Sample records for accelerates corrosion problems

  1. A study of environmental characterization of conventional and advanced aluminum alloys for selection and design. Phase 1: Literature review

    NASA Technical Reports Server (NTRS)

    Sprowls, D. O.

    1984-01-01

    A review of the literature is presented with the objectives of identifying relationships between various accelerated stress corrosion testing techniques, and for determining the combination of test methods best suited to selection and design of high strength aluminum alloys. The following areas are reviewed: status of stress-corrosion test standards, the influence of mechanical and environmental factors on stress corrosion testing, correlation of accelerated test data with in-service experience, and procedures used to avoid stress corrosion problems in service. Promising areas for further work are identified.

  2. Optimized planning of in-service inspections of local flow-accelerated corrosion of pipeline elements used in the secondary coolant circuit of the VVER-440-based units at the Novovoronezh NPP

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.

    2015-03-01

    Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.

  3. Synthetic sea water - An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1973-01-01

    A major problem in evaluating the stress corrosion cracking resistance of aluminum alloys by alternate immersion in 3.5 percent salt (NaCl) water is excessive pitting corrosion. Several methods were examined to eliminate this problem and to find an improved accelerated test medium. These included the addition of chromate inhibitors, surface treatment of specimens, and immersion in synthetic sea water. The results indicate that alternate immersion in synthetic sea water is a very promising stress corrosion test medium. Neither chromate inhibitors nor surface treatment (anodize and alodine) of the aluminum specimens improved the performance of alternate immersion in 3.5 percent salt water sufficiently to be classified as an effective stress corrosion test method.

  4. Not Just a Cover

    DTIC Science & Technology

    2009-02-01

    provided the US Military cost avoidance by reducing corrosion and the resulting degradation The Problem Dehumidification Systems very expensive cumbersome...effective establishes greenhouse effect Vapor Corrosion Inhibitors moderate expense hermetic environments required effective if used properly • A 2003 GAO...cases they accelerated corrosion ( Greenhouse Effect) • Initiated a search for a better form of protection that would • Act to remove moisture/water

  5. Influence of Chloride Ion and Temperature on the Corrosion Behavior of Ni-Fe-Cr Alloy 028

    NASA Astrophysics Data System (ADS)

    Zhang, L. N.; Dong, J. X.; Szpunar, J. A.; Zhang, M. C.; Basu, R.

    Recently, the working condition of tubing systems used in oil and natural gas industries are severer than before with the increasing exploitation of acidic gas fields. The corrosion problems induced from the corrosive environment with chloride ion medium and high temperature have been much more concerned. The presence of chloride ion can accelerate the dissolution of metals. The corrosion performance is also sensitive to the operating temperature. Classic localized corrosions such as the pitting or the crevice type due to environmental temperature and chloride ion.

  6. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  7. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated corrosion of pipelines and equipment in Russian NPP PGU are defined.

  8. Flow-accelerated corrosion 2016 international conference

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2017-05-01

    The paper discusses materials and results of the most representative world forum on the problems of flow-accelerated metal corrosion in power engineering—Flow-Accelerated Corrosion (FAC) 2016, the international conference, which was held in Lille (France) from May 23 through May 27, 2016, sponsored by EdF-DTG with the support of the International Atomic Energy Agency (IAEA) and the World Association of Nuclear Operators (WANO). The information on major themes of reports and materials of the exhibition arranged within the framework of the congress is presented. The statistics on operation time and intensity of FAC wall thinning of NPP pipelines and equipment in the world is set out. The paper describes typical examples of flow-accelerated corrosion damage of condensate-feed and wet-steam pipeline components of nuclear and thermal power plants that caused forced shutdowns or accidents. The importance of research projects on the problem of flow-accelerated metal corrosion of nuclear power units coordinated by the IAEA with the participation of leading experts in this field from around the world is considered. The reports presented at the conference considered issues of implementation of an FAC mechanism in single- and two-phase flows, the impact of hydrodynamic and water-chemical factors, the chemical composition of the metal, and other parameters on the intensity and location of FAC wall thinning localized areas in pipeline components and power equipment. Features and patterns of local and general FAC leading to local metal thinning and contamination of the working environment with ferriferous compounds are considered. Main trends of modern practices preventing FAC wear of NPP pipelines and equipment are defined. An increasing role of computer codes for the assessment and prediction of FAC rate, as well as software systems of support of the NPP personnel for the inspection planning and prevention of FAC wall thinning of equipment operating in singleand two-phase flows, is accepted. Different lines of attack on the problem of FAC of pipelines and equipment components of existing and future nuclear power units are reviewed. Promising methods of nondestructive inspection of pipelines and equipment are presented.

  9. Report on accelerated corrosion studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documentsmore » the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.« less

  10. The effects of trace impurities in coal-derived liquid fuels on deposition and accelerated high temperature corrosion of cast superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.

    1981-01-01

    The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.

  11. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  12. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  13. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.

    PubMed

    Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent

    2013-08-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.

  14. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  15. Development and application of an information-analytic system on the problem of flow accelerated corrosion of pipeline elements in the secondary coolant circuit of VVER-440-based power units at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Kiselev, A. N.; Shepelev, S. V.; Galanin, A. V.

    2015-02-01

    Specific features relating to development of the information-analytical system on the problem of flow-accelerated corrosion of pipeline elements in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh nuclear power plant are considered. The results from a statistical analysis of data on the quantity, location, and operating conditions of the elements and preinserted segments of pipelines used in the condensate-feedwater and wet steam paths are presented. The principles of preparing and using the information-analytical system for determining the lifetime to reaching inadmissible wall thinning in elements of pipelines used in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered.

  16. Corrosion of High-Density Sintered Tungsten Alloys. Part 2. Accelerated Corrosion Testing

    DTIC Science & Technology

    1988-12-01

    REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore I DTIC . *arit*fl...Commo,,wea°h 91 Avor,++.°_ DECEMBER 1988 012 rI DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORY REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED...TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore ABSTRACT As a consequence of corrosion during long-term storage in

  17. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    NASA Astrophysics Data System (ADS)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth rates in this material, and this could render unconservative the inspection intervals determined by damage tolerant analyses based on pristine, uncorroded structure in aircraft where this alloy and damage mechanism are present. The problem is further compounded in the event that prior-corrosion damage and corrosion fatigue act synergisticaliy to increase cracking rates.

  18. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  19. Review of PWR fuel rod waterside corrosion behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less

  20. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.

  1. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  2. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    PubMed Central

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e., dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet. PMID:28793549

  3. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions.

    PubMed

    Sun, Bo; Ye, Tianyuan; Feng, Qiang; Yao, Jinghua; Wei, Mumeng

    2015-09-10

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu₂O film increased gradually. Its corrosion product was Cu₂(OH)₃Cl, which increased in quantity over time. Cl - was the major factor responsible for the marine corrosion of copper and copper alloy. Through the nonlinear fitting of corrosion rate and corrosion quantity (corrosion weight loss), degradation data of different corrosion cycles, the quantitative effects of two major factors, i.e. , dissolved oxygen (DO) and corrosion medium temperature, on corrosion behavior of copper alloy were analyzed. The corrosion failure prediction models under different ambient conditions were built. One-day corrosion weight loss under oxygenated stirring conditions was equivalent to 1.31-day weight loss under stationary conditions, and the corrosion rate under oxygenated conditions was 1.31 times higher than that under stationary conditions. In addition, corrosion medium temperature had a significant effect on the corrosion of B10 copper sheet.

  4. A quantitative study on magnesium alloy stent biodegradation.

    PubMed

    Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo

    2018-06-06

    Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of Waterproofing Admixtures on the Flexural Strength and Corrosion Resistance of Concrete

    NASA Astrophysics Data System (ADS)

    Geetha, A.; Perumal, P.

    2012-02-01

    This paper deals about the flexural strength and corrosion behaviour of concrete using waterproofing admixtures. The effect of waterproofing admixtures on the corrosion behaviour of RCC specimen has been studied by conducting accelerated corrosion test. To identify the effect of corrosion in pull out strength, corrosion process was induced by means of accelerated corrosion procedure. To accelerate the reinforcement corrosion, direct electric current was impressed on the rebar embedded in the specimen using a DC power supply system that has a facility to adjust voltage. The addition of waterproofing admixtures also shows the improvement in the flexural strength of concrete has been studied by conducting flexural strength tests on the concrete prism specimen of size 100 × 100 × 500 mm with and without admixtures for various dosages and various curing periods of 7 and 28 days. The results showed that the presence of waterproofing admixtures always improves the corrosion resistance and thus increases the strength of concrete due to the hydrophobic action of waterproofing admixtures.

  6. Chloride-induced corrosion of steel in cracked concrete – Part I: Experimental studies under accelerated and natural marine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otieno, M., E-mail: Mike.Otieno@wits.ac.za; Beushausen, H.; Alexander, M.

    Parallel corrosion experiments were carried out for 2¼ years by exposing one half of 210 beam specimens (120 × 130 × 375 mm long) to accelerated laboratory corrosion (cyclic wetting and drying) while the other half underwent natural corrosion in a marine tidal zone. Experimental variables were crack width w{sub cr} (0, incipient crack, 0.4, 0.7 mm), cover c (20, 40 mm), binder type (PC, PC/GGBS, PC/FA) and w/b ratio (0.40, 0.55). Results show that corrosion rate (i{sub corr}) was affected by the experimental variables in the following manner: i{sub corr} increased with increase in crack width, and decreased withmore » increase in concrete quality and cover depth. The results also show that the corrosion performance of concretes in the field under natural corrosion cannot be inferred from its performance in the laboratory under accelerated corrosion. Other factors such as corrosion process should be taken into account.« less

  7. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  8. Factors Contributing to Corrosion of Steel Pilings in Duluth-Superior Harbor

    DTIC Science & Technology

    2009-11-01

    1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4...Great Lakes. Accelerated corrosion of CS pilings in estua- rine and marine harbors is a global phenomenon.9 The term "accelerated low water corrosion

  9. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    NASA Technical Reports Server (NTRS)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  10. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  11. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  12. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  13. Novel methods for aircraft corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.

    1995-07-01

    Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.

  14. The resistance of high frequency inductive welded pipe to grooving corrosion in salt water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, C.; Triess, E.; Herbsleb, G.

    1986-09-01

    When exposed to neutral, salt-containing waters, electric resistant welded pipe in carbon and low alloy steels with increased sulfur contents may suffer preferential corrosion attack in the weld area. Because of its appearance, this type of corrosion is called grooving corrosion. The susceptibility to grooving corrosion may be determined and quantitatively described by means of an accelerated potentiostatic exposure test. The importance of type, concentration, and temperature of the electrolytic solution; potential; test duration; and the sulfur content of the steel in the accelerated corrosion test and the susceptibility of steels to grooving corrosion are described. Line pipe in highmore » frequency inductive (HFI) welded carbon and low alloy steels are resistant to grooving corrosion particularly because of their low sulfur content.« less

  15. Synthesis of published and unpublished corrosion data from long term tests of fasteners embedded in wood : calculation of corrosion rates and the effect of corrosion on lateral joint strength

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2011-01-01

    In the past 5 years, several accelerated test methods have been developed to measure the corrosion of metals in contact with wood. It is desirable to contrast these accelerated results against those of long term exposure tests. While there have been several published long-term exposure tests performed on metals in treated wood, the data from these studies could not be...

  16. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that themore » effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.« less

  17. Estimation of corrosion damage in steel reinforced mortar using waveguides

    NASA Astrophysics Data System (ADS)

    Reis, Henrique; Ervin, Benjamin L.; Kuchma, Daniel A.; Bernhard, Jennifer

    2005-05-01

    Corrosion of reinforced concrete is a chronic infrastructure problem, particularly in areas with deicing salt and marine exposure. To maintain structural integrity, a testing method is needed to identify areas of corroding reinforcement. For purposes of rehabilitation, the method must also be able to evaluate the degree, rate and location of damage. Towards the development of a wireless embedded sensor system to monitor and assess corrosion damage in reinforced concrete, reinforced mortar specimens were manufactured with seeded defects to simulate corrosion damage. Taking advantage of waveguide effects of the reinforcing bars, these specimens were then tested using an ultrasonic approach. Using the same ultrasonic approach, specimens without seeded defects were also monitored during accelerated corrosion tests. Both the ultrasonic sending and the receiving transducers were mounted on the steel rebar. Advantage was taken of the lower frequency (<250 kHz) fundamental flexural propagation mode because of its relatively large displacements at the interface between the reinforcing steel and the surrounding concrete. Waveform energy (indicative of attenuation) is presented and discussed in terms of corrosion damage. Current results indicate that the loss of bond strength between the reinforcing steel and the surrounding concrete can be detected and evaluated.

  18. The long-term acceleration of waste glass corrosion: A preliminary review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulationmore » models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition`s durability.« less

  19. A Perspective on Coupled Multiscale Simulation and Validation in Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. P. Short; D. Gaston; C. R. Stanek

    2014-01-01

    The field of nuclear materials encompasses numerous opportunities to address and ultimately solve longstanding industrial problems by improving the fundamental understanding of materials through the integration of experiments with multiscale modeling and high-performance simulation. A particularly noteworthy example is an ongoing study of axial power distortions in a nuclear reactor induced by corrosion deposits, known as CRUD (Chalk River unidentified deposits). We describe how progress is being made toward achieving scientific advances and technological solutions on two fronts. Specifically, the study of thermal conductivity of CRUD phases has augmented missing data as well as revealed new mechanisms. Additionally, the developmentmore » of a multiscale simulation framework shows potential for the validation of a new capability to predict the power distribution of a reactor, in effect direct evidence of technological impact. The material- and system-level challenges identified in the study of CRUD are similar to other well-known vexing problems in nuclear materials, such as irradiation accelerated corrosion, stress corrosion cracking, and void swelling; they all involve connecting materials science fundamentals at the atomistic- and mesoscales to technology challenges at the macroscale.« less

  20. Microbial biofilm studies of the Environmental Control and Life Support System water recovery test for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Obenhuber, D. C.; Huff, T. L.; Rodgers, E. B.

    1991-01-01

    Analysis of biofilm accumulation, studies of iodine disinfection of biofilm, and the potential for microbially influenced corrosion in the water recovery test (WRT) are presented. The analysis of WRT components showed the presence of biofilms and organic deposits in selected tubing. Water samples from the WRT contained sulfate-reducing and acid-producing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples, but stainless steel corrosion rates were not accelerated.

  1. The Effect of Different Delivery Conditions on the Accelerated Degradation of Structural Steel in the Coal Mine Environment / Wpływ Różnego Stanu Dostawy Na Przyspieszoną Degradację Stali Konstrukcyjnej W Środowisku Kopalnianym

    NASA Astrophysics Data System (ADS)

    Pawłowski, Bogdan; Bała, Piotr

    2012-12-01

    The main objective of this work was to determine the effect of different delivery conditions on the accelerated degradation of structural steels used for lifting beams (rails) of the monorail transport systems. Some of these rails, made of the same steel grade as others, undergoes accelerated corrosion in the coal mine environment. Corrosion degradation occurs much faster (more than two times faster), comparing to the same steel grade rails operated under the same conditions but with different microstructures. However, all the provided rails meet the requirements of appropriate standards for steel on the lifting beams of the monorail transport systems. The investigations were carried out on rails made of the same steel grade but with different microstructures and showed that the main factor influencing the accelerated corrosion degradation of tested steels is the delivery condition, so-called "as rolled" condition. The greatest resistance to the accelerated corrosion showed rails in the normalized or normalizing rolling condition.

