in the absence of nucleosome assembly. We propose that coupling of fork speed and PCNA unloading to nucleosome assembly provides a simple mechanism to adjust DNA replication and maintain chromatin integrity during transient histone shortage. PMID:24379417

  10. Levels of soya aeroallergens during dockside unloading as measured by personal and static sampling.

    PubMed

    Mason, Howard; Gómez-Ollés, Susana; Cruz, Maria-Jesus; Smith, Ian; Evans, Gareth; Simpson, Andrew; Baldwin, Peter; Smith, Gordon

    2015-03-01

    Soya is an important worldwide agricultural product widely shipped and imported in bulk. It contains a number of recognised allergens and the use of soya products and its dockside unloading have been associated with occupational asthma and community episodes of asthma. Two recognised inhalation soya allergens, soya trypsin inhibitor (STI) and hydrophobic soya protein (HSP), were measured in personal and static air samples collected at a United Kingdom (UK) dock during 3 days of unloading three bulks of processed soya beans and soya pelletised husk. Static samples included task-related and those taken at the workplace perimeter and neighbouring sites. Soluble total protein (STP) and gravimetric dust analyses were also undertaken. While gravimetric dust results in personal air samples were below half of the current UK exposure limit of 10 mg m(-3) for grain dust, and generally less than 0.5 mg m(-3) for the static samples, airborne concentrations for STI and HSP ranged between 0-3,071 and 11-12,629 ng m(-3), respectively, while the correlation between the two specific allergen measurements was generally good (Rank Spearman coefficient 0.74). The data from this investigation suggest that HSP is a more sensitive indicator of soya exposure than STI, but only for soya husk, while STI may be equipotent in detecting exposure to both hull and bean derived soya products. Both assays appear sensitive techniques for investigating the control of exposure to allergenic soy material. The endotoxin level in the husk bulk was 15-60-fold that found in the two chipped bean bulks.

  11. Calcium balance in mature male rats with unloaded hindlimbs

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Evans, Juliann; Wolinsky, Ira; Arnaud, Sara B.

    2004-01-01

    BACKGROUND: Calcium balances, regulated by the calcium endocrine system, are negative during spaceflight but have not been reported in flight simulation models using fully mature small animals. METHODS: We conducted two calcium (Ca) balance studies in 6-mo-old male rats exposed to a model that unloads the hindlimbs (HU) for 4 wk. Control (C) and HU rats were fed diets with 0.5% Ca in the first and 0.1% Ca in the second study. Housing in metabolic cages enabled daily food and water intake measurements as well as collections of urine and fecal specimens. At necropsy, blood was obtained for measures of Ca-regulating hormones. RESULTS: Both C and HU rats adjusted to housing and diets with decreases in body weight and negative Ca balances during the first week of each experiment. Thereafter, averages of Ca balances were more negative in the unloaded rats than controls: -8.1 vs. -1.6 mg x d(-1) in rats fed 0.5% (p < 0.05). This difference was not due to urinary Ca excretion since it was lower in HU than C rats (1.27 +/- 0.51 mg x d(-1) vs. 2.35 +/- 0.82 mg x d(-1), p < 0.05). Fecal Ca in HU rats exceeded dietary Ca by 4-7%, Restricting dietary Ca to 0.1% was followed by an increase in serum 1,25-dihydroxyvitamin D (1,25-D) and greater intestinal Ca absorption than in rats fed 0.5% Ca. Ca balances in rats fed 0.1% Ca were also more negative in HU than C rats (-2.4 vs. -0.03 mg x d(-1), p < 0.05). Parathyroid hormone (PTH) was suppressed and 1,25-D increased in HU rats fed 0.5% Ca. C rats fed 0.1% Ca had increased PTH and 1,25-D was the same as in the HU group. CONCLUSION: After adaptation, Ca balances were more negative in mature male rats with unloaded hindlimbs than controls, an effect from increased secretion and loss of endogenous fecal Ca associated with increased 1,25-D in Ca-replete and Ca-restricted rats.

  12. A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation.

    PubMed

    Chandra, Santanu; Gnanaruban, Vimalatharmaiyah; Riveros, Fabian; Rodriguez, Jose F; Finol, Ender A

    2016-10-01

    In this work, we present a novel method for the derivation of the unloaded geometry of an abdominal aortic aneurysm (AAA) from a pressurized geometry in turn obtained by 3D reconstruction of computed tomography (CT) images. The approach was experimentally validated with an aneurysm phantom loaded with gauge pressures of 80, 120, and 140 mm Hg. The unloaded phantom geometries estimated from these pressurized states were compared to the actual unloaded phantom geometry, resulting in mean nodal surface distances of up to 3.9% of the maximum aneurysm diameter. An in-silico verification was also performed using a patient-specific AAA mesh, resulting in maximum nodal surface distances of 8 μm after running the algorithm for eight iterations. The methodology was then applied to 12 patient-specific AAA for which their corresponding unloaded geometries were generated in 5-8 iterations. The wall mechanics resulting from finite element analysis of the pressurized (CT image-based) and unloaded geometries were compared to quantify the relative importance of using an unloaded geometry for AAA biomechanics. The pressurized AAA models underestimate peak wall stress (quantified by the first principal stress component) on average by 15% compared to the unloaded AAA models. The validation and application of the method, readily compatible with any finite element solver, underscores the importance of generating the unloaded AAA volume mesh prior to using wall stress as a biomechanical marker for rupture risk assessment. PMID:27538124

  13. 76 FR 13313 - Hazardous Materials: Cargo Tank Motor Vehicle Loading and Unloading Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... risk assessment of the loading and unloading operation and develop and implement safe operating procedures based upon the results of the risk assessment. The proposed operational procedures include... reduce the risk associated with the loading and unloading of cargo tank motor vehicles that...

  14. 49 CFR 179.300-13 - Venting, loading and unloading valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Venting, loading and unloading valves. 179.300-13... Venting, loading and unloading valves. (a) Valves shall be of approved type, made of metal not subject to rapid deterioration by lading, and shall withstand tank test pressure without leakage. The valves...

  15. 49 CFR 179.300-13 - Venting, loading and unloading valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Venting, loading and unloading valves. 179.300-13..., loading and unloading valves. (a) Valves shall be of approved type, made of metal not subject to rapid deterioration by lading, and shall withstand tank test pressure without leakage. The valves shall be...

  16. A Methodology for the Derivation of Unloaded Abdominal Aortic Aneurysm Geometry With Experimental Validation.

    PubMed

    Chandra, Santanu; Gnanaruban, Vimalatharmaiyah; Riveros, Fabian; Rodriguez, Jose F; Finol, Ender A

    2016-10-01

    In this work, we present a novel method for the derivation of the unloaded geometry of an abdominal aortic aneurysm (AAA) from a pressurized geometry in turn obtained by 3D reconstruction of computed tomography (CT) images. The approach was experimentally validated with an aneurysm phantom loaded with gauge pressures of 80, 120, and 140 mm Hg. The unloaded phantom geometries estimated from these pressurized states were compared to the actual unloaded phantom geometry, resulting in mean nodal surface distances of up to 3.9% of the maximum aneurysm diameter. An in-silico verification was also performed using a patient-specific AAA mesh, resulting in maximum nodal surface distances of 8 μm after running the algorithm for eight iterations. The methodology was then applied to 12 patient-specific AAA for which their corresponding unloaded geometries were generated in 5-8 iterations. The wall mechanics resulting from finite element analysis of the pressurized (CT image-based) and unloaded geometries were compared to quantify the relative importance of using an unloaded geometry for AAA biomechanics. The pressurized AAA models underestimate peak wall stress (quantified by the first principal stress component) on average by 15% compared to the unloaded AAA models. The validation and application of the method, readily compatible with any finite element solver, underscores the importance of generating the unloaded AAA volume mesh prior to using wall stress as a biomechanical marker for rupture risk assessment.

  17. 9 CFR 95.25 - Transportation of restricted import products; placarding cars and marking billing; unloading...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the premises in or upon which the product or material may have been placed in the course of unloading...: Nature of emergency; place where product or material was unloaded; original points of shipment and... other vehicle into which the product or material is reloaded in case the original car or truck is...

  18. Alterations of collagen matrix in weight-bearing bones during skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, M.; Arnaud, S. B.; Tanzawa, H.; Uzawa, K.; Yamauchi, M.

    2001-01-01

    Skeletal unloading induces loss of bone mineral density in weight-bearing bones. The objectives of this study were to characterize the post-translational modifications of collagen of weight-bearing bones subjected to hindlimb unloading for 8 weeks. In unloaded bones, tibiae and femurs, while the overall amino acid composition was essentially identical in the unloaded and control tibiae and femurs, the collagen cross-link profile showed significant differences. Two major reducible cross-links (analyzed as dihydroxylysinonorleucine and hydroxylysinonorleucine) were increased in the unloaded bones. In addition, the ratios of the former to the latter as well as pyridinoline to deoxypyridinoline were significantly decreased in the unloaded bones indicating a difference in the extent of lysine hydroxylation at the cross-linking sites between these two groups. These results indicate that upon skeletal unloading the relative pool of newly synthesized collagen is increased and it is post-translationally altered. The alteration could be associated with impaired osteoblastic differentiation induced by skeletal unloading that results in a mineralization defect.

  19. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  20. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... end user named on the BIS license and in the AES record. (2) Optional ports of unloading. (i) Licensed... required. (i) When items are unloaded in a country to which the items would require a BIS license, no...., Washington, DC 20230; phone number 202-482-0436; facsimile number 202-482-3322; and E-Mail address:...

  1. 15 CFR 758.5 - Conformity of documents and unloading of items.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... license. See also 15 CFR 30.7(h) of the FTSR. (d) Delivery of items. No person may deliver items to any... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Conformity of documents and unloading... REGULATIONS EXPORT CLEARANCE REQUIREMENTS § 758.5 Conformity of documents and unloading of items. (a)...

  2. Comparing two devices of suspended treadmill walking by varying body unloading and Froude number.

    PubMed

    Ruckstuhl, Heidi; Kho, Jenniefer; Weed, Matthew; Wilkinson, Miles W; Hargens, Alan R

    2009-11-01

    In rehabilitation, treadmill walking with body weight support is commonly used to reduce loads on lower extremities. (1) However, gait pattern alterations during unloading at constant Froude number are infrequently reported. (2) Furthermore, differences between two common devices for unloading are not well known. Therefore, we investigated two devices; a waist-high chamber with increased pressure called Lower Body Positive Pressure (LBPP), and a harness system (LiteGait), considered a standard system for unloading the lower body. Four gait parameters (cadence, normalized stride length, duty factor, and leg angle at touch down), heart rate, and comfort level were monitored in 12 healthy volunteers. Subjects walked at three body weight (BW) conditions (100%, 66%, and 33% BW) and three Froude numbers (Fr), which refer to a dimensionless speed reflecting slow walking (Fr=0.09), comfortable walking (Fr=0.25), and walk-run transition (Fr=0.5). Absolute treadmill speed was determined using Froude numbers reflecting dynamically similar motions during unloading. We found that (1) the normal gait pattern is altered during unloading at a constant Froude number. In rehabilitation, physical therapists should be aware that normal gait pattern may not need to be maintained during unloaded treadmill walking. (2) Gait parameters were not different when comparing LBPP to harness supported walking. However, heart rate was lower and comfort higher during unloaded LBPP ambulation compared to suspended harness walking. Therefore, suspended LBPP walking may be more appropriate for patients with cardiovascular disease and for conditions at high unloading. PMID:19674901

  3. Increased Insulin Sensitivity and Distorted Mitochondrial Adaptations during Muscle Unloading

    PubMed Central

    Qi, Zhengtang; Zhang, Yuan; Guo, Wei; Ji, Liu; Ding, Shuzhe

    2012-01-01

    We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics. PMID:23443131

  4. Grain Unloading of Arsenic Species in Rice1[W

    PubMed Central

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-01

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols. PMID:19880610

  5. Paradoxical Sost gene expression response to mechanical unloading in metaphyseal bone.

    PubMed

    Macias, Brandon R; Aspenberg, Per; Agholme, Fredrik

    2013-04-01

    The Sost gene encodes Sclerostin, an inhibitor of Wnt-signaling, generally considered a main response gene to mechanical loading in bone. Several papers describe that unloading leads to upregulation of Sost, which in turn may lead to loss of bone. These studies were based on whole bone homogenates or cortical bone. By serendipity, we noted an opposite response to unloading in the proximal rat tibia. Therefore, we hypothesized that Sost-expression in response to changes in mechanical load is bone site specific. One hind limb of male, 3 month old rats was unloaded by paralyzing the extensors with Botulinium toxin A (Botox) injections. A series of experiments compared the expression of Sost mRNA in the unloaded and contralateral, loaded limbs, after 3 or 10 days, in metaphyseal cancellous bone, metaphyseal cortical bone, and diaphyseal cortical bone. We also conducted μCT to confirm changes in bone volume density related to unloading. Sost mRNA expression in the cancellous metaphyseal bone was downregulated almost 2-fold, both 3 days and 10 days after unloading (P<0.05). A similar tendency was seen in the metaphyseal cortical bone, in which Sost was 1.5-fold downregulated (P<0.05) after 10days, but not significantly changed after 3days. In contrast, diaphyseal cortical Sost expression was instead upregulated 1.4-fold (P<0.05) following 3-day unloading, while there was no significant change after 10days. Cancellous bone volume density was 58% lower (P<0.001, compared to cage controls) in the unloaded limb but not significantly affected in the loaded limb. The results suggest that Sost mRNA expression in metaphyseal bone responds to mechanical unloading in an opposite direction to that observed in diaphyseal cortical bone. This proposes a more complex expression pattern for Sost in response to unloading. Therapeutics that target Sclerostin during altered loading conditions may result in local bone mass changes that are difficult to predict.

  6. Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry calculations with graphical processing units.

    PubMed

    Vogt, Leslie; Olivares-Amaya, Roberto; Kermes, Sean; Shao, Yihan; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan

    2008-03-13

    The modification of a general purpose code for quantum mechanical calculations of molecular properties (Q-Chem) to use a graphical processing unit (GPU) is reported. A 4.3x speedup of the resolution-of-the-identity second-order Møller-Plesset perturbation theory (RI-MP2) execution time is observed in single point energy calculations of linear alkanes. The code modification is accomplished using the compute unified basic linear algebra subprograms (CUBLAS) library for an NVIDIA Quadro FX 5600 graphics card. Furthermore, speedups of other matrix algebra based electronic structure calculations are anticipated as a result of using a similar approach.

  7. Feasibility and Safety of Evaluating Patients with Prior Coronary Artery Disease Using an Accelerated Diagnostic Algorithm in a Chest Pain Unit

    PubMed Central

    Goldkorn, Ronen; Goitein, Orly; Ben-Zekery, Sagit; Shlomo, Nir; Narodetsky, Michael; Livne, Moran; Sabbag, Avi; Asher, Elad; Matetzky, Shlomi

    2016-01-01

    An accelerated diagnostic protocol for evaluating low-risk patients with acute chest pain in a cardiologist-based chest pain unit (CPU) is widely employed today. However, limited data exist regarding the feasibility of such an algorithm for patients with a history of prior coronary artery disease (CAD). The aim of the current study was to assess the feasibility and safety of evaluating patients with a history of prior CAD using an accelerated diagnostic protocol. We evaluated 1,220 consecutive patients presenting with acute chest pain and hospitalized in our CPU. Patients were stratified according to whether they had a history of prior CAD or not. The primary composite outcome was defined as a composite of readmission due to chest pain, acute coronary syndrome, coronary revascularization, or death during a 60-day follow-up period. Overall, 268 (22%) patients had a history of prior CAD. Non-invasive evaluation was performed in 1,112 (91%) patients. While patients with a history of prior CAD had more comorbidities, the two study groups were similar regarding hospitalization rates (9% vs. 13%, p = 0.08), coronary angiography (13% vs. 11%, p = 0.41), and revascularization (6.5% vs. 5.7%, p = 0.8) performed during CPU evaluation. At 60-days the primary endpoint was observed in 12 (1.6%) and 6 (3.2%) patients without and with a history of prior CAD, respectively (p = 0.836). No mortalities were recorded. To conclude, Patients with a history of prior CAD can be expeditiously and safely evaluated using an accelerated diagnostic protocol in a CPU with outcomes not differing from patients without such a history. PMID:27669521

  8. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  9. Real-time dual-mode standard/complex Fourier-domain OCT system using graphics processing unit accelerated 4D signal processing and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Kang; Kang, Jin U.

    2011-03-01

    We realized a real-time dual-mode standard/complex Fourier-domain optical coherence tomography (FD-OCT) system using graphics processing unit (GPU) accelerated 4D (3D+time) signal processing and visualization. For both standard and complex FD-OCT modes, the signal processing tasks were implemented on a dual-GPUs architecture that included λ-to-k spectral re-sampling, fast Fourier transform (FFT), modified Hilbert transform, logarithmic-scaling, and volume rendering. The maximum A-scan processing speeds achieved are >3,000,000 line/s for the standard 1024-pixel-FD-OCT, and >500,000 line/s for the complex 1024-pixel-FD-OCT. Multiple volumerendering of the same 3D data set were preformed and displayed with different view angles. The GPU-acceleration technique is highly cost-effective and can be easily integrated into most ultrahigh speed FD-OCT systems to overcome the 3D data processing and visualization bottlenecks.

  10. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  11. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  12. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina

    2005-01-01

    The hindlimb unloading rodent model is used extensively to study the response of many physiological systems to certain aspects of space flight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of hindlimb unloading, and is divided into three sections. The first section examines the characteristics of 1064 articles using or reviewing the hindlimb unloading model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and hindlimb unloading animals from the 14-day Cosmos 2044 mission. The final section describes modifications to hindlimb unloading required by different experimental paradigms and a method to protect the tail harness for long duration studies. Hindlimb unloading in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human space flight and disuse on Earth.

  13. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  14. Contractile reserve and calcium regulation are depressed in myocytes from chronically unloaded hearts

    NASA Technical Reports Server (NTRS)

    Ito, Kenta; Nakayama, Masaharu; Hasan, Faisal; Yan, Xinhua; Schneider, Michael D.; Lorell, Beverly H.

    2003-01-01

    BACKGROUND: Chronic cardiac unloading of the normal heart results in the reduction of left ventricular (LV) mass, but effects on myocyte contractile function are not known. METHODS AND RESULTS: Cardiac unloading and reduction in LV mass were induced by heterotopic heart transplantation to the abdominal aorta in isogenic rats. Contractility and [Ca(2+)](i) regulation in LV myocytes were studied at both 2 and 5 weeks after transplantation. Native in situ hearts from recipient animals were used as the controls for all experiments. Contractile function indices in myocytes from 2-week unloaded and native (control) hearts were similar under baseline conditions (0.5 Hz, 1.2 mmol/L [Ca(2+)](o), and 36 degrees C) and in response to stimulation with high [Ca(2+)](o) (range 2.5 to 4.0 mmol/L). In myocytes from 5-week unloaded hearts, there were no differences in fractional cell shortening and peak-systolic [Ca(2+)](i) at baseline; however, time to 50% relengthening and time to 50% decline in [Ca(2+)](i) were prolonged compared with controls. Severe defects in fractional cell shortening and peak-systolic [Ca(2+)](i) were elicited in myocytes from 5-week unloaded hearts in response to high [Ca(2+)](o). However, there were no differences in the contractile response to isoproterenol between myocytes from unloaded and native hearts. In 5-week unloaded hearts, but not in 2-week unloaded hearts, LV protein levels of phospholamban were increased (345% of native heart values). Protein levels of sarcoplasmic reticulum Ca(2+) ATPase and the Na(+)/Ca(2+) exchanger were not changed. CONCLUSIONS: Chronic unloading of the normal heart caused a time-dependent depression of myocyte contractile function, suggesting the potential for impaired performance in states associated with prolonged cardiac atrophy.

  15. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle.

    PubMed

    Bartoli, Carlo R; Giridharan, Guruprasad A; Litwak, Kenneth N; Sobieski, Michael; Prabhu, Sumanth D; Slaughter, Mark S; Koenig, Steven C

    2010-01-01

    Debate exists regarding the merits and limitations of continuous versus pulsatile flow mechanical circulatory support. To characterize the hemodynamic differences between each mode of support, we investigated the acute effects of continuous versus pulsatile unloading of the failing left ventricle in a bovine model. Heart failure was induced in male calves (n = 14). During an acute study, animals were instrumented through thoracotomy for hemodynamic measurement. A continuous flow (n = 8) and/or pulsatile flow (n = 8) left ventricular assist device (LVAD) was implanted and studied during maximum support ( approximately 5 L/min) and moderate support ( approximately 2-3 L/min) modes. Pulse pressure (PP), surplus hemodynamic energy (SHE), and (energy equivalent pressure [EEP]/mean aortic pressure (MAP) - 1) x 100% were derived to characterize hemodynamic energy profiles during the different support modes. Standard hemodynamic parameters of cardiac performance were also derived. Data were analyzed by repeated measures one-way analysis of variance within groups and unpaired Student's t-tests across groups. During maximum and moderate continuous unloading, PP, SHE, and (EEP/MAP - 1) x 100% were significantly decreased compared with baseline and compared with pulsatile unloading. As a result, continuous unloading significantly altered left ventricular peak systolic pressure, aortic systolic and diastolic pressure, +/-dP/dt, and rate x pressure product, whereas pulsatile unloading preserved a normal profile of physiologic values. As continuous unloading increased, the pressure-volume relationship collapsed, and the aortic valve remained closed. In contrast, as pulsatile unloading increased, a comparable decrease in left ventricular volumes was noted. However, a normal range of left ventricular pressures was preserved. Continuous unloading deranged the physiologic profile of myocardial and vascular hemodynamic energy utilization, whereas pulsatile unloading preserved more

  16. Graphics processing unit accelerated three-dimensional model for the simulation of pulsed low-temperature plasmas

    SciTech Connect

    Fierro, Andrew Dickens, James; Neuber, Andreas

    2014-12-15

    A 3-dimensional particle-in-cell/Monte Carlo collision simulation that is fully implemented on a graphics processing unit (GPU) is described and used to determine low-temperature plasma characteristics at high reduced electric field, E/n, in nitrogen gas. Details of implementation on the GPU using the NVIDIA Compute Unified Device Architecture framework are discussed with respect to efficient code execution. The software is capable of tracking around 10 × 10{sup 6} particles with dynamic weighting and a total mesh size larger than 10{sup 8} cells. Verification of the simulation is performed by comparing the electron energy distribution function and plasma transport parameters to known Boltzmann Equation (BE) solvers. Under the assumption of a uniform electric field and neglecting the build-up of positive ion space charge, the simulation agrees well with the BE solvers. The model is utilized to calculate plasma characteristics of a pulsed, parallel plate discharge. A photoionization model provides the simulation with additional electrons after the initial seeded electron density has drifted towards the anode. Comparison of the performance benefits between the GPU-implementation versus a CPU-implementation is considered, and a speed-up factor of 13 for a 3D relaxation Poisson solver is obtained. Furthermore, a factor 60 speed-up is realized for parallelization of the electron processes.

  17. Accelerating the performance of a novel meshless method based on collocation with radial basis functions by employing a graphical processing unit as a parallel coprocessor

    NASA Astrophysics Data System (ADS)

    Owusu-Banson, Derek

    In recent times, a variety of industries, applications and numerical methods including the meshless method have enjoyed a great deal of success by utilizing the graphical processing unit (GPU) as a parallel coprocessor. These benefits often include performance improvement over the previous implementations. Furthermore, applications running on graphics processors enjoy superior performance per dollar and performance per watt than implementations built exclusively on traditional central processing technologies. The GPU was originally designed for graphics acceleration but the modern GPU, known as the General Purpose Graphical Processing Unit (GPGPU) can be used for scientific and engineering calculations. The GPGPU consists of massively parallel array of integer and floating point processors. There are typically hundreds of processors per graphics card with dedicated high-speed memory. This work describes an application written by the author, titled GaussianRBF to show the implementation and results of a novel meshless method that in-cooperates the collocation of the Gaussian radial basis function by utilizing the GPU as a parallel co-processor. Key phases of the proposed meshless method have been executed on the GPU using the NVIDIA CUDA software development kit. Especially, the matrix fill and solution phases have been carried out on the GPU, along with some post processing. This approach resulted in a decreased processing time compared to similar algorithm implemented on the CPU while maintaining the same accuracy.

  18. Project UM-HAUL (UnManned Heavy pAyload Unloader and Lander): The design of a reusable lunar lander with an independent cargo unloader

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Project UM-Haul is the preliminary design of a reusable lunar transportation vehicle that travels between a lunar parking orbit and the lunar surface. This vehicle is an indispensible link in the overall task of establishing a lunar base as defined by the NASA Space Exploration Initiative. The response to this need consists of two independent vehicles: a lander and an unloader. The system can navigate and unload itself with a minimum amount of human intervention. The design addresses structural analysis, propulsion, power, controls, communications, payload handling and orbital operations. The Lander has the capacity to decend from low lunar orbit (LLO) to the lunar surface carrying a 7000 kg payload, plus the unloader, plus propellant for ascent to LLO. The Lander employs the Unloader by way of a motorized ramp. The Unloader is a terrain vehicle capable of carrying cargoes of 8,500 kg mass and employs a lift system to lower payloads to the ground. The system can perform ten missions before requiring major servicing.

  19. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).

    PubMed

    Ganesan, Narayan; Bauer, Brad A; Lucas, Timothy R; Patel, Sandeep; Taufer, Michela

    2011-11-15

    We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral

  20. Phloem unloading in developing leaves of sugar beet

    SciTech Connect

    Schmalstig, J.G.

    1985-01-01

    Physiological and transport data support a symplastic pathway for phloem unloading in developing leaves of sugar beet (Beta vulgaris L. Klein E, multigerm). The sulfhydryl inhibitor parachloromercuribenzene sulfonic acid (PCMBS) inhibited uptake of (/sup 14/C)-sucrose added to the free space of developing leaves, but did not affect import of (/sup 14/C)-sucrose during steady-state /sup 14/CO/sub 2/ labeling of a source leaf. The passively-transported xenobiotic sugar, (/sup 14/C)-L-glucose did not readily enter mesophyll cells when supplied through the cut end of the petiole of a sink leaf as determined by whole leaf autoradiography. In contrast, (/sup 14/C)-L-glucose translocated through the phloem from a mature leaf, rapidly entered mesophyll cells, and was evenly distributed between mesophyll and veins. Autoradiographs of developing leaves following a pulse of /sup 14/CO/sub 2/ to a source leaf revealed rapid passage of phloem translocated into progressively higher order veins as the leaf developed. Entry into V order veins occurred during the last stage of import through the phloem. Import into developing leaves was inhibited by glyphosate (N-phosphomethylglycine), a herbicide which inhibits the aromatic amino acid pathway and hence protein synthesis. Glyphosate also stopped net starch accumulation in sprayed mature leaves, but did not affect export of carbon from treated leaves during the time period that import into developed leaves was inhibited.

  1. Nuclear fuel pellet sintering boat unloading apparatus and method

    SciTech Connect

    Huggins, T.B.; Widener, W.H.; Klapper, K.K.

    1990-05-22

    This patent describes a method for unloading nuclear fuel pellets from a sintering boat having an open top. It comprises: pivoting a transfer housing loaded with the boat filled with nuclear fuel pellets about a generally horizontal axis from an upright position remote from a pellet deposit surface to an inverted position adjacent to the deposit surface to move the boat from an upright to inverted orientation with the pellets retained within the boat by a latched lid in a closed condition on the housing; unlatching the lid of the housing as the housing reaches its inverted position but engaging the unlatched lid with the deposit surface to retain it in its closed condition; and reverse pivoting the housing from its inverted position back toward its upright position to permit the unlatched lid to pivot from the closed condition to an opened condition thereby allowing pellets to slide out of the open top of the inverted boat and down the opened lid of the housing to the deposit site.

  2. Anodisation Increases Integration of Unloaded Titanium Implants in Sheep Mandible

    PubMed Central

    Duncan, Warwick J.; Lee, Min-Ho; Bae, Tae-Sung; Lee, Sook-Jeong; Gay, Jennifer; Loch, Carolina

    2015-01-01

    Spark discharge anodic oxidation forms porous TiO2 films on titanium implant surfaces. This increases surface roughness and concentration of calcium and phosphate ions and may enhance early osseointegration. To test this, forty 3.75 mm × 13 mm titanium implants (Megagen, Korea) were placed into healed mandibular postextraction ridges of 10 sheep. There were 10 implants per group: RBM surface (control), RBM + anodised, RBM + anodised + fluoride, and titanium alloy + anodised surface. Resonant frequency analysis (RFA) was measured in implant stability quotient (ISQ) at surgery and at sacrifice after 1-month unloaded healing. Mean bone-implant contact (% BIC) was measured in undemineralised ground sections for the best three consecutive threads. One of 40 implants showed evidence of failure. RFA differed between groups at surgery but not after 1 month. RFA values increased nonsignificantly for all implants after 1 month, except for controls. There was a marked difference in BIC after 1-month healing, with higher values for alloy implants, followed by anodised + fluoride and anodised implants. Anodisation increased early osseointegration of rough-surfaced implants by 50–80%. RFA testing lacked sufficient resolution to detect this improvement. Whether this gain in early bone-implant contact is clinically significant is the subject of future experiments. PMID:26436099

  3. The Chandra X-ray Observatory unloaded at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (left) is the mate- demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing- provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  4. The Chandra X-ray Observatory unloaded at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (right) is the mate- demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing- provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  5. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  6. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  7. 77. Neg. No. F65A, Apr 13, 1930, INTERIORASSEMBLY BUILDING, UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    77. Neg. No. F-65A, Apr 13, 1930, INTERIOR-ASSEMBLY BUILDING, UNLOADING THE ENAMEL OVEN - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  8. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  9. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Globus, R. K.

    1998-01-01

    A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in

  10. Effects of support unloading on inhibitory processes in motoneurons pools of postural muscles

    NASA Astrophysics Data System (ADS)

    Shigueva, Tatiana; Zakirova, Albina; Tomilovskaya, Elena

    The purpose of the study was to investigate the effect of support unloading on characteristics of shin extensor muscles (m.soleus and m.gastrocnemius lat.) motor units` (MU) activity evoked by electrical stimulation and intensity of spinal inhibitory processes. Conditions of support unloading were reproduced by "dry" immersion (DI), that it seen to be is the most adequate ground simulation model of weightlessness [Shulzhenko E.B. et al, 1976]. The experiments were performed with participation of 10 healthy men of 20-27 years old. The subjects were divided into 2 groups. In the first one (control group) the subjects stayed in DI for 3 days without any other influences; in the second one (experimental group) in the course of DI the mechanical stimulation of soles’ support zones in the regimen of locomotion was applied daily for 20 min at the beginning of each hour for 6 hours per day [Kozlovskaya I.B., 2007]. MUs’ activity of shin muscles (mm. gastrocnemius lat. and soleus) was recorded with needle concentric electrodes during execution of the task of maintaining a small plantar flexion effort (not stronger than 7% of maximal voluntary contraction force). Single electrical pulses 0,1 ms duration were applied to n.tibialis during spontaneous MU activity. The duration of silent period (SP) following H-reflex response and presence of rebound phenomenon - an increase of MU activity at the end of SP, that is usually observed under normal conditions and reflects trace of inhibitory and excitatory processes in motoneurons pools, were analyzed [Person R.S., 1985]. Experiments were performed before, on the 2nd and 3d day of DI and on the 2nd day after its accomplishment. The Wilcoxon nonparametric criteria were used for statistical data analysis. Exposure to the conditions of support unloading was followed by significant decline of SP duration. The mean of SP duration in shin muscles before DI was 227±31,4 ms. On the 2nd and 3rd days of DI in the control group it

  11. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  13. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGES

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  14. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Fountain, Kimberly; Vance, Monique; Sonnenfeld, Gerald

    2003-01-01

    It has been reported that spaceflight conditions alter the immune system and resistance to infection [Belay T, Aviles H, Vance M, Fountain K, and Sonnenfeld G. J Allergy Clin Immunol 170: 262-268, 2002; Hankins WR and Ziegelschmid JF. In: Biomedical Results of Apollo. Washington, DC: NASA, 1975, p. 43-81. (NASA Spec. Rep. SP-368)]. Ground-based models, including the hindlimb-unloading model, have become important tools for increasing understanding of how spaceflight conditions can influence physiology. The objective of the present study was to determine the effect of hindlimb unloading on the susceptibility of mice to Pseudomonas aeruginosa infection. Hindlimb-unloaded and control mice were subcutaneously infected with 1 LD50 of P. aeruginosa. Survival, bacterial organ load, and antibody and corticosterone levels were compared among the groups. Hindlimb unloading had detrimental effects for infected mice. Animals in the hindlimb-unloaded group, compared with controls, 1). showed significantly increased mortality and reduced time to death, 2). had increased levels of corticosterone, and 3). were much less able to clear bacteria from the organs. These results suggest that hindlimb unloading may induce the production of corticosterone, which may play a critical role in the modulation of the immune system leading to increased susceptibility to P. aeruginosa infection.

