Inagaki, Takeshi; Terada, Jiro; Yahaba, Misuzu; Kawata, Naoko; Jujo, Takayuki; Nagashima, Kengo; Sakao, Seiichiro; Tanabe, Nobuhiro; Tatsumi, Koichiro
2018-05-01
The 6-min walk test (6MWT) is commonly performed to assess functional status in patients with chronic thromboembolic pulmonary hypertension. However, changes in heart rate and oxygen saturation (S pO 2 ) patterns during 6MWT in patients with chronic thromboembolic pulmonary hypertension remain unclear. Thirty-one subjects with chronic thromboembolic pulmonary hypertension were retrospectively evaluated to examine the relationships between the change in heart rate (Δheart rate), heart rate acceleration time, slope of heart rate acceleration, heart rate recovery during the first minute after 6MWT (HRR1), change in S pO 2 (ΔS pO 2 ), S pO 2 reduction time, and S pO 2 recovery time during 6MWT, and the severity of pulmonary hemodynamics assessed by right heart catheterization and echocardiography. Subjects with severe chronic thromboembolic pulmonary hypertension had significantly longer heart rate acceleration time (144.9 ± 63.9 s vs 96.0 ± 42.5 s, P = .033), lower Δheart rate (47.4 ± 16.9 vs 61.8 ± 13.6 beats, P = .02), and lower HRR1 (13.3 ± 9.0 beats vs 27.1 ± 9.2 beats, P < .001) compared to subjects with mild chronic thromboembolic pulmonary hypertension. Subjects with severe chronic thromboembolic pulmonary hypertension also had significantly longer S pO 2 reduction time (178.3 ± 70.3 s vs 134.3 ± 58.4 s, P = .03) and S pO 2 recovery time (107.6 ± 35.3 s vs 69.8 ± 32.7 s, P = .004) than did subjects with mild chronic thromboembolic pulmonary hypertension. Multivariate linear regression analysis showed only mean pulmonary arterial pressure independently was associated with heart rate acceleration time and slope of heart rate acceleration. Heart rate and S pO 2 change patterns during 6MWT are predominantly associated with pulmonary hemodynamics in subjects with chronic thromboembolic pulmonary hypertension. Evaluating heart rate and S pO 2 change patterns during 6MWT may serve as a safe and convenient way to follow the change in pulmonary hemodynamics. Copyright © 2018 by Daedalus Enterprises.
Tonelli, Adriano R; Wang, Xiao-Feng; Alkukhun, Laith; Zhang, Qi; Dweik, Raed A; Minai, Omar A
2014-06-01
Six-minute walk test (6MWT) continues to be a useful tool to determine the functional capacity in patients with vascular and other lung diseases; nevertheless, it has a limited ability to predict prognosis in this context. We tested whether the heart rate (HR) acceleration and decay slopes during the 6-m walk test are different in patients with pulmonary arterial hypertension (PAH), other lung diseases, and healthy controls. In addition, we assessed whether the HR slopes are associated with clinical worsening. Using a portable, signal-morphology-based, impedance cardiograph (PhysioFlow Enduro, Paris, France) with real-time wireless monitoring via a Bluetooth USB adapter we determined beat-by-beat HR. We included 50 subjects in this pilot study, 20 with PAH (all on PAH-specific treatment), 17 with other lung diseases (obstructive [n = 12, 71%] or restrictive lung diseases [5, 29%]), and 13 healthy controls. The beat-by-beat HR curves were significantly different among all three groups of subjects either during the activity or recovery of the 6MWT. HR curves were less steep in PAH than the other two groups (P < 0.001). HR acceleration rates were slower in patients with PAH or other lung diseases with progression of their disease (P < 0.001). In conclusion, the acceleration and decay slopes during 6MWT are different among patients with PAH, other lung diseases, and healthy controls. The HR slopes during 6MWT were steeper in patients without clinical worsening. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
The Effects of Meperidine Analgesia during Labor on Fetal Heart Rate
Sekhavat, Leila; Behdad, Shecoofah
2009-01-01
To estimate the effects of intramuscular meperidine analgesia on fetal heart rate (FHR) patterns compared with placebo. In a prospective randomized study, 150 healthy women with singleton term pregnancy requesting analgesia during active labor were planned to receive either intramuscular meperidin 50 mg (meperidin group) or normal saline (control group) when they requested analgesia. Fetal heart rate patterns occurring within 40 minutes of initiation of labor analgesia were retrospectively read by maternal fetal medicine specialist who was blind to type of labor analgesia. Meperidine, compared with placebo, was associated with statistically significantly less beat to beat variability (absent or less than 5 beats per minute) (28% versus 5% of fetuses, P<0.05), lower proportion of accelerations (37.3% versus 17.3% P<0.05) and of the FHR. Also FHR deceleration was significantly more than control group (25.5% versus 4%, P<0.05). Meperidine has deleterious effects on FHR. PMID:23675116
Sasaki, Toshiya; Oh, Ki-Bong; Matsuoka, Hideaki; Saito, Mikako
2008-03-01
Bioactive compounds that may control the specific differentiation from mouse embryonic stem (ES) cells into cardiac-like cells have been screened from herbal medicines. Among seven preparations, Panax ginseng was found to promote the differentiation into beating cells and to sustain their beating for longer than the control. Active compounds were found in its water-soluble fraction. Although they were not isolated, their candidates were surveyed in 42 compounds selected from the database of P. ginseng. Finally we found that vitamin B12 (VB12) and methionine were active. VB12 accelerated the differentiation into beating cells and made the beating rate constantly 100%. Moreover, VB12 was effective in the recovery of beating that was inhibited by spermine action. The mechanism of action of VB12 is discussed in termo of the relevance of intercellular electrical signal transduction.
Martínez-Alanis, Marisol; Ruiz-Velasco, Silvia; Lerma, Claudia
2016-12-15
Most approaches to predict ventricular tachyarrhythmias which are based on RR intervals consider only sinus beats, excluding premature ventricular complexes (PVCs). The method known as heartprint, which analyses PVCs and their characteristics, has prognostic value for fatal arrhythmias on long recordings of RR intervals (>70,000 beats). To evaluate characteristics of PVCs from short term recordings (around 1000 beats) and their prognostic value for imminent sustained tachyarrhythmia. We analyzed 132 pairs of short term RR interval recordings (one before tachyarrhythmia and one control) obtained from 78 patients. Patients were classified into two groups based on the history of accelerated heart rate (HR) (HR>90bpm) before a tachyarrhythmia episode. Heartprint indexes, such as mean coupling interval (meanCI) and the number of occurrences of the most prevalent form of PVCs (SNIB) were calculated. The predictive value of all the indexes and of the combination of different indexes was calculated. MeanCI shorter than 482ms and the occurrence of more repetitive arrhythmias (sNIB≥2.5), had a significant prognostic value for patients with accelerated heart rate: adjusted odds ratio of 2.63 (1.33-5.17) for meanCI and 2.28 (1.20-4.33) for sNIB. Combining these indexes increases the adjusted odds ratio: 10.94 (3.89-30.80). High prevalence of repeating forms of PVCs and shorter CI are potentially useful risk markers of imminent ventricular tachyarrhythmia. Knowing if a patient has history of VT/VF preceded by accelerated HR, improves the prognostic value of these risk markers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dynamics of High Temperature Plasmas.
1985-10-01
25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX
Statistical characteristics of mechanical heart valve cavitation in accelerated testing.
Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M
2004-07-01
Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.
Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.
2013-01-01
Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247
Nonlinear mixing of electromagnetic waves in plasmas.
Stefan, V; Cohen, B I; Joshi, C
1989-01-27
Recently, a strong research effort has been focused on applications of beat waves in plasma interactions. This research has important implications for various aspects of plasma physics and plasma technology. This article reviews the present status of the field and comments on plasma probing, heating of magnetically confined and laser plasmas, ionospheric plasma modification, beat-wave particle acceleration, beat-wave current drive in toroidal devices, beat wave-driven free-electron lasers, and phase conjugation with beat waves.
Quantification of fetal heart rate regularity using symbolic dynamics
NASA Astrophysics Data System (ADS)
van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.
2007-03-01
Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to examine the cardiovascular system may thus lead to new insight with respect to fetal development.
Brownscombe, J W; Lennox, R J; Danylchuk, A J; Cooke, S J
2018-06-21
Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A low-cost simulation platform for flapping wing MAVs
NASA Astrophysics Data System (ADS)
Kok, J. M.; Chahl, J. S.
2015-03-01
This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.
Heart rate detection from an electronic weighing scale.
González-Landaeta, R; Casas, O; Pallàs-Areny, R
2008-08-01
We propose a novel technique for beat-to-beat heart rate detection based on the ballistocardiographic (BCG) force signal from a subject standing on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear and does not require any sensors attached to the body because it uses the load cells in the scale. We have devised an approach to estimate the sensitivity and frequency response of three commercial weighing scales to assess their capability to detect the BCG force signal. Static sensitivities ranged from 490 nV V(-1) N(-1) to 1670 nV V(-1) N(-1). The frequency response depended on the subject's mass but it was broad enough for heart rate estimation. We have designed an electronic pulse detection system based on off-the-shelf integrated circuits to sense heart-beat-related force variations of about 0.24 N. The signal-to-noise ratio of the main peaks of the force signal detected was higher than 30 dB. A Bland-Altman plot was used to compare the RR time intervals estimated from the ECG and BCG force signals for 17 volunteers. The error was +/-21 ms, which makes the proposed technique suitable for short-term monitoring of the heart rate.
Cheng, Hongwei; Smith, Godfrey L; Orchard, Clive H; Hancox, Jules C; Burton, Francis L
2012-10-01
Recent data indicate that Ca(2+) cycling in isolated atrioventricular node (AVN) cells contributes to setting spontaneous rate. The aim of the present study was to extend this observation to the intact AVN in situ, by evaluating the effects of inhibiting sarcoplasmic reticulum Ca(2+) uptake with cyclopiazonic acid (CPA) on intact AVN spontaneous activity and its response to isoprenaline. A model of the AVN-paced heart was produced to investigate intact AVN automaticity, by surgical ablation of the sino-atrial node (SAN) in the rabbit Langendorff-perfused heart. Electrograms were recorded from a site close to the AVN (triangle of Koch), an atrial site above the AVN, the left atrium and right ventricle, enabling AVN pacing of the preparation to be confirmed. Before SAN ablation, the heart rate was 166.8 ± 5.4 beats min(-1). Ablation of the SAN was clearly indicated by a sudden and significant decrease of heart rate to 108.6 ± 9.6 beats min(-1) (P < 0.01, n = 10). Isoprenaline (100 nm) increased AVN rate to 187.8 ± 12.0 beats min(-1) after 1 min of application (P < 0.01, n = 10). Cyclopiazonic acid (10 and 30 μm) decreased AVN rate to 81.6 ± 4.8 (n = 9) and 77.4 ± 6.0 beats min(-1) (n = 7), respectively [P < 0.05, 10 or 30 μm CPA versus control (n = 10)] and also reduced the AVN rate increase in response to isoprenaline from 78.8 ± 10.0 to 46.8 ± 6.8 and 26.7 ± 5.3%, respectively (P < 0.01). These inhibitory effects of CPA on the intact AVN rate and its response to isoprenaline indicate that Ca(2+) cycling is important to the intact AVN spontaneous activity and its acceleration during sympathetic stimulation.
Shul'zhenko, E B; Kozlova, V G; Kurdin, K A; Iarov, A S; Plokhova, V G
1983-01-01
Orthostatic tolerance after 7-day dry immersion and head-to-feet acceleration was investigated on test subjects with and without an antigravity suit of bladderless type. With the suit on, the 20 min tilt test at 70 degrees prior to immersion induced less marked changes than without the suit. When the suit was on, cardiovascular reactions to tilt tests after immersion and acceleration improved. The maximum heart rate decreased from 135 +/- 4 to 101 +/- 5 beats/min (p less than 0.01), minimum stroke volume increased from 29 +/- 2 to 41 +/- 3 ml (p less than 0.05), and pulse pressure grew. Thus, an antigravity suit may help increase initial orthostatic tolerance and maintain it after the combined effect of simulated hypogravity and acceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Musson; Reza Kazimi; Benard Poelker
2007-06-25
Fiber-based drive lasers now produce all of the spin-polarized electron beams at CEBAF/Jefferson Lab. The flexibility of these drive lasers, combined with the existing three-beam CEBAF photoinjector Chopper, provides a means to implement a beat frequency technique to produce long time intervals between individual electron microbunches (tens of nanoseconds) by merely varying the nominal 499 MHz drive laser frequency by < 20%. This submission describes the RF Laser modulator that uses a divider and heterodyne scheme to maintain coherence with the accelerator Master Oscillator (MO), while providing delay resolution in increments of 2ns. Some possible uses for such a beammore » are discussed as well as intended future development.« less
NASA Technical Reports Server (NTRS)
Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, III, Robert A. (Inventor)
1996-01-01
An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.
NASA Technical Reports Server (NTRS)
Zahorian, Stephen A. (Inventor); Livingston, David L. (Inventor); Pretlow, Robert A., III (Inventor)
1994-01-01
An apparatus for acquiring signals emitted by a fetus, identifying fetal heart beats and determining a fetal heart rate is presented. Multiple sensor signals are outputted by a passive fetal heart rate monitoring sensor. Multiple parallel nonlinear filters filter these multiple sensor signals to identify fetal heart beats in the signal data. A processor determines a fetal heart rate based on these identified fetal heart beats. The processor includes the use of a figure of merit weighting of heart rate estimates based on the identified heart beats from each filter for each signal. The fetal heart rate thus determined is outputted to a display, storage, or communications channel. A method for enhanced fetal heart beat discrimination includes acquiring signals from a fetus, identifying fetal heart beats from the signals by multiple parallel nonlinear filtering, and determining a fetal heart rate based on the identified fetal heart beats. A figure of merit operation in this method provides for weighting a plurality of fetal heart rate estimates based on the identified fetal heart beats and selecting the highest ranking fetal heart rate estimate.
An easy-to-use technique to characterize cardiodynamics from first-return maps on ΔRR-intervals
NASA Astrophysics Data System (ADS)
Fresnel, Emeline; Yacoub, Emad; Freitas, Ubiratan; Kerfourn, Adrien; Messager, Valérie; Mallet, Eric; Muir, Jean-François; Letellier, Christophe
2015-08-01
Heart rate variability analysis using 24-h Holter monitoring is frequently performed to assess the cardiovascular status of a patient. The present retrospective study is based on the beat-to-beat interval variations or ΔRR, which offer a better view of the underlying structures governing the cardiodynamics than the common RR-intervals. By investigating data for three groups of adults (with normal sinus rhythm, congestive heart failure, and atrial fibrillation, respectively), we showed that the first-return maps built on ΔRR can be classified according to three structures: (i) a moderate central disk, (ii) a reduced central disk with well-defined segments, and (iii) a large triangular shape. These three very different structures can be distinguished by computing a Shannon entropy based on a symbolic dynamics and an asymmetry coefficient, here introduced to quantify the balance between accelerations and decelerations in the cardiac rhythm. The probability P111111 of successive heart beats without large beat-to-beat fluctuations allows to assess the regularity of the cardiodynamics. A characteristic time scale, corresponding to the partition inducing the largest Shannon entropy, was also introduced to quantify the ability of the heart to modulate its rhythm: it was significantly different for the three structures of first-return maps. A blind validation was performed to validate the technique.
Beating time: How ensemble musicians' cueing gestures communicate beat position and tempo.
Bishop, Laura; Goebl, Werner
2018-01-01
Ensemble musicians typically exchange visual cues to coordinate piece entrances. "Cueing-in" gestures indicate when to begin playing and at what tempo. This study investigated how timing information is encoded in musicians' cueing-in gestures. Gesture acceleration patterns were expected to indicate beat position, while gesture periodicity, duration, and peak gesture velocity were expected to indicate tempo. Same-instrument ensembles (e.g., piano-piano) were expected to synchronize more successfully than mixed-instrument ensembles (e.g., piano-violin). Duos performed short passages as their head and (for violinists) bowing hand movements were tracked with accelerometers and Kinect sensors. Performers alternated between leader/follower roles; leaders heard a tempo via headphones and cued their partner in nonverbally. Violin duos synchronized more successfully than either piano duos or piano-violin duos, possibly because violinists were more experienced in ensemble playing than pianists. Peak acceleration indicated beat position in leaders' head-nodding gestures. Gesture duration and periodicity in leaders' head and bowing hand gestures indicated tempo. The results show that the spatio-temporal characteristics of cueing-in gestures guide beat perception, enabling synchronization with visual gestures that follow a range of spatial trajectories.
1991-01-09
Linacs Duke a NIST/NRL UCSB Accelerator Storage ring race - track Electrostatic microtron Van de Graaf Status 1993 19 9 2 h 1990 Electron Energy 0.5-1... phase velocity slightly less than the electrons. This wave is called the "ponderomotive potential wave", which is generated by the beating of the...c is the speed of light. The beat wave has the same frequency as the radiation, but its wavenumber is k + k,. The phase velocity of the beat wave Vph
Cygankiewicz, Iwona
2013-01-01
Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death. © 2013.
Jump if you can't take the heat: three escape gaits of Paramecium swimming
NASA Astrophysics Data System (ADS)
Baroud, Charles N.; Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuys-Williams, Pascale
2010-11-01
Paramecium is able to swim at velocities reaching several times its body size per second, by beating its thousands of cilia in an organized fashion. Here we show that Paramecium has in fact three distinct swimming gaits to escape from an aggression in the form of localized heating, depending on the magnitude of the aggression: For a weak agression, normal swimming is sufficient and produces a steady swimming velocity through cilia beating. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which later give way to the usual metachronal waves. The synchronized beating yields high initial accelerations but requires the cell to coast through the synchrnized recovery. Finally, escape from a life-threatening agression is achieved by a "jumping" gait which does not rely on the cilia but is achieved from the explosive release of a rod-like organelles in the direction of the hot spot. Measurements through high-speed video explain the role of these rods in defending Paramecium. They also show that the zero-Reynolds number assumption is unverified in most cases.
Grose, John H.; Buss, Emily; Hall, Joseph W.
2012-01-01
Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz – all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. PMID:22326292
Grose, John H; Buss, Emily; Hall, Joseph W
2012-03-01
Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz - all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. Copyright © 2012 Elsevier B.V. All rights reserved.
Asymmetric acceleration/deceleration dynamics in heart rate variability
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, J.; Echeverria, J. C.; Meraz, M.; Rodriguez, E.
2017-08-01
The heart rate variability (HRV) is an important physiological signal used either to assess the risk of cardiac death or to model the cardiovascular regulatory dynamics. Asymmetries in HRV data have been observed using 2D Poincare plots, which have been linked to a non-equilibrium operation of the cardiac autonomic system. This work further explores the presence of asymmetries but in the serial correlations of the dynamics of HRV data. To this end, detrended fluctuation analysis (DFA) was used to estimate the Hurst exponent both when the heart rate is accelerating and when it is decelerating. The analysis is conducted using data collected from subjects under normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation (AF) . For the NSR cases, it was found that correlations are stronger (p < 0 . 05) when the heart rate is accelerating than when it is decelerating over different scales in the range 20-40 beats. In contrast, the opposite behavior was detected for the CHF and AF patients. Possible links between asymmetric correlations in the dynamics and the mechanisms controlling the operation of the heart rate are discussed, as well as their implications for modeling the cardiovascular regulatory dynamics.
Influence of carbon monoxide poisoning on the fetal heart monitor tracing: a report of 3 cases.
Towers, Craig V; Corcoran, Vincent A
2009-03-01
The diagnosis of carbon monoxide poisoning in the third trimester of pregnancy requires an index of suspicion, and the appearance of the fetal heart monitor tracing may help in this regard. Three cases of third-trimester acute carbon monoxide poisoning occurred. In each pregnancy, the fetal heart monitor tracing on admission was correlated with the maternal carboxyhemoglobin level, and how the pattern changed following the institution of therapy was analyzed. In all 3 cases, the initial fetal heart rate pattern demonstrated decreased variability with an elevated baseline and an absence of accelerations and decelerations. Within 45-90 minutes of treatment onset, the baseline fetal heart rate dropped by 20-40 beats per minute, the variability became moderate, and accelerations occurred. Absent accelerations with minimal variability, if caused by uteroplacental insufficiency, are usually preceded by recurrent decelerations. Absent accelerations with minimal variability in the absence of recurrent decelerations may suggest another cause, of which carbon monoxide intoxication can be added to the differential, especially since this disorder often has nonspecific clinical symptoms.
Jones, Peter; Ovenden, Nick; Dauger, Stéphane; Peters, Mark J
2014-01-01
Reductions in heart rate occur frequently in children during critical care intubation and are currently considered the gold standard for haemodynamic instability. Our objective was to estimate loss of heart beats during intubation and compare this to reduction in heart rate alone whilst testing the impact of atropine pre-medication. Data were extracted from a prospective 2-year cohort study of intubation ECGs from critically ill children in PICU/Paediatric Transport. A three step algorithm was established to exclude variation in pre-intubation heart rate (using a 95%CI limit derived from pre-intubation heart rate variation of the children included), measure the heart rate over time and finally the estimate the numbers of lost beats. 333 intubations in children were eligible for inclusion of which 245 were available for analysis (74%). Intubations where the fall in heart rate was less than 50 bpm were accompanied almost exclusively by less than 25 lost beats (n = 175, median 0 [0-1]). When there was a reduction of >50 bpm there was a poor correlation with numbers of lost beats (n = 70, median 42 [15-83]). During intubation the median number of lost beats was 8 [1]-[32] when atropine was not used compared to 0 [0-0] when atropine was used (p<0.001). A reduction in heart rate during intubation of <50 bpm reliably predicted a minimal loss of beats. When the reduction in heart rate was >50 bpm the heart rate was poorly predictive of lost beats. A study looking at the relationship between lost beats and cardiac output needs to be performed. Atropine reduces both fall in heart rate and loss of beats. Similar area-under-the-curve methodology may be useful for estimating risk when biological parameters deviate outside normal range.
Direct Visualization of Mechanical Beats by Means of an Oscillating Smartphone
NASA Astrophysics Data System (ADS)
Giménez, Marcos H.; Salinas, Isabel; Monsoriu, Juan A.; Castro-Palacio, Juan C.
2017-10-01
The resonance phenomenon is widely known in physics courses. Qualitatively speaking, resonance takes place in a driven oscillating system whenever the frequency approaches the natural frequency, resulting in maximal oscillatory amplitude. Very closely related to resonance is the phenomenon of mechanical beating, which occurs when the driving and natural frequencies of the system are slightly different. The frequency of the beat is just the difference of the natural and driving frequencies. Beats are very familiar in acoustic systems. There are several works in this journal on visualizing the beats in acoustic systems. For instance, the microphone and the speaker of two mobile devices were used in previous work to analyze the acoustic beats produced by two signals of close frequencies. The formation of beats can also be visualized in mechanical systems, such as a mass-spring system or a double-driven string. Here, the mechanical beats in a smartphone-spring system are directly visualized in a simple way. The frequency of the beats is measured by means of the acceleration sensor of a smartphone, which hangs from a spring attached to a mechanical driver. This laboratory experiment is suitable for both high school and first-year university physics courses.
Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki
2015-01-01
Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use.
Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Marusic, A.; Minty, M.
2014-09-09
To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximizemore » the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.« less
1981-03-01
adjusting the metronome beats to coincide with the stressed syllables. The sentences were constructed to have a regular rhythm. They were: "I think’ that it...rate was 92 beats per minute, the conversational rate was 120 beats per minute, and the fast rate was 160 beats per minute. Both sentences were recorded...shown in Figure 6 also suggests amplitude modulation (von Holst’s superimposition effect). Thus on some coinciding cycles a " beat " phenomenon can be
[Regeneration of the ciliary beat of human ciliated cells].
Wolf, G; Koidl, B; Pelzmann, B
1991-10-01
The influence of an isotonic, alkaline saline solution (diluted "Emser Sole" or brine from the spa of Bad Ems) on the ciliary beat of isolated cultured human ciliated cells of the upper respiratory tract was investigated. The ciliary beat was observed via an inverted phase contrast microscope (Zeiss Axiomat IDPC) and measured microphotometrically under physiological conditions and after the damaging influence of 1% propanal solution. Under physiological conditions the saline solution had a positive, although statistically not significant influence on the frequency of the ciliary beat. After damage of the cultivated cells by 1% propanal solution, the saline solution had a significant better influence on the regeneration of the cultured cells than a physiological sodium chloride solution. It is concluded that diluted brine from Bad Ems has a positive effect on the ciliary beat of the respiratory epithelium and accelerates its regeneration after damage by viral and bacterial infections, surgery or inhaled noxae.
Schaedlich, Kristina; Schmidt, Juliane-Susanne; Kwong, Wing Yee; Sinclair, Kevin D; Kurz, Randy; Jahnke, Heinz-Georg; Fischer, Bernd
2015-07-01
Di(2-ethylhexyl)phthalate (DEHP) is the most common plasticizer in plastic devices of everyday use. It is a ubiquitous environmental contaminant and primarily known to impair male gonadal development and fertility. Studies concerning the long-term effects of prenatal DEHP exposure on certain diseases [The Developmental Origins of Health and Disease paradigm (DOHaD) hypothesis] are scarce although it is proven that DEHP crosses the placenta. Rising environmental pollution during the last centuries coincides with an increasing prevalence of cardiovascular and metabolic diseases. We have investigated the effects of an early embryonic DEHP exposure at different developmental stages on cardiomyogenesis. We used an in-vitro model, the murine P19 embryonic carcinoma cell line (P19 ECC), mimicking early embryonic stages up to differentiated beating cardiomyocytes. P19 ECC were exposed to DEHP (5, 50, 100 µg ml(-1)) at the undifferentiated stage for 5 days and subsequently differentiated to beating cardiomyocytes. We analyzed the expression of metabolic (Pparg1, Fabp4 and Glut4), cardiac (Myh6, Gja1) and methylation (Dnmt1, Dnmt3a) marker genes by quantitative real-time PCR (qRT-PCR), beating rate and the differentiation velocity of the cells. The methylation status of Pparg1, Ppara and Glut4 was investigated by pyrosequencing. DEHP significantly altered the expression of all investigated genes. The beating rate and differentiation velocity were accelerated. Exposure to DEHP led to small but statistically significant increases in methylation of specific CpGs within Ppara and Pparg1, which otherwise were generally hypomethylated, but methylation of Glut4 was unaltered. Early DEHP exposure of P19 ECC alters the expression of genes associated with cellular metabolism and the functional features of cardiomyocytes. Copyright © 2014 John Wiley & Sons, Ltd.
Bishop, Laura; Goebl, Werner
2017-07-21
Ensemble musicians often exchange visual cues in the form of body gestures (e.g., rhythmic head nods) to help coordinate piece entrances. These cues must communicate beats clearly, especially if the piece requires interperformer synchronization of the first chord. This study aimed to (1) replicate prior findings suggesting that points of peak acceleration in head gestures communicate beat position and (2) identify the kinematic features of head gestures that encourage successful synchronization. It was expected that increased precision of the alignment between leaders' head gestures and first note onsets, increased gesture smoothness, magnitude, and prototypicality, and increased leader ensemble/conducting experience would improve gesture synchronizability. Audio/MIDI and motion capture recordings were made of piano duos performing short musical passages under assigned leader/follower conditions. The leader of each trial listened to a particular tempo over headphones, then cued their partner in at the given tempo, without speaking. A subset of motion capture recordings were then presented as point-light videos with corresponding audio to a sample of musicians who tapped in synchrony with the beat. Musicians were found to align their first taps with the period of deceleration following acceleration peaks in leaders' head gestures, suggesting that acceleration patterns communicate beat position. Musicians' synchronization with leaders' first onsets improved as cueing gesture smoothness and magnitude increased and prototypicality decreased. Synchronization was also more successful with more experienced leaders' gestures. These results might be applied to interactive systems using gesture recognition or reproduction for music-making tasks (e.g., intelligent accompaniment systems).
Clark, Timothy Darren; Sandblom, E; Hinch, S G; Patterson, D A; Frappell, P B; Farrell, A P
2010-06-01
Monitoring the physiological status and behaviour of free-swimming fishes remains a challenging task, although great promise stems from techniques such as biologging and biotelemetry. Here, implanted data loggers were used to simultaneously measure heart rate (f (H)), visceral temperature, and a derivation of acceleration in two groups of wild adult sockeye salmon (Oncorhynchus nerka) held at two different water speeds (slow and fast). Calibration experiments performed with individual fish in a swim tunnel respirometer generated strong relationships between acceleration, f (H), tail beat frequency and energy expenditure over a wide range of swimming velocities. The regression equations were then used to estimate the overall energy expenditure of the groups of fish held at different water speeds. As expected, fish held at faster water speeds exhibited greater f (H) and acceleration, and correspondingly a higher estimated energy expenditure than fish held at slower water speeds. These estimates were consistent with gross somatic energy density of fish at death, as determined using proximate analyses of a dorsal tissue sample. Heart rate alone and in combination with acceleration, rather than acceleration alone, provided the most accurate proxies for energy expenditure in these studies. Even so, acceleration provided useful information on the behaviour of fish and may itself prove to be a valuable proxy for energy expenditure under different environmental conditions, using a different derivation of the acceleration data, and/or with further calibration experiments. These results strengthen the possibility that biologging or biotelemetry of f (H) and acceleration may be usefully applied to migrating sockeye salmon to monitor physiology and behaviour, and to estimate energy use in the natural environment.
Individual Differences in Beat Perception Affect Gait Responses to Low- and High-Groove Music
Leow, Li-Ann; Parrott, Taylor; Grahn, Jessica A.
2014-01-01
Slowed gait in patients with Parkinson’s disease (PD) can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the “beat,” which might be difficult for patients with PD who tend to show weak beat perception. One solution may be to use high-groove music, which has high beat salience that may facilitate synchronization, and affective properties, which may improve motivation to move. As a first step to understanding how beat perception affects gait in complex neurological disorders, we examined how beat perception ability affected gait in neurotypical adults. Synchronization performance and gait parameters were assessed as healthy young adults with strong or weak beat perception synchronized to low-groove music, high-groove music, and metronome cues. High-groove music was predicted to elicit better synchronization than low-groove music, due to its higher beat salience. Two musical tempi, or rates, were used: (1) preferred tempo: beat rate matched to preferred step rate and (2) faster tempo: beat rate adjusted to 22.5% faster than preferred step rate. For both strong and weak beat-perceivers, synchronization performance was best with metronome cues, followed by high-groove music, and worst with low-groove music. In addition, high-groove music elicited longer and faster steps than low-groove music, both at preferred tempo and at faster tempo. Low-groove music was particularly detrimental to gait in weak beat-perceivers, who showed slower and shorter steps compared to uncued walking. The findings show that individual differences in beat perception affect gait when synchronizing footsteps to music, and have implications for using music in gait rehabilitation. PMID:25374521
Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.
Osadchii, Oleg E
2016-01-01
Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.
Metronome rate and walking foot contact time in young adults.
Dickstein, Ruth; Plax, Michael
2012-02-01
It is assumed that when people walk guided by an audible constant rate, they match foot contact to the external pace. The purpose of this preliminary study was to test that assumption by examining the temporal relationship between audible signals generated by a metronome and foot contact time during gait. Ten healthy young women were tested in walking repetitions guided by metronome rates of 60, 110, and 150 beats/min. Metronome beats and foot contact times were collected in real time. The findings indicated that foot contact was not fully synchronized with the auditory signals; the shortest time interval between the metronome beat and foot contact time was at the prescribed rate of 60 beats/min., while the longest interval was at the rate of 150 beats/min. The correlation between left and right foot contact times was highest with the slowest rate and lowest with the fastest rate.
Li, Yingxin; Zhang, Xiaoxiao; Zhang, Chen; Zhang, Xiaoying; Li, Ying; Qi, Zhao; Szeto, Christopher; Tang, Mingxin; Peng, Yizhi; Molkentin, Jeffery D; Houser, Steven R; Xie, Mingxing; Chen, Xiongwen
2018-04-01
Cav3.1 T-type Ca 2+ channel current (I Ca-T ) contributes to heart rate genesis but is not known to contribute to heart rate regulation by the sympathetic/β-adrenergic system (SAS). We show that the loss of Cav3.1 makes the beating rates of the heart in vivo and perfused hearts ex vivo, as well as sinoatrial node cells, less sensitive to β-adrenergic stimulation; it also renders less conduction acceleration through the atrioventricular node by β-adrenergic stimulation. Increasing Cav3.1 in cardiomyocytes has the opposite effects. I Ca-T in sinoatrial nodal cells can be upregulated by β-adrenergic stimulation. The results of the present study add a new contribution to heart rate regulation by the SAS system and provide potential new mechanisms for the dysregulation of heart rate and conduction by the SAS in the heart. T-type Ca 2+ channel can be a target for heart disease treatments that aim to slow down the heart rate ABSTRACT: Cav3.1 (α 1G ) T-type Ca 2+ channel (TTCC) is expressed in mouse sinoatrial node cells (SANCs) and atrioventricular (AV) nodal cells and contributes to heart rate (HR) genesis and AV conduction. However, its role in HR regulation and AV conduction acceleration by the β-adrenergic system (SAS) is unclear. In the present study, L- (I Ca-L ) and T-type (I Ca-T ) Ca 2+ currents were recorded in SANCs from Cav3.1 transgenic (TG) and knockout (KO), and control mice. I Ca-T was absent in KO SANCs but enhanced in TG SANCs. In anaesthetized animals, different doses of isoproterenol (ISO) were infused via the jugular vein and the HR was recorded. The EC 50 of the HR response to ISO was lower in TG mice but higher in KO mice, and the maximal percentage of HR increase by ISO was greater in TG mice but less in KO mice. In Langendorff-perfused hearts, ISO increased HR and shortened PR intervals to a greater extent in TG but to a less extent in KO hearts. KO SANCs had significantly slower spontaneous beating rates than control SANCs before and after ISO; TG SANCs had similar basal beating rates as control SANCs probably as a result of decreased I Ca-L but a greater response to ISO than control SANCs. I Ca-T in SANCs was significantly increased by ISO. I Ca-T upregulation by β-adrenergic stimulation contributes to HR and conduction regulation by the SAS. TTCC can be a target for slowing the HR. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal
López-Caballero, Fran; Escera, Carles
2017-01-01
When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal. PMID:29187819
Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal.
López-Caballero, Fran; Escera, Carles
2017-01-01
When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.
Kriščiukaitis, Algimantas; Šimoliūnienė, Renata; Macas, Andrius; Petrolis, Robertas; Drėgūnas, Kęstutis; Bakšytė, Giedrė; Pieteris, Linas; Bertašienė, Zita; Žaliūnas, Remigijus
2014-01-01
Beat-to-beat alteration in ventricles repolarization reflected by alternans of amplitude and/or shape of ECG S-T,T segment (TWA) is known as phenomena related with risk of severe arrhythmias leading to sudden cardiac death. Technical difficulties have caused limited its usage in clinical diagnostics. Possibilities to register and analyze multimodal signals reflecting heart activity inspired search for new technical solutions. First objective of this study was to test whether thoracic impedance signal and beat-to-beat heart rate reflect repolarization alternans detected as TWA. The second objective was revelation of multimodal signal features more comprehensively representing the phenomena and increasing its prognostic usefulness. ECG, and thoracic impedance signal recordings made during 24h follow-up of the patients hospitalized in acute phase of myocardial infarction were used for investigation. Signal morphology variations reflecting estimates were obtained by the principal component analysis-based method. Clinical outcomes of patients (survival and/or rehospitalization in 6 and 12 months) were compared to repolarization alternans and heart rate variability estimates. Repolarization alternans detected as TWA was also reflected in estimates of thoracic impedance signal shape and variation in beat-to-beat heart rate. All these parameters showed correlation with clinical outcomes of patients. The strongest significant correlation showed magnitude of alternans in estimates of thoracic impedance signal shape. The features of ECG, thoracic impedance signal and beat-to-beat variability of heart rate, give comprehensive estimates of repolarization alternans, which correlate, with clinical outcomes of the patients and we recommend using them to improve diagnostic reliability. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms.
Jafari Tadi, Mojtaba; Lehtonen, Eero; Hurnanen, Tero; Koskinen, Juho; Eriksson, Jonas; Pänkäälä, Mikko; Teräs, Mika; Koivisto, Tero
2016-11-01
Heart rate monitoring helps in assessing the functionality and condition of the cardiovascular system. We present a new real-time applicable approach for estimating beat-to-beat time intervals and heart rate in seismocardiograms acquired from a tri-axial microelectromechanical accelerometer. Seismocardiography (SCG) is a non-invasive method for heart monitoring which measures the mechanical activity of the heart. Measuring true beat-to-beat time intervals from SCG could be used for monitoring of the heart rhythm, for heart rate variability analysis and for many other clinical applications. In this paper we present the Hilbert adaptive beat identification technique for the detection of heartbeat timings and inter-beat time intervals in SCG from healthy volunteers in three different positions, i.e. supine, left and right recumbent. Our method is electrocardiogram (ECG) independent, as it does not require any ECG fiducial points to estimate the beat-to-beat intervals. The performance of the algorithm was tested against standard ECG measurements. The average true positive rate, positive prediction value and detection error rate for the different positions were, respectively, supine (95.8%, 96.0% and ≃0.6%), left (99.3%, 98.8% and ≃0.001%) and right (99.53%, 99.3% and ≃0.01%). High correlation and agreement was observed between SCG and ECG inter-beat intervals (r > 0.99) for all positions, which highlights the capability of the algorithm for SCG heart monitoring from different positions. Additionally, we demonstrate the applicability of the proposed method in smartphone based SCG. In conclusion, the proposed algorithm can be used for real-time continuous unobtrusive cardiac monitoring, smartphone cardiography, and in wearable devices aimed at health and well-being applications.
Roerdink, Melvyn; Bank, Paulina J M; Peper, C Lieke E; Beek, Peter J
2011-04-01
Acoustic rhythms are frequently used in gait rehabilitation, with positive instantaneous and prolonged transfer effects on various gait characteristics. The gait modifying ability of acoustic rhythms depends on how well gait is tied to the beat, which can be assessed with measures of relative timing of auditory-motor coordination. We examined auditory-motor coordination in 20 healthy elderly individuals walking to metronome beats with pacing frequencies slower than, equal to, and faster than their preferred cadence. We found that more steps were required to adjust gait to the beat, the more the metronome rate deviated from the preferred cadence. Furthermore, participants anticipated the beat with their footfalls to various degrees, depending on the metronome rate; the faster the tempo, the smaller the phase advance or phase lead. Finally, the variability in the relative timing between footfalls and the beat was smaller for metronome rates closer to the preferred cadence, reflecting superior auditory-motor coordination. These observations have three practical implications. First, instantaneous effects of acoustic stimuli on gait characteristics may typically be underestimated given the considerable number of steps required to attune gait to the beat in combination with the usual short walkways. Second, a systematic phase lead of footfalls to the beat does not necessarily reflect a reduced ability to couple gait to the metronome. Third, the efficacy of acoustic rhythms to modify gait depends on metronome rate. Gait is coupled best to the beat for metronome rates near the preferred cadence. Copyright © 2011 Elsevier B.V. All rights reserved.
Midbrain adaptation may set the stage for the perception of musical beat
2017-01-01
The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. PMID:29118141
Midbrain adaptation may set the stage for the perception of musical beat.
Rajendran, Vani G; Harper, Nicol S; Garcia-Lazaro, Jose A; Lesica, Nicholas A; Schnupp, Jan W H
2017-11-15
The ability to spontaneously feel a beat in music is a phenomenon widely believed to be unique to humans. Though beat perception involves the coordinated engagement of sensory, motor and cognitive processes in humans, the contribution of low-level auditory processing to the activation of these networks in a beat-specific manner is poorly understood. Here, we present evidence from a rodent model that midbrain preprocessing of sounds may already be shaping where the beat is ultimately felt. For the tested set of musical rhythms, on-beat sounds on average evoked higher firing rates than off-beat sounds, and this difference was a defining feature of the set of beat interpretations most commonly perceived by human listeners over others. Basic firing rate adaptation provided a sufficient explanation for these results. Our findings suggest that midbrain adaptation, by encoding the temporal context of sounds, creates points of neural emphasis that may influence the perceptual emergence of a beat. © 2017 The Authors.
Selective neuronal entrainment to the beat and meter embedded in a musical rhythm.
Nozaradan, Sylvie; Peretz, Isabelle; Mouraux, André
2012-12-05
Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was recorded while human participants listened to rhythms consisting of short sounds alternating with silences to induce a spontaneous perception of beat and meter. We found that the rhythmic stimuli elicited multiple steady state-evoked potentials (SS-EPs) observed in the EEG spectrum at frequencies corresponding to the rhythmic pattern envelope. Most importantly, the amplitude of the SS-EPs obtained at beat and meter frequencies were selectively enhanced even though the acoustic energy was not necessarily predominant at these frequencies. Furthermore, accelerating the tempo of the rhythmic stimuli so as to move away from the range of frequencies at which beats are usually perceived impaired the selective enhancement of SS-EPs at these frequencies. The observation that beat- and meter-related SS-EPs are selectively enhanced at frequencies compatible with beat and meter perception indicates that these responses do not merely reflect the physical structure of the sound envelope but, instead, reflect the spontaneous emergence of an internal representation of beat, possibly through a mechanism of selective neuronal entrainment within a resonance frequency range. Taken together, these results suggest that musical rhythms constitute a unique context to gain insight on general mechanisms of entrainment, from the neuronal level to individual level.
The role of the autonomic nervous system in the resting tachycardia of human hyperthyroidism.
Maciel, B C; Gallo, L; Marin Neto, J A; Maciel, L M; Alves, M L; Paccola, G M; Iazigi, N
1987-02-01
The mechanisms that control resting heart rate in hyperthyroidism were evaluated in six patients before and after treatment with propylthiouracil. The patients were subjected to pharmacological blockade under resting conditions in two experimental sessions: first session, propranolol (0.2 mg/kg body weight); second session, atropine (0.04 mg/kg body weight) followed by propranolol (0.2 mg/kg body weight). All drugs were administered intravenously. Resting heart rate was significantly reduced from 100 +/- 6.5 beats/min to 72 +/- 2.5 beats/min (P less than 0.005) after clinical and laboratory control of the disease. After double blockade, intrinsic heart rate was reduced from 105 +/- 6.8 beats/min before treatment to 98 +/- 6.0 beats/min after treatment (P less than 0.025). The reduction in heart rate caused by propranolol was not significantly different before (-13 +/- 1.4 beats/min) and after (-9 +/- 1.0 beats/min) propylthiouracil. In contrast, atropine induced a higher elevation of heart rate after treatment (45 +/- 8.6 beats/min) than before treatment (26 +/- 4.0 beats/min). The present results suggest no appreciable participation of the sympathetic component of the autonomic nervous system in the tachycardia of hyperthyroidism, at least under the conditions of the present study. The small change observed in intrinsic heart rate, although significant, seems to indicate that this is not the most important mechanism involved in this tachycardia. Our results suggest that an important reduction in the efferent activity of the parasympathetic component participates in the mechanisms that modify resting heart rte in hyperthyroidism.
NASA Astrophysics Data System (ADS)
Jafari Tadi, Mojtaba; Koivisto, Tero; Pänkäälä, Mikko; Paasio, Ari; Knuutila, Timo; Teräs, Mika; Hänninen, Pekka
2015-03-01
Systolic time intervals (STI) have significant diagnostic values for a clinical assessment of the left ventricle in adults. This study was conducted to explore the feasibility of using seismocardiography (SCG) to measure the systolic timings of the cardiac cycle accurately. An algorithm was developed for the automatic localization of the cardiac events (e.g. the opening and closing moments of the aortic and mitral valves). Synchronously acquired SCG and electrocardiography (ECG) enabled an accurate beat to beat estimation of the electromechanical systole (QS2), pre-ejection period (PEP) index and left ventricular ejection time (LVET) index. The performance of the algorithm was evaluated on a healthy test group with no evidence of cardiovascular disease (CVD). STI values were corrected based on Weissler's regression method in order to assess the correlation between the heart rate and STIs. One can see from the results that STIs correlate poorly with the heart rate (HR) on this test group. An algorithm was developed to visualize the quiescent phases of the cardiac cycle. A color map displaying the magnitude of SCG accelerations for multiple heartbeats visualizes the average cardiac motions and thereby helps to identify quiescent phases. High correlation between the heart rate and the duration of the cardiac quiescent phases was observed.
Currie, Katharine D; Rosen, Lee M; Millar, Philip J; McKelvie, Robert S; MacDonald, Maureen J
2013-06-01
Decreased heart rate variability and attenuated heart rate recovery following exercise are associated with an increased risk of mortality in cardiac patients. This study investigated the effects of 12 weeks of moderate-intensity endurance exercise (END) and a novel low-volume high-intensity interval exercise protocol (HIT) on measures of heart rate recovery and heart rate variability in patients with coronary artery disease (CAD). Fourteen males with CAD participated in 12 weeks of END or HIT training, each consisting of 2 supervised exercise sessions per week. END consisted of 30-50 min of continuous cycling at 60% peak power output (PPO). HIT involved ten 1-min intervals at 88% PPO separated by 1-min intervals at 10% PPO. Heart rate recovery at 1 min and 2 min was measured before and after training (pre- and post-training, respectively) using a submaximal exercise bout. Resting time and spectral and nonlinear domain measures of heart rate variability were calculated. Following 12 weeks of END and HIT, there was no change in heart rate recovery at 1 min (END, 40 ± 12 beats·min(-1) vs. 37 ± 19 beats·min(-1); HIT, 31 ± 8 beats·min(-1) vs. 35 ± 8 beats·min(-1); p ≥ 0.05 for pre- vs. post-training) or 2 min (END, 44 ± 18 beats·min(-1) vs. 43 ± 19 beats·min(-1); HIT, 42 ± 10 beats·min(-1) vs. 50 ± 6 beats·min(-1); p ≥ 0.05 for pre- vs. post-training). All heart rate variability indices were unchanged following END and HIT training. In conclusion, neither END nor HIT exercise programs elicited training-induced improvements in cardiac autonomic function in patients with CAD. The absence of improvements with training may be attributed to the optimal medical management and normative pretraining state of our sample.
NASA Astrophysics Data System (ADS)
Hildebrandt, Wulf; Schütze, Harald; Stegemann, J.
Rapid quantification of the human baro-reflex control of heart rate has been achieved on a beat-by-beat basis using a neck-chamber with quick ECG-triggered pressure changes. Referring to recent findings on heart rate and stroke volume, the present study uses this technique to compare cardiac output as well as blood pressure changes in supine and upright position to investigate feedback effects and to confirm postural reflex modifications not revealed by RR-interval changes. A suction profile starting at +40 mmHg and running 7 steps of pressure decrease down to -65 mmHg was examined in 0° and 90° tilting position while beat-by-beat recordings were done of heart rate, stroke volume (impedance-cardiography) and blood pressure (Finapres tm) (n=16). The percentual heart rate decrease failed to be significantly different between positions. A suction-induced stroke volume increase led to a cardiac output almost maintained when supine and significantly increased when upright. A decrease in all blood pressure values was found during suction, except for systolic values in upright position which increased. Conclusively, (a) it is confirmed that different inotropy accounts for the seen gravitational effect on the cardiac output not represented by heart rate; (b) identical suction levels in different positions lead to different stimuli at the carotid receptor. This interference has to be considered in microgravity studies by beat-by-beat measurement of cardiac output and blood pressure.
Relationship between cardiac quiescent periods derived from seismocardiography and echocardiography.
Wick, Carson A; Inan, Omer T; Bhatti, Pamela; Tridandapani, Srini
2015-08-01
The seismocardiogram (SCG) is a measure of chest wall acceleration due to cardiac motion that could potentially supplement the electrocardiogram (ECG) to more reliably predict cardiac quiescence. Accurate prediction is critical for modalities requiring minimal motion during imaging data acquisition, such as cardiac computed tomography (CT) and magnetic resonance imaging (MRI). For seven healthy subjects, SCG and B-mode echocardiography were used to identify quiescent periods on a beat-by-beat basis. Quiescent periods were detected as time intervals when the magnitude of the velocity signals calculated from SCG and echocardiography were less than a specified threshold. The quiescent periods detected from SCG were compared to those detected from B-mode echocardiography. The quiescent periods of the SCG were found to occur before those detected by echocardiography. A linear relationship between the delay from SCG- to echocardiography-detected phases with respect to heart rate was found. This delay could potentially be used to predict cardiac quiescence from SCG-observed quiescence for use with cardiac imaging modalities such as CT and MRI.
Integration of auditory and kinesthetic information in motion: alterations in Parkinson's disease.
Sabaté, Magdalena; Llanos, Catalina; Rodríguez, Manuel
2008-07-01
The main aim in this work was to study the interaction between auditory and kinesthetic stimuli and its influence on motion control. The study was performed on healthy subjects and patients with Parkinson's disease (PD). Thirty-five right-handed volunteers (young, PD, and age-matched healthy participants, and PD-patients) were studied with three different motor tasks (slow cyclic movements, fast cyclic movements, and slow continuous movements) and under the action of kinesthetic stimuli and sounds at different beat rates. The action of kinesthesia was evaluated by comparing real movements with virtual movements (movements imaged but not executed). The fast cyclic task was accelerated by kinesthetic but not by auditory stimuli. The slow cyclic task changed with the beat rate of sounds but not with kinesthetic stimuli. The slow continuous task showed an integrated response to both sensorial modalities. These data show that the influence of the multisensory integration on motion changes with the motor task and that some motor patterns are modulated by the simultaneous action of auditory and kinesthetic information, a cross-modal integration that was different in PD-patients. PsycINFO Database Record (c) 2008 APA, all rights reserved.
Elevated resting heart rate is associated with dyslipidemia in middle-aged and elderly Chinese.
Sun, Ji Chao; Huang, Xiao Lin; Deng, Xin Ru; Lv, Xiao Fei; Lu, Jie Li; Chen, Yu Hong; Bi, Yu Fang; Wang, Wei Qing; Xu, Min; Ning, Guang
2014-08-01
To study the relationship between resting heart rate and blood lipid level. A total of 9 415 subjects aged ⋝ 40 years were included in the present study. Their resting heart rate was monitored and their serum levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) were measured to define dyslipidemia according to the 2007 Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. The subjects were divided into group A with their resting heart rate <70 beats/min, group B with their resting heart rate =70-79 beats/min, group C with their resting heart rate =80-89 beats/min, and group D with their resting heart rate ⋝ 90 beats/min. High TG, TC, and LDL-C were presented across the resting heart rate (Ptrend <0.01). Multiple logistic regression analysis revealed that the risk of high TG and TC was higher in subjects with their resting heart rate ⋝ 90 beats/min than in those with their resting heart rate <70 beats/min (OR=1.42; 95% CI: 1.16-1.74 and OR=1.33; 95% CI: 1.09-1.64, respectively). Elevated resting heart rate is associated with high TG and TC in middle-aged and elderly Chinese subjects. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti
2017-02-01
Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit f H at high temperatures in the brown trout in vivo. Copyright © 2017 the American Physiological Society.
Digital computing cardiotachometer
NASA Technical Reports Server (NTRS)
Smith, H. E.; Rasquin, J. R.; Taylor, R. A. (Inventor)
1973-01-01
A tachometer is described which instantaneously measures heart rate. During the two intervals between three succeeding heart beats, the electronic system: (1) measures the interval by counting cycles from a fixed frequency source occurring between the two beats; and (2) computes heat rate during the interval between the next two beats by counting the number of times that the interval count must be counted to zero in order to equal a total count of sixty times (to convert to beats per minute) the frequency of the fixed frequency source.
CaMKII effects on inotropic but not lusitropic force frequency responses require phospholamban
Wu, Yiming; Luczak, Elizabeth D; Lee, Eun-Jeong; Hidalgo, Carlos; Yang, Jinying; Gao, Zhan; Li, Jingdong; Wehrens, Xander; Granzier, Henk; Anderson, Mark E
2014-01-01
Increasing heart rate enhances cardiac contractility (force frequency relationship, FFR) and accelerates cardiac relaxation (frequency-dependent acceleration of relaxation, FDAR). The positive FFR together with FDAR promotes rapid filling and ejection of blood from the left ventricle (LV) at higher heart rates. Recent studies indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is involved in regulating FFR and FDAR. We used isolated perfused mouse hearts to study the mechanisms of FFR and FDAR in different genetic models, including transgenic myocardial CaMKII inhibition (AC3-I) and phosphalamban knockout (PLN−/−). When the rate was increased from 360 beats/min to 630 beats/min in wild type mouse hearts, the LV developed pressure (LVDP) and the maximum rate of increase in pressure (dP/dt max) increased by 37.6 ± 4.7% and 77.0 ± 8.1%, respectively. However, hearts from AC3-I littermates showed no increase of LVDP and a relatively modest (20.4 ± 3.9 %) increase in dP/dt max. PLN−/− hearts had a negative FFR, and myocardial AC3-I expression did not change the FFR in PLN−/− mice. PLN−/− mouse hearts did not exhibit FDAR, while PLN−/−mice with myocardial AC3-I expression showed further frequency dependent reductions in cardiac relaxation, suggesting CaMKII targets in addition to PLN were critical to myocardial relaxation. We incubated a constitutively active form of CaMKII with chemically-skinned myocardium and found that several myofilament proteins were phosphorylated by CaMKII. However, CaMKII did not affect myofilament calcium sensitivity. Our study shows that CaMKII plays an important role in modulating FFR and FDAR in murine hearts and suggest that PLN is a critical target for CaMKII effects on FFR, while CaMKII effects on FDAR partially require PLN-alternative targets. PMID:22796260
Heart Rate During Sleep: Implications for Monitoring Training Status
Waldeck, Miriam R.; Lambert, Michael I.
2003-01-01
Resting heart rate has sometimes been used as a marker of training status. It is reasonable to assume that the relationship between heart rate and training status should be more evident during sleep when extraneous factors that may influence heart rate are reduced. Therefore the aim of the study was to assess the repeatability of monitoring heart rate during sleep when training status remained unchanged, to determine if this measurement had sufficient precision to be used as a marker of training status. The heart rate of ten female subjects was monitored for 24 hours on three occasions over three weeks whilst training status remained unchanged. Average, minimum and maximum heart rate during sleep was calculated. The average heart rate of the group during sleep was similar on each of the three tests (65 ± 9, 63 ± 6 and 67 ± 7 beats·min-1 respectively). The range in minimum heart rate variation during sleep for all subjects over the three testing sessions was from 0 to 10 beats·min-1 (mean = 5 ± 3 beats·min-1) and for maximum heart rate variation was 2 to 31 beats·min-1 (mean = 13 ± 9 beats·min-1). In summary it was found that on an individual basis the minimum heart rate during sleep varied by about 8 beats·min-1. This amount of intrinsic day-to-day variation needs to be considered when changes in heart rate that may occur with changes in training status are interpreted. PMID:24688273
Effect of microwave radiation on the beating rate of isolated frog hearts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, K.C.; Chou, C.K.; Guy, A.W.
1984-01-01
One hundred and two isolated frog hearts were divided into ten groups and placed individually in a waveguide filled with Ringer's solution and exposed to 2,450-MHz CW radiation at 2 and 8.55 W/kg. Heart rate was recorded using one of the following methods: 3-M KCl glass electrode, ultrasound probe, tension transducer, Ringer's solution glass electrode, and a metal wire inserted in the Ringer's solution electrode. An accelerated decrease of heart rate was observed only in those groups recorded using the 3-M KCl electrode and the metal wire Ringer's solution electrode. No effect was found in the other groups. These resultsmore » indicate that bradycardia in isolated hearts could be caused by electrode artifacts resulting from the intensification of electromagnetic fields.« less
Asynchronous beating of cilia enhances particle capture rate
NASA Astrophysics Data System (ADS)
Ding, Yang; Kanso, Eva
2014-11-01
Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.
Efficient mucociliary transport relies on efficient regulation of ciliary beating.
Braiman, Alex; Priel, Zvi
2008-11-30
The respiratory mucociliary epithelium is a synchronized and highly effective waste-disposal system. It uses mucus as a vehicle, driven by beating cilia, to transport unwanted particles, trapped in the mucus, away from the respiratory system. The ciliary machinery can function in at least two different modes: a low rate of beating that requires only ATP, and a high rate of beating regulated by second messengers. The mucus propelling velocity is linearly dependent on ciliary beat frequency (CBF). The linear dependence implies that a substantial increase in transport efficiency requires an equally substantial rise in CBF. The ability to enhance beating in response to various physiological cues is a hallmark of mucociliary cells. An intricate signaling network controls ciliary activity, which relies on interplay between calcium and cyclic nucleotide pathways.
Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma
NASA Astrophysics Data System (ADS)
Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan
2018-01-01
This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164
A microprocessor-based cardiotachometer
NASA Technical Reports Server (NTRS)
Donaldson, J. A.; Crosier, W. G.
1979-01-01
The development of a highly accurate and reliable cardiotachometer for measuring the heart rate of test subjects is discussed. It measures heart rate over the range of 30 to 250 beats/minute and gives instantaneous (beat to beat) updates on the system output so that occasional noise artifacts or ectopic beats could be more easily identified except that occasional missed beats caused by switching ECG leads should not cause a change in the output. The cardiotachometer uses an improved analog filter and R-wave detector and an Intel 8080A microprocessor to handle all of the logic and arithmetic necessary. By using the microprocessor, future hardware modifications could easily be made if functional changes were needed.
Monitoring nocturnal heart rate with bed sensor.
Migliorini, M; Kortelainen, J M; Pärkkä, J; Tenhunen, M; Himanen, S L; Bianchi, A M
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". The aim of this study is to assess the reliability of the estimated Nocturnal Heart Rate (HR), recorded through a bed sensor, compared with the one obtained from standard electrocardiography (ECG). Twenty-eight sleep deprived patients were recorded for one night each through matrix of piezoelectric sensors, integrated into the mattress, through polysomnography (PSG) simultaneously. The two recording methods have been compared in terms of signal quality and differences in heart beat detection. On average, coverage of 92.7% of the total sleep time was obtained for the bed sensor, testifying the good quality of the recordings. The average beat-to-beat error of the inter-beat intervals was 1.06%. These results suggest a good overall signal quality, however, considering fast heart rates (HR > 100 bpm), performances were worse: in fact, the sensitivity in the heart beat detection was 28.4% while the false positive rate was 3.8% which means that a large amount of fast beats were not detected. The accuracy of the measurements made using the bed sensor has less than 10% of failure rate especially in periods with HR lower than 70 bpm. For fast heart beats the uncertainty increases. This can be explained by the change in morphology of the bed sensor signal in correspondence of a higher HR.
Nagel, Christina; Trenk, Lisa; Aurich, Christine; Ille, Natascha; Pichler, Martina; Drillich, Marc; Pohl, Werner; Aurich, Jörg
2016-03-15
Increased cortisol release in parturient cows may either represent a stress response or is part of the endocrine changes that initiate calving. Acute stress elicits an increase in heart rate and decrease in heart rate variability (HRV). Therefore, we analyzed cortisol concentration, heart rate and HRV variables standard deviation of beat-to-beat interval (SDRR) and root mean square of successive beat-to-beat intervals (RMSSD) in dairy cows allowed to calve spontaneously (SPON, n = 6) or with PGF2α-induced preterm parturition (PG, n = 6). We hypothesized that calving is a stressor, but induced parturition is less stressful than term calving. Saliva collection for cortisol analysis and electrocardiogram recordings for heart rate and HRV analysis were performed from 32 hours before to 18.3 ± 0.7 hours after delivery. Cortisol concentration increased in SPON and PG cows, peaked 15 minutes after delivery (P < 0.001) but was higher in SPON versus PG cows (P < 0.001) during and within 2 hours after calving. Heart rate peaked during the expulsive phase of labor and was higher in SPON than in PG cows (time × group P < 0.01). The standard deviation of beat-to-beat interval and RMSSD peaked at the end of the expulsive phase of labor (P < 0.001), indicating high vagal activity. Standard deviation of beat-to-beat interval (P < 0.01) and RMSSD (P < 0.05) were higher in SPON versus PG cows. Based on physiological stress parameters, calving is perceived as stressful but expulsion of the calf is associated with a transiently increased vagal tone which may enhance uterine contractility. Copyright © 2016 Elsevier Inc. All rights reserved.
Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R; Itskovitz-Eldor, Joseph; Binah, Ofer
2012-02-21
The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.
The automated counting of beating rates in individual cultured heart cells.