  2. Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment.

    PubMed

    Wan, Hongxia; Song, Dongdong; Zhang, Dawei; Du, Cuiwei; Xu, Dake; Liu, Zhiyong; Ding, De; Li, Xiaogang

    2018-06-01

    The corrosion of X80 pipeline steel in the presence of Bacillus cereus (B. cereus) was studied through electrochemical and surface analyses and live/dead staining. Scanning electron microscopy and live/dead straining results showed that a number of B. cereus adhered to the X80 steel. Electrochemical impedance spectroscopy showed that B. cereus could accelerate the corrosion of X80 steel. In addition, surface morphology observations indicated that B. cereus could accelerate pitting corrosion in X80 steel. The depth of the largest pits due to B. cereus was approximately 11.23μm. Many pits were found on the U-shaped bents and cracks formed under stress after 60days of immersion in the presence of B. cereus. These indicate that pitting corrosion can be accelerated by B. cereus. X-ray photoelectron spectroscopy results revealed that NH 4 + existed on the surface of X80 steel. B. cereus is a type of nitrate-reducing bacteria and hence the corrosion mechanism of B. cereus may involve nitrate reduction on the X80 steel. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Evaluation of corrosion products formed by sulfidation as inhibitors of the naphthenic corrosion of AISI-316 steel

    NASA Astrophysics Data System (ADS)

    Sanabria-Cala, J. A.; Montañez, N. D.; Laverde Cataño, D.; Y Peña Ballesteros, D.; Mejía, C. A.

    2017-12-01

    Naphthenic acids present in oil from most regions worldwide currently stand as the main responsible for the naphthenic corrosion problems, affecting the oil-refining industry. The phenomenon of sulfidation, accompanying corrosion processes brought about by naphthenic acids in high-temperature refining plant applications, takes place when the combination of sulfidic acid (H2S) with Fe forms layers of iron sulphide (FeS) on the material surface, layers with the potential to protect the material from attack by other corrosive species like naphthenic acids. This work assessed corrosion products formed by sulfidation as inhibitors of naphthenic corrosion rate in AISI-316 steel exposed to processing conditions of simulated crude oil in a dynamic autoclave. Calculation of the sulfidation and naphthenic corrosion rates were determined by gravimetry. The surfaces of the AISI-316 gravimetric coupons exposed to acid systems; were characterized morphologically by X-Ray Diffraction (XRD) and X-ray Fluorescence by Energy Dispersive Spectroscopy (EDS) combined with Scanning Electron Microscopy (SEM). One of the results obtained was the determination of an inhibiting effect of corrosion products at 250 and 300°C, where lower corrosion rate levels were detected. For the temperature of 350°C, naphthenic corrosion rates increased due to deposition of naphthenic acids on the areas where corrosion products formed by sulfidation have lower homogeneity and stability on the surface, thus accelerating the destruction of AISI-316 steel. The above provides an initial contribution to oil industry in search of new alternatives to corrosion control by the attack of naphthenic acids, from the formation of FeS layers on exposed materials in the processing of heavy crude oils with high sulphur content.

  4. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    NASA Astrophysics Data System (ADS)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  5. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    NASA Astrophysics Data System (ADS)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  6. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25-95 °C

    NASA Astrophysics Data System (ADS)

    Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan

    2016-11-01

    The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.

  7. Chexal-Horowitz flow-accelerated corrosion model -- Parameters and influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chexal, V.K.; Horowitz, J.S.

    1995-12-01

    Flow-accelerated corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Thinning caused by FAC has lead to many leaks and complete ruptures. These failures have required costly repairs and occasionally have caused lengthy shutdowns. To deal with FAC, utilities have instituted costly inspection and piping replacement programs. Typically, a nuclear unit will inspect about 100 large bore piping components plus additional small bore components during every refueling outage. To cope with FAC, there has been a great deal of research and development performed to obtain a greater understanding of the phenomenon. Currently, there is general agreement onmore » the mechanism of FAC. This understanding has lead to the development of computer based tools to assist utility engineers in dealing with this issue. In the United States, the most commonly used computer program to predict and control is CHECWORKS{trademark}. This paper presents a description of the mechanism of FAC, and introduces the predictive algorithms used in CHECWORKS{trademark}. The parametric effects of water chemistry, materials, flow and geometry as predicted by CHECWORKS{trademark} will then be discussed. These trends will be described and explained by reference to the corrosion mechanism. The remedial actions possible to reduce the rate of damage caused by FAC will also be discussed.« less

  8. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  9. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  10. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-05-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  11. Anticorrosive Behavior and Porosity of Tricationic Phosphate and Zirconium Conversion Coating on Galvanized Steel

    NASA Astrophysics Data System (ADS)

    Velasquez, Camilo S.; Pimenta, Egnalda P. S.; Lins, Vanessa F. C.

    2018-04-01

    This work evaluates the corrosion resistance of galvanized steel treated with tricationic phosphate and zirconium conversion coating after painting, by using electrochemical techniques, accelerated and field corrosion tests. A non-uniform and heterogeneous distribution of zirconium on the steel surface was observed due to preferential nucleation of the zirconium on the aluminum-rich sites on the surface of galvanized steel. The long-term anti-corrosion performance in a saline solution was better for the phosphate coating up to 120 days. The coating capacitance registered a higher increase for the zirconium coatings than the phosphate coatings up to 120 days of immersion. This result agrees with the higher porosity of zirconium coating in relation to the phosphate coating. After 3840 h of accelerated corrosion test, and after 1 year of accelerated field test, zirconium-treated samples showed an average scribe delamination length higher than the phosphate-treated samples.

  12. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less

  13. Field evaluation of corrosion inhibitors for concrete. Interim report 1, Evaluation of exposure slabs repaired with corrosion inhibitors.

    DOT National Transportation Integrated Search

    1998-01-01

    One hundred and fifty-six exposure slabs have been constructed with and without a variety of combinations of corrosion inhibiting admixtures and topically applied inhibitors. To accelerate corrosion one hundred and thirty-six of the slabs were constr...

  14. Evaluating Rebar Corrosion Using Nonlinear Ultrasound

    NASA Astrophysics Data System (ADS)

    Woodward, Clinton; Amin, Md. Nurul

    2008-02-01

    The early detection of rebar corrosion in reinforced concrete is difficult using current methods. This pilot study investigated the viability of using nonlinear ultrasound to detect the effects of rebar corrosion in its early stages. The study utilized three accelerated corrosion specimens and one control specimen. Results showed that when corrosion developed in the area isonified by a Rayleigh wave, nonlinear parameters increased. As corrosion progressed, these nonlinear parameters also increased.

  15. The Corrosion Behavior of Pure Iron under Solid Na₂SO₄ Deposit in Wet Oxygen Flow at 500 °C.

    PubMed

    Tang, Yanbing; Liu, Li; Fan, Lei; Li, Ying; Wang, Fuhui

    2014-08-27

    The corrosion behavior of pure Fe under a Na₂SO₄ deposit in an atmosphere of O₂ + H₂O was investigated at 500 °C by thermo gravimetric, and electrochemical measurements, viz . potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and surface characterization methods viz . X-ray diffraction (XRD), and scanning electron microscope (SEM)/energy dispersive spectroscopy(EDS). The results showed that a synergistic effect occurred between Na₂SO₄ and O₂ + H₂O, which significantly accelerated the corrosion rate of the pure Fe. Briefly, NaFeO₂ was formed in addition to the customary Fe oxides; at the same time, H₂SO₄ gas was produced by introduction of water vapor. Subsequently, an electrochemical corrosion reaction occurred due to the existence of Na₂SO₄, NaFeO₂, and H₂O. When this coupled to the chemical corrosion reaction, the progress of the chemical corrosion reaction was promoted and eventually resulted in the acceleration of the corrosion of the pure Fe.

  16. Corrosion fatigue crack growth behavior of titanium alloys in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipilov, S.A.

    1998-01-01

    The corrosion fatigue crack growth (FCG) behavior, the effect of applied potential on corrosion FCG rates, and the fracture surfaces of VT20 (near-{alpha}) and TS6 (near-{beta}) titanium alloys were studied. Environments were aqueous solutions of sodium chloride (NaCl), sodium hydroxide (NaOH), potassium hydroxide (KOH), ferric chloride (FeCl{sub 3}), and chromic acid (H{sub 2}CrO{sub 4}) with and without NaCl. Depending upon solution composition, corrosion FCG rates were found to be higher or lower than those in air. Cathodic polarization retarded the corrosion FCG, while anodic polarization accelerated insignificantly or almost did not influence it in most of the solutions investigated. However,more » cathodic polarization accelerated corrosion FCG in 0.6 M FeCl{sub 3} and 0.5 M to 2 M H{sub 2}CrO{sub 4} + 0.01 M to 0.1 M NaCl solutions by a dozen times when the maximum stress intensity (K{sub max}) exceeded certain critical values. When K{sub max} was lower than the critical values, the same cathodic polarization (with all other /conditions being equal) retarded corrosion FCG. Results suggested the accelerated crack growth at cathodic potentials resulted from hydrogen-induced cracking (HIC). Therefore, critical values of K{sub max}, as well as the stress intensity range ({Delta}K) were regarded as corresponding to the beginning of corrosion FCG according to a HIC mechanism and designated as K{sub HIC} and {Delta}K{sub HIC}.« less

  17. Accelerated Corrosion Testing

    DTIC Science & Technology

    1982-12-01

    Treaty Organization, Brussels, 1971), p. 449. 14. D. 0. Sprowls, T. J. Summerson, G. M. Ugianski, S. G. Epstein, and H. L. Craig , Jr., in Stress...National Association of Corrosion Engineers Houston, TX, 1972). 22. H. L. Craig , Jr. (ed.), Stress Corrosion-New Approaches, ASTM-STP- 610 (American...62. M. Hishida and H. Nakada, Corrosion 33 (11) 403 (1977). b3. D. C. Deegan and B. E. Wilde, Corrosion 34 (6), 19 (1978). 64. S. Orman, Corrosion Sci

  18. Multiphysics modeling of two-phase film boiling within porous corrosion deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu

    2016-07-01

    Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less

  19. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  20. Predicting the impact of chromium on flow-accelerated corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chexal, B.; Goyette, L.F.; Horowitz, J.S.

    1996-12-01

    Flow-Accelerated Corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Many experiments have been performed to understand the mechanism of FAC. For approximately twenty years, it has ben widely recognized that the presence of small amounts of chromium will reduce the rate of FAC. This effect was quantified in the eighties by research performed in France, Germany and the Netherlands. The results of this research has been incorporated into the computer-based tools used by utility engineers to deal with this issue. For some time, plant data from Diablo Canyon has suggested that the existing correlations relating themore » concentration of chromium to the rate of FAC are conservative. Laboratory examinations have supported this observation. It appears that the existing correlations fail to capture a change in mechanism from a FAC process with linear kinetics to a general corrosion process with parabolic kinetics. This change in mechanism occurs at a chromium level of approximately 0.1%, within the allowable alloy range of typical carbon steel (ASTM/ASME A106 Grade B) used in power piping in most domestic plants. It has been difficult to obtain plant data that has sufficient chromium to develop a new correlation. Data from Diablo Canyon and the Dukovany Power Plant in the Czech Republic will be used to develop a new chromium correlation for predicting FAC rate.« less

  1. The role of hydrogen in zirconium alloy corrosion

    NASA Astrophysics Data System (ADS)

    Ensor, B.; Lucente, A. M.; Frederick, M. J.; Sutliff, J.; Motta, A. T.

    2017-12-01

    Hydrogen enters zirconium metal as a result of the corrosion process and forms hydrides when present in quantities above the solubility limit at a given temperature. Zircaloy-4 coupons of different thicknesses (0.4 mm-2.3 mm) but identical chemistry and processing were corroded in autoclave at 360 °C for various times up to 2800 days. Coupons were periodically removed and weighed to determine weight gain, which allows follow of the corrosion kinetics. Coupon thickness differences resulted in different volumetric concentrations of hydrogen, as quantified using hot vacuum extraction. The thinnest coupons, having the highest concentration of hydrogen, demonstrated acceleration in their corrosion kinetics and shorter transition times when compared to thicker coupons. Furthermore, it was seen that the post-transition corrosion rate was increased with increasing hydrogen concentration. Corrosion rates increased only after the terminal solid solubility (TSS) was exceeded for hydrogen in Zircaloy-4 at 360 °C. Therefore, it is hypothesized that the corrosion acceleration is caused by the formation of hydrides. Scanning electron microscope (SEM) examinations of fractured oxide layers demonstrate the oxide morphology changed with hydrogen content, with more equiaxed oxide grains in the high hydrogen samples than in those with lower hydrogen content. Additionally, locations of advanced oxide growth were correlated with locations of hydrides in the metal. A hypothesis is proposed to explain the accelerated corrosion due to the presence of the hydrides, namely that the metal, locally, is less able to accommodate oxide growth stresses and this leads to earlier loss of oxide protectiveness in the form of more frequent oxide kinetic transitions.

  2. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    PubMed

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO 3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fireside Corrosion Behaviors of Super304H and HR3C in Coal Ash/Gas Environment with Different SO2 Contents at 650 °C

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Li, Yan; Huang, Jinyang; Zhou, Yongli; Zhao, Xinbao; Yuan, Yong

    2018-05-01

    The corrosion behaviors of Super304H and HR3C used for USC boiler applications were investigated in simulated coal ash/gas environments with 0.1 and 1.5% of SO2 at 650 °C for 500 h. The results indicated that the increase in SO2 accelerated the corrosion rate and the spalling tendency of the corrosion layer in both tested alloys. Fe2O3, Cr2O3 and FeCr2O4 main peaks were revealed by XRD on Super304H, but on HR3C only the Cr2O3 peak showed a high intensity. The SO2 content did not affect the corrosion product composition of any of the alloys, but accelerated the inner sulfidation and the spallation on Super304H. No obvious internal sulfidation was observed on HR3C in either SO2 content. Based on the experimental results, the alloy corrosion mechanism and the influence of sulfur content on the corrosion process were discussed.

  4. Effect of macrophages on in vitro corrosion behavior of magnesium alloy.

    PubMed

    Zhang, Jian; Hiromoto, Sachiko; Yamazaki, Tomohiko; Niu, Jialin; Huang, Hua; Jia, Gaozhi; Li, Haiyan; Ding, Wenjiang; Yuan, Guangyin

    2016-10-01

    The influence of cells on the corrosion behavior of biomedical magnesium alloy is an important but less studied topic, which is helpful for understanding the inconsistent corrosion rates between in vitro and in vivo experiments. In this work, macrophages were directly cultured on Mg-2.1Nd-0.2Zn-0.5Zr (wt %, abbreviated as JDBM) alloy surface for 72 or 168 hours. Macrophages retained good viability and the generation of reactive oxygen species (ROS) was greatly promoted on the alloy. Weight loss, Mg(2+) concentration, and cross-section observation results demonstrated that macrophages accelerated the in vitro corrosion of JDBM. The coverage of cell body did not affect the local thickness of corrosion product layer. The corrosion product layer had a porous inner Mg(OH)2 layer and a dense outer layer mainly composed of O, P, Mg, and Ca. The uniform acceleration of JDBM corrosion was attributed to the omnidirection diffusion of ROS from macrophages. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2476-2487, 2016. © 2016 Wiley Periodicals, Inc.