  15. Increased susceptibility to Pseudomonas aeruginosa infection under hindlimb-unloading conditions.

    PubMed

    Aviles, Hernan; Belay, Tesfaye; Fountain, Kimberly; Vance, Monique; Sonnenfeld, Gerald

    2003-07-01

    It has been reported that spaceflight conditions alter the immune system and resistance to infection [Belay T, Aviles H, Vance M, Fountain K, and Sonnenfeld G. J Allergy Clin Immunol 170: 262-268, 2002; Hankins WR and Ziegelschmid JF. In: Biomedical Results of Apollo. Washington, DC: NASA, 1975, p. 43-81. (NASA Spec. Rep. SP-368)]. Ground-based models, including the hindlimb-unloading model, have become important tools for increasing understanding of how spaceflight conditions can influence physiology. The objective of the present study was to determine the effect of hindlimb unloading on the susceptibility of mice to Pseudomonas aeruginosa infection. Hindlimb-unloaded and control mice were subcutaneously infected with 1 LD50 of P. aeruginosa. Survival, bacterial organ load, and antibody and corticosterone levels were compared among the groups. Hindlimb unloading had detrimental effects for infected mice. Animals in the hindlimb-unloaded group, compared with controls, 1). showed significantly increased mortality and reduced time to death, 2). had increased levels of corticosterone, and 3). were much less able to clear bacteria from the organs. These results suggest that hindlimb unloading may induce the production of corticosterone, which may play a critical role in the modulation of the immune system leading to increased susceptibility to P. aeruginosa infection. PMID:12626488

  16. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  17. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yoshinaga, T.; Nomura, T.; Kawano, F.; Ishihara, A.; Nonaka, I.; Roy, R. R.; Edgerton, V. R.

    The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles.

  18. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  19. Phloem unloading in tobacco sink leaves: insensitivity to anoxia indicates a symplastic pathway.

    PubMed

    Turgeon, R

    1987-05-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Detectable levels of labeled photoassimilates entered sink leaves approx. 1 h after source leaves were provided with (14)CO2. Samples of tissue were removed from sink leaves when label was first detected and further samples were taken at the end of an experimental phloem-unloading period. The amount of label in veins and in surrounding cells was determined by microdensitometry of autoradiographs using a microspectrophotometer. Photoassimilate unloaded from first-, second-and third-order veins but not from smaller veins. Import termination in individual veins was gradual. Import by the sink leaf was completely inhibited by exposing the sink leaf to anaerobic conditions, by placing the entire plant in the cold, or by steam-girdling the sink-leaf petiole. Phloem unloading was completely inhibited by cold; however, phloem unloading continued when the sink-leaf petiole was steam girdled or when the sink leaf was exposed to a N2 atmosphere. Compartmental efflux-analysis indicated that only a small percentage of labeled nutrients was present in the free space after unloading from sink-leaf veins in a N2 atmosphere. The results are consistent with passive symplastic transfer of photoassimilates from phloem to surrounding cells. PMID:24227272

  20. Decreased Estrogen May Contribute to Osteopenia in Unloaded Bones

    NASA Technical Reports Server (NTRS)

    Tou, Janet; Arnaud, Sara; Grindeland, Richard; Wade, Charles

    2004-01-01

    Progressive loss of weight-bearing bone in astronauts is one of the most serious impediments to long-duration spaceflight. Estrogen deficiency in women is an established factor in bone loss. Reduced sex hormone levels have been reported in male astronauts, but no data is available regarding spaceflight effects on female sex hormones. The objective of our study was to determine the role of estrogen in disuse osteopenia. The NASA developed hindlimb suspension (HLS) model was used to simulate the unloading disuse of weight-bearing bones experienced in space. Female Sprague-Dawley rats (age 77d; n = 20/group) were HLS or kept ambulatory (AMB) for 38 d and endocrine and bone indices determined. HLS of rats resulted in lower (p less than 0.01) bone mass (9%0), bone mineral content (BMC 13%) and mechanical strength (28%) compared to AMB animals. Plasma estradiol (E2) was lower (p = 0.03) in HLS (10.1 +/- 1.4 pg/ml) compared to AMB rats (16.7 +/- 2.6 pg/ml). E2 was positively correlated to BMC r(sup 2) = 0.67 and mechanical strength r(sup 2) = 0.61. These results suggest that reduced E2 plays a role in disuse osteopenia induced by HLS. Plasma or pituitary lutenizing hormone (LH) and follicle stimulating hormone (FSH) levels were not different in HLS versus AMB rats. However, pituitary LH was correlated to E2 (r(sup 2) = 0.57), suggesting changes in E2 were exerted at the level of the hypothalamus-pituitary axis. Understanding the role of estrogen in disuse osteopenia is necessary to the development of efficacious therapies for female astronauts, bed rest patients and the increasing number of individuals in our sedentary population suffering bone loss.

  1. Apparatus for unloading nuclear fuel pellets from a sintering boat

    SciTech Connect

    Bucher, G.D.; Raymond, T.E.

    1987-02-10

    An apparatus is described for unloading nuclear fuel pellets from a loaded sintering boat having an open top, comprising: (a) means for receiving the boat in an upright position with the pellets contained therein, the boat receiving means including a platform for supporting the loaded boat in the upright position, the boat supporting platform having first and second portions; (b) means for clamping the boat including a pair of plates disposed at lateral sides of the boat and being movable in a first direction relative to one another for applying clamping forces to the boat on the platform and in a second direction relative to one another for releasing the clamping forces from the boat. The pair of plates have inner surfaces facing toward one another, the first and second platform portions of the boat supporting platform being mounted to the plates on the respective facing surfaces thereof and disposed in a common plane. One of the plates and one of the platform portions mounted thereto are disposed in a stationary position and the other of the plates and the other of the platform portions mounted thereto are movable relative thereto in the first and second directions for applying and releasing clamping forces to and from the boat while the boat is supported in the upright position by the platform portions; (c) means for transferring the clamped boat from the upright position to an inverted position and then back to the upright position; and (d) means of receiving the pellets from the clamped boat as the boat is being transferred from the upright position to the inverted position.

  2. Accelerating electrostatic interaction calculations with graphical processing units based on new developments of Ewald method using non-uniform fast Fourier transform.

    PubMed

    Yang, Sheng-Chun; Wang, Yong-Lei; Jiao, Gui-Sheng; Qian, Hu-Jun; Lu, Zhong-Yuan

    2016-01-30

    We present new algorithms to improve the performance of ENUF method (F. Hedman, A. Laaksonen, Chem. Phys. Lett. 425, 2006, 142) which is essentially Ewald summation using Non-Uniform FFT (NFFT) technique. A NearDistance algorithm is developed to extensively reduce the neighbor list size in real-space computation. In reciprocal-space computation, a new algorithm is developed for NFFT for the evaluations of electrostatic interaction energies and forces. Both real-space and reciprocal-space computations are further accelerated by using graphical processing units (GPU) with CUDA technology. Especially, the use of CUNFFT (NFFT based on CUDA) very much reduces the reciprocal-space computation. In order to reach the best performance of this method, we propose a procedure for the selection of optimal parameters with controlled accuracies. With the choice of suitable parameters, we show that our method is a good alternative to the standard Ewald method with the same computational precision but a dramatically higher computational efficiency. PMID:26584145

  3. Paradoxical Sost gene expression response to mechanical unloading in metaphyseal bone.

    PubMed

    Macias, Brandon R; Aspenberg, Per; Agholme, Fredrik

    2013-04-01

    The Sost gene encodes Sclerostin, an inhibitor of Wnt-signaling, generally considered a main response gene to mechanical loading in bone. Several papers describe that unloading leads to upregulation of Sost, which in turn may lead to loss of bone. These studies were based on whole bone homogenates or cortical bone. By serendipity, we noted an opposite response to unloading in the proximal rat tibia. Therefore, we hypothesized that Sost-expression in response to changes in mechanical load is bone site specific. One hind limb of male, 3 month old rats was unloaded by paralyzing the extensors with Botulinium toxin A (Botox) injections. A series of experiments compared the expression of Sost mRNA in the unloaded and contralateral, loaded limbs, after 3 or 10 days, in metaphyseal cancellous bone, metaphyseal cortical bone, and diaphyseal cortical bone. We also conducted μCT to confirm changes in bone volume density related to unloading. Sost mRNA expression in the cancellous metaphyseal bone was downregulated almost 2-fold, both 3 days and 10 days after unloading (P<0.05). A similar tendency was seen in the metaphyseal cortical bone, in which Sost was 1.5-fold downregulated (P<0.05) after 10days, but not significantly changed after 3days. In contrast, diaphyseal cortical Sost expression was instead upregulated 1.4-fold (P<0.05) following 3-day unloading, while there was no significant change after 10days. Cancellous bone volume density was 58% lower (P<0.001, compared to cage controls) in the unloaded limb but not significantly affected in the loaded limb. The results suggest that Sost mRNA expression in metaphyseal bone responds to mechanical unloading in an opposite direction to that observed in diaphyseal cortical bone. This proposes a more complex expression pattern for Sost in response to unloading. Therapeutics that target Sclerostin during altered loading conditions may result in local bone mass changes that are difficult to predict. PMID:23337040

  4. Unloaded Shortening Velocity of Voluntarily and Electrically Activated Human Dorsiflexor Muscles In Vivo

    PubMed Central

    Sasaki, Kazushige; Ishii, Naokata

    2010-01-01

    We have previously shown that unloaded shortening velocity (V0) of human plantar flexors can be determined in vivo, by applying the “slack test” to submaximal voluntary contractions (J Physiol 567:1047–1056, 2005). In the present study, to investigate the effect of motor unit recruitment pattern on V0 of human muscle, we modified the slack test and applied this method to both voluntary and electrically elicited contractions of dorsiflexors. A series of quick releases (i.e., rapid ankle joint rotation driven by an electrical dynamometer) was applied to voluntarily activated dorsiflexor muscles at three different contraction intensities (15, 50, and 85% of maximal voluntary contraction; MVC). The quick-release trials were also performed on electrically activated dorsiflexor muscles, in which three stimulus conditions were used: submaximal (equal to 15%MVC) 50-Hz stimulation, supramaximal 50-Hz stimulation, and supramaximal 20-Hz stimulation. Modification of the slack test in vivo resulted in good reproducibility of V0, with an intraclass correlation coefficient of 0.87 (95% confidence interval: 0.68–0.95). Regression analysis showed that V0 of voluntarily activated dorsiflexor muscles significantly increased with increasing contraction intensity (R2 = 0.52, P<0.001). By contrast, V0 of electrically activated dorsiflexor muscles remained unchanged (R2<0.001, P = 0.98) among three different stimulus conditions showing a large variation of tetanic torque. These results suggest that the recruitment pattern of motor units, which is quite different between voluntary and electrically elicited contractions, plays an important role in determining shortening velocity of human skeletal muscle in vivo. PMID:20885951

  5. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Astrophysics Data System (ADS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-05-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  6. The use of satellites in non-goestationary orbits for unloading geostationary communication satellite traffic peaks. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Price, K.; Turner, A.; Nguyen, T.; Doong, W.; Weyandt, C.

    1987-01-01

    The part of the geostationary (GEO) orbital arc used for United States domestic fixed, communications service is rapidly becoming filled with satellites. One of the factors currently limiting its utilization is that communications satellites must be designed to have sufficient capacity to handle peak traffic leads, and thus are under utilized most of the time. A solution is to use satellites in suitable non-geostationary orbits to unload the traffic peaks. Three different designs for a non-geostationary orbit communications satellite system are presented for the 1995 time frame. The economic performance is analyzed and compared with geostationary satellites for two classes of service, trunking and customer premise service. The result is that the larger payload of the non-geostationary satellite offsets the burdens of increased complexity and worse radiation environment to give improved economic performance. Depending on ground terminal configuration, the improved economic performance of the space segment may be offset by increased ground terminal expenses.

  7. Rat Heterotopic Heart Transplantation Model to Investigate Unloading-Induced Myocardial Remodeling

    PubMed Central

    Fu, Xuebin; Segiser, Adrian; Carrel, Thierry P.; Tevaearai Stahel, Hendrik T.; Most, Henriette

    2016-01-01

    Unloading of the failing left ventricle in order to achieve myocardial reverse remodeling and improvement of contractile function has been developed as a strategy with the increasing frequency of implantation of left ventricular assist devices in clinical practice. But, reverse remodeling remains an elusive target, with high variability and exact mechanisms still largely unclear. The small animal model of heterotopic heart transplantation (hHTX) in rodents has been widely implemented to study the effects of complete and partial unloading on cardiac failing and non-failing tissue to better understand the structural and molecular changes that underlie myocardial recovery. We herein review the current knowledge on the effects of volume unloading the left ventricle via different methods of hHTX in rats, differentiating between changes that contribute to functional recovery and adverse effects observed in unloaded myocardium. We focus on methodological aspects of heterotopic transplantation, which increase the correlation between the animal model and the setting of the failing unloaded human heart. Last, but not least, we describe the late use of sophisticated techniques to acquire data, such as small animal MRI and catheterization, as well as ways to assess unloaded hearts under “reloaded” conditions. While giving regard to certain limitations, heterotopic rat heart transplantation certainly represents the crucial model to mimic unloading-induced changes in the heart and as such the intricacies and challenges deserve highest consideration. Careful translational research will further improve our knowledge of the reverse remodeling process and how to potentiate its effect in order to achieve recovery of contractile function in more patients. PMID:27807535

  8. MAFbx/Atrogin-1 is required for atrophic remodeling of the unloaded heart

    PubMed Central

    Baskin, Kedryn K.; Rodriguez, Meredith R.; Kansara, Seema; Chen, Wenhao; Carranza, Sylvia; Frazier, O. Howard; Glass, David J.; Taegtmeyer, Heinrich

    2014-01-01

    Background Mechanical unloading of the failing human heart induces profound cardiac changes resulting in the reversal of a distorted structure and function. In this process, cardiomyocytes break down unneeded proteins and replace those with new ones. The specificity of protein degradation via the ubiquitin proteasome system is regulated by ubiquitin ligases. Over-expressing the ubiquitin ligase MAFbx/Atrogin-1 in the heart inhibits the development of cardiac hypertrophy, but the role of MAFbx/Atrogin-1 in the unloaded heart is not known. Methods and Results Mechanical unloading, by heterotopic transplantation, decreased heart weight and cardiomyocyte cross-sectional area in wild type mouse hearts. Unexpectedly, MAFbx/Atrogin-1−/− hearts hypertrophied after transplantation (n=8–10). Proteasome activity and markers of autophagy were increased to the same extent in WT and MAFbx/Atrogin-1−/− hearts after transplantation (unloading). Calcineurin, a regulator of cardiac hypertrophy, was only upregulated in MAFbx/Atrogin-1−/− transplanted hearts, while the mTOR pathway was similarly activated in unloaded WT and MAFbx/Atrogin-1−/− hearts. MAFbx/Atrogin-1−/− cardiomyocytes exhibited increased calcineurin protein expression, NFAT transcriptional activity, and protein synthesis rates, while inhibition of calcineurin normalized NFAT activity and protein synthesis. Lastly, mechanical unloading of failing human hearts with a left ventricular assist device (n=18) also increased MAFbx/Atrogin-1 protein levels and expression of NFAT regulated genes. Conclusions MAFbx/Atrogin-1 is required for atrophic remodeling of the heart. During unloading, MAFbx/Atrogin-1 represses calcineurin-induced cardiac hypertrophy. Therefore, MAFbx/Atrogin-1 not only regulates protein degradation, but also reduces protein synthesis, exerting a dual role in regulating cardiac mass. PMID:24650875

  9. Phloem unloading in aerial roots of Monstera deliciosa.

    PubMed

    Eschrich, W

    1983-05-01

    Plants of Monstera deliciosa Liebm. pruned to exemplars with one leaf and one aerial root were labeled with 7.4 MBq (14)CO2 over the leaf blade. Microautoradiographs of soluble and insoluble radioactivity were prepared from three different regions of the aerial root. In addition, histochemical localization of ATPase was carried out on similar aerial roots. Vigorously growing aerial roots grew as fast as 26 mm d(-1), and zones of differentiation extended more than 10 cm from the root tip. In the region 2-3 cm from the root tip, in which only protoelements of the vascular tissue were differentiated, (14)C-label was restricted to the protophloem. The activity of ATPase was recognized in many different cellular organelles of the meristematic phloem parenchyma. In the region 5-6 cm from the root tip, in which the first metaelements differentiated, all parenchyma cells of the central cylinder and many cortical cells showed (14)C-label, in addition to the densely labeled protophloem. Differentiating vessels were heavily labeled at sites where secondary walls were formed. In this region of the root, ATPase activity was concentrated on the plasmalemma and cortical cytoplasma of the sieve tubes, and on the tonoplast of the phloem parenchyma cells. In contrast, the strands of internal metaphloem with giant sieve tubes, which are scattered among the metaxylem, were neither labeled nor did they show ATPase activity. In the zone 19-20 cm from the root tip, regions of cell differentiation in the sclerenchymatic mantle of the inner cortex, the late-formed metaxylem vessels and some strands of the internal metaphloem could be identified by dense (14)C-label. Low ATPase activity was found in the plasmalemma of practically all living cells. In this nearly mature region, a strong peroxidase activity was observed in the radial walls of the endodermis. The results indicate that phloem unloading was strongest at sites of root differentiation, where ATPase activity was concentrated in the

  10. Optimized planning of in-service inspections of local flow-accelerated corrosion of pipeline elements used in the secondary coolant circuit of the VVER-440-based units at the Novovoronezh NPP

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.

    2015-03-01

    Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.

  11. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  12. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology.

    PubMed

    Ozcivici, Engin; Judex, Stefan

    2014-10-01

    Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced

  13. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology.

    PubMed

    Ozcivici, Engin; Judex, Stefan

    2014-10-01

    Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced

  14. Loading and Unloading Finishing Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20 degrees to load and unload pigs; however, they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with finishing pigs (70–120 kg) to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moisture levels, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system for the types of beddings. Heart rate and the total time it took to load and unload pigs, increased as the slope increased. Bedding, bedding moisture, season, and ramp slope interacted to impact the total time it took for finishing pigs to load and unload the ramp. Selection of the best bedding depends on ramp slope, season, and wetness of bedding. Abstract The use of non-slip surfaces during loading and unloading of finishing pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps with a slope below 20 degrees to load and unload pigs. However, the total time it takes to load and unload animals and slips, falls, and vocalizations are a welfare concern. Three ramp angles (0, 10 or 20 degrees), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding, >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 2400 pig observations) and analyzed with a scoring system. The use of bedding during summer or winter played a role in the total time it took to load and unload the ramp (p < 0.05). Bedding, bedding moisture, season, and slope significantly interacted to impact the total time to load and unload finishing pigs (p < 0.05). Heart rate and the total time it took to load and unload the ramp increased as the slope of the ramp increased (p < 0.05). Heart rates were higher during the

  15. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  16. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  17. Effects of Microstructure on the Variation of the Unloading Behavior of DP780 Steels

    NASA Astrophysics Data System (ADS)

    Pavlina, Erik J.; Lin, Chengjiang; Mendiguren, Joseba; Rolfe, Bernard F.; Weiss, Matthias

    2015-10-01

    The nonlinear unloading behavior of three different commercial dual-phase steels (DP780 grade equivalent) was examined. These steels exhibited small variations in chemical composition (0.07 to 0.10 mass percent carbon) and martensite volume fraction (0.23 to 0.28), and they demonstrated similar hardening behavior. Uniaxial loading-unloading-loading tests were conducted at room temperature and quasi-static strain rates between engineering strains of 0.5 and 8%. Steel microstructures were examined using electron backscatter diffraction and nanoindentation techniques. The microplastic component of the unloading strain exhibited no dependence on the martensite volume fraction or the ferrite grain size within the small range encountered in this investigations. Instead, the magnitude of the microplastic component of the unloading strain increased as the strength ratio between the martensite and ferrite phases increased. Correspondingly, the apparent unloading modulus, or chord modulus, exhibited a greater reduction for equivalent increments of strain hardening as the strength ratio increased. These results suggest that springback can be reduced in structures containing two ductile phases if the strength ratio between the harder and softer phases is reduced.

  18. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during mechanical unloading.

    PubMed

    Morikawa, Daichi; Nojiri, Hidetoshi; Saita, Yoshitomo; Kobayashi, Keiji; Watanabe, Kenji; Ozawa, Yusuke; Koike, Masato; Asou, Yoshinori; Takaku, Tomoiku; Kaneko, Kazuo; Shimizu, Takahiko

    2013-11-01

    Oxidative stress contributes to the pathogenesis of age-related diseases as well as bone fragility. Our previous study demonstrated that copper/zinc superoxide dismutase (Sod1)-deficient mice exhibit the induction of intracellular reactive oxygen species (ROS) and bone fragility resulting from low-turnover bone loss and impaired collagen cross-linking (Nojiri et al. J Bone Miner Res. 2011;26:2682-94). Mechanical stress also plays an important role in the maintenance of homeostasis in bone tissue. However, the molecular links between oxidative and mechanical stresses in bone tissue have not been fully elucidated. We herein report that mechanical unloading significantly increased intracellular ROS production and the specific upregulation of Sod1 in bone tissue in a tail-suspension experiment. We also reveal that Sod1 loss exacerbated bone loss via reduced osteoblastic abilities during mechanical unloading. Interestingly, we found that the administration of an antioxidant, vitamin C, significantly attenuated bone loss during unloading. These results indicate that mechanical unloading, in part, regulates bone mass via intracellular ROS generation and the Sod1 expression, suggesting that activating Sod1 may be a preventive strategy for ameliorating mechanical unloading-induced bone loss.

  19. Glucose uptake in rat soleus - Effect of acute unloading and subsequent reloading

    NASA Technical Reports Server (NTRS)

    Henriksen, Eric J.; Tischler, Marc E.

    1988-01-01

    The effect of acutely reduced weight bearing (unloading) on the in vitro uptake of 2-1,2-H-3-deoxy-D-glucose was studied in the soleus muscle by tail casting and suspending rats. After just 4 h, the uptake of 2-deoxy-D-glucose fell (-19 percent) and declined further after an additional 20 h of unloading. This diminution at 24 h was associated with slower oxidation of C-14-glucose and incorporation of C-14-glucose into glycogen. At 3 days of unloading, basal uptake of 2-deoxy-D-glucose did not differ from control. Reloading of the soleus after 1 or 3 days of unloading increased uptake of 2-deoxy-D-glucose above control and returned it to normal within 6 h and 4 days, respectively. These effects of unloading and recovery were caused by local changes in the soleus, because the extensor digitorum longus from the same hindlimbs did not display any alterations in uptake of 2-deoxy-D-glucose or metabolism of glucose.

  20. Time course of the response of carbohydrate metabolism to unloading of the soleus

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.

    1988-01-01

    The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day three. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day one. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. On day three, the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

  1. Forebrain neural patterns associated with sex differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S; Menon, R; Shoemaker, J K

    2007-02-01

    Generally, women demonstrate smaller autonomic and cardiovascular reactions to stress, compared with men. The mechanism of this sex-dependent difference is unknown, although reduced baroreflex sensitivity may be involved. Recently, we identified a cortical network associated with autonomic cardiovascular responses to baroreceptor unloading in men. The current investigation examined whether differences in the neural activity patterns within this network were related to sex-related physiological responses to lower body negative pressure (LBNP, 5, 15, and 35 mmHg). Forebrain activity in healthy men and women (n = 8 each) was measured using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast. Stroke volume (SV), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were collected on a separate day. Men had larger decreases in SV than women (P < 0.01) during 35 mmHg LBNP only. At 35 mmHg LBNP, HR increased more in males then females (9 +/- 1 beats/min vs. 4 +/- 1 beats/min, P < 0.05). Compared with women, increases in total MSNA were similar at 15 mmHg LBNP but greater during 35 mmHg LBNP in men [1,067 +/- 123 vs. 658 +/- 103 arbitrary units (au), P < 0.05]. BOLD signal changes (P < 0.005, uncorrected) were identified within discrete forebrain regions associated with these sex-specific HR and MSNA responses. Men had larger increases in BOLD signal within the right insula and dorsal anterior cingulate cortex than women. Furthermore, men demonstrated greater BOLD signal reductions in the right amygdala, left insula, ventral anterior cingulate, and ventral medial prefrontal cortex vs. women. The greater changes in forebrain activity in men vs. women may have contributed to the elevated HR and sympathetic responses observed in men during 35 mmHg LBNP. PMID:17272671

  2. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27 percent decrease in mass and a 60 percent increse in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  3. Loading-unloading of an elastic-plastic adhesive spherical microcontact.

    PubMed

    Kadin, Y; Kligerman, Y; Etsion, I

    2008-05-01

    A numerical solution is presented for a single load-unload cycle of an adhesive contact between an elastic-plastic sphere and a rigid flat. The interacting forces between the sphere and the flat are obtained through connecting nonlinear spring elements having force-displacement behavior that obeys the Lennard-Jones potential. Kinematic, rather than isotropic, hardening is assumed for the sphere material to account for possible secondary plastification during the unloading. The well-known Tabor parameter and a plasticity parameter are shown to be the two main dimensionless parameters governing the problem. The effects of these two parameters on the load-approach curves, on the plastically deformed sphere profiles, and on the plastic strain fields inside the sphere are presented, showing different modes of separation during the unloading. PMID:18275967

  4. Deglaciation and glacial erosion: A joint control on magma productivity by continental unloading

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Caricchi, Luca; Castelltort, Sébastien; Champagnac, Jean-Daniel

    2016-02-01

    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking the solid Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic, and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated regardless of continental unloading by glacial erosion, albeit the density of rock exceeds that of ice by approximately 3 times. Here we present and discuss numerical results involving synthetic but realistic topographies, ice caps, and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading. Our study represents an additional step toward a more general understanding of the links between a changing climate, glacial processes, and the melting of the solid Earth.

  5. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27% decrease in mass and a 60% increase in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  6. Vitamin E provides protection for bone in mature hindlimb unloaded male rats.

    PubMed

    Smith, B J; Lucas, E A; Turner, R T; Evans, G L; Lerner, M R; Brackett, D J; Stoecker, B J; Arjmandi, B H

    2005-04-01

    The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.

  7. Trichostatin A, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy.

    PubMed

    Dupré-Aucouturier, Sylvie; Castells, Josiane; Freyssenet, Damien; Desplanches, Dominique

    2015-08-15

    Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy. Soleus muscle atrophy (-38%) induced by 14 days of rat hindlimb suspension was reduced to only 25% under TSA treatment. TSA partly prevented the loss of type I and IIa fiber size and reversed the transitions of slow-twitch to fast-twitch fibers in soleus muscle. Unloading or TSA treatment did not affect myostatin gene expression and follistatin protein. Soleus protein carbonyl content remained unchanged, whereas the decrease in glutathione vs. glutathione disulfide ratio and the increase in catalase activity (biomarkers of oxidative stress) observed after unloading were abolished by TSA treatment. The autophagy-lysosome pathway (Bnip3 and microtubule-associated protein 1 light chain 3 proteins, Atg5, Gabarapl1, Ulk1, and cathepsin B and L mRNA) was not activated by unloading or TSA treatment. However, TSA suppressed the rise in muscle-specific RING finger protein 1 (MuRF1) caused by unloading without affecting the forkhead box (Foxo3) transcription factor. Prevention of muscle atrophy by TSA might be due to the regulation of the skeletal muscle atrophy-related MuRF1 gene. Our findings suggest that TSA may provide a novel avenue to treat unloaded-induced muscle atrophy. PMID:26112243

  8. Vitamin E provides protection for bone in mature hindlimb unloaded male rats

    NASA Technical Reports Server (NTRS)

    Smith, B. J.; Lucas, E. A.; Turner, R. T.; Evans, G. L.; Lerner, M. R.; Brackett, D. J.; Stoecker, B. J.; Arjmandi, B. H.

    2005-01-01

    The deleterious effects of skeletal unloading on bone mass and strength may, in part, result from increased production of oxygen-derived free radicals and proinflammatory cytokines. This study was designed to evaluate the ability of vitamin E (alpha-tocopherol), a free-radical scavenger with antiinflammatory properties, to protect against bone loss caused by skeletal unloading in mature male Sprague-Dawley rats. A 2 x 3 factorial design was used with either hindlimb unloading (HU) or normal loading (ambulatory; AMB), and low-dose (LD; 15 IU/kg diet), adequate-dose (AD; 75 IU/kg diet), or high-dose (HD; 500 IU/kg diet) vitamin E (DL-alpha-tocopherol acetate). To optimize the effects of vitamin E on bone, dietary treatments were initiated 9 weeks prior to unloading and continued during the 4-week unloading period, at which time animals were euthanized and blood and tissue samples were collected. Serum vitamin E was dose-dependently increased, confirming the vitamin E status of animals. The HD treatment improved oxidation parameters, as indicated by elevated serum ferric-reducing ability and a trend toward reducing tissue lipid peroxidation. Histomorphometric analysis of the distal femur revealed significant reductions in trabecular thickness (TbTh), double-labeled surface (dLS/BS), and rate of bone formation to bone volume (BFR/BV) due by HU. AMB animals on the HD diet and HU animals on the LD diet had reduced bone surface normalized to tissue volume (BS/TV) and trabecular number (TbN); however, the HD vitamin E protected against these changes in the HU animals. Our findings suggest that vitamin E supplementation provides modest bone protective effects during skeletal unloading.