Collins, G A; Dower, R; Walker, M J
1981-12-01
The effect of drugs on the beating rate of cultured heart cells can be monitored in a number of ways. The simultaneous automated measurement of beating rates of a number of cells allows drug effects to be rapidly quantified. A photoresistive detector placed on a television image of a cell, when coupled to operational amplifiers, gives binary signals that can be processed by a microprocessor. On this basis, we have devised a system that is capable of simultaneously monitoring the individual beating of six single cultured heart cells. A microprocessor automatically processes data obtained under different experimental conditions and records it in suitable descriptive formats such as dose-response curves and double reciprocal plots.
Ross, Bernhard; Miyazaki, Takahiro; Thompson, Jessica; Jamali, Shahab; Fujioka, Takako
2014-10-15
When two tones with slightly different frequencies are presented to both ears, they interact in the central auditory system and induce the sensation of a beating sound. At low difference frequencies, we perceive a single sound, which is moving across the head between the left and right ears. The percept changes to loudness fluctuation, roughness, and pitch with increasing beat rate. To examine the neural representations underlying these different perceptions, we recorded neuromagnetic cortical responses while participants listened to binaural beats at a continuously varying rate between 3 Hz and 60 Hz. Binaural beat responses were analyzed as neuromagnetic oscillations following the trajectory of the stimulus rate. Responses were largest in the 40-Hz gamma range and at low frequencies. Binaural beat responses at 3 Hz showed opposite polarity in the left and right auditory cortices. We suggest that this difference in polarity reflects the opponent neural population code for representing sound location. Binaural beats at any rate induced gamma oscillations. However, the responses were largest at 40-Hz stimulation. We propose that the neuromagnetic gamma oscillations reflect postsynaptic modulation that allows for precise timing of cortical neural firing. Systematic phase differences between bilateral responses suggest that separate sound representations of a sound object exist in the left and right auditory cortices. We conclude that binaural processing at the cortical level occurs with the same temporal acuity as monaural processing whereas the identification of sound location requires further interpretation and is limited by the rate of object representations. Copyright © 2014 the American Physiological Society.
Optics measurement and correction during acceleration with beta-squeeze in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Marusic, A.; Minty, M.
2015-05-03
In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections
Annotated Bibliography of USAARL Technical and Letter Reports. Volume 1. June 1963 - September 1987
1991-05-01
continuous information concerning the duration, ampli- tude and slow-phase velocity of each nystagmic beat during experiments involving the vestibular...one lead of EKG for a full work day. Mean heart rates were tabulated from the record during: Administrative work (87.2 beats per minute), automobile...driving (85.5 beats per minute), eating (90.1 beats per minute), and flying (92.0 beats per minute). Using Tukey’s multiple comparison of means
Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N
1993-01-01
Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.
Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation
NASA Astrophysics Data System (ADS)
CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan
2017-03-01
The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.
Vinogradova, Tatiana M.; Lakatta, Edward G.
2009-01-01
Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534
Using complexity metrics with R-R intervals and BPM heart rate measures.
Wallot, Sebastian; Fusaroli, Riccardo; Tylén, Kristian; Jegindø, Else-Marie
2013-01-01
Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker of interpersonal coordination. However, there is no consensus about which measurements and analytical tools are most appropriate in mapping the temporal dynamics of heart rate and quite different metrics are reported in the literature. As complexity metrics of heart rate variability depend critically on variability of the data, different choices regarding the kind of measures can have a substantial impact on the results. In this article we compare linear and non-linear statistics on two prominent types of heart beat data, beat-to-beat intervals (R-R interval) and beats-per-min (BPM). As a proof-of-concept, we employ a simple rest-exercise-rest task and show that non-linear statistics-fractal (DFA) and recurrence (RQA) analyses-reveal information about heart beat activity above and beyond the simple level of heart rate. Non-linear statistics unveil sustained post-exercise effects on heart rate dynamics, but their power to do so critically depends on the type data that is employed: While R-R intervals are very susceptible to non-linear analyses, the success of non-linear methods for BPM data critically depends on their construction. Generally, "oversampled" BPM time-series can be recommended as they retain most of the information about non-linear aspects of heart beat dynamics.
Using complexity metrics with R-R intervals and BPM heart rate measures
Wallot, Sebastian; Fusaroli, Riccardo; Tylén, Kristian; Jegindø, Else-Marie
2013-01-01
Lately, growing attention in the health sciences has been paid to the dynamics of heart rate as indicator of impending failures and for prognoses. Likewise, in social and cognitive sciences, heart rate is increasingly employed as a measure of arousal, emotional engagement and as a marker of interpersonal coordination. However, there is no consensus about which measurements and analytical tools are most appropriate in mapping the temporal dynamics of heart rate and quite different metrics are reported in the literature. As complexity metrics of heart rate variability depend critically on variability of the data, different choices regarding the kind of measures can have a substantial impact on the results. In this article we compare linear and non-linear statistics on two prominent types of heart beat data, beat-to-beat intervals (R-R interval) and beats-per-min (BPM). As a proof-of-concept, we employ a simple rest-exercise-rest task and show that non-linear statistics—fractal (DFA) and recurrence (RQA) analyses—reveal information about heart beat activity above and beyond the simple level of heart rate. Non-linear statistics unveil sustained post-exercise effects on heart rate dynamics, but their power to do so critically depends on the type data that is employed: While R-R intervals are very susceptible to non-linear analyses, the success of non-linear methods for BPM data critically depends on their construction. Generally, “oversampled” BPM time-series can be recommended as they retain most of the information about non-linear aspects of heart beat dynamics. PMID:23964244
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.
2015-01-01
Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.
Yang, Yang; Kramer, Christopher M.; Shaw, Peter W.; Meyer, Craig H.; Salerno, Michael
2015-01-01
Purpose To design and evaluate 2D L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring 8 slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Methods Combinations of 5 different spiral trajectories and 4 k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in-vivo performance. Results A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity (SSIM) and smallest root mean square error (RMSE) from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. Conclusion First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D-perfusion images with wholeheart coverage at the heart rates up to 125 BPM. PMID:26538511
Daluwatte, Chathuri; Vicente, Jose; Galeotti, Loriano; Johannesen, Lars; Strauss, David G; Scully, Christopher G
Performance of ECG beat detectors is traditionally assessed on long intervals (e.g.: 30min), but only incorrect detections within a short interval (e.g.: 10s) may cause incorrect (i.e., missed+false) heart rate limit alarms (tachycardia and bradycardia). We propose a novel performance metric based on distribution of incorrect beat detection over a short interval and assess its relationship with incorrect heart rate limit alarm rates. Six ECG beat detectors were assessed using performance metrics over long interval (sensitivity and positive predictive value over 30min) and short interval (Area Under empirical cumulative distribution function (AUecdf) for short interval (i.e., 10s) sensitivity and positive predictive value) on two ECG databases. False heart rate limit and asystole alarm rates calculated using a third ECG database were then correlated (Spearman's rank correlation) with each calculated performance metric. False alarm rates correlated with sensitivity calculated on long interval (i.e., 30min) (ρ=-0.8 and p<0.05) and AUecdf for sensitivity (ρ=0.9 and p<0.05) in all assessed ECG databases. Sensitivity over 30min grouped the two detectors with lowest false alarm rates while AUecdf for sensitivity provided further information to identify the two beat detectors with highest false alarm rates as well, which was inseparable with sensitivity over 30min. Short interval performance metrics can provide insights on the potential of a beat detector to generate incorrect heart rate limit alarms. Published by Elsevier Inc.
Rate-dependent Loss of Capture during Ventricular Pacing.
Wang, Jingfeng; Chen, Haiyan; Su, Yangang; Ge, Junbo
2015-01-01
A 63-year-old patient who had undergone atrial septal defect surgical repair received implantation of a single chamber VVI pacemaker for long RR intervals during atrial fibrillation. One week later, an intermittent loss of capture and sensing failure was detected at a pacing rate of 70 beats/min. However, a successful capture was observed during rapid pacing. Consequently, the pacing rate was temporarily adjusted to 90 beats/min. At the 3-month follow-up, the pacemaker was shown to be functioning properly independent of the pacing rate. An echocardiogram showed that the increased pacing rates were accompanied by a reduction in the right ventricular outflow tract dimension. The pacemaker was then permanently programmed at a lower rate of 60 beats/min.
Di Rienzo, Marco; Vaini, Emanuele; Lombardi, Prospero
2017-11-15
Seismocardiogram, SCG, is the measure of precordial vibrations produced by the beating heart, from which cardiac mechanics may be explored on a beat-to-beat basis. We recently collected a large amount of SCG data (>69 recording hours) from an astronaut to investigate cardiac mechanics during sleep aboard the International Space Station and on Earth. SCG sleep recordings are characterized by a prolonged duration and wide heart rate swings, thus a specific algorithm was developed for their analysis. In this article we describe the new algorithm and its performance. The algorithm is composed of three parts: 1) artifacts removal, 2) identification in each SCG waveform of four fiducial points associated with the opening and closure of the aortic and mitral valves, 3) beat-to-beat computation of indexes of cardiac mechanics from the SCG fiducial points. The algorithm was tested on two sleep recordings and yielded the identification of the fiducial points in more than 36,000 beats with a precision, quantified by the Positive Predictive Value, ≥99.2%. These positive findings provide the first evidence that cardiac mechanics may be explored by the automatic analysis of SCG long-lasting recordings, taken out of the laboratory setting, and in presence of significant heart rate modulations.
Xiong, Li; Tian, Ge; Wang, Li; Lin, Wenhua; Chen, Xiangyan; Leung, Thomas Wai Hong; Soo, Yannie Oi Yan; Wong, Lawrence Ka Sing
2017-07-01
External counterpulsation (ECP) is a noninvasive method used to augment cerebral perfusion in ischemic stroke. However, the response of beat-to-beat heart rate variability (HRV) in patients with ischemic stroke during ECP remains unknown. Forty-eight patients with unilateral ischemic stroke at the subacute stage and 14 healthy controls were recruited. Beat-to-beat heart rate before, during, and after ECP was monitored. The frequency components of HRV were calculated using power spectral analysis. Very low frequency (VLF; <.04 Hz), low frequency (LF; .04-.15 Hz), high frequency (HF; .15-.40 Hz), total power spectral density (TP; <.40 Hz), and LF/HF ratio were calculated. In stroke patients, although there were no statistical differences in all of the HRV components, the HRV at VLF showed a trend of increase during ECP compared with baseline in the left-sided stroke patients (P = .083). After ECP, the HRV at LF and TP remained higher than baseline in the right-sided stroke patients (LF, 209.4 versus 117.9, P = .050; TP, 1275.6 versus 390.2, P = .017, respectively). Besides, the HRV at TP also increased after ECP compared with baseline in the left-sided stroke patients (563.0 versus 298.3, P = .029). Irrespective of the side of the ischemia, patients showed an increased beat-to-beat HRV after ECP. Additionally, sympathetic and parasympathetic cardiac modulations were increased after ECP in patients after right-sided subacute stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.
Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei
2017-03-03
Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.
Yin, T C; Kuwada, S
1983-10-01
We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.
Winbo, Annika; Fosdal, Inger; Lindh, Maria; Diamant, Ulla-Britt; Persson, Johan; Wettrell, Göran; Rydberg, Annika
2015-08-01
Early diagnosis and risk stratification is of clinical importance in the long QT syndrome (LQTS), however, little genotype-specific data are available regarding fetal LQTS. We investigate third trimester fetal heart rate, routinely recorded within public maternal health care, as a possible marker for LQT1 genotype and phenotype. This retrospective study includes 184 fetuses from 2 LQT1 founder populations segregating p.Y111C and p.R518X (74 noncarriers and 110 KCNQ1 mutation carriers, whereof 13 double mutation carriers). Pedigree-based measured genotype analysis revealed significant associations between fetal heart rate, genotype, and phenotype; mean third trimester prelabor fetal heart rates obtained from obstetric records (gestational week 29-41) were lower per added mutation (no mutation, 143±5 beats per minute; single mutation, 134±8 beats per minute; double mutations, 111±6 beats per minute; P<0.0001), and lower in symptomatic versus asymptomatic mutation carriers (122±10 versus 137±9 beats per minute; P<0.0001). Strong correlations between fetal heart rate and neonatal heart rate (r=0.700; P<0.001), and postnatal QTc (r=-0.762; P<0.001) were found. In a multivariable model, fetal genotype explained the majority of variance in fetal heart rate (-10 beats per minute per added mutation; P<1.0×10(-23)). Arrhythmia symptoms and intrauterine β-blocker exposure each predicted -7 beats per minute, P<0.0001. In this study including 184 fetuses from 2 LQT1 founder populations, third trimester fetal heart rate discriminated between fetal genotypes and correlated with severity of postnatal cardiac phenotype. This finding strengthens the role of fetal heart rate in the early detection and risk stratification of LQTS, particularly for fetuses with double mutations, at high risk of early life-threatening arrhythmias. © 2015 American Heart Association, Inc.
Sasaki, Ren; Kabir, Arif Md Rashedul; Inoue, Daisuke; Anan, Shizuka; Kimura, Atsushi P; Konagaya, Akihiko; Sada, Kazuki; Kakugo, Akira
2018-04-05
Self-organized structures of biomolecular motor systems, such as cilia and flagella, play key roles in the dynamic processes of living organisms, like locomotion or the transportation of materials. Although fabrication of such self-organized structures from reconstructed biomolecular motor systems has attracted much attention in recent years, a systematic construction methodology is still lacking. In this work, through a bottom-up approach, we fabricated artificial cilia from a reconstructed biomolecular motor system, microtubule/kinesin. The artificial cilia exhibited a beating motion upon the consumption, by the kinesins, of the chemical energy obtained from the hydrolysis of adenosine triphosphate (ATP). Several design parameters, such as the length of the microtubules, the density of the kinesins along the microtubules, the depletion force among the microtubules, etc., have been identified, which permit tuning of the beating frequency of the artificial cilia. The beating frequency of the artificial cilia increases upon increasing the length of the microtubules, but declines for the much longer microtubules. A high density of the kinesins along the microtubules is favorable for the beating motion of the cilia. The depletion force induced bundling of the microtubules accelerated the beating motion of the artificial cilia and increased the beating frequency. This work helps understand the role of self-assembled structures of the biomolecular motor systems in the dynamics of living organisms and is expected to expedite the development of artificial nanomachines, in which the biomolecular motors may serve as actuators.
Induced Pluripotent Stem Cell–Derived Cardiomyocytes Provide In Vivo Biological Pacemaker Function
Chauveau, Samuel; Anyukhovsky, Evgeny P.; Ben-Ari, Meital; Naor, Shulamit; Jiang, Ya-Ping; Danilo, Peter; Rahim, Tania; Burke, Stephanie; Qiu, Xiaoliang; Potapova, Irina A.; Doronin, Sergey V.; Brink, Peter R.; Binah, Ofer
2017-01-01
Background— Although multiple approaches have been used to create biological pacemakers in animal models, induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) have not been investigated for this purpose. We now report pacemaker function of iPSC-CMs in a canine model. Methods and Results— Embryoid bodies were derived from human keratinocytes, their action potential characteristics determined, and their gene expression profiles and markers of differentiation identified. Atrioventricular blocked dogs were immunosuppressed, instrumented with VVI pacemakers, and injected subepicardially into the anterobasal left ventricle with 40 to 75 rhythmically contracting embryoid bodies (totaling 1.3–2×106 cells). ECG and 24-hour Holter monitoring were performed biweekly. After 4 to 13 weeks, epinephrine (1 μg kg−1 min−1) was infused, and the heart removed for histological or electrophysiological study. iPSC-CMs largely lost the markers of pluripotency, became positive for cardiac-specific markers. and manifested If-dependent automaticity. Epicardial pacing of the injection site identified matching beats arising from that site by week 1 after implantation. By week 4, 20% of beats were electronically paced, 60% to 80% of beats were matching, and mean and maximal biological pacemaker rates were 45 and 75 beats per minute. Maximum night and day rates of matching beats were 53±6.9 and 69±10.4 beats per minute, respectively, at 4 weeks. Epinephrine increased rate of matching beats from 35±4.3 to 65±4.0 beats per minute. Incubation of embryoid bodies with the vital dye, Dil, revealed the persistence of injected cells at the site of administration. Conclusions— iPSC-CMs can integrate into host myocardium and create a biological pacemaker. Although this is a promising development, rate and rhythm of the iPSC-CMs pacemakers remain to be optimized. PMID:28500172
Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen
2012-08-10
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.
NASA Astrophysics Data System (ADS)
Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro
It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.
Dependency of Calcium Alternans on Ryanodine Receptor Refractoriness
Alvarez-Lacalle, Enric; Cantalapiedra, Inma R.; Peñaranda, Angelina; Cinca, Juan; Hove-Madsen, Leif; Echebarria, Blas
2013-01-01
Background Rapid pacing rates induce alternations in the cytosolic calcium concentration caused by fluctuations in calcium released from the sarcoplasmic reticulum (SR). However, the relationship between calcium alternans and refractoriness of the SR calcium release channel (RyR2) remains elusive. Methodology/Principal Findings To investigate how ryanodine receptor (RyR2) refractoriness modulates calcium handling on a beat-to-beat basis using a numerical rabbit cardiomyocyte model. We used a mathematical rabbit cardiomyocyte model to study the beat-to-beat calcium response as a function of RyR2 activation and inactivation. Bi-dimensional maps were constructed depicting the beat-to-beat response. When alternans was observed, a novel numerical clamping protocol was used to determine whether alternans was caused by oscillations in SR calcium loading or by RyR2 refractoriness. Using this protocol, we identified regions of RyR2 gating parameters where SR calcium loading or RyR2 refractoriness underlie the induction of calcium alternans, and we found that at the onset of alternans both mechanisms contribute. At low inactivation rates of the RyR2, calcium alternans was caused by alternation in SR calcium loading, while at low activation rates it was caused by alternation in the level of available RyR2s. Conclusions/Significance We have mapped cardiomyocyte beat-to-beat responses as a function of RyR2 activation and inactivation, identifying domains where SR calcium load or RyR2 refractoriness underlie the induction of calcium alternans. A corollary of this work is that RyR2 refractoriness due to slow recovery from inactivation can be the cause of calcium alternans even when alternation in SR calcium load is present. PMID:23390511
Autonomic predictors of recovery following surgery: A comparative study
Williamson, John B.; Lewis, Greg; Grippo, Angela J.; Lamb, Damon; Harden, Emily; Handleman, Mika; Lebow, Jocelyn; Carter, C. Sue; Porges, Stephen W.
2015-01-01
Although heart rate and temperature are continuously monitored in patients during recovery following surgery, measures that extract direct manifestations of neural regulation of autonomic circuits from the beat-to-beat heart rate may be more sensitive to outcome. We explore the relationship between features of autonomic regulation and survival in the prairie vole, a small mammal, with features of vagal regulation of the heart similar to humans. Cardiac vagal regulation is manifested in the beat-to-beat heart rate variability (HRV) pattern and can be quantified by extracting measures of the amplitude of periodic oscillations associated with spontaneous breathing. Thus, monitoring beat-to-beat heart rate patterns post-surgery in the prairie vole may provide an opportunity to dynamically assess autonomic adjustments during recovery. Surgeries to implant telemetry devices to monitor body temperature and continuous ECG in prairie voles are routinely performed in our laboratory. Ten of these implanted prairie voles died within 48 h post-surgery. To compare the post-surgery autonomic trajectories with typical surviving prairie voles, the post-surgery data from 17 surviving prairie voles were randomly selected. The data are reported hourly for 27 prairie voles between 6 and 14 h (1 h before the demise of the first subject) post-surgery. Receiver operator curves were calculated hourly for each variable to evaluate sensitivity in discriminating survival. The data illustrate that measures of HRV are the most sensitive indicators. These findings provide a foundation for investigating further neural mechanisms of cardiovascular function. PMID:20451468
Morris, Gwilym M; D'Souza, Alicia; Dobrzynski, Halina; Lei, Ming; Choudhury, Moinuddin; Billeter, Rudi; Kryukova, Yelena; Robinson, Richard B; Kingston, Paul A; Boyett, Mark R
2013-10-01
Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.
High Oxygen Partial Pressure Decreases Anemia-Induced Heart Rate Increase Equivalent to Transfusion
Feiner, John R.; Finlay-Morreale, Heather E.; Toy, Pearl; Lieberman, Jeremy A.; Viele, Maurene K.; Hopf, Harriet W.; Weiskopf, Richard B.
2011-01-01
Background Anemia is associated with morbidity and mortality and frequently leads to transfusion of erythrocytes. We sought to compare directly the effect of high inspired oxygen fraction vs. transfusion of erythrocytes on the anemia-induced increased heart rate (HR) in humans undergoing experimental acute isovolemic anemia. Methods We combined HR data from healthy subjects undergoing experimental isovolemic anemia in seven studies performed by our group. We examined HR changes associated with breathing 100% oxygen by non-rebreathing face mask vs. transfusion of erythrocytes at their nadir hemoglobin (Hb) concentration of 5 g/dL. Data were analyzed using a mixed-effects model. Results HR had an inverse linear relationship to hemoglobin concentration with a mean increase of 3.9 beats per minute per gram of Hb (beats/min/g Hb) decrease (95% confidence interval [CI], 3.7 – 4.1 beats/min/g Hb), P < 0.0001. Return of autologous erythrocytes significantly decreased HR by 5.3 beats/min/g Hb (95% CI, 3.8 – 6.8 beats/min/g Hb) increase, P < 0.0001. HR at nadir Hb of 5.6 g/dL (95% CI, 5.5 – 5.7 g/dL) when breathing air (91.4 beats/min; 95% CI, 87.6 – 95.2 beats/min) was reduced by breathing 100% oxygen (83.0 beats/min; 95% CI, 79.0 -87.0 beats/min), P < 0.0001. The HR at hemoglobin 5.6 g/dL when breathing oxygen was equivalent to the HR at Hb 8.9 g/dL when breathing air. Conclusions High arterial oxygen partial pressure reverses the heart rate response to anemia, probably owing to its usability, rather than its effect on total oxygen content. The benefit of high arterial oxygen partial pressure has significant potential clinical implications for the acute treatment of anemia and results of transfusion trials. PMID:21768873
Hunting for the beat in the body: on period and phase locking in music-induced movement.
Burger, Birgitta; Thompson, Marc R; Luck, Geoff; Saarikallio, Suvi H; Toiviainen, Petri
2014-01-01
Music has the capacity to induce movement in humans. Such responses during music listening are usually spontaneous and range from tapping to full-body dancing. However, it is still unclear how humans embody musical structures to facilitate entrainment. This paper describes two experiments, one dealing with period locking to different metrical levels in full-body movement and its relationships to beat- and rhythm-related musical characteristics, and the other dealing with phase locking in the more constrained condition of sideways swaying motions. Expected in Experiment 1 was that music with clear and strong beat structures would facilitate more period-locked movement. Experiment 2 was assumed to yield a common phase relationship between participants' swaying movements and the musical beat. In both experiments optical motion capture was used to record participants' movements. In Experiment 1 a window-based period-locking probability index related to four metrical levels was established, based on acceleration data in three dimensions. Subsequent correlations between this index and musical characteristics of the stimuli revealed pulse clarity to be related to periodic movement at the tactus level, and low frequency flux to mediolateral and anteroposterior movement at both tactus and bar levels. At faster tempi higher metrical levels became more apparent in participants' movement. Experiment 2 showed that about half of the participants showed a stable phase relationship between movement and beat, with superior-inferior movement most often being synchronized to the tactus level, whereas mediolateral movement was rather synchronized to the bar level. However, the relationship between movement phase and beat locations was not consistent between participants, as the beat locations occurred at different phase angles of their movements. The results imply that entrainment to music is a complex phenomenon, involving the whole body and occurring at different metrical levels.
Psychoacoustic Factors in Musical Intonation: Beats, Interval Tuning, and Inharmonicity.
NASA Astrophysics Data System (ADS)
Keislar, Douglas Fleming
Three psychoacoustic experiments were conducted using musically experienced subjects. In the first two experiments, the interval tested was the perfect fifth F4-C5; in the final one it was the major third F4-A4. The beat rate was controlled by two different methods: (1) simply retuning the interval, and (2) frequency-shifting one partial of each pair of beating partials without changing the overall interval tuning. The second method introduces inharmonicity. In addition, two levels of beat amplitude were introduced by using either a complete spectrum of 16 equal-amplitude partials per note, or by deleting one partial from each pair of beating partials. The results of all three experiments indicate that, for these stimuli, beating does not contribute significantly to the percept of "out-of-tuneness," because it made no difference statistically whether the beat amplitude was maximal or minimal. By contrast, mistuning the interval was highly significant. For the fifths, frequency-shifting the appropriate partials had about as much effect on the perceived intonation as mistuning the interval. For thirds, this effect was weaker, presumably since there were fewer inharmonic partials and they were higher in the harmonic series. Subjects were less consistent in their judgments of thirds than of fifths, perhaps because the equal-tempered and just thirds differ noticeably, unlike fifths. Since it is unlikely that beats would be more audible in real musical situations than under these laboratory conditions, these results suggest that the perception of intonation in music is dependent on the actual interval tuning rather than the concomitant beat rate. If beating partials are unimportant vis-a-vis interval tuning, this strengthens the argument for a cultural basis for musical intonation and scales, as opposed to the acoustical basis set forth by Helmholtz and others.
Beat to beat variability in cardiovascular variables: noise or music?
NASA Technical Reports Server (NTRS)
Appel, M. L.; Berger, R. D.; Saul, J. P.; Smith, J. M.; Cohen, R. J.
1989-01-01
Cardiovascular variables such as heart rate, arterial blood pressure, stroke volume and the shape of electrocardiographic complexes all fluctuate on a beat to beat basis. These fluctuations have traditionally been ignored or, at best, treated as noise to be averaged out. The variability in cardiovascular signals reflects the homeodynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory systems. Modern signal processing techniques provide a means of analyzing beat to beat fluctuations in cardiovascular signals, so as to permit a quantitative, noninvasive or minimally invasive method of assessing closed loop hemodynamic regulation and cardiac electrical stability. This method promises to provide a new approach to the clinical diagnosis and management of alterations in cardiovascular regulation and stability.
Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight
NASA Technical Reports Server (NTRS)
Moore, Steven T.; Cohen, Bernard; Raphan, Theodore; Berthoz, Alain; Clement, Gilles
2005-01-01
On Earth, eye velocity of horizontal optokinetic nystagmus (OKN) orients to gravito-inertial acceleration (GIA), the sum of linear accelerations acting on the head and body. We determined whether adaptation to micro-gravity altered this orientation and whether ocular pursuit exhibited similar properties. Eye movements of four astronauts were recorded with three-dimensional video-oculography. Optokinetic stimuli were stripes moving horizontally, vertically, and obliquely at 30 degrees/s. Ocular pursuit was produced by a spot moving horizontally or vertically at 20 degrees/s. Subjects were either stationary or were centrifuged during OKN with 1 or 0.5 g of interaural or dorsoventral centripetal linear acceleration. Average eye position during OKN (the beating field) moved into the quick-phase direction by 10 degrees during lateral and upward field movement in all conditions. The beating field did not shift up during downward OKN on Earth, but there was a strong upward movement of the beating field (9 degrees) during downward OKN in the absence of gravity; this likely represents an adaptation to the lack of a vertical 1-g bias in-flight. The horizontal OKN velocity axis tilted 9 degrees in the roll plane toward the GIA during interaural centrifugation, both on Earth and in space. During oblique OKN, the velocity vector tilted towards the GIA in the roll plane when there was a disparity between the direction of stripe motion and the GIA, but not when the two were aligned. In contrast, dorsoventral acceleration tilted the horizontal OKN velocity vector 6 degrees in pitch away from the GIA. Roll tilts of the horizontal OKN velocity vector toward the GIA during interaural centrifugation are consistent with the orientation properties of velocity storage, but pitch tilts away from the GIA when centrifuged while supine are not. We speculate that visual suppression during OKN may have caused the velocity vector to tilt away from the GIA during dorsoventral centrifugation. Vertical OKN and ocular pursuit did not exhibit orientation toward the GIA in any condition. Static full-body roll tilts and centrifugation generating an equivalent interaural acceleration produced the same tilts in the horizontal OKN velocity before and after flight. Thus, the magnitude of tilt in OKN velocity was dependent on the magnitude of interaural linear acceleration, rather than the tilt of the GIA with regard to the head. These results favor a 'filter' model of spatial orientation in which orienting eye movements are proportional to the magnitude of low frequency interaural linear acceleration, rather than models that postulate an internal representation of gravity as the basis for spatial orientation.
What makes a rhythm complex? The influence of musical training and accent type on beat perception
Burgoyne, J. Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A.
2018-01-01
Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are “missing” on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike. PMID:29320533
What makes a rhythm complex? The influence of musical training and accent type on beat perception.
Bouwer, Fleur L; Burgoyne, J Ashley; Odijk, Daan; Honing, Henkjan; Grahn, Jessica A
2018-01-01
Perception of a regular beat in music is inferred from different types of accents. For example, increases in loudness cause intensity accents, and the grouping of time intervals in a rhythm creates temporal accents. Accents are expected to occur on the beat: when accents are "missing" on the beat, the beat is more difficult to find. However, it is unclear whether accents occurring off the beat alter beat perception similarly to missing accents on the beat. Moreover, no one has examined whether intensity accents influence beat perception more or less strongly than temporal accents, nor how musical expertise affects sensitivity to each type of accent. In two experiments, we obtained ratings of difficulty in finding the beat in rhythms with either temporal or intensity accents, and which varied in the number of accents on the beat as well as the number of accents off the beat. In both experiments, the occurrence of accents on the beat facilitated beat detection more in musical experts than in musical novices. In addition, the number of accents on the beat affected beat finding more in rhythms with temporal accents than in rhythms with intensity accents. The effect of accents off the beat was much weaker than the effect of accents on the beat and appeared to depend on musical expertise, as well as on the number of accents on the beat: when many accents on the beat are missing, beat perception is quite difficult, and adding accents off the beat may not reduce beat perception further. Overall, the different types of accents were processed qualitatively differently, depending on musical expertise. Therefore, these findings indicate the importance of designing ecologically valid stimuli when testing beat perception in musical novices, who may need different types of accent information than musical experts to be able to find a beat. Furthermore, our findings stress the importance of carefully designing rhythms for social and clinical applications of beat perception, as not all listeners treat all rhythms alike.
Kuwada, S; Yin, T C; Wickesberg, R E
1979-11-02
The interaural phase sensitivity of neurons was studied through the use of binaural beat stimuli. The response of most cells was phase-locked to the beat frequency, which provides a possible neural correlate to the human sensation of binaural beats. In addition, this stimulus allowed the direction and rate of interaural phase change to be varied. Some neurons in our sample responded selectively to manipulations of these two variables, which suggests a sensitivity to direction or speed of movement.
EXPOSURE OF CULTURED MYOCYTES TO ZINC RESULTS IN ALTERED BEAT RATE AND INTERCELLULAR COMMUNICATION.
Exposure of cultured myocytes to zinc results in altered beat rate and intercellular communication
Graff, Donald W, Devlin, Robert B, Brackhan, Joseph A, Muller-Borer, Barbara J, Bowman, Jill S, Cascio, Wayne E.
Exposure to ambient air pollution particulate matter (...
Yang, Yang; Kramer, Christopher M; Shaw, Peter W; Meyer, Craig H; Salerno, Michael
2016-11-01
To design and evaluate two-dimensional (2D) L1-SPIRiT accelerated spiral pulse sequences for first-pass myocardial perfusion imaging with whole heart coverage capable of measuring eight slices at 2 mm in-plane resolution at heart rates up to 125 beats per minute (BPM). Combinations of five different spiral trajectories and four k-t sampling patterns were retrospectively simulated in 25 fully sampled datasets and reconstructed with L1-SPIRiT to determine the best combination of parameters. Two candidate sequences were prospectively evaluated in 34 human subjects to assess in vivo performance. A dual density broad transition spiral trajectory with either angularly uniform or golden angle in time k-t sampling pattern had the largest structural similarity and smallest root mean square error from the retrospective simulation, and the L1-SPIRiT reconstruction had well-preserved temporal dynamics. In vivo data demonstrated that both of the sampling patterns could produce high quality perfusion images with whole-heart coverage. First-pass myocardial perfusion imaging using accelerated spirals with optimized trajectory and k-t sampling pattern can produce high quality 2D perfusion images with whole-heart coverage at the heart rates up to 125 BPM. Magn Reson Med 76:1375-1387, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Ectopic beats in approximate entropy and sample entropy-based HRV assessment
NASA Astrophysics Data System (ADS)
Singh, Butta; Singh, Dilbag; Jaryal, A. K.; Deepak, K. K.
2012-05-01
Approximate entropy (ApEn) and sample entropy (SampEn) are the promising techniques for extracting complex characteristics of cardiovascular variability. Ectopic beats, originating from other than the normal site, are the artefacts contributing a serious limitation to heart rate variability (HRV) analysis. The approaches like deletion and interpolation are currently in use to eliminate the bias produced by ectopic beats. In this study, normal R-R interval time series of 10 healthy and 10 acute myocardial infarction (AMI) patients were analysed by inserting artificial ectopic beats. Then the effects of ectopic beats editing by deletion, degree-zero and degree-one interpolation on ApEn and SampEn have been assessed. Ectopic beats addition (even 2%) led to reduced complexity, resulting in decreased ApEn and SampEn of both healthy and AMI patient data. This reduction has been found to be dependent on level of ectopic beats. Editing of ectopic beats by interpolation degree-one method is found to be superior to other methods.
The effect of beat frequency on eye movements during free viewing.
Maróti, Emese; Knakker, Balázs; Vidnyánszky, Zoltán; Weiss, Béla
2017-02-01
External periodic stimuli entrain brain oscillations and affect perception and attention. It has been shown that background music can change oculomotor behavior and facilitate detection of visual objects occurring on the musical beat. However, whether musical beats in different tempi modulate information sampling differently during natural viewing remains to be explored. Here we addressed this question by investigating how listening to naturalistic drum grooves in two different tempi affects eye movements of participants viewing natural scenes on a computer screen. We found that the beat frequency of the drum grooves modulated the rate of eye movements: fixation durations were increased at the lower beat frequency (1.7Hz) as compared to the higher beat frequency (2.4Hz) and no music conditions. Correspondingly, estimated visual sampling frequency decreased as fixation durations increased with lower beat frequency. These results imply that slow musical beats can retard sampling of visual information during natural viewing by increasing fixation durations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Utilization of negative beat-frequencies for maximizing the update-rate of OFDR
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Botsev, Yakov; Hahami, Meir; Eyal, Avishay
2015-07-01
In traditional OFDR systems, the backscattered profile of a sensing fiber is inefficiently duplicated to the negative band of spectrum. In this work, we present a new OFDR design and algorithm that remove this redundancy and make use of negative beat frequencies. In contrary to conventional OFDR designs, it facilitates efficient use of the available system bandwidth and enables distributed sensing with the maximum allowable interrogation update-rate for a given fiber length. To enable the reconstruction of negative beat frequencies an I/Q type receiver is used. In this receiver, both the in-phase (I) and quadrature (Q) components of the backscatter field are detected. Following detection, both components are digitally combined to produce a complex backscatter signal. Accordingly, due to its asymmetric nature, the produced spectrum will not be corrupted by the appearance of negative beat-frequencies. Here, via a comprehensive computer simulation, we show that in contrast to conventional OFDR systems, I/Q OFDR can be operated at maximum interrogation update-rate for a given fiber length. In addition, we experimentally demonstrate, for the first time, the ability of I/Q OFDR to utilize negative beat-frequencies for long-range distributed sensing.
Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit
2015-09-30
resting heart rate (70 bpm ) (Ponganis et al. 1997) is reached, and e) duration of and heart rate during the ascent tachycardia. If possible, heart rate...Resting heart rates were 54 + 6 beats min-1 ( bpm ), and in dives of 1-3 min, 3-5 min, and > 5 min, dive heart rates (number of beats/dive duration...were 55 + 8, 51 + 6, and 40 + bpm . As illustrated in Figs. 1 and 2, the heart rate profile was characterized by rapid development of a bradycardia
A novel technique for fetal heart rate estimation from Doppler ultrasound signal
2011-01-01
Background The currently used fetal monitoring instrumentation that is based on Doppler ultrasound technique provides the fetal heart rate (FHR) signal with limited accuracy. It is particularly noticeable as significant decrease of clinically important feature - the variability of FHR signal. The aim of our work was to develop a novel efficient technique for processing of the ultrasound signal, which could estimate the cardiac cycle duration with accuracy comparable to a direct electrocardiography. Methods We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation. Results The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid. Conclusions The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements. PMID:21999764
Parturition in horses is dominated by parasympathetic activity of the autonomous nervous system.
Nagel, Christina; Erber, Regina; Ille, Natascha; von Lewinski, Mareike; Aurich, Jörg; Möstl, Erich; Aurich, Christine
2014-07-01
External and internal stressors prolong parturition in different species. At parturition, sympathoadrenal activation should be avoided because an increased sympathetic tone may cause uterine atonia via β2-receptors. We hypothesized that at physiological parturition, horses are under parasympathetic dominance, and stress-response mechanisms are not activated during delivery of the foal. To evaluate stress responses, heart rate, heart rate variability, catecholamines, and cortisol were analyzed in mares (n = 17) throughout foaling. Heart rate decreased from 2 hours before (51 ± 1 beats/minute) to 2 hours after delivery (41 ± 2 beats/minute; P < 0.05). Heart rate variability variables, standard deviation of the beat-to-beat interval, and root mean square of successive beat-to-beat differences, changed over time (P < 0.05) with the highest values within 15 minutes after delivery. The number of mares with atrioventricular blocks and the number of atrioventricular blocks per mare increased over time (P < 0.01) and were significantly elevated from 15 minutes before to 45 minutes after birth of the foal. Salivary cortisol concentrations increased to a maximum at 30 minutes after delivery (25.0 ± 3.4 ng/mL; P < 0.01). Plasma epinephrine and norepinephrine concentrations showed significant fluctuations from rupture of the allantochorion to expulsion of the fetal membranes (P < 0.01) but were not markedly elevated at any time. In conclusion, mares give birth under high parasympathetic tone. Cortisol release during and after foaling is most likely part of the endocrine pathways regulating parturition and not a labor-associated stress response. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of Kindermusik training on infants' rhythmic enculturation.
Gerry, David W; Faux, Ashley L; Trainor, Laurel J
2010-05-01
Phillips-Silver and Trainor (2005) demonstrated a link between movement and the metrical interpretation of rhythm patterns in 7-month-old infants. Infants bounced on every second beat of a rhythmic pattern with no auditory accents later preferred to listen to an accented version of the pattern with accents every second beat (duple or march meter), whereas infants bounced on every third beat of the same rhythmic pattern preferred to listen to a version with accents every third beat (triple or waltz meter). The present study compared infants participating in Kindermusik classes with infants not participating in music classes. In Kindermusik classes infants receive enriched experience moving to music. Following Western musical norms, the majority of the music samples in the classes are in duple meter. During the preference test, Kindermusik infants listened longer overall, indicating heightened interest in musical rhythms. Both groups listened longer to the accented version that matched how they had been bounced, but only the Kindermusik group showed a stronger preference in the case of duple bouncing than in the case of triple bouncing. We conclude that musical classes for infants can accelerate the development of culture-specific metrical perception.
Cypryk, Katarzyna; Bartyzel, Lukasz; Zurawska-Klis, Monika; Mlynarski, Wojciech; Szadkowska, Agnieszka; Wilczynski, Jan; Nowakowska, Dorota; Wozniak, Lucyna A; Fendler, Wojciech
2015-09-01
Much evidence has shown that pregnancies in women with preexisting diabetes are affected by an increased risk of maternal and fetal adverse outcomes, probably linked to poor glycemic control. Despite great progress in medical care, the rate of stillbirths remains much higher in diabetes patients than in the general population. Recent technological advances in the field of glucose monitoring and noninvasive fetal heart rate monitoring made it possible to observe the fetal-maternal dependencies in a continuous manner. Fourteen type 1 diabetes patients were involved into the study and fitted with a blinded continuous glucose monitoring (CGM) recorder. Fetal electrocardiogram data were recorded using the Monica AN24™ device (Monica Healthcare Ltd., Nottingham, United Kingdom), the recordings of which were matched with CGM data. Statistical analysis was performed using a generalized mixed-effect logistic regression to account for individual factors. The mean number of paired data points per patient was 254±106, representing an observation period of 21.2±8.8 h. Mean glycemia equaled 5.64±0.68 mmol/L, and mean fetal heart rate was 135±6 beats/min. Higher glycemia correlated with fetal heart rate (R=0.32; P<0.0001) and was associated with higher odds of the fetus developing small accelerations (odds ratio=1.05; 95% confidence interval, 1.00-1.10; P=0.04). Elevated maternal glycemia of mothers with diabetes is associated with accelerations of fetal heart rate.
DOT National Transportation Integrated Search
1963-08-01
Six cats were exposed to mild angular acceleration before and after an intervening serried of 15 caloric irrigations. All trials were in total darkness. Slowphase displacement of the eyes, beat frequency, and duration of nystagmus were scored. All...
Pangerc, Urška; Jager, Franc
2015-08-01
In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).
Heart rate deceleration runs for postinfarction risk prediction.
Guzik, Przemyslaw; Piskorski, Jaroslaw; Barthel, Petra; Bauer, Axel; Müller, Alexander; Junk, Nadine; Ulm, Kurt; Malik, Marek; Schmidt, Georg
2012-01-01
A method for counting episodes of uninterrupted beat-to-beat heart rate decelerations was developed. The method was set up and evaluated using 24-hour electrocardiogram Holter recordings of 1455 (training sample) and 946 (validation sample) postinfarction patients. During a median follow-up of 24 months, 70, 46, and 19 patients of the training sample suffered from total, cardiac, and sudden cardiac mortality, respectively. In the validation sample, these numbers were 39, 25, and 15. Episodes of consecutive beat-to-beat heart rate decelerations (deceleration runs [DRs]) were characterized by their length. Deceleration runs of 2 to 10 cycles were significantly less frequent in nonsurvivors. Multivariate model of DRs of 2, 4, and 8 cycles identified low-, intermediate-, and high-risk groups. In these groups of the training sample, the total mortalities were 1.8%, 6.1%, and 24%, respectively. In the validation sample, these numbers were 1.8%, 4.1%, and 21.9%. Infrequent DRs during 24-hour Holter indicate high risk of postinfarction mortality. Copyright © 2012 Elsevier Inc. All rights reserved.
Davidovic, Goran; Iric-Cupic, Violeta; Milanov, Srdjan; Dimitijevic, Aleksandra; Petrovic-Janicijevic, Mirjana
2013-01-01
Many prospective studies established association between high heart rate and increased cardiovascular morbidity and mortality, independently of other risk factors. Heart rate over 80 beats per minute more often leads to atherosclerotic plaque disruption, the main step in developing acute coronary syndrome. Purpose was to investigate the incidence of higher heart rate levels in patients with anterior wall acute myocardial infarction with ST-segment elevation and the influence of heart rate on mortality. Research included 140 patients with anterior wall acute myocardial infarction with ST-segment elevation treated in Coronary Unit, Clinical Center Kragujevac in the period from January 2001-June 2006. Heart rate was calculated as the mean value of baseline and heart rate in the first 30 minutes after admission. Other risk factors were also followed to determine their connection with elevated heart rate. Results showed that the majority of patients survived (over 70%). In a total number of patients, more than 75% had a heart rate levels greater than 80 beats per minute. There was a significant difference in heart rate on addmision between survivors and patients who died, with a greater levels in patients with fatal outcome. Both, univariate and multivariate regression analysis singled out heart rate greater than 80 beats per minute as independent mortality predictor in these patients. Heart rate greater than 80 beats per minute is a major, independent risk factor for morbidity and important predictor of mortality in patients with acute myocardial infarction. PMID:23991346
Namdar, Hossein; Taban Sadeghi, Mohammadreza; Sabourimoghaddam, Hassan; Sadeghi, Babak; Ezzati, Davoud
2014-01-01
The present research investigated the effects of two different types of music on cardiovascular responses in essential hypertensive men in comparison with healthy men based on introversion and extraversion. One hundred and thirteen hypertensive men referred to Madani Heart Hospital in Tabriz completed the NEO-FFI Questionnaire and after obtaining acceptable scores were classified in four groups: introvert patients, extravert patients, introvert healthy subjects, and extravert healthy subjects (each group with 25 samples with age range 31-50). Baseline blood pressure and heart rate of each subject was recorded without any stimulus. Then subjects were exposed to slow-beat music and blood pressure and heart rate were recorded. After15 minute break, and a little cognitive task for distraction, subjects were exposed to fast-beat music and blood pressure and heart rate were recorded again. Multivariate analysis of covariance (MANCOVA) test showed that extravert patient subjects obtained greater reduction in systolic blood pressure and heart rate after presenting slow-beat music compared with introvert patients (P= 0.035, and P= 0.033 respectively). And extravert healthy subjects obtained greater reduction in heart rate after presenting slow-beat music compared with introvert healthy subjects (P= 0.036). However, there are no significant differences between introvert and extravert groups in systolic and diastolic blood pressure and heart rate after presenting fast-beat music. Based on our results, introvert subjects experience negative emotions more than extravert subjects and negative emotions cause less change in blood pressure in these subjects compared with extravert subjects.
Namdar, Hossein; Taban Sadeghi, Mohammadreza; Sabourimoghaddam, Hassan; Sadeghi, Babak; Ezzati, Davoud
2014-01-01
Introduction: The present research investigated the effects of two different types of music on cardiovascular responses in essential hypertensive men in comparison with healthy men based on introversion and extraversion. Methods: One hundred and thirteen hypertensive men referred to Madani Heart Hospital in Tabriz completed the NEO-FFI Questionnaire and after obtaining acceptable scores were classified in four groups: introvert patients, extravert patients, introvert healthy subjects, and extravert healthy subjects (each group with 25 samples with age range 31-50). Baseline blood pressure and heart rate of each subject was recorded without any stimulus. Then subjects were exposed to slow-beat music and blood pressure and heart rate were recorded. After15 minute break, and a little cognitive task for distraction, subjects were exposed to fast-beat music and blood pressure and heart rate were recorded again. Results: Multivariate analysis of covariance (MANCOVA) test showed that extravert patient subjects obtained greater reduction in systolic blood pressure and heart rate after presenting slow-beat music compared with introvert patients (P= 0.035, and P= 0.033 respectively). And extravert healthy subjects obtained greater reduction in heart rate after presenting slow-beat music compared with introvert healthy subjects (P= 0.036). However, there are no significant differences between introvert and extravert groups in systolic and diastolic blood pressure and heart rate after presenting fast-beat music. Conclusion: Based on our results, introvert subjects experience negative emotions more than extravert subjects and negative emotions cause less change in blood pressure in these subjects compared with extravert subjects. PMID:25320667
Massaro, An N; Campbell, Heather E; Metzler, Marina; Al-Shargabi, Tareq; Wang, Yunfei; du Plessis, Adre; Govindan, Rathinaswamy B
2017-04-01
To determine whether measures of heart rate variability are related to changes in temperature during rewarming after therapeutic hypothermia for hypoxic-ischemic encephalopathy. Prospective observational study. Level 4 neonatal ICU in a free-standing academic children's hospital. Forty-four infants with moderate to severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia. Continuous electrocardiogram data from 2 hours prior to rewarming through 2 hours after completion of rewarming (up to 10 hr) were analyzed. Median beat-to-beat interval and measures of heart rate variability were quantified including beat-to-beat interval SD, low and high frequency relative spectral power, detrended fluctuation analysis short and long α exponents (αS and αL), and root mean square short and long time scales. The relationships between heart rate variability measures and esophageal/axillary temperatures were evaluated. Heart rate variability measures low frequency, αS, and root mean square short and long time scales were negatively associated, whereas αL was positively associated, with temperature (p < 0.01). These findings signify an overall decrease in heart rate variability as temperature increased toward normothermia. Measures of heart rate variability are temperature dependent in the range of therapeutic hypothermia to normothermia. Core body temperature needs to be considered when evaluating heart rate variability metrics as potential physiologic biomarkers of illness severity in hypoxic-ischemic encephalopathy infants undergoing therapeutic hypothermia.
Development of a BPM Lock-In Diagnostic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Dickson
2003-05-12
A system has been developed for the acquisition and analysis of high rate, time coherent BPM data across the Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). This system will allow the acquisition of Beam Position Monitor (BPM) position and intensity information at a rate in excess 7 KHz for approximately 200 BPMs in a time synchronous manner. By inducing minute sinusoidal transverse beam motion in the CEBAF injector, with known phase relative to the synchronized BPM acquisition, it is possible to derive several types of useful information. Analysis of the BPM intensity data, which is proportional to beam current,more » by beating the signal with an in-phase sinusoidal representation of the transverse kick can localize beam scraping to a particular BPM. Similarly, real-time optics information may be deduced with an analysis of BPM position data. This paper will detail the frequency lock-in technique applied and present status.« less
Attitudes toward wife beating: a cross-country study in Asia.
Rani, Manju; Bonu, Sekhar
2009-08-01
Using demographic and health surveys conducted between 1998 and 2001 from seven countries (Armenia, Bangladesh, Cambodia, India, Kazakhstan, Nepal, and Turkey), the study found that acceptance of wife beating ranged from 29% in Nepal, to 57% in India (women only), and from 26% in Kazakhstan, to 56% in Turkey (men only). Increasing wealth predicted less acceptance of wife beating, except in Cambodia and Nepal. Higher education level was negatively associated with acceptance in Turkey and Bangladesh. Younger respondents justified wife beating more often, with some exceptions, showing persistent intergenerational transmission of gender norms. Working women were equally or more likely to justify wife beating compared to nonworking women. Men were significantly more likely to justify wife beating in Armenia, Nepal, and Turkey. Targeted proactive efforts are needed to change these norms, such as improving female literacy rates and other enabling factors.
Jahandardoost, Mehdi; Fradet, Guy; Mohammadi, Hadi
2016-03-01
To date, to the best of the authors' knowledge, in almost all of the studies performed around the hemodynamics of bileaflet mechanical heart valves, a heart rate of 70-72 beats/min has been considered. In fact, the heart rate of ~72 beats/min does not represent the entire normal physiological conditions under which the aortic or prosthetic valves function. The heart rates of 120 or 50 beats/min may lead to hemodynamic complications, such as plaque formation and/or thromboembolism in patients. In this study, the hemodynamic performance of the bileaflet mechanical heart valves in a wide range of normal and physiological heart rates, that is, 60-150 beats/min, was studied in the opening phase. The model considered in this study was a St. Jude Medical bileaflet mechanical heart valve with the inner diameter of 27 mm in the aortic position. The hemodynamics of the native valve and the St. Jude Medical valve were studied in a variety of heart rates in the opening phase and the results were carefully compared. The results indicate that peak values of the velocity profile downstream of the valve increase as heart rate increases, as well as the location of the maximum velocity changes with heart rate in the St. Jude Medical valve model. Also, the maximum values of shear stress and wall shear stresses downstream of the valve are proportional to heart rate in both models. Interestingly, the maximum shear stress and wall shear stress values in both models are in the same range when heart rate is <90 beats/min; however, these values significantly increase in the St. Jude Medical valve model when heart rate is >90 beats/min (up to ~40% growth compared to that of the native valve). The findings of this study may be of importance in the hemodynamic performance of bileaflet mechanical heart valves. They may also play an important role in design improvement of conventional prosthetic heart valves and the design of the next generation of prosthetic valves, such as percutaneous valves. © IMechE 2016.
The effect of competition on heart rate during kart driving: A field study.
Matsumura, Kenta; Yamakoshi, Takehiro; Yamakoshi, Yasuhiro; Rolfe, Peter
2011-09-09
Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.
The effect of competition on heart rate during kart driving: A field study
2011-01-01
Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength. PMID:21906298
Lam, Phillip H; Dooley, Daniel J; Deedwania, Prakash; Singh, Steven N; Bhatt, Deepak L; Morgan, Charity J; Butler, Javed; Mohammed, Selma F; Wu, Wen-Chih; Panjrath, Gurusher; Zile, Michael R; White, Michel; Arundel, Cherinne; Love, Thomas E; Blackman, Marc R; Allman, Richard M; Aronow, Wilbert S; Anker, Stefan D; Fonarow, Gregg C; Ahmed, Ali
2017-10-10
A lower heart rate is associated with better outcomes in patients with heart failure (HF) with reduced ejection fraction (EF). Less is known about this association in patients with HF with preserved ejection fraction (HFpEF). The aims of this study were to examine associations of discharge heart rate with outcomes in hospitalized patients with HFpEF. Of the 8,873 hospitalized patients with HFpEF (EF ≥50%) in the Medicare-linked OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure) registry, 6,286 had a stable heart rate, defined as ≤20 beats/min variation between admission and discharge. Of these, 2,369 (38%) had a discharge heart rate of <70 beats/min. Propensity scores for discharge heart rate <70 beats/min, estimated for each of the 6,286 patients, were used to assemble a cohort of 2,031 pairs of patients with heart rate <70 versus ≥70 beats/min, balanced on 58 baseline characteristics. The 4,062 matched patients had a mean age of 79 ± 10 years, 66% were women, and 10% were African American. During 6 years (median 2.8 years) of follow-up, all-cause mortality was 65% versus 70% for matched patients with a discharge heart rate <70 versus ≥70 beats/min, respectively (hazard ratio [HR]: 0.86; 95% confidence interval [CI]: 0.80 to 0.93; p < 0.001). A heart rate <70 beats/min was also associated with a lower risk for the combined endpoint of HF readmission or all-cause mortality (HR: 0.90; 95% CI: 0.84 to 0.96; p = 0.002), but not with HF readmission (HR: 0.93; 95% CI: 0.85 to 1.01) or all-cause readmission (HR: 1.01; 95% CI: 0.95 to 1.08). Similar associations were observed regardless of heart rhythm or receipt of beta-blockers. Among hospitalized patients with HFpEF, a lower discharge heart rate was independently associated with a lower risk of all-cause mortality, but not readmission. Published by Elsevier Inc.
Beat-to-beat heart rate estimation fusing multimodal video and sensor data
Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen
2015-01-01
Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference. PMID:26309754
Beat-to-beat heart rate estimation fusing multimodal video and sensor data.
Antink, Christoph Hoog; Gao, Hanno; Brüser, Christoph; Leonhardt, Steffen
2015-08-01
Coverage and accuracy of unobtrusively measured biosignals are generally relatively low compared to clinical modalities. This can be improved by exploiting redundancies in multiple channels with methods of sensor fusion. In this paper, we demonstrate that two modalities, skin color variation and head motion, can be extracted from the video stream recorded with a webcam. Using a Bayesian approach, these signals are fused with a ballistocardiographic signal obtained from the seat of a chair with a mean absolute beat-to-beat estimation error below 25 milliseconds and an average coverage above 90% compared to an ECG reference.
Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin
2018-07-01
This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.
Hoppe, U C; Marbán, E; Johns, D C
2001-04-24
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48-72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, I(Kr), of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed I(Kr) without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, I(Ks), without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed I(Ks) and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.
Osadchii, Oleg E
2014-12-01
In the clinical setting, patients with slower resting heart rate are less prone to cardiovascular death compared with those with elevated heart rate. However, electrophysiological adaptations associated with reduced cardiac rhythm have not been thoroughly explored. In this study, relationships between intrinsic heart rate and arrhythmic susceptibility were examined by assessments of action potential duration (APD) rate adaptation and inducibility of repolarization alternans in sinoatrial node (SAN)-driven and atrioventricular (AV)-blocked guinea-pig hearts perfused with Langendorff apparatus. Electrocardiograms, epicardial monophasic action potentials, and effective refractory periods (ERP) were assessed in normokalemic and hypokalemic conditions. Slower basal heart rate in AV-blocked hearts was associated with prolonged ventricular repolarization during spontaneous beating, and with attenuated APD shortening at increased cardiac activation rates during dynamic pacing, when compared with SAN-driven hearts. During hypokalemic perfusion, the inducibility of repolarization alternans and tachyarrhythmia by rapid pacing was found to be lower in AV-blocked hearts. This difference was ascribed to prolonged ERP in the setting of reduced basal heart rate, which prevented ventricular capture at critically short pacing intervals required to induce arrhythmia. Reduced basal heart rate is associated with electrophysiological changes that prevent electrical instability upon an abrupt cardiac acceleration.
Guede-Fernandez, F; Ferrer-Mileo, V; Ramos-Castro, J; Fernandez-Chimeno, M; Garcia-Gonzalez, M A
2015-01-01
The aim of this paper is to present a smartphone based system for real-time pulse-to-pulse (PP) interval time series acquisition by frame-to-frame camera image processing. The developed smartphone application acquires image frames from built-in rear-camera at the maximum available rate (30 Hz) and the smartphone GPU has been used by Renderscript API for high performance frame-by-frame image acquisition and computing in order to obtain PPG signal and PP interval time series. The relative error of mean heart rate is negligible. In addition, measurement posture and the employed smartphone model influences on the beat-to-beat error measurement of heart rate and HRV indices have been analyzed. Then, the standard deviation of the beat-to-beat error (SDE) was 7.81 ± 3.81 ms in the worst case. Furthermore, in supine measurement posture, significant device influence on the SDE has been found and the SDE is lower with Samsung S5 than Motorola X. This study can be applied to analyze the reliability of different smartphone models for HRV assessment from real-time Android camera frames processing.
Stochastic Ion Heating by the Lower-Hybrid Waves
NASA Technical Reports Server (NTRS)
Khazanov, G.; Tel'nikhin, A.; Krotov, A.
2011-01-01
The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.
Healthcare performance and the effects of the binaural beats on human blood pressure and heart rate.
Carter, Calvin
2008-01-01
Binaural beats are the differences in two different frequencies (in the range of 30-1000 Hz). Binaural beats are played through headphones and are perceived by the superior olivary nucleus of each hemisphere of the brain. The brain perceives the binaural beat and resonates to its frequency (frequency following response). Once the brain is in tune with the binaural beat it produces brainwaves of that frequency altering the listener's state of mind. In this experiment, the effects of the beta and theta binaural beat on human blood pressure and pulse were studied. Using headphones, three sounds were played for 7 minutes each to 12 participants: the control,- the sound of a babbling brook (the background sound to the two binaural beats), the beta binaural beat (20 Hz), and the theta binaural beat (7 Hz). Blood pressure and pulse were recorded before and after each sound was played. Each participant was given 2 minutes in-between each sound. The results showed that the control and the two binaural beats did not affect the 12 participant's blood pressure or pulse (p > 0.05). One reason for this may be that the sounds were not played long enough for the brain to either perceive and/or resonate to the frequency. Another reason why the sounds did not affect blood pressure and pulse may be due to the participant's age since older brains may not perceive the binaural beats as well as younger brains.
Increased beat-to-beat T-wave variability in myocardial infarction patients.
Hasan, Muhammad A; Abbott, Derek; Baumert, Mathias; Krishnan, Sridhar
2018-03-28
The purpose of this study was to investigate the beat-to-beat variability of T-waves (TWV) and to assess the diagnostic capabilities of T-wave-based features for myocardial infarction (MI). A total of 148 recordings of standard 12-lead electrocardiograms (ECGs) from 79 MI patients (22 females, mean age 63±12 years; 57 males, mean age 57±10 years) and 69 recordings from healthy subjects (HS) (17 females, 42±18 years; 52 males, 40±13 years) were studied. For the quantification of beat-to-beat QT intervals in ECG signal, a template-matching algorithm was applied. To study the T-waves beat-to-beat, we measured the angle between T-wave max and T-wave end with respect to Q-wave (∠α) and T-wave amplitudes. We computed the standard deviation (SD) of beat-to-beat T-wave features and QT intervals as markers of variability in T-waves and QT intervals, respectively, for both patients and HS. Moreover, we investigated the differences in the studied features based on gender and age for both groups. Significantly increased TWV and QT interval variability (QTV) were found in MI patients compared to HS (p<0.05). No significant differences were observed based on gender or age. TWV may have some diagnostic attributes that may facilitate identifying patients with MI. In addition, the proposed beat-to-beat angle variability was found to be independent of heart rate variations. Moreover, the proposed feature seems to have higher sensitivity than previously reported feature (QT interval and T-wave amplitude) variability for identifying patients with MI.