  5. The Corrosion Behavior of Pure Iron under Solid Na2SO4 Deposit in Wet Oxygen Flow at 500 °C

    PubMed Central

    Tang, Yanbing; Liu, Li; Fan, Lei; Li, Ying; Wang, Fuhui

    2014-01-01

    The corrosion behavior of pure Fe under a Na2SO4 deposit in an atmosphere of O2 + H2O was investigated at 500 °C by thermo gravimetric, and electrochemical measurements, viz. potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and surface characterization methods viz. X-ray diffraction (XRD), and scanning electron microscope (SEM)/energy dispersive spectroscopy(EDS). The results showed that a synergistic effect occurred between Na2SO4 and O2 + H2O, which significantly accelerated the corrosion rate of the pure Fe. Briefly, NaFeO2 was formed in addition to the customary Fe oxides; at the same time, H2SO4 gas was produced by introduction of water vapor. Subsequently, an electrochemical corrosion reaction occurred due to the existence of Na2SO4, NaFeO2, and H2O. When this coupled to the chemical corrosion reaction, the progress of the chemical corrosion reaction was promoted and eventually resulted in the acceleration of the corrosion of the pure Fe. PMID:28788182

  6. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as well as promotes the migration of coating materials from the coating into the working fluid, where coatings experience more severe deterioration in their barrier property under flowing conditions. Pure water has shown to be a much more aggressive working fluid than electrolyte solutions. The flowing fluid over the coating surface could be used as an effective acceleration method.

  7. Mechanical Behavior of Stainless Steel Fiber-Reinforced Composites Exposed to Accelerated Corrosion

    PubMed Central

    O’Brien, Caitlin; McBride, Amanda; E. Zaghi, Arash; Burke, Kelly A.; Hill, Alex

    2017-01-01

    Recent advancements in metal fibers have introduced a promising new type of stainless steel fiber with high stiffness, high failure strain, and a thickness < 100 μm (<0.00394 in.) that can be utilized in a steel fiber-reinforced polymer. However, stainless steel is known to be susceptible to pitting corrosion. The main goal of this study is to compare the impact of corrosion on the mechanical properties of steel fiber-reinforced composites with those of conventional types of stainless steel. By providing experimental evidences, this study may promote the application of steel fiber-reinforced composite as a viable alternative to conventional metals. Samples of steel fiber-reinforced polymer and four different types of stainless steel were subjected to 144 and 288 h of corrosion in ferric chloride solution to simulate accelerated corrosion conditions. The weight losses due to corrosion were recorded. The corroded and control samples were tested under monotonic tensile loading to measure the ultimate stresses and strains. The effect of corrosion on the mechanical properties of the different materials was evaluated. The digital image correlation (DIC) technique was used to investigate the failure mechanism of the corrosion-damaged specimens. Overall, steel fiber-reinforced composites had the greatest corrosion resistance. PMID:28773132

  8. Effects of climate and corrosion on concrete behaviour

    NASA Astrophysics Data System (ADS)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  9. Effect of Stress Ratio and Loading Frequency on the Corrosion Fatigue Behavior of Smooth Steel Wire in Different Solutions

    PubMed Central

    Wang, Songquan; Zhang, Dekun; Hu, Ningning; Zhang, Jialu

    2016-01-01

    In this work, the effects of loading condition and corrosion solution on the corrosion fatigue behavior of smooth steel wire were discussed. The results of polarization curves and weight loss curves showed that the corrosion of steel wire in acid solution was more severe than that in neutral and alkaline solutions. With the extension of immersion time in acid solution, the cathodic reaction of steel wire gradually changed from the reduction of hydrogen ion to the reduction of oxygen, but was always the reduction of hydrogen ion in neutral and alkaline solutions. The corrosion kinetic parameters and equivalent circuits of steel wires were also obtained by simulating the Nyquist diagrams. In corrosion fatigue test, the effect of stress ratio and loading frequency on the crack initiation mechanism was emphasized. The strong corrosivity of acid solution could accelerate the nucleation of crack tip. The initiation mechanism of crack under different conditions was summarized according to the side and fracture surface morphologies. For the crack initiation mechanism of anodic dissolution, the stronger the corrosivity of solution was, the more easily the fatigue crack source formed, while, for the crack initiation mechanism of deformation activation, the lower stress ratio and higher frequency would accelerate the generation of corrosion fatigue crack source. PMID:28773869

  10. Embedded chloride detectors for roadways and bridges

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.; McPadden, Adam P.; Cauley, Robert F.

    1996-04-01

    The problems associated with the application of chloride-based deicing agents to roadways and specifically bridges include chemical pollution and accelerated corrosion of strength members (especially rebar) within the structure. In many instances, local ordinances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. In response to this problem, particularly in high roadsalt usage areas, a chloride/water impermeable membrane is placed above the rebar matrix so if/when roadway cracking occurs, the roadsalts won't be able to damage the rebar. Such a membrane is costly -- and the question of its in-service performance is questionable. In a joint effort between the University of Vermont and the Vermont Agency of Transportation, we are developing fiber optic chloride detectors which are capable of being embedded into the rebar-concrete roadway under this membrane. The sensing mechanism relies on spectroscopic analysis of a chemical reaction of chloride and reagents (which have been coated onto the ends of fibers). Laboratory results of these detectors and a usable system configuration are presented.

  11. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.

    1998-04-01

    The problems associated with the application of chloride-based deicing agents to roadways and specifically bridges include chemical pollution and accelerated corrosion of strength members (especially the rebar) within the structure. In many instances, local ordnances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. In tandem with these efforts has been the continuing use of embedded fiber optic sensors for identification of faults or cracks within a highway structure - i.e., structural health monitoring. In this paper, we present multiple-parameter sensing fiber optic sensors which may be embedded into roadway and bridge structures to provide an internal measurement and assessment of its health. Such issues are paramount in determining if remedial or preventative maintenance should be performed on such structures. Laboratory results, comparisons with conventional sensing methods as well as a review of real-world issues in highway sensing are presented.

  12. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    NASA Astrophysics Data System (ADS)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  13. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  14. General Corrosion Resistance Assessments of AA7085, AA7129, and Other High-Performance Aluminum Alloys for Department of Defense (DOD) Systems UsingLaboratory Based Accelerated Corrosion Methods and Electrochemistry

    DTIC Science & Technology

    2013-09-01

    laboratory should play a role in the final design decision process. Integration factors such as conversion coatings , primers, topcoats, and their...Cyclic Accelerated Corrosion Analysis of Nonchromate Conversion Coatings on Aluminum Alloys 2024, 2219, 5083, and 7075 Using DoD Paint Systems; ARL...Titanium 0.08 0.10 max 0.10 max 0.15 max 0.08 max 0.05 max Zirconium 0.05 – 0.15 0.05 – 0.15 - 0.10 – 0.25 0.05 – 0.15 - Vanadium - - - - - 0.05 max

  15. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning

    NASA Astrophysics Data System (ADS)

    Yang, Hai-tao; Liu, Huan-rong; Zhang, Yong-chun; Chen, Bu-ming; Guo, Zhong-cheng; Xu, Rui-dong

    2013-10-01

    An Al/Pb-0.3%Ag alloy composite anode was produced via composite casting. Its electrocatalytic activity for the oxygen evolution reaction and corrosion resistance was evaluated by anodic polarization curves and accelerated corrosion test, respectively. The microscopic morphologies of the anode section and anodic oxidation layer during accelerated corrosion test were obtained by scanning electron microscopy. It is found that the composite anode (hard anodizing) displays a more compact interfacial combination and a better adhesive strength than plating tin. Compared with industrial Pb-0.3%Ag anodes, the oxygen evolution overpotentials of Al/Pb-0.3%Ag alloy (hard anodizing) and Al/Pb-0.3%Ag alloy (plating tin) at 500 A·m-2 were lower by 57 and 14 mV, respectively. Furthermore, the corrosion rates of Pb-0.3%Ag alloy, Al/Pb-0.3%Ag alloy (hard anodizing), and Al/Pb-0.3%Ag alloy (plating tin) were 13.977, 9.487, and 11.824 g·m-2·h-1, respectively, in accelerated corrosion test for 8 h at 2000 A·m-2. The anodic oxidation layer of Al/Pb-0.3%Ag alloy (hard anodizing) is more compact than Pb-0.3%Ag alloy and Al/Pb-0.3%Ag alloy (plating tin) after the test.

  16. Adhesive Bonding and Corrosion Protection of a Die Cast Magnesium Automotive Door

    NASA Astrophysics Data System (ADS)

    Bretz, G. T.; Lazarz, K. A.; Hill, D. J.; Blanchard, P. J.

    It is well known that magnesium alloys, in close proximity to other alloys, are susceptible to galvanic corrosion. Combined with this fact, in automotive applications, it is rare that magnesium will be present in the absence of other alloys such as steel or aluminum. Therefore, in wet applications, where the galvanic cell is completed, it is necessary to isolate the magnesium in order to prevent accelerated corrosion. There are numerous commercial pre-treatments available for magnesium, however this paper focuses on conversion coatings in conjunction with a spray powder coat. By means of example, results for a hem flange joint on an AM50 die cast magnesium door structure will be presented. The outer door skin is an aluminum alloy hemmed around a cast magnesium flange. An adhesive is used between the inner and outer to help with stiffness and NVH (Noise, Vibration and Harshness). Results from bonded lap-shear coupon tests that have been exposed to accelerated corrosion cycles are presented. A second phase of this work considered a surrogate hem flange coupon, which was similarly exposed to the same accelerated corrosion cycle. Results from both of these tests are presented within this paper along with a discussion as to their suitability for use within automotive applications.

  17. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum, soil resistivity measurements and tests for corrosion accelerating bacteria, that a corrosive environment does not exist. However, within 6 months after an installation made pursuant to the preceding sentence, the operator shall conduct tests, including pipe-to-soil potential measurements with respect to...

  18. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Tsisar, Valentyn; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2017-10-01

    Corrosion behavior of two heats of T91 ferritic/martensitic steel, with slightly different Cr content, was investigated in flowing (2 m/s) Pb-Bi with 10-7 mass%O at 450 and 550 °C. The observed corrosion modes are: protective scale formation; accelerated oxidation and solution-based corrosion attack. Accelerated oxidation at 450 °C results in general metal recession of about 10 μm after ∼9000 h exposure and ∼15 μm at 550 °C after 2000 h. More severe and local solution-based corrosion results in a maximum depth of attack of 50-960 μm and 115-190 μm, correspondingly. Incubation period for solution-based corrosion is 500-5000 h at 450 °C and ≤500 h at 550 °C. The slightly higher chromium content in one of the heat of T91 steel prolongs the incubation period by improving the stability of the Cr-based oxide film.

  19. Chemical coloring on stainless steel by ultrasonic irradiation.

    PubMed

    Cheng, Zuohui; Xue, Yongqiang; Ju, Hongbin

    2018-01-01

    To solve the problems of high temperature and non-uniformity of coloring on stainless steel, a new chemical coloring process, applying ultrasonic irradiation to the traditional chemical coloring process, was developed in this paper. The effects of ultrasonic frequency and power density (sound intensity) on chemical coloring on stainless steel were studied. The uniformity of morphology and colors was observed with the help of polarizing microscope and scanning electron microscopy (SEM), and the surface compositions were characterized by X-ray photoelectric spectroscopy (XPS), meanwhile, the wear resistance and the corrosion resistance were investigated, and the effect mechanism of ultrasonic irradiation on chemical coloring was discussed. These results show that in the process of chemical coloring on stainless steel by ultrasonic irradiation, the film composition is the same as the traditional chemical coloring, and this method can significantly enhance the uniformity, the wear and corrosion resistances of the color film and accelerate the coloring rate which makes the coloring temperature reduced to 40°C. The effects of ultrasonic irradiation on the chemical coloring can be attributed to the coloring rate accelerated and the coloring temperature reduced by thermal-effect, the uniformity of coloring film improved by dispersion-effect, and the wear and corrosion resistances of coloring film enhanced by cavitation-effect. Ultrasonic irradiation not only has an extensive application prospect for chemical coloring on stainless steel but also provides an valuable reference for other chemical coloring. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures

    PubMed Central

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2014-01-01

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048

  1. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    PubMed

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-12-27

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.

  2. Modelling the radiolytic corrosion of α-doped UO2 and spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Liu, Nazhen; Qin, Zack; Noël, James J.; Shoesmith, David W.

    2017-10-01

    A model previously developed to predict the corrosion rate of spent fuel (UO2) inside a failed waste container has been adapted to simulate the rates measured on a wide range of α-doped UO2 and spent fuel specimens. This simulation confirms the validity of the model and demonstrates that the steady-state corrosion rate is controlled by the radiolytic production of H2O2 (which has been shown to be the primary oxidant driving fuel corrosion), irrespective of the reactivity of the UO2 matrix. The model was then used to determine the consequences of corrosion inside a failed container resealed by steel corrosion products. The possible accumulation of O2, produced by H2O2 decomposition, was found to accelerate the corrosion rate in a closed system. However, the simultaneous accumulation of radiolytic H2, which is activated as a reductant on the noble metal (ε) particles in the spent fuel, rapidly overcame this acceleration leading to the eventual suppression of the corrosion rate to insignificant values. Calculations also showed that, while the radiation dose rate, the H2O2 decomposition ratio, and the surface coverage of ε particles all influenced the short term corrosion rate, the influence of the radiolytically produced H2 was the overwhelming influence in reducing the rate to negligible level (i.e., <10-20 mol m-2 s-1).

  3. Materials Testing for an Accelerator-Driven Subcritical Molten Salt Fission System: A look at the Materials Science of Molten Salt Corrosion

    NASA Astrophysics Data System (ADS)

    Sooby, Elizabeth; Balachandran, Shreyas; Foley, David; Hartwig, Karl; McIntyre, Peter; Phongikaroon, Supathorn; Pogue, Nathaniel; Simpson, Michael; Tripathy, Prabhat

    2011-10-01

    For an accelerator-driven subcritical molten salt fission core to survive its 50+ year fuel life, the primary vessel, heat exchanger, and various internal components must be made of materials that resist corrosion and radiation damage in a high-temperature environment, (500-800 C). An experimental study of the corrosion behavior of candidate metals in contact with molten salt is being conducted at the Center for Advanced Energy Studies. Initial experiments have been run on Nb, Ta, Ni, two zirconium alloys, Hastelloy-N, and a series of steel alloys to form a base line for corrosion in both chloride and bromide salt. Metal coupons were immersed in LiCl-KCl or LiBr-KBr at 700 C in an inert-atmosphere. Salt samples were extracted on a time schedule over a 24-hr period. The samples were analyzed using inductively coupled plasma-mass spectrometry to determine concentrations of metals from corrosion. Preliminary results will be presented.