  9. Disruption of NF-κB1 prevents bone loss caused by mechanical unloading.

    PubMed

    Nakamura, Hitomi; Aoki, Kazuhiro; Masuda, Wataru; Alles, Neil; Nagano, Kenichi; Fukushima, Hidefumi; Osawa, Kenji; Yasuda, Hisataka; Nakamura, Ichiro; Mikuni-Takagaki, Yuko; Ohya, Keiichi; Maki, Kenshi; Jimi, Eijiro

    2013-06-01

    Mechanical unloading, such as in a microgravity environment in space or during bed rest (for patients who require prolonged bed rest), leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. To address the challenges presented by a prolonged stay in space and the forthcoming era of a super-aged society, it will be important to prevent the bone loss caused by prolonged mechanical unloading. Nuclear factor κB (NF-κB) transcription factors are activated by mechanical loading and inflammatory cytokines. Our objective was to elucidate the role of NF-κB pathways in bone loss that are caused by mechanical unloading. Eight-week-old wild-type (WT) and NF-κB1-deficient mice were randomly assigned to a control or mechanically unloaded with tail suspension group. After 2 weeks, a radiographic analysis indicated a decrease in bone mass in the tibias and femurs of the unloaded WT mice but not in the NF-κB1-deficient mice. An NF-κB1 deficiency suppressed the unloading-induced reduction in bone formation by maintaining the proportion and/or potential of osteoprogenitors or immature osteoblasts, and by suppression of bone resorption through the inhibition of intracellular signaling through the receptor activator of NF-κB ligand (RANKL) in osteoclast precursors. Thus, NF-κB1 is involved in two aspects of rapid reduction in bone mass that are induced by disuse osteoporosis in space or bed rest. PMID:23322687

  10. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading

    NASA Technical Reports Server (NTRS)

    Ingalls, C. P.; Warren, G. L.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    The objective of this study was to determine whether altered intracellular Ca(2+) handling contributes to the specific force loss in the soleus muscle after unloading and/or subsequent reloading of mouse hindlimbs. Three groups of female ICR mice were studied: 1) unloaded mice (n = 11) that were hindlimb suspended for 14 days, 2) reloaded mice (n = 10) that were returned to their cages for 1 day after 14 days of hindlimb suspension, and 3) control mice (n = 10) that had normal cage activity. Maximum isometric tetanic force (P(o)) was determined in the soleus muscle from the left hindlimb, and resting free cytosolic Ca(2+) concentration ([Ca(2+)](i)), tetanic [Ca(2+)](i), and 4-chloro-m-cresol-induced [Ca(2+)](i) were measured in the contralateral soleus muscle by confocal laser scanning microscopy. Unloading and reloading increased resting [Ca(2+)](i) above control by 36% and 24%, respectively. Although unloading reduced P(o) and specific force by 58% and 24%, respectively, compared with control mice, there was no difference in tetanic [Ca(2+)](i). P(o), specific force, and tetanic [Ca(2+)](i) were reduced by 58%, 23%, and 23%, respectively, in the reloaded animals compared with control mice; however, tetanic [Ca(2+)](i) was not different between unloaded and reloaded mice. These data indicate that although hindlimb suspension results in disturbed intracellular Ca(2+) homeostasis, changes in tetanic [Ca(2+)](i) do not contribute to force deficits. Compared with unloading, 24 h of physiological reloading in the mouse do not result in further changes in maximal strength or tetanic [Ca(2+)](i).

  11. Predicting Bone Mechanical State During Recovery After Long-Duration Skeletal Unloading Using QCT and Finite Element Modeling

    NASA Technical Reports Server (NTRS)

    Chang, Katarina L.; Pennline, James A.

    2013-01-01

    During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.

  12. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1996-01-01

    Hindlimb unloading was performed on mice in an effort to study the regulation of contractile protein genes. In particular, the regulation of myosin heavy chain IIb was examined. During unloading, muscle fibers undergo a type conversion. Preliminary data from this study does not support the hypothesis that the fiber type conversion is due to an increase in promoter activity of fast isoform genes, such as myosin heavy chain IIb. The consequences of this finding are examined, with particular focus on other factors controlling gene regulation.

  13. A morphometric analysis of the phloem-unloading pathway in developing tobacco leaves.

    PubMed

    Ding, B; Parthasarathy, M V; Niklas, K; Turgeon, R

    1988-12-01

    A morphometric analysis of developing leaves of Nicotiana tabacum L. was conducted to determine whether imported photoassimilates could be unloaded by symplastic transport and whether interruption of symplastic transport could account for termination of import. Five classes of veins were recognized, based on numbers of cells in transverse section. Photoassimilate is unloaded primarily from Class III veins in tissue nearing the end of the sink phase of development. Smaller veins (Class IV and V) do not transport or unload photoassimilate in sink tissue because the sieve elements of these veins are immature until after the tissue stops importing. In Class III veins the sieve element-companion cell (SE-CC) complexes are surrounded by phloem parenchyma which abuts the bundle sheath. Along the most obvious unloading route, from SE-CC complex to phloem parenchyma to bundle sheath to mesophyll cells, the frequency of plasmodesmata at each interface increases. To determine whether this pattern of plasmodesmatal contact is consistent with symplastic unloading we first demonstrated, by derivation from Fick's law that the rate of diffusion from a compartment is proportional to a number N which is equal to the ratio of surface area to volume of the compartment multiplied by the frequency of pores (plasmodesmata) which connect it to the next compartment. N was calculated for each compartment within the vein which has the SE-CC complex as its center, and was shown to be statistically the same in all cases except one. These observations are consistent with a symplastic unloading route. As the leaf tissue matures and stops importing, plasmodesmatal frequency along the unloading route decreases and contact area between cells also decreases as intercellular spaces enlarge. As a result, the number of plasmodesmata between the SE-CC complex and the first layer of mesophyll cells declines in nonimporting tissue to 34% of the number found in importing tissue, indicating that loss of

  14. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  15. 78 FR 41853 - Safety Advisory Guidance: Heating Rail Tank Cars To Prepare Hazardous Material for Unloading or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Rail Tank Cars To Prepare Hazardous Material for Unloading or Transloading AGENCY: Pipeline and... transloading \\1\\ hazardous materials from rail tank cars, specifically those persons heating a rail tank car to.... Guidance for Heating of Rail Tank Cars for Unloading or Transloading I. Background PHMSA's mission is...

  16. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Unloading noninfected cattle for rest... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.17 Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for such...

  17. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Unloading noninfected cattle for rest... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.17 Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for such...

  18. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    PubMed

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  19. 48 CFR 52.247-15 - Contractor Responsibility for Loading and Unloading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tailgate of the Contractor's vehicle. Tailgate delivery, for purposes of this contract, is defined as that... contract to cover store-door or inside delivery, the Contractor shall load and unload shipments at no... the tailgate of the Contractor's vehicle. (b) If loading is the responsibility of the Contractor,...

  20. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  1. 49 CFR 179.103-3 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flow valves of approved design except when quick closing internal valves of approved design are used... interior to the exterior of the tank, it must be equipped with an excess flow valve of approved design or... 49 Transportation 2 2010-10-01 2010-10-01 false Venting, loading and unloading valves,...

  2. 49 CFR 179.103-3 - Venting, loading and unloading valves, measuring and sampling devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... flow valves of approved design except when quick closing internal valves of approved design are used... interior to the exterior of the tank, it must be equipped with an excess flow valve of approved design or... 49 Transportation 3 2011-10-01 2011-10-01 false Venting, loading and unloading valves,...

  3. 48 CFR 52.247-19 - Stopping in Transit for Partial Unloading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Stopping in Transit for... Clauses 52.247-19 Stopping in Transit for Partial Unloading. As prescribed in 47.207-6(c)(5)(ii), insert... origin to two or more consignees along the route between origin and last destination: Stopping in...

  4. 48 CFR 52.247-19 - Stopping in Transit for Partial Unloading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Stopping in Transit for... Clauses 52.247-19 Stopping in Transit for Partial Unloading. As prescribed in 47.207-6(c)(5)(ii), insert... origin to two or more consignees along the route between origin and last destination: Stopping in...

  5. 48 CFR 52.247-19 - Stopping in Transit for Partial Unloading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Stopping in Transit for... Clauses 52.247-19 Stopping in Transit for Partial Unloading. As prescribed in 47.207-6(c)(5)(ii), insert... origin to two or more consignees along the route between origin and last destination: Stopping in...

  6. 48 CFR 52.247-19 - Stopping in Transit for Partial Unloading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Stopping in Transit for... Clauses 52.247-19 Stopping in Transit for Partial Unloading. As prescribed in 47.207-6(c)(5)(ii), insert... origin to two or more consignees along the route between origin and last destination: Stopping in...

  7. 48 CFR 52.247-19 - Stopping in Transit for Partial Unloading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Stopping in Transit for... Clauses 52.247-19 Stopping in Transit for Partial Unloading. As prescribed in 47.207-6(c)(5)(ii), insert... origin to two or more consignees along the route between origin and last destination: Stopping in...

  8. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  9. Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Feeback, Daniel L.; Layne, Charles S.; Martinez, Daniel A.; Clarke, Mark S. F.

    2004-01-01

    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU.

  10. Suppression of Myostatin Stimulates Regenerative Potential of Injured Antigravitational Soleus Muscle in Mice under Unloading Condition.

    PubMed

    Ohno, Yoshitaka; Matsuba, Yusuke; Hashimoto, Naohiro; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Goto, Katsumasa

    2016-01-01

    Effects of myostatin (MSTN)-suppression on the regeneration of injured skeletal muscle under unloading condition were investigated by using transgenic mice expressing a dominant-negative form of MSTN (MSTN-DN). Both MSTN-DN and wild-type (WT) mice were subjected to continuous hindlimb suspension (HS) for 6 weeks. Cardiotoxin (CTX) was injected into left soleus muscle under anesthesia 2 weeks after the initiation of HS. Then, the soleus muscles were excised following 6-week HS (4 weeks after CTX-injection). CTX-injection caused to reduce the soleus fiber cross-sectional area (CSA) in WT mice under both unloading and weight-bearing conditions, but not in MSTN-DN mice. Under unloading condition, CTX-injected muscle weight and fiber CSA in MSTN-DN mice were significantly higher than those in WT mice. CTX-injected muscle had many damaged and regenerating fibers having central nuclei in both WT and MSTN-DN mice. Significant increase in the population of Pax7-positive nuclei in CTX-injected muscle was observed in MSTN-DN mice, but not in WT mice. Evidences indicate that the suppression of MSTN cause to increase the regenerative potential of injured soleus muscle via the increase in the population of muscle satellite cells regardless of unloading conditions. PMID:27647997

  11. Suppression of Myostatin Stimulates Regenerative Potential of Injured Antigravitational Soleus Muscle in Mice under Unloading Condition

    PubMed Central

    Ohno, Yoshitaka; Matsuba, Yusuke; Hashimoto, Naohiro; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Goto, Katsumasa

    2016-01-01

    Effects of myostatin (MSTN)-suppression on the regeneration of injured skeletal muscle under unloading condition were investigated by using transgenic mice expressing a dominant-negative form of MSTN (MSTN-DN). Both MSTN-DN and wild-type (WT) mice were subjected to continuous hindlimb suspension (HS) for 6 weeks. Cardiotoxin (CTX) was injected into left soleus muscle under anesthesia 2 weeks after the initiation of HS. Then, the soleus muscles were excised following 6-week HS (4 weeks after CTX-injection). CTX-injection caused to reduce the soleus fiber cross-sectional area (CSA) in WT mice under both unloading and weight-bearing conditions, but not in MSTN-DN mice. Under unloading condition, CTX-injected muscle weight and fiber CSA in MSTN-DN mice were significantly higher than those in WT mice. CTX-injected muscle had many damaged and regenerating fibers having central nuclei in both WT and MSTN-DN mice. Significant increase in the population of Pax7-positive nuclei in CTX-injected muscle was observed in MSTN-DN mice, but not in WT mice. Evidences indicate that the suppression of MSTN cause to increase the regenerative potential of injured soleus muscle via the increase in the population of muscle satellite cells regardless of unloading conditions. PMID:27647997

  12. Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Caricchi, Luca; Castelltort, Sebastien

    2016-04-01

    Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking solid-Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated without considering the additional continental unloading associated with erosion. Current datasets relating to the evolution of erosion rates are typically limited by temporal resolutions that are too low or span too short time intervals to allow for direct comparisons between the contributions from ice melting and erosion to continental unloading at the timescale of the late Pleistocene glacial cycles. Yet, they provide a fundamental observational basis on which to calibrate numerical predictions. Here, we present and discuss numerical results involving synthetic but realistic topographies, ice caps and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading, sub-continental decompression melting and magma productivity. Thus, the timing and magnitude of deglaciation and erosion must be characterized if the forcing of climate change on the continental magmatic/volcanic activity is to be extracted from the remnants of eroded volcanic centers. Our study represents an additional step towards a more general understanding of the links between a changing climate, glacial processes and the melting of the solid Earth.

  13. Suppression of Myostatin Stimulates Regenerative Potential of Injured Antigravitational Soleus Muscle in Mice under Unloading Condition

    PubMed Central

    Ohno, Yoshitaka; Matsuba, Yusuke; Hashimoto, Naohiro; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Goto, Katsumasa

    2016-01-01

    Effects of myostatin (MSTN)-suppression on the regeneration of injured skeletal muscle under unloading condition were investigated by using transgenic mice expressing a dominant-negative form of MSTN (MSTN-DN). Both MSTN-DN and wild-type (WT) mice were subjected to continuous hindlimb suspension (HS) for 6 weeks. Cardiotoxin (CTX) was injected into left soleus muscle under anesthesia 2 weeks after the initiation of HS. Then, the soleus muscles were excised following 6-week HS (4 weeks after CTX-injection). CTX-injection caused to reduce the soleus fiber cross-sectional area (CSA) in WT mice under both unloading and weight-bearing conditions, but not in MSTN-DN mice. Under unloading condition, CTX-injected muscle weight and fiber CSA in MSTN-DN mice were significantly higher than those in WT mice. CTX-injected muscle had many damaged and regenerating fibers having central nuclei in both WT and MSTN-DN mice. Significant increase in the population of Pax7-positive nuclei in CTX-injected muscle was observed in MSTN-DN mice, but not in WT mice. Evidences indicate that the suppression of MSTN cause to increase the regenerative potential of injured soleus muscle via the increase in the population of muscle satellite cells regardless of unloading conditions.

  14. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    The best documented change in bone during space flight is the near cessation of bone formation. Space flight leads to a decrease in osteoblast number and activity, likely the result of altered differentiation of osteoblast precursors. The net result of these space flight induced changes is weaker bone. To understand the mechanism for these changes poses a challenge. Space flight studies must overcome enormous technical problems, and are necessarily limited in size and frequency. Therefore, ground based models have been developed to evaluate the effects of skeletal unloading. The hindlimb elevation (tail suspension) model simulates space flight better than other models because it reproduces the fluid shifts seen in space travel, is reversible, and is well tolerated by the animals with minimal evidence of stress as indicated by continued weight gain and normal levels and circadian rhythms of corticosterone. This is the model we have used for our experiments. Skeletal unloading by the hindlimb elevation method simulates a number of features of space flight in that bone formation, mineralization, and maturation are inhibited, osteoblast number is decreased, serum and skeletal osteocalcin levels fall, the ash content of bone decreases, and bone strength diminishes. We and others have shown that when osteoblasts or osteoprogenitor cells from the bones of the unloaded limbs are cultured in vitro they proliferate and differentiate more slowly, suggesting that skeletal unloading causes a persistent change in cell function which can be assessed in vitro. In contrast to the unweighted bones of the hindlimbs, no significant change in bone mass or bone formation is observed in the humeri, mandible, and cervical vertebrae during hindlimb elevation. The lack of effect of hindlimb elevation on bones like the humeri, mandible, and cervical vertebrae which are not unloaded by this procedure suggests that local factors rather than systemic effects dominate the response of bone to

  15. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.

    PubMed

    Spatz, Jordan M; Wein, Marc N; Gooi, Jonathan H; Qu, Yili; Garr, Jenna L; Liu, Shawn; Barry, Kevin J; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M; Babij, Philip; Pajevic, Paola Divieti

    2015-07-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.

  16. True Triaxial Strength and Failure Modes of Cubic Rock Specimens with Unloading the Minor Principal Stress

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Du, Kun; Li, Diyuan

    2015-11-01

    True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.

  17. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.

    PubMed

    Spatz, Jordan M; Wein, Marc N; Gooi, Jonathan H; Qu, Yili; Garr, Jenna L; Liu, Shawn; Barry, Kevin J; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M; Babij, Philip; Pajevic, Paola Divieti

    2015-07-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone. PMID:25953900

  18. The influence of antiorthostatic unloading and long gamma-irradiation on rat bone marrow (MSCs)

    NASA Astrophysics Data System (ADS)

    Roe, Maria; Bobyleva, Polina; Shtemberg, Andrey; Buravkova, Ludmila

    With the prospect of long interplanetary spaceflight becoming a real possibility there are some important questions that need to be answered regarding the combined effects of microgravity and long gamma-irradiation.The aim of this study was to evaluate the effects of synchronous antiorthostatic unloading and fractional gamma-irradiation on the functional characteristics of rat bone marrow multipotent stromal cells (MSCs).This experiment was carried out following all rules laid out by the Commission on Bioethics at the SSC RF - IBMP RAS. In this experiment the Wistar rats were kept in an unloaded position for a duration of 30 days. They were also subjected to 6 doses of gamma-radiation on the “GOBO-60” with a source of (137) Cs. The dose rate set to 1 meter 50 sGr / H (Total dose of 3 Gr).The study revealed a significant reduction in the number of colonies (CFU-F) in all cultures from the experimental groups when compared to the control groups. The most significant reduction was observed in the group, which had been subject to combined unloading, and radiation. This result was confirmed by examination of cell cultures during 10 days of growth.We found that the CD45 expression was increased in the groups exposed to radiation. At the same time a reduction in the expression of CD90 was observed during combination of radiation and unloading we found.The experimental groups also differed from the control group showing smaller lipid inclusions and decreased expression of alkaline phosphates in the MSCs. This experiment concluded that the bone marrow MSCs after a combination of unloading and multiple radiation sessions, showed a decrease in proliferation and differentiation potential which could reduce the adaption and reparative capacity of the organism.

  19. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro*

    PubMed Central

    Spatz, Jordan M.; Wein, Marc N.; Gooi, Jonathan H.; Qu, Yili; Garr, Jenna L.; Liu, Shawn; Barry, Kevin J.; Uda, Yuhei; Lai, Forest; Dedic, Christopher; Balcells-Camps, Mercedes; Kronenberg, Henry M.; Babij, Philip; Pajevic, Paola Divieti

    2015-01-01

    Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone. PMID:25953900

  20. Deep sucker rod pumping for gas well unloading

    SciTech Connect

    Henderson, L.J.

    1984-09-01

    Exxon Company, U.S.A.'s Pyote Gas Unit 14-1 in the Block 16 (Ellenburger) field became the world's deepest rod pumped well on October 7, 1983. The rod pump was installed at 16,850 ft. in an attempt to extend the productive life of the well. The artificial lift system was designed to lift wellbore fluid that was restricting the flow of gas, thus allowing the gas to be produced up the tubing-casing annulus. Implementation of the project was possible because of the recent improvements in predictive techniques, materials available for rod pumping, and industry's experience in artificial lift.

  1. Elcatonin prevents bone loss caused by skeletal unloading by inhibiting preosteoclast fusion through the unloading-induced high expression of calcitonin receptors in bone marrow cells.

    PubMed

    Tsukamoto, Manabu; Menuki, Kunitaka; Murai, Teppei; Hatakeyama, Akihisa; Takada, Shinichiro; Furukawa, Kayoko; Sakai, Akinori

    2016-04-01

    This study aimed to clarify whether elcatonin (EL) has a preventive action on bone dynamics in skeletal unloading. Seven-week-old male C57BL/6J mice with either ground control (GC) or tail suspension (TS) were administered EL 20U/kg or a vehicle (veh) three times per week and assigned to one of the following four groups: GCEL, GCveh, TSEL, and TSveh. Blood samples and bilateral femurs and tibias of the mice were obtained for analysis. After 7days of unloading, the trabecular bone mineral density in the distal femur obtained via peripheral quantitative computed tomography and the trabecular bone volume were significantly higher in the TSEL group than in the TSveh group. The bone resorption histomorphometric parameters, such as the osteoclast surface and osteoclast number, were significantly suppressed in the TSEL mice, whereas the number of preosteoclasts was significantly increased. The plasma level of tartrate-resistant acid phosphatase-5b (TRACP-5b) was significantly lower in the TSEL group than in all other groups. In the bone marrow cell culture, the number of TRACP-positive (TRACP(+)) multinucleated cells was significantly lower in the TSEL mice than in the TSveh mice, whereas the number of TRACP(+) mononucleated cells was higher in the TSEL mice. On day 4, the expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), cathepsin K and d2 isoform of vacuolar ATPase V0 domain (ATP6V0D2) mRNA in the bone marrow cells in the TSEL mice was suppressed, and the expression of calcitonin receptor (Calcr) mRNA on day 1 and Calcr antigen on day 4 were significantly higher in the TSveh mice than in the GCveh mice. EL prevented the unloading-induced bone loss associated with the high expression of Calcr in the bone marrow cells of mouse hindlimbs after tail suspension, and it suppressed osteoclast development from preosteoclasts to mature osteoclasts through bone-resorbing activity. This study of EL-treated unloaded mice provides the

  2. The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Wronski, T. J.; GLOBUS. R.; Levens, M. J.; Morey-Holton, E.

    1983-01-01

    Skeletal unloading results in osteopenia. To examine the involvement of vitamin D in this process, the rear limbs of growing rats were unloaded and alterations in bone calcium and bone histology were related to changes in serum calcium (Ca), inorganic phosphorus (P sub i), 25-hydroxyvitamin D (25-OH-D), 24,25-dihydroxyvitamin D (24,25(OH)2D and 1,25-dihydroxyvitamin D (1,25(OH)2D. Acute skeletal unloading induced a transitory inhibition of Ca accumulation in unloaded bones. This was accompanied by a transitory rise in serum Ca, a 21% decrease in longitudinal bone growth (P 0.01), a 32% decrease in bone surface lined with osteoblasts (P .05), no change in bone surface lined with osteoclasts and a decrease in circulating (1,25(OH)2D. No significant changes in the serum concentrations of P sub i, 25-OH-D or 24,25(OH)2D were observed. After 2 weeks of unloading, bone Ca stabilized at approximately 70% of control and serum Ca and 1,25(OH)2D returned to control values. Maintenance of a constant serum 1,25(OH)2D concentration by chronic infusion of 1,25(OH)2D (Alza osmotic minipump) throughout the study period did not prevent the bone changes induced by acute unloading. These results suggest that acute skeletal unloading in the growing rat produces a transitory inhibition of bone formation which in turn produces a transitory hypercalcemia.

  3. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice.

    PubMed

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-03-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6-8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  4. Effects of the hindlimb-unloading model of spaceflight conditions on resistance of mice to infection with Klebsiella pneumoniae

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Aviles, Hernan; Vance, Monique; Fountain, Kimberly; Sonnenfeld, Gerald

    2002-01-01

    BACKGROUND: It has been well documented in several studies that many immunologic parameters are altered in experimental animals and human subjects who have flown in space. However, it is not fully known whether these immunologic changes could result in increased susceptibility to infection. Hindlimb (antiorthostatic) unloading of rodents has been used successfully to simulate some of the effects of spaceflight on physiologic systems. OBJECTIVE: The objective of this study was to determine the effect of hindlimb unloading on the outcome of Klebsiella pneumoniae infection in mice. METHODS: Hindlimb-unloaded, hindlimb-restrained, and control mice were intraperitoneally infected with one 50% lethal dose of K pneumoniae 2 days after suspension. Mortality and bacterial load in several organs were compared among the groups. RESULTS: Unloaded mice showed significantly increased mortality and reduced mean time to death compared with that seen in the control groups. Kinetics of bacterial growth with smaller infective doses revealed that control mice were able to clear bacteria from the organs after 30 hours. In contrast, unloaded mice had continued bacterial growth at the same time point. CONCLUSION: The results of this study suggest that hindlimb unloading might enhance the dissemination of K pneumoniae, leading to increased mortality. The complex physiologic changes observed during hindlimb unloading, including stress, have a key role in the pathophysiology of this infection.

  5. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice

    PubMed Central

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-01-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6–8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts. PMID:27013781

  6. Combined effects of soy isoflavones and milk basic protein on bone mineral density in hind-limb unloaded mice.

    PubMed

    Matsumoto, Yu; Tousen, Yuko; Nishide, Yoriko; Tadaishi, Miki; Kato, Ken; Ishimi, Yoshiko

    2016-03-01

    We examined whether the combination of isoflavone and milk basic protein both are reported to be effective for bone metabolism, prevents bone loss induced by skeletal hind-limb unloading in mice. Female ddY strain mice, aged 8 weeks, were divided into six groups (n = 6-8 each): (1) normally housed group, (2) loading group, (3) hind-limb unloading group fed a control diet, (4) hind-limb unloading group fed a 0.2% isoflavone conjugates diet, (5) hind-limb unloading group fed a 1.0% milk basic protein diet, and (6) hind-limb unloading group fed a 0.2% isoflavone conjugates and 1.0% milk basic protein diet. After 3 weeks, femoral bone mineral density was markedly reduced in unloading mice. The combination of isoflavone and milk basic protein showed cooperative effects in preventing bone loss and milk basic protein inhibited the increased expression of osteogenic genes in bone marrow cells in unloading mice. These results suggest that the combination of soy isoflavone and milk basic protein may be useful for bone health in subjects with disabling conditions as well as astronauts.

  7. Contribution of Social Isolation, Restraint, and Hindlimb Unloading to Changes in Hemodynamic Parameters and Motion Activity in Rats

    PubMed Central

    Tsvirkun, Darya; Bourreau, Jennifer; Mieuset, Aurélie; Garo, Florian; Vinogradova, Olga; Larina, Irina; Navasiolava, Nastassia; Gauquelin-Koch, Guillemette; Gharib, Claude; Custaud, Marc-Antoine

    2012-01-01

    The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint), and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient. PMID:22768322

  8. An in vivo Experimental System to Study Sugar Phloem Unloading in Ripening Grape Berries During Water Deficiency Stress

    PubMed Central

    WANG, ZHEN‐PING; DELOIRE, ALAIN; CARBONNEAU, ALAIN; FEDERSPIEL, BRIGITTE; LOPEZ, FRANÇOIS

    2003-01-01

    An in vivo experimental system—called the ‘berry‐cup’ technique—was developed to study sugar phloem unloading and the accumulation of sugar in ripening grape berries. The berry‐cup system consists of a single peeled grape berry immersed in a buffer solution in a cup prepared from a polypropylene syringe. A small cross‐incision (2 mm in length) is made on the stylar remnant of a berry during its ripening phase, the skin of the berry then being easily peeled off, exposing the dorsal vascular bundles without damaging either these or the pulp tissue of the berry. The sites of sugar phloem unloading are thus made directly accessible and may be regulated by the buffer solution. In addition, the unloaded photoassimilates are easily transported into the buffer solution in the berry‐cup. With the berry‐cup technique, it takes 60 min to purge the sugar already present in the apoplast, after which the amount of sugar in the buffer solution is a direct measure of the sugar unloading from the grape berry phloem. The optimum times for sampling were 20 or 30 min, depending on the type of experiment. Sugar phloem unloading was significantly inhibited by the inclusion of either 7·5 mm NaF or 2·5 mm PCMB in the buffer solution. This study indicates that sugar phloem unloading in ripening grape berries is via the apoplastic network and that the process requires the input of energy. The system was shown to be an appropriate experimental system with which to study sugar phloem unloading in ripening grape berries, and was applied successfully to the study of berry sugar unloaded from grapevines subjected to water stress. The results showed that water deficiency inhibits sugar unloading in grape berries. PMID:12907466

  9. Loading and Unloading Weaned Pigs: Effects of Bedding Types, Ramp Angle, and Bedding Moisture

    PubMed Central

    Garcia, Arlene; McGlone, John J.

    2014-01-01

    Simple Summary Current guidelines suggest the use of ramps below 20° to load and unload pigs; they do not suggest the use of any specific bedding. Bedding types (nothing, feed, sand, wood shavings, and hay) were tested with four week old weaned pigs to determine which was most effective in reducing slips, falls, and vocalizations at three ramp angles, two moistures, over two seasons. Slips, falls, and vocalizations were summed to establish a scoring system to evaluate treatments. Scores increased in a linear fashion as ramp slope increased. The amount of time it took to load and unload pigs was affected by bedding type and ramp angle. Overall, the use of selected bedding types minimized slips, falls, and vocalizations and improved animal welfare. Abstract The use of non-slip surfaces during loading and unloading of weaned pigs plays an important role in animal welfare and economics of the pork industry. Currently, the guidelines available only suggest the use of ramps below 20° to load and unload pigs. Three ramp angles (0°, 10° or 20°), five bedding materials (nothing, sand, feed, wood shavings or wheat straw hay), two moistures (dry or wet bedding; >50% moisture) over two seasons (>23.9 °C summer, <23.9 °C winter) were assessed for slips/falls/vocalizations (n = 6,000 pig observations). “Score” was calculated by the sum of slips, falls, and vocalizations. With the exception of using feed as a bedding, all beddings provided some protection against elevated slips, falls, and vocalizations (P < 0.01). Providing bedding reduced (P < 0.05) scores regardless of whether the bedding was dry or wet. Scores increased as the slope increased (P < 0.01). Provision of bedding, other than feed, at slopes greater than zero, decreased slips, falls and vocalizations. The total time it took to load and unload pigs was affected by bedding type, ramp angle, and season (P < 0.05). Minimizing slips, falls, and vocalizations when loading and unloading pigs improved animal

  10. Stealing a March in the 21st Century: Accelerating Progress in the 100-Year War Against Tobacco Addiction in the United States

    PubMed Central

    Baker, Timothy B.

    2009-01-01

    Tobacco use in the United States has declined dramatically over the past 50 years, with the prevalence of cigarette smoking falling from about 42% of all adults to less than 20% by 2007. If this rate of decline continues, smoking could be eliminated in the United States by 2047. Framed in military parlance, we may be halfway through a 100-year war against the leading public health killer of our time. We describe factors that have contributed to progress over the last 50 years and identify policy and other initiatives that can contribute to the elimination of tobacco use in the United States. PMID:19443815

  11. Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.

    PubMed

    Abusomwan, Uyiosa A; Sitti, Metin

    2014-10-14

    Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.

  12. Orbit-averaged behavior of magnetic control laws for momentum unloading

    NASA Technical Reports Server (NTRS)

    Camillo, P. J.; Markley, F. L.

    1980-01-01

    Analytical formulas are derived for orbit-averaged behavior of magnetic control laws for unloading the excess angular momentum of a spacecraft reaction wheel control system in the presence of secular environmental torques. The specific example of an axially symmetric spacecraft with an inertially fixed attitude for which the dominant environmental torque is the gravity-gradient torque is treated in detail, but extensions of the general approach to other inertially fixed and earth-pointing spacecraft are discussed. The analytical formulas are compared to detailed simulations performed for the Solar Maximum Mission spacecraft, and agreement to within 10% is found. The analytical formulas can be used in place of detailed simulations for preliminary studies, and can be used to find selected cases giving the most stringent tests of momentum unloading capability for which detailed simulations may be performed.

  13. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity

    PubMed Central

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity. PMID:26530337

  14. Direct comparison of unloading compliance and potential drop techniques in J-integral testing

    SciTech Connect

    McGowan, J.J.; Nanstad, R.K.

    1984-01-01

    Single-specimen J-integral testing is performed commonly with the unloading compliance technique. Use of modern instrumentation techniques and powerful desktop computers have made this technique a standard. However, this testing technique is slow and tedious, with the loading rate fixed at a slow quasi-static rate. For these reasons the dc potential drop technique was investigated for crack length measurement during a J-integral test. For direct comparison, both unloading compliance and potential drop were used simultaneously during a J-integral test. The results showed good agreement between the techniques. However, the potential drop technique showed an offset in crack length due to plastic blunting processes. Taking this offset into account, J/sub Ic/ values calculated by both techniques compared well.

  15. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    PubMed

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity.