Flethøj, Mette; Kanters, Jørgen K; Pedersen, Philip J; Haugaard, Maria M; Carstensen, Helena; Olsen, Lisbeth H; Buhl, Rikke
2016-11-28
Although premature beats are a matter of concern in horses, the interpretation of equine ECG recordings is complicated by a lack of standardized analysis criteria and a limited knowledge of the normal beat-to-beat variation of equine cardiac rhythm. The purpose of this study was to determine the appropriate threshold levels of maximum acceptable deviation of RR intervals in equine ECG analysis, and to evaluate a novel two-step timing algorithm by quantifying the frequency of arrhythmias in a cohort of healthy adult endurance horses. Beat-to-beat variation differed considerably with heart rate (HR), and an adaptable model consisting of three different HR ranges with separate threshold levels of maximum acceptable RR deviation was consequently defined. For resting HRs <60 beats/min (bpm) the threshold level of RR deviation was set at 20%, for HRs in the intermediate range between 60 and 100 bpm the threshold was 10%, and for exercising HRs >100 bpm, the threshold level was 4%. Supraventricular premature beats represented the most prevalent arrhythmia category with varying frequencies in seven horses at rest (median 7, range 2-86) and six horses during exercise (median 2, range 1-24). Beat-to-beat variation of equine cardiac rhythm varies according to HR, and threshold levels in equine ECG analysis should be adjusted accordingly. Standardization of the analysis criteria will enable comparisons of studies and follow-up examinations of patients. A small number of supraventricular premature beats appears to be a normal finding in endurance horses. Further studies are required to validate the findings and determine the clinical significance of premature beats in horses.
The effects of auditory stimulation with music on heart rate variability in healthy women.
Roque, Adriano L; Valenti, Vitor E; Guida, Heraldo L; Campos, Mônica F; Knap, André; Vanderlei, Luiz Carlos M; Ferreira, Lucas L; Ferreira, Celso; Abreu, Luiz Carlos de
2013-07-01
There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21), who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19), who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB). A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB). The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio), low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. The triangular index and the standard deviation of the long-term RR interval indices were reduced during exposure to both music styles in the first group and tended to decrease in the second group whereas the white noise exposure decreased the high frequency index. We observed no changes regarding the triangular interpolation of RR intervals, standard deviation of instantaneous beat-by-beat variability and standard deviation of instantaneous beat-by-beat variability/standard deviation in the long-term RR interval ratio. We suggest that relaxant baroque and excitatory heavy metal music slightly decrease global heart rate variability because of the equivalent sound level.
The effects of auditory stimulation with music on heart rate variability in healthy women
Roque, Adriano L.; Valenti, Vitor E.; Guida, Heraldo L.; Campos, Mônica F.; Knap, André; Vanderlei, Luiz Carlos M.; Ferreira, Lucas L.; Ferreira, Celso; de Abreu, Luiz Carlos
2013-01-01
OBJECTIVES: There are no data in the literature with regard to the acute effects of different styles of music on the geometric indices of heart rate variability. In this study, we evaluated the acute effects of relaxant baroque and excitatory heavy metal music on the geometric indices of heart rate variability in women. METHODS: We conducted this study in 21 healthy women ranging in age from 18 to 35 years. We excluded persons with previous experience with musical instruments and persons who had an affinity for the song styles. We evaluated two groups: Group 1 (n = 21), who were exposed to relaxant classical baroque musical and excitatory heavy metal auditory stimulation; and Group 2 (n = 19), who were exposed to both styles of music and white noise auditory stimulation. Using earphones, the volunteers were exposed to baroque or heavy metal music for five minutes. After the first music exposure to baroque or heavy metal music, they remained at rest for five minutes; subsequently, they were re-exposed to the opposite music (70-80 dB). A different group of women were exposed to the same music styles plus white noise auditory stimulation (90 dB). The sequence of the songs was randomized for each individual. We analyzed the following indices: triangular index, triangular interpolation of RR intervals and Poincaré plot (standard deviation of instantaneous beat-by-beat variability, standard deviation of the long-term RR interval, standard deviation of instantaneous beat-by-beat variability and standard deviation of the long-term RR interval ratio), low frequency, high frequency, low frequency/high frequency ratio, standard deviation of all the normal RR intervals, root-mean square of differences between the adjacent normal RR intervals and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms. Heart rate variability was recorded at rest for 10 minutes. RESULTS: The triangular index and the standard deviation of the long-term RR interval indices were reduced during exposure to both music styles in the first group and tended to decrease in the second group whereas the white noise exposure decreased the high frequency index. We observed no changes regarding the triangular interpolation of RR intervals, standard deviation of instantaneous beat-by-beat variability and standard deviation of instantaneous beat-by-beat variability/standard deviation in the long-term RR interval ratio. CONCLUSION: We suggest that relaxant baroque and excitatory heavy metal music slightly decrease global heart rate variability because of the equivalent sound level. PMID:23917660
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
Ohira, Suguru; Doi, Kiyoshi; Numata, Satoshi; Yamazaki, Sachiko; Itatani, Keiichi; Kawajiri, Hidetake; Morimoto, Kazuki; Yaku, Hitoshi
2017-10-01
To investigate the results of off-pump coronary artery grafting (OPCAB) with the proximal suture device (PSD) regarding postoperative stroke and graft patency. The PSD was used in 376 patients (32.0%), aorta-no-touch OPCAB was performed in 523 patients (45.2%), on-pump beating coronary artery bypass surgery (CABG) (on-beat group) in 125 patients (10.6%) including 51 conversions (conversion rate: 5.4%), and CABG with aortic clamp use (clamp group) in 152 patients. In the PSD group, Enclose II was used in 267 patients (71.0%). The hospital mortality rate was 1.95%. There was no early stroke in the OPCAB group, whereas the early-stroke rate was 0.8% in the on-beat group and 2.6% in the clamp group. The incidences of stroke at one month were: PSD group, 1.6%; no-touch group, 1.1%; on-beat group, 1.6%; and clamp group, 4.6% (p=0.014). The rates of complete revascularisation were higher in the PSD and clamp groups (94.7 and 94.0%, respectively) compared with the no-touch and on-beat groups (81.5 and 84.9%, respectively; p<0.001). The vein graft patency rates were comparable between the PSD and clamp groups. In multiple logistic regression analysis, OPCAB using the PSD did not increase the risk of stroke compared with the no-touch group (adjusted odds ratio [AOR]: 1.40; p=0.594) or on-beat group (AOR: 0.99; p=0.206), but reduced the risk of stroke compared with the clamp group (AOR: 0.19; p=0.005). Off-pump coronary artery grafting using the PSD was a safe and effective procedure. It led to lower incidences of postoperative stroke and excellent rates of graft patency and complete revascularisation compared with conventional CABG. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Maurovich-Horvat, Pál; Károlyi, Mihály; Horváth, Tamás; Szilveszter, Bálint; Bartykowszki, Andrea; Jermendy, Ádám L; Panajotu, Alexisz; Celeng, Csilla; Suhai, Ferenc I; Major, Gyöngyi P; Csobay-Novák, Csaba; Hüttl, Kálmán; Merkely, Béla
2015-01-01
Coronary CT angiography (CTA) is an established tool to rule out coronary artery disease. Performance of coronary CTA is highly dependent on patients' heart rates (HRs). Despite widespread use of β-blockers for coronary CTA, few studies have compared various agents used to achieve adequate HR control. We sought to assess if the ultrashort-acting β-blocker intravenous esmolol is at least as efficacious as the standard of care intravenous metoprolol for HR control during coronary CTA. Patients referred to coronary CTA with a HR >65 beats/min despite oral metoprolol premedication were enrolled in the study. We studied 412 patients (211 male; mean age, 57 ± 12 years). Two hundred four patients received intravenous esmolol, and 208 received intravenous metoprolol with a stepwise bolus administration protocol. HR and blood pressure were recorded at arrival, before, during, immediately after, and 30 minutes after the coronary CTA scan. Mean HRs of the esmolol and metoprolol groups were similar at arrival (78 ± 13 beats/min vs 77 ± 12 beats/min; P = .65) and before scan (68 ± 7 beats/min vs 69 ± 7 beats/min; P = .60). However, HR during scan was lower in the esmolol group vs the metoprolol group (58 ± 6 beats/min vs 61 ± 7 beats/min; P < .0001), whereas HRs immediately and 30 minutes after the scan were higher in the esmolol group vs the metoprolol group (68 ± 7 beats/min vs 66 ± 7 beats/min; P = .01 and 65 ± 8 beats/min vs 63 ± 8 beats/min; P < .0001; respectively). HR ≤ 65 beats/min was reached in 182 of 204 patients (89%) who received intravenous esmolol vs 162 of 208 of the patients (78%) who received intravenous metoprolol (P < .05). Of note, hypotension (systolic BP <100 mm Hg) was observed right after the scan in 19 patients (9.3%) in the esmolol group and in 8 patients (3.8%) in the metoprolol group (P < .05), whereas only 5 patients (2.5%) had hypotension 30 minutes after the scan in the esmolol group compared to 8 patients (3.8%) in the metoprolol group (P = .418). Intravenous esmolol with a stepwise bolus administration protocol is at least as efficacious as the standard of care intravenous metoprolol for HR control in patients who undergo coronary CTA. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Thomsen, Jakob Hartvig; Nielsen, Niklas; Hassager, Christian; Wanscher, Michael; Pehrson, Steen; Køber, Lars; Bro-Jeppesen, John; Søholm, Helle; Winther-Jensen, Matilde; Pellis, Tommaso; Kuiper, Michael; Erlinge, David; Friberg, Hans; Kjaergaard, Jesper
2016-02-01
Bradycardia is common during targeted temperature management, likely being a physiologic response to lower body temperature, and has recently been associated with favorable outcome following out-of-hospital cardiac arrest in smaller observational studies. The present study sought to confirm this finding in a large multicenter cohort of patients treated with targeted temperature management at 33°C and explore the response to targeted temperature management targeting 36°C. Post hoc analysis of a prospective randomized study. Thirty-six ICUs in 10 countries. We studied 447 (targeted temperature management = 33°C) and 430 (targeted temperature management = 36°C) comatose out-of-hospital cardiac arrest patients with available heart rate data, randomly assigned in the targeted temperature management trial from 2010 to 2013. Targeted temperature management at 33°C and 36°C. Endpoints were 180-day mortality and unfavorable neurologic function (cerebral performance category 3-5). Patients were stratified by target temperature and minimum heart rate during targeted temperature management (< 50, 50-59, and ≥ 60 beats/min [reference]) at 12, 20, and 28 hours after randomization. Heart rates less than 50 beats/min and 50-59 beats/min were recorded in 132 (30%) and 131 (29%) of the 33°C group, respectively. Crude 180-day mortality increased with increasing minimum heart rate (< 50 beats/min = 32%, 50-59 beats/min = 43%, and ≥ 60 beats/min = 60%; p(log-rank) < 0.0001). Bradycardia less than 50 beats/min was independently associated with lower 180-day mortality (hazard ratio(adjusted) = 0.50 [0.34-0.74; p < 0.001]) and lower odds of unfavorable neurologic outcome (odds ratio(adjusted) = 0.38 [ 0.21-0.68; p < 0.01]) in models adjusting for potential confounders including age, initial rhythm, time to return of spontaneous circulation, and lactate at admission. Similar, albeit less strong, independent associations of lower heart rates and favorable outcome were found in patients treated with targeted temperature management at 36°C. This study confirms an independent association of bradycardia and lower mortality and favorable neurologic outcome in a large cohort of comatose out-of-hospital cardiac arrest patients treated by targeted temperature management at 33°C. Bradycardia during targeted temperature management at 33°C may thus be a novel, early marker of favorable outcome.
Baek, Hyun Jae; Shin, JaeWook
2017-08-15
Most of the wrist-worn devices on the market provide a continuous heart rate measurement function using photoplethysmography, but have not yet provided a function to measure the continuous heart rate variability (HRV) using beat-to-beat pulse interval. The reason for such is the difficulty of measuring a continuous pulse interval during movement using a wearable device because of the nature of photoplethysmography, which is susceptible to motion noise. This study investigated the effect of missing heart beat interval data on the HRV analysis in cases where pulse interval cannot be measured because of movement noise. First, we performed simulations by randomly removing data from the RR interval of the electrocardiogram measured from 39 subjects and observed the changes of the relative and normalized errors for the HRV parameters according to the total length of the missing heart beat interval data. Second, we measured the pulse interval from 20 subjects using a wrist-worn device for 24 h and observed the error value for the missing pulse interval data caused by the movement during actual daily life. The experimental results showed that mean NN and RMSSD were the most robust for the missing heart beat interval data among all the parameters in the time and frequency domains. Most of the pulse interval data could not be obtained during daily life. In other words, the sample number was too small for spectral analysis because of the long missing duration. Therefore, the frequency domain parameters often could not be calculated, except for the sleep state with little motion. The errors of the HRV parameters were proportional to the missing data duration in the presence of missing heart beat interval data. Based on the results of this study, the maximum missing duration for acceptable errors for each parameter is recommended for use when the HRV analysis is performed on a wrist-worn device.
Ergonomic evaluation of conventional and improved methods of aonla pricking with women workers.
Rai, Arpana; Gandhi, Sudesh; Sharma, D K
2012-01-01
Conventional and improved methods of aonla pricking were evaluated ergonomically on an experiment conducted for 20 minute with women workers. The working heart rate, energy expenditure rate, total cardiac cost of work and physiological cost of work with conventional tools varied from 93-102 beats.min-1, 6-7.5 kJ.min-1, 285-470 beats, 14 -23 beats.min-1 while with machine varied from 96-105 beats.min-1, 6.5-8 kJ.min-1 , 336-540 beats, 16-27 beats.min-1 respectively. OWAS score for conventional method was 2 indicating corrective measures in near future while with machine was 1 indicating no corrective measures. Result of Nordic Musculoskeletal Questionnaire revealed that subjects complaint of pain in back, neck, right shoulder and right hand due to unnatural body posture and repetitive movement with hand tool. Moreover pricking was carried out in improper lighting conditions (200-300 lux) resulting into finger injuries from sharp edges of hand tool, whereas with machine no such problems were observed. Output with machine increased thrice than hand pricking in a given time. Machine was found useful in terms of saving time, increased productivity, enhanced safety and comfort as involved improved posture, was easy to handle and operate, thus increasing efficiency of the worker leading to better quality of life.
Makimoto, Hisaki; Blockhaus, Christian; Meyer, Christian; Lin, Tina; Jungen, Christiane; Eickholt, Christian; Clasen, Lukas; Schmidt, Jan; Kurt, Muhammed; Müller, Patrick; Shin, Dong-In; Kelm, Malte; Fürnkranz, Alexander
2018-03-01
The severity of symptoms during atrial fibrillation (AF) may be influenced by heart rate and blood pressure variation, due to irregular beats and the related adaptations in baroreflex sensitivity. This study investigated whether heart rate turbulence (HRT) as a reflection of baroreflex sensitivity is related to symptom severity during AF. Ninety-seven patients (pts) who underwent electrophysiological study were enrolled. Consecutive 56 pts had paroxysmal AF (21 with milder symptoms [EHRA I or II; Group-M], 35 with severe symptoms [EHRA III or IV; Group-S]), and 41 age-matched controls without AF were included. After delivering a single ventricular extrastimulus during sinus rhythm and repeating the process 10 times, the quantification of HRT was performed by measuring turbulence onset (TO: heart rate acceleration) and turbulence slope (TS: rate of heart rate deceleration). Group-M pts showed significantly diminished TO as compared to controls and Group-S pts (P = 0.012). There was no significant difference of the TS between the 3 groups. Given that a TO ≥ 0% or TS ≤ 2.5 ms/RR was considered abnormal, Group-M pts showed significantly higher incidences of abnormal HRT as compared to controls and Group-S pts (71% vs 40% vs 21%, respectively, P = 0.0012). Regression analysis demonstrated an independent and significant association between a diminished TO and milder AF symptoms (P < 0.05). The usual heart rate acceleration after premature ventricular contraction is significantly diminished in pts with milder AF symptoms as compared to pts with severe AF symptoms. The mechanism of association between this diminished response and symptoms should be further investigated.
McConnell, Patrick A; Froeliger, Brett; Garland, Eric L; Ives, Jeffrey C; Sforzo, Gary A
2014-01-01
Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18-29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats ('wide-band' theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation.
Wiwatwongwana, D; Vichitvejpaisal, P; Thaikruea, L; Klaphajone, J; Tantong, A; Wiwatwongwana, A
2016-01-01
Purpose To investigate the anxiolytic effects of binaural beat embedded audio in patients undergoing cataract surgery under local anesthesia. Methods This prospective RCT included 141 patients undergoing cataract surgery under local anesthesia. The patients were randomized into three groups; the Binaural beat music group (BB), the plain music intervention group (MI), and a control group (ear phones with no music). Blood pressure (BP) and heart rate were measured on admission, at the beginning of and 20 min after the start of the operation. Peri-operative anxiety level was assessed using the State-Trait Anxiety Inventory questionnaire (STAI). Results The BB and MI groups comprised 44 patients each and the control group 47. Patients in the MI group and BB group showed significant reduction of STAI state scores after music intervention compared with the control group (P<0.001) but the difference was not significant between the MI and BB group (STAI-S score MI group −7.0, BB group −9.0, P=0.085). Systolic BP was significantly lower in both MI (P=0.043) and BB (0.040) groups although there was no difference between the two groups (P=1.000). A significant reduction in heart rate was seen only in the BB group (BB vs control P=0.004, BB vs MI P=0.050, MI vs control P=0.303). Conclusion Music, both with and without binaural beat, was proven to decrease anxiety level and lower systolic BP. Patients who received binaural beat audio showed additional decrease in heart rate. Binaural beat embedded musical intervention may have benefit over musical intervention alone in decreasing operative anxiety. PMID:27740618
Wiwatwongwana, D; Vichitvejpaisal, P; Thaikruea, L; Klaphajone, J; Tantong, A; Wiwatwongwana, A
2016-11-01
PurposeTo investigate the anxiolytic effects of binaural beat embedded audio in patients undergoing cataract surgery under local anesthesia.MethodsThis prospective RCT included 141 patients undergoing cataract surgery under local anesthesia. The patients were randomized into three groups; the Binaural beat music group (BB), the plain music intervention group (MI), and a control group (ear phones with no music). Blood pressure (BP) and heart rate were measured on admission, at the beginning of and 20 min after the start of the operation. Peri-operative anxiety level was assessed using the State-Trait Anxiety Inventory questionnaire (STAI).ResultsThe BB and MI groups comprised 44 patients each and the control group 47. Patients in the MI group and BB group showed significant reduction of STAI state scores after music intervention compared with the control group (P<0.001) but the difference was not significant between the MI and BB group (STAI-S score MI group -7.0, BB group -9.0, P=0.085). Systolic BP was significantly lower in both MI (P=0.043) and BB (0.040) groups although there was no difference between the two groups (P=1.000). A significant reduction in heart rate was seen only in the BB group (BB vs control P=0.004, BB vs MI P=0.050, MI vs control P=0.303).ConclusionMusic, both with and without binaural beat, was proven to decrease anxiety level and lower systolic BP. Patients who received binaural beat audio showed additional decrease in heart rate. Binaural beat embedded musical intervention may have benefit over musical intervention alone in decreasing operative anxiety.
Evaluation of a wearable physiological status monitor during simulated fire fighting activities.
Smith, Denise L; Haller, Jeannie M; Dolezal, Brett A; Cooper, Christopher B; Fehling, Patricia C
2014-01-01
A physiological status monitor (PSM) has been embedded in a fire-resistant shirt. The purpose of this research study was to examine the ability of the PSM-shirt to accurately detect heart rate (HR) and respiratory rate (RR) when worn under structural fire fighting personal protective equipment (PPE) during the performance of various activities relevant to fire fighting. Eleven healthy, college-aged men completed three activities (walking, searching/crawling, and ascending/descending stairs) that are routinely performed during fire fighting operations while wearing the PSM-shirt under structural fire fighting PPE. Heart rate and RR recorded by the PSM-shirt were compared to criterion values measured concurrently with an ECG and portable metabolic measurement system, respectively. For all activities combined (overall) and for each activity, small differences were found between the PSM-shirt and ECG (mean difference [95% CI]: overall: -0.4 beats/min [-0.8, -0.1]; treadmill: -0.4 beats/min [-0.7, -0.1]; search: -1.7 beats/min [-3.1, -.04]; stairs: 0.4 beats/min [0.04, 0.7]). Standard error of the estimate was 3.5 beats/min for all tasks combined and 1.9, 5.9, and 1.9 beats/min for the treadmill walk, search, and stair ascent/descent, respectively. Correlations between the PSM-shirt and criterion heart rates were high (r = 0.95 to r = 0.99). The mean difference between RR recorded by the PSM-shirt and criterion overall was 1.1 breaths/min (95% CI: -1.9 to -0.4). The standard error of the estimate for RR ranged from 4.2 breaths/min (treadmill) to 8.2 breaths/min (search), with an overall value of 6.2 breaths/min. These findings suggest that the PSM-shirt provides valid measures of HR and useful approximations of RR when worn during fire fighting duties.
The Influence of Bearing-Down Technique on the Fetal Heart Rate during the Second Stage of Labor.
NASA Astrophysics Data System (ADS)
Perlis, Deborah Woolley
This experimental study contrasted the effects of sustained bearing-down efforts with short bearing-down efforts during the first twelve contractions of the second stage of labor. A single subject design with intrasubject replication was used to compare the incidence, duration, and amplitude of fetal heart rate decelerations, as well as the beat-to-beat variability of those decelerations. Neonatal outcome was evaluated with umbilical arterial cord blood pH values and the one- and five-minute APGAR scores. Thirty -two nulliparous women alternated the use of vigorous, sustained Valsalva-style bearing-down efforts with shorter efforts called minipushes every three contractions during the second stage of labor. Sixteen women began the second stage using the Valsalva-style bearing-down technique; sixteen began the second stage using the minipush. The fetal heart rate was recorded by an internal fetal scalp electrode. Uterine contractility was measured by an internal uterine pressure catheter. A repeated-measures MANOVA showed a significant interaction between the order of implementation of the bearing-down techniques and the amplitude of the fetal heart rate decelerations. A similar comparison of the duration of the decelerations showed no significant differences between the two bearing-down techniques. Likewise, analysis of the incidence of fetal heart rate decelerations and the magnitude of the beat-to-beat variability revealed no significant differences between the two techniques.
Effect of muscle mass and intensity of isometric contraction on heart rate.
Gálvez, J M; Alonso, J P; Sangrador, L A; Navarro, G
2000-02-01
The purpose of this study was to determine the effect of muscle mass and the level of force on the contraction-induced rise in heart rate. We conducted an experimental study in a sample of 28 healthy men between 20 and 30 yr of age (power: 95%, alpha: 5%). Smokers, obese subjects, and those who performed regular physical activity over a certain amount of energetic expenditure were excluded from the study. The participants exerted two types of isometric contractions: handgrip and turning a 40-cm-diameter wheel. Both were sustained to exhaustion at 20 and 50% of maximal force. Twenty-five subjects finished the experiment. Heart rate increased a mean of 15.1 beats/min [95% confidence interval (CI): 5.5-24.6] from 20 to 50% handgrip contractions, and 20.7 beats/min (95% CI: 11.9-29.5) from 20 to 50% wheel-turn contractions. Heart rate also increased a mean of 13.3 beats/min (95% CI: 10.4-16.1) from handgrip to wheel-turn contractions at 20% maximal force, and 18.9 beats/min (95% CI: 9. 8-28.0) from handgrip to wheel-turn contractions at 50% maximal force. We conclude that the magnitude of the heart rate increase during isometric exercise is related to the intensity of the contraction and the mass of the contracted muscle.
Feasibity of Using a Measure of Heart Rate Change in Human Adults to Signal Occurrence of Tone
1977-11-01
clearly with the binaural subjects in the 85 dB free response live trials situation on post-tone offset beat 1. Here, the significant response...seen when comparing the sign test results of post-tone offset beat I in the binaural 15 db motor response live trial situation to the analagous 85 db...subject response consistency. Tills is most evident in the binaural 85 db fret live situation comparison of post-tone offset beat one to
The Research Laboratory of Electronics Progress Report Number 136, 1 January-31 December 1993
1994-06-01
beating of the pump and probe electric fields scatter cases, we have determined that the coherent pump light backwards into the probe direction with...and resolution, resultant beat frequency between the signal and the39th upper sideband of the comb was detected by a 1-GHz photodetector. We have...varies linearly with the modes and, as seen in the figure, no lock-in is applied rotation rate, hence is 90 degrees out-of- observed in the beat
Beat frequency ultrasonic microsphere contrast agent detection system
NASA Technical Reports Server (NTRS)
Pretlow, Robert A., III (Inventor); Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)
1995-01-01
A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.
Beat frequency ultrasonic microsphere contrast agent detection system
NASA Technical Reports Server (NTRS)
Pretlow, III, Robert A. (Inventor); Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)
1997-01-01
A system for and method of detecting and measuring concentrations of an ultrasonically-reflective microsphere contrast agent involving detecting non-linear sum and difference beat frequencies produced by the microspheres when two impinging signals with non-identical frequencies are combined by mixing. These beat frequencies can be used for a variety of applications such as detecting the presence of and measuring the flow rates of biological fluids and industrial liquids, including determining the concentration level of microspheres in the myocardium.
moBeat: Using interactive music to guide and motivate users during aerobic exercising.
van der Vlist, Bram; Bartneck, Christoph; Mäueler, Sebastian
2011-06-01
An increasing number of people are having trouble staying fit and maintaining a healthy bodyweight because of lack of physical activity. Getting people to exercise is crucial. However, many struggle with developing healthy exercising habits, due to hurdles like having to leave the house and the boring character of endurance exercising. In this paper, we report on a design project that explores the use of audio to motivate and provide feedback and guidance during exercising in a home environment. We developed moBeat, a system that provides intensity-based coaching while exercising, giving real-time feedback on training pace and intensity by means of interactive music. We conducted a within-subject comparison between our moBeat system and a commercially available heart rate watch. With moBeat, we achieved a comparable success rate: our system has a significant, positive influence on intrinsic motivation and attentional focus, but we did not see significant differences with regard to either perceived exertion or effectiveness. Although promising, future research is needed.
smRithm: Graphical user interface for heart rate variability analysis.
Nara, Sanjeev; Kaur, Manvinder; Datta, Saurav
2015-01-01
Over the past 25 years, Heart rate variability (HRV) has become a non-invasive research and clinical tool for indirectly carrying out investigation of both cardiac and autonomic system function in both healthy and diseased. It provides valuable information about a wide range of cardiovascular disorders, pulmonary diseases, neurological diseases, etc. Its primary purpose is to access the functioning of the nervous system. The source of information for HRV analysis is the continuous beat to beat measurement of inter-beat intervals. The electrocardiography (ECG or EKG) is considered as the best way to measure inter-beat intervals. This paper proposes an open source Graphical User Interface (GUI): smRithm developed in MATLAB for HRV analysis that will apply effective techniques on the raw ECG signals to process and decompose it in a simpler manner to obtain more useful information out of signals that can be utilized for more powerful and efficient applications in the near future related to HRV.
The beat in laser-accelerated ion beams
NASA Astrophysics Data System (ADS)
Schnürer, M.; Andreev, A. A.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Platonov, K. Yu.; Priebe, G.; Sandner, W.
2013-10-01
Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.
Two-color ionization injection using a plasma beatwave accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, C. B.; Benedetti, C.; Esarey, E.
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Two-color ionization injection using a plasma beatwave accelerator
Schroeder, C. B.; Benedetti, C.; Esarey, E.; ...
2018-01-10
Two-color laser ionization injection is a method to generate ultra-low emittance (sub-100 nm transverse normalized emittance) beams in a laser-driven plasma accelerator. A plasma beatwave accelerator is proposed to drive the plasma wave for ionization injection, where the beating of the lasers effectively produces a train of long-wavelength pulses. The plasma beatwave accelerator excites a large amplitude plasma wave with low peak laser electric fields, leaving atomically-bound electrons with low ionization potential. A short-wavelength, low-amplitude ionization injection laser pulse (with a small ponderomotive force and large peak electric field) is used to ionize the remaining bound electrons at a wakemore » phase suitable for trapping, generating an ultra-low emittance electron beam that is accelerated in the plasma wave. Using a plasma beatwave accelerator for wakefield excitation, compared to short-pulse wakefield excitation, allows for a lower amplitude injection laser pulse and, hence, a lower emittance beam may be generated.« less
Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement.
Reedijk, Susan A; Bolders, Anne; Colzato, Lorenza S; Hommel, Bernhard
2015-01-01
Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences.
Zena, Lucas A; Leite, Cléo A C; Longhini, Leonardo S; Dias, Daniel P M; da Silva, Glauber S F; Hartzler, Lynn K; Gargaglioni, Luciane H; Bícego, Kênia C
2017-11-23
Beat-to-beat variation in heart rate (f H ) has been used as a tool for elucidating the balance between sympathetic and parasympathetic modulation of the heart. A portion of the temporal changes in f H is evidenced by a respiratory influence (cardiorespiratory interaction) on heart rate variability (HRV) with heartbeats increasing and decreasing within a respiratory cycle. Nevertheless, little is known about respiratory effects on HRV in lower vertebrates. By using frequency domain analysis, we provide the first evidence of a ventilatory component in HRV similar to mammalian respiratory sinus arrhythmia in an amphibian, the toad Rhinella schneideri. Increases in the heartbeats arose synchronously with each lung inflation cycle, an intermittent breathing pattern comprised of a series of successive lung inflations. A well-marked peak in the HRV signal matching lung inflation cycle was verified in toads whenever lung inflation cycles exhibit a regular rhythm. The cardiac beat-to-beat variation evoked at the moment of lung inflation accounts for both vagal and sympathetic influences. This cardiorespiratory interaction may arise from interactions between central and peripheral feedback mechanisms governing cardiorespiratory control and may underlie important cardiorespiratory adjustments for gas exchange improvement especially under extreme conditions like low oxygen availability.
Pregnancy outcome of threatened abortion with demonstrable fetal cardiac activity: a cohort study.
Tongsong, T; Srisomboon, J; Wanapirak, C; Sirichotiyakul, S; Pongsatha, S; Polsrisuthikul, T
1995-08-01
Pregnancy with visible fetal heart beat complicated by first trimester threatened abortion had significant increased risk of subsequent spontaneous abortion compared with normal pregnancy. To compare pregnancy outcomes in cases complicated by first trimester threatened abortion with those that were not. Prospective cohort study of 255 cases of first trimester threatened abortions but with visible heart beat and 265 other normal pregnancies. Spontaneous abortion rates of 5.5% (with relative abortal risk of 2.91) was found for study group, compared to 1.88% for controls (p < 0.05). Preterm delivery was also higher, but was not statistically significant. First trimester bleeding with visible fetal heart beat appears to associate significantly with higher subsequent spontaneous abortion rate than those without.
Lerma, Claudia; Wessel, Niels; Schirdewan, Alexander; Kurths, Jürgen; Glass, Leon
2008-07-01
The objective was to determine the characteristics of heart rate variability and ventricular arrhythmias prior to the onset of ventricular tachycardia (VT) in patients with an implantable cardioverter defibrillator (ICD). Sixty-eight beat-to-beat time series from 13 patients with an ICD were analyzed to quantify heart rate variability and ventricular arrhythmias. The episodes of VT were classified in one of two groups depending on whether the sinus rate in the 1 min preceding the VT was greater or less than 90 beats per minute. In a subset of patients, increased heart rate and reduced heart rate variability was often observed up to 20 min prior to the VT. There was a non-significant trend to higher incidence of premature ventricular complexes (PVCs) before VT compared to control recordings. The patterns of the ventricular arrhythmias were highly heterogeneous among different patients and even within the same patient. Analysis of the changes of heart rate and heart rate variability may have predictive value about the onset of VT in selected patients. The patterns of ventricular arrhythmia could not be used to predict onset of VT in this group of patients.
Biologically Inspired Waveform Diversity for Synthetic Autonomous Navigation Sensing
2009-11-01
Pulse interval and repetition rate When searching for prey, bats often emit one pulse per wing beat . This is because the mechanics of flapping the...wings, breathing, and producing sound pulses are all coupled. Because of this coupling, the pulse repetition rate is often the same as wing beat ...give accurate measures of delay and hence range [26]. For determination of direction, the horizontal angle of a target is determined from binaural
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes
Eng, George; Lee, Benjamin W.; Protas, Lev; Gagliardi, Mark; Brown, Kristy; Kass, Robert S.; Keller, Gordon; Robinson, Richard B.; Vunjak-Novakovic, Gordana
2016-01-01
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration. PMID:26785135
Wadehn, Federico; Carnal, David; Loeliger, Hans-Andrea
2015-08-01
Heart rate variability is one of the key parameters for assessing the health status of a subject's cardiovascular system. This paper presents a local model fitting algorithm used for finding single heart beats in photoplethysmogram recordings. The local fit of exponentially decaying cosines of frequencies within the physiological range is used to detect the presence of a heart beat. Using 42 subjects from the CapnoBase database, the average heart rate error was 0.16 BPM and the standard deviation of the absolute estimation error was 0.24 BPM.
McConnell, Patrick A.; Froeliger, Brett; Garland, Eric L.; Ives, Jeffrey C.; Sforzo, Gary A.
2014-01-01
Binaural beats are an auditory illusion perceived when two or more pure tones of similar frequencies are presented dichotically through stereo headphones. Although this phenomenon is thought to facilitate state changes (e.g., relaxation), few empirical studies have reported on whether binaural beats produce changes in autonomic arousal. Therefore, the present study investigated the effects of binaural beating on autonomic dynamics [heart rate variability (HRV)] during post-exercise relaxation. Subjects (n = 21; 18–29 years old) participated in a double-blind, placebo-controlled study during which binaural beats and placebo were administered over two randomized and counterbalanced sessions (within-subjects repeated-measures design). At the onset of each visit, subjects exercised for 20-min; post-exercise, subjects listened to either binaural beats (‘wide-band’ theta-frequency binaural beats) or placebo (carrier tones) for 20-min while relaxing alone in a quiet, low-light environment. Dependent variables consisted of high-frequency (HF, reflecting parasympathetic activity), low-frequency (LF, reflecting sympathetic and parasympathetic activity), and LF/HF normalized powers, as well as self-reported relaxation. As compared to the placebo visit, the binaural-beat visit resulted in greater self-reported relaxation, increased parasympathetic activation and increased sympathetic withdrawal. By the end of the 20-min relaxation period there were no observable differences in HRV between binaural-beat and placebo visits, although binaural-beat associated HRV significantly predicted subsequent reported relaxation. Findings suggest that listening to binaural beats may exert an acute influence on both LF and HF components of HRV and may increase subjective feelings of relaxation. PMID:25452734
[Successful anesthetic management of a patient with thyroid storm using landiolol].
Fukushima, Tomihiro; Tokioka, Hiroaki; Ishii, Fumiko; Mikane, Takeshi; Oku, Satoru; Fujii, Hiromi; Katayama, Daisuke; Kawanishi, Susumu; Kosaka, Junko; Nagano, Yuri
2007-02-01
We report successful anesthetic management of a 38-year-old man with thyroid storm using an ultra-short acting beta blocker, landiolol. The patient was admitted to the hospital for severe abdominal pain. An emergency laparotomy was scheduled for perforated gastric ulcer under a condition of uncontrolled thyrotoxicosis. On arriving the operating room, he showed tachycardia of 140 beats x min(-1) and blood pressure of 140/75 mmHg and high fever of 39 degrees C with tremor, sweating and diarrhea. He was anesthetized with oxygen, nitrous oxide, sevoflurane and fentanyl. Heart rate was around 130 beats x min(-1), and the landiolol was given continuously at a rate of 0.02-0.04 microg x kg(-1) x min(-1). Heart rate was controlled bellow 120 beats x min(-1) without hypotension during anesthesia. Thiamazole and inorganic iodine were given through an enterostomy tube postoperatively, and heart rate decreased gradually. He was extubated on the third postoperative day without any sequelae.
Electron Beam Transport in Advanced Plasma Wave Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Ronald L
2013-01-31
The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams weremore » generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.« less
Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano
2015-01-01
Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923
Obel, O A; Luddington, L; Maarouf, N; Aytemir, K; Ekwall, C; Malik, M; Camm, A J
2005-01-01
Objective: To prospectively determine whether ventricular rate and regularity are significant determinants of the velocity and magnitude of left atrial appendage (LAA) flow. Design and patients: 12 patients with atrial fibrillation (AF), high degree atrioventricular block, and indwelling permanent pacemakers were studied. Setting: Cardiology department of a tertiary referral centre. Interventions: Pacing was triggered by an external programmable transcutaneous device. Patients were paced at 60, 120, and 150 beats/min in both regular and irregular rhythm. LAA flow velocity and magnitude were assessed with transoesophageal Doppler echocardiography. Main outcome measures: Peak and mean LAA inflow and outflow velocity, and time-velocity interval (TVI) of LAA flow. Results: Increasing ventricular rate was associated with significantly lower peak inflow (p < 0.01), peak outflow (p < 0.05), mean inflow (p < 0.01), and mean outflow (p < 0.05) velocities and with a lower TVI of LAA filling and emptying velocities (p < 0.01). This effect was noted at rates of 60 beats/min compared with both 120 and 150 beats/min. At a pacing rate of 120 beats/min there was a significantly higher total TVI when pacing at a regular than at an irregular rhythm (40.16 (14.6) cm v 30.74 (10.9) cm, p < 0.05). Conclusions: In this study, LAA filling velocities in patients in AF were significantly influenced by paced ventricular rate and to a much lesser extent ventricular rhythm. These results suggest that rapid ventricular rates may predispose to stasis in the LAA in AF. PMID:15894771
NASA Technical Reports Server (NTRS)
Wilson, T. E.; Cui, J.; Crandall, C. G.
2001-01-01
1. Prior findings suggest that baroreflexes are capable of modulating skin blood flow, but the effects of baroreceptor loading/unloading on sweating are less clear. Therefore, this project tested the hypothesis that pharmacologically induced alterations in arterial blood pressure in heated humans would lead to baroreflex-mediated changes in both skin sympathetic nerve activity (SSNA) and sweat rate. 2. In seven subjects mean arterial blood pressure was lowered (approximately 8 mmHg) and then raised (approximately 13 mmHg) by bolus injections of sodium nitroprusside and phenylephrine, respectively. Moreover, in a separate protocol, arterial blood pressure was reduced via steady-state administration of sodium nitroprusside. In both normothermia and heat-stress conditions the following responses were monitored: sublingual and mean skin temperatures, heart rate, beat-by-beat blood pressure, skin blood flow (laser-Doppler flowmetry), local sweat rate and SSNA (microneurography from peroneal nerve). 3. Whole-body heating increased skin and sublingual temperatures, heart rate, cutaneous blood flow, sweat rate and SSNA, but did not change arterial blood pressure. Heart rate was significantly elevated (from 74 +/- 3 to 92 +/- 4 beats x min(-1); P < 0.001) during bolus sodium nitroprusside-induced reductions in blood pressure, and significantly reduced (from 92 +/- 4 to 68 +/- 4 beats x min(-1); P < 0.001) during bolus phenylephrine-induced elevations in blood pressure, thereby demonstrating normal baroreflex function in these subjects. 4. Neither SSNA nor sweat rate was altered by rapid (bolus infusion) or sustained (steady-state infusion) changes in blood pressure regardless of the thermal condition. 5. These data suggest that SSNA and sweat rate are not modulated by arterial baroreflexes in normothermic or moderately heated individuals.
How molecular motors shape the flagellar beat
Riedel-Kruse, Ingmar H.; Hilfinger, Andreas; Howard, Jonathon; Jülicher, Frank
2007-01-01
Cilia and eukaryotic flagella are slender cellular appendages whose regular beating propels cells and microorganisms through aqueous media. The beat is an oscillating pattern of propagating bends generated by dynein motor proteins. A key open question is how the activity of the motors is coordinated in space and time. To elucidate the nature of this coordination we inferred the mechanical properties of the motors by analyzing the shape of beating sperm: Steadily beating bull sperm were imaged and their shapes were measured with high precision using a Fourier averaging technique. Comparing our experimental data with wave forms calculated for different scenarios of motor coordination we found that only the scenario of interdoublet sliding regulating motor activity gives rise to satisfactory fits. We propose that the microscopic origin of such “sliding control” is the load dependent detachment rate of motors. Agreement between observed and calculated wave forms was obtained only if significant sliding between microtubules occurred at the base. This suggests a novel mechanism by which changes in basal compliance could reverse the direction of beat propagation. We conclude that the flagellar beat patterns are determined by an interplay of the basal properties of the axoneme and the mechanical feedback of dynein motors. PMID:19404446
Du, Wei-Guo; Radder, Rajkumar S; Sun, Bo; Shine, Richard
2009-05-01
The eggs of birds typically hatch after a fixed (but lineage-specific) cumulative number of heart beats since the initiation of incubation. Is the same true for non-avian reptiles, despite wide intraspecific variation in incubation period generated by variable nest temperatures? Non-invasive monitoring of embryo heart beat rates in one turtle species (Pelodiscus sinensis) and two lizards (Bassiana duperreyi and Takydromus septentrionalis) show that the total number of heart beats during embryogenesis is relatively constant over a wide range of warm incubation conditions. However, incubation at low temperatures increases the total number of heart beats required to complete embryogenesis, because the embryo spends much of its time at temperatures that require maintenance functions but that do not allow embryonic growth or differentiation. Thus, cool-incubated embryos allocate additional metabolic effort to maintenance costs. Under warm conditions, total number of heart beats thus predicts incubation period in non-avian reptiles as well as in birds (the total number of heart beats are also similar); however, under the colder nest conditions often experienced by non-avian reptiles, maintenance costs add significantly to total embryonic metabolic expenditure.
NASA Astrophysics Data System (ADS)
Liu, Lisheng; Zhang, Heyong; Guo, Jin; Zhao, Shuai; Wang, Tingfeng
2012-08-01
In this paper, we report a mathematical derivation of probability density function (PDF) of time-interval between two successive photoelectrons of the laser heterodyne signal, and give a confirmation of the theoretical result by both numerical simulation and an experiment. The PDF curve of the beat signal displays a series of fluctuations, the period and amplitude of which are respectively determined by the beat frequency and the mixing efficiency. The beat frequency is derived from the frequency of fluctuations accordingly when the PDF curve is measured. This frequency measurement method still works while the traditional Fast Fourier Transform (FFT) algorithm hardly derives the correct peak value of the beat frequency in the condition that we detect 80 MHz beat signal with 8 Mcps (counts per-second) photons count rate, and this indicates an advantage of the PDF method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian
2014-01-14
The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less
Differential baroreflex control of heart rate in sedentary and aerobically fit individuals
NASA Technical Reports Server (NTRS)
Smith, S. A.; Querry, R. G.; Fadel, P. J.; Welch-O'Connor, R. M.; Olivencia-Yurvati, A.; Shi, X.; Raven, P. B.
2000-01-01
PURPOSE: We compared arterial, aortic, and carotid-cardiac baroreflex sensitivity in eight average fit (maximal oxygen uptake, VO2max = 42.2+/-1.9 mL x kg(-1) x min(-1)) and eight high fit (VO2max = 61.9+/-2.2 mL x kg(-1) x min(-1)) healthy young adults. METHODS: Arterial and aortic (ABR) baroreflex functions were assessed utilizing hypo- and hyper-tensive challenges induced by graded bolus injections of sodium nitroprusside (SN) and phenylephrine (PE), respectively. Carotid baroreflex (CBR) sensitivity was determined using ramped 5-s pulses of both pressure and suction delivered to the carotid sinus via a neck chamber collar, independent of drug administration. RESULTS: During vasoactive drug injection, mean arterial pressure (MAP) was similarly altered in average fit (AF) and high fit (HF) groups. However, the heart rate (HR) response range of the arterial baroreflex was significantly attenuated (P < 0.05) in HF (31+/-4 beats x min(-1)) compared with AF individuals (46+/-4 beats x min(-1)). When sustained neck suction and pressure were applied to counteract altered carotid sinus pressure during SN and PE administration, isolating the ABR response, the response range remained diminished (P < 0.05) in the HF population (24+/-3 beats x min(-1)) compared with the AF group (41+/-4 beats x min(-1)). During CBR perturbation, the HF (14+/-1 beats-min(-1)) and AF (16+/-1 beats-min(-1)) response ranges were similar. The arterial baroreflex response range was significantly less than the simple sum of the CBR and ABR (HF, 38+/-3 beats x min(-1) and AF, 57+/-4 beats x min(-1)) in both fitness groups. CONCLUSIONS: These data confirm that reductions in arterial-cardiac reflex sensitivity are mediated by diminished ABR function. More importantly, these data suggest that the integrative relationship between the ABR and CBR contributing to arterial baroreflex control of HR is inhibitory in nature and not altered by exercise training.
Chen, Minglong; Gu, Kai; Yang, Bing; Chen, Hongwu; Ju, Weizhu; Zhang, Fengxiang; Yang, Gang; Li, Mingfang; Lu, Xinzheng; Cao, Kejiang; Ouyang, Feifan
2014-12-01
Accelerated idioventricular rhythm (AIVR) or ventricular tachycardia (VT) originating from the right bundle branch (RBB) is rare and published clinical data on such arrhythmia are scarce. In this study, we will describe the clinical manifestations, diagnosis, and management of a cohort of patients with this novel arrhythmia. Eight patients (5 men; median age, 25 years) with RBB-AIVR/VT were consecutively enrolled in the study. Pharmacological testing, exercise treadmill testing, electrophysiological study, and catheter ablation were performed in the study patients, and ECG features were characterized. All RBB-AIVR/VTs were of typical left bundle-branch block morphology with atrioventricular dissociation. The arrhythmias, which demonstrated chronotropic variability, were often isorhythmic with sinus rhythm and were accelerated by physical exercise, stress, and intravenous isoprenaline infusion. The rate of RBB-AIVR/VT varied from 45 to 200 beats per minute. Two patients experienced syncope, and 3 had impaired left ventricular function. Metoprolol was proven to be the most effective drug to decelerate the arrhythmia rate and relieve symptoms. Electrophysiology study was performed in 5 patients and the earliest activation with a sharp RBB potential was localized in the mid or distal RBB area. Catheter ablation terminated the arrhythmia with subsequent RBB block morphology during sinus rhythm. During follow-up, patients' symptoms were controlled with normalization of left ventricular function either on metoprolol or by catheter ablation. RBB-AIVR/VT is an unusual type of ventricular arrhythmia. It can result in significant symptoms and depressed ventricular function and can be successfully treated with catheter ablation. © 2014 American Heart Association, Inc.
Dynamic behavior of prosthetic aortic tissue valves as viewed by high-speed cinematography.
Rainer, W G; Christopher, R A; Sadler, T R; Hilgenberg, A D
1979-09-01
Using a valve testing apparatus of our own design and with a high-speed (600 to 800 frames per second) 16 mm movie camera, films were made of Hancock porcine, Carpentier-Edwards porcine, and Ionescu-Shiley bovine pericardial valves mounted in the aortic position and cycled under physiological conditions at 72 to 100 beats per minute. Fresh and explanted valves were observed using saline or 36.5% glycerol as the pumping solution. When fresh valves were studied using saline solution as the pumpint fluid, the Hancock and Carpentier-Edwards porcine valves showed high-frequency leaflet vibration, which increased in frequency with higher cycling rates. Abnormal leaflet motion was decreased when glycerol was used as the blood analogue. The Ionescu-Shiley bovine pericardial valve did not show abnormal leaflet motion under these conditions. Conclusions drawn from tissue valve testing studies that use excessively high pulsing rates and pressures (accelerated testing) and saline or water as pumping solutions cannot be transposed to predict the fate of tissue valves in a clinical setting.
Functional video-based analysis of 3D cardiac structures generated from human embryonic stem cells.
Nitsch, Scarlett; Braun, Florian; Ritter, Sylvia; Scholz, Michael; Schroeder, Insa S
2018-05-01
Human embryonic stem cells (hESCs) differentiated into cardiomyocytes (CM) often develop into complex 3D structures that are composed of various cardiac cell types. Conventional methods to study the electrophysiology of cardiac cells are patch clamp and microelectrode array (MEAs) analyses. However, these methods are not suitable to investigate the contractile features of 3D cardiac clusters that detach from the surface of the culture dishes during differentiation. To overcome this problem, we developed a video-based motion detection software relying on the optical flow by Farnebäck that we call cBRA (cardiac beat rate analyzer). The beating characteristics of the differentiated cardiac clusters were calculated based on the local displacement between two subsequent images. Two differentiation protocols, which profoundly differ in the morphology of cardiac clusters generated and in the expression of cardiac markers, were used and the resulting CM were characterized. Despite these differences, beat rates and beating variabilities could be reliably determined using cBRA. Likewise, stimulation of β-adrenoreceptors by isoproterenol could easily be identified in the hESC-derived CM. Since even subtle changes in the beating features are detectable, this method is suitable for high throughput cardiotoxicity screenings. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Gender- and age-related differences in heart rate dynamics: are women more complex than men?
NASA Technical Reports Server (NTRS)
Ryan, S. M.; Goldberger, A. L.; Pincus, S. M.; Mietus, J.; Lipsitz, L. A.
1994-01-01
OBJECTIVES. This study aimed to quantify the complex dynamics of beat-to-beat sinus rhythm heart rate fluctuations and to determine their differences as a function of gender and age. BACKGROUND. Recently, measures of heart rate variability and the nonlinear "complexity" of heart rate dynamics have been used as indicators of cardiovascular health. Because women have lower cardiovascular risk and greater longevity than men, we postulated that there are important gender-related differences in beat-to-beat heart rate dynamics. METHODS. We analyzed heart rate dynamics during 8-min segments of continuous electrocardiographic recording in healthy young (20 to 39 years old), middle-aged (40 to 64 years old) and elderly (65 to 90 years old) men (n = 40) and women (n = 27) while they performed spontaneous and metronomic (15 breaths/min) breathing. Relatively high (0.15 to 0.40 Hz) and low (0.01 to 0.15 Hz) frequency components of heart rate variability were computed using spectral analysis. The overall "complexity" of each heart rate time series was quantified by its approximate entropy, a measure of regularity derived from nonlinear dynamics ("chaos" theory). RESULTS. Mean heart rate did not differ between the age groups or genders. High frequency heart rate power and the high/low frequency power ratio decreased with age in both men and women (p < 0.05). The high/low frequency power ratio during spontaneous and metronomic breathing was greater in women than men (p < 0.05). Heart rate approximate entropy decreased with age and was higher in women than men (p < 0.05). CONCLUSIONS. High frequency heart rate spectral power (associated with parasympathetic activity) and the overall complexity of heart rate dynamics are higher in women than men. These complementary findings indicate the need to account for gender-as well as age-related differences in heart rate dynamics. Whether these gender differences are related to lower cardiovascular disease risk and greater longevity in women requires further study.
Koplay, Mustafa; Celik, Mahmut; Avcı, Ahmet; Erdogan, Hasan; Demir, Kenan; Sivri, Mesut; Nayman, Alaaddin
2015-01-01
We aimed to report the image quality, relationship between heart rate and image quality, amount of contrast agent given to the patients and radiation doses in coronary CT angiography (CTA) obtained by using high-pitch prospectively ECG-gated "Flash Spiral" technique (method A) or retrospectively ECG-gated technique (method B) using 128×2-slice dual-source CT. A total of 110 patients who were evaluated with method A and method B technique with a 128×2-detector dual-source CT device were included in the study. Patients were divided into three groups based on their heart rates during the procedure, and a relationship between heart rate and image quality were evaluated. The relationship between heart rate, gender and radiation dose received by the patients was compared. A total of 1760 segments were evaluated in terms of image quality. Comparison of the relationship between heart rate and image quality revealed a significant difference between heart rate <60 beats/min group and >75 beats/min group whereas <60 beats/min and 60-75 beats/min groups did not differ significantly. The average effective dose for coronary CTA was calculated as 1.11 mSv (0.47-2.01 mSv) for method A and 8.22 mSv (2.19-12.88 mSv) for method B. Method A provided high quality images with doses as low as <1 mSv in selected patients who have low heart rates with a high negative predictive value to rule out coronary artery disease. Although method B increases the amount of effective dose, it provides high diagnostic quality images for patients who have a high heart rate and arrhythmia which makes it is difficult to obtain images.
Diminution of Heart Rate Variability in Bipolar Depression
Hage, Brandon; Britton, Briana; Daniels, David; Heilman, Keri; Porges, Stephen W.; Halaris, Angelos
2017-01-01
Autonomic nervous system (ANS) dysregulation in depression is associated with symptoms associated with the ANS. The beat-to-beat pattern of heart rate defined as heart rate variability (HRV) provides a noninvasive portal to ANS function and has been proposed to represent a means of quantifying resting vagal tone. We quantified HRV in bipolar depressed (BDD) patients as a measure of ANS dysregulation seeking to establish HRV as a potential diagnostic and prognostic biomarker for treatment outcome. Forty-seven BDD patients were enrolled. They were randomized to receive either escitalopram–celecoxib or escitalopram-placebo over 8 weeks in a double-blind study design. Thirty-five patients completed the HRV studies. Thirty-six healthy subjects served as controls. HRV was assessed at pretreatment and end of study and compared with that of controls. HRV was quantified and corrected for artifacts using an algorithm that incorporates time and frequency domains to address non-stationarity of the beat-to-beat heart rate pattern. Baseline high frequency-HRV (i.e., respiratory sinus arrhythmia) was lower in BDD patients than controls, although the difference did not reach significance. Baseline low-frequency HRV was significantly lower in BDD patients (ln4.20) than controls (ln = 5.50) (p < 0.01). Baseline heart period was significantly shorter (i.e., faster heart rate) in BDD patients than controls. No significant change in HRV parameters were detected over the course of the study with either treatment. These findings suggest that components of HRV may be diminished in BDD patients. PMID:29270399
Psychological Analyses of Courageous Performance in Military Personnel
1986-11-01
schedule HR heart rate IBI inter- beat interval N number of subjects NS not statistically significant P probability PCA principal components analysis RAQ...tones in the range of 400 to 600 Hz, set at a level of 60 dB, transmitted for 1 sec binaurally through earphones from a commercial oscillator. The...because of interference on the recording trace. Cardiac activity was measured in terms of heart rate (HR). The number of beats /minute was estimared by
Eliminating the Attentional Blink through Binaural Beats: A Case for Tailored Cognitive Enhancement
Reedijk, Susan A.; Bolders, Anne; Colzato, Lorenza S.; Hommel, Bernhard
2015-01-01
Enhancing human cognitive performance is a topic that continues to spark scientific interest. Studies into cognitive-enhancement techniques often fail to take inter-individual differences into account, however, which leads to underestimation of the effectiveness of these techniques. The current study investigated the effect of binaural beats, a cognitive-enhancement technique, on attentional control in an attentional blink (AB) task. As predicted from a neurocognitive approach to cognitive control, high-frequency binaural beats eliminated the AB, but only in individuals with low spontaneous eye-blink rates (indicating low striatal dopamine levels). This suggests that the way in which cognitive-enhancement techniques, such as binaural beats, affect cognitive performance depends on inter-individual differences. PMID:26089802
Barbaro, V; Boccanera, G; Daniele, C; Grigioni, M; Palombo, A
1995-09-01
A fatigue life test, by accelerating the beat rate, simulates several years of virtual life of a prosthetic heart valve in a short period of time. The correlation between the in vivo life of a valve and in vitro testing expectations is as yet not well established, but reproducible test conditions yield precious information about wear and failure. The paper reports a qualitative analysis of mechanical valve wear as part of a comparison program designed to investigate the significance of fatigue testing with the ultimate aim of defining standard guidelines for these type of tests. Two tilting disc valves (29 mm) were subjected to 16 years of fatigue life simulated by means of a Rowan Ash fatigue tester (accelerated rate of 1,200 bpm). Fatigue-induced effects on valve disc and ring surfaces were observed under a monitor microscope to identify wear sites and patterns. A high speed cinematographic system was used to investigate the mechanisms responsible for the wear (wear modes). Valve closure was inspected at a 6,000 frame/s rate. Because of disc rotation during the tilting movement, the points of contact between disc and ring are distributed all around the disc edge but focally on the ring. On both sides of the disc, the surfaces present ring-like concentric grooves. After 16 years of fatigue life the valves showed neither severe wear nor alteration of their fluidodynamic behavior in the pulsatile flow test.
Beat-to-Beat Blood Pressure Monitor
NASA Technical Reports Server (NTRS)
Lee, Yong Jin
2012-01-01
This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes. Photoplethysmography, which measures changes in arterial blood volume, is commonly used to obtain heart rate and blood oxygen saturation. The digitized PPG signals are used as inputs into the beat-to-beat blood pressure measurement algorithm.
Evaluation of a strapless heart rate monitor during simulated flight tasks.
Wang, Zhen; Fu, Shan
2016-01-01
Pilots are under high task demands during flight. Monitoring pilot's physiological status is very important in the evaluation of pilot's workload and flight safety. Recently, physiological status monitor (PSM) has been embedded into a watch that can be used without a conventional chest strap. This makes it possible to unobtrusively monitor, log and transmit pilot's physiological measurements such as heart rate (HR) during flight tasks. The purpose of this study is to validate HR recorded by a strapless heart rate watch against criterion ECG-derived HR. Ten commercial pilots (mean ± SD : age: 39.1 ± 7.8 years; total flight hours 7173.2 ± 5270.9 hr) performed three routinely trained flight tasks in a full flight simulator: wind shear go-around (WG), takeoff and climb (TC), and hydraulic failure (HF). For all tasks combined (overall) and for each task, differences between the heart rate watch measurements and the criterion data were small (mean difference [95% CI]: overall: -0.71 beats/min [-0.85, -0.57]; WG: -0.90 beats/min [-1.15, -0.65]; TC: -0.69 beats/min [-0.98, -0.40]; HF: -0.61 beats/min [-0.80, -0.42]). There were high correlations between the heart rate watch measurements and the ECG-derived HR for all tasks (r ≥ 0.97, SEE < 3). Bland-Altman plots also show high agreements between the watch measurements and the criterion HR. These results suggest that the strapless heart rate watch provides valid measurements of HR during simulated flight tasks and could be a useful tool for pilot workload evaluation.
Trait anxiety mimics age-related cardiovascular autonomic modulation in young adults.
Sanchez-Gonzalez, M A; Guzik, P; May, R W; Koutnik, A P; Hughes, R; Muniz, S; Kabbaj, M; Fincham, F D
2015-04-01
Anxiety produces maladaptive cardiovascular changes and accelerates biological aging. We evaluated cardiovascular reactivity in young and middle-aged individuals with varying anxiety scores to test the hypothesis that anxiety mimics cardiovascular aging by influencing cardiovascular autonomic modulation. The State-Trait Anxiety Inventory was used to classify healthy young individuals (20-29 years) into high (YHA, n=22;10 men) and low (YLA, n=21;10 men) anxiety, and to identify middle-aged individuals (50-60 years) with low anxiety (MLA, n=22;11 men). Heart rate, blood pressure (BP) and their variability (HRV and BPV, respectively) and baroreflex function were analyzed from beat-to-beat finger BP and electrocardiogram recordings collected during 5-min baseline, 6-min speech task (ST) and 3-min post ST recovery. Analyses of covariance showed significant differences (P<0.05) at baseline for HRV, BPV and barorelfex, and low-frequency power of systolic BP variability (LFSBP) was lower, whereas baroreflex and high frequency (HF) normalized units were higher in the YLA compared with YHA and MLA groups. Compared with YLA, YHA and MLA displayed attenuated vagal withdraw response (HF) to ST. BP and LFSBP responses to ST in YHA and MLA were higher compared with the YLA group. These findings suggest that anxiety could be linked to cardiovascular aging as it attenuates cardiac reactivity and exaggerates vascular responses to stress.
NASA Technical Reports Server (NTRS)
Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.
1995-01-01
Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.
Suzuki, T; Okamura, K; Kimura, Y; Watanabe, T; Yaegashi, N; Murotsuki, J; Uehara, S; Yajima, A
2000-05-01
The appearance of the sinusoidal heart rate pattern found on fetal cardiotocograms has not been fully explained, either physiologically or clinically. In this study we performed power spectral analysis on the sinusoidal heart rate pattern obtained by administration of arginine vasopressin and atropine sulfate to investigate its frequency components in fetal lambs with long-term instrument implantation. Eleven tests were performed in 4 fetal lambs at 120 to 130 days' gestation. An artificial sinusoidal heart rate pattern was obtained by administration of atropine sulfate and arginine vasopressin in 9 tests. An autoregression model was used to compare the spectral patterns before and during the sinusoidal heart rate pattern. Marked decreases in low-frequency (0.025-0.125 cycles/beat) and high-frequency (0.2-0.5 cycles/beat) areas were observed in the presence of the sinusoidal heart rate pattern. However, there were no significant changes in the very-low-frequency area (0.01-0.025 cycles/beat), which corresponds to the frequency of the sinusoidal heart rate pattern. The sinusoidal heart rate pattern may represent a very low-frequency component inherent in fetal heart rate variability that appears when low- and high-frequency components are reduced as a result of strongly suppressed autonomic nervous activity.