  4. Accelerated Corrosion Results for Zinc/Nickel-Plated Automotive Parts Posttreated With Trivalent Chromate Rinse

    DTIC Science & Technology

    2010-09-01

    400 and 300 h in neutral salt spray. 5 Similarly plated samples post treated with trivalent chromium rinse lasted 450 and 200 h in neutral salt...Accelerated Corrosion Results for Zinc/Nickel-Plated Automotive Parts Posttreated With Trivalent Chromate Rinse by Chris E. Miller, Brian E...Posttreated With Trivalent Chromate Rinse Chris E. Miller and Brian E. Placzankis Weapons and Materials Research Directorate, ARL I. Carl Handsy

  5. An artifical corrosion protocol for lap-splices in aircraft skin

    NASA Technical Reports Server (NTRS)

    Shaw, Bevil J.

    1994-01-01

    This paper reviews the progress to date to formulate an artificial corrosion protocol for the Tinker AFB C/KC-135 Corrosion Fatigue Round Robin Test Program. The project has provided new test methods to faithfully reproduce the corrosion damage within a lap-splice by accelerated means, the rationale for a new laboratory test environment, and a means for corrosion damage quantification. The approach is pragmatic and the resulting artificial corrosion protocol lays the foundation for future research in the assessment of aerospace alloys. The general means for quantification of corrosion damage has been presented in a form which can be directly applied to structural integrity calculations.

  6. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    PubMed Central

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  7. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    PubMed

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  8. The Influence of the In-Situ Clad Staining on the Corrosion of Zircaloy in PWR Water Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammenzind, B.F., Eklund, K.L. and Bajaj, R.

    Zircaloy cladding tubes strain in-situ during service life in the corrosive environment of a Pressurized Water Reactor for a variety of reasons. First, the tube undergoes stress free growth due to the preferential alignment of irradiation induced vacancy loops on basal planes. Positive strains develop in the textured tubes along prism orientations while negative strains develop along basal orientations (Reference (a)). Second, early in life, free standing tubes will often shrink by creep in the diametrical direction under the external pressure of the water environment, but potentially grow later in life in the diametrical direction once the expanding fuel pelletmore » contacts the cladding inner wall (Reference (b)). Finally, the Zircaloy cladding absorbs hydrogen as a by product of the corrosion reaction (Reference (c)). Once above the solubility limit in Zircaloy, the hydride precipitates as zirconium hydride (References (c) through (j)). Both hydrogen in solid solution and precipitated as Zirconium hydride cause a volume expansion of the Zircaloy metal (Reference (k)). Few studies are reported on that have investigated the influence that in-situ clad straining has on corrosion of Zircaloy. If Zircaloy corrosion rates are governed by diffusion of anions through a thin passivating boundary layer at the oxide-to-metal interface (References (l) through (n)), in-situ straining of the cladding could accelerate the corrosion process by prematurely breaking that passivating oxide boundary layer. References (o) through (q) investigated the influence that an applied tensile stress has on the corrosion resistance of Zircaloy. Knights and Perkins, Reference (o), reported that the applied tensile stress increased corrosion rates above a critical stress level in 400 C and 475 C steam, but not at lower temperatures nor in dry oxygen environments. This latter observation suggested that hydrogen either in the oxide or at the oxide-to-metal interface is involved in the observed stress effect. Kim et al. (Reference (p)) and Kim and Kim (Reference (q)) more recently investigated the influence that an applied hoop stress has on the corrosion resistance of Zircaloy tubes in a 400 C steam and in a 350 C concentrated lithia water environment. Both of these studies found the applied tensile hoop stress to have no effect on cladding corrosion rates in the 400 C steam environment but to have accelerated corrosion in the lithiated water environment. In both cases, the corrosion acceleration in the lithiated water environment was attributed to the accumulation of the increased hydrogen picked up in the lithiated environment into the tensile regions of the test specimen. Dense hydride rims have been shown, independent of clad strain, to accelerate the corrosion of Zirconium alloys (References (r) and (s)), suggesting that the primary effect of applied stresses on the corrosion of Zircaloy in the above studies is through the accumulation of hydrogen at the oxide-to-metal interface and not through a direct mechanical breakdown of the passivating boundary layer. To further investigate the potential role of in-situ clad straining (or stress) on Zircaloy corrosion rates, two experimental studies were performed. First, several samples that were irradiated with and without an applied stress were destructively examined for the extent of corrosion occurring in strained and nonstrained regions of the test samples. The extent of corrosion was determined, posttest, by metallographic examination. Second, the corrosion process was monitored in-situ using electrochemical impedance spectroscopy on samples exposed out-of-reactor with and without an applied stress. Post test, these autoclave samples were also metallographically examined.« less

  9. Corrosion Performance of Inconel 625 in High Sulphate Content

    NASA Astrophysics Data System (ADS)

    Ismail, Azzura

    2016-05-01

    Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with excellent corrosion resistance in a wide range of corrosive media, being especially resistant to pitting and crevice corrosion. However, in aggressive environment, Inconel 625 will suffer corrosion attack like other metals. This research compared the corrosion performance of Inconel 625 when exposed to higher sulphate content compared to real seawater. The results reveal that Inconel 625 is excellent in resist the corrosion attack in seawater. However, at increasing temperature, the corrosion resistance of this metal decrease. The performance is same in seawater with high sulphate content at increasing temperature. It can be concluded that sulphate promote perforation on Inconel 625 and become aggressive agents that accelerate the corrosion attack.

  10. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  11. Grease Inhibits Stress-Corrosion Cracking In Bearing Race

    NASA Technical Reports Server (NTRS)

    Beatty, Robert F.; Mcvey, Scott E.

    1991-01-01

    Coating with suitable grease found to inhibit stress-corrosion cracking in bore of inner race of ball-bearing assembly operating in liquid oxygen. Protects bore and its corner radii from corrosion-initiating and -accelerating substances like moisture and contaminants, which enter during assembly. Operating life extended at low cost, and involves very little extra assembly time.

  12. Analysis of lead-acid battery accelerated testing data

    NASA Astrophysics Data System (ADS)

    Clifford, J. E.; Thomas, R. E.

    1983-06-01

    Battelle conducted an independent review and analysis of the accelerated test procedures and test data obtained by Exide in the 3 year Phase 1 program to develop advanced lead acid batteries for utility load leveling. Of special importance is the extensive data obtained in deep discharge cycling tests on 60 cells at elevated temperatures over a 2-1/2 year period. The principal uncertainty in estimating cell life relates to projecting cycle life data at elevated temperature to the lower operating temperatures. The accelerated positive grid corrosion test involving continuous overcharge at 500C provided some indication of the degree of grid corrosion that might be tolerable before failure. The accelerated positive material shedding test was not examined in any detail. Recommendations are made for additional studies.

  13. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests

    DOE PAGES

    Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph; ...

    2018-03-15

    Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less

  14. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph

    Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less

  15. Accelerated Dynamic Corrosion Test Method Development

    DTIC Science & Technology

    test method has poor correlation to outdoor exposures, particularly for non-chromate primers. As a result, more realistic cyclic environmental...exposures have been developed to more closely resemble actual atmospheric corrosion damage. Several existing tests correlate well with the outdoor performance

  16. Effect of the Crevice Former on the Corrosion Behavior of 316L Stainless Steel in Chloride-Containing Synthetic Tap Water

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Lee, Ji-Hoon; Kim, Jung-Gu; Kim, Woo-Cheol

    2018-05-01

    To restrain the failure of the plate heat exchanger (PHE) in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of the 316L stainless steel plate was investigated using electrochemical methods and surface analyses in chloride-containing synthetic tap water (60 °C). The localized corrosion under metal-metal crevice condition was initiated more easily than that under the metal-gasket crevice condition due to the restricted mass transport at the gasket crevice mouth. However, the anodic current under the metal-metal crevice condition was lower than that under metal-gasket crevice condition at a higher anodic potential, indicating that that the metal dissolution under EPDM crevice would be higher than that under metal crevice under the accelerated corrosion condition. Because narrow crevice gap that was formed under gasket accelerated the anodic dissolution at the crevice mouth, the perforation tendency under metal-gasket crevice condition is much higher than that under metal-metal crevice condition. As a result, the crevice geometry, especially the crevice gap, mainly affected the corrosion behavior of PHE material.

  17. Effect of the Crevice Former on the Corrosion Behavior of 316L Stainless Steel in Chloride-Containing Synthetic Tap Water

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Lee, Ji-Hoon; Kim, Jung-Gu; Kim, Woo-Cheol

    2018-03-01

    To restrain the failure of the plate heat exchanger (PHE) in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of the 316L stainless steel plate was investigated using electrochemical methods and surface analyses in chloride-containing synthetic tap water (60 °C). The localized corrosion under metal-metal crevice condition was initiated more easily than that under the metal-gasket crevice condition due to the restricted mass transport at the gasket crevice mouth. However, the anodic current under the metal-metal crevice condition was lower than that under metal-gasket crevice condition at a higher anodic potential, indicating that that the metal dissolution under EPDM crevice would be higher than that under metal crevice under the accelerated corrosion condition. Because narrow crevice gap that was formed under gasket accelerated the anodic dissolution at the crevice mouth, the perforation tendency under metal-gasket crevice condition is much higher than that under metal-metal crevice condition. As a result, the crevice geometry, especially the crevice gap, mainly affected the corrosion behavior of PHE material.

  18. Evaluating the Upset Protrusion Joining (UPJ) Method to Join Magnesium Castings to Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    2016-02-24

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparingmore » performance results of the joints made with the UPJ process to those made with the SPR process. Key results presented include: The benchmark SPR process can produce good joints in the MgAM60B-Al 6013 joint configuration with minimal cracking in the Mg coupons if the rivet is inserted from the Mg side into the Al side; Numerous bare Mg to bare Al joints made with the SPR process separated after only 6-wks of accelerated corrosion testing due to fracture of the rivet as a result of hydrogen embrittlement; For the same joint configurations, UPJ demonstrated substantially higher pre-corrosion joint strengths and post-corrosion joint strengths, primarily because of the larger diameter protrusion compared to smaller SPR rivet diameter and reduced degradation due to accelerated corrosion exposure; As with the SPR process, numerous bare Mg to bare Al joints made with the UPJ process also separated after 6-wks of accelerated corrosion testing, but unlike the SPR experience, the UPJ joints experienced degradation of the boss and head because of galvanic corrosion of the Mg casting, not hydrogen embrittlement of the steel rivet; In the configuration where both the Mg and Al were pretreated with Alodine 5200 prior to joining and the complete assembly was powder-coated afterwards, the UPJ process showed substantial improvement in corrosion performance compared to SPR where many SPR joints had separated after only 6-wks of exposure, but none of the UPJ joints had separated even after 8-wis; and In the cases where the Al panel was coated prior to joining to the pretreated Mg coupons, neither the SPR or UPJ joints showed any joint separation or substantial joint performance degradation even after 12-wks of accelerated corrosion exposure.« less

  19. The use of tungsten as a chronically implanted material.

    PubMed

    Shah Idil, A; Donaldson, N

    2018-04-01

    This review paper shows that tungsten should not generally be used as a chronically implanted material. The metal has a long implant history, from neuroscience, vascular medicine, radiography, orthopaedics, prosthodontics, and various other fields, primarily as a result of its high density, radiopacity, tensile strength, and yield point. However, a crucial material criterion for chronically implanted metals is their long-term resistance to corrosion in body fluids, either by inherently noble metallic surfaces, or by protective passivation layers of metal oxide. The latter is often assumed for elemental tungsten, with references to its 'inertness' and 'stability' common in the literature. This review argues that in the body, metallic tungsten fails this criterion, and will eventually dissolve into the soluble hexavalent form W 6+ , typically represented by the orthotungstate [Formula: see text] (monomeric tungstate) anion. This paper outlines the metal's unfavourable corrosion thermodynamics in the human physiological environment, the chemical pathways to either metallic or metal oxide dissolution, the rate-limiting steps, and the corrosion-accelerating effects of reactive oxidising species that the immune system produces post-implantation. Multiple examples of implant corrosion have been reported, with failure by dissolution to varying extents up to total loss, with associated emission of tungstate ions and elevated blood serum levels measured. The possible toxicity of these corrosion products has also been explored. As the field of medical implants grows and designers explore novel solutions to medical implant problems, the authors recommend the use of alternative materials.

  20. The use of tungsten as a chronically implanted material

    NASA Astrophysics Data System (ADS)

    Shah Idil, A.; Donaldson, N.

    2018-04-01

    This review paper shows that tungsten should not generally be used as a chronically implanted material. The metal has a long implant history, from neuroscience, vascular medicine, radiography, orthopaedics, prosthodontics, and various other fields, primarily as a result of its high density, radiopacity, tensile strength, and yield point. However, a crucial material criterion for chronically implanted metals is their long-term resistance to corrosion in body fluids, either by inherently noble metallic surfaces, or by protective passivation layers of metal oxide. The latter is often assumed for elemental tungsten, with references to its ‘inertness’ and ‘stability’ common in the literature. This review argues that in the body, metallic tungsten fails this criterion, and will eventually dissolve into the soluble hexavalent form W6+, typically represented by the orthotungstate WO42- (monomeric tungstate) anion. This paper outlines the metal’s unfavourable corrosion thermodynamics in the human physiological environment, the chemical pathways to either metallic or metal oxide dissolution, the rate-limiting steps, and the corrosion-accelerating effects of reactive oxidising species that the immune system produces post-implantation. Multiple examples of implant corrosion have been reported, with failure by dissolution to varying extents up to total loss, with associated emission of tungstate ions and elevated blood serum levels measured. The possible toxicity of these corrosion products has also been explored. As the field of medical implants grows and designers explore novel solutions to medical implant problems, the authors recommend the use of alternative materials.

  1. Corrosivity Sensor for Exposed Pipelines Based on Wireless Energy Transfer.

    PubMed

    Lawand, Lydia; Shiryayev, Oleg; Al Handawi, Khalil; Vahdati, Nader; Rostron, Paul

    2017-05-30

    External corrosion was identified as one of the main causes of pipeline failures worldwide. A solution that addresses the issue of detecting and quantifying corrosivity of environment for application to existing exposed pipelines has been developed. It consists of a sensing array made of an assembly of thin strips of pipeline steel and a circuit that provides a visual sensor reading to the operator. The proposed sensor is passive and does not require a constant power supply. Circuit design was validated through simulations and lab experiments. Accelerated corrosion experiment was conducted to confirm the feasibility of the proposed corrosivity sensor design.

  2. Corrosion on the acetabular liner taper from retrieved modular metal-on-metal total hip replacements.

    PubMed

    Gascoyne, Trevor C; Dyrkacz, Richard M; Turgeon, Thomas R; Burnell, Colin D; Wyss, Urs P; Brandt, Jan-M

    2014-10-01

    Eight retrieved metal-on-metal total hip replacements displayed corrosion damage along the cobalt-chromium alloy liner taper junction with the Ti alloy acetabular shell. Scanning electron microscopy indicated the primary mechanism of corrosion to be grain boundary and associated crevice corrosion, which was likely accelerated through mechanical micromotion and galvanic corrosion resulting from dissimilar alloys. Coordinate measurements revealed up to 4.3mm(3) of the cobalt-chromium alloy taper surface was removed due to corrosion, which is comparable to previous reports of corrosion damage on head-neck tapers. The acetabular liner-shell taper appears to be an additional source of metal corrosion products in modular total hip replacements. Patients with these prostheses should be closely monitored for signs of adverse reaction towards corrosion by-products. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  4. Simultaneous Interferometric Measurement of Corrosive or Demineralizing Bacteria and Their Mineral Interfaces

    DTIC Science & Technology

    2009-03-01

    surface profile measurements of several bacterial species involved in micro- bially influenced corrosion and their solid-surface interfaces by using... influenced corrosion, involving the release of chemicals or the deposition of electrochemically active miner- als that accelerate surface...single cell, consistent with VSI height measurement variability (data not shown). To expand the range of VSI data acquisition to conditions that were

  5. Review of test methods used to determine the corrosion rate of metals in contact with treated wood

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    The purpose of this literature review is to give an overview of test methods previously used to evaluate the corrosion of metals in contact with wood. This article reviews the test methods used to evaluate the corrosion of metals in contact with wood by breaking the experiments into three groups: exposure tests, accelerated exposure tests, and electrochemical tests....