  16. CD44 deficiency inhibits unloading-induced cortical bone loss through downregulation of osteoclast activity.

    PubMed

    Li, Yuheng; Zhong, Guohui; Sun, Weijia; Zhao, Chengyang; Zhang, Pengfei; Song, Jinping; Zhao, Dingsheng; Jin, Xiaoyan; Li, Qi; Ling, Shukuan; Li, Yingxian

    2015-01-01

    The CD44 is cellular surface adhesion molecule that is involved in physiological processes such as hematopoiesis, lymphocyte homing and limb development. It plays an important role in a variety of cellular functions including adhesion, migration, invasion and survival. In bone tissue, CD44 is widely expressed in osteoblasts, osteoclasts and osteocytes. However, the mechanisms underlying its role in bone metabolism remain unclear. We found that CD44 expression was upregulated during osteoclastogenesis. CD44 deficiency in vitro significantly inhibited osteoclast activity and function by regulating the NF-κB/NFATc1-mediated pathway. In vivo, CD44 mRNA levels were significantly upregulated in osteoclasts isolated from the hindlimb of tail-suspended mice. CD44 deficiency can reduce osteoclast activity and counteract cortical bone loss in the hindlimb of unloaded mice. These results suggest that therapeutic inhibition of CD44 may protect from unloading induced bone loss by inhibiting osteoclast activity. PMID:26530337

  17. [Neuromotor apparatus in the condition of gravitational unloading: central and peripheral effects].

    PubMed

    Eremeev, A A; Chebotarev, M A; Kuznetsov, M V; Baltin, M E; Shenkman, B S

    2015-01-01

    The functioning of central and peripheral structures of the gastrocnemius m. neuromotor apparatus was studied in rats exposed to simulated gravitational unloading. Gastrocnemius reflex (H) and motor (M) responses evoked by electrical stimulation of the sciatic nerve were measured after 7, 14, 21 and 35 days of tail-suspension. It was shown that thresholds of registered potentials went down on all days of testing; the H-amplitude rose during every testing and M-amplitude rose after 35 days of the gravitational unloading. Results of the experiments indicate changes in the functioning of motor centers that modulate properties and characteristics of peripheral neuromotor structures. The observed rearrangements can be caused by reduction of the afferent inflow.

  18. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  19. Parameters determining the portion of energy radiated during dynamic unloading of a section of rock massif

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Kocharyan, G. G.; Ostapchuk, A. A.

    2016-03-01

    Presented are the main results of laboratory experiments aimed at studing the regularities of transition of the cumulated deformation energy to the kinetic one when a block exhibits stick-slip along model fracture filled with geomaterials with different properties. It was shown that even a small variation of material composition of the fault principal slip zone may result in a significant variation of the portion of seismic energy radiated during dynamic unloading of the enclosing rock massif.

  20. Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery

    PubMed Central

    Prisby, Rhonda D.; Behnke, Bradley J.; Allen, Matthew R.

    2015-01-01

    Spaceflight and prolonged bed rest induce deconditioning of the cardiovascular system and bone loss. Previous research has shown declines in femoral bone and marrow perfusion during unloading and with subsequent reloading in hindlimb-unloaded (HU) rats, an animal model of chronic disuse. We hypothesized that the attenuated bone and marrow perfusion may result from altered vasomotor properties of the bone resistance vasculature. Therefore, the purpose of this study was to determine the effects of unloading on the vasoconstrictor and vasodilator properties of the femoral principal nutrient artery (PNA), the main conduit for blood flow to the femur, in 2 wk HU and control (CON) rats. Vasoconstriction of the femoral PNA was assessed in vitro using norepinephrine, phenylephrine, clonidine, KCl, endothelin-1, arginine vasopressin, and myogenic responsiveness. Vasodilation through endothelium-dependent [acetylcholine, bradykinin, and flow-mediated dilation (FMD)] and endothelium-independent mechanisms [sodium nitroprusside (SNP) and adenosine] were also determined. Vasoconstrictor responsiveness of the PNA from HU rats was not enhanced through any of the mechanisms tested. Endothelium-dependent vasodilation to acetylcholine (CON, 86 ± 3%; HU, 48 ± 7% vasodilation) and FMD (CON, 61 ± 9%; HU, 11 ± 11% vasodilation) were attenuated in PNAs from HU rats, while responses to bradykinin were not different between groups. Endothelium-independent vasodilation to SNP and adenosine were not different between groups. These data indicate that unloading-induced decrements in bone and marrow perfusion and increases in vascular resistance are not the result of enhanced vasoconstrictor responsiveness of the bone resistance arteries but are associated with reductions in endothelium-dependent vasodilation. PMID:25635000

  1. Effects of hindlimb unloading and bisphosphonates on the serum proteome of rats.

    PubMed

    Zhao, Yongdong; Fleet, James C; Adamec, Jiri; Terry, Doris E; Zhang, Xiang; Kemeh, Settor; Davisson, V Jo; Weaver, Connie M

    2007-10-01

    Hindlimb unloading has been used as a model for bone loss associated with extended bed rest or space travel. However, this model also reduces muscle mass and influences other biological systems. To evaluate the impact of hindlimb unloading on bone and overall health, we applied 2-D gel electrophoresis (2-DE)-based proteomics to serum samples collected from 24 5-month-old female rats that were treated for 2 weeks under three conditions: control, hindlimb unloading (HU) and unloading plus bisphosphonate (HUA) (n=8/group). Prior to the intervention, rats were injected with 3H-tetracycline to label bone surfaces. At the end of the experiment bone, urine, and serum samples were collected. As expected, HU reduced femur aBMD and BMC and increased daily urinary 3H-tetracycline (a measure of bone resorption rate) and these effects were reversed by bisphosphonate. In addition, serum osteocalcin and TRAP5b were decreased in the HUA compared to control and HU. Abundant proteins, albumin, IgG and transferrin were removed from serum samples prior to 2-DE analysis (n=5 analytical replicates). Statistical analysis of spot intensities revealed 53 differentially expressed spots among the 3 groups. Cluster analysis shows that 30 spots reflect changes unique to the HU group (i.e. potential bone biomarkers), 6 unique to HUA (i.e. drug related), and 17 common to HU and HUA (e.g. potential mental stress or muscle loss markers). Spots were identified by LC-MS/MS after in-gel trypsin digestion and were found to relate to a variety of physiological functions.

  2. Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading

    NASA Technical Reports Server (NTRS)

    Berg, H. E.; Dudley, G. A.; Hather, B.; Tesch, P. A.

    1993-01-01

    The response of skeletal muscle to unweighting was studied in six healthy males who were subjected to four weeks of lowerlimb suspension. They performed three bouts of 30 consecutive maximal concentric knee extensions, before unloading and the day after (POST 1), 4 days after (POST 2) and 7 weeks after (REC) resumed weight-bearing. Peak torque of each contraction was recorded and work was calculated as the mean of the average peak torque for the three bouts and fatigability was measured as the decline in average peak torque over bouts. Needle biopsies were obtained from m. vastus lateralis of each limb before and at POST 1. Muscle fibre type composition and area, capillarity and the enzyme activities of citrate synthase (CS) and phosphofructokinase (PFK) were subsequently analysed. Mean average peak torque for the three bouts at POST1, POST2 and REC was reduced (P < 0.05) by 17, 13 and 7%, respectively. Fatigability was greater (P < 0.05) at POST2 than before unloading. Type I, IIA and IIB percentage, Type I and II area and capillaries per fibre of Type I and II did not change (P > 0.05) in response to unloading. The activity of CS, but not PFK, decreased (P < 0.05) after unloading. The weight-bearing limb showed no changes in the variables measured. The results of this study suggest that this human lowerlimb suspension model produces substantial impairments of work and oxidative capacity of skeletal muscle. The performance decrements are most likely induced by lack of weight-bearing.

  3. Vertical Trabeculae are Thinned More Than Horizontal Trabeculae in Skeletal-Unloaded Rats.

    PubMed

    Vegger, Jens Bay; Brüel, Annemarie; Thomsen, Jesper Skovhus

    2015-11-01

    Skeletal unloading results in a rapid thinning of the trabecular bone network, but it is unknown whether vertical and horizontal trabeculae are equally affected. Therefore, the purpose of the present study was to investigate whether horizontal and vertical trabeculae were thinned similarly during skeletal unloading in rats. Fifty-seven 16-week-old female Wistar rats were randomized into six groups: baseline; control 4 weeks; botulinum toxin A (BTX) 4 weeks; control 8 weeks; BTX 8 weeks; and two BTX injections 8 weeks (BTX + BTX8). The BTX animals were injected in the right hind limb with 4 IU BTX at the start of the study, while the BTX + BTX8 were also injected with 2 IU BTX after 4 weeks. The animals were killed after 0, 4, or 8 weeks. The distal femoral metaphyses were μCT scanned, and the strengths of the femoral necks, mid-diaphyses, and distal femoral metaphyses were ascertained. Disuse resulted in a significant loss of BV/TV, thinning of the trabeculae, and decrease in the degree of anisotropy, and in a significant reduced bone strength after both 4 and 8 weeks. The ratio of horizontal to vertical trabecular thickness (Tb.Th.horz/Tb.Th.vert) and the ratio of horizontal to vertical bone volume (BV.horz/BV.vert) were significantly higher in BTX animals than in control animals. In addition, the horizontal and vertical trabecular thickness probability density functions were more similar in BTX animals than in control animals. In conclusion, skeletal unloading decreased BV/TV, Tb.Th, the degree of anisotropy, and mechanical strength, while BV.horz/BV.vert and Tb.Th.horz/Tb.Th.vert were increased. This indicates that the more loaded vertical trabeculae are pronouncedly more thinned than the less loaded supporting horizontal trabeculae during unloading.

  4. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.

    2002-01-01

    The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.

  5. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  6. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  7. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  8. Atrial BNP endocrine function during chronic unloading of the normal canine heart.

    PubMed

    Lisy, Ondrej; Redfield, Margaret M; Schirger, John A; Burnett, John C

    2005-01-01

    The goal of the study was to define the effect of chronic unloading of the normal heart on atrial endocrine function with a focus on brain natriuretic peptide (BNP), specifically addressing the role of load and neurohumoral stimulation. Although produced primarily by atrial myocardium in the normal heart, controversy persists with regard to load-dependent vs. neurohumoral mechanisms controlling atrial BNP synthesis and storage. We used a unique canine model of chronic unloading of the heart produced by thoracic inferior vena caval constriction (TIVCC), which also resulted in activation of plasma endothelin (ET-1), ANG II, and norepinephrine (NE), known activators of BNP synthesis, compared with sham. TIVCC was produced by banding of the inferior vena cava for 10 days (n = 6), whereas in control (n = 5) the band was not constricted (sham). In a third group (n = 7), the band was released on day 11, thus acutely reloading the heart. Chronic TIVCC decreased cardiac output and right atrial pressure with a decrease in atrial mass index consistent with atrial atrophy. Atrial BNP mRNA decreased compared with sham. Immunoelectron microscopy revealed an increase in BNP in atrial granules consistent with increased storage. Acute reloading increased cardiac filling pressures and resulted in an increase in plasma BNP. We conclude that chronic unloading of the normal heart results in atrial atrophic remodeling and in suppression of atrial BNP mRNA despite intense stimulation by ET, ANG II, and NE, underscoring the primacy of load in the control of atrial endocrine function and structure.

  9. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  10. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts

    PubMed Central

    Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel

    2013-01-01

    Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110

  11. Experimental Investigation of the Mechanical Behavior in Unloading Conditions of Sandstone After High-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Ding, Qi-Le; Ju, Feng; Mao, Xian-Biao; Ma, Dan; Yu, Bang-Yong; Song, Shuai-Bing

    2016-07-01

    A detailed understanding of damage evolution in rock after high-temperature treatment in unloading conditions is extremely important in underground engineering applications, such as the disposal of highly radioactive nuclear waste, underground coal gasification, and post-disaster reconstruction. We have studied the effects of temperature (200, 400, 600 and 800 °C) and confining pressure (20, 30 and 40 MPa) on the mechanical properties of sandstone. Scanning electron microscopy studies revealed that at temperatures exceeding 400 °C, new cracks formed, and original cracks extended substantially. When the confining pressure was 20 MPa, a temperature increase from 400 to 800 °C resulted in a 75.2% increase in peak strain, a decrease in Young's modulus and peak strength of 62.5 and 35.8 %, respectively, and transition of the failure mechanism from brittleness to ductility. In the triaxial compression tests, the specimen deformed in a more obvious ductile failure manner at higher confining pressure, whereas in the unloading confining pressure experiments, brittle failure was more obvious when the initial confining pressure was higher. We focused on the effects of temperature and initial confining pressure on peak effective loading stress and peak ductile deformation during unloading. At temperatures of >400 °C, the peak ductile deformation increased rapidly with increases in the high temperature treatment or initial confining pressure. The peak effective loading stress decreased sharply with increased temperature but barely changed when the initial confining pressure was varied.

  12. Biaxial unloading and springback behavior of dual-phase DP590 steel using cruciform specimens

    NASA Astrophysics Data System (ADS)

    Korkolis, Yannis P.; Deng, Nengxiu; Kuwabara, Toshihiko

    2013-12-01

    The unloading behavior of a dual-phase steel (DP590) from a biaxial state of stress was probed using a newly-designed cruciform specimen. The specimen was designed to develop uniform and relatively large plastic strains (over 15% equivalent logarithmic plastic strain) in the gage section, before failure. Nine radial loading paths in the 1st quadrant of the plane stress space were probed. The experiments involved repeated loading and unloading up to failure. At every unloading, the initial response was found to agree with the linear, orthotropically elastic response of the undeformed material. This first linear response was followed by a second one, at a reduced slope. Beyond that, the recorded response was fully non-linear. The same sequence of events was observed during each reloading. The biaxial non-linear strain recovery components ɛxnl and ɛynl were measured to be on average approximately 11% of the elastic strains ɛxe and ɛye, respectively. This ratio was found to increase with plastic deformation. Subsequently, these biaxial experiments were used to calibrate the Yld2000-2D yield function.

  13. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    NASA Technical Reports Server (NTRS)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  14. Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance

    NASA Astrophysics Data System (ADS)

    Du, Kun; Tao, Ming; Li, Xi-bing; Zhou, Jian

    2016-09-01

    Slabbing/spalling and rockburst are unconventional types of failure of hard rocks under conditions of unloading and various dynamic loads in environments with high and complex initial stresses. In this study, the failure behaviors of different rock types (granite, red sandstone, and cement mortar) were investigated using a novel testing system coupled to true-triaxial static loads and local dynamic disturbances. An acoustic emission system and a high-speed camera were used to record the real-time fracturing processes. The true-triaxial unloading test results indicate that slabbing occurred in the granite and sandstone, whereas the cement mortar underwent shear failure. Under local dynamically disturbed loading, none of the specimens displayed obvious fracturing at low-amplitude local dynamic loading; however, the degree of rock failure increased as the local dynamic loading amplitude increased. The cement mortar displayed no failure during testing, showing a considerable load-carrying capacity after testing. The sandstone underwent a relatively stable fracturing process, whereas violent rockbursts occurred in the granite specimen. The fracturing process does not appear to depend on the direction of local dynamic loading, and the acoustic emission count rate during rock fragmentation shows that similar crack evolution occurred under the two test scenarios (true-triaxial unloading and local dynamically disturbed loading).

  15. Failure Potential Evaluation in Engineering Experiments Using Load/Unload Response Ratio Method

    NASA Astrophysics Data System (ADS)

    Zhang, Lang-ping; Yu, Huai-zhong; Yin, Xiang-chu

    2013-01-01

    The Load/Unload Response Ratio (LURR) method is proposed for prediction of the failure of brittle heterogeneous materials. Application of the method typically involves evaluating the external load on materials or structures, differentiating between loading and unloading periods, determining the failure response during both periods from data input, and calculating the ratio between the two response rates. According to the method, the LURR time series usually climbs to an anomalously high peak prior to the macro-fracture. To show the validity of the approach in engineering practice, we applied it to the loading and unloading experimental data associated with a two-floor concrete-brick structure. Results show that the LURR time series of the two floors consists of the damage evolution of the structure: they are at low level for most of the time, and reach the maxima prior to the final fracture. We then attempt to combine the LURR values with damage variable ( D) to provide the health assessment of the structure. The relationship between LURR and D, defined as a function of Weibull stochastic distribution, is set up to provide more detailed underlying physical means to study damage evolution of the structure. The fact that the damage evolution of the structure correlates well with the variation of LURR time series may suggest that the LURR approach can be severed as a useful tool to provide the health assessment to big scale structures or ancient buildings.

  16. Mechanics unloading analysis and experimentation of a new type of parallel biomimetic shoulder complex

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Li, Zhisen; Wang, Yi; Zhang, Wenwen; Zeng, Daxing; Zhou, Yulin

    2016-06-01

    The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism, while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex. A new type biomimetic shoulder complex, which adopts 3-PSS/S(P for prismatic pair, S for spherical pair) spherical parallel mechanism (SPM), is proposed. The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved. Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism. In addition, the prototype mechanism of the shoulder complex is developed, and the force feedback experiment is conducted to verify the static analysis, which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved. The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex, and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.

  17. Mechanics unloading analysis and experimentation of a new type of parallel biomimetic shoulder complex

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Li, Zhisen; Wang, Yi; Zhang, Wenwen; Zeng, Daxing; Zhou, Yulin

    2016-07-01

    The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism, while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex. A new type biomimetic shoulder complex, which adopts 3-PSS/S(P for prismatic pair, S for spherical pair) spherical parallel mechanism (SPM), is proposed. The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved. Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism. In addition, the prototype mechanism of the shoulder complex is developed, and the force feedback experiment is conducted to verify the static analysis, which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved. The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex, and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.

  18. Effect of hindlimb unloading on motor activity in adult rats: impact of prenatal stress.

    PubMed

    Canu, M H; Darnaudéry, M; Falempin, M; Maccari, S; Viltart, O

    2007-02-01

    Environmental changes that occur in daily life or, in particular, in situations like actual or simulated microgravity require neuronal adaptation of sensory and motor functions. Such conditions can exert long-lasting disturbances on an individual's adaptive ability. Additionally, prenatal stress also leads to behavioral and physiological abnormalities in adulthood. Therefore, the aims of the present study were (a) to evaluate in adult rats the behavioral motor adaptation that follows 14 days of exposure to simulated microgravity (hindlimb unloading) and (b) to determine whether restraint prenatal stress influences this motor adaptation. For this purpose, the authors assessed rats' motor reactivity to novelty, their skilled walking on a ladder, and their swimming performance. Results showed that unloading severely impaired motor activity and skilled walking. By contrast, it had no effect on swimming performance. Moreover, results demonstrated for the first time that restraint prenatal stress exacerbates the effects of unloading. These results are consistent with the role of a steady prenatal environment in allowing an adequate development and maturation of sensorimotor systems to generate adapted responses to environmental challenges during adulthood. PMID:17324062

  19. Nerve-responsive troponin I slow promoter does not respond to unloading

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Hodgson, V. R.; Hardeman, E. C.; Booth, F. W.

    1998-01-01

    We examined the regulation of the troponin I slow (TnIs) promoter during skeletal muscle unloading-induced protein isoform transition, by using a transgenic mouse line harboring the -4,200 to +12 base pairs region of the human TnIs promoter. Eighteen female transgenic mice ( approximately 30 g body mass) were randomly divided into two groups: weight-bearing (WB) controls (n = 9) and hindlimb unloaded (HU; n = 9). The HU mice were tail suspended for 7 days. Body mass was unchanged in the WB group but was reduced (-6%; P < 0.05) after the HU treatment. Absolute soleus muscle mass (-25%) and soleus mass relative to body mass (-16%) were both lower (P < 0.05) in the HU group compared with the WB mice. Northern blot analyses indicate that 7 days of HU result in a 64% decrease (P < 0.05) in the abundance of endogenous TnIs mRNA (microg/mg muscle) in the mouse soleus. Furthermore, there is a trend for the abundance of the fast troponin I mRNA to be increased (+34%). Analysis of transgenic chloramphenicol acetyltransferase activity in the soleus muscle revealed no difference (P > 0.05) between WB and HU groups. We conclude that additional elements are necessary for the TnIs gene to respond to an unloading-induced, slow-to-fast isoform transition stimulus.

  20. Effect of inspiratory muscle unloading on arousal responses to CO2 and hypoxia in sleeping dogs.

    PubMed

    Kimoff, R J; Kozar, L F; Yasuma, F; Bradley, T D; Phillipson, E A

    1993-03-01

    Chemical respiratory stimuli can induce arousal from sleep, but the specific mechanisms involved have not been established. Therefore, we tested the hypothesis that mechanoreceptor stimuli arising in the ventilatory apparatus have a role in the arousal responses to progressive hypercapnia and hypoxia by comparing arousal responses during spontaneous ventilation with those obtained when the inspiratory muscles were unloaded by mechanical ventilatory assistance. Studies were performed in three trained dogs in which the adequacy of inspiratory muscle unloading was verified by diaphragmatic electromyographic (EMG) recordings. In rapid-eye-movement (REM) sleep the arousal threshold during progressive hypercapnia increased from 68.4 +/- 0.5 (SE) mmHg during spontaneous runs to 72.3 +/- 0.8 mmHg during mechanically assisted runs (P < 0.01). In contrast there were no changes in arousal responses to hypercapnia during non-REM (NREM) sleep or to hypoxia in either NREM or REM sleep. However, during the assisted hypoxic runs, EMG activity of the transversus abdominis muscle was increased compared with the unassisted runs; therefore, the effects on arousal threshold of unloading the inspiratory muscles may have been offset by increased loading of the expiratory muscles. The findings indicate that even in the absence of added mechanical loads, mechanoreceptor stimuli probably arising in the respiratory muscles contribute to the arousal response to hypercapnia during REM sleep.

  1. The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism.

    PubMed

    Toole, Tonya; Maitland, Charles G; Warren, Earl; Hubmann, Monica F; Panton, Lynn

    2005-01-01

    Our study aims were: 1) to determine whether assisted weight bearing or additional weight bearing is more beneficial to the improvement of function and increased stability in gait and dynamic balance in patients with Parkinsonism, compared with matched controls (treadmill alone). Twenty-three men and women participants (M +/- SD = 74.5 +/- 9.7 yrs; Males = 19, Females = 4) with Parkinsonism were in the study. Participants staged at 1-7 (M +/- SD = 3.96 +/- 1.07) using the Hoehn & Yahr scale. All participants were tested before, after the intervention (within one week), and four weeks later on: 1) dynamic posturography, 2) Berg Balance scale, 3) United Parkinson's Disease Rating Scale (UPDRS), 4) biomechanical assessment of strength and range of motion, and 5) Gaitrite force sensitive gait mat. Group 1 (treadmill control group), received treadmill training with no loading or unloading. Group 2 (unweighted group), walked on the treadmill assisted by the Biodex Unweighing System at a 25% body weight reduction. Group 3 (weighted group), ambulated wearing a weighted scuba-diving belt, which increased their normal body weight by 5%. All subjects walked on the treadmill for 20 minutes per day for 3 days per week for 6 weeks. Improvements in dynamic posturography, falls during balance testing, Berg Balance, UPDRS (Motor Exam), and gait for all groups lead us to believe that neuromuscular regulation can be facilitated in all Parkinson's individuals no matter what treadmill intervention is employed.

  2. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  3. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  4. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  5. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  6. Prevention of muscle fibers atrophy during gravitational unloading: The effect of L-arginine administration

    NASA Astrophysics Data System (ADS)

    Kartashkina, N.; Lomonosova, Y.; Shevchenko, T. F.; Bugrova, A. E.; Turtikova, O. V.; Kalamkarov, G. R.; Nemirovskaya, T. L.

    2011-05-01

    Gravitational unloading results in pronounced atrophy of m.soleus. Probably, the output of NO is controlled by the muscle activity. We hypothesized that NO may be involved in the protein metabolism and increase of its concentration in muscle can prevent atrophic changes induced by gravitational unloading. In order to test the hypothesis we applied NO donor L-arginine during gravitational unloading. 2.5-month-old male Wistar rats weighing 220-230g were divided into sedentary control group (CTR, n=7), 14-day hindlimb suspension (HS, n=7), 14 days of hindlimb suspension+ L-arginine (HSL, n=7) (with a daily supplementation of 500 mg/kg wt L-arginine) and 14 days of hindlimb suspension+ L-NAME (HSN, n=7) (90 mg/kg wt during 14 days). Cross sectional area (CSA) of slow twitch (ST) and fast twitch (FT) soleus muscle fibers decreased by 45% and 28% in the HS group ( p<0.05) and 40% and 25% in the HSN group, as compared to the CTR group ( p<0.05), respectively. CSA of ST and FT muscle fibers were 25% and 16% larger in the HSL group in comparison with the HS group ( p<0.05), respectively. The atrophy of FT muscle fibers in the HSL group was completely prevented since FT fiber CSA had no significant differences from the CTR group. In HS group, the percentage of fibers revealing either gaps/disruption of the dystrophin layer of the myofiber surface membrane increased by 27% and 17%, respectively, as compared to the controls (CTR group, p<0.05). The destructions in dystrophin layer integrity and reductions of desmin content were significantly prevented in HSL group. NO concentration decreased by 60% in the HS group (as well as HSN group) and at the same time no changes were detectable in the HSL group. This fact indicates the compensation of NO content in the unloaded muscle under L-arginine administration. The levels of atrogin-1 mRNA were considerably altered in suspended animals (HS group: plus 27%, HSL group: minus 13%) as compared to the control level. Conclusion: L

  7. Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis?

    PubMed Central

    Servais, Stéphane; Letexier, Dominique; Favier, Roland; Duchamp, Claude; Desplanches, Dominique

    2007-01-01

    Exposure to reduced activity induces skeletal muscle atrophy. Oxidative stress might contribute to muscle wasting via proteolysis activation. This study aimed to test two hypotheses in rats. Firstly, supplementation of the antioxidant vitamin E, prior and during the phase of unloading, would partly counteract unloading-induced soleus muscle atrophy. Secondly, vitamin E supplementation would decrease the rate of muscle proteolysis by reducing expression of calpains, caspase-3, -9, -12 and E3 ubiquitin ligases (MuRF1 and MAFbx). Soleus muscle atrophy (− 49%) induced by fourteen days of hindlimb unloading was reduced to only 32 % under vitamin E. Vitamin E partly prevented the decrease in type I and IIa fiber size. Supplementation increased HSP72 content, suppressed the rise in muscle level of thiobarbituric acid-reactive substance caused by unloading but failed to modify the lower ratio of reduced vs. oxidized glutathione, the higher uncoupling proteins mRNA and the antioxidant enzyme activities (superoxide dismutase, catalase, glutathione peroxidase) observed after unloading. Vitamin E treatment abolished the large upregulation of caspase 9, 12 and MuRF1 transcripts in unloaded muscle and greatly decreased the upregulation of μ-calpain, caspase 3 and MAFbx mRNA. In conclusion, the protective effect of vitamin E might be due to modulation of muscle proteolysis-related genes rather than to its antioxidant function. PMID:17291986

  8. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  9. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  10. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  11. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  12. 14 CFR 23.943 - Negative acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Negative acceleration. 23.943 Section 23... Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in... the airplane is operated at the negative accelerations within the flight envelopes prescribed in §...

  13. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide

  14. Temperature and Oxygen Effects on 14C-Photosynthate Unloading and Accumulation in Developing Soybean Seeds

    PubMed Central

    Thorne, John H.

    1982-01-01

    The environmental sensitivity of the processes associated with the import of photosynthate by developing soybean seeds was investigated within intact fruit and with excised, immature embryos. Intact pods of field-grown (Glycine max [L.] Merr.) Amsoy 71 soybeans were subjected to localized regimes of 0, 21, or 100% O2 and 15, 25, or 35°C during pulsechase translocation experiments and, 2.5 hours later, the uptake and distribution of 14C-photosynthate among dissected fruit tissues determined. In other experiments, excised embryos were incubated in [14C]sucrose solutions under various experimental conditions to separate the effects of these treatments on accumulation by the embryos from those which may operate on phloem unloading in the maternal seedcoat. Import of 14C-photosynthate by intact soybean fruit was both temperature- and O2-dependent. This dependency was shown to occur only within the seeds; import by the pod walls was essentially insensitive to fruit temperature or O2 treatments. The embryos of anaerobic fruit were completely unlabeled, regardless of fruit temperature. But under anaerobic in vitro incubation conditions, uptake of [14C]sucrose in excised embryos was only 30% less than that in aerobic in vitro conditions. The data suggest that, within intact fruit, anoxia prevented sucrose efflux from the seed coat phloem and any subsequent uptake by the embryo. The demonstrated energy dependence of phloem unloading may reflect requirements for membrane integrity or energy metabolism in the companion cell-sieve element complex, consistent with a facilitated unloading process. Collectively, these data characterize the environmental sensitivity of photosynthate import in developing soybean fruit. They imply that environmental regulation of import may occur at both the embryo level and at the phloem terminals within the seed coat. PMID:16662182

  15. Impaired Axonal Na+ Current by Hindlimb Unloading: Implication for Disuse Neuromuscular Atrophy

    PubMed Central

    Banzrai, Chimeglkham; Nodera, Hiroyuki; Kawarai, Toshitaka; Higashi, Saki; Okada, Ryo; Mori, Atsuko; Shimatani, Yoshimitsu; Osaki, Yusuke; Kaji, Ryuji

    2016-01-01

    This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading (HLU), which is a model of disuse neuromuscular atrophy. HLU was performed in normal 8-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal's cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential (CMAP) from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes [2.2 ± 1.3 mV (HLU) vs. 4.3 ± 1.2 mV (Control), P = 0.03]. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC) and late subexcitability (recovery cycle) than the controls [0.075 ± 0.01 (HLU) vs. 0.12 ± 0.01 (Control), P < 0.01; 5.4 ± 1.0 (HLU) vs. 10.0 ± 1.3 % (Control), P = 0.01, respectively]. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by HLU. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy. PMID:26909041

  16. Project UM-HAUL: A self-unloading reusable lunar lander

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The establishment of a lunar base is technologically and financially challenging. Given the necessary resources and political support, it can be done. In addition to the geopolitical obstacles, however, there are logistical problems involved in establishing such bases that can only be overcome with the acquisition of a significant transportation and communications network in the Earth-Moon spatial region. Considering the significant number of payloads that will be required in this process, the mass-specific cost of launching these payloads, and the added risk and cost of human presence in space, it is clearly desirable to automate major parts of such an operation. One very costly and time-consuming factor in this picture is the delivery of payloads to the Moon. Foreseeable payloads would include atmospheric modules, inflatable habitat kits, energy and oxygen plant elements, ground vehicles, laboratory modules, crew supplies, etc. The duration of high-risk human presence on the Moon could be greatly reduced if all such payloads were delivered to the prospective base site in advance of crew arrival. In this view, the idea of a 'Self-Unloading Reusable Lunar Lander' (SURLL) arises naturally. The general scenario depicts the lander being brought to low lunar orbit (LLO) from Earth atop a generic Orbital Transfer Vehicle (OTV). From LLO, the lander shuttles payloads down to the lunar surface, where, by means of some resident, detachable unloading device, it deploys the payloads and returns to orbit. The general goal is for the system to perform with maximum payload capability, automation, and reliability, while also minimizing environmental hazards, servicing needs, and mission costs. Our response to this demand is UM-HAUL, or the UnManned Heavy pAyload Unloader and Lander. The complete study includes a system description, along with a preliminary cost analysis and a design status assessment.