Cardiotachometer displays heart rate on a beat-to-beat basis
NASA Technical Reports Server (NTRS)
Rasquin, J. R.; Smith, H. E.; Taylor, R. A.
1974-01-01
Electronics for this system may be chosen so that complete calculation and display may be accomplished in a few milliseconds, far less than even the fastest heartbeat interval. Accuracy may be increased, if desired, by using higher-frequency timing oscillator, although this will require large capacity registers at increased cost.
Baroreflex modulation of sympathetic nerve activity to muscle in heat-stressed humans
NASA Technical Reports Server (NTRS)
Cui, Jian; Wilson, Thad E.; Crandall, Craig G.
2002-01-01
To identify whether whole body heating alters arterial baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA and beat-by-beat arterial blood pressure were recorded in seven healthy subjects during acute hypotensive and hypertensive stimuli in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature (P < 0.01), MSNA (P < 0.01), heart rate (P < 0.01), and skin blood flow (P < 0.001), whereas mean arterial blood pressure did not change significantly (P > 0.05). During both normothermic and heat stress conditions, MSNA increased and then decreased significantly when blood pressure was lowered and then raised via intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure during heat stress (-128.3 +/- 13.9 U x beats(-1) x mmHg(-1)) was similar (P = 0.31) with normothermia (-140.6 +/- 21.1 U x beats(-1) x mmHg(-1)). Moreover, no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that arterial baroreflex modulation of MSNA and heart rate are not altered by whole body heating, with the exception of an upward shift of these baroreflex curves to accommodate changes in these variables that occur with whole body heating.
Second ventilatory threshold from heart-rate variability: valid when the upper body is involved?
Mourot, Laurent; Fabre, Nicolas; Savoldelli, Aldo; Schena, Federico
2014-07-01
To determine the most accurate method based on spectral analysis of heart-rate variability (SA-HRV) during an incremental and continuous maximal test involving the upper body, the authors tested 4 different methods to obtain the heart rate (HR) at the second ventilatory threshold (VT(2)). Sixteen ski mountaineers (mean ± SD; age 25 ± 3 y, height 177 ± 8 cm, mass 69 ± 10 kg) performed a roller-ski test on a treadmill. Respiratory variables and HR were continuously recorded, and the 4 SA-HRV methods were compared with the gas-exchange method through Bland and Altman analyses. The best method was the one based on a time-varying spectral analysis with high frequency ranging from 0.15 Hz to a cutoff point relative to the individual's respiratory sinus arrhythmia. The HR values were significantly correlated (r(2) = .903), with a mean HR difference with the respiratory method of 0.1 ± 3.0 beats/min and low limits of agreements (around -6 /+6 beats/min). The 3 other methods led to larger errors and lower agreements (up to 5 beats/min and around -23/+20 beats/min). It is possible to accurately determine VT(2) with an HR monitor during an incremental test involving the upper body if the appropriate HRV method is used.
2014-10-01
a period of time by electrodes attached to the surface of the skin, are used in almost every clinical environment. Pulse oximeters , which measure the...medical devices, for example, pulse oximeters , vascular diagnostics, and digital beat-to-beat blood pressure measurement systems (Allen 2007). PPG is...principle is pulse oximetry. 1.2 Pulse Oximetry A pulse oximeter monitors the blood-oxygen saturation level and pulse rate in the human blood by using
Law Enforcement Head-Borne Personal Protective Equipment Hearing Attenuation
2009-04-01
thus allowing for a binaural recording to be captured. The BOB was placed on a manual turntable to allow the BOB to be rotated along the azimuth...listed in the Appendix. Each movement should be conducted 8 times at a rate of 50 beats per minute (BPM) and 80 BPM; this will be defined as slow...APPENDIX FABRIC NOISE TEST MOVEMENTS AND SPEEDS The below movements must be performed at a rate of 50 beats per minute (BPM) and 80 BPM: Movement
Prototype Automated Equipment to Perform Poising and Beat Rate Operations on the M577 MTSQ Fuze.
1978-09-30
Regulation Machine which sets the M577 Fuze Timer beat rate and the Automatic Poising Machine which J dynamically balances the Timer balance wheel...in trouble shooting., The Automatic Poising Machine Figure 3 which inspects and corrects the dynamic I balance of the Balance Wheel Assembly was...machine is intimately related to the fastening method of the wire to the Timer at one end and the Balance Wheel at the other, a review of the history
SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM
Plotkin, M.; Raka, E.C.; Snyder, H.S.
1963-05-01
A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)
Common multifractality in the heart rate variability and brain activity of healthy humans
NASA Astrophysics Data System (ADS)
Lin, D. C.; Sharif, A.
2010-06-01
The influence from the central nervous system on the human multifractal heart rate variability (HRV) is examined under the autonomic nervous system perturbation induced by the head-up-tilt body maneuver. We conducted the multifractal factorization analysis to factor out the common multifractal factor in the joint fluctuation of the beat-to-beat heart rate and electroencephalography data. Evidence of a central link in the multifractal HRV was found, where the transition towards increased (decreased) HRV multifractal complexity is associated with a stronger (weaker) multifractal correlation between the central and autonomic nervous systems.
Tereshchenko, Larisa G.; Cygankiewicz, Iwona; McNitt, Scott; Vazquez, Rafael; Bayes-Genis, Antoni; Han, Lichy; Sur, Sanjoli; Couderc, Jean-Philippe; Berger, Ronald D.; de Luna, Antoni Bayes; Zareba, Wojciech
2012-01-01
Background The goal of this study was to determine the predictive value of beat-to-beat QT variability in heart failure (HF) patients across the continuum of left ventricular dysfunction. Methods and Results Beat-to-beat QT variability index (QTVI), heart rate variance (LogHRV), normalized QT variance (QTVN), and coherence between heart rate variability and QT variability have been measured at rest during sinus rhythm in 533 participants of the Muerte Subita en Insuficiencia Cardiaca (MUSIC) HF study (mean age 63.1±11.7; males 70.6%; LVEF >35% in 254 [48%]) and in 181 healthy participants from the Intercity Digital Electrocardiogram Alliance (IDEAL) database. During a median of 3.7 years of follow-up, 116 patients died, 52 from sudden cardiac death (SCD). In multivariate competing risk analyses, the highest QTVI quartile was associated with cardiovascular death [hazard ratio (HR) 1.67(95%CI 1.14-2.47), P=0.009] and in particular with non-sudden cardiac death [HR 2.91(1.69-5.01), P<0.001]. Elevated QTVI separated 97.5% of healthy individuals from subjects at risk for cardiovascular [HR 1.57(1.04-2.35), P=0.031], and non-sudden cardiac death in multivariate competing risk model [HR 2.58(1.13-3.78), P=0.001]. No interaction between QTVI and LVEF was found. QTVI predicted neither non-cardiac death (P=0.546) nor SCD (P=0.945). Decreased heart rate variability (HRV) rather than increased QT variability was the reason for increased QTVI in this study. Conclusions Increased QTVI due to depressed HRV predicts cardiovascular mortality and non-sudden cardiac death, but neither SCD nor excracardiac mortality in HF across the continuum of left ventricular dysfunction. Abnormally augmented QTVI separates 97.5% of healthy individuals from HF patients at risk. PMID:22730411
Transitions between three swimming gaits in Paramecium escape.
Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N
2011-05-03
Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a "jumping" gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia.
Transitions between three swimming gaits in Paramecium escape
Hamel, Amandine; Fisch, Cathy; Combettes, Laurent; Dupuis-Williams, Pascale; Baroud, Charles N.
2011-01-01
Paramecium and other protists are able to swim at velocities reaching several times their body size per second by beating their cilia in an organized fashion. The cilia beat in an asymmetric stroke, which breaks the time reversal symmetry of small scale flows. Here we show that Paramecium uses three different swimming gaits to escape from an aggression, applied in the form of a focused laser heating. For a weak aggression, normal swimming is sufficient and produces a steady swimming velocity. As the heating amplitude is increased, a higher acceleration and faster swimming are achieved through synchronized beating of the cilia, which begin by producing oscillating swimming velocities and later give way to the usual gait. Finally, escape from a life-threatening aggression is achieved by a “jumping” gait, which does not rely on the cilia but is achieved through the explosive release of a group of trichocysts in the direction of the hot spot. Measurements through high-speed video explain the role of trichocysts in defending against aggressions while showing unexpected transitions in the swimming of microorganisms. These measurements also demonstrate that Paramecium optimizes its escape pattern by taking advantage of its inertia. PMID:21464291
Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A
2018-03-01
Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated. Relationships between basal beating rate and L-type Ca 2+ current and funny current ( I f ) density are uncovered, along with a positive relationship between I f and delayed rectifier K + current. Links are shown between the response to Ca 2+ cycling blockade and I f density.
Guzik, Przemyslaw; Piekos, Caroline; Pierog, Olivia; Fenech, Naiman; Krauze, Tomasz; Piskorski, Jaroslaw; Wykretowicz, Andrzej
2018-05-01
We compared classic ECG-derived versus a mobile approach to heart rate variability (HRV) measurement. 29 young adult healthy volunteers underwent a simultaneous recording of heart rate using an ECG and a chest heart rate monitor at supine rest, during mental stress and active standing. Mean RR interval, Standard Deviation of Normal-to-Normal (SDNN) of RR intervals, and Root Mean Square of the Successive Differences (RMSSD) between RR intervals were computed in 168 pairs of 5-minute epochs by in-house software on a PC (only sinus beats) and by mobile application "ELITEHRV" on a smartphone (no beat type identification). ECG analysis showed that 33.9% of the recordings contained at least one non-sinus beat or artefact, the mobile app did not report this. The mean RR intervals were significantly longer (p = 0.0378), while SDNN (p = 0.0001) and RMSSD (p = 0.0199) were smaller for the mobile approach. Measures of identical HRV parameters by ECG-based and mobile approaches are not equivalent. Copyright © 2018 Elsevier B.V. All rights reserved.
The Roles of Traditional Gender Myths and Beliefs About Beating on Self-Reported Partner Violence.
Husnu, Shenel; Mertan, Biran E
2015-08-24
The aim of the current study was to investigate the roles of beliefs about beating, traditional gender myth endorsement, ambivalent sexism, and perceived partner violence in determining an individual's own reported violence toward his or her partner. The sample consisted of 205 (117 women; 88 men) Turkish and Turkish Cypriot undergraduate students, aged between 16 and 29 years. Participants completed measures of beliefs about beating, traditional gender myth endorsement, and ambivalent sexism and rated the extent to which they experienced abusive behaviors from their partner as well as the extent to which they were themselves abusive to their partners. Results showed that positive beliefs about beating, endorsing traditional gender myths, and experiencing partner abuse were all predictive of self-reported abuse to one's partner. Furthermore, the relationship between myth endorsement and self-abusive behavior was mediated by beliefs toward beating-only in men. Results are discussed in light of the traditional gender system evident in Turkish societal makeup. © The Author(s) 2015.
Does respiratory sinus arrhythmia occur in fishes?
Campbell, Hamish A; Taylor, Edwin W; Egginton, Stuart
2005-01-01
The hypothesis that respiratory modulation of heart rate variability (HRV) or respiratory sinus arrhythmia (RSA) is restricted to mammals was tested on four Antarctic and four sub-Antarctic species of fish, that shared close genotypic or ecotypic similarities but, due to their different environmental temperatures, faced vastly different selection pressures related to oxygen supply. The intrinsic heart rate (fH) for all the fish species studied was ∼25% greater than respiration rate (fV), but vagal activity successively delayed heart beats, producing a resting fH that was synchronized with fV in a progressive manner. Power spectral statistics showed that these episodes of relative bradycardia occurred in a cyclical manner every 2–4 heart beats in temperate species but at >4 heart beats in Antarctic species, indicating a more relaxed selection pressure for cardio-respiratory coupling. This evidence that vagally mediated control of fH operates around the ventilatory cycle in fish demonstrates that influences similar to those controlling RSA in mammals operate in non-mammalian vertebrates. PMID:17148239
A demonstration of beam intensity modulation without loss of charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, G.H.; Rawnsley, W.R.; Lee, R.
1995-09-01
The large acceptance and the simplicity of H{sup {minus}} extraction makes practical unusual modes of cyclotron operation. RF equipment, initially installed for H{sup {minus}} extraction at TRIUMF, has been used to modulate the beam intensity at the extraction radius. This equipment consists of a 92 MHz, 150 kV cavity (AAC) and an RFD (11.5 MHz, 20 kV). The AAC augments the acceleration provided by the main 23 MHz, RF system; the RFD excites radial betatron oscillations. These devices may be operated at frequencies slightly different from their design multiple; their effect then beats with the main RF. In this modemore » the AAC, for example, alternately reduces the rate of acceleration, thus increasing the overlap of turns, then enhances it, sweeping the clustered turns onto a probe or foil. Operating the AAC or RFD in this manner gathers the bulk of the charge into peaks a few microseconds wide and spaced between 6 and 50 {micro}s. Changing the frequency offset alters the spacing. The peak to valley ratio was 23:1 and all beam was transmitted to the extraction radius.« less
Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko
2015-01-01
This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.
The impact of binaural beats on creativity
Reedijk, Susan A.; Bolders, Anne; Hommel, Bernhard
2013-01-01
Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale—mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods. PMID:24294202
The impact of binaural beats on creativity.
Reedijk, Susan A; Bolders, Anne; Hommel, Bernhard
2013-01-01
Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale-mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods.
Chan, Christy KY; Li, Christien KH; To, Olivia TL; Lai, William HS; Tse, Gary; Poh, Yukkee C; Poh, Ming-Zher
2017-01-01
Background Modern smartphones allow measurement of heart rate (HR) by detecting pulsatile photoplethysmographic (PPG) signals with built-in cameras from the fingertips or the face, without physical contact, by extracting subtle beat-to-beat variations of skin color. Objective The objective of our study was to evaluate the accuracy of HR measurements at rest and after exercise using a smartphone-based PPG detection app. Methods A total of 40 healthy participants (20 men; mean age 24.7, SD 5.2 years; von Luschan skin color range 14-27) underwent treadmill exercise using the Bruce protocol. We recorded simultaneous PPG signals for each participant by having them (1) facing the front camera and (2) placing their index fingertip over an iPhone’s back camera. We analyzed the PPG signals from the Cardiio-Heart Rate Monitor + 7 Minute Workout (Cardiio) smartphone app for HR measurements compared with a continuous 12-lead electrocardiogram (ECG) as the reference. Recordings of 20 seconds’ duration each were acquired at rest, and immediately after moderate- (50%-70% maximum HR) and vigorous- (70%-85% maximum HR) intensity exercise, and repeated successively until return to resting HR. We used Bland-Altman plots to examine agreement between ECG and PPG-estimated HR. The accuracy criterion was root mean square error (RMSE) ≤5 beats/min or ≤10%, whichever was greater, according to the American National Standards Institute/Association for the Advancement of Medical Instrumentation EC-13 standard. Results We analyzed a total of 631 fingertip and 626 facial PPG measurements. Fingertip PPG-estimated HRs were strongly correlated with resting ECG HR (r=.997, RMSE=1.03 beats/min or 1.40%), postmoderate-intensity exercise (r=.994, RMSE=2.15 beats/min or 2.53%), and postvigorous-intensity exercise HR (r=.995, RMSE=2.01 beats/min or 1.93%). The correlation of facial PPG-estimated HR was stronger with resting ECG HR (r=.997, RMSE=1.02 beats/min or 1.44%) than with postmoderate-intensity exercise (r=.982, RMSE=3.68 beats/min or 4.11%) or with postvigorous-intensity exercise (r=.980, RMSE=3.84 beats/min or 3.73%). Bland-Altman plots showed better agreement between ECG and fingertip PPG-estimated HR than between ECG and facial PPG-estimated HR. Conclusions We found that HR detection by the Cardiio smartphone app was accurate at rest and after moderate- and vigorous-intensity exercise in a healthy young adult sample. Contact-free facial PPG detection is more convenient but is less accurate than finger PPG due to body motion after exercise. PMID:28288955
Peer Rejection Cues Induce Cardiac Slowing after Transition into Adolescence
ERIC Educational Resources Information Center
Gunther Moor, Bregtje; Bos, Marieke G. N.; Crone, Eveline A.; van der Molen, Maurits W.
2014-01-01
The present study examined developmental and gender differences in sensitivity to peer rejection across the transition into adolescence by examining beat-by-beat heart rate responses. Children between the ages of 8 and 14 years were presented with unfamiliar faces of age-matched peers and were asked to predict whether they would be liked by the…
Massagram, Wansuree; Hafner, Noah M; Park, Byung-Kwan; Lubecke, Victor M; Host-Madsen, Anders; Boric-Lubecke, Olga
2007-01-01
This paper describes the experimental results of the beat-to-beat interval measurement from a quadrature Doppler radar system utilizing arctangent demodulation with DC offset compensation techniques. The comparison in SDNN and in RMSDD of both signals demonstrates the potential of using quadrature Doppler radar for HRV analysis.
Heart rate detection from an electronic weighing scale.
González-Landaeta, R; Casas, O; Pallàs-Areny, R
2007-01-01
We propose a novel technique for heart rate detection on a subject that stands on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear, and does not require any sensors attached to the body. We have applied our method to three different weighing scales, and estimated whether their sensitivity and frequency response suited heart rate detection. Scale sensitivities were from 490 nV/V/N to 1670 nV/V/N, all had an underdamped transient response and their dynamic gain error was below 19% at 10 Hz, which are acceptable values for heart rate estimation. We also designed a pulse detection system based on off-the-shelf integrated circuits, whose gain was about 70x10(3) and able to sense force variations about 240 mN. The signal-to-noise ratio (SNR) of the main peaks of the pulse signal detected was higher than 48 dB, which is large enough to estimate the heart rate by simple signal processing methods. To validate the method, the ECG and the force signal were simultaneously recorded on 12 volunteers. The maximal error obtained from heart rates determined from these two signals was +/-0.6 beats/minute.
Use of binaural beat tapes for treatment of anxiety: a pilot study of tape preference and outcomes.
Le Scouarnec, R P; Poirier, R M; Owens, J E; Gauthier, J; Taylor, A G; Foresman, P A
2001-01-01
Recent studies and anecdotal reports suggest that binaural auditory beats can affect mood, performance on vigilance tasks, and anxiety. To determine whether mildly anxious people would report decreased anxiety after listening daily for 1 month to tapes imbedded with tones that create binaural beats, and whether they would show a definite tape preference among 3 tapes. A 1-group pre-posttest pilot study. Patients' homes. A volunteer sample of 15 mildly anxious patients seen in the Clinique Psyché, Montreal, Quebec. Participants were asked to listen at least 5 times weekly for 4 weeks to 1 or more of 3 music tapes containing tones that produce binaural beats in the electroencephalogram delta/theta frequency range. Participants also were asked to record tape usage, tape preference, and anxiety ratings in a journal before and after listening to the tape or tapes. Anxiety ratings before and after tape listening, pre- and post-study State-Trait Anxiety Inventory scores, and tape preferences documented in daily journals. Listening to the binaural beat tapes resulted in a significant reduction in the anxiety score reported daily in patients' diaries. The number of times participants listened to the tapes in 4 weeks ranged from 10 to 17 (an average of 1.4 to 2.4 times per week) for approximately 30 minutes per session. End-of-study tape preferences indicated that slightly more participants preferred tape B, with its pronounced and extended patterns of binaural beats, over tapes A and C. Changes in pre- and posttest listening State-Trait Anxiety Inventory scores trended toward a reduction of anxiety, but these differences were not statistically significant. Listening to binaural beat tapes in the delta/theta electroencephalogram range may be beneficial in reducing mild anxiety. Future studies should account for music preference among participants and include age as a factor in outcomes, incentives to foster tape listening, and a physiologic measure of anxiety reduction. A controlled trial that includes binaural beat tapes as an adjunctive treatment to conventional therapy for mild anxiety may be warranted.
NASA Astrophysics Data System (ADS)
Makowiec, Danuta; Graff, Beata; Struzik, Zbigniew R.
2017-02-01
Biological regulation is sufficiently complex to pose an enduring challenge for characterization of both its equilibrium and transient non-equilibrium dynamics. Two univariate but coupled observables, heart rate and systolic blood pressure, are commonly characterized in the benchmark example of the human cardiovascular regulatory system. Asymmetric distributions of accelerations and decelerations of heart rate, as well as rises and falls in systolic blood pressure, recorded in humans during a head-up tilt test provide insights into the dynamics of cardiovascular response to a rapid, controlled deregulation of the system's homeostasis. The baroreflex feedback loop is assumed to be the fundamental physiological mechanism for ensuring homeostatic blood supply to distant organs at rest and during orthostatic stress, captured in a classical beat-to-beat autoregressive model of baroreflex by de Boer et al. (1987). For model corroboration, a multistructure index statistic is proposed, seamlessly evaluating the size spectrum of magnitudes of neural reflexes such as baroreflex, responsible for maintaining the homeostatic dynamics. The multistructure index exposes a distinctly different dynamics of multiscale asymmetry between results obtained from real-life signals recorded from healthy subjects and those simulated using both the classical and perturbed versions of the model. Nonlinear effects observed suggest the pronounced presence of complex mechanisms resulting from baroreflex regulation when a human is at rest, which is aggravated in the system's response to orthostatic stress. Using our methodology of multistructure index, we therefore show a marked difference between model and real-life scenarios, which we attribute to multiscale asymmetry of non-linear origin in real-life signals, which we are not reproducible by the classical model.
Mechanism linking T-wave alternans to the genesis of cardiac fibrillation.
Pastore, J M; Girouard, S D; Laurita, K R; Akar, F G; Rosenbaum, D S
1999-03-16
Although T-wave alternans has been closely associated with vulnerability to ventricular arrhythmias, the cellular processes underlying T-wave alternans and their role, if any, in the mechanism of reentry remain unclear. -T-wave alternans on the surface ECG was elicited in 8 Langendorff-perfused guinea pig hearts during fixed-rate pacing while action potentials were recorded simultaneously from 128 epicardial sites with voltage-sensitive dyes. Alternans of the repolarization phase of the action potential was observed above a critical threshold heart rate (HR) (209+/-46 bpm) that was significantly lower (by 57+/-36 bpm) than the HR threshold for alternation of action potential depolarization. The magnitude (range, 2.7 to 47.0 mV) and HR threshold (range, 171 to 272 bpm) of repolarization alternans varied substantially between cells across the epicardial surface. T-wave alternans on the surface ECG was explained primarily by beat-to-beat alternation in the time course of cellular repolarization. Above a critical HR, membrane repolarization alternated with the opposite phase between neighboring cells (ie, discordant alternans), creating large spatial gradients of repolarization. In the presence of discordant alternans, a small acceleration of pacing cycle length produced a characteristic sequence of events: (1) unidirectional block of an impulse propagating against steep gradients of repolarization, (2) reentrant propagation, and (3) the initiation of ventricular fibrillation. Repolarization alternans at the level of the single cell accounts for T-wave alternans on the surface ECG. Discordant alternans produces spatial gradients of repolarization of sufficient magnitude to cause unidirectional block and reentrant ventricular fibrillation. These data establish a mechanism linking T-wave alternans of the ECG to the pathogenesis of sudden cardiac death.
Smith, C F; Gavaghan, B J; McSweeney, D; Powell, V; Lisle, A
2014-12-01
To compare the heart rates of adult free-range chickens (Gallus domesticus) measured by auscultation with a stethoscope with those measured simultaneously using electrocardiography (ECG). With each bird in a standing position, estimation of the heart rate was performed by placing a mark on paper for every 4 beats for roosters and 8 beats for hens as detected by auscultation over 30 s, while simultaneous ECG was performed. Heart rates measured by auscultation showed a high correlation (r = 0.97) with those measured by ECG. There was a high correlation between the heart rates of adult free-range chickens measured by auscultation with a stethoscope and those measured simultaneously using ECG. © 2014 Australian Veterinary Association.
Finding the beat: a neural perspective across humans and non-human primates.
Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W Tecumseh
2015-03-19
Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Finding the beat: a neural perspective across humans and non-human primates
Merchant, Hugo; Grahn, Jessica; Trainor, Laurel; Rohrmeier, Martin; Fitch, W. Tecumseh
2015-01-01
Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization. PMID:25646516
Wiggins, Delonia L; Strasburger, Janette F; Gotteiner, Nina L; Cuneo, Bettina; Wakai, Ronald T
2013-08-01
Blocked atrial bigeminy (BAB) and second-degree atrioventricular block with 2:1 conduction block (2:1 AVB) both present as ventricular bradycardia and can be difficult to distinguish by echocardiography. Since the prognosis and clinical management of these rhythms are different, an accurate diagnosis is essential. To identify magnetic and mechanical heart rate and rhythm parameters that could reliably distinguish BAB from 2:1 AVB. A retrospective study of ten BAB and seven 2:1 AVB subjects was performed, using fMCG and pulsed Doppler ultrasound. Distinguishing BAB from 2:1 AVB by using fMCG was relatively straightforward because in BAB the ectopic P wave (P') occurred early, resulting in a bigeminal (short-long) atrial rhythm. The normalized coupling interval of the ectopic beat (PP' of the blocked beat to PP of the conducted beat) was 0.29 ± 0.03. In contrast, the echocardiographic assessment of inflow-outflow gave a normalized mechanical coupling interval (AA'/AA) near 0.5, which made it difficult to distinguish BAB from 2:1 AVB. Heart rate distinguished most subjects with BAB from those with 2:1 AVB (82 ± 5.7 beats/min vs 69 ± 4.2 beats/min), but was not a completely reliable indicator. In most subjects, BAB alternated with sinus rhythm or other rhythms, resulting in complex heart rate and rhythm patterns. Fetal BAB and 2:1 AV block can be difficult to distinguish using echocardiography because in many fetuses with BAB the mechanical rhythm does not accurately reflect the magnetic rhythm. fMCG provides a more reliable means of making a differential diagnosis. Copyright © 2013 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Howarth, F C; Jacobson, M; Shafiullah, M; Adeghate, E
2005-11-01
In vivo biotelemetry studies have demonstrated that short-term streptozotocin (STZ)-induced diabetes is associated with a reduction in heart rate (HR) and heart rate variability (HRV) and prolongation of QT and QRS intervals. This study investigates the long-term effects of STZ-induced diabetes on the electrocardiogram (ECG), physical activity and body temperature. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. ECG, physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg(-1)) for a period of 22 weeks. HR, physical activity and body temperature declined rapidly 3-5 days after the administration of STZ. The effects became conspicuous with time reaching a new steady state approximately 1-2 weeks after STZ treatment. HR at 4 weeks was 268 +/- 5 beats min(-1) in diabetic rats compared to 347 +/- 12 beats min(-1) in age-matched controls. HRV at 4 weeks was also significantly reduced after STZ treatment (18 +/- 3 beats min(-1)) compared to controls (33 +/- 3 beats min(-1)). HR and HRV were not additionally altered in either diabetic rats (266 +/- 5 and 20 +/- 4 beats min(-1)) or age-matched controls (316 +/- 6 and 25 +/- 4 beats min(-1)) at 22 weeks. Reduced physical activity and/or body temperature may partly underlie the reductions in HR and HRV. In addition, the increased power spectral low frequency/high frequency ratio from 4 weeks after STZ treatment may indicate an accompanying disturbance in sympathovagal balance.
Validation of a computerized algorithm to quantify fetal heart rate deceleration area.
Gyllencreutz, Erika; Lu, Ke; Lindecrantz, Kaj; Lindqvist, Pelle G; Nordstrom, Lennart; Holzmann, Malin; Abtahi, Farhad
2018-05-16
Reliability in visual cardiotocography interpretation is unsatisfying, which has led to development of computerized cardiotocography. Computerized analysis is well established for antenatal fetal surveillance, but has yet not performed sufficiently during labor. We aimed to investigate the capacity of a new computerized algorithm compared to visual assessment in identifying intrapartum fetal heart rate baseline and decelerations. Three-hundred-and-twelve intrapartum cardiotocography tracings with variable decelerations were analysed by the computerized algorithm and visually examined by two observers, blinded to each other and the computer analysis. The width, depth and area of each deceleration was measured. Four cases (>100 variable decelerations) were subject to in-depth detailed analysis. The outcome measures were bias in seconds (width), beats per minute (depth), and beats (area) between computer and observers by using Bland-Altman analysis. Interobserver reliability was determined by calculating intraclass correlation and Spearman rank analysis. The analysis (312 cases) showed excellent intraclass correlation (0.89-0.95) and very strong Spearman correlation (0.82-0.91). The detailed analysis of > 100 decelerations in 4 cases revealed low bias between the computer and the two observers; width 1.4 and 1.4 seconds, depth 5.1 and 0.7 beats per minute, and area 0.1 and -1.7 beats. This was comparable to the bias between the two observers; 0.3 seconds (width), 4.4 beats per minute (depth), and 1.7 beats (area). The intraclass correlation was excellent (0.90-0.98). A novel computerized algorithm for intrapartum cardiotocography analysis is as accurate as gold standard visual assessment with high correlation and low bias. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin
2013-10-01
Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.
Borisyuk, Alla; Semple, Malcolm N; Rinzel, John
2002-10-01
A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on parameters), and inhibition blocking experiments (to study inhibitory tuning properties by observation of phase shifts).
Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.
Jeyhani, Vala; Mahdiani, Shadi; Peltokangas, Mikko; Vehkaoja, Antti
2015-01-01
Heart rate variability (HRV) has become a useful tool in analysis of cardiovascular system in both research and clinical fields. HRV has been also used in other applications such as stress level estimation in wearable devices. HRV is normally obtained from ECG as the time interval of two successive R waves. Recently PPG has been proposed as an alternative for ECG in HRV analysis to overcome some difficulties in measurement of ECG. In addition, PPG-HRV is also used in some commercial devices such as modern optical wrist-worn heart rate monitors. However, some researches have shown that PPG is not a surrogate for heart rate variability analysis. In this work, HRV analysis was applied on beat-to-beat intervals obtained from ECG and PPG in 19 healthy male subjects. Some important HRV parameters were calculated from PPG-HRV and ECG-HRV. Maximum of PPG and its second derivative were considered as two methods for obtaining the beat-to-beat signals from PPG and the results were compared with those achieved from ECG-HRV. Our results show that the smallest error happens in SDNN and SD2 with relative error of 2.46% and 2%, respectively. The most affected parameter is pNN50 with relative error of 29.89%. In addition, in our trial, using the maximum of PPG gave better results than its second derivative.
EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators
NASA Astrophysics Data System (ADS)
Bingham, Robert
2009-02-01
This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known as photon deceleration and acceleration and is the result of a modulational instability. Simulations reported by Trines et al using a photon-in-cell code or wave kinetic code agree extremely well with experimental observation. Ion acceleration is actively studied; for example the papers by Robinson, Macchi, Marita and Tripathi all discuss different types of acceleration mechanisms from direct laser acceleration, Coulombic explosion and double layers. Ion acceleration is an exciting development that may have great promise in oncology. The surprising application is in muon acceleration, demonstrated by Peano et al who show that counterpropagating laser beams with variable frequencies drive a beat structure with variable phase velocity, leading to particle trapping and acceleration with possible application to a future muon collider and neutrino factory. Laser and plasma accelerators remain one of the exciting areas of plasma physics with applications in many areas of science ranging from laser fusion, novel high-brightness radiation sources, particle physics and medicine. The guest editor would like to thank all authors and referees for their invaluable contributions to this special issue.
ERIC Educational Resources Information Center
Repp, Bruno H.
2007-01-01
Music commonly induces the feeling of a regular beat (i.e., a metrical structure) in listeners. However, musicians can also intentionally impose a beat (i.e., a metrical interpretation) on a metrically ambiguous passage. The present study aimed to provide objective evidence for this little-studied mental ability. Participants were prompted with…
ERIC Educational Resources Information Center
Hodgson, Yvonne; Choate, Julia
2012-01-01
The Finapres finger cuff recording system provides continuous calculations of beat-to-beat variations in cardiac output (CO), total peripheral resistance, heart rate (HR), and blood pressure (BP). This system is unique in that it allows experimental subjects to immediately, continuously, and noninvasively visualize changes in CO at rest and during…
Autonomic Response to Upright Tilt in People with and without Down Syndrome
ERIC Educational Resources Information Center
Agiovlasitis, Stamatis; Collier, Scott R.; Baynard, Tracy; Echols, George H.; Goulopoulou, Styliani; Figueroa, Arturo; Beets, Michael W.; Pitetti, Kenneth H.; Fernhall, Bo
2010-01-01
This study examined whether the autonomic response to passive upright tilt as evidenced by changes in measures of heart rate and blood pressure variability differs between individuals with DS and without DS. Beat-to-beat blood pressure was measured in 26 individuals with Down syndrome (DS) and 11 individuals without DS during 5 min of rest and 5…
NASA Technical Reports Server (NTRS)
Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.
2001-01-01
To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.
Multivariate and multiorgan analysis of cardiorespiratory variability signals: the CAP sleep case.
Bianchi, Anna M; Ferini-Strambi, Luigi; Castronovo, Vincenza; Cerutti, Sergio
2006-10-01
Signals from different systems are analyzed during sleep on a beat-to-beat basis to provide a quantitative measure of synchronization with the heart rate variability (HRV) signal, oscillations of which reflect the action of the autonomic nervous system. Beat-to-beat variability signals synchronized to QRS occurrence on ECG signals were extracted from respiration, electroencephalogram (EEG) and electromyogram (EMG) traces. The analysis was restricted to sleep stage 2. Cyclic alternating pattern (CAP) periods were detected from EEG signals and the following conditions were identified: stage 2 non-CAP (2 NCAP), stage 2 CAP (2 CAP) and stage 2 CAP with myoclonus (2 CAP MC). The coupling relationships between pairs of variability signals were studied in both the time and frequency domains. Passing from 2 NCAP to 2 CAP, sympathetic activation is indicated by tachycardia and reduced respiratory arrhythmia in the heart rate signal. At the same time, we observed a marked link between EEG and HRV at the CAP frequency. During 2 CAP MC, the increased synchronization involved myoclonus and respiration. The underlying mechanism seems to be related to a global control system at the central level that involves the different systems.
A preliminary investigation of bird classification by Doppler radar
NASA Technical Reports Server (NTRS)
Martinson, L. W.
1973-01-01
A preliminary study of the application of Doppler radar to the classification of birds is reported. The desirability for improvements in bird classification stems primarily from the hazards they present to jet aircraft in flight and in the vicinity of airports. A secondary need exists in the study of bird migration. The wing body and tail motion of a bird in flight reflect signals which, when analyzed properly present a signature of wing beat pattern which is unique for each bird species. Although the results of this investigation did not validate the feasibility of classifying bird species, they do indicate that a more thorough investigation is warranted. Certain gross characteristics such as wing beat rates, multiple bird patterns, and bird maneuverability, were indicated clearly in the results. Large birds with slow wing beat rates appear to be the most optimum subject for further study with the X-band Doppler radar used in this investigation.
Deviations from uniform power law scaling in nonstationary time series
NASA Technical Reports Server (NTRS)
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
... or a heart function test. What's a Normal Heart Rate? Heart rate is measured by counting the number of beats per minute. Someone's normal heart rate depends on things like the person's age and ...
Cartier, R; Brann, S; Dagenais, F; Martineau, R; Couturier, A
2000-02-01
We sought to report our recent experience with off-pump coronary artery revascularization in multivessel disease. Between October 1996 and December 1998, 300 off-pump beating heart operations were performed at the Montreal Heart Institute by a single surgeon, representing 94% of all procedures undertaken during this same time frame (97% for 1998). This cohort of patients was compared with 1870 patients operated on with cardiopulmonary bypass from 1995 to 1996. Mean age, sex distribution, and preoperative risk factors were comparable for the two groups. On average, 2.92 +/- 0.8 and 2.84 +/- 0.6 grafts per patient were completed in the beating heart and cardiopulmonary bypass groups, respectively. A majority of patients (70%) had either a triple or quadruple bypass. Coronary anastomoses were achieved with myocardial mechanical stabilization and heart "verticalization." Ischemic time was shorter in the beating heart group (29.8 +/- 0.9 vs 45 +/- 0.4 minutes, P <.05). Similarly, the need for transfusion was significantly less in the beating heart group (beating heart operations, 34%; cardiopulmonary bypass, 66%; P <.005). Reduced use of postoperative intra-aortic counterpulsation, as well as a lower rise in creatine kinase MB isoenzyme, was observed in the beating heart group. Operative mortality rates (beating heart operations, 1. 3%; cardiopulmonary bypass, 2%) and perioperative myocardial infarction (beating heart operations, 3.6%; cardiopulmonary bypass, 4.2%) were comparable for the two groups. In a majority of patients, off-pump complete coronary artery revascularization is an acceptable alternative to conventional operations, yielding good results given progressive experience, rigorous technique, and adequate coronary artery stabilization.
Ivabradine in stable coronary artery disease without clinical heart failure.
Fox, Kim; Ford, Ian; Steg, Philippe Gabriel; Tardif, Jean-Claude; Tendera, Michal; Ferrari, Roberto
2014-09-18
An elevated heart rate is an established marker of cardiovascular risk. Previous analyses have suggested that ivabradine, a heart-rate-reducing agent, may improve outcomes in patients with stable coronary artery disease, left ventricular dysfunction, and a heart rate of 70 beats per minute or more. We conducted a randomized, double-blind, placebo-controlled trial of ivabradine, added to standard background therapy, in 19,102 patients who had both stable coronary artery disease without clinical heart failure and a heart rate of 70 beats per minute or more (including 12,049 patients with activity-limiting angina [class ≥II on the Canadian Cardiovascular Society scale, which ranges from I to IV, with higher classes indicating greater limitations on physical activity owing to angina]). We randomly assigned patients to placebo or ivabradine, at a dose of up to 10 mg twice daily, with the dose adjusted to achieve a target heart rate of 55 to 60 beats per minute. The primary end point was a composite of death from cardiovascular causes or nonfatal myocardial infarction. At 3 months, the mean (±SD) heart rate of the patients was 60.7±9.0 beats per minute in the ivabradine group versus 70.6±10.1 beats per minute in the placebo group. After a median follow-up of 27.8 months, there was no significant difference between the ivabradine group and the placebo group in the incidence of the primary end point (6.8% and 6.4%, respectively; hazard ratio, 1.08; 95% confidence interval, 0.96 to 1.20; P=0.20), nor were there significant differences in the incidences of death from cardiovascular causes and nonfatal myocardial infarction. Ivabradine was associated with an increase in the incidence of the primary end point among patients with activity-limiting angina but not among those without activity-limiting angina (P=0.02 for interaction). The incidence of bradycardia was higher with ivabradine than with placebo (18.0% vs. 2.3%, P<0.001). Among patients who had stable coronary artery disease without clinical heart failure, the addition of ivabradine to standard background therapy to reduce the heart rate did not improve outcomes. (Funded by Servier; SIGNIFY Current Controlled Trials number, ISRCTN61576291.).
GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.
Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim
2016-08-01
In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.
Semi-automatic, octave-spanning optical frequency counter.
Liu, Tze-An; Shu, Ren-Huei; Peng, Jin-Long
2008-07-07
This work presents and demonstrates a semi-automatic optical frequency counter with octave-spanning counting capability using two fiber laser combs operated at different repetition rates. Monochromators are utilized to provide an approximate frequency of the laser under measurement to determine the mode number difference between the two laser combs. The exact mode number of the beating comb line is obtained from the mode number difference and the measured beat frequencies. The entire measurement process, except the frequency stabilization of the laser combs and the optimization of the beat signal-to-noise ratio, is controlled by a computer running a semi-automatic optical frequency counter.
Kinetics of atrial repolarization alternans in a free-behaving ovine model.
Jousset, Florian; Tenkorang, Joanna; Vesin, Jean-Marc; Pascale, Patrizio; Ruchat, Patrick; Rollin, Anne Garderes; Fromer, Martin; Narayan, Sanjiv M; Pruvot, Etienne
2012-09-01
Kinetics of Atrial Repolarization Alternans. Repolarization alternans (Re-ALT), a beat-to-beat alternation in action potential repolarization, promotes dispersion of repolarization, wavebreaks, and reentry. Recently, Re-ALT has been shown to play an important role in the transition from rapid pacing to atrial fibrillation (AF) in humans. The detailed kinetics of atrial Re-ALT, however, has not been reported so far. We developed a chronic free-behaving ovine pacing model to study the kinetics of atrial Re-ALT as a function of pacing rate. Thirteen sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms and delivery of rapid pacing protocols. Beat-to-beat differences in the atrial T-wave apex amplitude as a measure of Re-ALT and activation time were analyzed at incremental pacing rates until the effective refractory period (ERP) defined as stable 2:1 capture. Atrial Re-ALT appeared intermittently but without periodicity, and increased in amplitude as a function of pacing rate until ERP. Intermittent 2:1 atrial capture was observed at pacing cycle lengths 40 ms above ERP, and increased in duration as a function of pacing rate. Episodes of rapid pacing-induced AF were rare, and were preceded by Re-ALT or complex oscillations of atrial repolarization, but without intermittent capture. We show in vivo that atrial Re-ALT developed and increased in magnitude with rate until stable 2:1 capture. In rare instances where capture failure did not occur, Re-ALT and complex oscillations of repolarization surged and preceded AF initiation. (J Cardiovasc Electrophysiol, Vol. 23, pp. 1003-1012, September 2012). © 2012 Wiley Periodicals, Inc.
Mishra, Alok; Swati, D
2015-09-01
Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.
Nul, D R; Doval, H C; Grancelli, H O; Varini, S D; Soifer, S; Perrone, S V; Prieto, N; Scapin, O
1997-05-01
The impact of amiodarone on mortality in patients with severe congestive heart failure (CHF) (New York Heart Association functional classes II [advanced], III and IV; left ventricular ejection fraction < 35%) In the Grupo de Estudio de la Sobrevida en la Insuficiencia Cardiaca en Argentina (GESICA) trial was analyzed in relation to initial mean baseline heart rate (BHR) and its change after 6 months of follow-up. Trials of amiodarone therapy in CHF have produced discordant results, suggesting that the effect is not uniform in all patient subgroups with regard to survival. The present analysis was carried out in 516 patients randomized to receive amiodarone, 300 mg/day (n = 260), or nonantiarrhythmic therapy (n = 256, control group) and followed up for 2 years. Survival was evaluated for patients with a BHR > or = 90 beats/min (control: n = 132; amiodarone: n = 122) and < 90 beats/min (control: n = 124; amiodarone: n = 138). Survival was also analyzed according to heart rate reduction at 6 months for 367 patients. For patients with a BHR > or = 90 beats/min, amiodarone therapy reduced mortality to 38.4% compared with 62.4% in control patients (relative risk [RR] 0.55, 95% confidence interval [CI] 0.35 to 0.95, p < 0.002). Both sudden death (RR 0.46, 95% CI 0.24 to 0.90, p < 0.02) and progressive heart failure death (RR 0.60, 95% CI 0.30 to 1.03, p < 0.06) were reduced, and functional capacity was improved. In patients with a BHR < 90 beats/min, amiodarone did not alter survival. Among 367 patients who completed 6 months of follow-up, amiodarone reduced 2-year mortality only in those with a BHR > or = 90 beats/min, which was reduced at 6 months. Elevated rest heart rates in severe CHF identify a subgroup of patients who benefit from treatment with amiodarone. Amiodarone-induced heart rate slowing may be an important benefit for patients.
Aerobic Exercise during Pregnancy and Presence of Fetal-Maternal Heart Rate Synchronization
Van Leeuwen, Peter; Gustafson, Kathleen M.; Cysarz, Dirk; Geue, Daniel; May, Linda E.; Grönemeyer, Dietrich
2014-01-01
It has been shown that short-term direct interaction between maternal and fetal heart rates may take place and that this interaction is affected by the rate of maternal respiration. The aim of this study was to determine the effect of maternal aerobic exercise during pregnancy on the occurrence of fetal-maternal heart rate synchronization. Methods In 40 pregnant women at the 36th week of gestation, 21 of whom exercised regularly, we acquired 18 min. RR interval time series obtained simultaneously in the mothers and their fetuses from magnetocardiographic recordings. The time series of the two groups were examined with respect to their heart rate variability, the maternal respiratory rate and the presence of synchronization epochs as determined on the basis of synchrograms. Surrogate data were used to assess whether the occurrence of synchronization was due to chance. Results In the original data, we found synchronization occurred less often in pregnancies in which the mothers had exercised regularly. These subjects also displayed higher combined fetal-maternal heart rate variability and lower maternal respiratory rates. Analysis of the surrogate data showed shorter epochs of synchronization and a lack of the phase coordination found between maternal and fetal beat timing in the original data. Conclusion The results suggest that fetal-maternal heart rate coupling is present but generally weak. Maternal exercise has a damping effect on its occurrence, most likely due to an increase in beat-to-beat differences, higher vagal tone and slower breathing rates. PMID:25162592
Aerobic exercise during pregnancy and presence of fetal-maternal heart rate synchronization.
Van Leeuwen, Peter; Gustafson, Kathleen M; Cysarz, Dirk; Geue, Daniel; May, Linda E; Grönemeyer, Dietrich
2014-01-01
It has been shown that short-term direct interaction between maternal and fetal heart rates may take place and that this interaction is affected by the rate of maternal respiration. The aim of this study was to determine the effect of maternal aerobic exercise during pregnancy on the occurrence of fetal-maternal heart rate synchronization. In 40 pregnant women at the 36th week of gestation, 21 of whom exercised regularly, we acquired 18 min. RR interval time series obtained simultaneously in the mothers and their fetuses from magnetocardiographic recordings. The time series of the two groups were examined with respect to their heart rate variability, the maternal respiratory rate and the presence of synchronization epochs as determined on the basis of synchrograms. Surrogate data were used to assess whether the occurrence of synchronization was due to chance. In the original data, we found synchronization occurred less often in pregnancies in which the mothers had exercised regularly. These subjects also displayed higher combined fetal-maternal heart rate variability and lower maternal respiratory rates. Analysis of the surrogate data showed shorter epochs of synchronization and a lack of the phase coordination found between maternal and fetal beat timing in the original data. The results suggest that fetal-maternal heart rate coupling is present but generally weak. Maternal exercise has a damping effect on its occurrence, most likely due to an increase in beat-to-beat differences, higher vagal tone and slower breathing rates.
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-01-01
Background and Purpose The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K+ channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. Experimental Approach The short-term variability of beat-to-beat QT interval (STVQT), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Key Results Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. Conclusions and Implications These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. PMID:25625756
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-06-01
The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K(+) channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. The short-term variability of beat-to-beat QT interval (STVQT ), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. © 2015 The British Pharmacological Society.
Girotra, Saket; Kitzman, Dalane W.; Kop, Willem J.; Stein, Phyllis K.; Gottdiener, John S.; Mukamal, Kenneth J.
2012-01-01
OBJECTIVES To determine the relationship between heart rate response during low-grade physical exertion (six-minute walk) with mortality and adverse cardiovascular outcomes in the elderly. METHODS Participants in the Cardiovascular Health Study, who completed a six-minute walk test, were included. We used delta heart rate (difference between post-walk heart rate and resting heart rate) as a measure of chronotropic response and examined its association with 1) all-cause mortality and 2) incident coronary heart disease (CHD) event, using multivariable Cox regression models. RESULTS We included 2224 participants (mean age 77±4 years; 60% women, 85% white). The average delta heart rate was 26 beats/min. Participants in the lowest tertile of delta heart rate (<20 beats/min) had higher risk-adjusted mortality (hazard ratio [HR] 1.18; 95% confidence interval [CI][1.00, 1.40]) and incident CHD (HR 1.37; 95% CI[1.05, 1.78]) compared to subjects in the highest tertile (≥30 beats/min), with a significant linear trend across tertiles (P for trend <0.05 for both outcomes). This relationship was not significant after adjustment for distance walked. CONCLUSION Impaired chronotropic response during six-minute walk test was associated with an increased risk of mortality and incident CHD among the elderly. This association was attenuated after adjusting for distance walked. PMID:22722364
Exaggerated heart rate oscillations during two meditation techniques.
Peng, C K; Mietus, J E; Liu, Y; Khalsa, G; Douglas, P S; Benson, H; Goldberger, A L
1999-07-31
We report extremely prominent heart rate oscillations associated with slow breathing during specific traditional forms of Chinese Chi and Kundalini Yoga meditation techniques in healthy young adults. We applied both spectral analysis and a novel analytic technique based on the Hilbert transform to quantify these heart rate dynamics. The amplitude of these oscillations during meditation was significantly greater than in the pre-meditation control state and also in three non-meditation control groups: i) elite athletes during sleep, ii) healthy young adults during metronomic breathing, and iii) healthy young adults during spontaneous nocturnal breathing. This finding, along with the marked variability of the beat-to-beat heart rate dynamics during such profound meditative states, challenges the notion of meditation as only an autonomically quiescent state.
Variability in surface ECG morphology: signal or noise?
NASA Technical Reports Server (NTRS)
Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.
1988-01-01
Using data collected from canine models of acute myocardial ischemia, we investigated two issues of major relevance to electrocardiographic signal averaging: ECG epoch alignment, and the spectral characteristics of the beat-to-beat variability in ECG morphology. With initial digitization rates of 1 kHz, an iterative a posteriori matched filtering alignment scheme, and linear interpolation, we demonstrated that there is sufficient information in the body surface ECG to merit alignment to a precision of 0.1 msecs. Applying this technique to align QRS complexes and atrial pacing artifacts independently, we demonstrated that the conduction delay from atrial stimulus to ventricular activation may be so variable as to preclude using atrial pacing as an alignment mechanism, and that this variability in conduction time be modulated at the frequency of respiration and at a much lower frequency (0.02-0.03Hz). Using a multidimensional spectral technique, we investigated the beat-to-beat variability in ECG morphology, demonstrating that the frequency spectrum of ECG morphological variation reveals a readily discernable modulation at the frequency of respiration. In addition, this technique detects a subtle beat-to-beat alternation in surface ECG morphology which accompanies transient coronary artery occlusion. We conclude that physiologically important information may be stored in the variability in the surface electrocardiogram, and that this information is lost by conventional averaging techniques.
Yan, Bryan P; Chan, Christy Ky; Li, Christien Kh; To, Olivia Tl; Lai, William Hs; Tse, Gary; Poh, Yukkee C; Poh, Ming-Zher
2017-03-13
Modern smartphones allow measurement of heart rate (HR) by detecting pulsatile photoplethysmographic (PPG) signals with built-in cameras from the fingertips or the face, without physical contact, by extracting subtle beat-to-beat variations of skin color. The objective of our study was to evaluate the accuracy of HR measurements at rest and after exercise using a smartphone-based PPG detection app. A total of 40 healthy participants (20 men; mean age 24.7, SD 5.2 years; von Luschan skin color range 14-27) underwent treadmill exercise using the Bruce protocol. We recorded simultaneous PPG signals for each participant by having them (1) facing the front camera and (2) placing their index fingertip over an iPhone's back camera. We analyzed the PPG signals from the Cardiio-Heart Rate Monitor + 7 Minute Workout (Cardiio) smartphone app for HR measurements compared with a continuous 12-lead electrocardiogram (ECG) as the reference. Recordings of 20 seconds' duration each were acquired at rest, and immediately after moderate- (50%-70% maximum HR) and vigorous- (70%-85% maximum HR) intensity exercise, and repeated successively until return to resting HR. We used Bland-Altman plots to examine agreement between ECG and PPG-estimated HR. The accuracy criterion was root mean square error (RMSE) ≤5 beats/min or ≤10%, whichever was greater, according to the American National Standards Institute/Association for the Advancement of Medical Instrumentation EC-13 standard. We analyzed a total of 631 fingertip and 626 facial PPG measurements. Fingertip PPG-estimated HRs were strongly correlated with resting ECG HR (r=.997, RMSE=1.03 beats/min or 1.40%), postmoderate-intensity exercise (r=.994, RMSE=2.15 beats/min or 2.53%), and postvigorous-intensity exercise HR (r=.995, RMSE=2.01 beats/min or 1.93%). The correlation of facial PPG-estimated HR was stronger with resting ECG HR (r=.997, RMSE=1.02 beats/min or 1.44%) than with postmoderate-intensity exercise (r=.982, RMSE=3.68 beats/min or 4.11%) or with postvigorous-intensity exercise (r=.980, RMSE=3.84 beats/min or 3.73%). Bland-Altman plots showed better agreement between ECG and fingertip PPG-estimated HR than between ECG and facial PPG-estimated HR. We found that HR detection by the Cardiio smartphone app was accurate at rest and after moderate- and vigorous-intensity exercise in a healthy young adult sample. Contact-free facial PPG detection is more convenient but is less accurate than finger PPG due to body motion after exercise. ©Bryan P Yan, Christy KY Chan, Christien KH Li, Olivia TL To, William HS Lai, Gary Tse, Yukkee C Poh, Ming-Zher Poh. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 13.03.2017.
Maruyama, T; Yanaga, T; Makino, N
2000-03-01
Although reflex sympathetic activation is a major determinant of the haemodynamic tolerability of ventricular tachycardia (VT), the methods for evaluating this aspect during on-going VT remain invasive and complicated. Palmar sweating as an indirect but non-invasive measure of sympathetic activity was estimated by means of a unique hygrometer under right ventricular (RV) rapid pacing (up to 150 beats min-1) replicating VT, and concurrent monitoring of aortic blood pressure in five patients with various kinds of cardiac arrhythmias in our electrophysiological laboratory. The peak palmar sweating rate in arbitrary units was augmented as the RV pacing rate increased and was proportional to the pacing-induced fall in systolic blood pressure (SBP), with a correlation coefficient of more than 0.903 (P<0.006). The slope of linearity between the sweating rate and the fall in SBP varied among individual patients, with greater sweating amplitude in the younger patients even with the same extent of fall in SBP. This preliminary study suggests sympathetic acceleration caused by haemodynamic deterioration under simulated VT, and therefore this protocol may be able to predict the haemodynamic tolerability of sustained monomorphic VT.
Autonomic Mechanisms Associated with Heart Rate and Vasoconstrictor Reserves
2011-11-15
hemodynamic decompensation (i.e., severe hypo- tension and pre-syncope) has revealed that subjects with high tolerance (HT) to reduced central blood ...electrical potentials, and an infrared finger photoplethysmograph (Finometer Blood Pressure Moni- tor, TNO-TPD Biomedical Instrumentation, Amsterdam...The Netherlands) to record beat-by-beat finger arterial pressure . The Finometer blood pressure cuff was placed on the middle finger of the left
McKenzie, D J; Campbell, H A; Taylor, E W; Micheli, M; Rantin, F T; Abe, A S
2007-12-01
The jeju is a teleost fish with bimodal respiration that utilizes a modified swim bladder as an air-breathing organ (ABO). Like all air-breathing fish studied to date, jeju exhibit pronounced changes in heart rate (fH) during air-breathing events, and it is believed that these may facilitate oxygen uptake (MO2) from the ABO. The current study employed power spectral analysis (PSA) of fH patterns, coupled with instantaneous respirometry, to investigate the autonomic control of these phenomena and their functional significance for the efficacy of air breathing. The jeju obtained less than 5% of total MO2 (MtO2) from air breathing in normoxia at 26 degrees C, and PSA of beat-to-beat variability in fH revealed a pattern similar to that of unimodal water-breathing fish. In deep aquatic hypoxia (water PO2)=1 kPa) the jeju increased the frequency of air breathing (fAB) tenfold and maintained MtO2 unchanged from normoxia. This was associated with a significant increase in heart rate variability (HRV), each air breath (AB) being preceded by a brief bradycardia and then followed by a brief tachycardia. These fH changes are qualitatively similar to those associated with breathing in unimodal air-breathing vertebrates. Within 20 heartbeats after the AB, however, a beat-to-beat variability in fH typical of water-breathing fish was re-established. Pharmacological blockade revealed that both adrenergic and cholinergic tone increased simultaneously prior to each AB, and then decreased after it. However, modulation of inhibitory cholinergic tone was responsible for the major proportion of HRV, including the precise beat-to-beat modulation of fH around each AB. Pharmacological blockade of all variations in fH associated with air breathing in deep hypoxia did not, however, have a significant effect upon fAB or the regulation of MtO2. Thus, the functional significance of the profound HRV during air breathing remains a mystery.
... Venous Thromboembolism Aortic Aneurysm More Blood Pressure vs. Heart Rate (Pulse) Updated:Nov 13,2017 Understanding the difference ... your blood moving through your blood vessels, your heart rate is the number of times your heart beats ...
Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.
Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo
2018-04-30
Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K.
2016-01-15
Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.
... Easily tiring during physical activity When a slow heart rate is normal A resting heart rate slower than 60 beats a minute is normal ... often starts in the sinus node. A slow heart rate might occur because the sinus node: Discharges electrical ...
A smart health monitoring chair for nonintrusive measurement of biological signals.
Baek, Hyun Jae; Chung, Gih Sung; Kim, Ko Keun; Park, Kwang Suk
2012-01-01
We developed nonintrusive methods for simultaneous electrocardiogram, photoplethysmogram, and ballistocardiogram measurements that do not require direct contact between instruments and bare skin. These methods were applied to the design of a diagnostic chair for unconstrained heart rate and blood pressure monitoring purposes. Our methods were operationalized through capacitively coupled electrodes installed in the chair back that include high-input impedance amplifiers, and conductive textiles installed in the seat for capacitive driven-right-leg circuit configuration that is capable of recording electrocardiogram information through clothing. Photoplethysmograms were measured through clothing using seat mounted sensors with specially designed amplifier circuits that vary in light intensity according to clothing type. Ballistocardiograms were recorded using a film type transducer material, polyvinylidenefluoride (PVDF), which was installed beneath the seat cover. By simultaneously measuring signals, beat-to-beat heart rates could be monitored even when electrocardiograms were not recorded due to movement artifacts. Beat-to-beat blood pressure was also monitored using unconstrained measurements of pulse arrival time and other physiological parameters, and our experimental results indicated that the estimated blood pressure tended to coincide with actual blood pressure measurements. This study demonstrates the feasibility of our method and device for biological signal monitoring through clothing for unconstrained long-term daily health monitoring that does not require user awareness and is not limited by physical activity.
Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV.
Ranpuria, Reena; Hall, Martica; Chan, Chris T; Unruh, Mark
2008-02-01
A common cause of death in end-stage renal disease (ESRD) patients on dialysis is sudden cardiac death (SCD). Compared to the general population, the percentage of cardiovascular deaths that are attributed to SCD is higher in patients treated by dialysis. While coronary artery disease (CAD) is the predominant cause of SCD in dialysis patients, reduced heart rate variability (HRV) may play a role in the higher risk of SCD among other risk factors. HRV refers to beat-to-beat alterations in heart rate as measured by periodic variation in the R-R interval. HRV provides a non-invasive method for investigating autonomic input into the heart. It quantifies the amount by which the R-R interval or heart rate changes from one cardiac cycle to the next. The autonomic nervous system transmits impulses from the central nervous system to peripheral organs and is responsible for controlling the heart rate, blood pressure and respiratory activity. In normal individuals, without cardiac disease, the heart rate has a high degree of beat-to-beat variability. HRV fluctuates with respiration: it increases with inspiration and decreases with expiration and is primarily mediated by parasympathetic activity. HRV has been used to evaluate and quantify the cardiac risk associated with a variety of conditions including cardiac disorders, stroke, multiple sclerosis and diabetes. In this narrative review, we will examine the association between HRV and SCD. This report explains the measurement of HRV and the consequences of reduced HRV in the general population and dialysis patients. Lastly, this review will outline the possible use of HRV as a clinical predictor for SCD in the dialysis population. The current understanding of SCD based on HRV findings among the ESRD population support the use of more aggressive treatment of CAD; greater use of angiotensin converting enzyme inhibitor (ACE-i)/angiotensin receptor blockers (ARBs) and beta-blockers and more frequent and/or nocturnal haemodialysis to improve the survival of a patient with kidney failure.
Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers
NASA Astrophysics Data System (ADS)
Zameroski, Nathan D.; Wanke, Michael; Bossert, David
2013-03-01
The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Pieler, D; Peinhopf, W; Becher, A C; Aurich, J E; Rose-Meierhöfer, S; Erber, R; Möstl, E; Aurich, C
2013-10-01
Establishing artificial cryptorchids by partial scrotal resection without removing the testicles is a technique for castration of bull calves that recently has gained new interest. In contrast to orchidectomy and Burdizzo castration, the stress response of calves to shortening of the scrotum is unknown. In this study, partial scrotal resection in bull calves was compared with orchidectomy, Burdizzo castration, and controls without intervention (n=10 per group, ages 56 ± 3 d). Procedures were performed under xylazine sedation and local anesthesia. We hypothesized that partial scrotal resection is least stressful. Salivary cortisol, heart rate, heart rate variability, behavior, and locomotion were analyzed. Cortisol concentration peaked 60 min after start of the procedures. Cortisol release was at least in part xylazine induced and none of the experimental procedures released additional cortisol. Heart rate increased in calves of all groups with initial handling, but immediately after xylazine sedation decreased to 30% below initial values and was not modified by surgical procedures. The heart rate variability variables standard deviation of beat-to-beat interval and root mean square of successive beat-to-beat differences increased when calves were placed on the surgery table but effects were similar in calves submitted to surgeries and control calves. Locomotion increased, whereas lying time decreased in response to all surgeries. Locomotion increase was most pronounced after orchidectomy. Plasma fibrinogen concentrations increased after orchidectomy only. With adequate pain medication, orchidectomy, Burdizzo castration, and partial scrotal resection do not differ with regard to acute stress and, by inference, pain. Partial scrotal resection when carried out under xylazine sedation and local anesthesia thus is an acceptable castration technique in bull calves. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2018-01-01
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development. PMID:29494628
[Minoxidil intoxication, the pharmacological agent of a hair lotion].
Aprahamian, A; Escoda, S; Patteau, G; Merckx, A; Chéron, G
2011-12-01
Accidental intoxications in children are frequent but most of them are without serious consequences. We describe herein the case of a young girl who drank 100 mg of a topical hair lotion with minoxidil. On arrival, she had no symptoms except flush on the face and ears. Four and half hours after ingestion, tachycardia appeared with a pulse above 170 beats per min with hypotension at 76/24 mmHg. The heart rate remained between 170 and 190 beats per min for 12 h and then lowered to between 140 and 160 beats per min. Thirty-six hours after ingestion, the heart beat was at 140 beats per min. Minoxidil is a strong vasodilator used first in the 1970s for severe hypertension. It produces hypotension by direct arteriolar vasodilatation. Only a few cases of minoxidil intoxication have been described in the literature, including only one pediatric case. This young boy had only tachycardia of 160 beats per min for 40 h. Most serious cases have been described in adults. They suffered long-lasting tachycardia, hypotension, and ECG changes. Most patients need a bolus of normal saline fluid and some with hemodynamic problems need vasoactive drugs such as dopamine and/or phenylephrine. All patients need to be under medical supervision for a long time because of the product's very long action. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing
NASA Technical Reports Server (NTRS)
Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.
1996-01-01
OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular rather than dual-chamber pacing may be due in part to increased sympathetic nervous outflow.
Sampling factors influencing accuracy of sperm kinematic analysis.
Owen, D H; Katz, D F
1993-01-01
Sampling conditions that influence the accuracy of experimental measurement of sperm head kinematics were studied by computer simulation methods. Several archetypal sperm trajectories were studied. First, mathematical models of typical flagellar beats were input to hydrodynamic equations of sperm motion. The instantaneous swimming velocities of such sperm were computed over sequences of flagellar beat cycles, from which the resulting trajectories were determined. In a second, idealized approach, direct mathematical models of trajectories were utilized, based upon similarities to the previous hydrodynamic constructs. In general, it was found that analyses of sampling factors produced similar results for the hydrodynamic and idealized trajectories. A number of experimental sampling factors were studied, including the number of sperm head positions measured per flagellar beat, and the time interval over which these measurements are taken. It was found that when one flagellar beat is sampled, values of amplitude of lateral head displacement (ALH) and linearity (LIN) approached their actual values when five or more sample points per beat were taken. Mean angular displacement (MAD) values, however, remained sensitive to sampling rate even when large sampling rates were used. Values of MAD were also much more sensitive to the initial starting point of the sampling procedure than were ALH or LIN. On the basis of these analyses of measurement accuracy for individual sperm, simulations were then performed of cumulative effects when studying entire populations of motile cells. It was found that substantial (double digit) errors occurred in the mean values of curvilinear velocity (VCL), LIN, and MAD under the conditions of 30 video frames per second and 0.5 seconds of analysis time. Increasing the analysis interval to 1 second did not appreciably improve the results. However, increasing the analysis rate to 60 frames per second significantly reduced the errors. These findings thus suggest that computer-aided sperm analysis (CASA) application at 60 frames per second will significantly improve the accuracy of kinematic analysis in most applications to human and other mammalian sperm.
Smith, A M; Sim, F H; Smith, H C; Stuart, M J; Laskowski, E R
1998-01-01
To determine the relationship between psychologic, situational, and physiologic variables and on-ice performance of youth hockey goalkeepers. This study was structured to identify relationships and predictors of goalie performance. Because athletes playing solo positions in team sports have not been analyzed in depth in terms of precompetition anxiety and because goalkeeper performance is critical to game outcome, we undertook a study of 43 goalies at a hockey camp. These goalies completed psychometric inventories to assess trait and state anxiety, confidence, life stress, and social support. Holter monitors measured heart rate while the goalies rotated through on-ice stations. Goalies were videotaped at the puck-shooting machine station, and performance (percent saves) was calculated. Trait (somatic) anxiety and positive mood state (ability to share) had different but significant relationships with on-ice performance. Heart rates ranged from 88 to 208 beats/min at the on-ice stations. Mean heart rate for older goalies (14 to 18 years of age) was 164 beats/min at the puck-shooting machine and 176 beats/min at other stations such as the slap-shot station. Older goalies performed well at a high level of arousal. Better performing goalies were more experienced, had faster heart rates "in the net," and had lower scores on all measures of anxiety.
Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?
NASA Technical Reports Server (NTRS)
Courter, B. J.; Jex, H. R.
1984-01-01
Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.
Wearable Beat-to-Beat Blood Pressure Monitor
NASA Technical Reports Server (NTRS)
Lee, Yong Jin
2015-01-01
Linea Research Corporation has developed a wearable noninvasive monitor that provides continuous blood pressure and heart rate measurements in extreme environments. Designed to monitor the physiological effects of astronauts' prolonged exposure to reduced-gravity environments as well as the effectiveness of various countermeasures, the device offers wireless connectivity to allow transfer of both real-time and historical data. It can be modified to monitor the health status of astronaut crew members during extravehicular missions.
USSR Report, Life Sciences Biomedical and Behavioral Sciences
1984-06-04
in Regulation of Ideomotor Movements U. G. Goryacheva and S. A. Kapustin- PSIKHOLOGICHESKIY ZHURNAL, No 1, Jan-Feb 84) 77 Perception of Binaural ...with considerable individual variability. The heart rate decreased from 116.6-124.1 beats /min, on days 2-4, to 89.9 beats /min, on day 5, for the...292-8586] PERCEPTION OF BINAURAL TEMPORAL SHIFTS Moscow PSIKHOLOGICHESKIY ZHURNAL in Russian Vol 5, No 1, Jan-Feb 84 (manuscript received 15
Heart Rate Response in Spectators of the Montreal Canadiens Hockey Team.
Khairy, Leia T; Barin, Roxana; Demonière, Fabrice; Villemaire, Christine; Billo, Marie-Josée; Tardif, Jean-Claude; Macle, Laurent; Khairy, Paul
2017-12-01
To our knowledge, heart rate responses have not previously been assessed in hockey fans. We quantified heart rate increases in spectators of the Montreal Canadiens, compared televised with live games, explored features associated with peak heart rates, and assessed whether increases correlate with a fan passion score. Healthy adults were enrolled, with half attending live games and half viewing televised games. All subjects completed questionnaires and had continuous Holter monitoring. Intensity of the physical stress response was defined according to previously published heart rate index thresholds as mild (< 1.33), moderate (1.33-1.83), or vigorous (> 1.83). In 20 participants, 35% women, age 46 ± 10 years, the heart rate increased by a median of 92% during the hockey game, from 60 (interquartile range, 54-65) beats per minute at rest to 114 (interquartile range, 103-129) beats per minute (P < 0.001). The heart rate increased by 110% vs 75% during live vs televised games (P < 0.001). Heart rate index (2.16 ± 0.27 vs 1.73 ± 0.15; P < 0.001) and percent maximum predicted heart rate attained (75% ± 8% vs 58% ± 7%; P < 0.001) were significantly higher during live vs televised games. Number of premature beats was nonsignificantly higher during live games (5 vs 1; P = 0.181). The fan passion score was not predictive of the heart rate response (P = 0.753). Peak heart rates most commonly occurred during overtime (40%) and scoring opportunities for (25%) and against (15%). It is exciting to watch the Montreal Canadiens! Viewing a live hockey game is associated with a heart rate response equivalent to vigorous physical stress and a televised game to moderate physical stress. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Howarth, F C; Jacobson, M; Shafiullah, M; Ljubisavljevic, M; Adeghate, E
2011-01-01
Diabetes mellitus is associated with a variety of cardiovascular complications including impaired cardiac muscle function. The effects of insulin treatment on heart rate, body temperature and physical activity in the alloxan (ALX)-induced diabetic rat were investigated using in vivo biotelemetry techniques. The electrocardiogram, physical activity and body temperature were recorded in vivo with a biotelemetry system for 10 days before ALX treatment, for 20 days following administration of ALX (120 mg/kg) and thereafter, for 15 days whilst rats received daily insulin. Heart rate declined rapidly after administration of ALX. Pre-ALX heart rate was 321+/-9 beats per minute, falling to 285+/-12 beats per minute 15-20 days after ALX and recovering to 331+/-10 beats per minute 5-10 days after commencement of insulin. Heart rate variability declined and PQ, QRS and QT intervals were prolonged after administration of ALX. Physical activity and body temperature declined after administration of ALX. Pre-ALX body temperature was 37.6+/-0.1 °C, falling to 37.3+/-0.1 °C 15-20 days after ALX and recovering to 37.8+/-0.1 °C 5-10 days after commencement insulin. ALX-induced diabetes is associated with disturbances in heart rhythm, physical activity and body temperature that are variously affected during insulin treatment.
Chen, Kun; Tsutsumi, Yuki; Yoshitake, Shuhei; Qiu, Xuchun; Xu, Hai; Hashiguchi, Yasuyuki; Honda, Masato; Tashiro, Kosuke; Nakayama, Kei; Hano, Takeshi; Suzuki, Nobuo; Hayakawa, Kazuichi; Shimasaki, Yohei; Oshima, Yuji
2017-01-01
Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos. Copyright © 2016 Elsevier B.V. All rights reserved.
1985-12-31
puretone threshold at ultra-audiometric frequencies (10,000-20,000 Hz; e) Masking Level Differences (MLD) used to assess binaural processing in the auditory...SD in 5 Supine Resting Subjects) I Pre-exposure Mean Exposure Time Control 2.6 Hours 9.8 Hours I Heart Rate 59.8 + 10.7 50.2 + 8.5 63.6* + 14.4 ( beats ...complete absence of ectopic beats by 6 hours post-exposure. 72 FIGURE 26. 1 HEART RATE RESPONSES TO RISING FROM SUPINE TO STANDING POSITION IN SUBJECT (C.H
... your child has been diagnosed with an abnormal heart rate, you're probably alarmed. That's understandable. But by ... care for your child. About heart rhythms The heart rate is the number of times the heart beats ...
A forward model-based validation of cardiovascular system identification
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Cohen, R. J.
2001-01-01
We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2011-03-01
I propose a novel mechanism for the brain cancer tissue treatment: nonlinear interaction of ultrashort pulses of beat-photon, (ω1 -- ω2) , or double-photon, (ω1 +ω2) , beams with the cancer tissue. The multiphoton scattering is described via photon diffusion equation. The open-scull cerebral tissue can be irradiated with the beat-modulated photon pulses with the laser irradiances in the range of a few mW/cm2 , and repetition rate of a few 100s Hz generated in the beat-wave driven free electron laser. V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in PlasmasScience 27 January 1989: V. Alexander Stefan, Genomic Medical Physics: A New Physics in the Making, (S-U-Press, 2008).} This highly accurate cancer tissue ablation removal may prove to be an efficient method for the treatment of brain cancer. Work supported in part by Nikola Tesla Laboratories (Stefan University), La Jolla, CA.
Nonlinear beat excitation of low frequency wave in degenerate plasmas
NASA Astrophysics Data System (ADS)
Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.
2018-03-01
The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.
Heart rate estimation from FBG sensors using cepstrum analysis and sensor fusion.
Zhu, Yongwei; Fook, Victor Foo Siang; Jianzhong, Emily Hao; Maniyeri, Jayachandran; Guan, Cuntai; Zhang, Haihong; Jiliang, Eugene Phua; Biswas, Jit
2014-01-01
This paper presents a method of estimating heart rate from arrays of fiber Bragg grating (FBG) sensors embedded in a mat. A cepstral domain signal analysis technique is proposed to characterize Ballistocardiogram (BCG) signals. With this technique, the average heart beat intervals can be estimated by detecting the dominant peaks in the cepstrum, and the signals of multiple sensors can be fused together to obtain higher signal to noise ratio than each individual sensor. Experiments were conducted with 10 human subjects lying on 2 different postures on a bed. The estimated heart rate from BCG was compared with heart rate ground truth from ECG, and the mean error of estimation obtained is below 1 beat per minute (BPM). The results show that the proposed fusion method can achieve promising heart rate measurement accuracy and robustness against various sensor contact conditions.
[Characteristics of the rat nystagmic reaction after a flight on the Kosmos-1129 biosatellite].
Shipov, A A; Tabakova, L A
1982-01-01
The vestibular nystagmus of rats flown for 18.5 days on Cosmos-1129 was examined with reference to the latent period, number of beats, duration and the average velocity. The nystagmus was elicited by increasing angular acceleration of 10, 20, 30 degrees/sec2. As compared to the controls, the flown animals showed a significant inhibition of the nystagmic reaction (P less than less than 0.001). The inhibition can be attributed to the desynchronosis which developed inflight.
... sinoatrial (SA) node --- the heart's natural pacemaker. A series of early beats in the atria speeds up the heart rate. The rapid heartbeat does not allow enough time for the heart to fill before it contracts ...
Jezewski, Janusz; Wrobel, Janusz; Matonia, Adam; Horoba, Krzysztof; Martinek, Radek; Kupka, Tomasz; Jezewski, Michal
2017-01-01
Great expectations are connected with application of indirect fetal electrocardiography (FECG), especially for home telemonitoring of pregnancy. Evaluation of fetal heart rate (FHR) variability, when determined from FECG, uses the same criteria as for FHR signal acquired classically—through ultrasound Doppler method (US). Therefore, the equivalence of those two methods has to be confirmed, both in terms of recognizing classical FHR patterns: baseline, accelerations/decelerations (A/D), long-term variability (LTV), as well as evaluating the FHR variability with beat-to-beat accuracy—short-term variability (STV). The research material consisted of recordings collected from 60 patients in physiological and complicated pregnancy. The FHR signals of at least 30 min duration were acquired dually, using two systems for fetal and maternal monitoring, based on US and FECG methods. Recordings were retrospectively divided into normal (41) and abnormal (19) fetal outcome. The complex process of data synchronization and validation was performed. Obtained low level of the signal loss (4.5% for US and 1.8% for FECG method) enabled to perform both direct comparison of FHR signals, as well as indirect one—by using clinically relevant parameters. Direct comparison showed that there is no measurement bias between the acquisition methods, whereas the mean absolute difference, important for both visual and computer-aided signal analysis, was equal to 1.2 bpm. Such low differences do not affect the visual assessment of the FHR signal. However, in the indirect comparison the inconsistencies of several percent were noted. This mainly affects the acceleration (7.8%) and particularly deceleration (54%) patterns. In the signals acquired using the electrocardiography the obtained STV and LTV indices have shown significant overestimation by 10 and 50% respectively. It also turned out, that ability of clinical parameters to distinguish between normal and abnormal groups do not depend on the acquisition method. The obtained results prove that the abdominal FECG, considered as an alternative to the ultrasound approach, does not change the interpretation of the FHR signal, which was confirmed during both visual assessment and automated analysis. PMID:28559852
Stær-Jensen, Henrik; Sunde, Kjetil; Olasveengen, Theresa M; Jacobsen, Dag; Drægni, Tomas; Nakstad, Espen Rostrup; Eritsland, Jan; Andersen, Geir Øystein
2014-11-01
Comatose patients resuscitated after out-of-hospital cardiac arrest receive therapeutic hypothermia. Bradycardia is frequent during therapeutic hypothermia, but its impact on outcome remains unclear. We explore a possible association between bradycardia during therapeutic hypothermia and neurologic outcome in comatose survivors of out-of-hospital cardiac arrest. Retrospective cohort study, from January 2009 to January 2011. University hospital medical and cardiac ICUs. One hundred eleven consecutive comatose out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Patients treated with standardized treatment protocol after cardiac arrest. All out-of-hospital cardiac arrest patients' records were reviewed. Hemodynamic data were obtained every fourth hour during the first days. The patients were in temperature target range (32-34°C) 8 hours after out-of-hospital cardiac arrest and dichotomized into bradycardia and nonbradycardia groups depending on their actual heart rate less than or equal to 60 beats/min or more than 60 beats/min at that time. Primary endpoint was Cerebral Performance Category score at hospital discharge. More nonbradycardia group patients received epinephrine during resuscitation and epinephrine and norepinephrine in the early in-hospital period. They also had lower base excess at admission. Survival rate with favorable outcome was significantly higher in the bradycardia than the nonbradycardia group (60% vs 37%, respectively, p = 0.03). For further heart rate quantification, patients were divided into quartiles: less than or equal to 49 beats/min, 50-63 beats/min, 64-77 beats/min, and more than or equal to 78 beats/min, with respective proportions of patients with good outcome at discharge of 18 of 27 (67%), 14 of 25 (56%), 12 of 28 (43%), and 7 of 27 (26%) (p = 0.002). Patients in the lowest quartile had significantly better outcome than the higher groups (p = 0.027), whereas patients in the highest quartile had significantly worse outcome than the lower three groups (p = 0.013). Bradycardia during therapeutic hypothermia was associated with good neurologic outcome at hospital discharge. Our data indicate that bradycardia should not be aggressively treated in this period if mean arterial pressure, lactate clearance, and diuresis are maintained at acceptable levels. Studies, both experimental and clinical, are warranted.
Pasquier, Jennifer; Gupta, Renuka; Rioult, Damien; Hoarau-Véchot, Jessica; Courjaret, Raphael; Machaca, Khaled; Al Suwaidi, Jassim; Stanley, Edouard G; Rafii, Shahin; Elliott, David A; Abi Khalil, Charbel; Rafii, Arash
2017-06-01
Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4 + ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. After 8 days in culture, 94% ± 6% of the NKX2-5GFP + cells were beating when hESCs embryonic bodies were plated on E4 + ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP + cardiomyocytes were close to the E4 + ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. Copyright © 2017. Published by Elsevier Inc.
Agnisola, Claudio; Randall, David J; Taylor, Edwin W
2003-01-01
The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.
Modulational instability of beat waves in a transversely magnetized plasma: Ion effects
NASA Astrophysics Data System (ADS)
Ferdous, T.; Amin, M. R.; Salimullah, M.
1996-05-01
The effect of ion dynamics on the modulational instability of the electrostatic beat wave at the difference frequency of two incident laser beams in a hot, collisionless, and transversely magnetized plasma has been studied theoretically. The full Vlasov equation in terms of gyrokinetic variables is employed to obtain the nonlinear response of ions and electrons. It is found that the growth rate of modulational instability is about two orders higher when ion motions are included.
Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans
NASA Astrophysics Data System (ADS)
Yamazaki, F.; Sagawa, S.; Torii, R.; Endo, Y.; Shiraki, K.
The purpose of this study was to examine the effect of hyperthermia on the carotid baroreceptor-cardiac reflexes in humans. Nine healthy males underwent acute hyperthermia (esophageal temperature 38.0° C) produced by hot water-perfused suits. Beat-to-beat heart rate (HR) responses were determined during positive and negative R-wave-triggered neck pressure steps from +40 to -65 mm Hg during normothermia and hyperthermia. The carotid baroreceptor-cardiac reflex sensitivity was evaluated from the maximum slope of the HR response to changes in carotid distending pressure. Buffering capacity of the HR response to carotid distending pressure was evaluated in % from a reference point calculated as (HR at 0 mm Hg neck pressure-minimum HR)/HR range ×100. An upward shift of the curve was evident in hyperthermia because HR increased from 57.7+/-2.4 beats/min in normothermia to 88.7+/-4.1 beats/min in hyperthermia (P<0.05) without changes in mean arterial pressure. The maximum slope of the curve in hyperthermia was similar to that in normothermia. The reference point was increased (P<0.05) during hyperthermia. These results suggest that the sensitivity of the carotid baroreflex of HR remains unchanged in hyperthermia. However, the capacity for tachycardia response to rapid onset of hypotension is reduced and the capacity for bradycardia response to sudden hypertension is increased during acute hyperthermia.
Howarth, F C; Jacobson, M; Naseer, O; Adeghate, E
2005-03-01
A variety of contractility defects have been reported in the streptozotocin (STZ)-induced diabetic rat heart including alterations to the amplitude and time course of cardiac muscle contraction. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. Electrocardiogram (ECG), physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg-1). Heart rate (HR), physical activity and body temperature declined rapidly 3-5 days after administration of STZ. The effects became more conspicuous with time and reached a new steady state approximately 10 days after STZ treatment when HR was 255+/-8 beats min-1 in diabetic rats compared to 348+/-17 beats min-1 in age-matched controls. Heart rate variability (HRV) was also significantly reduced after STZ treatment (18+/-3 beats min-1) compared to controls (36+/-3 beats min-1). Reduced physical activity and/or body temperature may partly underlie the reduction in HR and HRV. Reductions in power spectral density at higher frequencies (2.5-3.5 Hz) suggest that parasympathetic drive to the heart may be altered during the early stages of STZ-induced diabetes. Short-term diabetes-induced changes in vital signs can be effectively tracked by continuous recording using a telemetry system.
Rodriguez-Fernandez, Rodrigo; Infante, Oscar; Perez-Grovas, Héctor; Hernandez, Erika; Ruiz-Palacios, Patricia; Franco, Martha; Lerma, Claudia
2012-06-01
This study evaluated the usefulness of the three-dimensional representation of electrocardiogram traces (3DECG) to reveal acute and gradual changes during a full session of hemodiafiltration (HDF) in end-stage renal disease (ESRD) patients. Fifteen ESRD patients were included (six men, nine women, age 46 ± 19 years old). Serum electrolytes, blood pressure, heart rate, and blood urea nitrogen (BUN) were measured before and after HDF. Continuous electrocardiograms (ECGs) obtained by Holter monitoring during HDF were used to produce the 3DECG. Several major disturbances were identified by 3DECG images: increase in QRS amplitude (47%), decrease in T-wave amplitude (33%), increase in heart rate (33%), and occurrence of arrhythmia (53%). Different arrhythmia types were often concurrent and included isolated supraventricular premature beats (N = 5), atrial fibrillation or atrial bigeminy (N = 2), and isolated premature ventricular beats (N = 6). Patients with decrease in T-wave amplitude had higher potassium and BUN (both before HDF and total removal) than those without decrease in T-wave amplitude (P < 0.05). Concurrent acute and gradual ECG changes during HDF are identified by the 3DECG, which could be useful as a preventive and prognostic method. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Acoustical sensing of cardiomyocyte cluster beating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tymchenko, Nina; Kunze, Angelika; Dahlenborg, Kerstin
2013-06-14
Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cellmore » quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.« less
Beats produced between a rhythmic applied force and the resting tremor of Parkinsonism.
Walsh, E G
1979-01-01
Rhythmic forces have been applied to the wrist of patients with Parkinsonism tremor by means of a printed motor. The tremor rate was not altered to that of the applied force. On the contrary, beats were established, the rate of which depended on the difference in rate between the tremor and the applied rhythm. Most of the observations have been for horizontal motion of the hand but similar phenomena have been seen for vertical movements, and for other parts of the body--for example, foot, elbow, finger joint, and head. The observations are regarded as supporting the view that the tremorgenic mechanism is central. There was no electromyographic evidence of servo driving or servo assistance in the genesis of the tremor. PMID:762588
24h seismocardiogram monitoring in ambulant subjects.
Di Rienzo, M; Meriggi, P; Vaini, E; Castiglioni, P; Rizzo, F
2012-01-01
Sternal seismocardiogram (SCG) is the assessment of microvibrations produced by the beating heart as detected by an accelerometer positioned on the sternum. This signal reflects mechanical events of the heart contraction, including the opening and closure of mitral and aortic valves and maximal blood flow acceleration. Traditionally, SCG has been detected in a laboratory setting with the subject lying at rest in supine position. Aims of this study were 1) to investigate the feasibility of a SCG monitoring over the 24 hours in ambulant subjects, and 2) to calculate number and time distribution of the SCG estimates obtainable over the 24 hours. In 5 healthy subjects ECG, respiration, body accelerations and sternal SCG were recorded for 24 hours in a workday by a smart garment recently developed in our laboratory, the MagIC-SCG system. Each recording was split into a series of contiguous 5-s data segments and SCG was estimated in each segment where the magnitude of the acceleration vector was < 4 milli-g (this condition indicates that the subject was not moving).All the 24-h recordings were found of good quality and could be entirely analyzed. A large number of SCG estimates could be obtained over the 24 hours. In particular, more than 100 estimates per hour were available during the day; at night this rate was three times higher.Thus our study indicates that not only the 24h SCG monitoring in daily life is feasible but also that possible changes over time in SCG and its derived parameters may be tracked with an extreme temporal detail.
Heart rate at first postdischarge visit and outcomes in patients with heart failure.
Kim, Tae-Hun; Kim, Hyungseop; Kim, In-Cheol; Yoon, Hyuck-Jun; Park, Hyoung-Seob; Cho, Yun-Kyeong; Nam, Chang-Wook; Han, Seongwook; Hur, Seung-Ho; Kim, Yoon-Nyun
2018-07-01
Heart rate control is important to prevent adverse outcomes in patients with heart failure (HF). However, postdischarge activity may worsen heart rate control, resulting in readmission. This study aimed to explore the implications of the heart rate differences between discharge and the first outpatient visit (D-O diff). We retrospectively identified 458 patients (male: 46%; mean age: 72 years) discharged after HF. The heart rates at admission, discharge and first outpatient visit were analysed. The primary outcome was a composite of cardiovascular (CV) death and readmission of non-fatal myocardial infarction (MI), non-fatal stroke or non-fatal HF over a mean follow-up of 16 months. During follow-up, the clinical outcomes were noted in 223 patients (49%): HF, 199; stroke, 9; MI, 6; CV death, 9. The heart rate at the first outpatient visit (r=-0.311, P<0.001) and D-O diff (r=0.416, P<0.001) showed a better correlation with the time-to-clinical event than the heart rate at admission or discharge. The events group displayed a pronounced heart rate increase (13 beats/min) from discharge to the first outpatient visit compared with the event-free group (a decrease of 2 beats/min). A decrease less than -15 in the D-O diff showed a 4.5-fold risk of clinical outcomes during follow-up (P<0.001). A decreased D-O diff was related to the adverse outcomes of HF. The failure of heart rate control within more than 15 beats/min at the first outpatient visit was an independent factor for CV events. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Feng, Li; Gong, Jing; Jin, Zhen-yi; Li, Ning; Sun, Li-ping; Wu, Yi-ling; Pu, Jie-lin
2009-07-05
Shen song Yang xin (SSYX) is a compound of Chinese medicine with the effect of increasing heart rate (HR). This study aimed to evaluate its electrophysiological properties at heart and cellular levels. The Chinese miniature swines were randomly assigned to two groups, administered with SSYX or placebo for 4 weeks (n = 8 per group). Cardiac electrophysiological study (EPS) was performed before and after drug administration. The guinea pig ventricular myocytes were enzymatically isolated and whole cell voltage-clamp technique was used to evaluate the effect of SSYX on cardiac action potential (AP). SSYX treatment accelerated the HR from (141.8 +/- 36.0) beats per minute to (163.0 +/- 38.0) beats per minute (P = 0.013) without changing the other parameters in surface electrocardiogram. After blockage of the autonomic nervous system with metoprolol and atropin, SSYX had no effect on intrinsic HR (IHR), but decreased corrected sinus node recovery time (CSNRT) and sinus atrium conducting time (SACT). Intra cardiac EPS showed that SSYX significantly decreased the A-H and A-V intervals as well as shortened the atrial (A), atrioventricular node (AVN) and ventricular (V) effective refractory period (ERP). In isolated guinea pig ventricular myocytes, the most obvious effect of SSYX on action potential was a shortening of the action potential duration (APD) without change in shape of action potential. The shortening rates of APD(30), APD(50) and APD(90) were 19.5%, 17.8% and 15.3%, respectively. The resting potential (Em) and the interval between the end of APD(30) and APD(90) did not significantly change. The present study demonstrates that SSYX increases the HR and enhances the conducting capacity of the heart in the condition of the intact autonomic nervous system. SSYX homogenously decreases the ERP of the heart and shortens the APD of the myocytes, suggesting its antiarrhythmic effect without proarrhythmia.
Synaptic delay in the heart: an ionophoretic study.
Hill-Smith, I; Purves, R D
1978-01-01
1. Neurotransmitters were applied ionophoretically to spontaneously beating clusters of ventricular muscle cells cultured from neonatal rats. 2. Acetylcholine or its analogue carbachol produced hyperpolarization and decreased the rate of spontaneous beating. These responses had minimum latencies of about 250 msec and total durations of 6-12 sec. 3. Noradrenaline, adrenaline or isoprenaline increased the rate of spontaneous beating. The minimum latency for this effect was 3-6 sec. Following a single brief pulse the rate remained elevated for 2 min or more. 4. Chronotropic responses of intact atria from adult rats to stimulation of the autonomic nerves were of similar time course to responses of the cultured muscle cells. 5. Calculations based on the theory of diffusion showed that access of drugs to their receptors could not be rate-limiting for the observed responses, unless a diffusion barrier of rather special properties was postulated. A number of other explanations for the long latencies have been ruled out; these are most likely to be due to some physical or chemical process occurring in or under the cell membrane. 6. Attempts to mimic responses to catecholamines by intracellular application of cyclic AMP were unsuccessful, perhaps because the release of nucleotide from the pipettes was insufficient. A theoretical treatment suggests that ionophoretic efflux of anions might be greatly diminished by the opposing electro-osmotic flux. PMID:209176
Engineering studies of vectorcardiographs in blood pressure measuring systems
NASA Technical Reports Server (NTRS)
Mark, R. G.
1975-01-01
The following projects involving cardiovascular instrumentation were conducted: (1) the development and fabrication of a three-dimensional display measurement system for vectorcardiograms, (2) the development and fabrication of a cardiovascular monitoring system to noninvasively monitor beat-by-beat the blood pressure and heart rate using aortic pulse wave velocity, (3) the development of software for an interactive system to analyze systolic time interval data, and (4) the development of microprocessor-based physiologic instrumentation, focussing initially on EKG rhythm analysis. Brief descriptions of these projects were given.
1984-04-01
999949999999 17 * . TABLE 3.Inter- beat interval (131) changes over 14 blocks of 6 tone trials each f’or the 3...Tone3 were presented • .. 4 binaurally through Sennheiser Model HD 400 earphones. Tone duration was 200 msec at 65 dB. A *run* on this task was...canthus and superior ridge of the left eye. Heart rate (actually quantified as inter- beat -interal, or IBI, in msec) leads were placed on the left
Aging and the complexity of cardiovascular dynamics
NASA Technical Reports Server (NTRS)
Kaplan, D. T.; Furman, M. I.; Pincus, S. M.; Ryan, S. M.; Lipsitz, L. A.; Goldberger, A. L.
1991-01-01
Biomedical signals often vary in a complex and irregular manner. Analysis of variability in such signals generally does not address directly their complexity, and so may miss potentially useful information. We analyze the complexity of heart rate and beat-to-beat blood pressure using two methods motivated by nonlinear dynamics (chaos theory). A comparison of a group of healthy elderly subjects with healthy young adults indicates that the complexity of cardiovascular dynamics is reduced with aging. This suggests that complexity of variability may be a useful physiological marker.
Mansikka, Heikki; Virtanen, Kai; Harris, Don
2018-04-30
The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.
Compression based entropy estimation of heart rate variability on multiple time scales.
Baumert, Mathias; Voss, Andreas; Javorka, Michal
2013-01-01
Heart rate fluctuates beat by beat in a complex manner. The aim of this study was to develop a framework for entropy assessment of heart rate fluctuations on multiple time scales. We employed the Lempel-Ziv algorithm for lossless data compression to investigate the compressibility of RR interval time series on different time scales, using a coarse-graining procedure. We estimated the entropy of RR interval time series of 20 young and 20 old subjects and also investigated the compressibility of randomly shuffled surrogate RR time series. The original RR time series displayed significantly smaller compression entropy values than randomized RR interval data. The RR interval time series of older subjects showed significantly different entropy characteristics over multiple time scales than those of younger subjects. In conclusion, data compression may be useful approach for multiscale entropy assessment of heart rate variability.
Heart rate and estimated energy expenditure of flapping and gliding in black-browed albatrosses.
Sakamoto, Kentaro Q; Takahashi, Akinori; Iwata, Takashi; Yamamoto, Takashi; Yamamoto, Maki; Trathan, Philip N
2013-08-15
Albatrosses are known to expend only a small amount of energy during flight. The low energy cost of albatross flight has been attributed to energy-efficient gliding (soaring) with sporadic flapping, although little is known about how much time and energy albatrosses expend in flapping versus gliding during cruising flight. Here, we examined the heart rates (used as an instantaneous index of energy expenditure) and flapping activities of free-ranging black-browed albatrosses (Thalassarche melanophrys) to estimate the energy cost of flapping as well as time spent in flapping activities. The heart rate of albatrosses during flight (144 beats min(-1)) was similar to that while sitting on the water (150 beats min(-1)). In contrast, heart rate was much higher during takeoff and landing (ca. 200 beats min(-1)). Heart rate during cruising flight was linearly correlated with the number of wing flaps per minute, suggesting an extra energy burden of flapping. Albatrosses spend only 4.6±1.4% of their time flapping during cruising flight, which was significantly lower than during and shortly after takeoff (9.8±3.5%). Flapping activity, which amounted to just 4.6% of the time in flight, accounted for 13.3% of the total energy expenditure during cruising flight. These results support the idea that albatrosses achieve energy-efficient flight by reducing the time spent in flapping activity, which is associated with high energy expenditure.
Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps).
Seebacher, Frank; Franklin, Craig E
2003-01-01
The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile, and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B(2) did not have a significant effect on heart rate, but prostacyclin and prostaglandin F(2alpha) caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D. PMID:12952634
Prostaglandins are important in thermoregulation of a reptile (Pogona vitticeps).
Seebacher, Frank; Franklin, Craig E
2003-08-07
The effectiveness of behavioural thermoregulation in reptiles is amplified by cardiovascular responses, particularly by differential rates of heart beat in response to heating and cooling (heart-rate hysteresis). Heart-rate hysteresis is ecologically important in most lineages of ectothermic reptile, and we demonstrate that heart-rate hysteresis in the lizard Pogona vitticeps is mediated by prostaglandins. In a control treatment (administration of saline), heart rates during heating were significantly faster than during cooling at any given body temperature. When cyclooxygenase 1 and 2 enzymes were inhibited, heart rates during heating were not significantly different from those during cooling. Administration of agonists showed that thromboxane B(2) did not have a significant effect on heart rate, but prostacyclin and prostaglandin F(2alpha) caused a significant increase (3.5 and 13.6 beats min(-1), respectively) in heart rate compared with control treatments. We speculate that heart-rate hysteresis evolved as a thermoregulatory mechanism that may ultimately be controlled by neurally induced stimulation of nitric oxide production, or maybe via photolytically induced production of vitamin D.
Autonomic cardiovascular responses to smoke exposure in conscious rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T.; Hayashida, Y.
1992-05-01
Autonomic cardiovascular responses and the change in renal sympathetic nerve activity (RSNA) in response to smoke exposure were investigated in unrestrained conscious rats. Smoke exposure caused a prominent increase in RSNA (to 557.3 +/- 221.9% of the control level) and plasma norepinephrine (from 0.18 +/- 0.08 (control) to 0.66 +/- 0.22 ng/ml (at peak response of smoke exposure)), a slight increase in arterial blood pressure (from 89.6 +/- 3.3 to 103.6 +/- 3.8 mmHg), and marked bradycardia (from 386.6 +/- 12.8 to 231.3 +/- 20.6 beats/min). Respiratory rate in conscious rats was initially increased (from 1.6 +/- 0.1 to 6.1more » +/- 0.3 breaths/s) but was decreased (to 0.9 +/- 0.1 breaths/s) at the peak phase of the cardiovascular responses to smoke inhalation. Blood gases and pH reflected these changes in respiratory rate to some extent. Sinoaortic denervation did not attenuate the bradycardia (from 402 +/- 17.5 to 255.8 +/- 16.2 beats/min) or increase in RSNA (to 413.4 +/- 74.9%) that occurred during smoke inhalation. Atropine sulfate abolished the bradycardic response (from 440.4 +/- 13.8 to 485.4 +/- 8.6 beats/min). Initial tachypnea was also observed in both sinoaortic denervated rats and atropine-treated rats. Anesthesia, induced by pentobarbital sodium (30 mg/kg iv) or alpha-chloralose (65 mg/kg iv), abolished the bradycardia, the increase in RSNA, and the change in respiratory rate caused by smoke exposure. Ablation of the olfactory lobes also greatly attenuated the smoke-induced increase in RSNA (to 150.9 +/- 22.9%), bradycardia (from 372.9 +/- 19.6 to 376.3 +/- 24.1 beats/min), and the respiratory change.(ABSTRACT TRUNCATED AT 250 WORDS)« less
Van Leeuwen, Peter; Werner, Lisa; Hilal, Ziad; Schiermeier, Sven; Hatzmann, Wolfgang; Grönemeyer, Dietrich
2014-03-01
This study examines signal availability in fetal electrocardiogram (FECG) beat-to-beat acquisition and the accuracy of fetal heart rate variability (HRV) analysis in the clinical setting using a commercially available FECG monitor. Signal availability was examined in 130 FECG recordings of 0.3-17.5 h duration collected in 63 fetuses (25th-42nd week of gestation) under uncontrolled conditions. Identification of R-peaks demonstrated a signal loss of 30% ± 24% with 3.6 ± 1.7 signal gaps per minute. Median duration of the gaps within a recording was 1.8 ± 0.2 s. Per hour of recording, 1.8 ± 2.1 episodes of 5 min of uninterrupted data were found. Signal availability improved with gestational age and was poorer in women with high body-mass index. Fetal HRV between weeks 36-42 was examined on the basis of 5 min RR-interval episodes obtained under controlled quiet conditions in 55 FECG compared to 46 high quality fetal magnetocardiograms. There were no differences in RR-interval duration, its standard deviation and low frequency power. However, various measures of short-term HRV were significantly higher in the FECG data: root mean square of successive differences (10.0 ± 1.8 versus 6.6 ± 3.0 ms, p < 0.001, high frequency spectral power (24 ± 12 versus 13 ± 13 ms(2), p < 0.001) and approximate entropy (0.86 ± 0.16 versus 0.73 ± 0.24, p = 0.007). We conclude that, in spite of considerable signal loss, FECG recordings can accurately estimate heart rate and its overall variance. However, measures that quantify short-term beat-to-beat HRV will be compromised due to possible recurring inappropriate detection of single R-peaks.
Contijoch, Francisco; Witschey, Walter R T; Rogers, Kelly; Rears, Hannah; Hansen, Michael; Yushkevich, Paul; Gorman, Joseph; Gorman, Robert C; Han, Yuchi
2015-05-21
Data obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia. Multi-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias. ACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2 ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated. User-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias.
Al Haddad, Hani; Laursen, Paul B; Chollet, Didier; Lemaitre, Frédéric; Ahmaidi, Saïd; Buchheit, Martin
2010-08-25
This study aimed to investigate the effect of cold and thermoneutral water immersion on post-exercise parasympathetic reactivation, inferred from heart rate (HR) recovery (HRR) and HR variability (HRV) indices. Twelve men performed, on three separate occasions, an intermittent exercise bout (all-out 30-s Wingate test, 5 min seated recovery, followed by 5 min of submaximal running exercise), randomly followed by 5 min of passive (seated) recovery under either cold (CWI), thermoneutral water immersion (TWI) or control (CON) conditions. HRR indices (e.g., heart beats recovered in the first minute after exercise cessation, HRR(60)(s)) and vagal-related HRV indices (i.e., natural logarithm of the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (Ln rMSSD)) were calculated for the three recovery conditions. HRR(60)(s) was faster in water immersion compared with CON conditions [30+/-9 beats min(-)(1) for CON vs. 43+/- 10 beats min(-)(1) for TWI (P=0.003) and 40+/-13 beats min(-)(1) for CWI (P=0.017)], while no difference was found between CWI and TWI (P=0.763). Ln rMSSD was higher in CWI (2.32+/-0.67 ms) compared with CON (1.98+/-0.74 ms, P=0.05) and TWI (2.01+/-0.61 ms, P=0.08; aES=1.07) conditions, with no difference between CON and TWI (P=0.964). Water immersion is a simple and efficient means of immediately triggering post-exercise parasympathetic activity, with colder immersion temperatures likely to be more effective at increasing parasympathetic activity. Copyright 2010 Elsevier B.V. All rights reserved.
Hsu, Che-Hao; Tsai, Ming-Ya; Huang, Go-Shine; Lin, Tso-Chou; Chen, Kuen-Pao; Ho, Shung-Tai; Shyu, Liang-Yu; Li, Chi-Yuan
2012-03-01
Beat-to-beat heart rate variability (HRV) is caused by the fluctuating balance of sympathetic and parasympathetic tone. The Poincaré plot has been used to evaluate HRV. In this study, we validate that this new method may qualitatively and quantitatively assess the sympathovagal fluctuation in patients during induction of anesthesia with sevoflurane. Twenty-eight young patients were allocated for the study. The patients received a tilt test and on the next day they sustained anesthesia induced with inhaled anesthetics. Electrocardiography signals from the patients were relayed to an analogue-digital converter. The Poincaré plot is quantified by measuring SD1, SD2, and SD1/SD2. Power spectral analyses were performed and LF, HF and HF/LF were calculated. The LF power and the SD2 of the Poincaré plot increased while subjects were tilt-up from the supine position. Additionally, a significant correlation were found between LF and SD2, HF and SD1 (p < 0.05), and LF/HF and SD2/SD1 (p < 0.01). Sevoflurane inhalation for 10 minutes had no effect on heart rate, but diminished LF, total power and SD1, SD2 of the Poincaré plot respectively. However, the LF, SD2 and LF/HF increased; the HF, SD1 and SD1/SD2 ratio decreased after intubation stimulation. Poincaré plot and power spectral analysis of HRV during tilt test and sevoflurane induction significantly correlate. Poincaré plot analysis is easier and more sensitive at evaluating the sympathovagal balance and observing the beat-to-beat HRV. Copyright © 2012. Published by Elsevier B.V.
Changes in heart rate and heart rate variability during transportation of horses by road and air.
Ohmura, Hajime; Hobo, Seiji; Hiraga, Atsushi; Jones, James H
2012-04-01
To determine the influence of transportation by road and air on heart rate (HR) and HR variability (HRV) in horses. Animals-6 healthy horses. ECG recordings were obtained from horses before (quarantine with stall rest [Q]; 24 hours) and during a journey that included transportation by road (RT; 4.5 hours), waiting on the ground in an air stall (W; 5.5 hours), and transportation by air (AT; 11 hours); HR was determined, and HRV indices of autonomic nervous activity (low-frequency [LF; 0.01 to 0.07 Hz] and high-frequency [HF; 0.07 to 0.6 Hz] power) were calculated. Mean ± SD HRs during Q, RT, W, and AT were 38.9 ± 1.5 beats/min, 41.7 ± 5.6 beats/min, 41.5 ± 4.3 beats/min, and 48.8 ± 5.6 beats/min, respectively; HR during AT was significantly higher than HR during Q. The LF power was significantly higher during Q (3,454 ± 1,087 milliseconds(2)) and AT (3,101 ± 567 milliseconds(2)) than it was during RT (1,824 ± 432 milliseconds(2)) and W (2,072 ± 616 milliseconds(2)). During Q, RT, W, and AT, neither HF powers (range, 509 to 927 milliseconds(2)) nor LF:HF ratios (range, 4.1 to 6.2) differed significantly. The HR during RT was highly correlated with LF power (R(2) = 0.979), and HR during AT was moderately correlated with the LF:HF ratio (R(2) = 0.477). In horses, HR and HRV indices during RT and AT differed, suggesting that exposure to different stressors results in different autonomic nervous influences on HR.
den Dulk, K; Dijkman, B; Pieterse, M; Wellens, H
1994-11-01
Mode switching algorithms have been developed to avoid tracking of atrial fibrillation (AF) or flutter (AFL) during DDD(R) pacing. Upon recognition of AF or AFL, the mode is switched to a nontracking, sensor driven mode. The Vitatron Diamond model 800 pacemaker does this on a beat-to-beat basis. Atrial events occurring within a "physiological range" (+/- 15 beats/min) calculated from a running average of the atrial rate are tracked. When atrial events are not tracked the escape interval is either determined by the sensor(s) or by a fallback algorithm thereby preventing large increases in V-V interval during mode switching. Loss of atrioventricular (AV) synchrony by atrial premature beats and after an episode of AF or AFL is prevented by atrial synchronization pulses (ASP), which are delivered after a safe interval (timed out from the sensed premature atrial event) has expired and before delivery of the next ventricular stimulus. We implanted 26 such devices in 18 men and 8 women with symptomatic second- or third-degree AV block and paroxysmal AF or AFL. Their ages ranged from 18-84 years (mean 60), and the follow-up ranged from 2-13 months (mean 8). During pacemaker check-up, exercise testing or 24-hour Holter monitoring one or more episodes of mode switching was documented in 8 patients. In these 8 patients a smooth transition (ventricular rate) from sinus rhythm to AF or AFL was documented on one or more occasions, without inappropriate increase in ventricular rate in the DDDR mode. None of the patients complained of palpitations.(ABSTRACT TRUNCATED AT 250 WORDS)
Beta-blocker withdrawal among patients presenting for surgery from home
Schonberger, Robert B.; Lukens, Carrie L.; Turkoglu, O. Dicle; Feinleib, Jessica L.; Haspel, Kenneth L.; Burg, Matthew M.
2012-01-01
Structured Abstract Objective This study sought to measure the incidence of perioperative beta-blocker non-compliance by patients who were prescribed chronic beta blocker therapy and presented for surgery from home. The effect of patient non-compliance on day of surgery presenting heart rate was also examined. Design Prospective observational study with outcome data obtained from review of the medical record. Setting The preoperative clinic and operating rooms of a Veterans Administration hospital. Participants Patients on chronic beta blocker therapy who presented from home for surgery. Interventions None. Measurements and Main Results Demographic and comorbidity data as well as data on self-reported compliance to beta-blocker therapy, initial day of surgery vital signs, and recent ambulatory vital signs were collected. Ten out of fifty subjects (20%; 95% CI = 9-31%) reported not taking their day of surgery beta-blocker. These self-reported non-adherers demonstrated a higher presenting heart rate on the day of surgery vs. adherent subjects (median of 78 beats per minute vs. 65 beats per minute, p=0.02 by Wilcoxon Rank-Sum Test). The difference-in-difference between baseline primary care and day of surgery heart rate was also statistically significant between compliant and non-compliant subjects (-7 beats per minute vs. +12.5 beats per minute, p<0.00001). Conclusions Patient self-report and physiologic data documented failure to take beta-blockers and possible beta-blocker withdrawal in 20% of patients who presented for surgery from home. If these findings are confirmed in larger studies, improved patient understanding of and compliance with medication instructions during preoperative visits should be a focus of future quality improvement initiatives. PMID:22418043
Linneberg, Allan; Jacobsen, Rikke K.; Skaaby, Tea; Taylor, Amy E.; Fluharty, Meg E.; Jeppesen, Jørgen L.; Bjorngaard, Johan H.; Åsvold, Bjørn O.; Gabrielsen, Maiken E.; Campbell, Archie; Marioni, Riccardo E.; Kumari, Meena; Marques-Vidal, Pedro; Kaakinen, Marika; Cavadino, Alana; Postmus, Iris; Ahluwalia, Tarunveer S.; Wannamethee, S. Goya; Lahti, Jari; Räikkönen, Katri; Palotie, Aarno; Wong, Andrew; Dalgård, Christine; Ford, Ian; Ben-Shlomo, Yoav; Christiansen, Lene; Kyvik, Kirsten O.; Kuh, Diana; Eriksson, Johan G.; Whincup, Peter H.; Mbarek, Hamdi; de Geus, Eco J.C.; Vink, Jacqueline M.; Boomsma, Dorret I.; Smith, George Davey; Lawlor, Debbie A.; Kisialiou, Aliaksei; McConnachie, Alex; Padmanabhan, Sandosh; Jukema, J. Wouter; Power, Chris; Hyppönen, Elina; Preisig, Martin; Waeber, Gerard; Vollenweider, Peter; Korhonen, Tellervo; Laatikainen, Tiina; Salomaa, Veikko; Kaprio, Jaakko; Kivimaki, Mika; Smith, Blair H.; Hayward, Caroline; Sørensen, Thorkild I.A.; Thuesen, Betina H.; Sattar, Naveed; Morris, Richard W.; Romundstad, Pål R.; Munafò, Marcus R.; Jarvelin, Marjo-Riitta; Husemoen, Lise Lotte N.
2015-01-01
Background Smoking is an important cardiovascular disease risk factor, but the mechanisms linking smoking to blood pressure are poorly understood. Methods and Results Data on 141,317 participants (62,666 never, 40,669 former, 37,982 current smokers) from 23 population-based studies were included in observational and Mendelian randomisation (MR) meta-analyses of the associations of smoking status and smoking heaviness with systolic and diastolic blood pressure (SBP, DBP), hypertension, and resting heart rate. For the MR analyses, a genetic variant rs16969968/rs1051730 was used as a proxy for smoking heaviness in current smokers. In observational analyses, current as compared with never smoking was associated with lower SBP, DBP, and lower hypertension risk, but with higher resting heart rate. In observational analyses amongst current smokers, one cigarette/day higher level of smoking heaviness was associated with higher (0.21 beats/minute; 95% CI 0.19; 0.24) resting heart rate, and slightly higher DBP (0.05 mmHg; 95% CI 0.02; 0.08) and SBP (0.08 mmHg; 95% CI 0.03; 0.13). However, in MR analyses amongst current smokers, while each smoking increasing allele of rs16969968/rs1051730 was associated with higher resting heart rate (0.36 beats/minute/allele; 95% CI 0.18; 0.54), there was no strong association with DBP, SBP, or hypertension. This would suggest a 7 beats/minute higher heart rate in those who smoke 20 cigarettes/day. Conclusions This MR meta-analysis supports a causal association of smoking heaviness with higher level of resting heart rate, but not with blood pressure. These findings suggest that part of the cardiovascular risk of smoking may operate through increasing resting heart rate. PMID:26538566
Davidow, Jason H
2014-01-01
Metronome-paced speech results in the elimination, or substantial reduction, of stuttering moments. The cause of fluency during this fluency-inducing condition is unknown. Several investigations have reported changes in speech pattern characteristics from a control condition to a metronome-paced speech condition, but failure to control speech rate between conditions limits our ability to determine if the changes were necessary for fluency. This study examined the effect of speech rate on several speech production variables during one-syllable-per-beat metronomic speech in order to determine changes that may be important for fluency during this fluency-inducing condition. Thirteen persons who stutter (PWS), aged 18-62 years, completed a series of speaking tasks. Several speech production variables were compared between conditions produced at different metronome beat rates, and between a control condition and a metronome-paced speech condition produced at a rate equal to the control condition. Vowel duration, voice onset time, pressure rise time and phonated intervals were significantly impacted by metronome beat rate. Voice onset time and the percentage of short (30-100 ms) phonated intervals significantly decreased from the control condition to the equivalent rate metronome-paced speech condition. A reduction in the percentage of short phonated intervals may be important for fluency during syllable-based metronome-paced speech for PWS. Future studies should continue examining the necessity of this reduction. In addition, speech rate must be controlled in future fluency-inducing condition studies, including neuroimaging investigations, in order for this research to make a substantial contribution to finding the fluency-inducing mechanism of fluency-inducing conditions. © 2013 Royal College of Speech and Language Therapists.
Davidow, Jason H.
2013-01-01
Background Metronome-paced speech results in the elimination, or substantial reduction, of stuttering moments. The cause of fluency during this fluency-inducing condition is unknown. Several investigations have reported changes in speech pattern characteristics from a control condition to a metronome-paced speech condition, but failure to control speech rate between conditions limits our ability to determine if the changes were necessary for fluency. Aims This study examined the effect of speech rate on several speech production variables during one-syllable-per-beat metronomic speech, in order to determine changes that may be important for fluency during this fluency-inducing condition. Methods and Procedures Thirteen persons who stutter (PWS), aged 18–62 years, completed a series of speaking tasks. Several speech production variables were compared between conditions produced at different metronome beat rates, and between a control condition and a metronome-paced speech condition produced at a rate equal to the control condition. Outcomes & Results Vowel duration, voice onset time, pressure rise time, and phonated intervals were significantly impacted by metronome beat rate. Voice onset time and the percentage of short (30–100 ms) phonated intervals significantly decreased from the control condition to the equivalent rate metronome-paced speech condition. Conclusions & Implications A reduction in the percentage of short phonated intervals may be important for fluency during syllable-based metronome-paced speech for PWS. Future studies should continue examining the necessity of this reduction. In addition, speech rate must be controlled in future fluency-inducing condition studies, including neuroimaging investigations, in order for this research to make a substantial contribution to finding the fluency-inducing mechanism of fluency-inducing conditions. PMID:24372888
Flagellar coordination in Chlamydomonas cells held on micropipettes.
Rüffer, U; Nultsch, W
1998-01-01
The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated internally, involving calcium-sensitive basal-body associated fibrous structures.
Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space
Ertl, Andrew C; Diedrich, André; Biaggioni, Italo; Levine, Benjamin D; Robertson, Rose Marie; Cox, James F; Zuckerman, Julie H; Pawelczyk, James A; Ray, Chester A; Buckey, Jay C; Lane, Lynda D; Shiavi, Richard; Gaffney, F Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C Gunnar; Eckberg, Dwain L; Baisch, Friedhelm J; Robertson, David
2002-01-01
Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio–acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (± s.e.m.) heart rates before lower body suction were similar pre–flight and in flight. Heart rate responses to −30 mmHg were greater in flight (from 56 ± 4 to 72 ± 4 beats min−1) than pre–flight (from 56 ± 4 at rest to 62 ± 4 beats min−1, P < 0.05). Noradrenaline spillover and clearance were increased from pre–flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post–flight days 1 or 2 (n = 5, P < 0.05). In–flight baseline sympathetic nerve activity was increased above pre–flight levels (by 10–33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre–flight levels or higher in each subject (35 pre–flight vs. 40 bursts min−1 in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels. PMID:11773339
Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space
NASA Technical Reports Server (NTRS)
Ertl, Andrew C.; Diedrich, Andre; Biaggioni, Italo; Levine, Benjamin D.; Robertson, Rose Marie; Cox, James F.; Zuckerman, Julie H.; Pawelczyk, James A.; Ray, Chester A.; Buckey, Jay C Jr;
2002-01-01
Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio-acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (+/- S.E.M.) heart rates before lower body suction were similar pre-flight and in flight. Heart rate responses to -30 mmHg were greater in flight (from 56 +/- 4 to 72 +/- 4 beats min(-1)) than pre-flight (from 56 +/- 4 at rest to 62 +/- 4 beats min(-1), P < 0.05). Noradrenaline spillover and clearance were increased from pre-flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post-flight days 1 or 2 (n = 5, P < 0.05). In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre-flight levels or higher in each subject (35 pre-flight vs. 40 bursts min(-1) in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels.
Karimi, Mohammad Taghi
2015-01-01
Heart rate is an accurate and easy to use method to represent the energy expenditure during walking, based on physiological cost index (PCI). However, in some conditions the heart rate during walking does not reach to a steady state. Therefore, it is not possible to determine the energy expenditure by use of the PCI index. The total heart beat index (THBI) is a new method to solve the aforementioned problem. The aim of this research project was to find the sensitivity of both the physiological cost index (PCI) and total heart beat index (THBI). Fifteen normal subjects and ten patients with flatfoot disorder and two subjects with spinal cord injury were recruited in this research project. The PCI and THBI indexes were determined by use of heart beats with respect to walking speed and total distance walked, respectively. The sensitivity of PCI was more than that of THBI index in the three groups of subjects. Although the PCI and THBI indexes are easy to use and reliable parameters to represent the energy expenditure during walking, their sensitivity is not high to detect the influence of some orthotic interventions, such as use of insoles or using shoes on energy expenditure during walking.
Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich
2002-01-01
The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.
Paolin, Adolfo; Trojan, Diletta; Petit, Pieter; Coato, Paola; Rigoli, Roberto
2017-01-01
Microbiological contamination of retrieved tissues has become a very important topic and a critical aspect in the safety of allografts. We have analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. More specifically, 10,035 musculoskeletal tissues and 1,094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 were heart-beating donors as well as organ donors, while the remaining 658 were non-heart beating donors and tissue donors only. All tissues were decontaminated twice, the first time immediately after retrieval and the second time after processing. Each tissue was submitted to microbiological culture three times, i.e., upon retrieval (Time 1), after the first decontamination (Time 2) and after the second decontamination (Time 3). The contamination rate for musculoskeletal tissues was 52%, 16.2% and 0.5% at Time 1, 2 and 3, respectively. The contamination rate for cardiovascular tissues was 84%, 42% and 6%. More than one strain was simultaneously present in 10.8% of musculoskeletal tissues and 44.6% of cardiovascular tissues. Out of 8,560 non-heart-beating donor musculoskeletal tissues, 4,689 (54.8%), 1,383 (16.2%) and 42 (0.5%) were contaminated at Time 1, Time 2 and Time 3, respectively. Out of 1,475 heart-beating donor musculoskeletal tissues, 522 (35.4%) 113 (7.7%) and 2 (0.1%) tissues were found to be contaminated at Time 1, 2 and 3, respectively. Out of 984 non-heart beating donor cardiovascular tissues, 869 (88.3%), 449 (45.6%) and 69 (7%) proved positive at Time 1, 2 and 3 respectively, while 50 (45.5%) and 10 (9.1%) heart-beating donor cardiovascular tissues were contaminated at Time 1 and 2. No tissue was contaminated at Time 3. Based on our methods, the two-step decontamination approach is mandatory in order to drastically reduce the number of tissues found to be positive at the end of the process.
Paolin, Adolfo; Trojan, Diletta; Petit, Pieter; Coato, Paola; Rigoli, Roberto
2017-01-01
Microbiological contamination of retrieved tissues has become a very important topic and a critical aspect in the safety of allografts. We have analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. More specifically, 10,035 musculoskeletal tissues and 1,094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 were heart-beating donors as well as organ donors, while the remaining 658 were non-heart beating donors and tissue donors only. All tissues were decontaminated twice, the first time immediately after retrieval and the second time after processing. Each tissue was submitted to microbiological culture three times, i.e., upon retrieval (Time 1), after the first decontamination (Time 2) and after the second decontamination (Time 3). The contamination rate for musculoskeletal tissues was 52%, 16.2% and 0.5% at Time 1, 2 and 3, respectively. The contamination rate for cardiovascular tissues was 84%, 42% and 6%. More than one strain was simultaneously present in 10.8% of musculoskeletal tissues and 44.6% of cardiovascular tissues. Out of 8,560 non-heart-beating donor musculoskeletal tissues, 4,689 (54.8%), 1,383 (16.2%) and 42 (0.5%) were contaminated at Time 1, Time 2 and Time 3, respectively. Out of 1,475 heart-beating donor musculoskeletal tissues, 522 (35.4%) 113 (7.7%) and 2 (0.1%) tissues were found to be contaminated at Time 1, 2 and 3, respectively. Out of 984 non-heart beating donor cardiovascular tissues, 869 (88.3%), 449 (45.6%) and 69 (7%) proved positive at Time 1, 2 and 3 respectively, while 50 (45.5%) and 10 (9.1%) heart-beating donor cardiovascular tissues were contaminated at Time 1 and 2. No tissue was contaminated at Time 3. Based on our methods, the two-step decontamination approach is mandatory in order to drastically reduce the number of tissues found to be positive at the end of the process. PMID:28267776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com; Wappel, Robert L.; Talbert, Dominique R.