  6. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    NASA Astrophysics Data System (ADS)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  7. Protection of bronze artefacts through polymeric coatings based on nanocarriers filled with corrosion inhibitors

    NASA Astrophysics Data System (ADS)

    de Luna, Martina Salzano; Buonocore, Giovanna; Di Carlo, Gabriella; Giuliani, Chiara; Ingo, Gabriel M.; Lavorgna, Marino

    2016-05-01

    Protective coatings based on polymers synthesized from renewable sources (chitosan or an amorphous vinyl alcohol based polymer) have been prepared for the protection of bronze artifacts from corrosion. Besides acting as an effective barrier against corrosive species present in the environment, the efficiency of the coatings has been improved by adding corrosion inhibitor compounds (benzotriazole or mercaptobenzothiazole) to the formulations. The liquid medium of the formulations has been carefully selected looking at maximizing the wettability on the bronze substrate and optimizing the solvent evaporation rate. The minimum amount of inhibitor compounds has been optimized by performing accelerated corrosion tests on coated bronze substrates. The inhibitors have been directly dissolved in the coating-forming solutions and/or introduced by means of nanocarriers, which allow to control the release kinetics. The free dissolved inhibitor molecules immediately provide a sufficient protection against corrosion. On the other hand, the inhibitor molecules contained in the nanocarriers serve as long-term reservoir, which can be activated by external corrosion-related stimuli in case of particularly severe conditions. Particular attention has been paid to other features which affect the coating performances. Specifically, the adhesion of the protective polymer layer to the bronze substrate has been assessed, as well as its permeability properties and transparency, the latter being a fundamental feature of protective coating for cultural heritages. Finally, the protective efficiency of the produced smart coatings has been assessed through accelerated corrosion tests.

  8. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    NASA Astrophysics Data System (ADS)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  9. Comparative study of the corrosion behavior of peripheral stents in an accelerated corrosion model: experimental in vitro study of 28 metallic vascular endoprostheses

    PubMed Central

    Paprottka, Karolin J.; Paprottka, Philipp M.; Reiser, Maximilian F.; Waggershauser, Tobias

    2015-01-01

    PURPOSE Clinical cases of stent-fractures show that corrosion behavior might play a role in these fractures. Implanted in vivo, especially in combination with other implanted foreign materials, these metallic products are exposed to special conditions, which can cause a process of corrosion. Here, we aimed to test the corrosion potential of stents made of different materials in an in vitro setting. METHODS A total of 28 peripheral stents of different materials (nitinol, cobalt-chromium-nickel, tantalum, V4A) and surface treatments (electropolish, mechanical polish, no polish) were tested in vitro. Corrosion was accelerated by applying a constant voltage of 3.5 V and amperage of 1.16 mA in 0.9% NaCl. RESULTS Nitinol stents showed the lowest susceptibility to corrosion and the longest period without damage. The Memotherm II® (BARD Angiomed®) was the only stent that showed neither macroscopic nor microscopic damages. The worst performing material was cobalt-chromium-nickel, which showed corrosion damages about ten times earlier compared to nitinol. Considering the reasons for termination of the test, nitinol stents primarily showed length deficits, while V4A and tantalum stents showed fractures. Cobalt-chromium-nickel stents had multiple fractures or a complete lysis in equal proportions. When placed in direct contact, nitinol stents showed best corrosion resistance, regardless of what material they were combined with. In terms of polishing treatments, electropolished stents performed the best, mechanical-polished stents and those without polishing treatment followed. CONCLUSION The analysis of corrosion behavior may be useful to select the right stent fulfilling the individual needs of the patient within a large number of different stents. PMID:26268301

  10. Spectrophotometric Method for the Determination of Atmospheric Cr Pollution as a Factor to Accelerated Corrosion.

    PubMed

    Homa, Dereje; Haile, Ermias; Washe, Alemayehu P

    2017-01-01

    The effect of Cr(VI) pollution on the corrosion rate of corrugated iron roof samples collected from tanning industry areas was investigated through simulated laboratory exposure and spectrophotometric detection of Cr(III) deposit as a product of the reaction. The total level of Cr detected in the samples ranged from 113.892 ± 0.17 ppm to 53.05 ± 0.243 ppm and showed increasing trend as sampling sites get closer to the tannery and in the direction of tannery effluent stream. The laboratory exposure of a newly manufactured material to a simulated condition showed a relatively faster corrosion rate in the presence of Cr(VI) with concomitant deposition of Cr(III) under pH control. A significant ( P = 0.05) increase in the corrosion rate was also recorded when exposing scratched or stress cracked samples. A coupled redox process where Cr(VI) is reduced to a stable, immobile, and insoluble Cr(III) accompanying corrosion of the iron is proposed as a possible mechanism leading to the elevated deposition of the latter on the materials. In conclusion, the increased deposits of Cr detected in the corrugated iron roof samples collected from tanning industry zones suggested possible atmospheric Cr pollution as a factor to the accelerated corrosion of the materials.

  11. Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Srinivasan, A.; Rajendran, N.

    2015-08-01

    The effect of Si:Zr ratio on the in vitro bioactivity and electrochemical corrosion behavior of SiO2:ZrO2-mixed oxide-coated 316L stainless steel (SS) was evaluated in simulated body fluid (SBF) solution for 72, 120, and 168 h. Growth of Hydroxyapatite (HAp) was accelerated when Si content in the coating was increased. The Zr content in the coating improved the corrosion resistance of 316L SS rather than accelerating the HAp growth. When the Si:Zr ratio was 50:50, the coating exhibited significant improvement in corrosion resistance as well as HAp growth. The mechanism of HAp growth was proposed based on the change in surface zeta potential values of the coatings. Potentiodynamic polarization studies revealed about 10 and 5 times reduction in corrosion current density ( i corr) values for SiO2:ZrO2 (50:50)-coated 316L SS after 168 h of immersion compared to SiO2, ZrO2, and Si:Zr (70:30) coatings in SBF solutions thus confirming the superior corrosion resistance. The equivalent circuit parameters derived from electrochemical impedance spectroscopy studies further confirmed significant improvement in charge transfer resistance value even after 168 h of exposure.

  12. Spectrophotometric Method for the Determination of Atmospheric Cr Pollution as a Factor to Accelerated Corrosion

    PubMed Central

    Homa, Dereje; Haile, Ermias

    2017-01-01

    The effect of Cr(VI) pollution on the corrosion rate of corrugated iron roof samples collected from tanning industry areas was investigated through simulated laboratory exposure and spectrophotometric detection of Cr(III) deposit as a product of the reaction. The total level of Cr detected in the samples ranged from 113.892 ± 0.17 ppm to 53.05 ± 0.243 ppm and showed increasing trend as sampling sites get closer to the tannery and in the direction of tannery effluent stream. The laboratory exposure of a newly manufactured material to a simulated condition showed a relatively faster corrosion rate in the presence of Cr(VI) with concomitant deposition of Cr(III) under pH control. A significant (P = 0.05) increase in the corrosion rate was also recorded when exposing scratched or stress cracked samples. A coupled redox process where Cr(VI) is reduced to a stable, immobile, and insoluble Cr(III) accompanying corrosion of the iron is proposed as a possible mechanism leading to the elevated deposition of the latter on the materials. In conclusion, the increased deposits of Cr detected in the corrugated iron roof samples collected from tanning industry zones suggested possible atmospheric Cr pollution as a factor to the accelerated corrosion of the materials. PMID:28469950

  13. Research on a new type of fiber Bragg grating based corrosion sensor

    NASA Astrophysics Data System (ADS)

    Li, Peng; Song, Shide; Wang, Xiaona; Zhou, Weijie; Zhang, Zuocai

    2015-08-01

    Investigations of the corrosion of rebars in concrete structures are widely studied because of the serious damage to concrete caused by rebar corrosion. The rebar corrosion products in reinforced concrete take up 2~6 times the volume of the rebar. Based on this principle, a new type of fiber Bragg grating (FBG) corrosion sensor is proposed in this paper, which consists of two sensors, an FBG corrosion measurement sensor to measure the expansion strain caused by rebar corrosion, and a temperature compensation sensor to eliminate the cross-sensitivity of FBG corrosion sensor. The corrosion rate is derived by the wavelength shift of FBG corrosion sensor, so rebar corrosion can be monitored and assessed by the FBG wavelength shift. A customized rebar with epoxy fixing groove is designed to install a corrosion sensor on its surface and an embedded temperature compensation sensor. The corrosion sensor is embedded in cement mortar and subsequently casted in concrete. The performance of the corrosion sensor is studied in an accelerated electrochemical corrosion test. Experimental results show that the new type of corrosion sensor has advantage of relatively large measurement range of corrosion rate. The corrosion sensor is suitable to monitor slightly and moderately corroded rebars.

  14. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  15. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  16. Corrosion inhibitors for concrete bridges.

    DOT National Transportation Integrated Search

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  17. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.

  18. Corrosion Embrittlement of Duralumin III Effect of the Previous Treatment of Sheet Material on the Susceptibility to This Type of Corrosion

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    As a result of testing, it was determined that control of the rate of quenching and the avoidance of accelerated aging by heating are the only means of modifying duralumin itself so as to minimize the intercrystalline form of corrosive attack. It is so simple a means that it should be adopted even though it may not completely prevent, but only reduce, this form of corrosive attack. By so doing, the need for protection of the surface is less urgent.

  19. Thermally driven self-healing using copper nanofiber heater

    NASA Astrophysics Data System (ADS)

    Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.

    2017-07-01

    Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.

  20. CHROMIUM PLATING FOR PROTECTION AGAINST STRESS CORROSION CRACKING OF HARDENED AISI 410 STEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suss, H.

    1958-04-22

    Because of its high corrosion resistance properties, chromium electroplate should offer protection to AISI 419 steel against stress corrosion cracking. Tests have been made (KAPL and Bettis) on chromium plates on test specimens as deposited by two different sources in conformance with Bettis and USMC specifications. These deposits either offered protection to hardened (RC36- 42) AISI 410 against stress corrosion cracking, or caused accelerated stress corrosion cracking under conditions which did not crack unplated material. At present there is no significant data which could give definite clues for these extreme differences in the corrosive protective values. The results of testsmore » so far strongly question tbe value of chromium plate as a means to protect AISI 410 against stress corrosion cracking. (A.C.)« less

  1. Corrosivity Sensor for Exposed Pipelines Based on Wireless Energy Transfer

    PubMed Central

    Lawand, Lydia; Shiryayev, Oleg; Al Handawi, Khalil; Vahdati, Nader; Rostron, Paul

    2017-01-01

    External corrosion was identified as one of the main causes of pipeline failures worldwide. A solution that addresses the issue of detecting and quantifying corrosivity of environment for application to existing exposed pipelines has been developed. It consists of a sensing array made of an assembly of thin strips of pipeline steel and a circuit that provides a visual sensor reading to the operator. The proposed sensor is passive and does not require a constant power supply. Circuit design was validated through simulations and lab experiments. Accelerated corrosion experiment was conducted to confirm the feasibility of the proposed corrosivity sensor design. PMID:28556805

  2. Influence of Direct Current Electric Field on Corrosion Behavior of Tin Under a Thin Electrolyte Layer

    NASA Astrophysics Data System (ADS)

    Huang, H. L.; Bu, F. R.; Tian, J.; Liu, D.

    2017-12-01

    The influence of a direct current electric field (DCEF) on corrosion behavior of tin under a thin electrolyte layer was investigated based on an array electrode technology by polarization, electrochemical impedance spectroscopy and surface analysis. The experimental results indicate that the corrosion rate of tin near the positive plate of DCEF increases with increased electric field intensity, which could be attributed to the acceleration of the migration of ions, the removal of corrosion products under DCEF and the damage of tin surface oxide film. Furthermore, tin at different positions in a DCEF exhibits different corrosion behavior, which could be ascribed to the difference of the local corrosion environment caused by the DCEF.

  3. Corrosion characteristics of Ni-base superalloys in high temperature steam with and without hydrogen

    NASA Astrophysics Data System (ADS)

    Kim, Donghoon; Kim, Daejong; Lee, Ho Jung; Jang, Changheui; Yoon, Duk Joo

    2013-10-01

    The hot steam corrosion behavior of Alloy 617 and Haynes 230 were evaluated in corrosion tests performed at 900 °C in steam and steam + 20 vol.% H2 environments. Corrosion rates of Alloy 617 was faster than that of Haynes 230 at 900 °C in steam and steam + 20 vol.% H2 environments. When hydrogen was added to steam, the corrosion rate was accelerated because added hydrogen increased the concentration of Cr interstitial defects in the oxide layer. Isolated nodular MnTiO3 oxides were formed on the MnCr2O4/Cr2O3 oxide layer and sub-layer Cr2O3 was formed in steam and steam + 20 vol.% H2 for Alloy 617. On the other hand, a MnCr2O4 layer was formed on top of the Cr2O3 oxide layer for Haynes 230. The extensive sub-layer Cr2O3 formation resulted from the oxygen or hydroxide inward diffusion in such environments. When hydrogen was added, the initial surface oxide morphology was changed from a convex shape to platelets because of the accelerated diffusion of cations under the oxide layer.

  4. Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin Lee

    This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water surrounding, and mortar surrounding were also investigated using guided mechanical waves. Results are presented and discussed within the framework of a corrosion process degradation model and service life. A thorough review and discussion of the corrosion process, modeling the propagation of corrosion, nondestructive methods for monitoring corrosion in reinforced concrete, and guided mechanical waves have also been presented.

  5. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  6. Stress corrosion cracking of an aluminum alloy used in external fixation devices.

    PubMed

    Cartner, Jacob L; Haggard, Warren O; Ong, Joo L; Bumgardner, Joel D

    2008-08-01

    Treatment for compound and/or comminuted fractures is frequently accomplished via external fixation. To achieve stability, the compositions of external fixators generally include aluminum alloy components due to their high strength-to-weight ratios. These alloys are particularly susceptible to corrosion in chloride environments. There have been several clinical cases of fixator failure in which corrosion was cited as a potential mechanism. The aim of this study was to evaluate the effects of physiological environments on the corrosion susceptibility of aluminum 7075-T6, since it is used in orthopedic external fixation devices. Electrochemical corrosion curves and alternate immersion stress corrosion cracking tests indicated aluminum 7075-T6 is susceptible to corrosive attack when placed in physiological environments. Pit initiated stress corrosion cracking was the primary form of alloy corrosion, and subsequent fracture, in this study. Anodization of the alloy provided a protective layer, but also caused a decrease in passivity ranges. These data suggest that once the anodization layer is disrupted, accelerated corrosion processes occur. (c) 2007 Wiley Periodicals, Inc.