  17. Development of a functional food or drug against unloading-mediated muscle atrophy

    NASA Astrophysics Data System (ADS)

    Nikawa, Takeshi; Nakao, Reiko; Kagawa, Sachiko; Yamada, Chiharu; Abe, Manami; Tamura, Seiko; Kohno, Shohei; Sukeno, Akiko; Hirasaka, Katsuya; Okumura, Yuushi; Ishidoh, Kazumi

    The ubiquitin-proteasome pathway is a primary regulator of muscle protein turnover, providing a mechanism for selective degradation of regulatory and structural proteins. This pathway is constitutively active in muscle fibers and mediates both intracellular signaling events and normal muscle protein turnover. However, conditions of decreased muscle use, so called unloading, remarkably stimulate activity of this pathway, resulting in loss of muscle protein. In fact, we previously reported that expression of several ubiquitin ligase genes, such as MuRF-1, Cbl-b, and Siah-1A, which are rate-limiting enzymes of the ubiquitin-proteasome proteolytic pathway, are significantly up-regulated in rat skeletal muscle during spaceflight. Moreover, we found that Cbl-b-mediated ubiquitination and degradation of IRS-1, an important intermediates of IGF-1 signal transduction, contributes to muscle atrophy during unloading. Therefore, we hypothesized that inhibition of Cbl-b-mediated ubiquitination and degradation of IRS-1 leads to prevention of muscle atrophy during unloading. In this study, we aimed to evaluate oligopeptide as an inhibitor against ubiquitination of IRS-1 by Cbl-b. We synthesized various oligopeptides that may competitively inhibit the binding of Cbl-b to IRS-1 on the basis of their structures and screened inhibitory effects of these synthesized oligopeptides on Cbl-b-mediated ubiquitination of IRS-1 using in vitro ubiquitination systems. We found that two synthetic oligopeptides with specific amino acid sequences effectively inhibited interaction with Cbl-b and IRS-1, resulting in decreased ubiquitination and degradation of IRS-1 (Patent pending). In contrast, we also found inhibitory activity against Cbl-b-mediated ubiquitination of IRS-1 in soy protein-derived oligopeptides, whereas their inhibitory effects were weaker than those of synthetic oligopeptides. Our results suggest that specific oligopeptides may be available as a functional food against the muscle

  18. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  19. Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy

    PubMed Central

    Castillero, Estibaliz; Akashi, Hirokazu; Pendrak, Klara; Yerebakan, Halit; Najjar, Marc; Wang, Catherine; Naka, Yoshifumi; Mancini, Donna; Sweeney, H. Lee; D′Armiento, Jeanine; Ali, Ziad A.; Schulze, P. Christian

    2015-01-01

    Abnormal intracellular calcium (Ca2+) handling can trigger endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR) in an attempt to prevent cell death. Mechanical unloading with a left ventricular assist device (LVAD) relieves pressure-volume overload and promotes reverse remodeling of the failing myocardium. We hypothesized that mechanical unloading would alter the UPR in patients with advanced heart failure (HF). UPR was analyzed in paired myocardial tissue from 10 patients with dilated cardiomyopathy obtained during LVAD implantation and explantation. Samples from healthy hearts served as controls. Markers of UPR [binding immunoglobulin protein (BiP), phosphorylated (P-) eukaryotic initiation factor (eIF2α), and X-box binding protein (XBP1)] were significantly increased in HF, whereas LVAD support significantly decreased BiP, P-eIF2α, and XBP1s levels. Apoptosis as reflected by C/EBP homologous protein and DNA damage were also significantly reduced after LVAD support. Improvement in left ventricular dimensions positively correlated with P-eIF2α/eIF2α and apoptosis level recovery. Furthermore, significant dysregulation of calcium-handling proteins [P-ryanodine receptor, Ca2+ storing protein calsequestrin, Na+-Ca2+ exchanger, sarcoendoplasmic reticulum Ca2+-ATPase (SERCA2a), ER chaperone protein calreticulin] was normalized after LVAD support. Reduced ER Ca2+ content as a causative mechanism for UPR was confirmed using AC16 cells treated with a calcium ionophore (A23187) and SERCA2a inhibitor (thapsigargin). UPR activation and apoptosis are reduced after mechanical unloading, which may be mediated by the improvement of Ca2+ handling in patients with advanced HF. These changes may impact the potential for myocardial recovery. PMID:26055788

  20. Impaired Axonal Na(+) Current by Hindlimb Unloading: Implication for Disuse Neuromuscular Atrophy.

    PubMed

    Banzrai, Chimeglkham; Nodera, Hiroyuki; Kawarai, Toshitaka; Higashi, Saki; Okada, Ryo; Mori, Atsuko; Shimatani, Yoshimitsu; Osaki, Yusuke; Kaji, Ryuji

    2016-01-01

    This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading (HLU), which is a model of disuse neuromuscular atrophy. HLU was performed in normal 8-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal's cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential (CMAP) from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes [2.2 ± 1.3 mV (HLU) vs. 4.3 ± 1.2 mV (Control), P = 0.03]. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC) and late subexcitability (recovery cycle) than the controls [0.075 ± 0.01 (HLU) vs. 0.12 ± 0.01 (Control), P < 0.01; 5.4 ± 1.0 (HLU) vs. 10.0 ± 1.3 % (Control), P = 0.01, respectively]. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na(+) currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na(+) channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by HLU. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy. PMID:26909041

  1. Vasopressin responses to unloading arterial baroreceptors during cardiac nerve blockade in conscious dogs

    NASA Technical Reports Server (NTRS)

    O'Donnell, C. P.; Keil, L. C.; Thrasher, T. N.

    1992-01-01

    We examined the relative contributions of afferent input from the heart and from arterial baroreceptors in the stimulation of arginine vasopressin (AVP) secretion in response to hypotension caused by thoracic inferior vena caval constriction (TIVCC). Afferent input from cardiac receptors was reversibly blocked by infusing 2% procaine into the pericardial space to anesthetize the cardiac nerves. Acute cardiac nerve blockade (CNB) alone caused a rise in mean arterial pressure (MAP) of 24 +/- 3 mmHg but no change in plasma AVP. If the rise in MAP was prevented by TIVCC, plasma AVP increased by 39 +/- 15 pg/ml, and if MAP was allowed to increase and then was forced back to control by TIVCC, plasma AVP increased by 34 +/- 15 pg/ml. Thus the rise in MAP during CNB stimulated arterial baroreceptors, which in turn compensated for the loss of inhibitory input from cardiac receptors on AVP secretion. These results indicate that the maximum secretory response resulting from complete unloading of cardiac receptors at a normal MAP results in a mean increase in plasma AVP of 39 pg/ml in this group of dogs. When MAP was reduced 25% below control levels (from 95 +/- 5 to 69 +/- 3 mmHg) by TIVCC during pericardial saline infusion, plasma AVP increased by 79 +/- 42 pg/ml. However, the same degree of hypotension during CNB (MAP was reduced from 120 +/- 5 to 71 +/- 3 mmHg) led to a greater (P less than 0.05) increase in plasma AVP of 130 +/- 33 pg/ml. Because completely unloading cardiac receptors can account for an increase of only 39 pg/ml on average in this group of dogs, the remainder of the increase in plasma AVP must be due to other sources of stimulation. We suggest that the principal stimulus to AVP secretion after acute CNB in these studies arises from unloading the arterial baroreceptors.

  2. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  3. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  4. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  5. Shock compression and unloading response of 1050 aluminum to 70 GPA

    NASA Astrophysics Data System (ADS)

    Choudhuri, Deep; Gupta, Yogendra M.

    2012-03-01

    Using laser-interferometry, shock compression and unloading profiles were measured in 1050 aluminum shocked to ~70 GPa. These results were compared to published data on relatively pure (99.99wt% ultra pure, 1050, 1060, and 1100) and precipitate - hardened (2024, 6061) aluminum. Within experimental scatter, Hugoniots and longitudinal sound speeds (in the shocked state) of pure and precipitate-hardened aluminum are quite comparable to 70GPa. This agreement demonstrates that impurity content has minimal influence on the longitudinal stress-volume response and acoustic speeds under shock compression.

  6. The molecular response of bone to growth hormone during skeletal unloading: regional differences

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Currier, P. A.; Tanner, S.; Morey-Holton, E.

    1995-01-01

    Hind limb elevation of the growing rat provides a good model for the skeletal changes that occur during space flight. In this model the bones of the forelimbs (normally loaded) are used as an internal control for the changes that occur in the unloaded bones of the hind limbs. Previous studies have shown that skeletal unloading of the hind limbs results in a transient reduction of bone formation in the tibia and femur, with no change in the humerus. This fall in bone formation is accompanied by a fall in serum osteocalcin (bone Gla protein, BGP) and bone BGP messenger RNA (mRNA) levels, but a rise in bone insulin-like growth factor-I (IGF-I) protein and mRNA levels and resistance to the skeletal growth-promoting actions of IGF-I. To determine whether skeletal unloading also induced resistance to GH, we evaluated the response of the femur and humerus of sham and hypophysectomized rats, control and hind limb elevated, to GH (two doses), measuring mRNA levels of IGF-I, BGP, rat bone alkaline phosphatase (RAP), and alpha 1(1)-procollagen (coll). Hypophysectomy (HPX) decreased the mRNA levels of IGF-I, BGP, and coll in the femur, but was either less effective or had the opposite effect in the humerus. GH at the higher dose (500 micrograms/day) restored these mRNA levels to or above the sham control values in the femur, but generally had little or no effect on the humerus. RAP mRNA levels were increased by HPX, especially in the femur. The lower dose of GH (50 micrograms/day) inhibited this rise in RAP, whereas the higher dose raised the mRNA levels and resulted in the appearance of additional transcripts not seen in controls. As for the other mRNAs, RAP mRNA in the humerus was less affected by HPX or GH than that in the femur. Hind limb elevation led to an increase in IGF-I, coll, and RAP mRNAs and a reduction in BGP mRNA in the femur and either had no effect or potentiated the response of these mRNAs to GH. We conclude that GH stimulates a number of markers of bone

  7. Residual stress analysis on tensile MMC specimens after loading/unloading tests in several conditions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandra; Albertini, Gianni; Manescu, Adrian

    2004-07-01

    Residual stresses have been investigated in samples made of AA6061+22% Al2O3 in order to correlate microstructural characteristics with mechanical performances. In particular, the possible occurrence of a brittle fracture induced by an excessive load transfer from the matrix to the reinforcement was investigated. To this end, macrostresses and microstresses were analysed. A neutron diffraction test on 12 specimens submitted to several loading/unloading conditions at different temperatures was performed. These measurements aimed to establish the optimal temperature for the initial extruded billet in pre-heating stage, before forging the final wheel hub.

  8. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  9. [Clinical relevance of unloading in cartilage therapy of the knee--shoe insoles, knee braces or additional operative procedure?].

    PubMed

    Kraus, T M; Imhoff, A B; Ateschrang, A; Stöckle, U; Schröter, S

    2015-02-01

    Restoration of a neutral biomechanical environment and reduction of overload is an important factor contributing to the success of any cartilage repair procedure. Reduction of overload can by achieved by so called unloading procedures in order to reduce intraarticular pressure from the repair zone. Unloading can be achieved via loss of weight, wedged shoe insoles, knee braces or via operations such as osteotomies around the knee joint. The cartilage therapy and the concomitant unloading procedure should be adapted to the individual pathology and realistic aims of the patient. Wedged insoles and braces are the least invasive treatment methods. In comparison, however, beneficial effects of braces outline those of laterally wedged heels. Nevertheless long-term compliance with insoles and braces is poor. Concerning braces either because the positive effects of the braces are too small or because the adverse effects are too large. Unloading in the long run may only be achieved through operative procedures. When an osteotomy seems to be too invasive the arthroscopic release of the posterior oblique ligament might be an option. Patients with an intact contralateral chondral status, medium to slight malalignment who want to remain at high activity levels, remain good candidates for unloading osteotomies.

  10. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  11. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

    PubMed Central

    Kubota, Takashi; Katou, Yuki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Donaldson, Anne D.

    2015-01-01

    Summary The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication. PMID:26212319

  12. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Aviles, Hernan; Belay, Tesfaye; Vance, Monique; Sonnenfeld, Gerald

    2005-01-01

    The rodent model of hindlimb unloading has been successfully used to simulate some of the effects of space flight conditions. Previous studies have indicated that mice exposed to hindlimb-unloading conditions have decreased resistance to infections compared to restrained and normally housed control mice. OBJECTIVE: The purpose of this study was to clarify the mechanisms involved in resistance to infection in this model by examining the effects of hindlimb unloading on the function of the immune system and its impact on the production of catecholamines. METHODS: Female Swiss Webster mice were hindlimb-unloaded during 48 h and the function of the immune system was assessed in spleen and peritoneal cells immediately after this period. In addition, the kinetics of catecholamine production was measured throughout the hindlimb-unloading period. RESULTS: The function of the immune system was significantly suppressed in the hindlimb-unloaded group compared to restrained and normally housed control mice. Levels of catecholamines were increased in the hindlimb-unloaded group and peaked at 12 h following the commencement of unloading. CONCLUSION: These results suggest that physiological responses of mice are altered early after hindlimb unloading and that catecholamines may play a critical role in the modulation of the immune system. These changes may affect the ability of mice to resist infections. Copyright (c) 2005 S. Karger AG, Basel.

  13. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  14. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs.

    PubMed

    Showalter, Brent L; Malhotra, Neil R; Vresilovic, Edward J; Elliott, Dawn M

    2014-08-22

    The first objective of this study was to determine the effects of physiological cyclic loading followed by unloaded recovery on the mechanical response of human intervertebral discs. The second objective was to examine how nucleotomy alters the disc's mechanical response to cyclic loading. To complete these objectives, 15 human L5-S1 discs were tested while intact and subsequent to nucleotomy. The testing consisted of 10,000 cycles of physiological compressive loads followed by unloaded hydrated recovery. Cyclic loading increased compression modulus (3%) and strain (33%), decreased neutral zone modulus (52%), and increased neutral zone strain (31%). Degeneration was not correlated with the effect of cyclic loading in intact discs, but was correlated with cyclic loading effects after nucleotomy, with more degenerate samples experiencing greater increases in both compressive and neutral zone strain following cyclic loading. Partial removal of the nucleus pulposus decreased the compression and neutral zone modulus while increasing strain. These changes correspond to hypermobility, which will alter overall spinal mechanics and may impact low back pain via altered motion throughout the spinal column. Nucleotomy also reduced the effects of cyclic loading on mechanical properties, likely due to altered fluid flow, which may impact cellular mechanotransduction and transport of disc nutrients and waste. Degeneration was not correlated with the acute changes of nucleotomy. Results of this study provide an ideal protocol and control data for evaluating the effectiveness of a mechanically-based disc degeneration treatment, such as a nucleus replacement.

  15. Muscle and tendon connective tissue adaptation to unloading, exercise and NSAID.

    PubMed

    Dideriksen, Kasper

    2014-04-01

    The extracellular matrix network of skeletal muscle and tendon connective tissue is primarily composed of collagen and connects the muscle contractile protein to the bones in the human body. The mechanical properties of the connective tissue are important for the effectiveness of which the muscle force is transformed into movement. Periods of unloading and exercise affect the synthesis rate of connective tissue collagen protein, whereas only sparse information exits regarding collagen protein degradation. It is likely, though, that changes in both collagen protein synthesis and degradation are required for remodeling of the connective tissue internal structure that ultimately results in altered mechanical properties of the connective tissue. Both unloading and exercise lead to increased production of growth factors and inflammatory mediators that are involved in connective tissue remodeling. Despite the fact that non-steroidal anti-inflammatory drugs seem to inhibit the healing process of connective tissue and the stimulating effect of exercise on connective tissue protein synthesis, these drugs are often consumed in relation to connective tissue injury and soreness. However, the potential effect of non-steroidal anti-inflammatory drugs on connective tissue needs further investigation.

  16. A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs.

    PubMed

    Jia, Bin; Xie, Li; Zheng, Qi; Yang, Peng-fei; Zhang, Wei-ju; Ding, Chong; Qian, Ai-rong; Shang, Peng

    2014-01-01

    A hypomagnetic field is an extremely weak magnetic field--it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption.

  17. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  18. Early changes in costameric and mitochondrial protein expression with unloading are muscle specific.

    PubMed

    Flück, Martin; Li, Ruowei; Valdivieso, Paola; Linnehan, Richard M; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  19. Bone and hormonal changes induced by skeletal unloading in the mature male rat

    NASA Technical Reports Server (NTRS)

    Dehority, W.; Halloran, B. P.; Bikle, D. D.; Curren, T.; Kostenuik, P. J.; Wronski, T. J.; Shen, Y.; Rabkin, B.; Bouraoui, A.; Morey-Holton, E.

    1999-01-01

    To determine whether the rat hindlimb elevation model can be used to study the effects of spaceflight and loss of gravitational loading on bone in the adult animal, and to examine the effects of age on bone responsiveness to mechanical loading, we studied 6-mo-old rats subjected to hindlimb elevation for up to 5 wk. Loss of weight bearing in the adult induced a mild hypercalcemia, diminished serum 1,25-dihydroxyvitamin D, decreased vertebral bone mass, and blunted the otherwise normal increase in femoral mass associated with bone maturation. Unloading decreased osteoblast numbers and reduced periosteal and cancellous bone formation but had no effect on bone resorption. Mineralizing surface, mineral apposition rate, and bone formation rate decreased during unloading. Our results demonstrate the utility of the adult rat hindlimb elevation model as a means of simulating the loss of gravitational loading on the skeleton, and they show that the effects of nonweight bearing are prolonged and have a greater relative effect on bone formation in the adult than in the young growing animal.

  20. A Hypomagnetic Field Aggravates Bone Loss Induced by Hindlimb Unloading in Rat Femurs

    PubMed Central

    Jia, Bin; Xie, Li; Zheng, Qi; Yang, Peng-fei; Zhang, Wei-ju; Ding, Chong; Qian, Ai-rong; Shang, Peng

    2014-01-01

    A hypomagnetic field is an extremely weak magnetic field—it is considerably weaker than the geomagnetic field. In deep-space exploration missions, such as those involving extended stays on the moon and interplanetary travel, astronauts will experience abnormal space environments involving hypomagnetic fields and microgravity. It is known that microgravity in space causes bone loss, which results in decreased bone mineral density. However, it is unclear whether hypomagnetic fields affect the skeletal system. In the present study, we aimed to investigate the complex effects of a hypomagnetic field and microgravity on bone loss. To study the effects of hypomagnetic fields on the femoral characteristics of rats in simulated weightlessness, we established a rat model of hindlimb unloading that was exposed to a hypomagnetic field. We used a geomagnetic field-shielding chamber to generate a hypomagnetic field of <300 nT. The results show that hypomagnetic fields can exacerbate bone mineral density loss and alter femoral biomechanical characteristics in hindlimb-unloaded rats. The underlying mechanism might involve changes in biological rhythms and the concentrations of trace elements due to the hypomagnetic field, which would result in the generation of oxidative stress responses in the rat. Excessive levels of reactive oxygen species would stimulate osteoblasts to secrete receptor activator of nuclear factor-κB ligand and promote the maturation and activation of osteoclasts and thus eventually cause bone resorption. PMID:25157571

  1. The Hindlimb Unloading Rat Model: Literature Overview, Comparison with Spaceflight Data, and Technique Update

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina

    2004-01-01

    The hindlimb unloading (HU) rodent model is used extensively to study the response of many physiological systems to certain aspects of spaceflight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of HU, and is divided into three sections. The first section examines the characteristics of 1063 articles using or reviewing the HU model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and Hu animals from the 14-day Cosmos 2044 mission. The final section describes modifications to HU required by different experimental paradigms and a method to protect the tail harness for long duration studies. HU in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human spaceflight and disuse on Earth.

  2. Early changes in costameric and mitochondrial protein expression with unloading are muscle specific.

    PubMed

    Flück, Martin; Li, Ruowei; Valdivieso, Paola; Linnehan, Richard M; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  3. Fractal dimension analysis of weight-bearing bones of rats during skeletal unloading

    NASA Technical Reports Server (NTRS)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Sanhueza, A. I.; Yamauchi, M.

    2001-01-01

    Fractal analysis was used to quantify changes in trabecular bone induced through the use of a rat tail-suspension model to simulate microgravity-induced osteopenia. Fractal dimensions were estimated from digitized radiographs obtained from tail-suspended and ambulatory rats. Fifty 4-month-old male Sprague-Dawley rats were divided into groups of 24 ambulatory (control) and 26 suspended (test) animals. Rats of both groups were killed after periods of 1, 4, and 8 weeks. Femurs and tibiae were removed and radiographed with standard intraoral films and digitized using a flatbed scanner. Square regions of interest were cropped at proximal, middle, and distal areas of each bone. Fractal dimensions were estimated from slopes of regression lines fitted to circularly averaged plots of log power vs. log spatial frequency. The results showed that the computed fractal dimensions were significantly greater for images of trabecular bones from tail-suspended groups than for ambulatory groups (p < 0.01) at 1 week. Periods between 1 and 4 weeks likewise yielded significantly different estimates (p < 0.05), consistent with an increase in bone loss. In the tibiae, the proximal regions of the suspended group produced significantly greater fractal dimensions than other regions (p < 0.05), which suggests they were more susceptible to unloading. The data are consistent with other studies demonstrating osteopenia in microgravity environments and the regional response to skeletal unloading. Thus, fractal analysis could be a useful technique to evaluate the structural changes of bone.

  4. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Lesniewski, L. A.; Muller-Delp, J. M.; Majors, A. K.; Scalise, D.; Delp, M. D.

    2001-01-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  5. Can footwall unloading explain late Cenozoic uplift of the Sierra Nevada crest?

    USGS Publications Warehouse

    Thompson, G.A.; Parsons, T.

    2009-01-01

    Globally, normal-fault displacement bends and warps rift flanks upwards, as adjoining basins drop downwards. Perhaps the most evident manifestations are the flanks of the East African Rift, which cuts across the otherwise minimally deformed continent. Flank uplift was explained by Vening Meinesz (1950, Institut Royal Colonial Belge, Bulletin des Seances, v. 21, p. 539-552), who recognized that isostasy should cause uplift of a normal-faulted footwall and subsidence of its hanging wall. Uplift occurs because slip on a dipping normal fault creates a broader root of less-dense material beneath the footwall, and a narrowed one beneath the hanging wall. In this paper, we investigate the potential influence of this process on the latest stages of Sierra Nevada uplift. Through theoretical calculations and 3D finite element modelling, we find that cumulative slip of about 4km on range-front faults would have produced about 1.3km peak isostatic uplift at the ridge crest. Numerical models suggest that the zone of uplift is narrow, with the width controlled by bending resistance of the seismogenic crust. We conclude that footwall unloading cannot account for the entire elevation of the Sierran crest above sea level, but if range-front faulting initiated in an already elevated plateau like the adjacent Basin and Range Province, then a hybrid model of pre-existing regional uplift and localized footwall unloading can account for the older and newer uplift phases suggested by the geologic record.

  6. Combined effects of botulinum toxin injection and hindlimb unloading on bone and muscle

    PubMed Central

    Ellman, Rachel; Grasso, Daniel J.; van Vliet, Miranda; Brooks, Daniel J.; Spatz, Jordan M.; Conlon, Christine; Bouxsein, Mary L.

    2014-01-01

    Bone receives mechanical stimulation from two primary sources, muscle contractions and external gravitational loading, but the relative contribution of each source to skeletal health is not fully understood. Understanding the most effective loading for maintaining bone health has important clinical implications for prescribing physical activity for the treatment or prevention of osteoporosis. Therefore, we investigated the relative effects of muscle paralysis and reduced gravitational loading on changes in muscle mass, bone mineral density and microarchitecture. Adult female C57Bl/6J mice (n=10/group) underwent one of the following: unilateral botulinum toxin (BTX) injection of the hindlimb, hindlimb unloading (HLU), both unilateral BTX injection and HLU, or no intervention. BTX and HLU each led to significant muscle and bone loss. The effect of BTX was diminished when combined with HLU, though generally the leg that received the combined intervention (HLU + BTX) had the most detrimental changes in bone and muscle. We found an indirect effect of BTX affecting the uninjected (contralateral) leg that led to significant decreases in bone mineral density and deficits in muscle mass and bone architecture relative to the untreated controls; the magnitude of this indirect BTX effect was comparable to the direct effect of BTX treatment and HLU. Thus, while it was difficult to definitively conclude whether muscle forces or external gravitational loading contribute more to bone maintenance, it appears that BTX-induced muscle paralysis is more detrimental to muscle and bone than hindlimb unloading. PMID:24240478

  7. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  8. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  9. Effect of short-term microgravity and long-term hindlimb unloading on rat cardiac mass and function

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Vasques, M.; Miller, T. A.; Wilkerson, M. K.; Delp, M. D.

    2001-01-01

    The purpose of this study was to test the hypothesis that exposure to short-term microgravity or long-term hindlimb unloading induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: preflight (PF, n = 12); flight (Fl, n = 7); flight cage simulation (Sim, n = 6), and vivarium control (Viv, n = 7). Animals in the Fl group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the hindlimb-unloading study were subdivided into three groups: control (Con, n = 20), 7-day hindlimb-unloaded (7HU, n = 10), and 28-day hindlimb-unloaded (28HU, n = 19). Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- 0.03 g; Fl 1.32 +/- 0.02 g; Sim 1.28 +/- 0.04 g; Viv 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hindlimb unloading (Con 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on the peak rate of rise in left ventricular pressure, an estimate of myocardial contractility (Con 8,055 +/- 385 mmHg/s; 28HU 8,545 +/- 755 mmHg/s). These data suggest that cardiac atrophy does not occur after short-term exposure to microgravity and that neither short- nor long-term simulated microgravity alters cardiac mass or function.

  10. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  11. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  12. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  13. Role of Growth Hormone, Exercise and Serum Phosphorus in Unloaded Bone of Young Rats

    NASA Technical Reports Server (NTRS)

    Arnnaud, Sara B.; Harper, J. S.; Gosselink, K. L.; Navidi, M.; Fung, P.; Grindeland, R. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone, known to be stimulated by exercise, is suppressed in rats after space flight and in a ground-based model in which the hind-limbs are unloaded (S). To determine the role of GH in the osteopenia of unloaded bones of S rats, young males were treated with GH combined with insulin-like growth factor-1 (IGF-1), a peptide that mediates the local actions of the hormone. 200 g rats, hypophysectomized (hypox) 17 d earlier, were treated with 1 mg/kg/d GH/IGF-1 (H) or saline (C) in 3 divided daily doses x10 d. Hind-limb bones were unloaded (S), ambulated (A) or exercised (X) by climbing a ladder while carrying a weight. Growth was monitored daily. Tibial growth plate (Tepi) was measured with a micrometer, and femoral (F) area, length, and mineral content (BMC) by DEXA. Parameters of calcium metabolism were measured by autoanalyzer and calciotropic hormones by radioimmunoassay. F bone density, g/square cm, (BMD) or BW were not affected by S in Hypox. However, FBMD was lower in S+H than A+H (p is less than 0.002) and H stimulated whole body growth in S (5.2 g/d) and SX (5.6 g/d) to a lesser extent than in A (6.6 g/d) (p is less than 0.05). Adjusted for BW, Tepi showed the greatest increase in S+H+X (64%), the next highest increase in S+H (50%) and no change in S+X. F area, length and BMC/100 g BW were lower in all H groups than respective C's. By multiple regression analysis, serum phosphorus (Pi) which correlated with Tepi (r = 0.88, p is less than 0.001) and was inversely related to FBMC (r = -0.68, p is less than 0.001) proved to be the most significant determinant of BMC. This illustrates the dependence of osteopenia in S on GH, the maximizing effect of X for epiphyseal growth and the major role of Pi metabolism on BMC in weight bearing bone during growth.

  14. Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading.

    PubMed

    Maurel, Delphine B; Duan, Peipei; Farr, Joshua; Cheng, An-Lin; Johnson, Mark L; Bonewald, Lynda F

    2016-01-01

    As the β-catenin pathway has been shown to be involved in mechanotransduction, we sought to determine if haploinsufficiency would affect skeletal response to unloading. It has previously been shown that deletion of both alleles of β-catenin in bone cells results in a fragile skeleton highly susceptible to fracture, but deletion of one allele using Dmp1-Cre (Ctnnb1+/loxP; Dmp1-Cre, cKO HET) has little effect on the 2 mo old skeleton. We found that under normal housing conditions, trabecular bone volume was significantly less in 5 mo old male cKO HET mice compared to controls (Ctrl/HET:Tb. BV/TV = 13.96±2.71/8.92±0.95%, Tb.N. = 4.88±0.51/3.95±0.44/mm, Tb. Sp. = 0.20±0.02/0.26±0.03mm, a 36%, 19% and 30% change respectively) but not in females suggesting an age and gender related effect. Before performing suspension experiments and to control for the environmental effects, animals with the same tail attachment and housing conditions, but not suspended (NS), were compared to normally housed (NH) animals. Attachment and housing resulted in weight loss in both genders and phenotypes. Cortical bone loss was observed in the cKO HET males (NH/NS, Ct BV/TV: 90.45±0.72/89.12±0.56%) and both diaphyseal (0.19±0.01/0.17±0.01mm) and metaphyseal (0.10±0.01/0.08±0.01mm) thickness, but not in female cKO HET mice suggesting that male cKO HET mice are susceptible to attachment and housing conditions. These results with transgenic mice emphasizes the importance of proper controls when attributing skeletal responses to unloading. With suspension, cKO HET male mice did not lose bone unlike female cKO HET mice that had greater trabecular bone loss than controls (Ctrl 9%:cKO HET 21% decrease Tb. N; Ctrl 12%:cKO HET 27% increase Tb. Sp.). Suspended and non-suspended mice lost weight compared to normally housed animals. Taken together, the data suggest a protective effect of β-catenin against the effects of stress in males and partial protection against unloading in females

  15. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; Phillips, T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Stenger, M. B.; Taylor, L. C.; Wood, S. J.

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  16. Beta-Catenin Haplo Insufficient Male Mice Do Not Lose Bone in Response to Hindlimb Unloading

    PubMed Central

    Farr, Joshua; Cheng, An-Lin; Johnson, Mark L.; Bonewald, Lynda F.

    2016-01-01

    As the β-catenin pathway has been shown to be involved in mechanotransduction, we sought to determine if haploinsufficiency would affect skeletal response to unloading. It has previously been shown that deletion of both alleles of β-catenin in bone cells results in a fragile skeleton highly susceptible to fracture, but deletion of one allele using Dmp1-Cre (Ctnnb1+/loxP; Dmp1-Cre, cKO HET) has little effect on the 2 mo old skeleton. We found that under normal housing conditions, trabecular bone volume was significantly less in 5 mo old male cKO HET mice compared to controls (Ctrl/HET:Tb. BV/TV = 13.96±2.71/8.92±0.95%, Tb.N. = 4.88±0.51/3.95±0.44/mm, Tb. Sp. = 0.20±0.02/0.26±0.03mm, a 36%, 19% and 30% change respectively) but not in females suggesting an age and gender related effect. Before performing suspension experiments and to control for the environmental effects, animals with the same tail attachment and housing conditions, but not suspended (NS), were compared to normally housed (NH) animals. Attachment and housing resulted in weight loss in both genders and phenotypes. Cortical bone loss was observed in the cKO HET males (NH/NS, Ct BV/TV: 90.45±0.72/89.12±0.56%) and both diaphyseal (0.19±0.01/0.17±0.01mm) and metaphyseal (0.10±0.01/0.08±0.01mm) thickness, but not in female cKO HET mice suggesting that male cKO HET mice are susceptible to attachment and housing conditions. These results with transgenic mice emphasizes the importance of proper controls when attributing skeletal responses to unloading. With suspension, cKO HET male mice did not lose bone unlike female cKO HET mice that had greater trabecular bone loss than controls (Ctrl 9%:cKO HET 21% decrease Tb. N; Ctrl 12%:cKO HET 27% increase Tb. Sp.). Suspended and non-suspended mice lost weight compared to normally housed animals. Taken together, the data suggest a protective effect of β-catenin against the effects of stress in males and partial protection against unloading in females

  17. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  18. Reverse cardiac remodeling enabled by mechanical unloading of the left ventricle.