2013-10-01
Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channelmore » function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development. - Highlights: • TKi with known adverse effects show unique cardiotoxicity profiles in this panel. • Crizotinib increases ROS, apoptosis, and cholesterol as well as alters beat rate. • Sunitinib inhibits AMPK, increases lipids and alters the cardiac beat pattern. • Nilotinib causes ROS and caspase activation, decreased lipids and arrhythmia. • Erlotinib did not impact ROS, caspase, or lipid levels or affect the beat pattern.« less
The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon.
Ferreira, Beatriz M A; Moffa, Paulo J; Falcão, Andrea; Uchida, Augusto; Camargo, Paulo; Pereyra, Pascual; Soares, Paulo R; Hueb, Whady; Ramires, Jose A F
2005-07-01
The warm-up phenomenon observed after the second of two sequential exercise tests is characterized by an increased time to ischemia and ischemic threshold, and the latter is related to ischemic preconditioning. Previous studies have demonstrated that a single dose of glibenclamide, a cardiac ATP-sensitive K (K(ATP)) channel blocker, prevents ischemic preconditioning. This study aimed to investigate the effects of chronic treatment with glibenclamide during two sequential exercise tests. Forty patients with angina pectoris were divided into three groups: 20 nondiabetics (NDM), 10 patients with diabetes in treatment with glibenclamide (DMG) and 10 diabetic patients with other treatments (DMO). All patients underwent two consecutive exercise tests. Heart rate and rate-pressure product at 1.0 mm ST-segment depression significantly increased during the second exercise test in NDM group (121.3+/-16.5 vs 127.3+/-15.3 beats/min, P<0.001, and 216.7+43.1 vs 232.1+/-43.0 beats.min-1.mmHg.10(2), P<0.001), and in DMO group (114.1+/-19.6 vs 119.6+/-18.1 beats/min, P=0.001, and 199.8+/-36.6 vs 222.2+/-29.2 beats.min-1.mmHg.10(2), P=0.019), but it did not change in patients in DMG group (130.7+/-14.5 vs 132.1+/-4.7 beats/min, P=ns, and 251.7+/-47.2 vs 250.3+/-42.8 beats.min-1.mmHg.10(2), P=ns). In the three groups, NDM, DMO, and DMG, the time to 1.0 mm ST-segment depression during the second exercise test was greater than during the first (225.0+/-112.5 vs 267.0+/-122.3 seconds, P=0.006; 187.5+/-54.0 vs 226.5+/-74.6 seconds, P=0.029 and 150.0+/-78.7 vs 186.0+/-81.9 seconds, P<0.001). The chronic use of glibenclamide may have mediated the loss of preconditioning benefits in the warm-up phenomenon, probably through its KATP channel-blocker activity, but without acting upon the tolerance to exercise.
Chang, Sung-A; Lee, Sang-Chol; Kim, Eun-Young; Hahm, Seung-Hee; Jang, Shin Yi; Park, Sung-Ji; Choi, Jin-Oh; Park, Seung Woo; Choe, Yeon Hyeon; Oh, Jae K
2011-08-01
With recent developments in echocardiographic technology, a new system using real-time three-dimensional echocardiography (RT3DE) that allows single-beat acquisition of the entire volume of the left ventricle and incorporates algorithms for automated border detection has been introduced. Provided that these techniques are acceptably reliable, three-dimensional echocardiography may be much more useful for clinical practice. The aim of this study was to evaluate the feasibility and accuracy of left ventricular (LV) volume measurements by RT3DE using the single-beat full-volume capture technique. One hundred nine consecutive patients scheduled for cardiac magnetic resonance imaging and RT3DE using the single-beat full-volume capture technique on the same day were recruited. LV end-systolic volume, end-diastolic volume, and ejection fraction were measured using an auto-contouring algorithm from data acquired on RT3DE. The data were compared with the same measurements obtained using cardiac magnetic resonance imaging. Volume measurements on RT3DE with single-beat full-volume capture were feasible in 84% of patients. Both interobserver and intraobserver variability of three-dimensional measurements of end-systolic and end-diastolic volumes showed excellent agreement. Pearson's correlation analysis showed a close correlation of end-systolic and end-diastolic volumes between RT3DE and cardiac magnetic resonance imaging (r = 0.94 and r = 0.91, respectively, P < .0001 for both). Bland-Altman analysis showed reasonable limits of agreement. After application of the auto-contouring algorithm, the rate of successful auto-contouring (cases requiring minimal manual corrections) was <50%. RT3DE using single-beat full-volume capture is an easy and reliable technique to assess LV volume and systolic function in clinical practice. However, the image quality and low frame rate still limit its application for dilated left ventricles, and the automated volume analysis program needs more development to make it clinically efficacious. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole
2013-12-15
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less
Karmakar, Chandan; Jelinek, Herbert; Khandoker, Ahsan; Tulppo, Mikko; Makikallio, Timo; Kiviniemi, Antti; Huikuri, Heikki; Palaniswami, Marimuthu
2012-01-01
Diabetes mellitus is associated with multi-organ system dysfunction. One of the key causative factors is the increased blood sugar level that leads to an increase in free radical activity and organ damage including the cardiovascular and nervous system. Heart rhythm is extrinsically modulated by the autonomic nervous system and cardiac autonomic neuropathy or dysautonomia has been shown to lead to sudden cardiac death in people with diabetes due to the decrease in heart rate variability (HRV). Current algorithms for determining HRV describe only beat-to-beat variation and therefore do not consider the ability of a heart beat to influence a train of succeeding beats. Therefore mortality risk analysis based on HRV has often not been able to discern the presence of an increased risk. This study used a novel innovation of the tone-entropy algorithm by incorporating increased lag intervals and found that both the sympatho-vagal balance and total activity changed at larger lag intervals. Tone-Entropy was found to be better risk identifier of cardiac mortality in people with diabetes at lags higher than one and best at lag seven.
Optimal ciliary beating patterns
NASA Astrophysics Data System (ADS)
Vilfan, Andrej; Osterman, Natan
2011-11-01
We introduce a measure for energetic efficiency of single or collective biological cilia. We define the efficiency of a single cilium as Q2 / P , where Q is the volume flow rate of the pumped fluid and P is the dissipated power. For ciliary arrays, we define it as (ρQ) 2 / (ρP) , with ρ denoting the surface density of cilia. We then numerically determine the optimal beating patterns according to this criterion. For a single cilium optimization leads to curly, somewhat counterintuitive patterns. But when looking at a densely ciliated surface, the optimal patterns become remarkably similar to what is observed in microorganisms like Paramecium. The optimal beating pattern then consists of a fast effective stroke and a slow sweeping recovery stroke. Metachronal waves lead to a significantly higher efficiency than synchronous beating. Efficiency also increases with an increasing density of cilia up to the point where crowding becomes a problem. We finally relate the pumping efficiency of cilia to the swimming efficiency of a spherical microorganism and show that the experimentally estimated efficiency of Paramecium is surprisingly close to the theoretically possible optimum.
Robles-Cabrera, Adriana; Michel-Chávez, Anaclara; Callejas-Rojas, Rodolfo C; Malamud-Kessler, Caroline; Delgado, Guillermo; Estañol-Vidal, Bruno
2014-12-01
The factors that control the blood pressure are punctually regulated to keep it in reference values. These are maintained through autoregulatory mechanisms, humoral, nervous and endothelial-related. The humoral mechanisms are complex and modify the long-term blood pressure, in the other hand, the neurogenic mechanisms, are reflexive and can be observed in beat-to-beat changes of blood pressure. The nervous cardiovascular reflexes are mediated by high-pressure and low-pressure baroreceptors, as cardiovagal, cardiosympathetic and vasosympathetic. The arterial baroreceptor are stimulated when the blood volume-ejected by the ventricle distend the arterial walls. The neural discharge travels to the autonomic centers in the brain stem and the result is the modification of the heart rate and the vascular smooth muscle tone. This sudden modification is the responsible of the beat-to-beat (short-term) blood pressure variability. A review was made on the history of the physiology and experiments of the cardiovagal, cardiosympathetic and vasosympathetic baroreflexes and its influence in the short-term blood pressure variability.
Dalla Bella, Simone; Sowiński, Jakub
2015-03-16
A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).
Enhancing Heart-Beat-Based Security for mHealth Applications.
Seepers, Robert M; Strydis, Christos; Sourdis, Ioannis; De Zeeuw, Chris I
2017-01-01
In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).
Tatsumi, T; Jwa, S C; Kuwahara, A; Irahara, M; Kubota, T; Saito, H
2017-06-01
Are pregnancy and neonatal outcomes following letrozole use comparable with natural and HRT cycles in patients undergoing single frozen-thawed embryo transfer (FET)? Letrozole use was significantly associated with higher rates of clinical pregnancy, clinical pregnancy with fetal heart beat and live birth, and with a lower rate of miscarriage, compared with natural and HRT cycles. Letrozole is the most commonly used aromatase inhibitor for mild ovarian stimulation in ART. However, the effect of letrozole on pregnancy and neonatal outcomes in FET are not well known. A retrospective cohort study was conducted using data from the Japanese national ART registry between 2012 and 2013. A total of 110 722 single FET cycles with letrozole (n = 2409), natural (n = 41 470) or HRT cycles (n = 66 843) were included. The main outcomes were the rates of clinical pregnancy, clinical pregnancy with fetal heart beat, miscarriage and live birth. Adjusted odds ratios and relative risks (RRs) were calculated using a generalized estimating equation adjusting for correlations within clinics. The rates of clinical pregnancy, clinical pregnancy with fetal heart beat, and live birth were significantly higher, while the rate of miscarriage was significantly lower in the letrozole group compared with the natural and HRT groups. In blastocyst stage transfers, the adjusted RRs for clinical pregnancy with fetal heart beat of letrozole compared with natural and HRT cycles were 1.48 (95% CI: 1.41-1.55) and 1.62 (95% CI: 1.54-1.70), respectively. Similarly, the adjusted RRs of letrozole for miscarriage compared with natural and HRT cycles were 0.91 (95% CI: 0.88-0.93) and 0.84 (95% CI: 0.82-0.87), respectively. Neonatal outcomes were mostly similar in letrozole, natural and HRT cycles. Important limitations of this study included the lack of information concerning the reasons for selecting the specific FET method, parity, the number of previous ART failures, embryo quality and the dose and duration of letrozole intake. These results suggest that letrozole use may improve clinical pregnancy, clinical pregnancy with fetal heart beat, and live births and reduce the risk of miscarriage in patients undergoing single FET cycles. No external funding was used for this study. There are no conflicts of interest. Not applicable. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function
NASA Technical Reports Server (NTRS)
Zhang, R.; Behbehani, K.; Crandall, C. G.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)
2001-01-01
To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.
``Smart'' baroreception along the aortic arch, with reference to essential hypertension
NASA Astrophysics Data System (ADS)
Kember, G. C.; Zamir, M.; Armour, J. A.
2004-11-01
Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.
Evaluation of Dry Electrodes in Canine Heart Rate Monitoring.
Virtanen, Juhani; Somppi, Sanni; Törnqvist, Heini; Jeyhani, Vala; Fiedler, Patrique; Gizatdinova, Yulia; Majaranta, Päivi; Väätäjä, Heli; Valldeoriola Cardó, Anna; Lekkala, Jukka; Tuukkanen, Sampo; Surakka, Veikko; Vainio, Outi; Vehkaoja, Antti
2018-05-30
The functionality of three dry electrocardiogram electrode constructions was evaluated by measuring canine heart rate during four different behaviors: Standing, sitting, lying and walking. The testing was repeated (n = 9) in each of the 36 scenarios with three dogs. Two of the electrodes were constructed with spring-loaded test pins while the third electrode was a molded polymer electrode with Ag/AgCl coating. During the measurement, a specifically designed harness was used to attach the electrodes to the dogs. The performance of the electrodes was evaluated and compared in terms of heartbeat detection coverage. The effect on the respective heart rate coverage was studied by computing the heart rate coverage from the measured electrocardiogram signal using a pattern-matching algorithm to extract the R-peaks and further the beat-to-beat heart rate. The results show that the overall coverage ratios regarding the electrodes varied between 45⁻95% in four different activity modes. The lowest coverage was for lying and walking and the highest was for standing and sitting.
Sacre, J W; Jellis, C L; Coombes, J S; Marwick, T H
2012-09-01
Poor prognosis associated with blunted post-exercise heart-rate recovery may reflect autonomic dysfunction. This study sought the accuracy of post-exercise heart-rate recovery in the diagnosis of cardiac autonomic neuropathy, which represents a serious, but often unrecognized complication of Type 2 diabetes. Clinical assessment of cardiac autonomic neuropathy and maximal treadmill exercise testing for heart-rate recovery were performed in 135 patients with Type 2 diabetes and negative exercise echocardiograms. Cardiac autonomic neuropathy was defined by abnormalities in ≥ 2 of 7 autonomic function markers, including four cardiac reflex tests and three indices of short-term (5-min) heart-rate variability. Heart-rate recovery was defined at 1-, 2- and 3-min post-exercise. Patients with cardiac autonomic neuropathy (n = 27; 20%) had lower heart-rate recovery at 1-, 2- and 3-min post-exercise (P < 0.01). Heart-rate recovery demonstrated univariate associations with autonomic function markers (r-values 0.20-0.46, P < 0.05). Area under the receiver-operating characteristic curve revealed good diagnostic performance of all heart-rate recovery parameters (range 0.80-0.83, P < 0.001). Optimal cut-offs for heart-rate recovery at 1-, 2- and 3-min post-exercise were ≤ 28 beats/min (sensitivity 93%, specificity 69%), ≤ 50 beats/min (sensitivity 96%, specificity 63%) and ≤ 52 beats/min (sensitivity 70%, specificity 84%), respectively. These criteria predicted cardiac autonomic neuropathy independently of relevant clinical and exercise test information (adjusted odds ratios 7-28, P < 0.05). Post-exercise heart-rate recovery provides an accurate diagnostic test for cardiac autonomic neuropathy in Type 2 diabetes. The high sensitivity and modest specificity suggests heart-rate recovery may be useful to screen for patients requiring clinical autonomic evaluation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES
Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.
1995-08-08
A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.
1995-01-01
A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.
Computational Fluid Dynamics of Choanoflagellate Filter-Feeding
NASA Astrophysics Data System (ADS)
Asadzadeh, Seyed Saeed; Walther, Jens; Nielsen, Lasse Tore; Kiorboe, Thomas; Dolger, Julia; Andersen, Anders
2017-11-01
Choanoflagellates are unicellular aquatic organisms with a single flagellum that drives a feeding current through a funnel-shaped collar filter on which bacteria-sized prey are caught. Using computational fluid dynamics (CFD) we model the beating flagellum and the complex filter flow of the choanoflagellate Diaphanoeca grandis. Our CFD simulations based on the current understanding of the morphology underestimate the experimentally observed clearance rate by more than an order of magnitude: The beating flagellum is simply unable to draw enough water through the fine filter. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), and addition of a wide vane in our CFD model allows us to correctly predict the observed clearance rate.
Status of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Lineberry, John T.
2007-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
A comparison of auditory evoked potentials to acoustic beats and to binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2010-04-01
The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.
The brain responses to different frequencies of binaural beat sounds on QEEG at cortical level.
Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan
2015-01-01
Beat phenomenon is occurred when two slightly different frequency waves interfere each other. The beat can also occur in the brain by providing two slightly different frequency waves separately each ear. This is called binaural beat. The brain responses to binaural beat are in discussion process whether the brain side and the brain area. Therefore, this study aims to figure out the brain responses to binaural beat by providing different binaural beat frequencies on 250 carrier tone continuously for 30 minutes to participants and using quantitative electroencephalography (QEEG) to interpret the data. The result shows that different responses appear in different beat frequency. Left hemisphere dominance occur in 3 Hz beat within 15 minutes and 15 Hz beat within 5 minutes. Right hemisphere dominance occurs in 10 Hz beat within 25 minute. 6 Hz beat enhances all area of the brain within 10 minutes. 8 Hz and 25 Hz beats have no clearly responses while 40 Hz beat enhances the responses in frontal lobe. These brain responses can be used for brain modulation application to induce the brain activity in further studies.
Acute Effects of Nasal CPAP in Patients With Hypertrophic Cardiomyopathy.
Nerbass, Flávia B; Salemi, Vera M C; Pedrosa, Rodrigo P; Portilho, Natanael de P; Ferreira-Filho, Julio C A; Moriya, Henrique T; Antunes, Murillo O; Arteaga-Fernández, Edmundo; Drager, Luciano F; Lorenzi-Filho, Geraldo
2016-11-01
Hypertrophic cardiomyopathy (HCM) is a common genetic disease that may cause left ventricular outflow tract (LVOT) obstruction, heart failure, and sudden death. Recent studies have shown a high prevalence of OSA among patients with HCM. Because the hemodynamics in patients with LVOT obstruction are unstable and depend on the loading conditions of the heart, we evaluated the acute effects of CPAP on hemodynamics and cardiac performance in patients with HCM. We studied 26 stable patients with HCM divided into nonobstructive HCM (n = 12) and obstructive HCM (n = 14) groups (LVOT gradient pressure lower or higher than 30 mm Hg, respectively). Patients in the supine position while awake were continuously monitored with beat-to-beat BP measurements and electrocardiography. Two-dimensional echocardiography was performed at rest (baseline) and after 20 min of nasal CPAP at 1.5 cm H 2 O and 10 cm H 2 O, which was applied in a random order interposed by 10 min without CPAP. BP, cardiac output, stroke volume, heart rate, left ventricular ejection fraction, and LVOT gradient did not change during the study period in either group. CPAP at 10 cm H 2 O decreased right atrial size and right ventricular relaxation in all patients. It also decreased left atrial volume significantly and decreased right ventricular outflow acceleration time, suggesting an increase in pulmonary artery pressure in patients with obstructive HCM. The acute application of CPAP is apparently safe in patients with HCM, because CPAP does not lead to hemodynamic compromise. Long-term studies in patients with HCM and sleep apnea and nocturnal CPAP are warranted. ClinicalTrials.gov; No. NCT01631006; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Electronic fetal monitoring: family medicine obstetrics.
Rodney, John R M; Huntley, Benjamin J F; Rodney, Wm Macmillan
2012-03-01
Electronic fetal monitoring assesses fetal health during the prenatal and intrapartum process. Intermittent auscultation does not detect key elements of fetal risk, such as beat-to-beat variability. Family medicine obstetric fellowships have contributed new knowledge to this process by articulating a method of analysis that builds on evidence-based recommendations from the American College of Obstetrics and Gynecology as well as the National Institute of Child Health and Development. This article summarizes the development, interpretation, and management of electronic fetal heart rate patterns and tracings. Copyright © 2012 Elsevier Inc. All rights reserved.
Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.
Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen
2014-08-01
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
Internal fetal monitoring (image)
Internal fetal monitoring involves placing a electrode directly on the fetal scalp through the cervix. This test is performed to evaluate fetal heart rate and variability between beats, especially ...
Chaudhari, Umesh; Nemade, Harshal; Sureshkumar, Poornima; Vinken, Mathieu; Ates, Gamze; Rogiers, Vera; Hescheler, Jürgen; Hengstler, Jan Georg; Sachinidis, Agapios
2018-01-01
There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.
Schonberger, Robert B.; Brandt, Cynthia; Feinleib, Jessica; Dai, Feng; Burg, Matthew M.
2012-01-01
Objectives We analyzed the association between outpatient beta-blocker type and day-of-surgery heart rate in ambulatory surgical patients. We further investigated whether differences in day of surgery heart rate between atenolol and metoprolol could be explained by once-daily versus twice-daily dosing regimens. Design Retrospective observational study. Setting VA Hospital Participants Ambulatory surgical patients on chronic atenolol or metoprolol. Interventions None. Measurements and Main Results Using a propensity-score matched cohort, we compared day of surgery heart rates of patients prescribed atenolol versus metoprolol. We then differentiated between once-daily and twice-daily metoprolol formulations and compared day of surgery heart rates within a general linear model. Day of surgery heart rates in patients prescribed atenolol vs. any metoprolol formulation were slower by a mean of 5.1 beats/min (66.6 vs. 71.7; 95% CI of difference 1.9 to 8.3, p=0.002), a difference that was not observed in preoperative primary care visits. The general linear model demonstrated that patients prescribed atenolol (typically QD dosing) had a mean day of surgery heart rate 5.6 beats/min lower compared to patients prescribed once-daily metoprolol succinate (68.9 vs. 74.5; 95% CI of difference: −8.6 to −2.6, p<0.001) and 3.8 beats/minute lower compared to patients prescribed twice-daily metoprolol tartrate (68.9 vs. 72.7; 95% CI of difference: −6.1 to −1.6, p<0.001). Day of surgery heart rates were similar between different formulations of metoprolol (95% CI of difference: −1.0 to +4.6, p=0.22). Conclusions Atenolol is associated with lower day of surgery heart rate vs. metoprolol. The heart rate difference is specific to the day of surgery and is not explained by once-daily versus twice-daily dosing regimens. PMID:22889605
Dijkman, B; Wellens, H J
2001-09-01
The 7250 Jewel AF Medtronic model of ICD is the first implantable device in which both therapies for atrial arrhythmias and pacing algorithms for atrial arrhythmia prevention are available. Feasibility of that extensive atrial arrhythmia management requires correct and synergic functioning of different algorithms to control arrhythmias. The ability of the new pacing algorithms to stabilize the atrial rate following termination of treated atrial arrhythmias was evaluated in the marker channel registration of 600 spontaneously occurring episodes in 15 patients with the Jewel AF. All patients (55+/-15 years) had structural heart disease and documented atrial and ventricular arrhythmias. Dual chamber rate stabilization pacing was present in 245 (41 %) of episodes following arrhythmia termination and was a part of the mode switching operation during which pacing was provided in the dynamic DDI mode. This algorithm could function as the atrial rate stabilization pacing only when there was a slow spontaneous atrial rhythm or in presence of atrial premature beats conducted to the ventricles with a normal AV time. In case of atrial premature beats with delayed or absent conduction to the ventricles and in case of ventricular premature beats, the algorithm stabilized the ventricular rate. The rate stabilization pacing in DDI mode during sinus rhythm following atrial arrhythmia termination was often extended in time due to the device-based definition of arrhythmia termination. This was also the case in patients, in whom the DDD mode with true atrial rate stabilization algorithm was programmed. The rate stabilization algorithms in the Jewel AF applied after atrial arrhythmia termination provide pacing that is not based on the timing of atrial events. Only under certain circumstances the algorithm can function as atrial rate stabilization pacing. Adjustments in availability and functioning of the rate stabilization algorithms might be of benefit for the clinical performance of pacing as part of device therapy for atrial arrhythmias.
Burning rate of solid wood measured in a heat release rate calorimeter
H. C. Tran; R. H. White
1992-01-01
Burning rate is a key factor in modeling fire growth and fire endurance of wood structures. This study investigated the burning rate of selected wood materials as determined by heat release, mass loss and charring rates. Thick samples of redwood, southern pine, red oak and basswood were tested in a heat release rate calorimeter. Results on ignitability and average beat...
Leong, Victoria; Goswami, Usha
2014-01-01
Dyslexia is associated with impaired neural representation of the sound structure of words (phonology). The “phonological deficit” in dyslexia may arise in part from impaired speech rhythm perception, thought to depend on neural oscillatory phase-locking to slow amplitude modulation (AM) patterns in the speech envelope. Speech contains AM patterns at multiple temporal rates, and these different AM rates are associated with phonological units of different grain sizes, e.g., related to stress, syllables or phonemes. Here, we assess the ability of adults with dyslexia to use speech AMs to identify rhythm patterns (RPs). We study 3 important temporal rates: “Stress” (~2 Hz), “Syllable” (~4 Hz) and “Sub-beat” (reduced syllables, ~14 Hz). 21 dyslexics and 21 controls listened to nursery rhyme sentences that had been tone-vocoded using either single AM rates from the speech envelope (Stress only, Syllable only, Sub-beat only) or pairs of AM rates (Stress + Syllable, Syllable + Sub-beat). They were asked to use the acoustic rhythm of the stimulus to identity the original nursery rhyme sentence. The data showed that dyslexics were significantly poorer at detecting rhythm compared to controls when they had to utilize multi-rate temporal information from pairs of AMs (Stress + Syllable or Syllable + Sub-beat). These data suggest that dyslexia is associated with a reduced ability to utilize AMs <20 Hz for rhythm recognition. This perceptual deficit in utilizing AM patterns in speech could be underpinned by less efficient neuronal phase alignment and cross-frequency neuronal oscillatory synchronization in dyslexia. Dyslexics' perceptual difficulties in capturing the full spectro-temporal complexity of speech over multiple timescales could contribute to the development of impaired phonological representations for words, the cognitive hallmark of dyslexia across languages. PMID:24605099
NASA Technical Reports Server (NTRS)
Convertino, Victor A.; Polet, Jill L.; Engelke, Keith A.; Hoffler, G. W.; Lane, Lynda D.
1996-01-01
We studied hemodynamic responses to alpha and beta receptor agonists in 8 healthy men ( 38+- 2 yrs) before and after 14 days of 6 degree head-down tilt (HDT) to test the hypothesis that increased adrenergic responsiveness is induced by prolonged exposure to microgravity. Immediately following a 30-min baseline period, a steady-state infusion of isoproterenol (ISO) was used to assess beta 1- and beta 2-adrenergic responsiveness. ISO was infused at three graded constant rates of 0.005, 0.01 and 0.02 ug/kg/min. After heart rate and blood pressure had been allowed to return to baseline levels following ISO infusion graded infusion of phenylephrine (PE) was used to assess responsiveness of alpha I-vascular receptors. PE was infused at three graded constant rates of 0.25, 0.50 and 1.00 ug/kg/min. Each infusion interval for both drugs was 9 min. During the infusions, constant monitoring of beat-to-beat blood pressure and heart rate was performed and leg blood flow was measured with occlusion plethysmography at each infusion level. The slopes calculated from linear regressions between ISO and PE doses and changes in heart rate, blood pressure, and leg vascular resistance for each subject were used to represent alpha- and beta- adrenoreceptor responsiveness. Fourteen days HDT increased the slopes of heart rate (1056 +- 107 to 1553 +- 83 beats/ug/kg/min; P= 0.014) and vasodilation (-469ft +- 111 to -l446 +- 309 PRU/ug/kg/min; P =0.0224) to ISO infusion. There was no alteration in blood pressure or vascular resistance responses to PE infusion after HDT. Our results provide evidence that microgravity causes selective increases in beta 1- and beta 2-adrenergic responsiveness without affecting alpha 1-vascular responses.
Lingala, Sajan Goud; Zhu, Yinghua; Lim, Yongwan; Toutios, Asterios; Ji, Yunhua; Lo, Wei-Ching; Seiberlich, Nicole; Narayanan, Shrikanth; Nayak, Krishna S
2017-12-01
To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm 2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Analysis of long term heart rate variability: methods, 1/f scaling and implications
NASA Technical Reports Server (NTRS)
Saul, J. P.; Albrecht, P.; Berger, R. D.; Cohen, R. J.
1988-01-01
The use of spectral techniques to quantify short term heart rate fluctuations on the order of seconds to minutes has helped define the autonomic contributions to beat-to-beat control of heart rate. We used similar techniques to quantify the entire spectrum (0.00003-1.0 Hz) of heart rate variability during 24 hour ambulatory ECG monitoring. The ECG from standard Holter monitor recordings from normal subjects was sampled with the use of a phase locked loop, and a heart rate time series was constructed at 3 Hz. Frequency analysis of the heart rate signal was performed after a nonlinear filtering algorithm was used to eliminate artifacts. A power spectrum of the entire 24 hour record revealed power that was inversely proportional to frequency, 1/f, over 4 decades from 0.00003 to 0.1 Hz (period approximately 10 hours to 10 seconds). Displaying consecutive spectra calculated at 5 minute intervals revealed marked variability in the peaks at all frequencies throughout the 24 hours, probably accounting for the lack of distinct peaks in the spectra of the entire records.
Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa
2008-01-01
The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe. PMID:18327970
Susi, Louis; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel; Drum, Melissa
2008-01-01
The authors, using a crossover design, randomly administered, in a single-blind manner, 3 primary intraosseous injections to 61 subjects using: the Wand local anesthetic system at a deposition rate of 45 seconds (fast injection); the Wand local anesthetic system at a deposition rate of 4 minutes and 45 seconds (slow injection); a conventional syringe injection at a deposition rate of 4 minutes and 45 seconds (slow injection), in 3 separate appointments spaced at least 3 weeks apart. A pulse oximeter measured heart rate (pulse). The results demonstrated the mean maximum heart rate was statistically higher with the fast intraosseous injection (average 21 to 28 beats/min increase) than either of the 2 slow intraosseous injections (average 10 to 12 beats/min increase). There was no statistically significant difference between the 2 slow injections. We concluded that an intraosseous injection of 1.4 mL of 2% lidocaine with 1 : 100,000 epinephrine with the Wand at a 45-second rate of anesthetic deposition resulted in a significantly higher heart rate when compared with a 4-minute and 45-second anesthetic solution deposition using either the Wand or traditional syringe.
Haptic interfaces using dielectric electroactive polymers
NASA Astrophysics Data System (ADS)
Ozsecen, Muzaffer Y.; Sivak, Mark; Mavroidis, Constantinos
2010-04-01
Quality, amplitude and frequency of the interaction forces between a human and an actuator are essential traits for haptic applications. A variety of Electro-Active Polymer (EAP) based actuators can provide these characteristics simultaneously with quiet operation, low weight, high power density and fast response. This paper demonstrates a rolled Dielectric Elastomer Actuator (DEA) being used as a telepresence device in a heart beat measurement application. In the this testing, heart signals were acquired from a remote location using a wireless heart rate sensor, sent through a network and DEA was used to haptically reproduce the heart beats at the medical expert's location. A series of preliminary human subject tests were conducted that demonstrated that a) DE based haptic feeling can be used in heart beat measurement tests and b) through subjective testing the stiffness and actuator properties of the EAP can be tuned for a variety of applications.
Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans
NASA Technical Reports Server (NTRS)
Crandall, C. G.; Zhang, R.; Levine, B. D.
2000-01-01
The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.
Nonlinear Interaction of the Beat-Photon Beams with the Brain Neurocenters: Laser Neurophysics
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2010-03-01
I propose a novel mechanism for laser-brain interaction: Nonlinear interaction of ultrashort pulses of beat-photon, (φ1-- φ2), or double-photon, (φ1+φ2), footnotetextMaria Goeppert-Mayer, "Uber Elementarakte mit zwei Quantenspr"ungen, Ann Phys 9, 273, 95. (1931). beams with the corrupted brain neurocenters, causing a particular neurological disease. The open-scull cerebral tissue can be irradiated with the beat-photon pulses in the range of several 100s fs, with the laser irradiances in the range of a few mW/cm^2, repetition rate of a few 100s Hz, and in the frequency range of 700-1300nm generated in the beat-wave driven free electron laser.footnotetextV. Alexander Stefan, The Interaction of Photon Beams with the DNA Molecules: Genomic Medical Physics. American Physical Society, 2009 APS March Meeting, March 16-20, 2009, abstract #K1.276; V. Stefan, B. I. Cohen, and C. Joshi, Nonlinear Mixing of Electromagnetic Waves in Plasmas Science 27 January 1989:Vol. 243. no. 4890, pp. 494 -- 500 (January 1989). This method may prove to be an effective mechanism in the treatment of neurological diseases: Parkinson's, Lou Gehrig's, and others.
Retesting The Validity Of A Specific Field Test For Judo Training
Santos, Luis; González, Vicente; Iscar, Marta; Brime, Juan I.; Fernández-Río, Javier; Rodríguez, Blanca; Montoliu, Mª Ángeles
2011-01-01
The main goal of this research project was to retest the validity of a specifically designed judo field test (Santos Test) in a different group of judokas. Eight (n=8) national-level male judokas underwent laboratory and field testing. The mean data (mean +/− SD) obtained in the laboratory tests was: HRmax: 200 ± 4.0 beats × min−1, VO2 max: 52.8 ± 7.9 ± ml × kg−1 × min−1, lactate max: 12 ± 2.5 mmol × l−1, HR at the anaerobic threshold: 174.2 ± 9.4 beats × min−1, percentage of maximum heart rate at which the anaerobic threshold appears: 87 ± 3.6 %, lactate threshold: 4.0 ± 0.2 mmol × l−1, and RPE: 17.2 ± 1.0. The mean data obtained in the field test (Santos) was: HRmax: 201.3 ± 4.1 beats × min−1, VO2 max: 55.6 ± 5.8 ml × kg−1 × min−1, lactate max: 15.6 ± 2.8 mmol × l−1, HR at the anaerobic threshold: 173.2 ± 4.3 beats × min−1, percentage of maximum heart rate at which the anaerobic threshold appears: 86 ± 2.5 %, lactate threshold: 4.0 ± 0.2 mmol × l−1, and RPE: 16.7 ± 1.0. There were no significant differences between the data obtained on both tests in any of the parameters, except for maximum lactate concentration. Therefore, the Santos test can be considered a valid tool specific for judo training. PMID:23486994
Monfredi, Oliver; Lyashkov, Alexey E; Johnsen, Anne-Berit; Inada, Shin; Schneider, Heiko; Wang, Ruoxi; Nirmalan, Mahesh; Wisloff, Ulrik; Maltsev, Victor A; Lakatta, Edward G; Zhang, Henggui; Boyett, Mark R
2014-01-01
Heart rate variability (beat-to-beat changes in the RR interval) has attracted considerable attention over the last 30+ years (PubMed currently lists >17,000 publications). Clinically, a decrease in heart rate variability is correlated to higher morbidity and mortality in diverse conditions, from heart disease to foetal distress. It is usually attributed to fluctuation in cardiac autonomic nerve activity. We calculated heart rate variability parameters from a variety of cardiac preparations (including humans, living animals, Langendorff-perfused heart and single sinoatrial nodal cell) in diverse species, combining this with data from previously published papers. We show that regardless of conditions, there is a universal exponential decay-like relationship between heart rate variability and heart rate. Using two biophysical models, we develop a theory for this, and confirm that heart rate variability is primarily dependent on heart rate and cannot be used in any simple way to assess autonomic nerve activity to the heart. We suggest that the correlation between a change in heart rate variability and altered morbidity and mortality is substantially attributable to the concurrent change in heart rate. This calls for re-evaluation of the findings from many papers that have not adjusted properly or at all for heart rate differences when comparing heart rate variability in multiple circumstances. PMID:25225208
Wu, Hau-Tieng; Lewis, Gregory F; Davila, Maria I; Daubechies, Ingrid; Porges, Stephen W
2016-10-17
With recent advances in sensor and computer technologies, the ability to monitor peripheral pulse activity is no longer limited to the laboratory and clinic. Now inexpensive sensors, which interface with smartphones or other computer-based devices, are expanding into the consumer market. When appropriate algorithms are applied, these new technologies enable ambulatory monitoring of dynamic physiological responses outside the clinic in a variety of applications including monitoring fatigue, health, workload, fitness, and rehabilitation. Several of these applications rely upon measures derived from peripheral pulse waves measured via contact or non-contact photoplethysmography (PPG). As technologies move from contact to non-contact PPG, there are new challenges. The technology necessary to estimate average heart rate over a few seconds from a noncontact PPG is available. However, a technology to precisely measure instantaneous heat rate (IHR) from non-contact sensors, on a beat-to-beat basis, is more challenging. The objective of this paper is to develop an algorithm with the ability to accurately monitor IHR from peripheral pulse waves, which provides an opportunity to measure the neural regulation of the heart from the beat-to-beat heart rate pattern (i.e., heart rate variability). The adaptive harmonic model is applied to model the contact or non-contact PPG signals, and a new methodology, the Synchrosqueezing Transform (SST), is applied to extract IHR. The body sway rhythm inherited in the non-contact PPG signal is modeled and handled by the notion of wave-shape function. The SST optimizes the extraction of IHR from the PPG signals and the technique functions well even during periods of poor signal to noise. We contrast the contact and non-contact indices of PPG derived heart rate with a criterion electrocardiogram (ECG). ECG and PPG signals were monitored in 21 healthy subjects performing tasks with different physical demands. The root mean square error of IHR estimated by SST is significantly better than commonly applied methods such as autoregressive (AR) method. In the walking situation, while AR method fails, SST still provides a reasonably good result. The SST processed PPG data provided an accurate estimate of the ECG derived IHR and consistently performed better than commonly applied methods such as autoregressive method.
Tapered fiber Mach-Zehnder interferometers for vibration and elasticity sensing applications.
Chen, Nan-Kuang; Hsieh, Yu-Hsin; Lee, Yi-Kun
2013-05-06
We demonstrate the optical measurements of heart-beat pulse rate and also elasticity of a polymeric tube, using a tapered fiber Mach-Zehnder interferometer. This device has two abrupt tapers in the Er/Yb codoped fiber and thus fractional amount of core mode is converted into cladding modes at the first abrupt taper. The core and cladding modes propagate through different optical paths and meet again at the second abrupt taper to produce interferences. The mechanical vibration signals generated by the blood vessels and by an inflated polymeric tube can perturb the optical paths of resonant modes to move around the resonant wavelengths. Thus, the cw laser signal is modulated to become pulses to reflect the heart-beat pulse rate and the elasticity of a polymeric tube, respectively.
Marek, W; Marek, E; Friz, Y; Vogel, P; Mückenhoff, K; Kotschy-Lang, N
2010-03-01
AIMS OF THE INVESTIGATION: The repetition of the 6-minutes walk test (6 MWT) in older patients is frequently performed in order to document the maximal walking distance, although it is not recommended in any guidelines on exercise tests and although there is common consent to save clinical resources in terms of time and staff. Therefore, we have examined whether and to what extent the repetition of the walk tests helps patients to get more familiar with this kind of exercise test. Thus the acquired physiological data should reliably describe the physical fitness of the patients at the beginning and at the end of their clinical rehabilitation. 35 patients performed their walk tests before and after 3 - 4 weeks of clinical rehabilitation. Each test has been repeated after one hour of recovery. The patients were instructed to walk during 6 minutes as fast as possible. They were equipped with a mobile pulse oximeter for recording oxygen saturation and heart rate. The distance, S, and the heart rate, fc, were measured. Measurements were performed every 30 seconds and recorded. The efficiency, E (E = S/6/fc), was calculated as the ratio of distance per minute and the mean heart rate during the test. In the first test the patients walked 416 +/- 63 m at a heart rate of 104.7 +/- 15.7 beats/min, in the first repeated test 454 +/- 71 m at a heart of 106.3 +/- 17.4 beats/min. In the second test, after clinical therapy, they walked 438 +/- 58 m at a heart rate of 106.3 +/- 17.4 beats/min, in the second repeated test 473 +/- 56 m at 108.6 +/- 13.2/min. The difference of the walking distances of the tests at the entrance were found to be 38.4 +/- 26.2 m (+ 9.3 +/- 6.2%), at the end of clinical rehabilitation 35 +/- 26 m (+ 8.4 +/- 6.4%). Both differences are found to be independent from the distance of the first test. They are not significantly different. The efficiency was not significantly different in the initial and final test (0.673 +/- 0.129 and 0.689 +/- 0.085 m/beat, respectively). The difference in efficiency, when repeating the tests at the beginning, was: 0.053 +/- 0.062 m/beat; at the end of the rehabilitation: 0.042 +/- 0.047 m/beat. They are found to be similar. The distances the patients walked in the repeated tests at the entrance and at the end of their clinical rehabilitation were, besides the calculated efficiency, E, significantly increased. However, the increases in distance and efficiency are identical on both occasions, therefore the repetition delivers no further information. The test should be performed without repetitions in clinical routine investigations. The patient's performance in the second walk test with an unchanged distance at a lower heart rate reveals an improved physical fitness. This is solely described by an increase of efficiency, E. Therefore the introduction of E is a suitable measure of the quantified effect of exercise training, even if the patient is not cooperative during the tests. E is proved to be a suitable estimation for the assessment of physical fitness as a benefit of clinical rehabilitation. Georg Thieme Verlag KG Stuttgart, New York.
Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru
2016-08-08
A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.
Fossa, Anthony A
2017-09-01
Cardiac restitution is the ability of the heart to recover from one beat to the next. Ventricular arrhythmia vulnerability can occur when the heart does not properly adjust to sudden changes in rate or in hemodynamics leading to excessive temporal and/or spatial heterogeneity in conduction or repolarization. Restitution has historically been used to study, by invasive means, the dynamics of the relationship between action potential duration (APD) and diastolic interval (DI) in sedated subjects using various pacing protocols. Even though the analogous measures of APD and DI can be obtained using the surface ECG to acquire the respective QT and TQ intervals for ECG restitution, this methodology has not been widely adopted for a number of reasons. Recent development of more advanced software algorithms enables ECG intervals to be measured accurately, on a continuous beat-to-beat basis, in an automated manner, and under highly dynamic conditions (i.e., ambulatory or exercise) providing information beyond that available in the typical resting state. Current breakthroughs in ECG technology will allow ECG restitution measures to become a practical approach for providing quantitative measures of the risks for ventricular arrhythmias as well as cardiac stress in general. In addition to a review of the underlying principles and caveats of ECG restitution, a new approach toward an advancement of more integrated restitution biomarkers is proposed. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Buckingham, A. C.; Hawke, R. S.
1982-09-01
Experimental and theoretical research was conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams were launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressure in the tens of megabars range are obtained for high pressure equations of state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The beating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined.
Shuvy, Mony; Arbelle, Jonathan E; Grosbard, Aviva; Katz, Amos
2008-01-01
Heart rate variability is a sensitive marker of cardiac sympathetic activity. To determine whether long-term hyperthyroidism induced by thyroxine suppressive therapy affects HRV. Nineteen patients treated with suppressive doses of thyroxin for thyroid cancer and 19 age-matched controls were enrolled. Thyroid function tests and 1 minute HRV were performed on all subjects and the results were compared between the groups. The 1 minute HRV was analyzed during deep breathing and defined as the difference in beats/minute between the shortest and the longest heart rate interval measured by eletrocardiographic recording during six cycles of deep breathing. One minute HRV during deep breathing was significantly lower among thyroxine-treated patients compared to healthy controls (25.6 +/- 10.5 vs. 34.3 +/- 12.6 beats/min, P < 0.05). There were no significant differences in mean, maximal and minimal heart rate between the groups. Thyroxine therapy administered for epithelial thyroid cancer resulted in subclinical hyperthyroidism and significantly decreased HRV due to autonomic dysfunction rather than basic elevated heart rate.
Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring.
Elliott, Kyle Hamish; Chivers, Lorraine S; Bessey, Lauren; Gaston, Anthony J; Hatch, Scott A; Kato, Akiko; Osborne, Orla; Ropert-Coudert, Yan; Speakman, John R; Hare, James F
2014-01-01
Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms(?1) (murres) and 10.6 ms(?1) (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.
Floré, Vincent; Claus, Piet; Antoons, Gudrun; Oosterhoff, Peter; Holemans, Patricia; Vos, Marc A; Sipido, Karin R; Willems, Rik
2011-07-01
Repolarization variability is considered to predict sudden cardiac death. T-wave alternans (TWA) has been the subject of exhaustive research, whereas beat-to-beat variability of repolarization (BVR) is a new parameter that possibly predicts proarrhythmia. How these parameters interact has not been tested. The purpose of this study was to compare TWA and BVR as predictors of proarrhythmic substrate early after myocardial infarction (MI). In nine pigs, MI was induced by 1-hour occlusion of the left anterior descending coronary artery. Cardiac magnetic resonance imaging was performed at day 21. Six sham pigs served as control. Spectral TWA was tested during right atrial pacing before induction of MI and after 21 days. BVR was calculated from 60 consecutive QT intervals. Magnetic resonance imaging showed transmural MI. TWA was negative in all pigs at clinical threshold rate and equally present in MI versus sham pigs at higher rates (170 bpm: 55% vs 50% positive TWA). In MI pigs, BVR of QT intervals increased significantly during acute ischemia (2.44 ± 0.43 ms vs 3.55 ± 0.41 ms, P <.01) and even more on day 21 (5.80 ± 1.12 ms), but it differed significantly from sham (2.14 ± 0.54 ms, P <.01). A clinical ventricular tachycardia induction protocol was positive in 2 of 8 MI pigs and in none of 6 shams. In early remodeling after MI, BVR at intrinsic heart rate was a consistent phenomenon, whereas TWA during atrial pacing or baseline QT-interval changes were not. TWA and BVR could reflect different post-MI remodeling processes. BVR may be a new technique for predicting a potentially proarrhythmic substrate in the early postinfarction period. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Lengyel, Csaba; Orosz, Andrea; Hegyi, Péter; Komka, Zsolt; Udvardy, Anna; Bosnyák, Edit; Trájer, Emese; Pavlik, Gábor; Tóth, Miklós; Wittmann, Tibor; Papp, Julius Gy.; Varró, András; Baczkó, István
2011-01-01
Background Sudden cardiac death in competitive athletes is rare but it is significantly more frequent than in the normal population. The exact cause is seldom established and is mostly attributed to ventricular fibrillation. Myocardial hypertrophy and slow heart rate, both characteristic changes in top athletes in response to physical conditioning, could be associated with increased propensity for ventricular arrhythmias. We investigated conventional ECG parameters and temporal short-term beat-to-beat variability of repolarization (STVQT), a presumptive novel parameter for arrhythmia prediction, in professional soccer players. Methods Five-minute 12-lead electrocardiograms were recorded from professional soccer players (n = 76, all males, age 22.0±0.61 years) and age-matched healthy volunteers who do not participate in competitive sports (n = 76, all males, age 22.0±0.54 years). The ECGs were digitized and evaluated off-line. The temporal instability of beat-to-beat heart rate and repolarization were characterized by the calculation of short-term variability of the RR and QT intervals. Results Heart rate was significantly lower in professional soccer players at rest (61±1.2 vs. 72±1.5/min in controls). The QT interval was prolonged in players at rest (419±3.1 vs. 390±3.6 in controls, p<0.001). QTc was significantly longer in players compared to controls calculated with Fridericia and Hodges correction formulas. Importantly, STVQT was significantly higher in players both at rest and immediately after the game compared to controls (4.8±0.14 and 4.3±0.14 vs. 3.5±0.10 ms, both p<0.001, respectively). Conclusions STVQT is significantly higher in professional soccer players compared to age-matched controls, however, further studies are needed to relate this finding to increased arrhythmia propensity in this population. PMID:21526208
Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A
2004-10-01
Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P < 0.001); dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P < 0.001); light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P < 0.005)] with no significant difference in mean arterial pressure [wild type 110 +/- 0.3 vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.
Assessing Metabolic Syndrome Through Increased Heart Rate During Exercise.
Sadeghi, Masoumeh; Gharipour, Mojgan; Nezafati, Pouya; Shafie, Davood; Aghababaei, Esmaeil; Sarrafzadegan, Nizal
2016-11-01
The present study aimed to assess changes in resting and maximum heart rates as primary indicators of cardiac autonomic function in metabolic syndrome (MetS) patients and to determine their value for discriminating MetS from non-MetS. 468 participants were enrolled in this cross-sectional study and assessed according to the updated adult treatment panel III (ATP-III) definition of MetS. Resting and maximum heart rates were recorded following the Bruce protocol during an exercise. A receiver operating characteristic (ROC) curve was used to identify the best cutoff point for discriminating MetS from the non-MetS state. 194 participants (41.5%) were diagnosed as MetS. The mean resting heart rate (RHR) was not statistically different between the two groups (P=0.078). However, the mean maximum heart (MHR) rate was considerably higher in participants with MetS (142.37±14.84 beats per min) compared to the non-MetS group (134.62±21.63 beats per min) (P<0.001). In the MetS group, the MHR was positively correlated with the serum triglyceride level (β=0.185, P=0.033) and was inversely associated with age (β=-0.469, P<0.001). The MHR had a moderate value for discriminating MetS from the non-MetS state (c=0.580, P=0.004) with the optimal cutoff point of 140 beats per min. In MetS patients, the MHR was significantly greater compared to non-MetS subjects and was directly correlated with serum triglyceride levels and inversely with advanced age. Moreover, MHR can be used as a suspicious indicator for identifying MetS.
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Support for science generally is strong in President Ronald Reagan's fiscal 1983 budget proposal, released last week; agency budgets for the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), however, did not beat inflation.Total federal funding for research and development and related facilities rose 9.6% to $44.3 billion, beating the 7.3% inflation rate estimated for 1982 by the Office of Management and Budget. Obligations for basic research by various departments and agencies also topped inflation. The President proposes federal funding of $5.82 billion in fiscal 1983, compared with $5.35 billion in 1982.
Asgar Pour, Hossein; Yavuz, Meryem
2014-04-01
This study designed to assess the effects of peripheral cold application (PCA) on core body temperature and haemodynamic parameters in febrile patients. This study was an experimental, repeated-measures performed in the neurosurgical intensive-care unit. The research sample included all patients with fever in postoperative period. PCA was performed for 20 min. During fever, systolic blood pressure, mean arterial blood pressure and arterial oxygen saturation (O2 Sat) decreased by 5.07 ± 7.89 mm Hg, 0.191 ± 6.00 mm Hg and 0.742% ± 0.97%, respectively, whereas the pulse rate and diastolic blood pressure increased by 8.528 ± 4.42 beats/ min and 1.842 ± 6.9 mmHg, respectively. Immediately after PCA, core body temperature and pulse rate decreased by 0.3°C, 3.3 beats/min, respectively, whereas systolic, diastolic, mean arterial blood pressure and O2 Sat increased by, 1.40 mm Hg, 1.87 mm Hg, 0.98 mmHg and 0.27%, respectively. Thirty minutes after the end of PCA, core body temperature, diastolic, mean arterial blood pressure and pulse rate decreased by 0.57°C, 0.34 mm Hg, 0.60 mm Hg and 4.5 beats/min, respectively, whereas systolic blood pressure and O2 Sat increased by 0.98 mm Hg and 0.04%, respectively. The present results showed that PCA increases systolic, diastolic, mean arterial blood pressure and O2 Sat, and decreases core body temperature and pulse rate. © 2013 Wiley Publishing Asia Pty Ltd.
A pacemaker is a small, battery-operated electronic device which is inserted under the skin to help the heart beat regularly and at an appropriate rate. The pacemaker has leads that travel through a large vein ...
Heart rate profile during exercise in patients with early repolarization.
Cay, Serkan; Cagirci, Goksel; Atak, Ramazan; Balbay, Yucel; Demir, Ahmet Duran; Aydogdu, Sinan
2010-09-01
Both early repolarization and altered heart rate profile are associated with sudden death. In this study, we aimed to demonstrate an association between early repolarization and heart rate profile during exercise. A total of 84 subjects were included in the study. Comparable 44 subjects with early repolarization and 40 subjects with normal electrocardiogram underwent exercise stress testing. Resting heart rate, maximum heart rate, heart rate increment and decrement were analyzed. Both groups were comparable for baseline characteristics including resting heart rate. Maximum heart rate, heart rate increment and heart rate decrement of the subjects in early repolarization group had significantly decreased maximum heart rate, heart rate increment and heart rate decrement compared to control group (all P < 0.05). The lower heart rate increment (< 106 beats/min) and heart rate decrement (< 95 beats/min) were significantly associated with the presence of early repolarization. After adjustment for age and sex, the multiple-adjusted OR of the risk of presence of early repolarization was 2.98 (95%CI 1.21-7.34) (P = 0.018) and 7.73 (95%CI 2.84-21.03) (P < 0.001) for the lower heart rate increment and heart rate decrement compared to higher levels, respectively. Subjects with early repolarization have altered heart rate profile during exercise compared to control subjects. This can be related to sudden death.
Xiao, Hanguang; Tan, Isabella; Butlin, Mark; Li, Decai; Avolio, Alberto P
2017-06-01
Experimental investigations have established that the stiffness of large arteries has a dependency on acute heart rate (HR) changes. However, the possible underlying mechanisms inherent in this HR dependency have not been well established. This study aimed to explore a plausible viscoelastic mechanism by which HR exerts an influence on arterial stiffness. A multisegment transmission line model of the human arterial tree incorporating fractional viscoelastic components in each segment was used to investigate the effect of varying fractional order parameter (α) of viscoelasticity on the dependence of aortic arch to femoral artery pulse wave velocity (afPWV) on HR. HR was varied from 60 to 100 beats/min at a fixed mean flow of 100 ml/s. PWV was calculated by intersecting tangent method (afPWV Tan ) and by phase velocity from the transfer function (afPWV TF ) in the time and frequency domain, respectively. PWV was significantly and positively associated with HR for α ≥ 0.6; for α = 0.6, 0.8, and 1, HR-dependent changes in afPWV Tan were 0.01 ± 0.02, 0.07 ± 0.04, and 0.22 ± 0.09 m/s per 5 beats/min; HR-dependent changes in afPWV TF were 0.02 ± 0.01, 0.12 ± 0.00, and 0.34 ± 0.01 m/s per 5 beats/min, respectively. This crosses the range of previous physiological studies where the dependence of PWV on HR was found to be between 0.08 and 0.10 m/s per 5 beats/min. Therefore, viscoelasticity of the arterial wall could contribute to mechanisms through which large artery stiffness changes with changing HR. Physiological studies are required to confirm this mechanism. NEW & NOTEWORTHY This study used a transmission line model to elucidate the role of arterial viscoelasticity in the dependency of pulse wave velocity on heart rate. The model uses fractional viscoelasticity concepts, which provided novel insights into arterial hemodynamics. This study also provides a means of assessing the clinical manifestation of the association of pulse wave velocity and heart rate. Copyright © 2017 the American Physiological Society.
The Effects of Auditory Tempo Changes on Rates of Stereotypic Behavior in Handicapped Children.
ERIC Educational Resources Information Center
Christopher, R.; Lewis, B.
1984-01-01
Rates of stereotypic behaviors in six severely/profoundly retarded children (eight to 15 years old) were observed during varying presentations of auditory beats produced by a metronome. Visual and statistical analysis of research results suggested a significant reaction to stimulus presentation. However, additional data following…
Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fubiani, Gwenael G.J.
2005-09-01
Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 10 18 - 10 19 cm -3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams wasmore » recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.« less
Rhythm perturbations in acoustically paced treadmill walking after stroke.
Roerdink, Melvyn; Lamoth, Claudine J C; van Kordelaar, Joost; Elich, Peter; Konijnenbelt, Manin; Kwakkel, Gert; Beek, Peter J
2009-09-01
In rehabilitation, acoustic rhythms are often used to improve gait after stroke. Acoustic cueing may enhance gait coordination by creating a stable coupling between heel strikes and metronome beats and provide a means to train the adaptability of gait coordination to environmental changes, as required in everyday life ambulation. To examine the stability and adaptability of auditory-motor synchronization in acoustically paced treadmill walking in stroke patients. Eleven stroke patients and 10 healthy controls walked on a treadmill at preferred speed and cadence under no metronome, single-metronome (pacing only paretic or nonparetic steps), and double-metronome (pacing both footfalls) conditions. The stability of auditory-motor synchronization was quantified by the variability of the phase relation between footfalls and beats. In a separate session, the acoustic rhythms were perturbed and adaptations to restore auditory-motor synchronization were quantified. For both groups, auditory-motor synchronization was more stable for double-metronome than single-metronome conditions, with stroke patients exhibiting an overall weaker coupling of footfalls to metronome beats than controls. The recovery characteristics following rhythm perturbations corroborated the stability findings and further revealed that stroke patients had difficulty in accelerating their steps and instead preferred a slower-step response to restore synchronization. In gait rehabilitation practice, the use of acoustic rhythms may be more effective when both footfalls are paced. In addition, rhythm perturbations during acoustically paced treadmill walking may not only be employed to evaluate the stability of auditory-motor synchronization but also have promising implications for evaluation and training of gait adaptations in neurorehabilitation practice.
Grime, Paul R
2004-08-01
Emotional distress has major implications for employees and employers. Cognitive behavioural therapy (CBT) is a recommended treatment, but demand outstrips supply. CBT is well suited to computerization. Most employee assistance programmes have not been systematically evaluated and computerized CBT has not previously been studied in the workplace. To evaluate the effect of an 8 week computerized cognitive behavioural therapy programme, 'Beating The Blues', on emotional distress in employees with recent stress-related absenteeism, and to explore the reasons for non-participation. An open, randomized trial in a London NHS occupational health department. Forty-eight public sector employees, with 10 or more cumulative days stress-related absenteeism in the last 6 months, randomized equally to 'Beating The Blues' plus conventional care, or conventional care alone. Main outcome measures were Hospital Anxiety and Depression Scale and Attributional Style Questionnaire scores at end of treatment and 1, 3 and 6 months later; and reasons for non-participation. At end of treatment and 1 month later, adjusted mean depression scores and adjusted mean negative attributional style scores were significantly lower in the intervention group. One month post-treatment, adjusted mean anxiety scores were also significantly lower in the intervention group. The differences were not statistically significant at 3 and 6 months post-treatment. Non-participation was common and related to access problems, preference for other treatments, time commitment, scepticism about the intervention and the employer connection. 'Beating The Blues' may accelerate psychological recovery in employees with recent stress-related absenteeism. Greater flexibility and accessibility might improve uptake.
ERIC Educational Resources Information Center
Laurson, Kelly R.; Brown, Dale D.; Cullen, Robert W.; Dennis, Karen K.
2008-01-01
This study examined how activity type influenced heart rates and time spent in target heart rate zones of high school students participating in physical education classes. Significantly higher average heart rates existed for fitness (142 plus or minus 24 beats per minute [bpm]) compared to team (118 plus or minus 24 bpm) or individual (114 plus or…
Clementy, Nicolas; Challal, Farid; Marijon, Eloi; Boveda, Serge; Defaye, Pascal; Leclercq, Christophe; Deharo, Jean-Claude; Sadoul, Nicolas; Klug, Didier; Piot, Olivier; Gras, Daniel; Bordachar, Pierre; Algalarrondo, Vincent; Fauchier, Laurent; Babuty, Dominique
2017-02-01
Programming implantable cardioverter-defibrillators (ICDs) with a high-rate therapy strategy has proven to be effective in reducing shocks and is associated with a reduced mortality. We sought to determine the impact of a very high rate cutoff programming strategy on outcomes in patients with a primary indication for an ICD due to reduced left ventricular ejection fraction. Using data from the multicenter French DAI-PP registry, this cohort-controlled study compared outcomes in 500 patients programmed with a very high rate cutoff (VH-RATE group: monitor zone 170-219 beats/min; ventricular fibrillation zone ≥220 beats/min with 13 ± 4 detection intervals) with 1500 matched control patients programmed with 1 or 2 therapy zone. All ICDs were implanted for primary prevention in patients with systolic dysfunction. Risks of events were compared after propensity score matching of sex, age, ejection fraction, New York Heart Association class, cardiomyopathy, atrial fibrillation, and type of device. After a mean follow-up of 3.6 ± 2.3 years, VH-RATE programming was associated with a reduction of appropriate therapy risk (hazard ratio [HR] 0.40; 95% confidence interval [CI] 0.31-0.51; P < .0001) and inappropriate shock (HR 0.42; 95% CI 0.27-0.63; P < .0001). It was also associated with a decreased risk of sudden cardiac death (HR 0.43; 95% CI 0.17-0.99; P = .04) as compared with patients programmed with 2 therapy zones. There was no significant difference in overall survival between the groups. In patients implanted with an ICD in primary prevention with left ventricular dysfunction, very high rate cutoff programming (single therapy zone ≥220 beats/min) was associated with a 60% reduction of appropriate therapies as well as inappropriate shocks, without affecting mortality. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography
Penzel, Thomas; Kantelhardt, Jan W.; Bartsch, Ronny P.; Riedl, Maik; Kraemer, Jan F.; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph
2016-01-01
The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave). PMID:27826247
Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.
Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph
2016-01-01
The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).
Gebs, R; Dekorsy, T; Diddams, S A; Bartels, A
2008-04-14
We report an optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) that is synchronously pumped by a femtosecond Ti:sapphire laser at 1 GHz repetition rate. The signal output has a center wavelength of 1558 nm and its spectral bandwidth amounts to 40 nm. The OPO operates in a regime where the signal- and idler frequency combs exhibit a partial overlap around 1600 nm. In this near-degeneracy region, a beat at the offset between the signal and idler frequency combs is detected. Phase-locking this beat to an external reference stabilizes the spectral envelopes of the signal- and idler output. At the same time, the underlying frequency combs are stabilized relative to each other with an instability of 1.5x10(-17) at 1 s gate time.
Ye, Jin-Xia; Wang, Lan; Liang, Ri-Xin; Yang, Bin
2008-04-01
To observe the protective effects of catechin morphon (GCG and EGCG) on hypoxia-reoxygenation induced injury in myocardial cells and to explore the mechanisms. In cultured neonatal rat cardiomyocytes, we investigated the preconditioning protection by GCG and EGCG on the spontaneous beating, the survival rate, the release of LDH, MDA, SOD, GSH-Px and the ATP enzyme activity of cardiomyocyte cellular membrane in cultured rat cardiomyocytes treated during the reoxygenation 1h following hypoxia 3 h. The blocking agent of protien kinase C staurosporine (10 nmol x L(-1)) or the deactivator of Gi/o protein pertussis toxin (PTX, 200 microg x mL(-1)) were added before the catechin treatment. Preconditioning by GCG and EGCG increased the spontaneous beating and the survival rate, and decreased the release of LDH and MDA with the rise of SOD and ATP enzyme activity. Inhibition of PKC by staurosporine and Gi/o protein by PTX abolished the protection by catechin with the reduction of the beating, survival rate and activity of SOD, and the increase of the release of LDH and MDA. The results indicated that the activation of signal transduction pathway from PKC and Gi/o protein seemed to be involved in the cardioprotection of preconditioning by GCG and EGCG. The protection by GCG and EGCG on hypoxia-reoxygenation injury in cultured neonatal rat cardiomyocytes is found, which is related with scavenging of free radicals, and PKC Gi/o signal transduction pathway.
Wonisch, M; Hofmann, P; Schwaberger, G; von Duvillard, S P; Klein, W
2003-01-01
Aim: To develop a badminton specific test to determine on court aerobic and anaerobic performance. Method: The test was evaluated by using a lactate steady state test. Seventeen male competitive badminton players (mean (SD) age 26 (8) years, weight 74 (10) kg, height 179 (7) cm) performed an incremental field test on the badminton court to assess the heart rate turn point (HRTP) and the individual physical working capacity (PWCi) at 90% of measured maximal heart rate (HRmax). All subjects performed a 20 minute steady state test at a workload just below the PWCi. Results: Significant correlations (p<0.05) for Pearson's product moment coefficient were found between the two methods for HR (r = 0.78) and velocity (r = 0.93). The HR at the PWCi (176 (5.5) beats/min) was significantly lower than the HRTP (179 (5.5) beats/min), but no significant difference was found for velocity (1.44 (0.3) m/s, 1.38 (0.4) m/s). The constant exercise test showed steady state conditions for both HR (175 (9) beats/min) and blood lactate concentration (3.1 (1.2) mmol/l). Conclusion: The data indicate that a valid determination of specific aerobic and anaerobic exercise performance for the sport of badminton is possible without HRTP determination. PMID:12663351
Prolonged cardiac effects of momentary assessed stressful events and worry episodes.
Pieper, Suzanne; Brosschot, Jos F; van der Leeden, Rien; Thayer, Julian F
2010-07-01
To test the hypothesize that increased heart rate (HR) and decreased heart rate variability (HRV) are not only due to concurrent stressful events and worries but also to stressors and worries occurring in the preceding hours or stressors anticipated to occur in the next hour. Worry was expected to mediate at least part of the prolonged effects of stressors. Ambulatory HR and HRV of 73 teachers were recorded for 4 days, during which the participants reported occurrence and duration of worry episodes and stressful events on an hourly basis, using computerized diaries. Multilevel regression models were used, accounting for effects of several biobehavioral variables. Stressful events were not associated with changes in HR or HRV. However, worry episodes had effects on concurrent HR and HRV (2.55 beats/minute; -5.76 milliseconds) and HR and HRV in the succeeding hour (3.05 beats/minute; -5.80 milliseconds) and 2 hours later (1.52 beats/minute; -3.14 milliseconds). These findings were independent of emotions, physical activity, posture, and other biobehavioral factors. Worry has effects on cardiac activity, and these effects were still visible after 2 hours. The latter finding suggests that a considerable part of prolonged activation may be induced by unconscious stress-related cognition.
Hamrefors, Viktor; Härstedt, Maria; Holmberg, Anna; Rogmark, Cecilia; Sutton, Richard; Melander, Olle; Fedorowski, Artur
2016-01-01
Autonomic disorders of the cardiovascular system, such as orthostatic hypotension and elevated resting heart rate, predict mortality and cardiovascular events in the population. Low-energy-fractures constitute a substantial clinical problem that may represent an additional risk related to such autonomic dysfunction. To test the association between orthostatic hypotension, resting heart rate and incidence of low-energy-fractures in the general population. Using multivariable-adjusted Cox regression models we investigated the association between orthostatic blood pressure response, resting heart rate and first incident low-energy-fracture in a population-based, middle-aged cohort of 33 000 individuals over 25 years follow-up. The median follow-up time from baseline to first incident fracture among the subjects that experienced a low energy fracture was 15.0 years. A 10 mmHg orthostatic decrease in systolic blood pressure at baseline was associated with 5% increased risk of low-energy-fractures (95% confidence interval 1.01-1.10) during follow-up, whereas the resting heart rate predicted low-energy-fractures with an effect size of 8% increased risk per 10 beats-per-minute (1.05-1.12), independently of the orthostatic response. Subjects with a resting heart rate exceeding 68 beats-per-minute had 18% (1.10-1.26) increased risk of low-energy-fractures during follow-up compared with subjects with a resting heart rate below 68 beats-per-minute. When combining the orthostatic response and resting heart rate, there was a 30% risk increase (1.08-1.57) of low-energy-fractures between the extremes, i.e. between subjects in the fourth compared with the first quartiles of both resting heart rate and systolic blood pressure-decrease. Orthostatic blood pressure decline and elevated resting heart rate independently predict low-energy fractures in a middle-aged population. These two measures of subclinical cardiovascular dysautonomia may herald increased risks many years in advance, even if symptoms may not be detectable. Although the effect sizes are moderate, the easily accessible clinical parameters of orthostatic blood pressure response and resting heart rate deserve consideration as new risk predictors to yield more accurate decisions on primary prevention of low-energy fractures.
Evaluation of heart rate changes: electrocardiographic versus photoplethysmographic methods
NASA Technical Reports Server (NTRS)
Low, P. A.; Opfer-Gehrking, T. L.; Zimmerman, I. R.; O'Brien, P. C.
1997-01-01
The heart rate (HR) variation to forced deep breathing (HRDB) and to the Valsalva maneuver (Valsalva ratio; VR) are the two most widely used tests of cardiovagal function in human subjects. The HR is derived from a continuously running electrocardiographic (ECG) recording. Recently, HR derived from the arterial waveform became available on the Finapres device (FinapHR), but its ability to detect rapid changes in HR remains uncertain. We therefore evaluated HRDB and VR derived from FinapHR using ECG-derived HR (ECGHR) recordings as the standard. We also compared the averaged HR on Finapres (Finapav) with beat-to-beat Finapres (FinapBB) values. Studies were undertaken in 12 subjects with large HR variations: age, 34.5 +/- 9.3 (SD) years; six males and six females. FinapBB values were superimposable upon ECGHR for both HRDB and VR. In contrast, Finapav failed to follow ECGHR for HRDB and followed HRECG with a lag for the VR. To evaluate statistically how closely FinapHR approximated ECGHR, we undertook regression analysis, using mean values for each subject. To compare the two methods, we evaluated the significance of the difference between test and standard values. For HRDB, FinapBB reproducibly recorded HR (R2 = 0.998), and was significantly (p = 0.001) better than Finapav (R2 = 0.616; p < 0.001). For VR, HRBB generated a VR that was not significantly different from the correct values, while HRav generated a value that was slightly but consistently lower than the correct values (p < 0.001). We conclude that FinapHR reliably records HR variations in the beat-to-beat mode for cardiovascular HR tests.
Hayakawa, Tomohiro; Kunihiro, Takeshi; Dowaki, Suguru; Uno, Hatsume; Matsui, Eriko; Uchida, Masashi; Kobayashi, Seiji; Yasuda, Akio; Shimizu, Tatsuya; Okano, Teruo
2012-01-01
A noninvasive method for the characterization of cardiomyocyte contractile behavior is presented. Light microscopic video images of cardiomyocytes were captured with a high-speed camera, and motion vectors (which have a velocity dimension) were calculated with a high spatiotemporal resolution using a block-matching algorithm. This method could extract contraction and relaxation motions of cardiomyocytes separately and evaluate characteristics such as the beating rate, orientation of contraction, beating cooperativity/homogeneity in the monolayer, and wave propagation of impulses. Simultaneous phase-contrast imaging and calcium (Ca2+) fluorescence measurements confirmed that the timing of the maximum shortening velocity of cardiomyocytes correlated well with intracellular Ca2+ transients. Based on our analysis, gap junction inhibitors, 1-heptanol (2 mM) or 18-β-glycyrrhetinic acid (30 μM), resulted in clear changes in beating cooperativity and the propagation pattern of impulses in the cardiomyocyte monolayer. Additionally, the time dependence of the motion vector length indicated a prolonged relaxation process in the presence of potassium (K+) channel blockers, dl-sotalol (1 μM), E-4031 (100 nM), or terfenadine (100 nM), reflecting the prolonged QT (Q wave and T wave) interval of cardiomyocytes. Effects of autonomic agents (acetylcholine or epinephrine [EPI]) or EPI and propranolol on cardiomyocytes were clearly detected by the alterations of beating rate and the motion vector length in contraction and relaxation processes. This method was noninvasive and could sensitively evaluate the contractile behavior of cardiomyocytes; therefore, it may be used to study and/or monitor cardiomyocyte tissue during prolonged culture periods and in screens for drugs that may alter the contraction of cardiomyocytes.
On the mechanism of transverse-mode beatings in a Fabry - Perot laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, N; Ledenev, V I
2010-06-23
The mechanism of emergence of fundamental-mode and first-mode beatings in the case of a step-wise increase in the pump rate is studied under the stationary single-mode lasing conditions. Investigation is based on the numerical solution of nonstationary wave equations in a resonator in the quasi-optic approximation and on the equation for a relaxation-type medium as well as on the use of the first two Hermite - Gaussian polynomials {psi}{sub 0,1}(x) to obtain the distribution projections I{sub 0,1}(t), g{sub 0,1}(t) of the radiation intensity and gain, respectively. It is shown that the transverse-mode beatings emerge at early stages of two-mode lasing,more » the appearance of radiation intensity oscillations in the active medium preceding the development of the gain oscillations. The time of the passage of two-mode lasing to the stationary regime is determined. The phase shift {pi}/2 between the oscillations I{sub 1}(t) and g{sub 1}(t) is found for the established beating regime and the modulation depth {Delta}I averaged over the output aperture of the radiation intensity in the established two-mode regime is shown to be proportional to the pump rate excess k over the single-mode lasing threshold. A scheme for controlling the mode composition of laser radiation is proposed, which is based on the rules for determining I{sub 0,1}(t) by the sensor signals. The efficiency of the scheme is studied. The scheme employs two field intensity sensors mounted inside the resonator behind the output aperture. (resonators. modes)« less
Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation
NASA Technical Reports Server (NTRS)
Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.
The Impact of Monaural Beat Stimulation on Anxiety and Cognition.
Chaieb, Leila; Wilpert, Elke C; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen
2017-01-01
Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation.
The Impact of Monaural Beat Stimulation on Anxiety and Cognition
Chaieb, Leila; Wilpert, Elke C.; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen
2017-01-01
Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation. PMID:28555100
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421
Detection of cardiac activity using a 5.8 GHz radio frequency sensor.
Vasu, V; Fox, N; Brabetz, T; Wren, M; Heneghan, C; Sezer, S
2009-01-01
A 5.8-GHz ISM-Band radio-frequency sensor has been developed for non-contact measurement of respiration and heart rate from stationary and semi-stationary subjects at a distance of 0.5 to 1.5 meters. We report on the accuracy of the heart rate measurements obtained using two algorithmic approaches, as compared to a reference heart rate obtained using a pulse oximeter. Simultaneous Photoplethysmograph (PPG) and non-contact sensor recordings were recorded over fifteen minute periods for ten healthy subjects (8M/2F, ages 29.6 + or - 5.6 yrs) One algorithm is based on automated detection of individual peaks associated with each cardiac cycle; a second algorithm extracts a heart rate over a 60-second period using spectral analysis. Peaks were also extracted manually for comparison with the automated method. The peak-detection methods were less accurate than the spectral methods, but suggest the possibility of acquiring beat by beat data; the spectral algorithms measured heart rate to within + or -10% for the ten subjects chosen. Non-contact measurement of heart rate will be useful in chronic disease monitoring for conditions such as heart failure and cardiovascular disease.
Bouwer, Fleur L; Werner, Carola M; Knetemann, Myrthe; Honing, Henkjan
2016-05-01
Beat perception is the ability to perceive temporal regularity in musical rhythm. When a beat is perceived, predictions about upcoming events can be generated. These predictions can influence processing of subsequent rhythmic events. However, statistical learning of the order of sounds in a sequence can also affect processing of rhythmic events and must be differentiated from beat perception. In the current study, using EEG, we examined the effects of attention and musical abilities on beat perception. To ensure we measured beat perception and not absolute perception of temporal intervals, we used alternating loud and soft tones to create a rhythm with two hierarchical metrical levels. To control for sequential learning of the order of the different sounds, we used temporally regular (isochronous) and jittered rhythmic sequences. The order of sounds was identical in both conditions, but only the regular condition allowed for the perception of a beat. Unexpected intensity decrements were introduced on the beat and offbeat. In the regular condition, both beat perception and sequential learning were expected to enhance detection of these deviants on the beat. In the jittered condition, only sequential learning was expected to affect processing of the deviants. ERP responses to deviants were larger on the beat than offbeat in both conditions. Importantly, this difference was larger in the regular condition than in the jittered condition, suggesting that beat perception influenced responses to rhythmic events in addition to sequential learning. The influence of beat perception was present both with and without attention directed at the rhythm. Moreover, beat perception as measured with ERPs correlated with musical abilities, but only when attention was directed at the stimuli. Our study shows that beat perception is possible when attention is not directed at a rhythm. In addition, our results suggest that attention may mediate the influence of musical abilities on beat perception. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio
2015-01-01
The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127
Sirenko, Syevda G; Yang, Dongmei; Maltseva, Larissa A; Kim, Mary S; Lakatta, Edward G; Maltsev, Victor A
2017-01-01
Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border.
Sirenko, Syevda G.; Yang, Dongmei; Maltseva, Larissa A.; Kim, Mary S.; Lakatta, Edward G.
2017-01-01
Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed “calcium clock”), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border. PMID:28945810
Kannan, Rajaretinam Rajesh; Vincent, Samuel Gnana Prakash
2012-03-01
The aim of the present study was to screen cardioactive herbs from Western Ghats of India. The heart beat rate (HBR) and blood flow during systole and diastole were tested in zebrafish embryos. We found that Cynodon dactylon (C. dactylon) induced increases in the HBR in zebrafish embryos with a HBR of (3.968±0.344) beats/s, which was significantly higher than that caused by betamethosone [(3.770±0.344) beats/s]. The EC50 value of C. dactylon was 3.738 µg/mL. The methanolic extract of Sida acuta (S. acuta) led to decreases in the HBR in zebrafish embryos [(1.877±0.079) beats/s], which was greater than that caused by nebivolol (positive control). The EC50 value of Sida acuta was 1.195 µg/mL. The untreated embryos had a HBR of (2.685±0.160) beats/s at 3 d post fertilization (dpf). The velocities of blood flow during the cardiac cycle were (2,291.667±72.169) µm/s for the control, (4,250±125.000) µm/s for C. dactylon and (1,083.333±72.169) µm/s for S. acuta. The LC50 values were 32.6 µg/mL for C. dactylon and 20.9 µg/mL for S. acuta. In addition, the extracts exhibited no chemical genetic effects in the drug dosage range tested. In conclusion, we developed an assay that can measure changes in cardiac function in response to herbal small molecules and determine the cardiogenic effects by microvideography.
Tagging the neuronal entrainment to beat and meter.
Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André
2011-07-13
Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.
Grahn, Jessica A.; Rowe, James B.
2009-01-01
Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922
Grahn, Jessica A; Rowe, James B
2009-06-10
Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and nonmusicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The "volume" condition strongly externally marked the beat with volume changes, the "duration" condition marked the beat with weaker accents arising from duration changes, and the "unaccented" condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared with nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC), and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than nonmusicians. Importantly, the response of the putamen to beat conditions was not attributable to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians.
Breska, Assaf; Deouell, Leon Y
2016-07-06
Environmental rhythms potently drive predictive resource allocation in time, typically leading to perceptual and motor benefits for on-beat, relative to off-beat, times, even if the rhythmic stream is not intentionally used. In two human EEG experiments, we investigated the behavioral and electrophysiological expressions of using rhythms to direct resources away from on-beat times. This allowed us to distinguish goal-directed attention from the automatic capture of attention by rhythms. The following three conditions were compared: (1) a rhythmic stream with targets appearing frequently at a fixed off-beat position; (2) a rhythmic stream with targets appearing frequently at on-beat times; and (3) a nonrhythmic stream with matched target intervals. Shifting resources away from on-beat times was expressed in the slowing of responses to on-beat targets, but not in the facilitation of off-beat targets. The shifting of resources was accompanied by anticipatory adjustment of the contingent negative variation (CNV) buildup toward the expected off-beat time. In the second experiment, off-beat times were jittered, resulting in a similar CNV adjustment and also in preparatory amplitude reduction of beta-band activity. Thus, the CNV and beta activity track the relevance of time points and not the rhythm, given sufficient incentive. Furthermore, the effects of task relevance (appearing in a task-relevant vs irrelevant time) and rhythm (appearing on beat vs off beat) had additive behavioral effects and also dissociable neural manifestations in target-evoked activity: rhythm affected the target response as early as the P1 component, while relevance affected only the later N2 and P3. Thus, these two factors operate by distinct mechanisms. Rhythmic streams are widespread in our environment, and are typically conceptualized as automatic, bottom-up resource attractors to on-beat times-preparatory neural activity peaks at rhythm-on-beat times and behavioral benefits are seen to on-beat compared with off-beat targets. We show that this behavioral benefit is reversed when targets are more frequent at off-beat compared with on-beat times, and that preparatory neural activity, previously thought to be driven by the rhythm to on-beat times, is adjusted toward off-beat times. Furthermore, the effect of this relevance-based shifting on target-evoked brain activity was dissociable from the automatic effect of rhythms. Thus, rhythms can act as cues for flexible resource allocation according to the goal relevance of each time point, instead of being obligatory resource attractors. Copyright © 2016 the authors 0270-6474/16/367154-13$15.00/0.
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.
1999-01-01
We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.
Smartphone-based photoplethysmographic imaging for heart rate monitoring.
Alafeef, Maha
2017-07-01
The purpose of this study is to make use of visible light reflected mode photoplethysmographic (PPG) imaging for heart rate (HR) monitoring via smartphones. The system uses the built-in camera feature in mobile phones to capture video from the subject's index fingertip. The video is processed, and then the PPG signal resulting from the video stream processing is used to calculate the subject's heart rate. Records from 19 subjects were used to evaluate the system's performance. The HR values obtained by the proposed method were compared with the actual HR. The obtained results show an accuracy of 99.7% and a maximum absolute error of 0.4 beats/min where most of the absolute errors lay in the range of 0.04-0.3 beats/min. Given the encouraging results, this type of HR measurement can be adopted with great benefit, especially in the conditions of personal use or home-based care. The proposed method represents an efficient portable solution for HR accurate detection and recording.
A fatigue monitoring system based on time-domain and frequency-domain analysis of pulse data
NASA Astrophysics Data System (ADS)
Shen, Jiaai
2018-04-01
Fatigue is almost a problem that everyone would face, and a psychosis that everyone hates. If we can test people's fatigue condition and remind them of the tiredness, dangers in life, for instance, traffic accidents and sudden death will be effectively reduced, people's fatigued operations will be avoided. And people can be assisted to have access to their own and others' physical condition in time to alternate work with rest. The article develops a wearable bracelet based on FFT Pulse Frequency Spectrum Analysis and IBI's standard deviation and range calculation, according to people's heart rate (BPM) and inter-beat interval (IBI) while being tired and conscious. The hardware part is based on Arduino, pulse rate sensor, and Bluetooth module, and the software part is relied on network micro database and APP. By doing sample experiment to get more accurate standard value to judge tiredness, we prove that we can judge people's fatigue condition based on heart rate (BPM) and inter-beat interval (IBI).
Kay, Matthew; Swift, Luther; Martell, Brian; Arutunyan, Ara; Sarvazyan, Narine
2008-05-01
We studied the origins of ectopic beats during low-flow reperfusion after acute regional ischemia in excised rat hearts. The left anterior descending coronary artery was cannulated. Perfusate was delivered to the cannula using an high-performance liquid chromatography pump. This provided not only precise control of flow rate but also avoided mechanical artifacts associated with vessel occlusion and deocclusion. Optical mapping of epicardial transmembrane potential served to identify activation wavefronts. Imaging of NADH fluorescence was used to quantify local ischemia. Our experiments suggest that low-flow reperfusion of ischemic myocardium leads to a highly heterogeneous ischemic substrate and that the degree of ischemia between adjacent patches of tissue changes in time. In contrast to transient ectopic activity observed during full-flow reperfusion, persistent ectopic arrhythmias were observed during low-flow reperfusion. The origins of ectopic beats were traceable to areas of high spatial gradients of changes in NADH fluorescence caused by low-flow reperfusion.
van Wijnen, V K; Finucane, C; Harms, M P M; Nolan, H; Freeman, R L; Westerhof, B E; Kenny, R A; Ter Maaten, J C; Wieling, W
2017-12-01
Over the past 30 years, noninvasive beat-to-beat blood pressure (BP) monitoring has provided great insight into cardiovascular autonomic regulation during standing. Although traditional sphygmomanometric measurement of BP may be sufficient for detection of sustained orthostatic hypotension, it fails to capture the complexity of the underlying dynamic BP and heart rate responses. With the emerging use of noninvasive beat-to-beat BP monitoring for the assessment of orthostatic BP control in clinical and population studies, various definitions for abnormal orthostatic BP patterns have been used. Here, age-related changes in cardiovascular control in healthy subjects will be reviewed to define the spectrum of the most important abnormal orthostatic BP patterns within the first 180 s of standing. Abnormal orthostatic BP responses can be defined as initial orthostatic hypotension (a transient systolic BP fall of >40 mmHg within 15 s of standing), delayed BP recovery (an inability of systolic BP to recover to a value of >20 mmHg below baseline at 30 s after standing) and sustained orthostatic hypotension (a sustained decline in systolic BP of ≥20 mmHg occurring 60-180 s after standing). In the evaluation of patients with light-headedness, pre(syncope), (unexplained) falls or suspected autonomic dysfunction, it is essential to distinguish between normal cardiovascular autonomic regulation and these abnormal orthostatic BP responses. The prevalence, clinical relevance and underlying pathophysiological mechanisms of these patterns differ significantly across the lifespan. Initial orthostatic hypotension is important for identifying causes of syncope in younger adults, whereas delayed BP recovery and sustained orthostatic hypotension are essential for evaluating the risk of falls in older adults. © 2017 The Authors Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
Farkas, Attila S; Makra, Péter; Csík, Norbert; Orosz, Szabolcs; Shattock, Michael J; Fülöp, Ferenc; Forster, Tamás; Csanády, Miklós; Papp, Julius Gy; Varró, András; Farkas, András
2009-01-01
Background and purpose: The Na+/Ca2+ exchanger (NCX) may contribute to triggered activity and transmural dispersion of repolarization, which are substrates of torsades de pointes (TdP) type arrhythmias. This study examined the effects of selective inhibition of the NCX by SEA0400 on the occurrence of dofetilide-induced TdP. Experimental approach: Effects of SEA0400 (1 µmol·L−1) on dofetilide-induced TdP was studied in isolated, Langendorff-perfused, atrioventricular (AV)-blocked rabbit hearts. To verify the relevance of the model, lidocaine (30 µmol·L−1) and verapamil (750 nmol·L−1) were also tested against dofetilide-induced TdP. Key results: Acute AV block caused a chaotic idioventricular rhythm and strikingly increased beat-to-beat variability of the RR and QT intervals. SEA0400 exaggerated the dofetilide-induced increase in the heart rate-corrected QT interval (QTc) and did not reduce the incidence of dofetilide-induced TdP [100% in the SEA0400 + dofetilide group vs. 75% in the dofetilide (100 nmol·L−1) control]. In the second set of experiments, verapamil further increased the dofetilide-induced QTc prolongation and neither verapamil nor lidocaine reduced the dofetilide-induced increase in the beat-to-beat variability of the QT interval. However, lidocaine decreased and verapamil prevented the development of dofetilide-induced TdP as compared with the dofetilide control (TdP incidence: 13%, 0% and 88% respectively). Conclusions and implications: Na+/Ca2+ exchanger does not contribute to dofetilide-induced TdP, whereas Na+ and Ca2+ channel activity is involved in TdP genesis in isolated, AV-blocked rabbit hearts. Neither QTc prolongation nor an increase in the beat-to-beat variability of the QT interval is a sufficient prerequisite of TdP genesis in rabbit hearts. PMID:19222480
Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream.
Araneda, Rodrigo; Renier, Laurent; Ebner-Karestinos, Daniela; Dricot, Laurence; De Volder, Anne G
2017-06-01
Hearing a beat recruits a wide neural network that involves the auditory cortex and motor planning regions. Perceiving a beat can potentially be achieved via vision or even touch, but it is currently not clear whether a common neural network underlies beat processing. Here, we used functional magnetic resonance imaging (fMRI) to test to what extent the neural network involved in beat processing is supramodal, that is, is the same in the different sensory modalities. Brain activity changes in 27 healthy volunteers were monitored while they were attending to the same rhythmic sequences (with and without a beat) in audition, vision and the vibrotactile modality. We found a common neural network for beat detection in the three modalities that involved parts of the auditory dorsal pathway. Within this network, only the putamen and the supplementary motor area (SMA) showed specificity to the beat, while the brain activity in the putamen covariated with the beat detection speed. These results highlighted the implication of the auditory dorsal stream in beat detection, confirmed the important role played by the putamen in beat detection and indicated that the neural network for beat detection is mostly supramodal. This constitutes a new example of convergence of the same functional attributes into one centralized representation in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train
NASA Astrophysics Data System (ADS)
Li, Yongjun; Cheng, Weixing; Ha, Kiman; Rainer, Robert
2017-11-01
Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate diagnostic bunch train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT, from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. This approach allows us to localize the distributed quadrupolar wakefields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta beat and phase beat, and unobtrusively optimize performance of the National Synchrotron Light Source-II accelerator during routine operations.
Transparent lattice characterization with gated turn-by-turn data of diagnostic bunch train
Li, Yongjun; Cheng, Weixing; Ha, Kiman; ...
2017-11-21
Methods of characterization of a storage ring's lattice have traditionally been intrusive to routine operations. More importantly, the lattice seen by particles can drift with the beam current due to collective effects. To circumvent this, we have developed a novel approach for dynamically characterizing a storage ring's lattice that is transparent to operations. Our approach adopts a dedicated filling pattern which has a short, separate Diagnostic Bunch-Train (DBT). Through the use of a bunch-by-bunch feedback system, the DBT can be selectively excited on-demand. Gated functionality of a beam position monitor system is capable of collecting turn-by-turn data of the DBT,more » from which the lattice can then be characterized after excitation. As the DBT comprises only about one percent of the total operational bunches, the effects of its excitation are negligible to users. Therefore, this approach allows us to localize the distributed quadrupolar wake fields generated in the storage ring vacuum chamber during beam accumulation. While effectively transparent to operations, our approach enables us to dynamically control the beta-beat and phase-beat, and unobtrusively optimize performance of National Synchrotron Light Source-II accelerator during routine operations.« less
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Guo, Hanliang; Ruby, Edward; Dabiri, John; McFall-Ngai, Margaret; Kanso, Eva
2016-11-01
Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. Cilia are often thought to be limited to stereotypic morphologies, beat kinematics and non-discriminatory clearance functions, but we find that the spatiotemporal organization of different cilia types and beat behaviors can generate complex flow patterns and transport functions. Here, we present a case study in the Hawaiian bobtail squid where collective ciliary activity and resulting flow fields help recruit symbiont bacteria to the animal host. In particular, we demonstrate empirically and computationally how the squid's internal cilia act like a microfluidic device that actively filters the water for potential bacterial candidates and also provides a sheltered zone allowing for accumulation of mucus and bacteria into a biofilm. Moreover, in this sheltered zone, different cilia-driven flows enhance diffusion of biochemical signals, which could accelerate specific bacteria-host recognition. These results suggest that studying cilia activity on the population level might reveal a diverse range of biological transport and sensing functions. Moreover, understanding cilia as functional building blocks could inspire the design of ciliated robots and devices.
Cortical evoked potentials to an auditory illusion: binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-08-01
To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.
Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-01-01
Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993
Mak, Susanna; Van Spall, Harriette G C; Wainstein, Rodrigo V; Sasson, Zion
2012-03-01
The aim of this study was to examine the effect of heart rate (HR) on indices of deformation in adults with and without heart failure (HF) who underwent simultaneous high-fidelity catheterization of the left ventricle to describe the force-frequency relationship. Right atrial pacing to control HR and high-fidelity recordings of left ventricular (LV) pressure were used to inscribe the force-frequency relationship. Simultaneous two-dimensional echocardiographic imaging was acquired for speckle-tracking analysis. Thirteen patients with normal LV function and 12 with systolic HF (LV ejection fraction, 31 ± 13%) were studied. Patients with HF had depressed isovolumic contractility and impaired longitudinal strain and strain rate. HR-dependent increases in LV+dP/dt(max), the force-frequency relationship, was demonstrated in both groups (normal LV function, baseline to 100 beats/min: 1,335 ± 296 to 1,564 ± 320 mm Hg/sec, P < .0001; HF, baseline to 100 beats/min: 970 ± 207 to 1,083 ± 233 mm Hg/sec, P < .01). Longitudinal strain decreased significantly (normal LV function, baseline to 100 beats/min: 18.0 ± 3.5% to 10.8 ± 6.0%, P < .001; HF: 9.4 ± 4.1% to 7.5 ± 3.4%, P < .01). The decrease in longitudinal strain was related to a decrease in LV end-diastolic dimensions. Strain rate did not change with right atrial pacing. Despite the inotropic effect of increasing HR, longitudinal strain decreases in parallel with stroke volume as load-dependent indices of ejection. Strain rate did not reflect the modest HR-related changes in contractility; on the other hand, the use of strain rate for quantitative stress imaging is also less likely to be confounded by chronotropic responses. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Lara, Diego A.; Olive, Mary K.; George, James F.; Brown, Robert N.; Carlo, Waldemar F.; Colvin, Edward V.; Steenwyck, Brad L.
2014-01-01
Coronary spasm during coronary angiography for vasculopathy in children can be prevented by the intracoronary administration of nitroglycerin. We reviewed the anesthesia and catheterization reports and charts for pediatric transplant recipients who underwent angiography from 2005 through 2010. Correlation analysis was used to study the relation of post-injection systolic blood pressure (SBP) to nitroglycerin dose. Forty-one angiographic evaluations were performed on 25 patients (13 male and 12 female). Mean age was 9.9 ± 3.2 years (range, 3.3–16.1 yr). The mean total dose of nitroglycerin was 2.93 ± 1.60 µg/kg (range, 1–8 µg/kg). There was a significant drop between the baseline SBP (mean, 106 ± 21.6 mmHg) and the lowest mean SBP before nitroglycerin administration (78 ± 13.2, P <0.0001, paired t test). There was no significant additional change in SBP (mean after nitroglycerin administration, 80.7 ± 13.1 mmHg; P = 0.2). There was a significant drop in lowest heart rate between baseline (109 ± 16.5 beats/min) and before nitroglycerin administration (89 ± 14.3 beats/min; P <0.0001, paired t test). There was no significant additional change in heart rate (mean heart rate after nitroglycerin, 84 ± 17.7 beats/min; P = 0.09). There were 2 interventions for SBP before nitroglycerin and 2 after nitroglycerin. One child experienced a transient ST-T–segment change during angiography after nitroglycerin. In the highest dose range, the additional decrease in SBP was 7.2 mmHg (P=0.03). Routine intracoronary nitroglycerin administration in this dose range produced no significant changes in SBP or heart rate in children. PMID:24512395
Lara, Diego A; Olive, Mary K; George, James F; Brown, Robert N; Carlo, Waldemar F; Colvin, Edward V; Steenwyck, Brad L; Pearce, F Bennett
2014-02-01
Coronary spasm during coronary angiography for vasculopathy in children can be prevented by the intracoronary administration of nitroglycerin. We reviewed the anesthesia and catheterization reports and charts for pediatric transplant recipients who underwent angiography from 2005 through 2010. Correlation analysis was used to study the relation of post-injection systolic blood pressure (SBP) to nitroglycerin dose. Forty-one angiographic evaluations were performed on 25 patients (13 male and 12 female). Mean age was 9.9 ± 3.2 years (range, 3.3-16.1 yr). The mean total dose of nitroglycerin was 2.93 ± 1.60 µg/kg (range, 1-8 µg/kg). There was a significant drop between the baseline SBP (mean, 106 ± 21.6 mmHg) and the lowest mean SBP before nitroglycerin administration (78 ± 13.2, P <0.0001, paired t test). There was no significant additional change in SBP (mean after nitroglycerin administration, 80.7 ± 13.1 mmHg; P = 0.2). There was a significant drop in lowest heart rate between baseline (109 ± 16.5 beats/min) and before nitroglycerin administration (89 ± 14.3 beats/min; P <0.0001, paired t test). There was no significant additional change in heart rate (mean heart rate after nitroglycerin, 84 ± 17.7 beats/min; P = 0.09). There were 2 interventions for SBP before nitroglycerin and 2 after nitroglycerin. One child experienced a transient ST-T-segment change during angiography after nitroglycerin. In the highest dose range, the additional decrease in SBP was 7.2 mmHg (P=0.03). Routine intracoronary nitroglycerin administration in this dose range produced no significant changes in SBP or heart rate in children.
Clinical lung transplantation from uncontrolled non-heart-beating donors revisited.
Gomez-de-Antonio, David; Campo-Cañaveral, Jose Luis; Crowley, Silvana; Valdivia, Daniel; Cordoba, Mar; Moradiellos, Javier; Naranjo, Jose Manual; Ussetti, Piedad; Varela, Andrés
2012-04-01
The aim of our study is to review and update the long-term results from our previously published series of lung transplantation in uncontrolled non-heart-beating donors (NHBDs). A prospective collection of data was undertaken from all lung transplants performed among uncontrolled NHBDs between 2002 and December 2009. The statistical analysis was performed using SPSS software and survival was estimated using the Kaplan-Meier method. Twenty-nine lung transplants were performed. Mean total ischemic times for the first and second lung were 575 minutes (SD 115.6) and 701 minutes (SD 111.3), respectively. Primary graft dysfunction (PGD) G1, G2 and G3 occurred in 5 cases (17%), 5 cases (17%) and 11 cases (38%), respectively. Overall hospital mortality rate was 17% (5 patients). Statistical analysis revealed a statistically significant association of mortality with ischemic times and with PGD. In terms of overall survival, 3-month, 1-year, 2-year and 5-year survival rates were 78%, 68%, 57% and 51%, respectively, and the conditional survival rates in those who survived the first 3 months were 86%, 72% and 65%, respectively. The cumulative incidence of bronchiolitis obliterans syndrome (BOS) was 11%, 35% and 45% at 1, 3 and 5 years, respectively. Lung transplantation from uncontrolled non-heart-beating donors shows acceptable results for both mid- and long-term survival and BOS; however, the higher rates of PGD and its impact on early mortality must make us more demanding with respect to the acceptance criteria and methods of evaluation used with these donors. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Cardiovascular effects of fenoterol under conditions of hypoxaemia.
Bremner, P; Burgess, C D; Crane, J; McHaffie, D; Galletly, D; Pearce, N; Woodman, K; Beasley, R
1992-01-01
BACKGROUND: The reason for the association of increased risk of death with fenoterol in patients with asthma in New Zealand is unknown but may relate to its cardiovascular effects. Most deaths from asthma occur outside hospital, where hypoxaemia is likely to be a complicating factor. The cardiovascular effects of fenoterol have been investigated therefore under conditions of normoxaemia and hypoxaemia. METHOD: Eight healthy men were studied on two occasions. Measurements of heart rate, blood pressure, total electromechanical systole (QS2I), electrocardiographic QTc interval, cardiac index, stroke volume, and ejection fraction were made under conditions of normoxaemia and hypoxaemia (arterial oxygen saturation 90%) before and after administration of 800 micrograms of fenoterol by a metered dose inhaler. The order in which treatments were applied was according to a Latin square design. RESULTS: Before inhalation of fenoterol hypoxaemia was associated with a significant increase in heart rate (8 beats/min) and QTc interval (15.6 ms). Under conditions of normoxaemia fenoterol caused a significant increase in heart rate (14.3 beats/min), systolic blood pressure (7.7 mm Hg), stroke volume (27.7 ml), cardiac index (1.6 1/min/m2), ejection fraction (11.48), and QTc interval (32.9 ms) and a fall in QS2I (-23.2 ms) and diastolic blood pressure (-8.4 mm Hg). Under conditions of hypoxaemia the changes after inhalation of fenoterol were similar to those recorded during normoxaemia; thus the effects of hypoxaemia and fenoterol were additive (heart rate 21.9 beats/min, QTc 43.5 ms with fenoterol and hypoxaemia). CONCLUSION: The chronotropic and electrophysiological effects of fenoterol were enhanced by conditions of hypoxaemia. PMID:1481183
Heart rate responses to temperature in free-swimming Pacific bluefin tuna (Thunnus orientalis).
Clark, T D; Farwell, C J; Rodriguez, L E; Brandt, W T; Block, B A
2013-09-01
The bluefin tuna heart remains at ambient water temperature (Ta) but must supply blood to warm regions of the body served by countercurrent vascular heat exchangers. Despite this unusual physiology, inherent difficulties have precluded an understanding of the cardiovascular responses to Ta in free-swimming bluefin tunas. We measured the heart rate (f(H)) responses of two captive Pacific bluefin tunas (Thunnus orientalis; 9.7 and 13.3 kg) over a cumulative period of 40 days. Routine f(H) during fasting in the holding tank at a Ta of 20°C was 45.1±8.0 and 40.7±6.5 beats min(-1) for Tuna 1 and Tuna 2, respectively. f(H) decreased in each fish with a Q10 temperature coefficient of 2.6 (Tuna 1) and 3.1 (Tuna 2) as Ta in the tank was slowly decreased to 15°C (~0.4°C h(-1)), despite a gradual increase in swimming speed. The same thermal challenge during digestion revealed similar thermal dependence of f(H) and indicated that the rate of visceral cooling is not buffered by the heat increment of feeding. Acutely decreasing Ta from 20 to 10°C while Tuna 1 swam in a tunnel respirometer caused a progressive increase in tail-beat frequency and oxygen consumption rate (M(O2)). f(H) of this fish decreased with a Q10 of 2.7 as Ta decreased between 20 and 15°C, while further cooling to 10°C saw a general plateau in f(H) around 35 beats min(-1) with a Q10 of 1.3. A discussion of the relationships between f(H), and haemoglobin-oxygen binding sheds further light on how bluefin cardiorespiratory systems function in a changing thermal environment.
Losing the beat: deficits in temporal coordination.
Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle
2014-12-19
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.
Losing the beat: deficits in temporal coordination
Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle
2014-01-01
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783
Zuk, Nathaniel J.; Carney, Laurel H.; Lalor, Edmund C.
2018-01-01
Prior research has shown that musical beats are salient at the level of the cortex in humans. Yet below the cortex there is considerable sub-cortical processing that could influence beat perception. Some biases, such as a tempo preference and an audio frequency bias for beat timing, could result from sub-cortical processing. Here, we used models of the auditory-nerve and midbrain-level amplitude modulation filtering to simulate sub-cortical neural activity to various beat-inducing stimuli, and we used the simulated activity to determine the tempo or beat frequency of the music. First, irrespective of the stimulus being presented, the preferred tempo was around 100 beats per minute, which is within the range of tempi where tempo discrimination and tapping accuracy are optimal. Second, sub-cortical processing predicted a stronger influence of lower audio frequencies on beat perception. However, the tempo identification algorithm that was optimized for simple stimuli often failed for recordings of music. For music, the most highly synchronized model activity occurred at a multiple of the beat frequency. Using bottom-up processes alone is insufficient to produce beat-locked activity. Instead, a learned and possibly top-down mechanism that scales the synchronization frequency to derive the beat frequency greatly improves the performance of tempo identification. PMID:29896080
Webb, Alastair J S; Mazzucco, Sara; Li, Linxin; Rothwell, Peter M
2018-01-01
Visit-to-visit and day-to-day blood pressure (BP) variability (BPV) predict an increased risk of cardiovascular events but only reflect 1 form of BPV. Beat-to-beat BPV can be rapidly assessed and might also be predictive. In consecutive patients within 6 weeks of transient ischemic attack or nondisabling stroke (Oxford Vascular Study), BPV (coefficient of variation) was measured beat-to-beat for 5 minutes (Finometer), day-to-day for 1 week on home monitoring (3 readings, 3× daily), and on awake ambulatory BP monitoring. BPV after 1-month standard treatment was related (Cox proportional hazards) to recurrent stroke and cardiovascular events for 2 to 5 years, adjusted for mean systolic BP. Among 520 patients, 26 had inadequate beat-to-beat recordings, and 22 patients were in atrial fibrillation. Four hundred five patients had all forms of monitoring. Beat-to-beat BPV predicted recurrent stroke and cardiovascular events independently of mean systolic BP (hazard ratio per group SD, stroke: 1.47 [1.12-1.91]; P =0.005; cardiovascular events: 1.41 [1.08-1.83]; P =0.01), including after adjustment for age and sex (stroke: 1.47 [1.12-1.92]; P =0.005) and all risk factors (1.40 [1.00-1.94]; P =0.047). Day-to-day BPV was less strongly associated with stroke (adjusted hazard ratio, 1.29 [0.97-1.71]; P =0.08) but similarly with cardiovascular events (1.41 [1.09-1.83]; P =0.009). BPV on awake ambulatory BP monitoring was nonpredictive (stroke: 0.89 [0.59-1.35]; P =0.59; cardiovascular events: 1.08 [0.77-1.52]; P =0.65). Despite a weak correlation ( r =0.119; P =0.02), beat-to-beat BPV was associated with risk of recurrent stroke independently of day-to-day BPV (1.41 [1.05-1.90]; P =0.02). Beat-to-beat BPV predicted recurrent stroke and cardiovascular events, independently of mean systolic BP and risk factors but short-term BPV on ambulatory BP monitoring did not. Beat-to-beat BPV may be a useful additional marker of cardiovascular risk. © 2017 The Authors.
Beliefs of Sri Lankan Medical Students about Wife Beating
ERIC Educational Resources Information Center
Haj-Yahia, Muhammad M.; de Zoysa, Piyanjali
2007-01-01
The article presents the results of a study on beliefs about wife beating conducted among 476 Sri Lankan medical students. Participants fill out a self-administered questionnaire, which examines six beliefs about wife beating. Most students tend to justify wife beating, to believe women benefit from wife beating, and to believe the wife bears more…
Keeping the Beat: A Large Sample Study of Bouncing and Clapping to Music
Tranchant, Pauline; Vuvan, Dominique T.; Peretz, Isabelle
2016-01-01
The vast majority of humans move in time with a musical beat. This behaviour has been mostly studied through finger-tapping synchronization. Here, we evaluate naturalistic synchronization responses to music–bouncing and clapping–in 100 university students. Their ability to match the period of their bounces and claps to those of a metronome and musical clips varying in beat saliency was assessed. In general, clapping was better synchronized with the beat than bouncing, suggesting that the choice of a specific movement type is an important factor to consider in the study of sensorimotor synchronization processes. Performance improved as a function of beat saliency, indicating that beat abstraction plays a significant role in synchronization. Fourteen percent of the population exhibited marked difficulties with matching the beat. Yet, at a group level, poor synchronizers showed similar sensitivity to movement type and beat saliency as normal synchronizers. These results suggest the presence of quantitative rather than qualitative variations when losing the beat. PMID:27471854
Baroreflex modulation of muscle sympathetic nerve activity during cold pressor test in humans
NASA Technical Reports Server (NTRS)
Cui, Jian; Wilson, Thad E.; Crandall, Craig G.
2002-01-01
The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.005) during the cold pressor test (-244.9 +/- 26.3 units x beat(-1) x mmHg(-1)) when compared with control conditions (-138.8 +/- 18.6 units x beat(-1) x mmHg(-1)), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.
NASA Technical Reports Server (NTRS)
1990-01-01
Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.
The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.
Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander
2016-01-01
Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.
The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity
Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander
2016-01-01
Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task. PMID:27893766
Dynamic characteristics of heart rate control by the autonomic nervous system in rats.
Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru
2010-09-01
We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 +/- 1.55 beats min(1) Hz(1); natural frequency, 0.07 +/- 0.03 Hz; damping coefficient, 1.96 +/- 0.64; and lag time, 0.73 +/- 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 +/- 4.51 beats min(1) Hz(1); corner frequency, 0.12 +/- 0.06 Hz; and lag time, 0.12 +/- 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals.
Design a Wearable Device for Blood Oxygen Concentration and Temporal Heart Beat Rate
NASA Astrophysics Data System (ADS)
Myint, Cho Zin; Barsoum, Nader; Ing, Wong Kiing
2010-06-01
The wireless network technology is increasingly important in healthcare as a result of the aging population and the tendency to acquire chronic disease such as heart attack, high blood pressure amongst the elderly. A wireless sensor network system that has the capability to monitor physiological sign such as SpO2 (Saturation of Arterial Oxygen) and heart beat rate in real-time from the human's body is highlighted in this study. This research is to design a prototype sensor network hardware, which consists of microcontroller PIC18F series and transceiver unit. The sensor is corporate into a wearable body sensor network which is small in size and easy to use. The sensor allows a non invasive, real time method to provide information regarding the health of the body. This enables a more efficient and economical means for managing the health care of the population.
Rani, Manju; Bonu, Sekhar; Diop-Sidibe, Nafissatou
2004-12-01
This study used data from the demographic and health surveys (DHS) conducted between 1999 and 2001 in Benin, Ethiopia, Malawi, Mali, Rwanda, Uganda and Zimbabwe, to examine the magnitude and correlates of conditional acceptance of wife-beating among both men and women. Multivariate logistic regression models were fitted to investigate the independent association between different socio-demographic characteristics and acceptance of wife-beating. The acceptance of wife-beating for transgressing certain gender roles was widespread in all the countries. Men were consistently less likely to justify wife-beating than women. Household wealth and education emerged as strongest and most consistent negative predictors of acceptance of wife-beating among both men and women. Older men and women were less likely to justify wife-beating. Men and women in the polygamous union were more likely to accept wife-beating, though the association was not always significant. With the exception of Uganda, women working for pay were more likely to justify wife-beating than non-working women were. The results indicate that dominant social and cultural norms create images of "ideal" women among both men and women that include definition and widespread acceptance of gender roles as well as sanction use of force to enforce these gender roles. The State and its different institutions may fail to mitigate wife-beating, as sensitivity to objectively address wife-beating may be tellingly lacking. Though education, economic growth, etc, can reduce acceptance of wife-beating, the process may be too slow and too late to make a substantial difference in the near future. Proactive measures may be required to change attitudes towards wife-beating among both men and women.
Heart rate monitoring mobile applications.
Chaudhry, Beenish M
2016-01-01
Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone's camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, 'Unique Heart Rate Monitor', you can also maintain your heart rate history for personal reflection and sharing with a provider.
Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico
2012-01-01
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine. PMID:23018927
Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev
2012-04-01
Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in hepatocytes from non-heart-beating donors offer opportunities for improving donor cell viability, which will advance the utility of non-heart-beating donor organs for cell therapy or other applications. Copyright © 2012 American Association for the Study of Liver Diseases.
Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats
Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.
2015-01-01
Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486
Gregory, L C; Quillen, E W; Keil, L C; Chang, D; Reid, I A
1988-04-01
Previous studies have provided evidence that vasopressin plays an important role in blood pressure regulation during water deprivation. However, these investigations have been complicated by reflex compensatory increases in cardiac output and renin secretion. The aim of the present study was to investigate the effect of blockade of the vasoconstrictor action of vasopressin in conscious water-deprived dogs in which the low- and/or high-pressure baroreceptors were denervated to minimize reflex responses. Vasopressin blockade in sham-operated dogs (n = 7) did not change arterial pressure. Heart rate rose from 78 +/- 9 to 119 +/- 13 beats/min (P less than 0.01), and plasma renin activity increased from 10.9 +/- 2.1 to 21.6 +/- 4.6 ng.ml-1.3 h-1 (P less than 0.01). In carotid sinus-denervated dogs (n = 6), vasopressin blockade again failed to decrease arterial pressure. Heart rate increased from 105 +/- 10 to 132 +/- 10 beats/min (P less than 0.01), and plasma renin activity rose from 6.8 +/- 1.7 to 15.5 +/- 2.4 ng.ml-1.3 h-1 (P less than 0.01). The antagonist also failed to change blood pressure in cardiac-denervated dogs (n = 5). Heart rate increased from 111 +/- 9 to 119 +/- 1 beats/min (P less than 0.01), but plasma renin activity did not increase significantly. In marked contrast, vasopressin blockade in sinoaortic/cardiac-denervated dogs (n = 7) promptly decreased arterial pressure from 115 +/- 8 to 94 +/- 7 mmHg (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
Effect of monopolar radiofrequency energy on pacemaker function.
Govekar, Henry R; Robinson, Thomas N; Varosy, Paul D; Girard, Guillaume; Montero, Paul N; Dunn, Christina L; Jones, Edward L; Stiegmann, Greg V
2012-10-01
This study aimed to quantify the clinical parameters of mono- and bipolar instruments that inhibit pacemaker function. The specific aims were to quantify pacer inhibition resulting from the monopolar instrument by altering the generator power setting, the generator mode, the distance between the active electrode and the pacemaker, and the location of the dispersive electrode. A transvenous ventricular lead pacemaker overdrive paced the native heart rate of an anesthetized pig. The primary outcome variable was pacer inhibition quantified as the number of beats dropped by the pacemaker during 5 s of monopolar active electrode activation. Lowering the generator power setting from 60 to 30 W decreased the number of dropped paced events (2.3 ± 1.2 vs 1.6 ± 0.8 beats; p = 0.045). At 30 W of power, use of the cut mode decreased the number of dropped paced beats compared with the coagulation mode (0.6 ± 0.5 vs 1.6 ± 0.8; p = 0.015). At 30 W coagulation, firing the active electrode at different distances from the pacemaker generator (3.75, 7.5, 15, and 30 cm) did not change the number of dropped paced beats (p = 0.314, analysis of variance [ANOVA]). The dispersive electrode was placed in four locations (right/left gluteus, right/left shoulder). More paced beats were dropped when the current vector traveled through the pacemaker/leads than when it did not (1.5 ± 1.0 vs 0.2 ± 0.4; p < 0.001). Clinical parameters that reduce the inhibition of a pacemaker by monopolar instruments include lowering the generator power setting, using cut (vs coagulation) mode, and locating the dispersive electrode so the current vector does not traverse the pacemaker generator or leads.
Squirmers with swirl: a model for Volvox swimming.
Pedley, T J; Brumley, D R; Goldstein, R E
2016-07-10
Colonies of the green alga Volvox are spheres that swim through the beating of pairs of flagella on their surface somatic cells. The somatic cells themselves are mounted rigidly in a polymeric extracellular matrix, fixing the orientation of the flagella so that they beat approximately in a meridional plane, with axis of symmetry in the swimming direction, but with a roughly [Formula: see text] azimuthal offset which results in the eponymous rotation of the colonies about a body-fixed axis. Experiments on colonies of Volvox carteri held stationary on a micropipette show that the beating pattern takes the form of a symplectic metachronal wave (Brumley et al. Phys. Rev. Lett. , vol. 109, 2012, 268102). Here we extend the Lighthill/Blake axisymmetric, Stokes-flow model of a free-swimming spherical squirmer (Lighthill Commun. Pure Appl. Maths , vol. 5, 1952, pp. 109-118; Blake J. Fluid Mech. , vol. 46, 1971 b , pp. 199-208) to include azimuthal swirl. The measured kinematics of the metachronal wave for 60 different colonies are used to calculate the coefficients in the eigenfunction expansions and hence predict the mean swimming speeds and rotation rates, proportional to the square of the beating amplitude, as functions of colony radius. As a test of the squirmer model, the results are compared with measurements (Drescher et al. Phys. Rev. Lett. , vol. 102, 2009, 168101) of the mean swimming speeds and angular velocities of a different set of 220 colonies, also given as functions of colony radius. The predicted variation with radius is qualitatively correct, but the model underestimates both the mean swimming speed and the mean angular velocity unless the amplitude of the flagellar beat is taken to be larger than previously thought. The reasons for this discrepancy are discussed.
Kremers, M S; Black, W H; Lange, R; Wells, P J; Solo, M
1990-11-01
Electrocardiographic signal-averaging during sinus rhythm (61 to 99 beats/min) and atrial pacing (100 to 171 beats/min) were performed to determine the effect of heart rate on late potentials in 15 patients without (group 1) and 7 patients with (group 2) inducible sustained ventricular tachycardia (VT). In sinus rhythm (79 +/- 12 vs 77 +/- 12 beats/min, difference not significant), the duration of the low-amplitude signal less than 40 microV was longer in group 2 than group 1 (43 +/- 21 vs 26 +/- 8 ms, p = 0.034) and more patients had late potentials (57 vs 7%, p = 0.021), but QRS duration (121 +/- 32 vs 98 +/- 19 ms) and terminal voltage (33 +/- 33 vs 50 +/- 26 ms) were not significantly different. With atrial pacing in group 1 (128 +/- 16 beats/min), 3 patients developed a simultaneous decrease in terminal voltage and an increase in terminal QRS duration consistent with a late potential, but mean total and terminal durations were unchanged. Terminal voltage increased (50 +/- 26 to 59 +/- 40) but not significantly. With atrial pacing in group 2 (119 +/- 12 beats/min) all patients either had a late potential or developed a simultaneous decrease in terminal voltage and an increase in terminal QRS duration (p = 0.001 vs group 1). Root mean square (p = 0.001 vs group 1). Root mean square voltage decreased (33 +/- 23 to 22 +/- 23) and became significantly different from group 1 (p = 0.017). Mean QRS duration, root mean square terminal voltage and low-amplitude terminal QRS duration, however, were unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)
T wave alternans during exercise and atrial pacing in humans
NASA Technical Reports Server (NTRS)
Hohnloser, S. H.; Klingenheben, T.; Zabel, M.; Li, Y. G.; Albrecht, P.; Cohen, R. J.
1997-01-01
INTRODUCTION: Evidence is accumulating that microvolt T wave alternans (TWA) is a marker of increased risk for ventricular tachyarrhythmias. Initially, atrial pacing was used to elevate heart rate and elicit TWA. More recently, a noninvasive approach has been developed that elevates heart rate using exercise. METHODS AND RESULTS: In 30 consecutive patients with a history of ventricular tachyarrhythmias, the spectral method was used to detect TWA during both atrial pacing and submaximal exercise testing. The concordance rate for the presence or absence of TWA using the two measurement methods was 84%. There was a patient-specific heart rate threshold for the detection of TWA that averaged 100 +/- 14 beats/min during exercise compared with 97 +/- 9 beats/min during right atrial pacing (P = NS). Beyond this threshold, there was a significant and comparable increase in level of TWA with decreasing pacing cycle length and increasing exercise heart rates. CONCLUSIONS: The present study is the first to demonstrate that microvolt TWA can be assessed reliably and noninvasively during exercise stress. There is a patient-specific heart rate threshold beyond which TWA continues to increase with increasing heart rates. Heart rate thresholds for the onset of TWA measured during atrial pacing and exercise stress were comparable, indicating that heart rate alone appears to be the main factor of determining the onset of TWA during submaximal exercise stress.
Significance of beating observed in earthquake responses of buildings
Çelebi, Mehmet; Ghahari, S. F.; Taciroglu, E.
2016-01-01
The beating phenomenon observed in the recorded responses of a tall building in Japan and another in the U.S. are examined in this paper. Beating is a periodic vibrational behavior caused by distinctive coupling between translational and torsional modes that typically have close frequencies. Beating is prominent in the prolonged resonant responses of lightly damped structures. Resonances caused by site effects also contribute to accentuating the beating effect. Spectral analyses and system identification techniques are used herein to quantify the periods and amplitudes of the beating effects from the strong motion recordings of the two buildings. Quantification of beating effects is a first step towards determining remedial actions to improve resilient building performance to strong earthquake induced shaking.
Neural entrainment to the rhythmic structure of music.
Tierney, Adam; Kraus, Nina
2015-02-01
The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.
Diagnostic grade wireless ECG monitoring.
Garudadri, Harinath; Chi, Yuejie; Baker, Steve; Majumdar, Somdeb; Baheti, Pawan K; Ballard, Dan
2011-01-01
In remote monitoring of Electrocardiogram (ECG), it is very important to ensure that the diagnostic integrity of signals is not compromised by sensing artifacts and channel errors. It is also important for the sensors to be extremely power efficient to enable wearable form factors and long battery life. We present an application of Compressive Sensing (CS) as an error mitigation scheme at the application layer for wearable, wireless sensors in diagnostic grade remote monitoring of ECG. In our previous work, we described an approach to mitigate errors due to packet losses by projecting ECG data to a random space and recovering a faithful representation using sparse reconstruction methods. Our contributions in this work are twofold. First, we present an efficient hardware implementation of random projection at the sensor. Second, we validate the diagnostic integrity of the reconstructed ECG after packet loss mitigation. We validate our approach on MIT and AHA databases comprising more than 250,000 normal and abnormal beats using EC57 protocols adopted by the Food and Drug Administration (FDA). We show that sensitivity and positive predictivity of a state-of-the-art ECG arrhythmia classifier is essentially invariant under CS based packet loss mitigation for both normal and abnormal beats even at high packet loss rates. In contrast, the performance degrades significantly in the absence of any error mitigation scheme, particularly for abnormal beats such as Ventricular Ectopic Beats (VEB).
Rajasingh, Sheeja; Isai, Dona Greta; Samanta, Saheli; Zhou, Zhi-Gang; Dawn, Buddhadeb; Kinsey, William H; Czirok, Andras; Rajasingh, Johnson
2018-04-05
Induced pluripotent stem cell (iPSC)-based cardiac regenerative medicine requires the efficient generation, structural soundness and proper functioning of mature cardiomyocytes, derived from the patient's somatic cells. The most important functional property of cardiomyocytes is the ability to contract. Currently available methods routinely used to test and quantify cardiomyocyte function involve techniques that are labor-intensive, invasive, require sophisticated instruments or can adversely affect cell vitality. We recently developed optical flow imaging method analyses and quantified cardiomyocyte contractile kinetics from video microscopic recordings without compromising cell quality. Specifically, our automated particle image velocimetry (PIV) analysis of phase-contrast video images captured at a high frame rate yields statistical measures characterizing the beating frequency, amplitude, average waveform and beat-to-beat variations. Thus, it can be a powerful assessment tool to monitor cardiomyocyte quality and maturity. Here we demonstrate the ability of our analysis to characterize the chronotropic responses of human iPSC-derived cardiomyocytes to a panel of ion channel modulators and also to doxorubicin, a chemotherapy agent with known cardiotoxic side effects. We conclude that the PIV-derived beat patterns can identify the elongation or shortening of specific phases in the contractility cycle, and the obtained chronotropic responses are in accord with known clinical outcomes. Hence, this system can serve as a powerful tool to screen the new and currently available pharmacological compounds for cardiotoxic effects.
Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.
Li, Q; Clifford, G D
2012-09-01
In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.
Electromuscular incapacitating devices discharge and risk of severe bradycardia.
Havranek, Stepan; Neuzil, Petr; Linhart, Ales
2015-06-01
Electromuscular incapacitating devices (EMDs) are high-voltage, low-current stimulators causing involuntary muscle contractions and sensory response. Existing evidence about cardiac effects of EMD remains inconclusive. The aim of our study was to analyze electrocardiographic, echocardiographic, and microvolt T-wave alternans (MTWA) changes induced by EMD discharge.We examined 26 volunteers (22 men; median age 30 years) who underwent single standard 5-second duration exposure to TASER X26 under continuous echocardiographic and electrocardiographic monitoring. Microvolt T-wave alternans testing was performed at baseline (MTWA-1), as well as immediately and 60 minutes after EMD exposure (MTWA-2 and MTWA-3, respectively).Mean heart rate (HR) increased significantly from 88 ± 17 beats per minute before to 129 ± 17 beats per minute after exposure (P < 0.001). However, in 2 individuals, an abrupt decrease in HR was observed. In one of them, interval between two consecutive beats increased up to 1.7 seconds during the discharge. New onset of supraventricular premature beats was observed after discharge in 1 patient. Results of MTWA-1, MTWA-2, and MTWA-3 tests were positive in one of the subjects, each time in a different case.Standard EMD exposure can be associated with a nonuniform reaction of HR and followed by heart rhythm disturbances. New MTWA positivity can reflect either the effect of EMD exposure or a potential false positivity of MTWA assessments.
Effects of creatine supplementation on cardiac autonomic functions in bodybuilders.
Mert, Kadir Uğur; Ilgüy, Serdar; Dural, Muhammet; Mert, Gurbet Özge; Özakin, Engin
2017-06-01
Bodybuilder-type workouts may affect heart rate variability (HRV), which has considerable potential to assess the role of autonomic nervous system (ANS). A scientifically designed approach is necessary for bodybuilders to achieve better results while protecting their health. In this study, we aimed to investigate HRV parameters in bodybuilders compared to healthy control subjects and effects of creatine supplementation. A total of 48 male participants (16 controls, 16 supplement (-), 16 supplement (+)) were evaluated in our study. Bodybuilders who were taking creatine supplementation were enrolled in supplement (+) group. HRV parameters were measured from 24-hour Holter recordings of all participants. When mean heart rates were compared with control group (71.5 ± 12.6 beats/min), statistically significant difference was revealed in supplement (-) group (61.8 ± 6.8 beats/min; P = 0.022) unlike supplement (+) group (69.63 ± 14.1 beats/min; P = 0.650). HRV analyses revealed significant parasympathetic shift in supplement (-) group. No significant difference was demonstrated on HRV parameters, except high frequency (P = 0.029) in supplement (+) group. Conclusively, elevated parasympathetic modulation, which is favorable cardiovascular outcome of exercise, was demonstrated in bodybuilders. However, our study also revealed that creatine supplementation attenuates this favorable effect in ANS by limiting elevation of parasympathetic modulation. Although the sympathetic slight shift is attributed to creatine supplementation, it cannot be discriminated from the effects of over training. © 2017 Wiley Periodicals, Inc.
Heart rate variability alters cardiac repolarization and electromechanical dynamics.
Phadumdeo, Vrishti M; Weinberg, Seth H
2018-04-07
Heart rate continuously varies due to autonomic regulation, stochasticity in pacemaking, and circadian rhythm, collectively termed heart rate variability (HRV), during normal physiological conditions. Low HRV is clinically associated with an elevated risk of cardiac arrhythmias. Alternans, a beat-to-beat alternation in action potential duration (APD) and/or intracellular calcium (Ca) transient, is a well-known risk factor associated with cardiac arrhythmias that is typically studied under conditions of a constant pacing rate, i.e., the absence of HRV. In this study, we investigate the effects of HRV on the interplay between APD, Ca, and electromechanical properties, employing a nonlinear discrete-time map model that governs APD and intracellular Ca cycling with a stochastic pacing period. We find that HRV can decrease variation in APD and peak Ca at fast pacing rates for which alternans is present. Further, increased HRV typically disrupts the alternating pattern for both APD and peak Ca and weakens the correlation between APD and peak Ca, thus decoupling Ca-mediated instabilities from repolarization alternation. We find that the efficacy of these effects is regulated by the sarcoplasmic reticulum Ca uptake rate. Overall, these results demonstrate that HRV disrupts arrhythmogenic alternans and suggests that HRV may be a significant factor in preventing life-threatening arrhythmias. Copyright © 2018 Elsevier Ltd. All rights reserved.
AUTONOMIC CONTROL OF HEART RATE AFTER EXERCISE IN TRAINED WRESTLERS
Báez, San Martín E.; Von Oetinger, A.; Cañas, Jamett R.; Ramírez, Campillo R.
2013-01-01
The objective of this study was to establish differences in vagal reactivation, through heart rate recovery and heart rate variability post exercise, in Brazilian jiu-jitsu wrestlers (BJJW). A total of 18 male athletes were evaluated, ten highly trained (HT) and eight moderately trained (MT), who performed a maximum incremental test. At the end of the exercise, the R-R intervals were recorded during the first minute of recovery. We calculated heart rate recovery (HRR60s), and performed linear and non-linear (standard deviation of instantaneous beat-to-beat R-R interval variability – SD1) analysis of heart rate variability (HRV), using the tachogram of the first minute of recovery divided into four segments of 15 s each (0-15 s, 15-30 s, 30-45 s, 45-60 s). Between HT and MT individuals, there were statistically significant differences in HRR60s (p <0.05) and in the non linear analysis of HRV from SD130-45s (p <0.05) and SD145-60s (p <0.05). The results of this research suggest that heart rate kinetics during the first minute after exercise are related to training level and can be used as an index for autonomic cardiovascular control in BJJW. PMID:24744476
Video-rate or high-precision: a flexible range imaging camera
NASA Astrophysics Data System (ADS)
Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.
2008-02-01
A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.
Autonomic control of heart rate after exercise in trained wrestlers.
Henríquez, Olguín C; Báez, San Martín E; Von Oetinger, A; Cañas, Jamett R; Ramírez, Campillo R
2013-06-01
The objective of this study was to establish differences in vagal reactivation, through heart rate recovery and heart rate variability post exercise, in Brazilian jiu-jitsu wrestlers (BJJW). A total of 18 male athletes were evaluated, ten highly trained (HT) and eight moderately trained (MT), who performed a maximum incremental test. At the end of the exercise, the R-R intervals were recorded during the first minute of recovery. We calculated heart rate recovery (HRR60s), and performed linear and non-linear (standard deviation of instantaneous beat-to-beat R-R interval variability - SD1) analysis of heart rate variability (HRV), using the tachogram of the first minute of recovery divided into four segments of 15 s each (0-15 s, 15-30 s, 30-45 s, 45-60 s). Between HT and MT individuals, there were statistically significant differences in HRR60s (p <0.05) and in the non linear analysis of HRV from SD130-45s (p <0.05) and SD145-60s (p <0.05). The results of this research suggest that heart rate kinetics during the first minute after exercise are related to training level and can be used as an index for autonomic cardiovascular control in BJJW.
Atrial fibrillation detection by heart rate variability in Poincare plot.
Park, Jinho; Lee, Sangwook; Jeon, Moongu
2009-12-11
Atrial fibrillation (AFib) is one of the prominent causes of stroke, and its risk increases with age. We need to detect AFib correctly as early as possible to avoid medical disaster because it is likely to proceed into a more serious form in short time. If we can make a portable AFib monitoring system, it will be helpful to many old people because we cannot predict when a patient will have a spasm of AFib. We analyzed heart beat variability from inter-beat intervals obtained by a wavelet-based detector. We made a Poincare plot using the inter-beat intervals. By analyzing the plot, we extracted three feature measures characterizing AFib and non-AFib: the number of clusters, mean stepping increment of inter-beat intervals, and dispersion of the points around a diagonal line in the plot. We divided distribution of the number of clusters into two and calculated mean value of the lower part by k-means clustering method. We classified data whose number of clusters is more than one and less than this mean value as non-AFib data. In the other case, we tried to discriminate AFib from non-AFib using support vector machine with the other feature measures: the mean stepping increment and dispersion of the points in the Poincare plot. We found that Poincare plot from non-AFib data showed some pattern, while the plot from AFib data showed irregularly irregular shape. In case of non-AFib data, the definite pattern in the plot manifested itself with some limited number of clusters or closely packed one cluster. In case of AFib data, the number of clusters in the plot was one or too many. We evaluated the accuracy using leave-one-out cross-validation. Mean sensitivity and mean specificity were 91.4% and 92.9% respectively. Because pulse beats of ventricles are less likely to be influenced by baseline wandering and noise, we used the inter-beat intervals to diagnose AFib. We visually displayed regularity of the inter-beat intervals by way of Poincare plot. We tried to design an automated algorithm which did not require any human intervention and any specific threshold, and could be installed in a portable AFib monitoring system.
Zuchinali, Priccila; Souza, Gabriela C; Pimentel, Maurício; Chemello, Diego; Zimerman, André; Giaretta, Vanessa; Salamoni, Joyce; Fracasso, Bianca; Zimerman, Leandro I; Rohde, Luis E
2016-12-01
The presumed proarrhythmic action of caffeine is controversial. Few studies have assessed the effect of high doses of caffeine in patients with heart failure due to left ventricular systolic dysfunction at high risk for ventricular arrhythmias. To compare the effect of high-dose caffeine or placebo on the frequency of supraventricular and ventricular arrhythmias, both at rest and during a symptom-limited exercise test. Double-blinded randomized clinical trial with a crossover design conducted at the heart failure and cardiac transplant clinic of a tertiary-care university hospital. The trial included patients with chronic heart failure with moderate-to-severe systolic dysfunction (left ventricular ejection fraction <45%) and New York Heart Association functional class I to III between March 5, 2013, and October 2, 2015. Caffeine (100 mg) or lactose capsules, in addition to 5 doses of 100 mL decaffeinated coffee at 1-hour intervals, for a total of 500 mg of caffeine or placebo during a 5-hour protocol. After a 1-week washout period, the protocol was repeated. Number and percentage of ventricular and supraventricular premature beats assessed by continuous electrocardiographic monitoring. We enrolled 51 patients (37 [74%] male; mean [SD] age, 60.6 [10.9] years) with predominantly moderate-to-severe left ventricular systolic dysfunction (mean [SD] left ventricular ejection fraction, 29% [7%]); 31 [61%] had an implantable cardioverter-defibrillator device. No significant differences between the caffeine and placebo groups were observed in the number of ventricular (185 vs 239 beats, respectively; P = .47) and supraventricular premature beats (6 vs 6 beats, respectively; P = .44), as well as in couplets, bigeminal cycles, or nonsustained tachycardia during continuous electrocardiographic monitoring. Exercise test-derived variables, such as ventricular and supraventricular premature beats, duration of exercise, estimated peak oxygen consumption, and heart rate, were not influenced by caffeine ingestion. We observed no increases in ventricular premature beats (91 vs 223 vs 207 beats, respectively) in patients with higher levels of plasma caffeine concentration compared with lower plasma levels (P = .91) or with the placebo group (P = .74). Acute ingestion of high doses of caffeine did not induce arrhythmias in patients with systolic heart failure and at high risk for ventricular arrhythmias. clinicaltrials.gov Identifier: NCT02045992.
The effect of sham feeding on neurocardiac regulation in healthy human volunteers
Kamath, Markad V; Spaziani, Robert; Ullal, Sangeeta; Tougas, Gervais; Guzman, Juan C; Morillo, Carlos; Capogna, Joshua; Al-Bayati, Mohammed; Armstrong, David
2007-01-01
BACKGROUND: Distension and electrical stimuli in the esophagus alter heart rate variability (HRV) consistent with activation of vagal afferent and efferent pathways. Sham feeding stimulates gastric acid secretion by means of vagal efferent pathways. It is not known, however, whether activation of vagal efferent pathways is organ- or stimulus-specific. OBJECTIVE: To test the hypothesis that sham feeding increases the high frequency (HF) component of HRV, indicating increased neurocardiac vagal activity in association with the known, vagally mediated, increase in gastric acid secretion. METHODS: Continuous electrocardiography recordings were obtained in 12 healthy, semirecumbent subjects during consecutive 45 min baseline, 20 min sham feeding (standard hamburger meal) and 45 min recovery periods. The R-R intervals and beat-to-beat heart rate signal were determined from digitized electrocardiography recordings; power spectra were computed from the heart rate signal to determine sympathetic (low frequency [LF]) and vagal (HF) components of HRV. RESULTS: Heart rate increased during sham feeding (median 70.8 beats/min, 95% CI 66.0 to 77.6; P<0.001), compared with baseline (63.6, 95% CI 60.8 to 70.0) and returned to baseline levels within 45 min. Sham feeding increased the LF to HF area ratio (median: 1.55, 95% C.I 1.28 to 1.77; P<0.021, compared with baseline (1.29, 95% CI 1.05 to 1.46); this increase in LF to HF area ratio was associated with a decrease in the HF component of HRV. CONCLUSIONS: Sham feeding produces a reversible increase in heart rate that is attributable to a decrease in neurocardiac parasympathetic activity despite its known ability to increase vagally mediated gastric acid secretion. These findings suggest that concurrent changes in cardiac and gastric function are modulated independently by vagal efferent fibres and that vagally mediated changes in organ function are stimulus- and organ-specific. PMID:18026575
Context Specificity of the ANS Stress Response during Two Regrouping Experiments in Goats
Patt, Antonia; Gygax, Lorenz; Wechsler, Beat; Hillmann, Edna; Langbein, Jan; Keil, Nina M.
2016-01-01
The aim of this study was to analyze whether the activity of the autonomic nervous system (ANS) differs between two regrouping procedures in goats, which would indicate stimulus specificity of these stressors. Applying two regrouping procedures, we evaluated heart rate and heart rate variability (RMSSD, SDNN, and RMSSD/SDNN). The two regrouping procedures were (1) introduction of individual goats into established groups (“introduction experiment”) and (2) temporary separation and subsequent reintegration of individuals from/into their group with two levels of contact during separation (“separation experiment”). In the “introduction experiment,” the heart rate of introduced goats while lying decreased continuously from an average 78 to 68 beats/min from before the introduction to the last day of the introduction period. Inversely, RMSSD increased continuously from 41 to 62 ms, which, on its own, would indicate an adaptation to the situation. During the “separation experiment,” heart rate while lying was higher when goats were separated in the “acoustic contact treatment” (82 beats/min on average) compared with the “restricted physical contact treatment” (75 beats/min on average). This difference reflected a higher level of arousal during the “acoustic contact treatment.” However, heart rate activity did not allow detecting effects of separation or reintegration. Even though it can be assumed that both the separation and introduction of goats are stressful for goats, the ANS reactions observed in this study differed between the two management procedures indicating that the ANS activation was specific to each situation. In addition, we discuss the ANS results in context with earlier findings of variables of the hypothalamic pituitary adrenal (HPA) axis (fecal cortisol metabolites) and behavior (lying and feeding). As correspondence between ANS, HPA, and behavioral reactions was limited both within and across experiments, the results of this study underline the concept that stress response patterns are context specific. PMID:27551679
Sharif, Behzad; Bresler, Yoram
2013-01-01
Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475
Corkidi, G; Montoya, F; Hernández-Herrera, P; Ríos-Herrera, W A; Müller, M F; Treviño, C L; Darszon, A
2017-09-01
Are there intracellular Ca2+ ([Ca2+]i) oscillations correlated with flagellar beating in human sperm? The results reveal statistically significant [Ca2+]i oscillations that are correlated with the human sperm flagellar beating frequency, when measured in three-dimensions (3D). Fast [Ca2+]i oscillations that are correlated to the beating flagellar frequency of cells swimming in a restricted volume have been detected in hamster sperm. To date, such findings have not been confirmed in any other mammalian sperm species. An important question that has remained regarding these observations is whether the fast [Ca2+]i oscillations are real or might they be due to remaining defocusing effects of the Z component arising from the 3D beating of the flagella. Healthy donors whose semen samples fulfill the WHO criteria between the age of 18-28 were selected. Cells from at least six different donors were utilized for analysis. Approximately the same number of experimental and control cells were analyzed. Motile cells were obtained by the swim-up technique and were loaded with Fluo-4 (Ca2+ sensitive dye) or with Calcein (Ca2+ insensitive dye). Ni2+ was used as a non-specific plasma membrane Ca2+ channel blocker. Fluorescence data and flagella position were acquired in 3D. Each cell was recorded for up to 5.6 s within a depth of 16 microns with a high speed camera (coupled to an image intensifier) acquiring at a rate of 3000 frames per second, while an oscillating objective vibrated at 90 Hz via a piezoelectric device. From these samples, eight experimental and nine control sperm cells were analyzed in both 2D and 3D. We have implemented a new system that allows [Ca2+]i measurements of the human sperm flagellum beating in 3D. These measurements reveal statistically significant [Ca2+]i oscillations that correlate with the flagellar beating frequency. These oscillations may arise from intracellular sources and/or Ca2+ transporters, as they were insensitive to external Ni2+, a non-specific plasma membrane Ca2+ channel blocker. N/A. Analysis in 3D needs a very fast image acquisition rate to correctly sample a volume containing swimming sperm. This condition requires a very short exposure time per image making it necessary to use an image intensifier which also increases noise. The lengthy analysis time required to obtain reliable results limited the number of cells that could be analyzed. The possibility of recording flagellar [Ca2+]i oscillations described here may open a new avenue to better understand ciliary and flagellar beating that are fundamental for mucociliary clearance, oocyte transport, fertilization, cerebrospinal fluid pressure regulation and developmental left-right symmetry breaking in the embryonic node. This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) (grants 253952 to G.C.; 156667 to F.M.M. and Fronteras 71 39908-Q to A.D. and Post-doctoral scholarships 366844 to P.H.-H. and 291028 to F.M.) and the Dirección General de Asuntos del Personal Académico of the Universidad Nacional Autónoma de México (DGAPA-UNAM) (grants CJIC/CTIC/4898/2016 to F.M. and IN205516 to A.D.). There are no conflicts of interest to declare. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Circulation and metabolic rates in a natural hibernator: an integrative physiological model
Nelson, Bethany T.; Andrews, Matthew T.
2010-01-01
Small hibernating mammals show regular oscillations in their heart rate and body temperature throughout the winter. Long periods of torpor are abruptly interrupted by arousals with heart rates that rapidly increase from 5 beats/min to over 400 beats/min and body temperatures that increase by ∼30°C only to drop back into the hypothermic torpid state within hours. Surgically implanted transmitters were used to obtain high-resolution electrocardiogram and body temperature data from hibernating thirteen-lined ground squirrels (Spermophilus tridecemlineatus). These data were used to construct a model of the circulatory system to gain greater understanding of these rapid and extreme changes in physiology. Our model provides estimates of metabolic rates during the torpor-arousal cycles in different model compartments that would be difficult to measure directly. In the compartment that models the more metabolically active tissues and organs (heart, brain, liver, and brown adipose tissue) the peak metabolic rate occurs at a core body temperature of 19°C approximately midway through an arousal. The peak metabolic rate of the active tissues is nine times the normothermic rate after the arousal is complete. For the overall metabolic rate in all tissues, the peak-to-resting ratio is five. This value is high for a rodent, which provides evidence for the hypothesis that the arousal from torpor is limited by the capabilities of the cardiovascular system. PMID:20844258
Accelerated self-gated UTE MRI of the murine heart
NASA Astrophysics Data System (ADS)
Motaal, Abdallah G.; Noorman, Nils; De Graaf, Wolter L.; Florack, Luc J.; Nicolay, Klaas; Strijkers, Gustav J.
2014-03-01
We introduce a new protocol to obtain radial Ultra-Short TE (UTE) MRI Cine of the beating mouse heart within reasonable measurement time. The method is based on a self-gated UTE with golden angle radial acquisition and compressed sensing reconstruction. The stochastic nature of the retrospective triggering acquisition scheme produces an under-sampled and random kt-space filling that allows for compressed sensing reconstruction, hence reducing scan time. As a standard, an intragate multislice FLASH sequence with an acquisition time of 4.5 min per slice was used to produce standard Cine movies of 4 mice hearts with 15 frames per cardiac cycle. The proposed self-gated sequence is used to produce Cine movies with short echo time. The total scan time was 11 min per slice. 6 slices were planned to cover the heart from the base to the apex. 2X, 4X and 6X under-sampled k-spaces cine movies were produced from 2, 1 and 0.7 min data acquisitions for each slice. The accelerated cine movies of the mouse hearts were successfully reconstructed with a compressed sensing algorithm. Compared to the FLASH cine images, the UTE images showed much less flow artifacts due to the short echo time. Besides, the accelerated movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters derived from the standard and the accelerated cine movies were nearly identical.
High beat-to-beat blood pressure variability in atrial fibrillation compared to sinus rhythm.
Olbers, Joakim; Gille, Adam; Ljungman, Petter; Rosenqvist, Mårten; Östergren, Jan; Witt, Nils
2018-02-07
Atrial fibrillation (AF) is associated with an increased risk for cardiovascular morbidity and mortality, not entirely explained by thromboembolism. The underlying mechanisms for this association are largely unknown. Similarly, high blood pressure (BP) increases the risk for cardiovascular events. Despite this the interplay between AF and BP is insufficiently studied. The purpose of this study was to examine and quantify the beat-to-beat blood pressure variability in patients with AF in comparison to a control group of patients with sinus rhythm. We studied 33 patients - 21 in atrial fibrillation and 12 in sinus rhythm - undergoing routine coronary angiography. Invasive blood pressure was recorded at three locations: radial artery, brachial artery and ascending aorta. Blood pressure variability, defined as average beat-to-beat blood pressure difference, was calculated for systolic and diastolic blood pressure at each site. We observed a significant difference (p < .001) in systolic and diastolic blood pressure variability between the atrial fibrillation and sinus rhythm groups at all locations. Systolic blood pressure variability roughly doubled in the atrial fibrillation group compared to the sinus rhythm group (4.9 and 2.4 mmHg respectively). Diastolic beat-to-beat blood pressure variability was approximately 6 times as high in the atrial fibrillation group compared to the sinus rhythm group (7.5 and 1.2 mmHg respectively). No significant difference in blood pressure variability was seen between measurement locations. Beat-to-beat blood pressure variability in patients with atrial fibrillation was substantially higher than in patients with sinus rhythm. Hemodynamic effects of this beat-to-beat variation in blood pressure may negatively affect vascular structure and function, which may contribute to the increased cardiovascular morbidity and mortality seen in patients with atrial fibrillation.
Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen
2015-01-01
Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Early, de novo atrial fibrillation after coronary artery bypass grafting: Facts and features.
Yaksh, Ameeta; Kik, Charles; Knops, Paul; van Ettinger, Maarten J B; Bogers, Ad J J C; de Groot, Natasja M S
2017-02-01
Knowledge of the mechanism underlying post-operative atrial fibrillation (PoAF) is essential for development of preventive measures. The incidence and characteristics of both PoAF and supraventricular premature beats triggering PoAF, their interrelationship and alterations over time have never been examined. The goal of this study is therefore to examine the correlation between the incidence and characteristics of supraventricular premature beats (SVPBs) and PoAF episodes in patients undergoing CABG in the first five post-operative days. PoAF episodes (N=327) and SVPBs (N=141,873) were characterized in 29 patients (63±9 years; 22 (76%) male) undergoing coronary artery bypass grafting and compared with a control group of patients without PoAF by using continuous cardiac rhythm monitoring during the first 5 days after surgery. Most patients (N=18, 62%) had multiple PoAF episodes; the median number of PoAF episodes per patient was 3 and varied between 1 and 139. The majority of PoAF episodes developed on the second and third post-operative day (55%). The averaged median duration of PoAF episodes per patient was 469±1085 min. Patients with PoAF had a higher SVPBs burden compared to subjects without PoAF (0.9% vs 0.2%, P<.001). SVPBs initiating PoAF had shorter coupling intervals than SVPBs which did not initiate PoAF episodes (58% vs 64% (P<.001) and were preceded by heart rate acceleration. PoAF episodes are mainly repetitive though transient in nature. There was a considerable inter-individual variation in both AF and SVPB characteristics, despite a similar underlying clinical profile. The SVPB burden is higher in patients with PoAF and the mode of onset is characterized by short coupled SVPBs. Determination of individual post-operative dysrhythmia profiles enables identification of patients at risk for developing PoAF. Copyright © 2016 Elsevier Inc. All rights reserved.
Detrended fluctuation analysis of non-stationary cardiac beat-to-beat interval of sick infants
NASA Astrophysics Data System (ADS)
Govindan, Rathinaswamy B.; Massaro, An N.; Al-Shargabi, Tareq; Niforatos Andescavage, Nickie; Chang, Taeun; Glass, Penny; du Plessis, Adre J.
2014-11-01
We performed detrended fluctuation analysis (DFA) of cardiac beat-to-beat intervals (RRis) collected from sick newborn infants over 1-4 day periods. We calculated four different metrics from the DFA fluctuation function: the DFA exponents αL (>40 beats up to one-fourth of the record length), αs (15-30 beats), root-mean-square (RMS) fluctuation on a short-time scale (20-50 beats), and RMS fluctuation on a long-time scale (110-150 beats). Except αL , all metrics clearly distinguished two groups of newborn infants (favourable vs. adverse) with well-characterized outcomes. However, the RMS fluctuations distinguished the two groups more consistently over time compared to αS . Furthermore, RMS distinguished the RRi of the two groups earlier compared to the DFA exponent. In all the three measures, the favourable outcome group displayed higher values, indicating a higher magnitude of (auto-)correlation and variability, thus normal physiology, compared to the adverse outcome group.
Swimming Performance and Metabolism of Golden Shiners
USDA-ARS?s Scientific Manuscript database
The swimming ability and metabolism of golden shiners, Notemigonus crysoleucas, was examined using swim tunnel respirometery. The oxygen consumption and tail beat frequencies at various swimming speeds, an estimation of the standard metabolic rate, and the critical swimming speed (Ucrit) was determ...
Bell, Wade E.; Hallworth, Richard; Wyatt, Todd A.; Sisson, Joseph H.
2015-01-01
When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. PMID:25066640
Khiabani, Hassan Z; Mørland, Jørg; Bramness, Jørgen G
2008-12-01
Delta 9-tetrahydrocannabinol (THC) is the major active component of cannabis. Cardiovascular effects of THC have previously been reported: tachycardia after intake, but also bradycardia at higher doses. The purpose of this study was, firstly, to investigate the frequency and irregularity of heart rate in a group of cannabis users in their natural surroundings. We also compared THC-positive drivers with a regular pulse with THC-positive drivers with an irregular pulse. The division of Forensic Toxicology and Drug Abuse (DFTDA) at the Norwegian Institute of Public Heath analyzes blood samples from all drivers suspected of driving under the influence of drugs. We studied pulse rate and regularity in 502 THC-positive drivers who tested negative for other substances. As a control group, we randomly selected 125 drug-negative cases from the database of the DFTDA; no alcohol, narcotics, or medicinal drugs of abuse were detected. The Delta9-THC-positive drivers had a higher mean pulse rate than the control group [82.8 beats/min (SD 16.3) versus 75.6 beats/min (SD 9.2)] and more cases with tachycardia were detected in the Delta9-THC-positive group (19.4% versus 1.6%). There was only one driver with an irregular heart beat in the control group, while there were nine among the Delta9-THC-positive drivers. The drivers with an irregular pulse were over-represented amongst those with the lowest blood Delta9-THC concentrations. This report represents a large study of subjects in a real-life situation and includes observations on pulse frequency, regularity, and blood Delta9-THC concentration. A substantial fraction of Delta9-THC-positive drivers had tachycardia, but there was no correlation between blood Delta9-THC concentration and pulse rate in the present study. We had no further diagnostic information on the cause of the pulse irregularities, but our results indicate that occasional users of cannabis tend to have irregular heart rates at low THC concentrations and at low pulse rates.
Cyclic variation of ultrasonic backscattering from porcine whole blood under pulsatile flow
NASA Astrophysics Data System (ADS)
Lin, Yu-Hong
1997-10-01
The cyclic variation of ultrasonic backscattering from blood under pulsatile flow is believed to be related to the change of aggregation state of red cells and is only observed in whole blood. This study was to investigate the phenomenon by an invasive approach which was performed by inserting a 10 MHz catheter mounted transducer into a vessel. For ultrasonic measurement from blood, the most fundamental scheme is the hematocrit dependence. The backscatter maximum location was changed as the blood was stirred or stationary, as well as under steady laminar or turbulent flows. The same trend was also observed under pulsatile flow with 10% to 50% hematocrits in this study, as the backscattering to hematocrit curves were plotted at different times during a flow cycle. When the cyclic variation at 20 beats per minute (BPM) was interpreted in time domain, the enhanced aggregation at the beginning of shearing was observed. At 20 BPM with 40% hematocrit, the amplitude of cyclic variation was reduced when the shear rate was increased and the threshold of 150 s-1 was estimated. The results showed that there was no cyclic variation at 60 BPM. The backscattering was also plotted against the mean flow velocity, which demonstrated the hysteresis loops. The ultrasonic measurements showed that the relationship between the forward and backward paths of the loops were altered as beat rate, hematocrit, and shear rate were varied. Since the pulsatile flow was very complicated, a computational fluid dynamics package, FIDAPTM, was used to compute the shear rate based on the Power Law Model for non-Newtonian fluid viscosity. The non- Newtonian index and consistency in the model were computed from the viscosity to shear rate curves at 10% to 50% hematocrits measured by a cone-plate viscometer. For in vivo measurements, small pigs were used as models. Ultrasonic backscattering measurements were performed in the arteries and veins. The effect of stenosis was also investigated at the site below the renal branch in the artery. The results show that the cyclic variation from whole blood was mediated by the shear rate, hematocrit, beat rate, and fibrinogen concentration.
Noncontact measurement of emotional and physiological changes in heart rate from a webcam.
Madan, Christopher R; Harrison, Tyler; Mathewson, Kyle E
2018-04-01
Heart rate, measured in beats per minute, can be used as an index of an individual's physiological state. Each time the heart beats, blood is expelled and travels through the body. This blood flow can be detected in the face using a standard webcam that is able to pick up subtle changes in color that cannot be seen by the naked eye. Due to the light absorption spectrum of blood, we are able to detect differences in the amount of light absorbed by the blood traveling just below the skin (i.e., photoplethysmography). By modulating emotional and physiological stress-that is, viewing arousing images and sitting versus standing, respectively-to elicit changes in heart rate, we explored the feasibility of using a webcam as a psychophysiological measurement of autonomic activity. We found a high level of agreement between established physiological measures, electrocardiogram, and blood pulse oximetry, and heart rate estimates obtained from the webcam. We thus suggest webcams can be used as a noninvasive and readily available method for measuring psychophysiological changes, easily integrated into existing stimulus presentation software and hardware setups. © 2017 Society for Psychophysiological Research.
Prediction of HR/BP response to the spontaneous breathing trial by fluctuation dissipation theory
NASA Astrophysics Data System (ADS)
Chen, Man
2014-03-01
We applied the non-equilibrium fluctuation dissipation theorem to predict how critically-ill patients respond to treatment, based on both heart rate data and blood pressure data collected by standard hospital monitoring devices. The non-equilibrium fluctuation dissipation theorem relates the response of a system to a perturbation to the fluctuations in the stationary state of the system. It is shown that the response of patients to a standard procedure performed on patients, the spontaneous breathing trial (SBT), can be predicted by the non-equilibrium fluctuation dissipation approach. We classify patients into different groups according to the patients' characteristics. For each patient group, we extend the fluctuation dissipation theorem to predict interactions between blood pressure and beat-to-beat dynamics of heart rate in response to a perturbation (SBT), We also extract the form of the perturbation function directly from the physiological data, which may help to reduce the prediction error. We note this method is not limited to the analysis of the heart rate dynamics, but also can be applied to analyze the response of other physiological signals to other clinical interventions.
Atropine unmasks bed-rest effect - A spectral analysis of cardiac interbeat intervals
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.; Goldwater, Danielle; Bhargava, Valmik
1986-01-01
Heart rate spectral data obtained for 10 male subjects between 35-49 years following orthostatic tolerance testing with lower body negative pressure prebed rest and after 7-10 days of bed rest, while on placebo and after intravenous atropine are analyzed. Comparison of the spectral atropine rms for subjects prebed rest and after bed rest reveal a decrease from 63 + or - 24 ms to 40 + or - 23 ms. It is observed that heart rate interval variability for subjects after bed rest and with atropine is reduced; the heart rate at bed rest with atropine is increased from 70.4 + or - 12.4 beats/min prebed rest to 83.7 + or - 18.9 beats/min; and the exercise tolerance time for subjects in the atropine prebed-rest phase (658 + or - 352 s) is higher than the bed-rest phase (505 + or - 252 s). It is noted that bed rest impairs the cardiovascular capacity to adaptively modulate physiological responses, atropine exposes bed-rest deconditioning effects, and spectral analysis is useful for studying the effects of bed-rest deconditioning on cardiac dynamics.
[Perioperative thyroid storm in a patient with undiscovered hyperthyroidism].
Nakamura, Shinji; Nishmyama, Tomoki; Hanaoka, Kazuo
2005-04-01
Thyroid storm can develop in patients with longstanding untreated hyperthyroidism. It is more often precipitated by an acute event such as surgery, trauma, or infection. We experienced a case in whom thyroid storm occurred during surgery, while he had no preoperative diagnosis of thyroid disease. A 30-year-old man was scheduled for left tympanoplasty. Anesthesia was induced and maintained with sevoflurane and nitrous oxide in oxygen. Heart rate and rectal temperature went up to 140 beats x min(-1) and 39 degrees C, respectively, in 3 hours during surgery. Cooling blanket, cold fluid infusion, flurbiprofen, diltiazem, and verapamil were used to decrease body temperature and heart rate. Surgery was completed and after emergence he was in agitation for 4 hours along with hyperpyrexia and tachycardia. He was diagnosed as hyperthyroidism by postoperative physical and laboratory examination. Thiamazole and propranorol were administered. In one week, symptom has declined with body temperature and heart rate of around 36 degrees C and 90 beats x min(-1), respectively. We should be more careful about evaluation of preoperative patients.
Segmented Poincaré plot analysis for risk stratification in patients with dilated cardiomyopathy.
Voss, A; Fischer, C; Schroeder, R; Figulla, H R; Goernig, M
2010-01-01
The prognostic value of heart rate variability in patients with dilated cardiomyopathy (DCM) is limited and does not contribute to risk stratification although the dynamics of ventricular repolarization differs considerably between DCM patients and healthy subjects. Neither linear nor nonlinear methods of heart rate variability analysis could discriminate between patients at high and low risk for sudden cardiac death. The aim of this study was to analyze the suitability of the new developed segmented Poincaré plot analysis (SPPA) to enhance risk stratification in DCM. In contrast to the usual applied Poincaré plot analysis the SPPA retains nonlinear features from investigated beat-to-beat interval time series. Main features of SPPA are the rotation of cloud of points and their succeeded variability depended segmentation. Significant row and column probabilities were calculated from the segments and led to discrimination (up to p<0.005) between low and high risk in DCM patients. For the first time an index from Poincaré plot analysis of heart rate variability was able to contribute to risk stratification in patients suffering from DCM.
Hydrodynamics of freely swimming flagellates
NASA Astrophysics Data System (ADS)
Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas; Bohr, Tomas; Andersen, Anders
2016-11-01
Flagellates are a diverse group of unicellular organisms forming an important part of the marine ecosystem. The arrangement of flagella around the cell serves as a key trait optimizing and compromising essential functions. With micro-particle image velocimetry we observed time-resolved near-cell flows around freely swimming flagellates, and we developed an analytical model based on the Stokes flow around a solid sphere propelled by a variable number of differently placed, temporally varying point forces, each representing one flagellum. The model allows us to reproduce the observed flow patterns and swimming dynamics, and to extract quantities such as swimming velocities and prey clearance rates as well as flow disturbances revealing the organism to flow-sensing predators. Our results point to optimal flagellar arrangements and beat patterns, and essential trade-offs. For biflagellates with two symmetrically arranged flagella we contrasted two species using undulatory and ciliary beat patterns, respectively, and found breast-stroke type beat patterns with equatorial power strokes to be favorable for fast as well as quiet swimming. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.
Magrì, Damiano; Piccirillo, Gianfranco; Quaglione, Raffaele; Dell'armi, Annalaura; Mitra, Marilena; Velitti, Stefania; Di Barba, Daniele; Lizio, Andrea; Maisto, Damiana; Barillà, Francesco
2012-01-01
Emotionally charged events are associated with an increased risk of sudden cardiac death (SCD). In this study we assessed RR and QT variability index (QTVI) at baseline during anger recall test (AR). We calculated QTVI from a 5-min ECG recording and from a 10-beats segment around the presumed maximum sympathetic activation in thirty post-myocardial infarction patients under β-blocker therapy and 10 controls underwent. In all groups, the low-frequency component of RR and SBP increased during AR. In all recordings, the QTVI calculated on a 5-min ECG recording and the QTVI(10 beats) were higher in patients than in controls (P < 0.05). The QTVI during AR remained unchanged from baseline within each group. Conversely, during AR, the QTVI(10 beats) in controls diminished significantly (P < 0.05) from baseline whereas in patients remained unchanged. The inability to buffer an acute stress-induced increase in sympathetic activity could explain why events charged with acute stress are associated with an increased risk of ventricular arrhythmias in this setting of patients and support the role of cognitive behavior stress management strategies.
The effect of binaural beats on verbal working memory and cortical connectivity.
Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander
2017-04-01
Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.
Beat Gestures Modulate Auditory Integration in Speech Perception
ERIC Educational Resources Information Center
Biau, Emmanuel; Soto-Faraco, Salvador
2013-01-01
Spontaneous beat gestures are an integral part of the paralinguistic context during face-to-face conversations. Here we investigated the time course of beat-speech integration in speech perception by measuring ERPs evoked by words pronounced with or without an accompanying beat gesture, while participants watched a spoken discourse. Words…
Clinical Validation of Heart Rate Apps: Mixed-Methods Evaluation Study
Stans, Jelle; Mortelmans, Christophe; Van Haelst, Ruth; Van Schelvergem, Gertjan; Pelckmans, Caroline; Smeets, Christophe JP; Lanssens, Dorien; De Cannière, Hélène; Storms, Valerie; Thijs, Inge M; Vaes, Bert; Vandervoort, Pieter M
2017-01-01
Background Photoplethysmography (PPG) is a proven way to measure heart rate (HR). This technology is already available in smartphones, which allows measuring HR only by using the smartphone. Given the widespread availability of smartphones, this creates a scalable way to enable mobile HR monitoring. An essential precondition is that these technologies are as reliable and accurate as the current clinical (gold) standards. At this moment, there is no consensus on a gold standard method for the validation of HR apps. This results in different validation processes that do not always reflect the veracious outcome of comparison. Objective The aim of this paper was to investigate and describe the necessary elements in validating and comparing HR apps versus standard technology. Methods The FibriCheck (Qompium) app was used in two separate prospective nonrandomized studies. In the first study, the HR of the FibriCheck app was consecutively compared with 2 different Food and Drug Administration (FDA)-cleared HR devices: the Nonin oximeter and the AliveCor Mobile ECG. In the second study, a next step in validation was performed by comparing the beat-to-beat intervals of the FibriCheck app to a synchronized ECG recording. Results In the first study, the HR (BPM, beats per minute) of 88 random subjects consecutively measured with the 3 devices showed a correlation coefficient of .834 between FibriCheck and Nonin, .88 between FibriCheck and AliveCor, and .897 between Nonin and AliveCor. A single way analysis of variance (ANOVA; P=.61 was executed to test the hypothesis that there were no significant differences between the HRs as measured by the 3 devices. In the second study, 20,298 (ms) R-R intervals (RRI)–peak-to-peak intervals (PPI) from 229 subjects were analyzed. This resulted in a positive correlation (rs=.993, root mean square deviation [RMSE]=23.04 ms, and normalized root mean square error [NRMSE]=0.012) between the PPI from FibriCheck and the RRI from the wearable ECG. There was no significant difference (P=.92) between these intervals. Conclusions Our findings suggest that the most suitable method for the validation of an HR app is a simultaneous measurement of the HR by the smartphone app and an ECG system, compared on the basis of beat-to-beat analysis. This approach could lead to more correct assessments of the accuracy of HR apps. PMID:28842392
Miyazaki, Takahiro; Thompson, Jessica; Fujioka, Takako; Ross, Bernhard
2013-04-19
Amplitude fluctuations of natural sounds carry multiple types of information represented at different time scales, such as syllables and voice pitch in speech. However, it is not well understood how such amplitude fluctuations at different time scales are processed in the brain. In the present study we investigated the effect of the stimulus rate on the cortical evoked responses using magnetoencephalography (MEG). We used a two-tone complex sound, whose envelope fluctuated at the difference frequency and induced an acoustic beat sensation. When the beat rate was continuously swept between 3Hz and 60Hz, auditory evoked response showed distinct transient waves at slow rates, while at fast rates continuous sinusoidal oscillations similar to the auditory steady-state response (ASSR) were observed. We further derived temporal modulation transfer functions (TMTF) from amplitudes of the transient responses and from the ASSR. The results identified two critical rates of 12.5Hz and 25Hz, at which consecutive transient responses overlapped with each other. These stimulus rates roughly corresponded to the rates at which the perceptual quality of the sound envelope is known to change. Low rates (> 10Hz) are perceived as loudness fluctuation, medium rates as acoustical flutter, and rates above 25Hz as roughness. We conclude that these results reflect cortical processes that integrate successive acoustic events at different time scales for extracting complex features of natural sound. Copyright © 2013 Elsevier B.V. All rights reserved.
Bohnhorst, B; Seidel, K; Böhne, C; Peter, C; Pirr, S
2018-06-21
This study compiled percentiles for cardiorespiratory parameters in healthy term neonates during quiet sleep. We enrolled 215 healthy term neonates born at Hannover Medical School, Germany, between October 2011 and March 2013. They were prospectively observed on the maternity ward at a median age of two days using six-hour recordings of pulse oximeter plethysmography, oxygen saturation, thoracic breathing movements and electrocardiogram during sleep in a supine position. We examined their heart rate, respiratory rate and oxygen saturation during quiet sleep, plus bradycardias, apnoeas lasting at least four seconds and desaturations below 85%. The third, 50 th and 97 th percentiles were calculated as follows: heart rate 87, 112 and 133 beats per minute, respiratory rate 32, 44 and 57 per minute and oxygen saturation 94, 98 and 100%. Desaturations, apnoeas and bradycardias below 80 beats per minute were common and recorded in 54%, 98% and 30% of participants. In contrast, only 7% experienced bradycardias of less than two-thirds of the baseline heart rate and 5% experienced apnoeas exceeding 15 seconds. Our results will facilitate the evidence-based valuation of cardiorespiratory parameters in term neonates and help to validate the significance of cardiorespiratory events in preterm infants at discharge. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Heart rate monitoring mobile applications
2016-01-01
Total number of times a heart beats in a minute is known as the heart rate. Traditionally, heart rate was measured using clunky gadgets but these days it can be measured with a smartphone’s camera. This can help you measure your heart rate anywhere and at anytime, especially during workouts so you can adjust your workout intensity to achieve maximum health benefits. With simple and easy to use mobile app, ‘Unique Heart Rate Monitor’, you can also maintain your heart rate history for personal reflection and sharing with a provider. PMID:28293594
Left ventricular oxygen extraction during submaximal and maximal exertion in ponies.
Manohar, M
1988-01-01
1. Left ventricular (LV) myocardial O2 extraction was studied in five healthy ponies which had catheters implanted in the great cardiac vein and main pulmonary artery 15-30 days before the study. The abdominal aorta was percutaneously catheterized to sample arterial blood. 2. In addition, phasic LV and aortic pressures, LV dP/dtmax and rate-pressure product were also studied; dP/dtmax is the maximal rate of rise of the left ventricular pressure during the isovolumic phase, and is considered an index of myocardial contractility. Measurements were made at rest (control) and during adenosine infusion (3 mumol kg-1 min-1) at rest, moderate exercise (heart rate 169 +/- 10 beats min-1), heavy exercise (heart rate 198 +/- 7 beats min-1), maximal exercise (heart rate 232 +/- 7 beats min-1), and adenosine infusion (3 mumol kg-1 min-1) during maximal exercise (heart rate 230 +/- 6 beats min-1). 3. In resting ponies, LV arterial to coronary venous O2 content difference (delta LVa-v O2) was 8.9 +/- 0.5 ml dl-1 and O2 extraction was 59.9 +/- 2.2%. Adenosine infusion at rest decreased delta LVa-v O2 and O2 extraction precipitously (2.6 ml dl-1 and 14.3 +/- 1.7%, respectively), thereby indicating superfluous LV myocardial perfusion. 4. Moderate, heavy and maximal exercise increased delta LVa-v O2 to 185, 194 and 218% of its control value and O2 extraction rose to 71 +/- 2, 75 +/- 1.5 and 78 +/- 0.9%, respectively. The widening of the delta LVa-v O2 gradient was due to the increased arterial O2 content during exercise. 5. Combining these observations with equine myocardial perfusion, the LV O2 consumption was calculated to be 7.8, 47.9 and 103.6 ml min-1 100 g-1 at rest, moderate and maximal exercise. In order to achieve the 13.4-fold increase in LV O2 consumption, the LV perfusion rose only 6-fold; the rest being met by widening the delta LVa-v O2. 6. Adenosine infusion during maximal exercise decreased delta LVa-v O2 and O2 extraction (10.7 +/- 1 ml dl-1 and 45%, respectively; P less than 0.0001). This indicated that coronary vasodilator capacity was not being completely expended in maximally exercising ponies. It is concluded that coronary circulation is unlikely to be a limiting factor to further exertion in ponies. Organ/tissue perfusion studies in exercising ponies have demonstrated that of all working muscles, the left ventricular (LV) myocardium received the highest level of blood flow.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3150987
Wen, Hong; Gao, Yi; An, Jia-Ying
2008-08-01
To compare two training programs in rehabilitation for patients with moderate to severe chronic obstructive pulmonary disease (COPD). Of the 54 patients who entered the study, 41 completed the rehabilitation program. Thirty-two COPD patients were randomly assigned to either the anaerobic threshold group (AT, n = 15) or the high-intensity group (HI, n = 17). Another group was the control group (NT, n = 9). Bicycle exercise training was conducted for 2 days each week for a period of 12 weeks. The HI group received the highest level of intensity that could be tolerated. The AT group received a training intensity corresponding to the anaerobic threshold. Main assessments included lung function test, cardiopulmonary exercise testing, the St George's Respiratory Questionnaire and the Borg dyspnea scale before and after the rehabilitation program. The data of the baseline clinical characteristics of groups were presented as (-x) +/- s. Comparison within two means were analysed through one-sample t test or paired t test. One-way analysis of variance was used to compare multiple means. The rates were analysised by Fish exact probabilities. The Wilcoxon rank sum test was used for comparisons within the groups and the Mann-Whitney u test for intergroup comparisons. Both the AT and HI groups showed significant improvement in Vo(2peak)% pre after rehabilitation, with the former increasing from (61 +/- 11)% to (69 +/- 14)%, and the latter increasing from (72 +/- 12)% to (79 +/- 13)%. The degree of improvement of both groups (AT and HI) were (14 +/- 17)% and (12 +/- 13)%, the difference being not significant (z = -0.180, P > 0.05). At 56 W work rate, the minute ventilation decreased from (36 +/- 4) L/min to (33 +/- 5) L/min (t = 6.167, P < 0.01), the breathing frequency decreased from (32 +/- 1) beats/min to (31 +/- 3) beats/min (t = 2.876, P < 0.05), and the tidal volume increased from (1.2 +/- 0.3) L to (1.3 +/- 0.3) L (t = 2.587, P < 0.05) in the HI group. After rehabilitation the heart rates [(109 +/- 39, 110 +/- 25) beats/min] were significantly lower than those of the baseline [(116 +/- 39, 114 +/- 42) beats/min] respectively in the AT and the HI groups. Oxygen pulse increased significantly from baseline (9.6 +/- 3.7, 8.5 +/- 4.3) ml/beat to (10.4 +/- 4.0, 9.0 +/- 3.2) ml/beat. This level of exertional dyspnea (DeltaBorg/DeltaVo(2)) was significantly improved from (8.6 +/- 3.2, 6.5 +/- 2.6) to (7.4 +/- 2.5, 5.6 +/- 2.4) in both the HI and the AT group (both P < 0.05). The between-group difference for the change in DeltaBorg/DeltaVo(2), however, was not significant (z = -0.378, P > 0.05). Both the HI and the AT groups had significant improvements in exercise capacity and dyspnea after pulmonary rehabilitation. The degree of improvement in both groups was similar. But the HI group showed significant improvement in the anaerobic threshold and decrease in ventilatory requirement.
Adaptive control with self-tuning for non-invasive beat-by-beat blood pressure measurement.
Nogawa, Masamichi; Ogawa, Mitsuhiro; Yamakoshi, Takehiro; Tanaka, Shinobu; Yamakoshi, Ken-ichi
2011-01-01
Up to now, we have successfully carried out the non-invasive beat-by-beat measurement of blood pressure (BP) in the root of finger, superficial temporal and radial artery based on the volume-compensation technique with reasonable accuracy. The present study concerns with improvement of control method for this beat-by-beat BP measurement. The measurement system mainly consists of a partial pressurization cuff with a pair of LED and photo-diode for the detection of arterial blood volume, and a digital self-tuning control method. Using healthy subjects, the performance and accuracy of this system were evaluated through comparison experiments with the system using a conventional empirically tuned PID controller. The significant differences of BP measured in finger artery were not showed in systolic (SBP), p=0.52, and diastolic BP (DBP), p=0.35. With the advantage of the adaptive control with self-tuning method, which can tune the control parameters without disturbing the control system, the application area of the non-invasive beat-by-beat measurement method will be broadened.
Tang, Yi-Da; Dewland, Thomas A; Wencker, Detlef; Katz, Stuart D
2009-12-01
Post-exercise heart rate recovery (HRR) is an index of parasympathetic function associated with clinical outcomes in populations with and without documented coronary heart disease. Decreased parasympathetic activity is thought to be associated with disease progression in chronic heart failure (HF), but an independent association between post-exercise HRR and clinical outcomes among such patients has not been established. We measured HRR (calculated as the difference between heart rate at peak exercise and after 1 minute of recovery) in 202 HF subjects and recorded 17 mortality and 15 urgent transplantation outcome events over 624 days of follow-up. Reduced post-exercise HRR was independently associated with increased event risk after adjusting for other exercise-derived variables (peak oxygen uptake and change in minute ventilation per change in carbon dioxide production slope), for the Heart Failure Survival Score (adjusted HR 1.09 for 1 beat/min reduction, 95% CI 1.05-1.13, P < .0001), and the Seattle Heart Failure Model score (adjusted HR 1.08 for one beat/min reduction, 95% CI 1.05-1.12, P < .0001). Subjects in the lowest risk tertile based on post-exercise HRR (>or=30 beats/min) had low risk of events irrespective of the risk predicted by the survival scores. In a subgroup of 15 subjects, reduced post-exercise HRR was associated with increased serum markers of inflammation (interleukin-6, r = 0.58, P = .024; high-sensitivity C-reactive protein, r = 0.66, P = .007). Post-exercise HRR predicts mortality risk in patients with HF and provides prognostic information independent of previously described survival models. Pathophysiologic links between autonomic function and inflammation may be mediators of this association.
Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal
2015-01-01
Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339
Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna.
Clark, T D; Taylor, B D; Seymour, R S; Ellis, D; Buchanan, J; Fitzgibbon, Q P; Frappell, P B
2008-12-22
Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week feeding regime in sea pens at Port Lincoln, Australia. Fish ranged in body mass from 10 to 21 kg, and water temperature remained at 18-19 degrees C. Pre-feeding fH typically ranged from 20 to 50 beats min(-1). Each feeding bout (meal sizes 2-7% of tuna body mass) was characterized by increased levels of activity and fH (up to 130 beats min(-1)), and a decrease in TV from approximately 20 to 18 degrees C as cold sardines were consumed. The feeding bout was promptly followed by a rapid increase in TV, which signified the beginning of the heat increment of feeding (HIF). The time interval between meal consumption and the completion of HIF ranged from 10 to 24 hours and was strongly correlated with ration size. Although fH generally decreased after its peak during the feeding bout, it remained elevated during the digestive period and returned to routine levels on a similar, but slightly earlier, temporal scale to TV. These data imply a large contribution of fH to the increase in circulatory oxygen transport that is required for digestion. Furthermore, these data oppose the contention that maximum fH is exceptional in bluefin tuna compared with other fishes, and so it is likely that enhanced cardiac stroke volume and blood oxygen carrying capacity are the principal factors allowing superior rates of circulatory oxygen transport in tuna.
Adeleye, Olushola Emmanuel; Ale, Jude Makinde; Sogebi, Emmanuella Olubanke Amope; Durotoye, Ladoke A; Adeleye, Adenike Iyabo; Adeyemi, Samuel Olufemi; Olukunle, Johnny Olufemi
2018-03-23
This study was carried out to determine the blood pressure changes in experimentally Trypanosoma brucei brucei-infected Wistar albino rats and diminazene aceturate-treated rats. Twenty-four rats were purchased and divided into four groups consisting of six rats each. Control group (CON) received 0.5 mL of distilled water, i.m., infected but not treated group (INF) received 2×106 trypanosome/mL i.m., infected but diminazene aceturate-treated group (INFDIM) received 2×106 trypanosome/mL, 3.5 mg/kg, i.m.) and non-infected but diminazene aceturate-treated group (DIM) received 3.5 mg/kg, i.m. and served as negative control. The blood pressures were measured using a CODA 2® non-invasive blood pressure monitor (Kent Scientific, USA). The results were compiled and statistical analysis was done with significance set at p≥0.05. The values of the blood pressure readings of the Trypanosoma-infected INF (137.0±2.0 mmHg) and diminazene-treated rats INFDIM (125.0±7.5 mmHg) when compared to the control group (168.0±3.0 mmHg) were significantly lower (p≤0.05) at the end of day 7. The heart rate was also significantly reduced in the INF (403.5±1.5 beats/min) and DIM (445.0±24 beats/min) groups of rats when compared with the control group (613.0±2.0 beats/min) at the end of day 8. The findings indicate the significant reduction in blood pressure and heart rates during Trypanosoma brucei brucei infection and with diminazene aceturate administration. Hence, caution should be exercised when treating trypanosome-infected patients with diminazene aceturate.
Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna
Clark, T.D; Taylor, B.D; Seymour, R.S; Ellis, D; Buchanan, J; Fitzgibbon, Q.P; Frappell, P.B
2008-01-01
Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week feeding regime in sea pens at Port Lincoln, Australia. Fish ranged in body mass from 10 to 21 kg, and water temperature remained at 18–19°C. Pre-feeding fH typically ranged from 20 to 50 beats min−1. Each feeding bout (meal sizes 2–7% of tuna body mass) was characterized by increased levels of activity and fH (up to 130 beats min−1), and a decrease in TV from approximately 20 to 18°C as cold sardines were consumed. The feeding bout was promptly followed by a rapid increase in TV, which signified the beginning of the heat increment of feeding (HIF). The time interval between meal consumption and the completion of HIF ranged from 10 to 24 hours and was strongly correlated with ration size. Although fH generally decreased after its peak during the feeding bout, it remained elevated during the digestive period and returned to routine levels on a similar, but slightly earlier, temporal scale to TV. These data imply a large contribution of fH to the increase in circulatory oxygen transport that is required for digestion. Furthermore, these data oppose the contention that maximum fH is exceptional in bluefin tuna compared with other fishes, and so it is likely that enhanced cardiac stroke volume and blood oxygen carrying capacity are the principal factors allowing superior rates of circulatory oxygen transport in tuna. PMID:18755679
Nozaradan, Sylvie; Zerouali, Younes; Peretz, Isabelle; Mouraux, André
2015-03-01
Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Normand, Hervé; Lemarchand, Erick; Arbeille, Philippe; Quarck, Gaëlle; Vaïda, Pierre; Duretete, Arnaud; Denise, Pierre
2007-12-01
Accurate measurement of beat-to-beat arterial blood pressure is essential for understanding the cardiovascular adaptation to weightlessness; however, the intra-arterial standard of beat-to-beat blood pressure measurement has never been used during space flight because of its invasive nature. The aim of the present study was to compare noninvasive radial artery tonometry blood pressure measurement with intra-radial pressure measurement during microgravity and hypergravity generated by parabolic flights. Two study participants, equipped with an intra-radial pressure line on the left arm and a Colin CBM-7000 (Colin Corp., Komaki City, Japan) beat-to-beat pressure measurement apparatus on the right arm, were studied in a supine position, during parabolic flights on board of the Airbus A300 OG of the Centre National d'Etudes Spatiales. The mean and standard deviations of the beat-to-beat difference between tonometric and intra-radial blood pressure were calculated for systolic and diastolic arterial pressure in the three gravity conditions (1g, 0 g and 1.8 g) experienced during parabolic flight. The Colin CBM-7000 met the specifications required by the Association for the Advancement of Medical Instrumentation in the 0 g environment. Gravity, however, significantly affected the difference between tonometric and intra-arterial blood pressure, possibly owing to the effect of gravity on the apparent weight of the device and the corresponding calibration factor. We conclude that the Colin CBM-7000 can be used with confidence during space flight.
Binaural auditory beats affect vigilance performance and mood.
Lane, J D; Kasian, S J; Owens, J E; Marsh, G R
1998-01-01
When two tones of slightly different frequency are presented separately to the left and right ears the listener perceives a single tone that varies in amplitude at a frequency equal to the frequency difference between the two tones, a perceptual phenomenon known as the binaural auditory beat. Anecdotal reports suggest that binaural auditory beats within the electroencephalograph frequency range can entrain EEG activity and may affect states of consciousness, although few scientific studies have been published. This study compared the effects of binaural auditory beats in the EEG beta and EEG theta/delta frequency ranges on mood and on performance of a vigilance task to investigate their effects on subjective and objective measures of arousal. Participants (n = 29) performed a 30-min visual vigilance task on three different days while listening to pink noise containing simple tones or binaural beats either in the beta range (16 and 24 Hz) or the theta/delta range (1.5 and 4 Hz). However, participants were kept blind to the presence of binaural beats to control expectation effects. Presentation of beta-frequency binaural beats yielded more correct target detections and fewer false alarms than presentation of theta/delta frequency binaural beats. In addition, the beta-frequency beats were associated with less negative mood. Results suggest that the presentation of binaural auditory beats can affect psychomotor performance and mood. This technology may have applications for the control of attention and arousal and the enhancement of human performance.
Enhanced timing abilities in percussionists generalize to rhythms without a musical beat.
Cameron, Daniel J; Grahn, Jessica A
2014-01-01
The ability to entrain movements to music is arguably universal, but it is unclear how specialized training may influence this. Previous research suggests that percussionists have superior temporal precision in perception and production tasks. Such superiority may be limited to temporal sequences that resemble real music or, alternatively, may generalize to musically implausible sequences. To test this, percussionists and nonpercussionists completed two tasks that used rhythmic sequences varying in musical plausibility. In the beat tapping task, participants tapped with the beat of a rhythmic sequence over 3 stages: finding the beat (as an initial sequence played), continuation of the beat (as a second sequence was introduced and played simultaneously), and switching to a second beat (the initial sequence finished, leaving only the second). The meters of the two sequences were either congruent or incongruent, as were their tempi (minimum inter-onset intervals). In the rhythm reproduction task, participants reproduced rhythms of four types, ranging from high to low musical plausibility: Metric simple rhythms induced a strong sense of the beat, metric complex rhythms induced a weaker sense of the beat, nonmetric rhythms had no beat, and jittered nonmetric rhythms also had no beat as well as low temporal predictability. For both tasks, percussionists performed more accurately than nonpercussionists. In addition, both groups were better with musically plausible than implausible conditions. Overall, the percussionists' superior abilities to entrain to, and reproduce, rhythms generalized to musically implausible sequences.
The effect of binaural beats on verbal working memory and cortical connectivity
NASA Astrophysics Data System (ADS)
Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander
2017-04-01
Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.