  7. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  8. Effects of microstructure transformation on mechanical properties, corrosion behaviors of Mg-Zn-Mn-Ca alloys in simulated body fluid.

    PubMed

    Zhang, Yuan; Li, Jianxing; Li, Jingyuan

    2018-04-01

    Magnesium and its alloys have unique advantages to act as resorbable bone fixation materials, due to their moderate mechanical properties and biocompatibility, which are similar to those of human tissue. However, early resorption and insufficient mechanical strength are the main problems that hinder their application. Herein, the effects of microstructure transformation on the mechanical properties and corrosion performance of Mg-Zn-Mn-Ca were investigated with electrochemical and immersion measurements at 37 °C in a simulated body fluid (SBF). The results showed that the number density of Ca 2 Mg 6 Zn 3 /Mg 2 Ca precipitates was remarkably reduced and grain sizes were gradually increased as the temperature increased. The alloy that received the 420 °C/24 h treatment demonstrated the best mechanical properties and lowest corrosion rate (5.94 mm/a) as well as presented a compact and denser film than the others. The improvement in mechanical properties could be explained by the eutectic compounds and phases (Mg 2 Ca/Ca 2 Mg 6 Zn 3 ) gradually dissolving into a matrix, which caused severely lattice distortion and facilitated structural re-arrangement of the increased Ca solute. Moreover, the difference in potential between the precipitates and the matrix is the main essence for micro-galvanic corrosion formation as well as accelerated the dissolution activity and current exchange density at the Mg/electrolyte interface. As a result, the best Mg alloys corrosion resistance must be matched with a moderate grain size and phase volume fractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Corrosion control and disinfection studies in spacecraft water systems. [considering Saturn 5 orbital workshop

    NASA Technical Reports Server (NTRS)

    Shea, T. G.

    1974-01-01

    Disinfection and corrosion control in the water systems of the Saturn 5 Orbital Workshop Program are considered. Within this framework, the problem areas of concern are classified into four general areas: disinfection; corrosion; membrane-associated problems of disinfectant uptake and diffusion; and taste and odor problems arising from membrane-disinfectant interaction.

  10. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  11. Analysis and estimation of service life of corrosion prevention materials using diffusion, resistivity and accelerated curing for new bridge structures : [summary].

    DOT National Transportation Integrated Search

    2014-01-01

    Much infrastructure on Floridas coasts relies : on steel-reinforced concrete that is exposed : to seawater. Corrosion of steel reinforcing bars : (rebar) in concrete exposed to seawater has : been documented as a major cause of bridge : deteriorat...

  12. A corrosion control manual for rail rapid transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.

    1982-01-01

    In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.

  13. Investigation into the role of primer, pre-treatments and coating microstructure in preventing cut edge corrosion of organically coated steels

    NASA Astrophysics Data System (ADS)

    Khan, Khalil

    Investigations were carried out to assess the role of primer, pretreatments and coating microstructure in preventing cutedge corrosion of chrome free organically coated steels. Zinc runoff was monitored from a range of organically coated steels with a large cutedge length exposed over 18 months at Swansea University roof top site. The zinc in the runoff leaches from the zinc-aluminium alloy coating of the substrate. The paint systems' corrosion performance was assessed by monitoring the levels of zinc in the runoff. Consequently the levels of zinc reflected the effectiveness of the applied paint system against corrosion. Runoff was high in initial months with zinc levels reducing with time due to the build up of corrosion products that hindered the progress of corrosion. An accelerated laboratory test using a distilled water electrolyte was developed that predict long-term external weathering runoff from panels of a range of organically coated steels. The corrosion mechanisms of a variety of organically coated Galvalloy steel have been examined using the scanning vibrating electrode technique (SVET) in 0.1%NaCI. The corrosion behaviour of a coating is related to the zinc-aluminium alloy coating structure and combination of pretreatment and primer. The SVET has been used to assess total zinc loss and the corrosion rate for a comparative measure of organically coating system performance. A correlation has been developed from SVET 24hour experiment data to accelerated weathering data and external weather data that can aid more accurately predicting the in service life of the product. Also considered were the effects of electrolyte conductivity on the morphology of corrosion on pure zinc. A mathematical model has been developed to predict corrosion pit population. Altered microstructure of solidifying zinc aluminium alloy melt via ultrasonication was investigated. Ultrasound irradiation significantly altered the final microstructure. The influence of morphed microstructure upon the corrosion behaviour was explored using the SVET in 0.1%NaCI. The ultrasound manipulated microstructure had generally a positive effect on the corrosion behaviour.

  14. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    DTIC Science & Technology

    2014-07-01

    corrosion studies (16). A schematic of the SWAP process and example of the powder produced is included in figure 4. This alloy contains amounts of Al ...advanced powder -based alloy and ZAXE1711 (both from Japan) were produced using a Spinning Water Atomization Process (SWAP) to yield powder particles with...and ZAXE1711 Mg alloy powders and (b) morphology of coarse Mg alloy powder prepared by SWAP

  15. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    NASA Astrophysics Data System (ADS)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  16. An investigation of new inhibitors to mitigate rebar corrosion in concrete.

    DOT National Transportation Integrated Search

    1996-01-01

    Rebar corrosion in concrete is the most costly and performance-limiting problem facing the nation's infrastructure. One of the most practical and economical approaches to this problem is to use corrosion inhibitors in a quality concrete mix for new c...

  17. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.

    PubMed

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-12-23

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  18. Effect of crack openings on carbonation-induced corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghantous, Rita Maria, E-mail: rita-maria.ghantous@yncrea.fr; LMDC, Université de Toulouse, INSA, UPS, Toulouse; Poyet, Stéphane

    Reinforced concrete is widely used in the construction of buildings, historical monuments, infrastructures and nuclear power plants. For a variety of reasons, many concrete structures are subject to unavoidable cracks that accelerate the diffusion of atmospheric carbon dioxide to the steel/concrete interface. Carbonation at the interface induces steel corrosion that could cause the development of new cracks in the structure, a determining factor for its durability. The aim of this article is to study the effect of existing cracks on the development of carbonation-induced corrosion. The results indicate that, after the initiation phase, the corrosion kinetics decreases with time andmore » the free corrosion potential increases independently of the crack opening. In addition, the corroded zone matches the carbonated one. The interpretation of these results allows the authors to conclude that, during the corrosion process, corrosion products seal the crack and act as a barrier to oxygen and water diffusion. Consequently, the influence of crack opening on corrosion development is masked and the corrosion development is limited.« less

  19. Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zuotao; Natesan, Ken; Cai, Zhonghou

    The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 A degrees C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 A degrees C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate weremore » also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion.« less

  20. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    PubMed Central

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  1. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    PubMed Central

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  2. Corrosion Behavior of Nuclear Waste Storage Canister Materials

    NASA Astrophysics Data System (ADS)

    Grant, John

    The nature of interaction of mild steel nuclear waste storage containers with technetium ions is not fully known. Technetium is formed during nuclear processing and some of this technetium has leaked at the Hanford nuclear waste storage site in Washington State. It is often found as highly oxidized pertechnetate (TeO4-) anions at these storage sites which also happen to be highly alkaline and contain a significant amount of nitrate. Theoretically, pertechnetate anions can act as electron acceptors and interact with the mild steel containers and accelerate the oxidation (corrosion) of steel. It is of interest to identify if pertechnetate anions pose a corrosion hazard to the mild steel nuclear waste storage tanks, under the conditions of the storage sites, as that can accelerate the degradation of the tanks and lead to further contamination. In this thesis, the interaction of two relevant container materials, namely, steel alloys A285 and A537 with a technetium surrogate, rhenium was studied. Perrhenate was used as an analog for pertechnetate. As all isotopes of technetium are radioactive, rhenium was chosen as the experimental surrogate due to its chemical similarity to technetium. Electrochemical behavior was evaluated using potentiodynamic polarization tests, and the surface morphology was studied using optical microscopy and scanning electron microscopy. Potentiodynamic polarization tests were conducted in 1.0M NaNO3 + 0.1M NaOH and 1.0M NaNO3 + 0.1M NaOH + 0.02M NaReO4. Tests were performed at three different temperatures, namely, (i) room temperature, (ii) 50°C and (iii) 80°C to study the effect of higher temperatures found in the storage sites. Corrosion current, corrosion potential, anodic and cathodic Tafel slopes, polarization resistance and corrosion rates were obtained from electrochemical testing and evaluated. Increasing temperatures was found to lead to increasing corrosion rates for all samples. The data also revealed increased corrosion from sodium perrhenate on the mild steel A285 samples. The perrhenate anion (ReO4-) formed a redox couple with iron in the mild steel and accelerated metal dissolution that increased with temperature. Pitting and uniform corrosion was observed in the A285 and A537 mild steel samples. The A537 mild steel, however, displayed lower corrosion rates in the presence of perrhenate compared in the absence of perrhenate. A hypothesis has been proposed to explain the differences between the two alloys.

  3. Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments

    NASA Astrophysics Data System (ADS)

    Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.

    2012-03-01

    Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.

  4. Quantitative Correlation of 7B04 Aluminum Alloys Pitting Corrosion Morphology Characteristics with Stress Concentration Factor

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong

    2018-01-01

    The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.

  5. Stability of cp-Ti and Ti-6Al-4V alloy for dental implants as a function of saliva pH - an electrochemical study.

    PubMed

    Barão, Valentim A R; Mathew, Mathew T; Assunção, Wirley Gonçalves; Yuan, Judy Chia-Chun; Wimmer, Markus A; Sukotjo, Cortino

    2012-09-01

    To investigate the role of different levels of pH of artificial saliva under simulated oral environment on the corrosion behavior of commercially pure titanium (cp-Ti) and Ti-6Al-4V alloy. Special attention is given to understand the changes in corrosion kinetics and surface characterization of Ti by using electrochemical impedance spectroscopy (EIS). Fifty-four Ti disks (15-mm diameter, 2-mm thickness) were divided into six groups (n = 9) as a function of saliva pH (3, 6.5, and 9) and Ti type. Samples were mechanically polished using standard metallographic procedures. Standard electrochemical tests, such as open circuit potential, EIS, and potentiodynamic tests were conducted in a controlled environment. Data were evaluated by two-way ANOVA, Tukey multiple comparison test, and independent t-test (α = 0.05). Ti surfaces were examined using white-light-interferometry microscopy and scanning electron microscopy (SEM). Saliva pH level significantly affected the corrosion behavior of both Ti types. At low pH, acceleration of ions exchange between Ti and saliva, and reduction of resistance of Ti surface against corrosion were observed (P < 0.05). Corrosion rate was also significantly increased in acidic medium (P < 0.05). Similar corrosion behavior was observed for both Ti types. The white-light-interferometry images of Ti surfaces show higher surface changes at low pH level. SEM images do not show detectable changes. No pitting corrosion was observed for any group. The pH level of artificial saliva influences the corrosion behavior of cp-Ti and Ti-6Al-4V alloy in that lower pH accelerates the corrosion rate and kinetics. The corrosion products may mitigate the survival rate of dental implants. © 2011 John Wiley & Sons A/S.

  6. How copper corrosion can be retarded--New ways investigating a chronic problem for cellulose in paper.

    PubMed

    Ahn, Kyujin; Hofmann, Christa; Horsky, Monika; Potthast, Antje

    2015-12-10

    To better assess the stabilization effects of chemical treatments on Cu(II)-catalyzed cellulose degradation, we developed Cu(II)-containing model rag paper with typical copper corrosion characteristics using e-beam radiation. The paper can be prepared homogeneously and quickly compared to tedious pre-aging methods. Using the Cu(II)-containing model rag paper, the stabilization effects of various chemicals on Cu(II)-catalyzed degradation of cellulose were tested. Benzotriazol was highly effective in retarding the degradation of the Cu(II)-containing model rag paper under hot and humid aging condition, as well as under photo-oxidative stress. Tetrabutylammonium bromide reduced Cu(II)-catalyzed degradation of cellulose, but its efficacy was dependent on the accelerated aging conditions. The results with the alkaline treatments and gelatin treatment suggested that their roles in the degradation mechanisms of cellulose in the presence of Cu(II) differ from those of benzotriazol and tetrabutylammonium bromide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterisation of a Zn / Ni Plating Bath

    DTIC Science & Technology

    2009-09-03

    accelerated corrosion in the first stages which is then slowed down by its own product of corrosion, Zn(OH)212. Zinc hydroxide dehydrates in time to form ZnO ... Electrochemistry , 1991, 21, 642 [5] – Alfantasi, A.M., A study on the synthesis, characterization ans properties of pulse-plated ultrafine- grained Zn-Ni alloy

  8. ESCA study of oxidation and hot corrosion of nickel-base superalloys. [Electron Spectroscopy for Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Smith, S. R.; Carter, W. J., III; Mateescu, G. D.; Kohl, F. J.; Fryburg, G. C.; Stearns, C. A.

    1980-01-01

    A study of the high-temperature oxidation and Na2SO4-induced hot corrosion of nickel-base superalloys has been accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Hot corrosion of B-1900 was induced by applying a coating of Na2SO4 to preoxidized samples, then heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy showed a marked surface enrichment of Ti. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed before the onset of rapidly accelerating weight gain. Marked changes in surface composition coincided with the beginning of accelerating corrosion, the most striking of which were a tenfold decrease in the sulfur to sodium ratio and an increase in the Cr(VI) to Cr(III) ratio.

  9. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

    PubMed Central

    Qu, Qing; Wang, Lei; Chen, Yajun; Li, Lei; He, Yue; Ding, Zhongtao

    2014-01-01

    As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs), polarization curves and electrochemical impedance spectroscopy (EIS). OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM) also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results. PMID:28788143

  10. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  11. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo

    2017-07-01

    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature gradient accelerated the corrosion.

  12. The Effect of Chlorides on the Correlation of Accelerated Laboratory Corrosion Tests to Out-Door Exposure Tests for Ceramics-Aluminum Couples

    DTIC Science & Technology

    2010-02-01

    environment *Courtesy : George Hawthorn of Hawaii Corrosion Lab Procedures Outdoor Exposure Kilauea Volcano * Campbell Industrial Park* – Volcanic and marine...Raghu Srinivasan and L.H. Hihara Hawaii Corrosion Laboratory University of Hawaii at Manoa Department of Mechanical Engineering Report Documentation Page...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii at Manoa,Department of

  13. X-ray photoelectron spectroscopy study of nickel and nickel-base alloy surface alterations in simulated hot corrosion conditions with emphasis on eventual application to turbine blade corrosion

    NASA Technical Reports Server (NTRS)

    Mateescu, G. D.; Smith, S. R.

    1979-01-01

    Research on the high temperature oxidation and Na2SO4 induced hot corrosion of some nickel base superalloys was accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion of B-1900 was induced applying a coating of Na2SO4 to peroxidized samples, the heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy was determined, and a marked surface enrichment of Ti was found in each case. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed to occur long before the onset of accelerating weight-gain. Changes in surface composition were observed to coincide with the beginning of accelerating corrosion, the most striking of which was a tenfold decrease in the sulfur to sodium ration and an increase in the Cr(VI) ratio.

  14. Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy.