    PubMed

    Malliaras, Konstantinos G; Terrovitis, John V; Drakos, Stavros G; Nanas, John N

    2009-03-01

    Cardiac remodeling is a characteristic and basic component of heart failure progression and is associated with a poor prognosis. Attenuating or reversing remodeling is an accepted goal of heart failure therapy. Cardiac mechanical support with left ventricular assist devices, in addition to its established role as "bridge to transplantation" or "destination therapy" in patients not eligible for cardiac transplantation, offers the potential for significant and sustained myocardial recovery through reverse remodeling. This review discusses the emerging role of left ventricular assist devices as a "bridge to recovery". Clinical and basic aspects of cardiac remodeling and cardiac reverse remodeling enabled by mechanical unloading, potential candidates for this modality of treatment as well as unresolved issues regarding the use of mechanical circulatory support as a bridge to recovery are discussed. PMID:20559975

  19. Application of constitutive model considering nonlinear unloading behavior for Gen.3 AHSS

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wagoner, R. H.

    2013-05-01

    Nonlinear unloading behavior has been reported as an important factor for accurate springback prediction. In this study, a newly proposed special component of strain: "Quasi-Plastic-Elastic" ("QPE") strain was utilized to study the springback behavior of Advanced High Strength Steels (AHSS). Several types of steels, including IF steel, DP780, TRIP780, DP980, TWIP980 and QP980 were considered in this research. The results showed that all the tested steels have following behavior: 1) QPE strain is recoverable, like elastic deformation. 2) It dissipates work, like plastic deformation. A 3-D constitutive model considering QPE behavior was implemented in Abaqus/Standard with shell element and applied to draw-bend springback test for Gen. 3 AHSS, QP980. Predictions for springback using the QPE model were more accurate compared with standard elastic-plastic models.

  20. Automating the load/unload cycle in capacitor-discharge welding

    SciTech Connect

    Paul, Brian K.; Wattanutchariya, W.; Wilson, Rick D.

    1998-01-01

    Low-voltage capacitor-discharge welding (CDW) process offers environmentally friendly, high-volume joining of advanced materials in home appliance, cutting tools, automotive, and electromechanical industries among others. Because of high cooling rates in excess of one million °K/s, CDW offers the potential to join dissimilar materials without deleterious phase formation at very high production rates. However, potential industrial users are hesitant to use th CDW process due largely to the unavailability of automation. The objective of this research was to investigate the use of vacuum tooling in automating the load-unload cycle in CDW. The effectiveness of a vacuum chuck is compared to the effectiveness of a mechanical collet by welding together studs of electrically-pure aluminum. Limitations of vacuum tooling for CDW are discussed.

  1. Assessing Viscoelastic Properties of Polydimethylsiloxane (PDMS) Using Loading and Unloading of the Macroscopic Compression Test

    NASA Astrophysics Data System (ADS)

    Fincan, Mustafa

    Polydimethylsiloxane (PDMS) mechanical properties were measured using custom-built compression test device. PDMS elastic modulus can be varied with the elastomer base to the curing agent ratio, i.e. by changing the cross-linking density. PDMS samples with different crosslink density in terms of their elastic modulus were measured. In this project the PDMS samples with the base/curing agent ratio ranging from 5:1 to 20:1 were tested. The elastic modulus varied with the amount of the crosslinker, and ranged from 0.8 MPa to 4.44 MPa. The compression device was modified by adding digital displacement gauges to measure the lateral strain of the sample, which allowed obtaining the true stress-strain data. Since the unloading behavior was different than the loading behavior of the viscoelastic PDMS, it was utilized to asses viscoelastic properties of the polymer. The thesis describes a simple method for measuring mechanical properties of soft polymeric materials.

  2. [Changes of femur minerals and serum BGP in hindlimb unloaded rats during convalescence].

    PubMed

    Wan, Y M; Zhang, M F; Cui, W; Song, J P

    2000-08-01

    Objective. To observe bone mass changes during convalescence after simulated weightlessness. Method. 7-week-old rats were tail-suspended for 21 d then reloaded for 7 d and 21 d to recover, and measured serum BGP. Result. Tail suspension of rats for 21 d caused significant decrease of serum BGP and phosphorus as well as femur minerals. Serum BGP and femur minerals were still lower than control levels, but serum contents of calcium, phosphorus and magnesium increased significantly after reloading for 7 d. Femur minerals and serum BGP, calcium, phosphorus and magnesium returned to control levels after reloading for 21 d. Conclusion. The deficit in femur mineral induced by hindlimb unloading in rats can be restored by return to normal weight bearing, BGP can be used to monitor the case of its recovery.

  3. MESSENGER Observations of Extreme Magnetic Tail Loading and Unloading During its Third Flyby of Mercury: Substorms?

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Schriver, David; Solomon, Sean C.; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's third flyby of Mercury on September 29, 2009, a variable interplanetary magnetic field produced a series of several minute enhancements of the tail magnetic field hy factors of approx. 2 to 3.5. The magnetic field flaring during these intervals indicates that they result from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30% of the magnetic flux emanating from Mercury, and may have reached 100% for the largest event. In this case the dayside magnetic shielding is reduced and solar wind flux impacting the surface may be greatly enhanced. Despite the intensity of these events and their similarity to terrestrial substorm magnetic flux dynamics, no energetic charged particles with energies greater than 36 keV were observed.

  4. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  5. A new method of training for the lower extremity using unloading.

    PubMed

    Kelsey, D D; Tyson, E

    1994-04-01

    Rehabilitation of the patient with lower extremity dysfunction is frequently limited to open kinetic chain exercise due to pain and weakness in weight-bearing positions. Although hydrotherapy has been used in the past as a method of reducing body weight forces, task-specific training is not possible due to the resistance offered by water and the inability to regulate load. This clinical commentary describes a new form of lower extremity rehabilitation through the use of Unloading, a controlled reduction in body weight during task-specific activities. Two case reports of professional basketball players with foot injuries are presented in order to describe this method of therapy, which, in the authors' opinion, has the potential for broad applications in physical rehabilitation and deserves further research.

  6. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a unified elasto-viscoplastic constitutive model

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Song; Lin, Y. C.; Li, Kuo-Kuo; Chen, Jian

    2016-09-01

    In authors' previous work (Chen et al. in Appl Phys A. doi: 10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain.

  7. Importance of loading and unloading procedures for gecko-inspired controllable adhesives.

    PubMed

    Tamelier, John; Chary, Sathya; Turner, Kimberly L

    2013-08-27

    The importance of loading and unloading procedures has been shown in a variety of different methods for biological dry adhesives, such as the fibers on the feet of the Tokay gecko, but biomimetic dry adhesives have yet to be explored in a similar manner. To date, little work has systematically varied multiple parameters to discern the influence of the testing procedure, and the effect of the approach angle remains uncertain. In this study, a synthetic adhesive is moved in 13 individual approach and retraction angles relative to a flat substrate as well as 9 different shear lengths to discern how loading and unloading procedures influence the preload, adhesion, and shear/friction forces supported. The synthetic adhesive, composed of vertical 10 μm diameter semicircular poly(dimethylsiloxane) fibers, is tested against a 4 mm diameter flat glass puck on a home-built microtribometer using both vertical approach and retraction tests and angled approach and retraction tests. The results show that near maximum adhesion and friction can be obtained for most approach and retraction angles, provided that a sufficient shear length is performed. The results also show that the reaction forces during adhesive placement can be significantly reduced by using specific approach angles, resulting for the vertical fibers in a 38-fold increase in the ratio of adhesion force to preload force, μ', when compared to that when using a vertical approach. These results can be of use to those currently researching gecko-inspired adhesives when designing their testing procedures and control algorithms for climbing and perching robots.

  8. Partial gravity unloading inhibits bone healing responses in a large animal model.

    PubMed

    Gadomski, Benjamin C; McGilvray, Kirk C; Easley, Jeremiah T; Palmer, Ross H; Santoni, Brandon G; Puttlitz, Christian M

    2014-09-22

    The reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone. Thus, the objective of this study was to investigate the effects of partial gravitational unloading on long-bone fracture healing in a previously-developed large animal Haversian bone model. In vivo measurements demonstrated significantly higher orthopedic plate strains (i.e. load burden) in the Partial Unloading (PU) Group as compared to the Full Loading (FL) Group following the 28-day healing period due to inhibited healing in the reduced loading environment. DEXA BMD in the metatarsus of the PU Group decreased 17.6% (p<0.01) at the time of the ostectomy surgery. Four-point bending stiffness of the PU Group was 4.4 times lower than that of the FL Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area (p<0.05), mineralizing surface (p<0.05), mineral apposition rate (p<0.001), bone formation rate (p<0.001), and periosteal/endosteal osteoblast numbers (p<0.001/p<0.01, respectively) as well as increased periosteal osteoclast number (p<0.05). These data provide strong evidence that the mechanical environment dramatically affects the fracture healing cascade, and likely has a negative impact on Haversian system healing during spaceflight.

  9. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.

    PubMed

    Schmidt, Hendrik; Shirazi-Adl, Aboulfazl; Schilling, Christoph; Dreischarf, Marcel

    2016-06-14

    Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate the effect of changes in compression preload magnitude on the disc axial cyclic compression stiffness under physiological loading. After 20h of free hydration, effects of various preload magnitudes (no preload, 0.06 and 0.28MPa, applied for eight hours) and disc-bone preparation conditions on disc height and axial stiffness were investigated using 36 disc-bone and 24 isolated disc (without bony endplates) bovine specimens. After preloading, specimens were subjected to ten loading/unloading cycles each of 7.5min compression at 0.5MPa followed by 7.5min at 0.06MPa. Under 0.06MPa preload, the specimen height losses during high loading periods of cyclic loading were greater than corresponding height recoveries during low loading phases. This resulted in a progressive reduction in the specimen height and increase in its stiffness. Differences between disc height losses in high cyclic loads and between stiffness in both load increase and release phases were significant for 0 and 0.06MPa vs. 0.28MPa preload. Results highlight the significant role of disc preload magnitude/history and hence disc height and hydration on disc stiffness in loading/unloading and disc height loss in loading periods. Proper preconditioning and hence hydration level should be achieved if recovery in height loss similar to in vivo conditions is expected. PMID:27209550

  10. 9 CFR 325.17 - Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited; exception.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sealed railroad cars, trucks, etc., en route prohibited; exception. 325.17 Section 325.17 Animals and... TRANSPORTATION § 325.17 Loading or unloading products in sealed railroad cars, trucks, etc., en route prohibited... while en route from one official establishment to another official establishment is not...

  11. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall.

    PubMed

    Yu, Chuanhe; Gan, Haiyun; Han, Junhong; Zhou, Zhi-Xiong; Jia, Shaodong; Chabes, Andrei; Farrugia, Gianrico; Ordog, Tamas; Zhang, Zhiguo

    2014-11-20

    In eukaryotic cells, DNA replication proceeds with continuous synthesis of leading-strand DNA and discontinuous synthesis of lagging-strand DNA. Here we describe a method, eSPAN (enrichment and sequencing of protein-associated nascent DNA), which reveals the genome-wide association of proteins with leading and lagging strands of DNA replication forks. Using this approach in budding yeast, we confirm the strand specificities of DNA polymerases delta and epsilon and show that the PCNA clamp is enriched at lagging strands compared with leading-strand replication. Surprisingly, at stalled forks, PCNA is unloaded specifically from lagging strands. PCNA unloading depends on the Elg1-containing alternative RFC complex, ubiquitination of PCNA, and the checkpoint kinases Mec1 and Rad53. Cells deficient in PCNA unloading exhibit increased chromosome breaks. Our studies provide a tool for studying replication-related processes and reveal a mechanism whereby checkpoint kinases regulate strand-specific unloading of PCNA from stalled replication forks to maintain genome stability.

  12. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Unloading noninfected cattle for rest... cattle for rest, feed, and water only, permitted in authorized pens for such purpose. (a) Specifications for construction and maintenance. Cattle of the free area, and cattle of the quarantined area...

  13. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.17... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for such purpose. 72.17 Section 72.17 Animals...

  14. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  15. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  16. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  17. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  18. 40 CFR Table 2 to Subpart Cccccc... - Applicability Criteria and Management Practices for Gasoline Cargo Tanks Unloading at Gasoline...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Practices for Gasoline Cargo Tanks Unloading at Gasoline Dispensing Facilities With Monthly Throughput of 100,000 Gallons of Gasoline or More 2 Table 2 to Subpart CCCCCC of Part 63 Protection of Environment... Pollutants for Source Category: Gasoline Dispensing Facilities Pt. 63, Subpt. CCCCCC, Table 2 Table 2...

  19. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  20. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  1. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  2. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  3. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  4. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and...

  5. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  6. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and...

  7. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...

  8. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  9. Hind Limb Unloading Model Alters Nuclear Factor kappa B and Activator Protein-1 Signaling in Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Vani, Vani; Renard, Renard; Vera, Vera; Wilosn, Wilosn; Ramesh, Govindarajan

    Microgravity induces inflammatory response and also modulates immune functions, which may increase oxidative stress. Exposure to the microgravity environment induces adverse neurological effects. However, there is little research exploring the etiology of neurological effects of exposure to this environment. To explore this area we evaluated changes in Nuclear Factor kappa B, Activator Protein 1, MAPP kinase and N terminal c-Jun kinase in mouse brain exposed to a simulated microgravity environment using the hindlimb unloading model. BALB/c male mice were randomly assigned to hindlimb unloading group (n=12) and control group (n=12) to simulate a microgravity environment, for 7 days. Changes observed in NF-κB, AP- 1 DNA binding, MAPKK and N terminal c-Jun kinase were measured using electrophoretic mobility shift assay (EMSA) and western blot analysis and compared to unexposed brain regions. Hindlimb unloading exposed mice showed significant increases in generated NF-κB, AP-1, MAPKK and Kinase in all regions of the brain exposed to hindlimb unloading as compared to the control brain regions. Results suggest that exposure to simulated microgravity can induce expression of certain transcription factors and protein kinases. This work was supported by funding from NASA NCC 9-165. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78

  10. 9 CFR 72.17 - Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Unloading noninfected cattle for rest, feed, and water only, permitted in authorized pens for such purpose. 72.17 Section 72.17 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY)...

  11. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  12. Regulation of eIF2α phosphorylation in hindlimb-unloaded and STS-135 space-flown mice

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Tanjung, Nancy; Swarnkar, Gaurav; Ledet, Eric; Yokota, Hiroki

    2012-09-01

    Various environmental stresses elevate the phosphorylation level of eukaryotic translation initiation factor 2 alpha (eIF2α) and induce transcriptional activation of a set of stress responsive genes such as activating transcription factors 3 and 6 (ATF3 and ATF6), CCAAT/enhancer-binding protein homologous protein (CHOP), and Xbp1 (X-box binding protein 1). These stress sources include radiation, oxidation, and stress to the endoplasmic reticulum, and it is recently reported that unloading by hindlimb unloading is such a stress source. No studies, however, have examined the phosphorylation level of eIF2α (eIF2α-p) using skeletal samples that have experienced microgravity in space. In this study we addressed a question: Does a mouse tibia flown in space show altered levels of eIF2α-p? To address this question, we obtained STS-135 flown samples that were harvested 4-7 h after landing. The tibia and femur isolated from hindlimb unloaded mice were employed as non-flight controls. The effects of loading were also investigated in non- flight controls. Results indicate that the level of eIF2α-p of the non-flight controls was elevated during hindlimb unloading and reduced after being released from unloading. Second, the eIF2α-p level of space-flown samples was decreased, and mechanical loading to the tibia caused the reduction of the eIF2α-p level. Third, the mRNA levels of ATF3, ATF6, and CHOP were lowered in space-flown samples as well as in the non-flight samples 4-7 h after being released from unloading. Collectively, the results herein indicated that a release from hindlimb unloading and a return to normal weight environment from space provided a suppressive effect to eIF2α-linked stress responses and that a period of 2-4 h is sufficient to induce this suppressive outcome.

  13. Radiation and mechanical unloading effects on mouse vertebral bone: Ground-based models of the spaceflight environment

    NASA Astrophysics Data System (ADS)

    Alwood, Joshua Stewart

    Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous

  14. Carbonic anhydrase III and four-and-a-half LIM protein 1 are preferentially oxidized with muscle unloading

    PubMed Central

    Chen, Chiao-nan; Ferrington, Deborah A.; Thompson, LaDora V.

    2008-01-01

    The identities of proteins that show disuse-related changes in the content of oxidative modification are unknown. Furthermore, it is unknown whether the global accumulation of oxidized proteins is greater in aged animals with muscle disuse. The purposes of this study are 1) to identify the exact proteins that show disuse-related changes in oxidation levels and 2) to test the hypothesis that the global accumulation of oxidized proteins with muscle disuse would be greater in aged animals. Adult and old rats were randomized into four groups: weight bearing and 3, 7, or 14 days of hindlimb unloading. Soleus muscles were harvested to investigate the protein oxidation with unloading. Slot blot, SDS-PAGE, and Western blot analyses were used to detect the accumulation of 4-hydroxy-2-nonenol (HNE)- and nitrotyrosine (NT)-modified proteins. Matrix-assisted laser desorption ionization-time of flight and tandem mass spectroscopy were used to identify modified proteins. We found that global HNE- and NT-modified proteins accumulated significantly with aging but not with muscle unloading. Two HNE and NT target proteins, four-and-a-half LIM protein 1 (FHL1) and carbonic anhydrase III (CAIII), showed changes in the oxidation levels with muscle unloading. The changes in the oxidation levels happened to adult rats but not old rats. However, old rats had higher baseline levels of HNE-modified FHL1. In summary, the data suggest that the muscle unloading-related changes of protein oxidation are more significant in specific proteins and that the changes are age related. PMID:18756007

  15. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  16. Lithosphere stress changes due to groundwater unloading in North China Plain

    NASA Astrophysics Data System (ADS)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    During the past 50 years, excessive groundwater pumping has led to the continuous decline of groundwater table in North China Plain, which becomes one of the global hotspots of groundwater depletion. Over most of the rural areas of the plain, the shallow aquifer has experienced a water-table decline of more than 15m, with greater declines up to 50m in most urban centres, such as Beijing, Tangshan, Shijiangzhuang and so forth in 1960-2000. The entire groundwater depletion area covers a total area of approximately 56,273 km2 , more than 40% of the North China Plain. The vast area of enormous groundwater exploitation in North China Plain will definitely unload the lithosphere and create stress perturbations, the problem is if the stresses change large enough to affect tectonic activities. In this essay, we set up a 3 dimensional numerical visco-elastic model to discuss the effect of groundwater over-pumping on the lithosphere deformation and stress state in North China Plain. Based on the records of total groundwater-table decline during 1960-2010 in North China Plain, we estimate the accumulated deformation and lithosphere stress due to unloading of human-induced groundwater depletion. The area in the model ranges from 34° To 42°N, and 112° To 119°E, including the major groundwater depression cones in North China Plain. According to the simulating result, the maximum surface vertical uplift caused by groundwater unloading is 8cm. Meanwhile cumulative horizontal crustal stress changes near the surface goes up to 100kPa, and up to 40kPa at 15km depth where most earthquakes occurred in this area. The tectonic compressive stress rate is about 0.25kPa per year. Therefore, the stress changes due to groundwater pumping is significant compared with the tectonic driven stress changes. As China developed rapidly since 1978, the groundwater table mainly declined after 1978. Taking the earthquake catalog in the vicinity of groundwater depression zone into consideration, we

  17. The Effects of Ligustrazine on the Ca2+ Concentration of Soleus and Gastrocnemius Muscle Fibers in Hindlimb Unloaded Rat

    NASA Astrophysics Data System (ADS)

    Gao, Yunfang; Goswami, Nandu; Du, Bei; Hu, Huanxin; Wu, Xue

    Background:Spaceflight or inactivity (bed rest, limb immobilization, hindlimb unloading) causes skeletal muscle atrophy. Recent studies show that an increase in protein degradation is an important mechanism for disuse atrophy. Furthermore, the calcium overload of disuse-atrophied muscle fiber has been shown to initiate the skeletal muscle proteolysis in disuse atrophy. Ligustrazine (tetramethylpyrazine, TMP), one of the important active ingredient extracted from Chuanxiong, has been shown by our group to increase muscle fiber cross-sectional area in atrophied soleus induced by 14 days hindlimb unloading. However, the underlying mechanisms of ligustrazine effects on disuse-atrophied muscle fibers remain unknown. Objective: We investigated the effects of ligustrazine on the cytoplasmic calcium overloading in soleus and gastrocnemius in 14 days hindlimb unloaded (HU) rats. Methods: Adult female Sprague-Dawley rats were matched for body mass and randomly assigned to three groups (n=8, each group): 1) synchronous control (CON); HU + intragastric water instillation (HU+W); HU + intragastric 60.0 mg kg-1 ligustrazine instillation (HU+Tmp). Laser scanning confocal microscope assessed the concentrations of cytoplasmic calcium ions. Spaceflight disuse atrophy was simulated by hindlimb unloading, provided by tail suspension. Results: 1) Compared with CON, the concentration of soleus intracellular calcium ion in HU+W and HU+Tmp increased 330% and 86% respectively(P<0.01). Compared with HU+W, the concentration of soleus intracellular calcium ion in HU+Tmp decreased by 130%(P<0.01). 2) Compared with CON, the concentration of gastrocnemius intracellular calcium ion in HU+W and HU+Tmp increased 189.8% and 32.1% respectively(P<0.01). Compared with HU+W, the concentration of gastrocnemius intracellular calcium ion in HU+Tmp decreased by 119.3% (P<0.01). Conclusion: After 14 days of hindlimb unloading, cytoplasmic calcium of soleus (slow-twitch muscle) and gastrocnemius (fast

  18. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  19. Tracking and Data Relay Satellite (TDRS-3) Range Biases and Momentum Unload Modeling for Terra (EOS-AMI)

    NASA Technical Reports Server (NTRS)

    Ward, Douglas T.

    2001-01-01

    The Flight Dynamics Facility (FDF) reports its performance in meeting Tracking and Data Relay Satellite (TDRS) predicted ephemeris accuracy requirements with TDRS-3. The Terra (Earth Observing System AM-1) satellite has 3-sigma TDRS requirements of 75 m for total position accuracy predicted over one day onboard. The study sample includes selected cases over 21 months after Guam Remote Ground Terminal (GRGT) support started in June 1998. For daily solutions with a 1.5-day prediction span, predicted results of the study were below the Terra requirement by at least 12 m. Refined range bias estimation and modeled momentum unloads are needed to meet Terra's requirements for TDRS-3. Maintained at 275 W longitude over the zone of exclusion, TDRS-3 is analyzed separately from other TDRSs because of its unique tracking data. Only the Bilateration Ranging Transponder (BRT) at Alice Springs (ALS), Australia, and the Telemetry, Tracking and Command (TT&C) system at Guam are used for routine operational tracking data for TDRS-3. Simultaneous batch orbit solutions with three TDRSs and either the Compton Gamma Ray Observatory (GRO) or Terra were done with the Goddard Trajectory Determination System (GTDS) to periodically refine the TT&C and BRT System (BRTS) range biases. As new biases were determined, significant changes were made in estimating the absolute position. FDF achieved similar results using a sequential filter with all operational TDRSs and four user satellites. Definitive accuracy (3-sigma) is expected to be below 50 m. The White Sands Complex (WSC) performs momentum unloads to maintain three-axis stabilized attitude of TDRSs. The relationship between velocity changes (delta-V) and reaction wheel speed changes was empirically determined for roll/yaw unloads. A theoretical relationship was verified and used for pitch unloads. Modeling both pitch and roll/yaw momentum unloads is necessary to meet the 75-m requirement. Moving the orbit solution epoch an hour before a

  20. Altered cortical activation patterns associated with baroreflex unloading following 24 h of physical deconditioning.

    PubMed

    Shoemaker, J K; Usselman, C W; Rothwell, A; Wong, S W

    2012-12-01

    Cardiovascular arousal is associated with patterned cortical activity changes. Head-down-tilt bed rest (HDBR) dimishes the baroreflex-mediated cardiac control. The present study tested the hypothesis that HDBR deconditioning would modify the forebrain organization for heart rate (HR) control during baroreflex unloading. Heart rate variability (HRV), blood pressure and plasma hormones were analysed at rest, whereas HR and cortical autonomic activation patterns (functional magnetic resonance imaging) were measured during graded and randomly assigned lower body negative pressure treatments (LBNP, -15 and -35 mmHg) both before (Pre) and after (Post) a 24 h HDBR protocol (study 1; n = 8). An additional group was tested before and following diuretic-induced hypovolaemia (study 2; n = 9; spironolactone, 100 mg day(-1) for 3 days) that mimicked the plasma volume lost during HDBR (-15% in both studies; P < 0.05). Head-down bed rest with hypovolaemia did not affect baseline HR, mean arterial pressure, HRV or plasma catecholamines. Head-down bed rest augmented the LBNP-induced HR response (P < 0.05), and this was associated with bed-rest-induced development of the following changes: (i) enhanced activation within the genual anterior cingulate cortex and the right anterior insular cortex; and (ii) deactivation patterns within the subgenual regions of the anterior cingulate cortex. Diuretic treatment (without HDBR) did not affect baseline HR and mean arterial pressure, but did reduce resting HRV and elevated circulating noradrenaline and plasma renin activity (P < 0.05). The greater HR response to LBNP following diuretic (P < 0.05) was associated with diminished activation of the right anterior insula. Our findings indicate that 24 h of HDBR minimized the impact of diuretic treatment on baseline autonomic and cardiovascular variables. The findings also indicate that despite the similar augmentation of HR responses to LBNP and despite similar pre-intervention cortical activation

  1. Altered cortical activation patterns associated with baroreflex unloading following 24 h of physical deconditioning.

    PubMed

    Shoemaker, J K; Usselman, C W; Rothwell, A; Wong, S W

    2012-12-01

    Cardiovascular arousal is associated with patterned cortical activity changes. Head-down-tilt bed rest (HDBR) dimishes the baroreflex-mediated cardiac control. The present study tested the hypothesis that HDBR deconditioning would modify the forebrain organization for heart rate (HR) control during baroreflex unloading. Heart rate variability (HRV), blood pressure and plasma hormones were analysed at rest, whereas HR and cortical autonomic activation patterns (functional magnetic resonance imaging) were measured during graded and randomly assigned lower body negative pressure treatments (LBNP, -15 and -35 mmHg) both before (Pre) and after (Post) a 24 h HDBR protocol (study 1; n = 8). An additional group was tested before and following diuretic-induced hypovolaemia (study 2; n = 9; spironolactone, 100 mg day(-1) for 3 days) that mimicked the plasma volume lost during HDBR (-15% in both studies; P < 0.05). Head-down bed rest with hypovolaemia did not affect baseline HR, mean arterial pressure, HRV or plasma catecholamines. Head-down bed rest augmented the LBNP-induced HR response (P < 0.05), and this was associated with bed-rest-induced development of the following changes: (i) enhanced activation within the genual anterior cingulate cortex and the right anterior insular cortex; and (ii) deactivation patterns within the subgenual regions of the anterior cingulate cortex. Diuretic treatment (without HDBR) did not affect baseline HR and mean arterial pressure, but did reduce resting HRV and elevated circulating noradrenaline and plasma renin activity (P < 0.05). The greater HR response to LBNP following diuretic (P < 0.05) was associated with diminished activation of the right anterior insula. Our findings indicate that 24 h of HDBR minimized the impact of diuretic treatment on baseline autonomic and cardiovascular variables. The findings also indicate that despite the similar augmentation of HR responses to LBNP and despite similar pre-intervention cortical activation

  2. Effects of Hind Limb Unloading on Pharmacokinetics of Procainamide in Mice

    NASA Technical Reports Server (NTRS)

    Risin, Semyon A.; Dasgupta, Amitava; Ramesh, Govindarajan T.; Risin, Diana

    2007-01-01

    The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in space. It is prudent to expect that low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration. Among the medications of special interest are the cardiovascular drugs, especially the antiarrhythmic agents. In this study we used hind limb unloaded (HLU) mice as a model to investigate possible changes in the PK of a common antiarrhythmic drug procainamide (PA). Prior to drug administration the experimental animals were tail suspended for 24 hours and the control animals were kept free. PA (150-250 mg per kg) was given orally by a gavage procedure. After that the experimental mice were kept suspended for additional 1, 2, 3 and 6 hours. At these time points the serum concentration of PA and N-acetyl-procainamide (NAPA), an active metabolite which is formed by N-acetyltransferase in the liver, were measured by the fluorescence polarization immunoassay (FPIA) on the AxSYM autoanalyzer (Abbott Laboratories, Abbott Park, IL). The serum level of PA in HLU mice at 1 hour after administration was almost 40% lower than in controls. At 2-3 hours the difference still maintained, however, it was not statistically significant; at 6 hours no difference was detected. The level of NAPA in HLU mice was slightly lower at 1 and 2 hours but the difference did not reach statistical significance. The estimated PA half-life time in HLU mice was almost 55% longer than in control animals. These results confirm that hind limb unloading and related hemodynamic changes significantly alter the PK of PA. The effects are most likely primarily associated with a decrease in the drug absorption, especially within the first two hours after administration. At the same time prolongation of the PA half

  3. Baroreceptor unloading does not limit forearm sweat rate during severe passive heat stress.

    PubMed

    Schlader, Zachary J; Gagnon, Daniel; Lucas, Rebekah A I; Pearson, James; Crandall, Craig G

    2015-02-15

    This study tested the hypothesis that sweat rate during passive heat stress is limited by baroreceptor unloading associated with heat stress. Two protocols were performed in which healthy subjects underwent passive heat stress that elicited an increase in intestinal temperature of ∼1.8°C. Upon attaining this level of hyperthermia, in protocol 1 (n = 10, 3 females) a bolus (19 ml/kg) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to elevate central venous pressure (CVP), while in protocol 2 (n = 11, 5 females) phenylephrine was infused intravenously (60-120 μg/min) to return mean arterial pressure (MAP) to normothermic levels. In protocol 1, heat stress reduced CVP from 3.9 ± 1.9 mmHg (normothermia) to -0.6 ± 1.4 mmHg (P < 0.001), while saline infusion returned CVP to normothermic levels (5.1 ± 1.7 mmHg; P > 0.999). Sweat rate was elevated by heat stress (1.21 ± 0.44 mg·cm(-2)·min(-1)) but remained unchanged during rapid saline infusion (1.26 ± 0.47 mg·cm(-2)·min(-1), P = 0.5), whereas cutaneous vascular conductance increased from 77 ± 10 to 101 ± 20% of local heating max (P = 0.029). In protocol 2, MAP was reduced with heat stress from 85 ± 7 mmHg to 76 ± 8 mmHg (P = 0.048). Although phenylephrine infusion returned MAP to normothermic levels (88 ± 7 mmHg; P > 0.999), sweat rate remained unchanged during phenylephrine infusion (1.39 ± 0.22 vs. 1.41 ± 0.24 mg·cm(-2)·min(-1); P > 0.999). These data indicate that both cardiopulmonary and arterial baroreceptor unloading do not limit increases in sweat rate during passive heat stress.

  4. Rat soleus muscle satellite cells during the recovery after gravitational unloading

    NASA Astrophysics Data System (ADS)

    Turtikova, Olga; Shenkman, Boris; Altaeva, Erzhena; Leinsoo, Toomas

    In this study the attempt was made to assess alterations of rat soleus satellite cell (SC) population during muscle regrowth after 14-day gravitational unloading (using the hindlimb suspension model). Myofiber size increases during the recovery period. SCs are supposed to participate in muscle growth by fusion with myofibers and supplying them with new myonuclei [Mitchell PO, Pavlath GK, 2001; Oishi Y., 2008]. Other points of view are known about SC participation in the recovery of atrophied muscle mass during the readaptation period [Bruusgaard J.C. et al., 2011; Jackson JR et al., 2012]. After 2 weeks of hindlimb suspension mki67 expression was fivefold lower as compared to control animals and increased gradually up to 28 times by the day 7 of reloading. Cdh15 was decreased after hindlimb unloading and rose from the 1st day of reloading. The expression reached control level to the day 7th of reloading. Cellular response was going on concurrently with the spike of IGF-1 blood level and the increase in muscle IGF-1 concentration. It is possible that in the early days of reloading period differentiation and fusion of satellite cells which were active by the end of hindlimb suspension occurred. Satellite cell incorporation was assessed by counting the amount of BrdU+ myonuclei under myofiber dystrophin layer. It came more intensively in the 1st day of readaptation. It is in accordance with the 4,5 time increase in myogenin expression as compared to hindlimb suspended animals detected at the same time point. Myogenin expression 3 fold decreased by 3rd day of readaptation. We observed only the tendency of resizing but no significant changes in in myonuclear domain size. The number of myonuclei per myofiber cross section was decreased after hindlimb suspension and was not restored by the day 14th of readaptation. Cdh15 and myogenin expression at some extent stabilized after 7 days of readaptation, but high mki67 level pointed to intensive proliferation, which could

  5. US accelerator contribution to the LHC

    SciTech Connect

    Lamm, Michael J.; /Fermilab

    2005-05-01

    In 1998, the United States entered into an agreement with CERN to help build the Large Hadron Collider (LHC), with contributions to the accelerator and to the large HEP detectors. To accomplish this, the US LHC Accelerator Project was formed, encompassing expertise from Brookhaven National Laboratory (BNL), Fermi National Accelerator Laboratory (FNAL) and the Lawrence Berkeley National Laboratory (LBNL). This report is a summary of these contributions including the progress towards project completion, as well as a discussion of future plans for continued US participation in the LHC accelerator.

  6. Unload control of double fast steering mirrors of the control system

    NASA Astrophysics Data System (ADS)

    Tang, T.; Tan, Y.; Ren, G.

    2015-02-01

    Double fast steering mirror (FSM) are made of a fast steering mirror driven by piezoelectric actuator and a fast steering mirror by voice coin motor, which provides not only high control bandwidth and high resolution but also a wide range of angle for the tracking control system. A classical control system of double fast steering mirror is that each CCD sensor provides line of sight error to control relevant FSM respectively, resulting in complexity and weakening optical energy. The proposed system works by depending on single CCD sensor, which implies that it is crucial to decouple the control double fast steering mirror .An unload technique is designed to solve this problem .The FSM driven by piezoelectric actuator is driven using line of sight from CCD, while the other FSM is followed it. Error attenuation transfer function is modeled and used to analyze stabilization and performance of the control system, which is optimal only if the control bandwidth of FSM driven by piezoelectric actuator is ten times more than that of the FSM driven by the voice coin motor. The experimental results are in great accordance with theoretical analysis.

  7. Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Schadt, J. C.; Hasser, E. M.

    1999-01-01

    The effect of cardiovascular deconditioning on central nervous system processing of baroreceptor afferent activity was evaluated following 14 days of hindlimb unloading (HU). Inactin-anesthetized rats were instrumented with catheters, renal sympathetic nerve electrodes, and aortic depressor nerve electrodes for measurement of mean arterial pressure, heart rate, renal sympathetic nerve activity (RSNA), and aortic depressor nerve activity (ADNA). Baroreceptor and baroreflex functions were assessed during infusion of phenylephrine and sodium nitroprusside. Central processing of baroreceptor afferent input was evaluated by linear regression relating RSNA to ADNA. The maximum baroreflex-elicited increase in RSNA was significantly reduced in HU rats (122 +/- 3.8 vs. 144 +/- 4.9% of baseline RSNA), whereas ADNA was not altered. The slope (-0.18 +/- 0.04 vs. -0.40 +/- 0.04) and y-intercept (121 +/- 3.2 vs. 146 +/- 4.3) of the linear regression relating increases in efferent RSNA to decreases in afferent ADNA during hypotension were significantly reduced in HU rats. There were no differences during increases in arterial pressure. Results demonstrate that the attenuation in baroreflex-mediated increases in RSNA following HU is due to changes in central processing of baroreceptor afferent information rather than aortic baroreceptor function.

  8. Pulling Planets Apart: Tidal Unloading of Unaccreted Interlopers in the Aftermath of Planet Collisions

    NASA Astrophysics Data System (ADS)

    Asphaug, E.; Agnor, C.; Williams, Q.

    2004-11-01

    Major aspects of terrestrial planet formation are well explained by a late-stage episode where hundreds of Moon- to Mars-sized embryos accreted through giant impacts into four diverse worlds. But accretion is the exception to the rule, and recent modelling (Agnor and Asphaug, ApJ Letters 2004) shows that mass accumulation occurs in fewer than half of late-stage giant impacts. Typically, the unaccreted smaller embryo continues on, severely perturbed, dynamically shredded, and thermophysically altered by the episode, even in the absence of impact shock. We find that grazing (non-impacting) interlopers experience profound tidal strains and shears that strip away an atmosphere and much of the mantle. Tidal-induced oscillatory global pressure unloading approaches 100% at times, throughout the deep interior, before attaining a final hydrostatic equilibrium greatly reduced by mass loss and induced rapid rotation. Because a given embryo is likely to suffer one or more non-accretionary collisions before becoming an accreted body, our results indicate an important suite of processes for petrogenesis, melting, degassing and fractionation, the effects of which we shall argue are found in the planetary, meteoritic, and asteroid record today, particularly among the remnants of the primordial population which escaped final accretion onto a larger body. This research, including Agnor and Asphaug (2004), is supported by NASA PG&G Small Bodies & Planetary Collisions, and by supercomputer time from the NSF-funded beowulf cluster upsand at UCSC.

  9. Triggered reverse fault and earthquake due to crustal unloading, northwest Transverse Ranges, California.

    USGS Publications Warehouse

    Yerkes, R.F.; Ellsworth, W.L.; Tinsley, J.C.

    1983-01-01

    A reverse-right-oblique surface rupture, associated with a ML 2.5 earthquake, formed in a diatomite quarry near Lompoc, California, in the northwesternmost Transverse Ranges on April 7, 1981. The 575-m-long narrow zone of ruptures formed in clay interbeds in diatomite and diatomaceous shale of the Neogene Monterey Formation. The ruptures parallel bedding, dip 39o-59oS, and trend about N84oE on the north limb of an open symmetrical syncline. Maximum net slip was 25 cm; maximum reverse dip slip was 23 cm, maximum right-lateral strike slip was about 9 cm, and average net slip was about 12 cm. The seismic moment of the earthquake is estimated at 1 to 2 X 1018 dyne/cm and the static stress drop at about 3 bar. The removal of an average of about 44 m of diatomite resulted in an average load reduction of about 5 bar, which decreased the normal stress by about 3.5 bar and increased the shear stress on the tilted bedding plane by about 2 bar. The April 7, 1981, event was a very shallow bedding-plane rupture, apparently triggered by crustal unloading. -Authors

  10. Swimming Activity Prevents the Unloading Induced Loss of Bone Mass, Architecture, and Strength in Rats

    PubMed Central

    Falcai, Maurício J.; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Volpon, Jose B.

    2015-01-01

    We investigated whether swimming activity associated with a three-week period of hypoactivity could prevent the deleterious effects of disuse on the tibias of tail-suspended rats. Forty Wistar rats were divided into five groups: (HS) permanently hindlimb suspension rats; (HS + Swim) rats submitted to unloading interrupted by swimming exercise; (HS + WB) hindlimb suspension rats with interruption for regular weight bearing for the same length of time as the HS+Swim rats; (Control) control rats that were allowed regular cage activities; and (Control + Swim) control rats that underwent swimming exercise. At the end of the experiment, bone mineral density, bone strength, and trabecular quantification were analyzed. The hindlimb-suspended rats exhibited bone quality loss (significant decrease in BMD, bone strength, and deterioration of trabecular and cortical bone architecture; decrease in BV/TV, TbN, TbTh, ConnD, CtV, and CtTh; and increase in TbSp) when compared to control rats. In contrast, trained rats showed a significant increase of 43% in bone mass, 29% in bone strength, 58% in trabecular thickness, 85% in bone volume, 27% in trabeculae number, and 30% in cortical volume, when compared to the hindlimb-suspended rats. We conclude that swimming activity not only ameliorates but also fully prevents the deleterious effects on bone quality in osteopenic rats. PMID:26090414

  11. Biting intentions modulate digastric reflex responses to sudden unloading of the jaw.

    PubMed

    Johansson, Anders S; Pruszynski, J Andrew; Edin, Benoni B; Westberg, Karl-Gunnar

    2014-09-01

    Reflex responses in jaw-opening muscles can be evoked when a brittle object cracks between the teeth and suddenly unloads the jaw. We hypothesized that this reflex response is flexible and, as such, is modulated according to the instructed goal of biting through an object. Study participants performed two different biting tasks when holding a peanut half stacked on a chocolate piece between their incisors. In one task, they were asked to split the peanut half only (single-split task), and in the other task, they were asked to split both the peanut and the chocolate in one action (double-split task). In both tasks, the peanut split evoked a jaw-opening muscle response, quantified from electromyogram (EMG) recordings of the digastric muscle in a window 20-60 ms following peanut split. Consistent with our hypothesis, we found that the jaw-opening muscle response in the single-split trials was about twice the size of the jaw-opening muscle response in the double-split trials. A linear model that predicted the jaw-opening muscle response on a single-trial basis indicated that task settings played a significant role in this modulation but also that the presplit digastric muscle activity contributed to the modulation. These findings demonstrate that, like reflex responses to mechanical perturbations in limb muscles, reflex responses in jaw muscles not only show gain-scaling but also are modulated by subject intent.

  12. MutSα maintains the mismatch repair capability by inhibiting PCNA unloading

    PubMed Central

    Kawasoe, Yoshitaka; Tsurimoto, Toshiki; Nakagawa, Takuro; Masukata, Hisao; Takahashi, Tatsuro S

    2016-01-01

    Eukaryotic mismatch repair (MMR) utilizes single-strand breaks as signals to target the strand to be repaired. DNA-bound PCNA is also presumed to direct MMR. The MMR capability must be limited to a post-replicative temporal window during which the signals are available. However, both identity of the signal(s) involved in the retention of this temporal window and the mechanism that maintains the MMR capability after DNA synthesis remain unclear. Using Xenopus egg extracts, we discovered a mechanism that ensures long-term retention of the MMR capability. We show that DNA-bound PCNA induces strand-specific MMR in the absence of strand discontinuities. Strikingly, MutSα inhibited PCNA unloading through its PCNA-interacting motif, thereby extending significantly the temporal window permissive to strand-specific MMR. Our data identify DNA-bound PCNA as the signal that enables strand discrimination after the disappearance of strand discontinuities, and uncover a novel role of MutSα in the retention of the post-replicative MMR capability. DOI: http://dx.doi.org/10.7554/eLife.15155.001 PMID:27402201

  13. Review of spaceflight and hindlimb suspension unloading induced sarcomere damage and repair

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Thompson, J. L.; Krippendorf, B. B.; Slocum, G. R.

    1995-01-01

    Hindlimb suspension unloading (HSU) and spaceflight microgravity induce atrophy of the slow adductor longus muscle fibers which, following reloading, exhibit eccentric contraction (EC)-like lesions (abnormal widening of sarcomeres with A band disruption and excessively wavy, extracted Z lines). These lesions are similar morphologically to those produced in normal muscles after strenuous eccentric exercise. It appears that atrophic muscles exhibit increased susceptibility to eccentric damage because lesions are produced during nonstressful voluntary movements upon return to weightbearing. The EC-like lesions are absent in the unweighted conditions, but appear in HSU rats 15-60 minutes after reloading and in space-flown rates about 4 hrs after landing. By 12 hours, many EC-like lesioned sarcomeres are fully covered by longitudinal patches of Z line-like material which increases in density by 48 hours, producing the so-called "Z line streaming" morphology. In this case, Z line streaming is indicative of rapid repair of damaged sarcomeres rather than the onset of sarcomere breakdown. Immunoelectron microscopy is necessary to determine the composition of this dense material. By 9 days of reloading at 1 gravity, sarcomeres have regained normal structure, except for very rare persistence of faint Z patches. The morphological data indicate that Z patches serve at least two functions: 1) to permit contractile force to be transmitted across the damaged sarcomeres and 2) to provide a scaffold upon which sarcomeres are reconstructed in an active functional muscle.

  14. Swimming Activity Prevents the Unloading Induced Loss of Bone Mass, Architecture, and Strength in Rats.

    PubMed

    Falcai, Maurício J; Zamarioli, Ariane; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Volpon, Jose B

    2015-01-01

    We investigated whether swimming activity associated with a three-week period of hypoactivity could prevent the deleterious effects of disuse on the tibias of tail-suspended rats. Forty Wistar rats were divided into five groups: (HS) permanently hindlimb suspension rats; (HS + Swim) rats submitted to unloading interrupted by swimming exercise; (HS + WB) hindlimb suspension rats with interruption for regular weight bearing for the same length of time as the HS+Swim rats; (Control) control rats that were allowed regular cage activities; and (Control + Swim) control rats that underwent swimming exercise. At the end of the experiment, bone mineral density, bone strength, and trabecular quantification were analyzed. The hindlimb-suspended rats exhibited bone quality loss (significant decrease in BMD, bone strength, and deterioration of trabecular and cortical bone architecture; decrease in BV/TV, TbN, TbTh, ConnD, CtV, and CtTh; and increase in TbSp) when compared to control rats. In contrast, trained rats showed a significant increase of 43% in bone mass, 29% in bone strength, 58% in trabecular thickness, 85% in bone volume, 27% in trabeculae number, and 30% in cortical volume, when compared to the hindlimb-suspended rats. We conclude that swimming activity not only ameliorates but also fully prevents the deleterious effects on bone quality in osteopenic rats.

  15. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    NASA Astrophysics Data System (ADS)

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-08-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within +/-3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  16. Why the lumbrical muscle should not be bigger--a force model of the lumbrical in the unloaded human finger.

    PubMed

    Leijnse, J N

    1997-01-01

    The present paper investigates the forces and the stresses in the lumbrical and the other finger motors in an unloaded human finger model, with and without the ab-adduction degree of freedom of the MCP joint. Unique solutions are obtained by minimization of the maximal muscle stress calculated with a normal and a variable lumbrical physiological cross-sectional area. It is concluded that in the model with biaxial MCP joint, a stronger than normal lumbrical is not useful in unloaded finger control, and will merely result in spare lumbrical capacity. Also the natural synergism of the lumbrical and the ulnar interosseus in the control of the finger in the sagittal plane is pointed out.

  17. MESSENGER observations of energetic electron acceleration in Mercury's magnetotail

    NASA Astrophysics Data System (ADS)

    Dewey, Ryan; Slavin, James A.; Baker, Daniel; Raines, Jim; Lawrence, David

    2016-10-01

    Energetic particle bursts within Mercury's magnetosphere have been a source of curiosity and controversy since Mariner 10's flybys. Unfortunately, instrumental effects prevent an unambiguous determination of species, flux, and energy spectrum for the Mariner 10 events. MESSENGER data taken by the Energetic Particle Spectrometer (EPS) have now shown that these energetic particle bursts are composed entirely of electrons. EPS made directional measurements of these electrons from ~30 to 300 keV at 3 s resolution, and while the energy of these electrons sometimes exceeded 200 keV, the energy distributions usually exhibited a cutoff near 100 keV. The Gamma Ray Spectrometer (GRS) has also provided measurements of these electron events, at higher time resolution (10 ms) and energetic threshold (> 50 keV) compared to EPS. We focus on GRS electron events near the plasma sheet in Mercury's magnetotail to identify reconnection-associated acceleration mechanisms. We present observations of acceleration associated with dipolarization events (betratron acceleration), flux ropes (Fermi acceleration), and tail loading/unloading (X-line acceleration). We find that the most common source of energetic electron events in Mercury's magnetosphere are dipolarization events similar to those first observed by Mariner 10. Further, a significant dawn-dusk asymmetry is found with dipolarization-associated energetic particle bursts being more common on the dawn side of the magnetotail.

  18. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity

    NASA Technical Reports Server (NTRS)

    Bey, Lionel; Akunuri, Nagabhavani; Zhao, Po; Hoffman, Eric P.; Hamilton, Deborah G.; Hamilton, Marc T.

    2003-01-01

    Physical inactivity and unloading lead to diverse skeletal muscle alterations. Our goal was to identify the genes in skeletal muscle whose expression is most sensitive to periods of unloading/reduced physical activity and that may be involved in triggering initial responses before phenotypic changes are evident. The ability of short periods of physical activity/loading as an effective countermeasure against changes in gene expression mediated by inactivity was also tested. Affymetrix microarrays were used to compare mRNA levels in the soleus muscle under three experimental treatments (n = 20-29 rats each): 12-h hindlimb unloading (HU), 12-h HU followed by 4 h of intermittent low-intensity ambulatory and postural activity (4-h reloading), and control (with ambulatory and postural activity). Using a combination of criteria, we identified a small set of genes (approximately 1% of 8,738 genes on the array or 4% of significant expressed genes) with the most reproducible and largest responses to altered activity. Analysis revealed a coordinated regulation of transcription for a large number of key signaling proteins and transcription factors involved in protein synthesis/degradation and energy metabolism. Most (21 of 25) of the gene expression changes that were downregulated during HU returned at least to control levels during the reloading. In surprising contrast, 27 of 38 of the genes upregulated during HU remained significantly above control, but most showed trends toward reversal. This introduces a new concept that, in general, genes that are upregulated during unloading/inactivity will be more resistant to periodic reloading than those genes that are downregulated. This study reveals genes that are the most sensitive to loading/activity in rat skeletal muscle and indicates new targets that may initiate muscle alterations during inactivity.

  19. Effects of Acoustic Emission and Energy Evolution of Rock Specimens Under the Uniaxial Cyclic Loading and Unloading Compression

    NASA Astrophysics Data System (ADS)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Nie, Taoyi

    2016-10-01

    Characteristics of energy accumulation, evolution, and dissipation in uniaxial cyclic loading and unloading compression of 30 sandstone rock specimens under six different loading rates were explored. Stress-strain relations and acoustic emission characteristics of the deformation and failure of rock specimens were analyzed. The densities and rates of stored energy, elastic energy, and dissipated energy under different loading rates were confirmed, and an effective approach for the equivalent energy surface was presented. The energy evolution of rock deformation and failure were revealed. It turns out that the rock deformation behavior under uniaxial cyclic loading and unloading compression remained almost unchanged compared with that of uniaxial compression. The degree of match between reloading stress-strain curves and previous unloading curves was high, thereby demonstrating the memory function of rock masses. The intensity of acoustic emission fluctuated continually during the entire cyclic process. Emissions significantly increased as the stress exceeded the unloading level. The peak of acoustic emission increased with increasing loading stress level. Relationships between energy density and axial load indicate that the rock mass possesses a certain energy storage limitation. The energy evolution of rock masses is closely related to the axial loading stress, rather than to the axial loading rate. With increasing axial loading stress, stored energy varied most rapidly, followed by that of the elastic energy, then dissipated energy. Energy accumulation dominates prior to the axial load reaching peak strength; thereafter, energy dissipation becomes dominant. The input energy causes the irreversible initiation and extension of microcracks in the rock body. Elastic energy release leads to sudden instability of rock bodies and drives rock damage.

  20. Sucrose transport and phloem unloading in stem of Vicia faba: possible involvement of a sucrose carrier and osmotic regulation

    SciTech Connect

    Aloni, B.; Wyse, R.E.; Griffith, S.

    1986-06-01

    After pulse labeling of a source leaf with /sup 14/CO/sub 2/, stem sections of Vicia faba plants were cut and the efflux characteristics of /sup 14/C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of /sup 14/C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of (/sup 14/C)sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced (/sup 14/C)sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved.

  1. Synergistic effect of using a transcutaneous electrical joint stimulator and an unloading brace in treating osteoarthritis of the knee.

    PubMed

    Hungerford, David S; Maclaughlin, Edmund J; Mines, Craig M; Deveshwar, Shaili; Elliott, Cynthia; Tuber, Jack S; Principe, John R; Ford, Theresa Lawrence; Schechtman, Joy; Zizic, Thomas M

    2013-10-01

    Medical treatments and less invasive surgical approaches for knee osteoarthritis are variably effective, and total knee arthroplasty (TKA) is generally reserved for the most severe cases. The care gap between more conservative treatments and TKA leaves many patients with unresolved pain and loss of function for long periods. We conducted a study to determine if incorporating the BioniCare stimulator into an unloading brace would produce more rapid improvement and result in increased adherence and efficacy. Two hundred eighty-nine patients treated only with BioniCare served as historical controls and were compared with 225 patients treated with BioniCare combined with an unloading brace. Means and standard deviations of the changes in scores for pain intensity in the past 48 hours, pain and associated symptoms, patient global assessment, pain on going up or down stairs, and pain on walking on a flat surface and the effect sizes at 1, 3, 6, and 12 months, as well as the percentages of patients achieving at least 20% improvement, and at least 50% improvement, demonstrated that treatment with stimulator and unloading brace combined was significantly superior to treatment with the stimulator alone.

  2. The effect of intense interval cycle-training on unloading-induced dysfunction and atrophy in the human calf muscle.

    PubMed

    Hotta, Norio; Ishida, Koji; Sato, Kohei; Koike, Teruhiko; Katayama, Keisho; Akima, Hiroshi

    2011-01-01

    We investigated whether intense interval training on a cycle ergometer would prevent loss of muscle strength and atrophy in the human calf during unilateral lower limb suspension (ULLS). The present study involved 11 healthy men. We defined unloading leg and contralateral leg as ULLS-leg and CONT-leg, respectively. The subjects were divided into 2 groups: one with single-leg cycling training (Tr-UL, n=6); the other as a control (UL, n=5). The Tr-UL group performed an intense 25-min interval cycling training up to 80% of peak oxygen uptake on alternate days during 20-d ULLS. It was found that: 1) in maximal voluntary contraction (MVC) and the cross-sectional area of the planter flexor, there was a significant time- (pre-ULLS and post-ULLS) by-leg (ULLS-leg and CONT-leg) interaction; 2) in voluntary activation during MVC evaluated by the twitch interpolation technique, no significant time-by-leg interaction was detected but the trend of change from before to after ULLS tended to be different between ULLS-leg and CONT-leg; and 3) regarding ULLS-leg, the change in any parameters was not significantly different between the Tr-UL and UL groups. These results suggest that unloading induces dysfunction and atrophy in the human calf and that high-intensity interval training on a cycle ergometer cannot significantly prevent unloading-induced deconditioning in the human calf.

  3. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    NASA Astrophysics Data System (ADS)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  4. Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland.

    PubMed

    Sigmundsson, Freysteinn; Pinel, Virginie; Lund, Björn; Albino, Fabien; Pagli, Carolina; Geirsson, Halldór; Sturkell, Erik

    2010-05-28

    Pressure influences both magma production and the failure of magma chambers. Changes in pressure interact with the local tectonic settings and can affect magmatic activity. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems. The large pulse in volcanic production at the end of the last glaciation in Iceland suggests a link between unloading and volcanism, and models of that process can help to evaluate future scenarios. A viscoelastic model of glacio-isostatic adjustment that considers melt generation demonstrates how surface unloading may lead to a pulse in magmatic activity. Iceland's ice caps have been thinning since 1890 and glacial rebound at rates exceeding 20 mm yr(-1) is ongoing. Modelling predicts a significant amount of 'additional' magma generation under Iceland due to ice retreat. The unloading also influences stress conditions in shallow magma chambers, modifying their failure conditions in a manner that depends critically on ice retreat, the shape and depth of magma chambers as well as the compressibility of the magma. An annual cycle of land elevation in Iceland, due to seasonal variation of ice mass, indicates an annual modulation of failure conditions in subglacial magma chambers.

  5. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  6. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a new elasto-viscoplastic constitutive model

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Song; Lin, Y. C.; Li, Kuo-Kuo; Chen, Jian

    2016-09-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi: 10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain.

  7. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available

  8. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  9. Reduction in tendon elasticity from unloading is unrelated to its hypertrophy.

    PubMed

    Kinugasa, Ryuta; Hodgson, John A; Edgerton, V Reggie; Shin, David D; Sinha, Shantanu

    2010-09-01

    Tendinous tissues respond to chronic unloading with adaptive changes in mechanical, elastic, and morphological properties. However, little is known about the changes in the detailed structures of the entire tendinous tissue and whether the change in tendon stiffness is related to morphology. We investigated changes in dimensional (volume, cross-sectional area, segmented lengths) and elastic (Young's modulus) properties of the Achilles tendon and distal aponeurosis in response to chronic unilateral lower limb suspension (ULLS) using velocity encoded phase contrast (VE-PC) and three-dimensional morphometric magnetic resonance imaging (MRI). Five healthy subjects underwent ULLS for 4 wk. Axial morphometric MRI was acquired along the entire length from the calcaneous to the medial gastrocnemius insertion. An oblique sagittal VE-PC MRI was also acquired. The Young's modulus could be calculated from this cine dynamic sequence of velocity encoded images from the slope of the stress-strain curve during the submaximal isometric plantar flexion. After 4 wk of ULLS, we found significant (46.7%) decrease in maximum plantar flexion torque. The total volumes of entire tendinous tissue (determined as the sum of the Achilles tendon and distal aponeurosis) increased significantly by 6.4% (11.9 vs. 12.7 ml) after ULLS. In contrast, Young's modulus decreased significantly by 10.4% (211.7 vs. 189.6 MPa) for the Achilles tendon and 29.0% for the distal aponeurosis (158.8 vs. 113.0 MPa) following ULLS. There was no significant correlation between relative change in volume and Young's modulus with 4 wk of ULLS. It is suggested that, although tendon hypertrophy can be expected to adversely affect tendon stiffness, the absence of any significant correlation between the magnitude of tendon hypertrophy and reduced Young's modulus indicates that dimensional factors were not critical to the elastic properties.

  10. Hindlimb unloading-induced muscle atrophy and phenotype transition is attenuated in Smad3+/- mice

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Zhang, P.; Liu, S. H.; Wang, F.; Ge, X.; Wu, Y.; Fan, M.

    Currently it has been well defined that the microgravity-induced muscle disuse characterized by atrophy and slow-to-fast phenotype transition of the postural muscles such as soleus muscle but the basic mechanism underlying the atrophy and phenotype transition of soleus muscle is still unclear To investigate the developmental mechanisms of muscle atrophy and its phenotype transition under microgravity the soleus muscle of Smad3 and Smad3 - mice after 14 days hindlimb unloading was examined Using histology and immunohistochemistry assay we found that the soleus muscle volume and fiber number appeared a remarkable increases in Smad3 - mice compared to those in Smad3 control In addition Western blot analysis showed that the expression level of myosin heavy chain MHC -slow myofiber specific protein in soleus muscle was visibly higher in Smad3 - mice than in Smad3 mice In contrast the expression level of MHC-fast myofiber specific protein in soleus muscle was visibly lower in Smad3 - mice than in Smad3 mice Furthermore RT-PCR revealed that the expression of Smad3 and myogenic regulatory factor MRF mRNA was inversely regulated Finally we determined that either Smad3 mRNA or Smad3 protein were selectively distributed in quiescent satellite cells in vivo and in reserve cells in vitro Therefore our findings suggested that Smad3 might be a key transcriptional factor for soleus muscle atrophy and slow-to-fast phenotype transition of the slow muscle under microgravity In the future an agent that regulates Smad3 expression may be used to prevent

  11. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression

    PubMed Central

    Henry, Matthew K.; Welliver, Kathryn C.; Jepson, Amanda J.; Garnett, Emily R.

    2013-01-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43. PMID:23302960

  12. Myocardial hydroxyproline and mechanical response to prolonged pressure loading followed by unloading in the cat.

    PubMed Central

    Williams, J F; Mathew, B; Hern, D L; Potter, R D; Deiss, W P

    1983-01-01

    To determine the myocardial response to prolonged pressure-loading and unloading, kittens weighing 0.8-1.2 kg underwent pulmonary artery banding, which initially elevated right ventricular (RV) systolic pressure by 10-15 mm Hg. 52 and 76 wk later; RV weight/body weight had increased by approximately 80%. Total RV hydroxyproline had increased significantly, whereas hydroxyproline concentration was unchanged from that of nonbanded animals of comparable age. In isometrically contracting RV papillary muscles, peak active force was significantly less at 76 wk (3.3 +/- 0.8 [SD] g/mm2 than at 52 wk (5.1 +/- 0.8 g/mm2) or in nonbanded animals (4.8 +/- 0.8 g/mm2). Velocity of muscle shortening at comparable loads was unchanged after 52 wk but was significantly less after 76 wk. In nonstimulated, slowly stretched muscles, passive stiffness constants, alpha and beta, derived from delta = alpha(e beta epsilon - 1), where delta is instantaneous stress and epsilon is Lagrangian strain, were unchanged by banding. The band was removed after 52 wk in additional animals that were studied 24 wk later. In those animals with normal RV pressures at death, hypertrophy had regressed and hydroxyproline concentration was comparable to that of nonbanded and banded animals; Active and passive mechanical function remained normal. In this model, changes in hydroxyproline parallel changes in muscle mass, and passive stiffness remains normal during development and regression of hypertrophy. Removal of the pressure load after prolonged hypertrophy prevents or retards the late development of myocardial dysfunction. PMID:6227633

  13. Effects of gravitational unloading on activity of motoneurones of m. soleus in man

    NASA Astrophysics Data System (ADS)

    Zakirova, Albina; Shigueva, Tatiana; Tomilovskaya, Elena

    The aim of recent work was to study of participation of spinal and supraspinal structures (motor cortex) in the development of hypogravitational hyperreflexia of stretch reflexes observed under weightlessness (Kozlovskaya I.B. et. al., 1981; Reschke M.F. et al., 1984; Saenko I.V., 2007). Methods. 11 healthy volunteers took part in the research. Dry immersion (DI) with the duration of 3 and 5 days was used as onground model of weightlessness. Before and after DI thresholds and amplitudes of m. soleus H-reflex; as well as thresholds and amplitudes of m. soleus motor potentials (MEPs) evoked by magnetic stimulation of spinal roots at L5-S1 segments and cortex motor zones were defined. Results. Exposure to DI was accompanied with significant decrease of the H-reflex threshold by 23.8±8.2%, and with an increase of the relative H-reflex amplitudes by 12.89±8.3% in comparison with background. At the same time thresholds of spinal MEPs were reduced by 5% as well as and their amplitudes were increased significantly by 13.8±4.2%. The obtained data indicate an increase of motoneurones pool’s excitability of m. soleus under gravitational unloading conditions. At the same time after DI exposure a tendency to increase of thresholds of cortical MEPs was observed by 11.7±6.8% from background, and their amplitudes didn’t change in comparison with background, which gives evidence of a non-changed excitability of the motor cortex structures. In general the results of the experiments indicate the spinal nature of the hypogravitational hyperreflexia. The work was supported by RFBR projects NN 13-04-12091 Ofi-m and 11-04-01240-а.

  14. Left ventricular and myocardial perfusion responses to volume unloading and afterload reduction in a computer simulation.