    PubMed

    Güleryüz, Hasan; Cimenoğlu, Hüseyin

    2004-07-01

    In this study, comparative investigation of thermal oxidation treatment for Ti-6Al-4V was carried out to determine the optimum oxidation conditions for further evaluation of corrosion-wear performance. Characterization of modified surface layers was made by means of microscopic examinations, hardness measurements and X-ray diffraction analysis. Optimum oxidation condition was determined according to the results of accelerated corrosion tests made in 5m HCl solution The examined Ti-6Al-4V alloy exhibited excellent resistance to corrosion after oxidation at 600 degrees C for 60 h. This oxidation condition achieved 25 times higher wear resistance than the untreated alloy during reciprocating wear test conducted in a 0.9% NaCl solution.

  15. Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1991-01-01

    The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

  16. Corrosion Behavior of Silver-Plated Circuit Boards in a Simulated Marine Environment with Industrial Pollution

    PubMed Central

    Xiao, Kui; Yi, Pan; Yan, Lidan; Bai, Ziheng; Dong, Chaofang; Dong, Pengfei; Gao, Xiong

    2017-01-01

    The electrochemical corrosion behavior of a silver-plated circuit board (PCB-ImAg) in a polluted marine atmosphere environment (Qingdao in China) is studied through a simulated experiment. The morphologies of PCB-ImAg show some micropores on the surface that act as the corrosion-active points in the tests. Cl− mainly induces microporous corrosion, whereas SO2 causes general corrosion. Notably, the silver color changes significantly under SO2 influence. EIS results show that the initial charge transfer resistance in the test containing SO2 and Cl− is 9.847 × 103, while it is 3.701 × 104 in the test containing Cl− only, which demonstrates that corrosion accelerates in a mixed atmosphere. Polarization curves further show that corrosion potential is lower in mixed solutions (between −0.397 V SCE and −0.214 V SCE) than it in the solution containing Cl− only (−0.168 V SCE), indicating that corrosion tendency increases with increased HSO3− concentration. PMID:28773121

  17. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  18. Localized corrosion of high performance metal alloys in an acid/salt environment

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  19. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  20. Analysis and estimation of service life of corrosion prevention materials using diffusion, resistivity and accelerated curing for new bridge structures : volume 1 : corrosion prevention materials (monitoring and forensic examination).

    DOT National Transportation Integrated Search

    2013-12-01

    This investigation compiles the results describing the performance of: a) reinforced concrete specimens cast with : 0.37 water to cementitious (w/cm) and binary blends of high performance concrete; the specimens have been : exposed to seawater wet/dr...

  1. Corrosion due to use of carbon dioxide for enhanced oil recovery. Final report. SumX No. 78-003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBerry, D.W.; Clark, W.S.

    1979-09-01

    This study documents the specific effects of CO/sub 2/ on corrosion and identifies promising methods for controlling corrosion in fields using CO/sub 2/ injection. Information has been assembled on: CO/sub 2/ corrosion problems in general, surface and downhole corrosion problems specifically associated with CO/sub 2/ enhanced oil recovery, and methods to reduce corrosion problems in CO/sub 2/ environments. Corrosion mechanisms, kinetic behavior, and the effects of various parameters on corrosion by CO/sub 2/ are presented in this study. Engineering metals are not attacked by CO/sub 2/ under oil field environments unless liquid water is also present. Plain and low alloymore » steels are attacked by mixtures of CO/sub 2/ and liquid water. Attack on these bare metals may become serious at a CO/sub 2/ partial pressure as low as 4 psi and it increases with CO/sub 2/ partial pressure although not in direct proportion. Fluid flow rate is an important factor in CO/sub 2//water corrosion. Practically all stainless steels and similar resistant alloys are not particularly subject to corrosion by CO/sub 2//water mixtures alone, even at high CO/sub 2/ pressures. Elevated levels of CO/sub 2/ can aggravate the corrosive effects of other species such as hydrogen sulfide, oxygen, and chloride. Mixtures of CO/sub 2/, carbon monoxide (CO), and water can cause stress corrosion cracking of plain steels. Corrosion problems in CO/sub 2/ systems should be circumvented when possible by avoiding combination of the corrosive components. Although water cannot be excluded throughout the CO/sub 2/ injection-oil production-CO/sub 2/ and water reinjection chain, air in-leakage can be minimized and oxygen scavengers used to remove any residual. Exclusion of oxygen is important to the successful use of other corrosion control measures. A discussion is given of the main control methods including metal selection, protective coatings and nonmetallic materials, and chemical inhibition. (DLC)« less

  2. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  3. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  4. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  5. High temperature alkali corrosion in high velocity gases

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Sidik, S. M.; Deadmore, D. L.

    1981-01-01

    The effects of potential impurities in coal derived liquids such as Na, K, Mg, Ca and Cl on the accelerated corrosion of IN-100, U-700, IN-792 and Mar-M509 were investigated using a Mach 0.3 burner rig for times to 1000 hours in one hour cycles. These impurities were injected in combination as aqueous solutions into the combustor of the burner rig. The experimental matrix utilized was designed statistically. The extent of corrosion was determined by metal recession. The metal recession data were fitted by linear regression to a polynomial expression which allows both interpolation and extrapolation of the data. As anticipated, corrosion increased rapidly with Na and K, and a marked maximum in the temperature response was noted for many conditions. In contrast, corrosion decreased somewhat as the Ca, Mg and Cl contents increased. Extensive corrosion was observed at concentrations of Na and K as low as 0.1 PPM at long times.

  6. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  7. Evaluation of surface modification methods to mitigate rusting and pitting in weathering steel bridges : final report.

    DOT National Transportation Integrated Search

    1986-09-01

    Accelerated laboratory atmospheric exposure simulation tests with an acceleration factor of 50 and extending for a maximum of 2200 wet-dry cycles (6-year exposure equivalent) gave corrosion loss data that agreed fairly well with the field data derive...

  8. Accelerated corrosion test for metal drainage pipes : final report.

    DOT National Transportation Integrated Search

    1987-06-01

    This study represents an attempt to develop an accelerated test which would assist the highway engineer in evaluating the usefulness of a new type of coated steel culvert. The test method was to be short in duration (in the order of days), and the re...

  9. Home Plumbing Simulator for the Study of Copper and Lead Corrosion and Release, Disinfectant Demand, and Biofilm Activity - abstract

    EPA Science Inventory

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from “blue” water to copper pinhole leaks. If left untreated, these problems can lead to health...

  10. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  11. A new corrosion sensor to determine the start and development of embedded rebar corrosion process at coastal concrete.

    PubMed

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-09-30

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.

  12. On the Problem of Stress Corrosion

    NASA Technical Reports Server (NTRS)

    Graf, L.

    1946-01-01

    The object of the present work is first to investigate accurately the processes during stress corrosion, in particular, for light metal alloys and, as the first part of the investigation, to determine its laws; and secondly to explain its causes for various alloys and thereby find means for its partial or complete elimination and thus make possible the production of light metal alloys free from any stress corrosion. In the present paper some of the results of the investigation are given and the fundamental problems of stress corrosion discussed.

  13. Corrosion of metal particle and metal evaporated tapes

    NASA Technical Reports Server (NTRS)

    Speliotis, Dennis E.

    1991-01-01

    Very high coercivity metal particle (MP) and metal evaporated (ME) tapes are being used in 8mm video and digital audio tape applications, and more recently in digital data recording applications. In view of the inherent susceptibility of such media to environmental corrosion, a number of recent studies have addressed their long term stability and archivability. These studies have used an accelerated corrosion test based either on elevated temperature-humidity or polluting gas atmospheres known as Battelle tests. A comparison of the Battelle test results performed at different laboratories reveals a large variation from one location to another, presumably due to incorrect replication of the Battelle condition. Furthermore, when the Battelle tests are performed on enclosed cartridges, it is quite possible that diffusion limits the penetration of the extremely low concentration polluting gaseous species to the inner layers of the tapes during the short time of the accelerated test, whereas in real life these diffusion limitations may not apply. To avoid this uncertainty, the corrosion behavior of commercial 8mm MP and ME tapes when cassettes without their external plastic cases were exposed to 50 deg C and 80 percent RH for 7.5 weeks is investigated.

  14. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  15. Microbial biofilm studies of the environmental control and life support system water recovery test for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Obenhuber, D. C.; Huff, T. L.

    1992-01-01

    NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported. Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated. Biofilm iodine sensitivity tests using an experimental laboratory scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required, which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation.

  16. Electrochemical and anticorrosion behaviors of hybrid functionalized graphite nano-platelets/tripolyphosphate in epoxy-coated carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, Somayeh, E-mail: somaye.mohammadi32@aut.ac.ir; Shariatpanahi, Homeira; Taromi, Faramarz Afshar

    Highlights: • FGNP was combined with TPP to obtain a hybrid nano-particle. • TEM image showed uniform distribution of the hybrid nanoparticles in epoxy coating. • FGNP is a substrate for linking of TPP anions by hydrogen bonding. • FGNP as an accelerator, provides rapid iron phosphate passive film formation. • The hybrid nano-particle can provide long-term corrosion protection. - Abstract: Functionalized graphite nano-platelets (FGNP) were combined with tripolyphosphate (TPP) to gain a hybrid nano-particle (FGNP-TPP) with homogenous dispersion in epoxy, resulting in an excellent anti-corrosion coating for carbon steel substrate. Characterization analyses of the hybrid nano-particle were performed bymore » FT-IR, SEM, XRD and TEM. TPP was linked to FGNP nano-particles by hydrogen bondings. Different epoxy coatings formulated with 1 wt.% of FGNP, FGNP-TPP and TPP were evaluated. Electrochemical investigations, salt spray and pull-off tests showed that the hybrid nano-particle can provide long-term corrosion protection compared to FGNP and TPP due to synergistic effect between FGNP as an accelerator and TPP as a corrosion inhibitor to produce a uniform and stable iron-phosphate passive film with high surface coverage.« less

  17. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.

    PubMed

    Vanhoestenberghe, A; Donaldson, N

    2013-06-01

    Corrosion is a prime concern for active implantable devices. In this paper we review the principles underlying the concepts of hermetic packages and encapsulation, used to protect implanted electronics, some of which remain widely overlooked. We discuss how technological advances have created a need to update the way we evaluate the suitability of both protection methods. We demonstrate how lifetime predictability is lost for very small hermetic packages and introduce a single parameter to compare different packages, with an equation to calculate the minimum sensitivity required from a test method to guarantee a given lifetime. In the second part of this paper, we review the literature on the corrosion of encapsulated integrated circuits (ICs) and, following a new analysis of published data, we propose an equation for the pre-corrosion lifetime of implanted ICs, and discuss the influence of the temperature, relative humidity, encapsulation and field-strength. As any new protection will be tested under accelerated conditions, we demonstrate the sensitivity of acceleration factors to some inaccurately known parameters. These results are relevant for any application of electronics working in a moist environment. Our comparison of encapsulation and hermetic packages suggests that both concepts may be suitable for future implants.

  18. Flow-induced corrosion behavior of absorbable magnesium-based stents.

    PubMed

    Wang, Juan; Giridharan, Venkataraman; Shanov, Vesselin; Xu, Zhigang; Collins, Boyce; White, Leon; Jang, Yongseok; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2014-12-01

    The aim of this work was to study corrosion behavior of magnesium (Mg) alloys (MgZnCa plates and AZ31 stents) under varied fluid flow conditions representative of the vascular environment. Experiments revealed that fluid hydrodynamics, fluid flow velocity and shear stress play essential roles in the corrosion behavior of absorbable magnesium-based stent devices. Flow-induced shear stress (FISS) accelerates the overall corrosion (including localized, uniform, pitting and erosion corrosions) due to the increased mass transfer and mechanical force. FISS increased the average uniform corrosion rate, the localized corrosion coverage ratios and depths and the removal rate of corrosion products inside the corrosion pits. For MgZnCa plates, an increase of FISS results in an increased pitting factor but saturates at an FISS of ∼0.15Pa. For AZ31 stents, the volume loss ratio (31%) at 0.056Pa was nearly twice that (17%) at 0Pa before and after corrosion. Flow direction has a significant impact on corrosion behavior as more severe pitting and erosion corrosion was observed on the back ends of the MgZnCa plates, and the corrosion product layer facing the flow direction peeled off from the AZ31 stent struts. This study demonstrates that flow-induced corrosion needs be understood so that Mg-based stents in vascular environments can be effectively designed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring.

    PubMed

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-04-27

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  20. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  1. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  2. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  3. Stainless Steel Corrosion Studies Final Report: FY17 End of-Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Daniel; Milenski, Helen Marie; Martinez, Destiny

    Two materials are being considered in applications requiring their contact against stainless steel surfaces. These materials include the solvent methyl ethyl ketone (MEK), and the polymer neoprene (polychloroprene). There is concern that contact of these materials with stainless steel substrates may lead to corrosion. To address these concerns we have undertaken corrosion studies under conditions expected to be more aggressive than in intended applications. These conditions include elevated temperature and humidity, and submersion and suspension in solvent vapors, in an attempt to accelerate any potential deleterious interactions. Corrosion rates below 0.1 mpy have historically been deemed INSIGNIFICANT from a WRmore » Production standpoint; corresponding guidelines for non-production applications are lacking.« less

  4. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  5. Influence of biocompatible metal ions (Ag, Fe, Y) on the surface chemistry, corrosion behavior and cytocompatibility of Mg-1Ca alloy treated with MEVVA.

    PubMed

    Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong

    2015-09-01

    Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The dual role of microbes in corrosion

    PubMed Central

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  7. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.

  8. Fracture of concrete caused by the reinforcement corrosion products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Millard, A.; Caré, S.; L'Hostis, V.; Berthaud, Y.

    2006-11-01

    One of the most current degradations in reinforced concrete structures is related to the corrosion of the reinforcements. The corrosion products during active corrosion induce a mechanical pressure on the surrounding concrete that leads to cover cracking along the rebar. The objective of this work is to study the cracking of concrete due to the corrosion of the reinforcements. The phenomenon of corrosion/cracking is studied in experiments through tests of accelerated corrosion on plate and cylindrical specimens. A CCD camera is used to take images every hour and the pictures are analyzed by using the intercorrelation image technique (Correli^LMT) to derive the displacement and strain field. Thus the date of appearance of the first through crack is detected and the cinematic crack initiations are observed during the test. A finite element model that allows prediction of the mechanical consequences of the corrosion of steel in reinforced concrete structures is proposed. From the comparison between the test results and numerical simulations, it may be concluded that the model is validated in term of strains up to the moment when the crack becomes visible, and in terms of crack pattern.

  9. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    PubMed Central

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  10. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-07-14

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  11. Friction and wear of nickel in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Experiments were conducted with elemental nickel sliding on aluminum oxide in aerated sulfuric acid in concentrations ranging from very dilute (10 -4 N, i.e., 5 ppm) to very concentrated (96 percent) acid. Load and reciprocating sliding speeds were kept constant. With the most dilute concentration (10 -4 N) no observable corrosion occurred in or outside the wear area. This was used as the base condition to determine the high contribution of corrosion to total wear loss at acid concentrations between 0.5 percent (0.1 N) and 75 percent. Corrosion reached a maximum rate of 100 millimeters per year at 30 percent acid. At the same time, general corrosion outside the wear area was very low, in agreement with published information. It is clear that friction and wear greatly accelerated corrosion in the wear area. At dilute concentrations of 0.001 and 0.01 N, corrosion in the wear area was low, and general corrosion outside was also low, but local outside regions in the direction of the wear motion experienced some enhanced corrosion, apparently due to fluid motion of the acid.