    PubMed

    Giridharan, Guruprasad A; Ewert, Dan L; Pantalos, George M; Gillars, Kevin J; Litwak, Kenneth N; Gray, Laman A; Koenig, Steven C

    2004-01-01

    Ventricular assist devices (VADs) have been used successfully as a bridge to transplant in heart failure patients by unloading ventricular volume and restoring the circulation. In a few cases, patients have been successfully weaned from these devices after myocardial recovery. To promote myocardial recovery and alleviate the demand for donor organs, we are developing an artificial vasculature device (AVD) that is designed to allow the heart to fill to its normal volume but eject against a lower afterload. Using this approach, the heart ejects its stroke volume (SV) into an AVD anastomosed to the aortic arch, which has been programmed to produce any desired afterload condition defined by an input impedance profile. During diastole, the AVD returns this SV to the aorta, providing counterpulsation. Dynamic computer models of each of the assist devices (AVD, continuous, and pulsatile flow pumps) were developed and coupled to a model of the cardiovascular system. Computer simulations of these assist techniques were conducted to predict physiologic responses. Hemodynamic parameters, ventricular pressure-volume loops, and vascular impedance characteristics were calculated with AVD, continuous VAD, and asynchronous pulsatile VAD support for a range of clinical cardiac conditions (normal, failing, and recovering left ventricle). These simulation results indicate that the AVD may provide better coronary perfusion, as well as lower vascular resistance and elastance seen by the native heart during ejection compared with continuous and pulsatile VAD. Our working hypothesis is that by controlling afterload using the AVD approach, ventricular cannulation can be eliminated, myocardial perfusion improved, myocardial compliance and resistance restored, and effective weaning protocols developed that promote myocardial recovery.

  15. Force-velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps

    PubMed Central

    Cuk, Ivan; Markovic, Milos; Nedeljkovic, Aleksandar; Ugarkovic, Dusan; Kukolj, Milos; Jaric, Slobodan

    2014-01-01

    Purpose Resent research has suggested that loaded multi-joint movements could reveal a linear force-velocity (F-V) relationship. The aim of the present study was to evaluate the F-V relationship both across different types of vertical jumps and across different F and V variables. Methods Ten healthy subjects performed maximum various vertical jumps that were either loaded or unloaded by constant external forces of up to 30% of their body weight. Both the maximum and averaged F and V data were recorded. Results The observed F-V relationships proved to be strong (median correlation coefficients ranged .78-.93) and quasi-linear. Their F- and V-intercepts and the calculated maximum power (P) were highly reliable (.85

  16. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression.

    PubMed

    Moffitt, Julia A; Henry, Matthew K; Welliver, Kathryn C; Jepson, Amanda J; Garnett, Emily R

    2013-03-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43.

  17. Effect of anti-osteoporotic agents on the prevention of bone loss in unloaded bone.

    PubMed

    Siu, Wing Sum; Ko, Chun Hay; Hung, Leung Kim; Lau, Ching Po; Lau, Clara Bik San; Fung, Kwok Pui; Leung, Ping Chung

    2013-10-01

    Pharmaceutical countermeasures to treat disuse osteoporosis are rarely studied. Pharmaceutical studies for the treatment and prevention of osteoporosis depend on the ovariectomized rat model, which is a suitable model for the disease in women. Disuse osteoporosis affects men and women, but there is lack of awareness and relevant pharmaceutical studies for this condition. The objectives of this study were to verify the validity of an unusual tail-suspension rat model in the induction of disuse osteoporosis and subsequent pharmaceutical treatments. This model was created by unloading the hind limbs of the rats in order to create a state of weightlessness in their hindlimb bones. Validation of the model was performed with non-suspended rats. This study included five groups of suspended rats fed with different agents, such as distilled water (control), high-, medium- and low-dose raloxifene and a bisphosphonate (alendronate). The experiment lasted for 28 days. Comparisons were made between the suspended control and treatment groups. Ovariectomized and sham‑operated rats were also included as a reference for bone changes during osteoporosis. Changes in bone mineral density (BMD) at the distal femur and proximal tibia, microarchitecture at the distal femur and biomechanical strength at the diaphyseal femur were studied. Reduction of BMD and deterioration of trabeculae were similar between the suspended control and ovariectomized rats. Loss of BMD induced by tail suspension was reduced most effectively by medium-dose raloxifene. Deterioration of trabecular microarchitecture was also prevented by raloxifene. The tail-suspension rat model is suitable for the study of disuse osteoporosis under the effects of various therapeutic agents. The preventive effects of raloxifene against bone loss under disuse conditions have been demonstrated using this model. PMID:23970373

  18. Effect of anti-osteoporotic agents on the prevention of bone loss in unloaded bone.

    PubMed

    Siu, Wing Sum; Ko, Chun Hay; Hung, Leung Kim; Lau, Ching Po; Lau, Clara Bik San; Fung, Kwok Pui; Leung, Ping Chung

    2013-10-01

    Pharmaceutical countermeasures to treat disuse osteoporosis are rarely studied. Pharmaceutical studies for the treatment and prevention of osteoporosis depend on the ovariectomized rat model, which is a suitable model for the disease in women. Disuse osteoporosis affects men and women, but there is lack of awareness and relevant pharmaceutical studies for this condition. The objectives of this study were to verify the validity of an unusual tail-suspension rat model in the induction of disuse osteoporosis and subsequent pharmaceutical treatments. This model was created by unloading the hind limbs of the rats in order to create a state of weightlessness in their hindlimb bones. Validation of the model was performed with non-suspended rats. This study included five groups of suspended rats fed with different agents, such as distilled water (control), high-, medium- and low-dose raloxifene and a bisphosphonate (alendronate). The experiment lasted for 28 days. Comparisons were made between the suspended control and treatment groups. Ovariectomized and sham‑operated rats were also included as a reference for bone changes during osteoporosis. Changes in bone mineral density (BMD) at the distal femur and proximal tibia, microarchitecture at the distal femur and biomechanical strength at the diaphyseal femur were studied. Reduction of BMD and deterioration of trabeculae were similar between the suspended control and ovariectomized rats. Loss of BMD induced by tail suspension was reduced most effectively by medium-dose raloxifene. Deterioration of trabecular microarchitecture was also prevented by raloxifene. The tail-suspension rat model is suitable for the study of disuse osteoporosis under the effects of various therapeutic agents. The preventive effects of raloxifene against bone loss under disuse conditions have been demonstrated using this model.

  19. Effects of Loading or Unloading on the Regenerative Potential of Injured Skeletal Muscle in Mice

    NASA Astrophysics Data System (ADS)

    Goto, Katsumasa; Matsuba, Yusuke; Ohno, Yoshitaka; Sugiura, Takao; Hashimoto, Naohiro; Ohira, Yoshinobu; Yoshioka, Toshitada

    2008-06-01

    The present study was performed to investigate the influence of unloading on the regenerative process of injured skeletal muscle. Male mice (C57BL/6J), aged 8 weeks, were randomly divided into 4 groups; normal cage control (CC), cardiotoxin (CTX)-injected (CX), hindlimb suspended (HS), and HS+CX (SX) groups. HS, as the preconditioning, was performed for 2 weeks in group HS and SX. The animals in group CC and CX were maintained in 1-G environment. And then, CTX was injected into soleus muscles bilaterally in CX and SX groups. HS was continued for additional 6 weeks in group HS and SX. Soleus muscles were dissected after 2, 4, and 6 weeks. Wet weight and protein content of soleus in group CX decreased, but recovered to the level of group CC after 6 weeks. Atrophy, caused by 2-week HS, in group HS and SX was maintained throughout the experimental period. The numbers of satellite cells in HS and SX groups after 2, 4, and 6 weeks were lower than those in group CC. The number of satellite cells in CX group was increased by the CTX-injection compared with group CC. On the other hand, satellite cell number in CTX-injected group SX after 2, 4, and 6 weeks were lower than that in group HS. Percentage of fibers with central nuclei, relative to the total muscle fibers, in HS and SX groups at week 6 was higher than that in group CC. That in group CX was also increased at 2nd and 4th week, but was lowered toward the control level after 6 week. It was suggested that loading plays a key role for the activation of the regenerating potential of injured skeletal muscle.

  20. Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading.

    PubMed

    Martinez, D A; Vailas, A C; Vanderby, R; Grindeland, R E

    2007-10-01

    Previous data from spaceflight studies indicate that injured muscle and bone heal slowly and abnormally compared with ground controls, strongly suggesting that ligaments or tendons may not repair optimally as well. Thus the objective of this study was to investigate the biochemical and molecular gene expression of the collagen extracellular matrix in response to medial collateral ligament (MCL) injury repair in hindlimb unloaded (HLU) rodents. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing (Amb-healing), and HLU-healing groups. Amb- and HLU-healing animals underwent bilateral surgical transection of their MCLs, whereas control animals were subjected to sham surgeries. All surgeries were performed under isoflurane anesthesia. After 3 wk or 7 wk of HLU, rats were euthanized and MCLs were surgically isolated and prepared for molecular or biochemical analyses. Hydroxyproline concentration and hydroxylysylpyridinoline collagen cross-link contents were measured by HPLC and showed a substantial decrement in surgical groups. MCL tissue cellularity, quantified by DNA content, remained significantly elevated in all HLU-healing groups vs. Amb-healing groups. MCL gene expression of collagen type I, collagen type III, collagen type V, fibronectin, decorin, biglycan, lysyl oxidase, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1, measured by real-time quantitative PCR, demonstrated differential expression in the HLU-healing groups compared with Amb-healing groups at both the 3- and 7-wk time points. Together, these data suggest that HLU affects dense fibrous connective tissue wound healing and confirms previous morphological and biomechanical data that HLU inhibits the ligament repair processes.

  1. VFK1, a Vicia faba K(+) channel involved in phloem unloading.

    PubMed

    Ache, P; Becker, D; Deeken, R; Dreyer, I; Weber, H; Fromm, J; Hedrich, R

    2001-09-01

    In search of a K(+) channel involved in phloem transport we screened a Vicia faba cotyledon cDNA library taking advantage of a set of degenerated primers, flanking regions conserved among K(+) uptake channels. We cloned VFK1 (for Vicia faba K(+) channel 1) characterised by a structure known from the Shaker family of plant K(+) channels. When co-expressed with a KAT1 mutant in Xenopus oocytes, heteromers revealed the biophysical properties of a K(+) selective, proton-blocked channel. Northern blot analyses showed high levels of expression in cotyledons, flowers, stem and leaves. Using in situ PCR techniques we could localise the K(+) channel mRNA in the phloem. In the stem VFK1 expression levels were higher in the lower internodes. There channel transcripts increased in the light and thus under conditions of increased photosynthate allocation. VFK1 transcripts are elevated in sink leaves, and rise in source leaves during the experimental transition into sinks. Fructose- rather than sucrose- or glucose-feeding via the petiole induced VFK1 gene activity. We therefore monitored the fructose sensitivity of the sieve tube potential through cut aphid stylets. In response to an 1 h fructose treatment the sieve tube potential shift increased from 19 mV to 53 mV per 10-fold change in K(+) concentration. Under these conditions K(+) channels dominated the electrical properties of the plasma membrane. Based on the phloem localisation and expression patterns of VFK1 we conclude that this K(+) channel is involved in sugar unloading and K(+) retrieval.

  2. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis.

    PubMed

    Saxena, Ritu; Pan, George; Dohm, Erik D; McDonald, Jay M

    2011-01-01

    Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain to be fully elucidated. Because of the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own, was unable to induce osteoclastogenesis of osteoclast precursors; however, 24 h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. Receptor activator of NFkB ligand (RANKL) (with or without M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24 h enhanced the formation of very large tartrate-resistant acid phosphatase (TRAP)-positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of the osteoclast marker genes TRAP and cathepsin K. To validate the in vitro system, we studied the hindlimb unloading (HLU) system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by micro-CT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP-positive multinucleated osteoclasts formed and also an increase in RANKL-stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of HLU. In contrast to earlier reported findings, we did not observe any histomorphometric changes in the bone formation parameters. Thus, the foregoing observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing

  3. A Statistical Perspective on Highly Accelerated Testing.

    SciTech Connect

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning the

  4. In Vivo Hypobaric Hypoxia Performed During the Remodeling Process Accelerates Bone Healing in Mice

    PubMed Central

    Durand, Marjorie; Collombet, Jean-Marc; Frasca, Sophie; Begot, Laurent; Lataillade, Jean-Jacques; Le Bousse-Kerdilès, Marie-Caroline

    2014-01-01

    We investigated the effects of respiratory hypobaric hypoxia on femoral bone-defect repair in mice because hypoxia is believed to influence both mesenchymal stromal cell (MSC) and hematopoietic stem cell mobilization, a process involved in the bone-healing mechanism. To mimic conditions of non-weight-bearing limb immobilization in patients suffering from bone trauma, our hypoxic mouse model was further subjected to hind-limb unloading. A hole was drilled in the right femur of adult male C57/BL6J mice. Four days after surgery, mice were subjected to hind-limb unloading for 1 week. Seven days after surgery, mice were either housed for 4 days in a hypobaric room (FiO2 at 10%) or kept under normoxic conditions. Unsuspended control mice were housed in either hypobaric or normoxic conditions. Animals were sacrificed on postsurgery day 11 to allow for collection of both contralateral and lesioned femurs, blood, and spleen. As assessed by microtomography, delayed hypoxia enhanced bone-healing efficiency by increasing the closing of the cortical defect and the newly synthesized bone volume in the cavity by +55% and +35%, respectively. Proteome analysis and histomorphometric data suggested that bone-repair improvement likely results from the acceleration of the natural bone-healing process rather than from extended mobilization of MSC-derived osteoprogenitors. Hind-limb unloading had hardly any effect beyond delayed hypoxia-enhanced bone-healing efficiency. PMID:24944208

  5. Reducing the overheads of hardware acceleration through datapath integration

    NASA Astrophysics Data System (ADS)

    Jääskeläinen, Pekka; Kultala, Heikki; Pitkänen, Teemu; Takala, Jarmo

    2008-02-01

    Hardware accelerators are used to speed up execution of specific tasks such as video coding. Often the purpose of hardware acceleration is to be able to use a cheaper or, for example, more energy economical processor for executing the majority of the application in software. However, when using hardware acceleration, new overheads are produced mainly due to the need to transfer data to and from the accelerator and signaling the readiness of the accelerator computation to the processor. We find the traditional mechanisms suboptimal for fine-grain hardware acceleration, especially when energy efficiency is important. This paper explores a technique unique to Transport Triggered Architectures to interface with hardware accelerators. The proposed technique places hardware accelerators to the processor data path, making them visible as regular function units to the programmer. This way communication costs are reduced as data can be transferred directly to the accelerator from other processor data path components and synchronization can be done by polling a simple ready flag in the accelerator function unit. Additionally, this setup enables the instruction scheduler of the compiler to schedule the hardware accelerator like any other operation, thus partially hide its latency with other program operations. The paper presents a case study with an audio decoder application in which fine-grain and coarse-grain hardware accelerators are integrated to the processor data path as function units. The case is used to study several different synchronization, communication, and latency-hiding techniques enabled by this kind of setup.

  6. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  7. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  8. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  9. An alternant method to the traditional NASA hindlimb unloading model in mice.

    PubMed

    Ferreira, J Andries; Crissey, Jacqueline M; Brown, Marybeth

    2011-03-10

    The Morey-Holton hindlimb unloading (HU) method is a widely accepted National Aeronautics and Space Administration (NASA) ground-based model for studying disuse-atrophy in rodents. Our study evaluated an alternant method to the gold-standard Morey-Holton HU tail-traction technique in mice. Fifty-four female mice (4-8 mo.) were HU for 14 days (n=34) or 28 days (n=20). Recovery from HU was assessed after 3 days of normal cage ambulation following HU (n=22). Aged matched mice (n=76) served as weight-bearing controls. Prior to HU a tail ring was formed with a 2-0 sterile surgical steel wire that was passed through the 5(th), 6(th), or 7(th) inter-vertebral disc space and shaped into a ring from which the mice were suspended. Vertebral location for the tail-ring was selected to appropriately balance animal body weight without interfering with defecation. We determined the success of this novel HU technique by assessing body weight before and after HU, degree of soleus atrophy, and adrenal mass following HU. Body weight of the mice prior to HU (24.3 ± 2.9g) did not significantly decline immediately after 14d of HU (22.7 ± 1.9g), 28d of HU (21.3 + 2.1g) or after 3 days recovery (24.0 ± 1.8g). Soleus muscle mass significantly declined (-39.1%, and -46.6%) following HU for 14 days and 28 days respectively (p<0.001). Following 3 days of recovery soleus mass significantly increased to 74% of control values. Adrenal weights of HU mice were not different compared to control mice. The success of our novel HU method is evidenced by the maintenance of animal body weight, comparable adrenal gland weights, and soleus atrophy following HU, corresponding to expected literature values. The primary advantages of this HU method include: 1) ease of tail examination during suspension; 2) decreased likelihood of cyanotic, inflamed, and/or necrotic tails frequently observed with tail-taping and HU; 3) no possibility of mice chewing the traction tape and coming out of the suspension

  10. Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Balog, E. M.; Fitts, R. H.; Riley, D. A.

    1999-01-01

    Sarcomere disruptions are observed in the adductor longus (AL) muscles following voluntary reloading of spaceflown and hindlimb suspension unloaded (HSU) rat, which resemble lesions in eccentrically challenged muscle. We devised and tested an eccentric contraction (ECCON) test system for the 14-day HSU rat AL. Six to 7 hours following ECCON, ALs were fixed to allow immunostaining and electron microscopy (EM). Toluidine blue-stained histology semithin sections were screened for lesion density (#/mm2). Serial semithin sections from the ECCON group were characterized for myosin immunointensity of lesions. Five myofibrillar lesion types were identified in histological semithin sections: focal contractions; wide A-bands; opaque areas; missing A-bands; and hyperstretched sarcomeres. Lesion density by type was greater for ECCON than NonECCON ALs (P< or =0.05; focal contractions and opaque regions). Lesion density (#-of-all-five-types/mm2) was significantly different (ECCON: 23.91+/-10.58 vs. NonECCON: 5.48+/-1.28, P< or =0.05; ECCON vs. SHAM: 0.00+/-0.00; P< or = 0.025). PostECCON optimal tension decreased (Poi-drop, 17.84+/-4.22%) and was correlated to lesion density (R2=0.596), but prestretch tension demonstrated the highest correlation with lesion density (R2=0.994). In lesions, the darkly staining A-band lost the normally organized thick filament alignment to differing degrees across the different lesion types. Ranking the five lesion types by a measure of lesion length deformation (hypercontracted to hyperstretched) at the light microscopy level, related to the severity of thick filament registry loss across the lesion types at the electron microscopic level. This ranking suggested that the five lesion types seen in semithin sections at the light level represented a lesion progression sequence and paralleled myosin immunostaining loss as the distorted A-band filaments spread across the hyperlengthening lesion types. Lesion ultrastructure indicated damage involved

  11. Effects of Growth Hormone/IGF-I and Exercise on Unloaded Bones

    NASA Technical Reports Server (NTRS)

    Harper, J. S.; Arnaud, S. B.; Gosselink, K. L.; Grindeland, R. E.

    1994-01-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in combination with exercise prevent muscle atrophy induced by unloading in the tail-suspension rat model for space flight (Gosselink et al, FASEB J 1994). This study evaluated the effects of these treatments on bone. Hypophysectomized rats were suspended (S) and treated with 1mg/kg/day CH plus IGF-I (H) or vehicle (Sal) daily by injection and exercised (Ex) by 3 climbs up a 1m ladder carrying a load equal to 30% the initial body weight (BW) 3x/day for 10 days. Tibial epiphysis (Epi) widths were measured by micrometry and femoral Bone Mineral Content (fBMC) in excised femurs by DEXA (Lunar DPX-L). Serum calcium (Ca) and phosphorus (Pi) were measured by COBAS Autoanalyzer (Roche Diag.). Ambulatory (Amb)-H treated rats showed growth rates of 6.6+-0.9 g/day, similar to S-H-Ex and higher than S-H (3.210.6, p less than 0.05) and S-Sal (-0.711.0, p less than 0.05). Epi widths were 10% lower in S-Sal, and S-Sal-Ex, and increased 100% in all H groups. fBMC was less in S than Amb, only when all S groups are compared to both Amb groups (p less than 0.03). H treatment increased fBMC (p less than 0.05) but reduced fBMC/100g BW in all H groups (p less than 0.001). The reduced density of H bone cannot be attributed to low circulating Ca. and Pi since they were higher in H than Sal (p less than 0.001). H treatment for 10 days in doses sufficient to support normal growth in BW failed to produce normal Epi widths or fBMC, even when combined with exercise. The suspension effect observed in Epi widths was not corrected by H or Ex alone, but was improved by H plus a This regimen. although effective in preventing muscle atrophy, failed to return bone measures, Epi widths and fBMC, to normal.

  12. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity.

    PubMed

    Debevec, Tadej; McDonnell, Adam C; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-03-01

    Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest. PMID:24552383

  13. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2012-06-12

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  14. Response of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Cook, P. H.

    1985-01-01

    Concentrations of glutamine, glutamate, aspartate (+ asparagine) and alanine were compared in hindlimb muscles of SL-3 and ground control rats. Alanine was lower in the soleus of flown rats but not of suspended animals, with no response in other muscles except a slight increase in the unloaded plantaris. With recovery, alanine in the soleus was elevated. Since no differences in alanine metabolism were found by isolated muscle, changes in muscle alanine are probably due to altered body use of this amino acid leading to varied plasma levels.

  15. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  16. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  17. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  18. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  19. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  20. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  1. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  2. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  3. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  4. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  5. Transcription regulation of gene expression in rat brown adipose tissue in response to unloading or 2G loading during growing period

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Hitomi, Y.; Kawano, F.; Ohira, Y.; Kizaki, T.; Nakano, N.; Sakurai, T.; Izawa, T.; Suzuki, K.; Sudoh, M.; Roy, R. R.; Ohno, H.

    2007-05-01

    The effects were investigated of long-term unloading and macrogravity on the expression of 15 genes at the mRNA levels in brown adipose tissue (BAT) from rat pups, particularly focusing on uncoupling protein (UCP) family, nitric oxide synthase (NOS) isoenzymes, and antioxidant enzymes. The animals in the unloaded group (a simulation model of spaceflight) were hindlimb-unloaded by tail suspension between postnatal day 4 and month 3, followed by 2-mo ambulation recovery. Moreover, centrifugation at 2G (an imitation of the hypergravity effects) was performed during the same period as the unloading, also followed by 2-mo ambulation recovery (adaptation to 1G from 2G). Compared with the age-matched control group, significantly lower expression levels of mRNA for UCP2, iNOS, and Cu,Zn-superoxide dismutase (Cu, Zn-SOD) in BAT were observed immediately after unloading, but not immediately after exposure to 2G. During 2-mo ambulation recovery from both extreme conditions, the expression of mRNA for Mn-SOD was enhanced, suggesting an increase in oxidative stress. These findings suggest that both micro- and macrogravity may have some influence upon the function of BAT, and that changes in the BAT function may be involved in the mechanisms subserving adaptation to such extreme conditions by what humans have to be faced with during the spaceflight and return to 1G.

  6. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  7. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  8. Muscle unloading-induced metabolic remodeling is associated with acute alterations in PPARdelta and UCP-3 expression.

    PubMed

    Mazzatti, Dawn J; Smith, Melissa A; Oita, Radu C; Lim, Fei-Ling; White, Andrew J; Reid, Michael B

    2008-07-15

    A number of physiological changes follow prolonged skeletal muscle unloading as occurs in spaceflight, bed rest, and hindlimb suspension (HLS) and also in aging. These include muscle atrophy, fiber type switching, and loss of the ability to switch between lipid and glucose usage, or metabolic inflexibility. The signaling and genomic events that precede these physiological manifestations have not been investigated in detail, particularly in regard to loss of metabolic flexibility. Here we used gene arrays to determine the effects of 24-h HLS on metabolic remodeling in mouse muscle. Acute unloading resulted in differential expression of a number of transcripts in soleus and gastrocnemius muscle, including many involved in lipid and glucose metabolism. These include the peroxisome proliferator-activated receptors (PPARs). In contrast to Ppar-alpha and Ppar-gamma, which were downregulated by acute HLS, Ppar-delta was upregulated concomitant with increased expression of its downstream target, uncoupling protein-3 (Ucp-3). However, differential expression of Ppar-delta was both acute and transient in nature, suggesting that regulation of PPARdelta may represent an adaptive, compensatory response aimed at regulating fuel utilization and maintaining metabolic flexibility. PMID:18445701

  9. Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types.

    PubMed

    Zanon, Laura; Falchi, Rachele; Santi, Simonetta; Vizzotto, Giannina

    2015-06-01

    Several complex physiological processes, which include long-distance translocation in the phloem and unloading in sink tissues, govern the partitioning of sugars in economically important organs, such as peach fruit. In this study, we took advantage of a symplastic tracer, carboxyfluorescein (CF), providing evidence for an apoplastic sucrose transfer in the early (SI) and middle (SIII) phases of peach fruit development. Moreover, using a combination of in situ hybridization and laser microdissection-assisted expression analysis, three putative sucrose transporters encoding genes (PpSUT1, PpSUT2, PpSUT4) were transcriptionally analyzed to relate their expression with sucrose storage in this organ. Our study revealed that PpSUT2 and PpSUT4 are the genes predominantly expressed in fruit flesh, and the detailed analysis of their expression pattern in the different cell types enabled us to suggest a specialized role in sucrose distribution. Both PpSUTs transporters could be involved in the retrieval of sucrose lost from the symplastic continuum of the phloem and, when expressed in parenchyma cells, they could be active in the import of sucrose into sink tissues, via symport from the apoplast. An alternative hypothesis has been proposed and discussed for PpSUT4 because of its putative tonoplastic localization. Taken together, our results provide new insights into the molecular mechanisms underpinning sucrose unloading and accumulation in peach fruit.

  10. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells.

    PubMed

    Wilson, Jolaine M; Krigsfeld, Gabriel S; Sanzari, Jenine K; Wagner, Erika B; Mick, Rosemarie; Kennedy, Ann R

    2012-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.

  11. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jolaine M.; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.

    2012-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.

  12. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells

    PubMed Central

    Wilson, Jolaine M; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.

    2013-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems. PMID:23766550

  13. [Changes in cell respiration of postural muscle fibers under long-term gravitational unloading after dietary succinate supplementation].

    PubMed

    Ogneva, I V; Veselova, O M; Larina, I M

    2011-01-01

    The intensity of cell respiration of the rat m. soleus, m. gastrocnemius c.m. and tibialis anterior fibers during 35-day gravitational unloading, with the addition of succinate in the diet at a dosage rate of 50 mg per 1 kg animal weight has been investigated. The gravitational unloading was modeled by antiorthostatic hindlimb suspension. The intensity of cell respiration was estimated by polarography. It was shown that the rate of oxygen consumption by soleus and gastrocnemius fibers on endogenous and exogenous substrates and with the addition of ADP decreases after the discharge. This may be associated with the transition to the glycolytic energy path due to a decrease in the EMG-activity. At the same time, the respiration rate after the addition of exogenous substrates in soleus fibers did not increase, indicating a disturbance in the function of the NCCR-section of the respiratory chain and more pronounced changes in the structure of muscle fibers. In tibialis anterior fibers, no changes in oxygen consumption velocity were observed. The introduction of succinate to the diet of rats makes it possible to prevent the negative effects of hypokinesia, although it reduces the basal level of intensity of cell respiration.

  14. Chronic acceleration and brain density

    NASA Technical Reports Server (NTRS)

    Hoffman, L. F.; Smith, A. H.

    1982-01-01

    Tests carried out on rabbits show that the effect of chronic acceleration is not uniform among the various tissues studied. Although body mass is reduced by the treatment, as expected, no change is apparent in brain mass or in the density of cerebrospinal fluid. Acceleration-induced changes are encountered in tissue density, the myocardium exhibiting a transient increase followed by an exponential decrease toward a limit and the brain showing an arithmetic increase in density with continued exposure to 2.5 G. The data are seen as suggesting that a specific brain load is not a regulated phenomenon and that no physiological processes occur to attenuate the increased load imposed by the hyperdynamic environment. An equation is derived indicating that the stimulus potential per unit of brain load increases with body size, even though brain density decreases and cerebrospinal fluid density increases.

  15. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  16. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  17. Time/motion observations and dose analysis of reactor loading, transportation, and dry unloading of an overweight truck spent fuel shipment

    SciTech Connect

    Hostick, C.J. ); Lavender, J.C. ); Wakeman, B.H. )

    1992-04-01

    This document presents observed activity durations and radiation dose analyses for an overweight truck shipment of pressurized water reactor (PWR) spent fuel from the Surry Power Station in Virginia to the Idaho National Engineering Laboratory. The shipment consisted of a TN-8L shipping cask carrying three 9-year-old PWR spent fuel assemblies. Handling times and dose analyses for at-reactor activities were completed by Virginia Electric and Power Company (Virginia Power) personnel. Observations of in-transit and unloading activities were made by Pacific Northwest Laboratory (PNL) personnel, who followed the shipment for approximately 2800 miles and observed cask unloading activities. In-transit dose estimates were calculated using dose rate maps provided by Virginia Power for a fully loaded TN-8L shipping cask. The dose analysis for the cask unloading operations is based on the observations of PNL personnel.

  18. [Electrogenic activity of Na-K-ATPase and calcium ions in m. soleus fibers of rats and Mongolian gerbil during simulation of gravitational unloading].

    PubMed

    Kravtsova, V V; Ogneva, I V; Altaeva, E G; Razgovorova, I A; Tiapkina, O V; Nikol'skiĭ, E E; Shenkman, B S; Krivoĭ, I I

    2010-01-01

    Some of the electrophysiological parameters of m. soleus of rat and Mongolian gerbil, and Ca ions content in fiber myoplasm were compared in different periods of gravitational unloading simulated by tail-suspension. No difference was found between the control animals as for membrane potential at rest, electrogenic activities of Na-K-ATPase and its isoforms, and input resistance of m. soleus fibers. At the same time, unlike rats, gerbils exhibited a substantial Ca decrease in myoplasm. From day one to 14 of gravitational unloading the pace of electrophysiological changes in gerbil's m. soleus was noticeably slower than of rat's, whereas Ca ions depositing in myoplasm was observed in both species already at the beginning ofsuspension. Analysis of the results suggests that adaptive changes in m. soleus of Mongolian gerbil and rat during simulated gravitational unloading are fundamentally different due to, probably, peculiar water-electrolyte metabolism, type of locomotion, and other factors which are still unclear. PMID:20799658

  19. An electromyographic and kinematic comparison between an extendable conveyor system and an articulating belt conveyor used for truck loading and unloading tasks.

    PubMed

    Lavender, Steven A; Nagavarapu, Shasank; Allread, W Gary

    2017-01-01

    Many retail distribution centers (DCs) manually load and unload boxes into or out of trailers and shipping containers. This study investigated whether an articulating belt conveyor with a height adjustable platform, positioned at the end of an extendable conveyor, significantly reduces shoulder and back muscle loading and the spine kinematics associated with these tasks. Electromyographic and kinematic data were collected from eight volunteer employees as trailers at a shoe DC were unloaded and from nine volunteer employees as trailers at an apparel DC were loaded. Participants in this repeated measures study handled boxes with a conventional powered extendable conveyor system and with the articulating belt conveyor positioned at the end of the extendable conveyor. Bilaterally the normalized activation levels of the erector spinae and anterior deltoid muscles were reduced when loading and unloading boxes with the articulating belt conveyor. Spine movement speeds were also reduced with the articulating conveyor. PMID:27633236

  20. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.