  12. Tribocorrosion behavior of beta titanium biomedical alloys in phosphate buffer saline solution.

    PubMed

    Pina, V Guiñón; Dalmau, A; Devesa, F; Amigó, V; Muñoz, A Igual

    2015-06-01

    The tribo-electrochemical behavior of different β titanium alloys for biomedical applications sintered by powder metallurgy has been investigated. Different mechanical, electrochemical and optical techniques were used to study the influence of the chemical composition, Sn content, and the electrochemical conditions on the tribocorrosion behavior of those alloys Ti30NbxSn alloys (where "x" is the weight percentage of Sn content, 2% and 4%). Sn content increases the active and passive dissolution rate of the titanium alloys, thus increasing the mechanically activated corrosion under tribocorrosion conditions. It also increases the mechanical wear of the alloy. Prevailing electrochemical conditions between -1 and 2V influences the wear accelerated corrosion by increasing it with the applied potential and slightly increases the mechanical wear of Ti30Nb4Sn. Wear accelerated corrosion can be predicted by existing models as a function of electrochemical and mechanical parameters of the titanium alloys. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of pre-strain on precipitation and exfoliation corrosion resistance in an Al-Zn-Mg alloy

    NASA Astrophysics Data System (ADS)

    Lu, Xianghan; Du, Zhiwei; Han, Xiaolei; Li, Ting; Wang, Guojun; Lu, Liying; Bai, Xiaoxia; Zhou, Tietao

    2017-12-01

    To investigate the effect of pre-strain on behaviors in a specially developed Al-4.5Zn-1.2Mg alloy, transmission electron microscopy (TEM) bright field (BF) imaging combined with select area electron diffraction (SAED), Vickers-hardness tests and electrical conductivity tests was conducted for insight into precipitation in aluminum (Al) matrix during two step ageing, and standard exfoliation corrosion (EXCO) test combined with high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM) was carried out for corrosion behavior. Results showed that pre-strain accelerated precipitation during two step ageing as the sequence of: (i) supersaturated solid solution (SSS), GPI zones precipitations, GPI dissolution; (ii) SSS, fcc precipitates, η’ phases or η phases. And the precipitation hardening of the fcc precipitates was not effective as GPI zones. Pre-strain also accelerated EXCO developing, which was mainly attributed to the coverage ratio of η phases on high-angle grain boundaries (HAGBs) increasing as pre-strain increase.

  14. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample surfaces revealed the presence of spinels at lower temperatures, while Fe2O3 was the dominant iron oxide at higher temperatures for each alloy. It is recommended that accelerated corrosion testing be investigated further to evaluate alloys in other molten salt systems considered for utilization in concentrated solar power plants.

  15. Homogeneous near surface activity distribution by double energy activation for TLA

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Tárkányi, F.

    2007-10-01

    Thin layer activation (TLA) is a versatile tool for activating thin surface layers in order to study real-time the surface loss by wear, corrosion or erosion processes of the activated parts, without disassembling or stopping running mechanical structures or equipment. The research problem is the determination of the irradiation parameters to produce point-like or large area optimal activity-depth distribution in the sample. Different activity-depth profiles can be produced depending on the type of the investigated material and the nuclear reaction used. To produce activity that is independent of the depth up to a certain depth is desirable when the material removed from the surface by wear, corrosion or erosion can be collected completely. By applying dual energy irradiation the thickness of this quasi-constant activity layer can be increased or the deviation of the activity distribution from a constant value can be minimized. In the main, parts made of metals and alloys are suitable for direct activation, but by using secondary particle implantation the wear of other materials can also be studied in a surface range a few micrometers thick. In most practical cases activation of a point-like spot (several mm2) is enough to monitor the wear, corrosion or erosion, but for special problems relatively large surfaces areas of complicated spatial geometry need to be activated uniformly. Two ways are available for fulfilling this task, (1) production of large area beam spot or scanning the beam over the surface in question from the accelerator side, or (2) a programmed 3D movement of the sample from the target side. Taking into account the large variability of tasks occurring in practice, the latter method was chosen as the routine solution in our cyclotron laboratory.

  16. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    NASA Astrophysics Data System (ADS)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  17. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    PubMed

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Corrosion performance of Cr3C2-NiCr+0.2%Zr coated super alloys under actual medical waste incinerator environment

    NASA Astrophysics Data System (ADS)

    Ahuja, Lalit; Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2018-03-01

    Incineration techniques are widely used to dispose of various types of waste which lead to formation of very corrosive environment. Such corrosive environment leads to the degradation of the alloys used in these areas. To obviate this problem, zirconium modified Cr3C2-(NiCr) coating powder has been deposited on three superalloys namely Superni 718, Superni 600 and Superco 605 using Detonation gun technique. Corrosion test was conducted in actual medical waste incinerator environment. The samples were hung inside the secondary chamber operated at 1050°C for 1000h under cyclic condition. Corrosion kinetics was monitored using the weight gain measurements and thickness loss. Corrosion products were characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction technique. It was observed that coating is found to be successful in impeding the corrosion problem in superalloys.

  19. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  20. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides

    USDA-ARS?s Scientific Manuscript database

    Corrosion is one of the most serious and challenging problems faced worldwide by industry. This research investigates the inhibition of corrosive behavior of SAE1010 steel by bacterial exopolysaccharides. Electrochemical Impedance Spectroscopy was used to evaluate the corrosion inhibition of diffe...

  1. THE CANADIAN PERSPECTIVE ON CORROSION CONTROL: HEALTH CANADA'S CORROSION CONTROL GUIDELINE

    EPA Science Inventory

    Health Canada has proposed a Corrosion Control Guideline, based on lead, which is undergoing public consultation and expected to be finalized in 2007. In Canada, there are no regulations and little guidance to address corrosion problems and existing sampling methods are inappropr...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unneberg, L.

    The main features of the 16 core grids (top guides) designed by ABB ATOM AB are briefly described and the evolution of the design is discussed. One important characteristic of the first nine grids is the existence of bolts securing guide bars to the core grid plates. These bolts are made of precipitation hardened or solution annealed stainless steel. During operation, bolts in all none grids have cracked. The failure analyses indicate that intergranular stress corrosion cracking (IGSCC), possibly accelerated by crevice conditions and/or irradiation, was the cause of failure. Fast neutron fluences approaching or exceeding the levels considered asmore » critical for irradiation assisted stress corrosion cracking (IASCC) will be reached in a few cases only. Temporary measures were taken immediately after the discovery of the cracking. For five of the nine reactors affected, it was decided to replace the complete grids. Two of these replacements have been successfully carried out to date. IASCC as a potential future problem is discussed and it is pointed out that, during their life times, the ABB ATOM core grids will be exposed to sufficiently high fast neutron fluences to cause some concern.« less

  3. Method for Evaluating the Corrosion Resistance of Aluminum Metallization of Integrated Circuits under Multifactorial Influence

    NASA Astrophysics Data System (ADS)

    Kolomiets, V. I.

    2018-03-01

    The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.

  4. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Miller, R. A.; Sudbrack, C. K.; Draper, S. L.; Nesbitt, J.; Telesman, J.; Ngo, V.; Healy, J.

    2015-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 C and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 C. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. The effects of this cyclic oxidation on resistance to subsequent hot corrosion attack were examined.

  5. NASA/ASEE Summer Faculty Fellowship Program. 1991 Research Reports

    NASA Technical Reports Server (NTRS)

    Hosler, E. Ramon (Editor); Beymer, Mark A. (Editor); Armstrong, Dennis W. (Editor)

    1991-01-01

    Reports from the NASA/ASEE Summer Faculty Fellowship Program are presented. The editors are responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA Kennedy. Some representative titles are as follows: Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion; Hazardous Gas Leak Analysis in the Space Shuttle; Modeling and Control of the Automated Radiator Inspection Device; Study of the Finite Element Software Packages at KSC; Multispectral Image Processing for Plants; Algorithms for Contours Depicting Static Electric Fields during Adverse Weather Conditions; Transient Study of a Cryogenic Hydrogen Filling System; and Precision Cleaning Verification of Nonvolatile Residues by using Water, Ultrasonics, and Turbidity Analyses.

  6. Comparative Study on Corrosion Protection of Reinforcing Steel by Using Amino Alcohol and Lithium Nitrite Inhibitors

    PubMed Central

    Lee, Han-Seung; Ryu, Hwa-Sung; Park, Won-Jun; Ismail, Mohamed A.

    2015-01-01

    In this study, the ability of lithium nitrite and amino alcohol inhibitors to provide corrosion protection to reinforcing steel was investigated. Two types of specimens—reinforcing steel and a reinforced concrete prism that were exposed to chloride ion levels resembling the chloride attack environment—were prepared. An autoclave accelerated corrosion test was then conducted. The variables tested included the chloride-ion concentration and molar ratios of anti-corrosion ingredients in a CaOH2-saturated aqueous solution that simulated a cement-pore solution. A concentration of 25% was used for the lithium nitrite inhibitor LiNO2, and an 80% solution of dimethyl ethanolamine ((CH3)2NCH2CH2OH, hereinafter DMEA) was used for the amino alcohol inhibitor. The test results indicated that the lithium nitrite inhibitor displayed anti-corrosion properties at a molar ratio of inhibitor of ≥0.6; the amino alcohol inhibitor also displayed anti-corrosion properties at molar ratios of inhibitor greater than approximately 0.3. PMID:28787936

  7. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes.

    PubMed

    Jin, Juntao; Guan, Yuntao

    2014-10-01

    New insights into the biocorrosion process may be gained through understanding of the interaction between extracellular polymeric substances (EPS) and iron. Herein, the effect of iron ions on the formation of biofilms and production of EPS was investigated. Additionally, the impact of EPS on the corrosion of cast iron coupons was explored. The results showed that a moderate concentration of iron ions (0.06 mg/L) promoted both biofilm formation and EPS production. The presence of EPS accelerated corrosion during the initial stage, while inhibited corrosion at the later stage. The functional groups of EPS acted as electron shuttles to enable the binding of iron ions. Binding of iron ions with EPS led to anodic dissolution and promoted corrosion, while corrosion was later inhibited through oxygen reduction and availability of phosphorus from EPS. The presence of EPS also led to changes in crystalline phases of corrosion products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of Sulfur and Chlorine on Fireside Corrosion Behavior of Inconel 740 H Superalloy

    NASA Astrophysics Data System (ADS)

    Jin-tao, Lu; Yan, Li; Zhen, Yang; Jin-yang, Huang; Ming, Zhu; Gu, Y.

    2018-03-01

    Fireside corrosion behavior of Inconel 740H superalloy was studied at 750 °C in simulated coal ash/flue gas environments by means of XRD, SEM and EDS. The results indicated that the corrosion behavior was strongly related to the SO2 levels and was significantly affected by NaCl additions. In presence of the atmospheres with 0.1 % SO2, the alloy exhibited the highest corrosion resistance due to formation of a stable and dense Cr2O3 film. In presence of the atmosphere with 1.5 % SO2, however, a non-coherent and porous Cr2O3 film was formed. The thickness of film and internal sulfides were substantially increased. The NaCl additions significantly accelerated the corrosion process. A non-protective outer oxide film was formed, composed by multiple layers with serious inner sulfide and spallation. The depths of internal oxidizing and sulfuration zones were significantly increased. The mechanism of ash corrosion formation was also discussed.

  9. Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2016-12-22

    Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less

  10. Corrosion behaviour of friction-bit-joined and weld-bonded AA7075-T6/galvannealed DP980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu

    Joining of aluminium alloys 7075-T6 and galvannealed dual phase 980 steel was achieved by friction bit joining (FBJ) and weld-bonding (FBJ + adhesive) processes. Accelerated laboratory-scale corrosion tests were performed on both FBJ only and weld-bonded specimens to study joint strength under a corrosive environment. Static lap shear tests showed that both FBJ only and weld-bonded cases generally retained more than 80% of the joint strength of non-corroded specimens at the end of corrosion testing. The presence of Zn/Fe coating on the steel substrate resulted in improved corrosion resistance for FBJ specimens, compared to joints produced with bare steel. Finally,more » an optical microscopy was used for cross-sectional analysis of corroded specimens. Some corrosion on the joining bit was observed near the bit head. However, the joining bit was still intact on the steel substrate, indicating that the primary bond was sound.« less

  11. Prediction of residual shear strength of corroded reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Imam, Ashhad; Azad, Abul Kalam

    2016-09-01

    With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.

  12. AGARD Corrosion Handbook. Volume 2. Aircraft Corrosion Control Documents: A Descriptive Catalogue

    DTIC Science & Technology

    1987-03-01

    sweelb other than recommending that the use of maraging steel bolts be prohibited. However, it does provide a very good overview of the corrosion problems...as corrosion resistant steels in this manual. The metallurgy and general corrosion behavior of these steels is discussed in AGARD Corrosio.t Handbook...specifically with the selection of corrosion resistapt steels is a recommendation for prohibiting the use of maraging steel bolts in uncontrolled

  13. Chloride effect on TNT degradation by zerovalent iron or zinc during water treatment.

    PubMed

    Hernandez, Rafael; Zappi, Mark; Kuo, Chiang-Hai

    2004-10-01

    Addition of corrosion promoters, such as sodium and potassium chloride, accelerated TNT degradation during water treatment using zerovalent zinc and iron. It was theorized that corrosion promoters could be used to accelerate electron generation from metallic species, create new reactive sites on the surface of metals during contaminated water treatment, and minimize passivating effects. The surface area normalized pseudo-first-order rate constant for the reaction of zerovalent zinc with TNT in the absence of KCl was 1.364 L x m(-2) x h(-1). In the presence of 0.3 mM and 3 mM KCI, the rate constant increased to 10.5 L x m(-2) x h(-1) and 51.0 L x m(-2) x h(-1), respectively. For the reaction with zerovalent iron and TNT, the rate constant increased from 6.5 (L/m2 x h) in the absence of KCl to 37 L x m(-2) x h(-1) using 3 mM KCl. The results demonstrate that chloride based corrosion promoters enhance the rate of TNT degradation. The in-situ breakage of the oxide layer using corrosion promoters was applied as a treatment to maintain the long-term activity of the metallic species. Zinc maintained a high reactivity toward TNT, and the reactivity of iron increased after 5 treatment cycles using 3 mM KCI. Zinc and iron scanning electron micrographs indicate that TNT degradation rate enhancement is caused by the pitting corrosion mechanism.

  14. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    PubMed Central

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-01-01

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring. PMID:29702554

  15. The Behavior of Environmentally Friendly Corrosion Preventative Compounds in an Aggressive Coastal Marine Environment

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran Jerome C.; Kolody, Mark R.

    2013-01-01

    The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt.

  16. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

    PubMed Central

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-01-01

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis. The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis. The low icorr and high Rt in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis. PMID:28772615

  17. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    NASA Astrophysics Data System (ADS)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  18. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  19. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva.

    PubMed

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-03-03

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis . The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis . The low i corr and high R t in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis .

  20. Standard Operating Procedure for Accelerated Corrosion Testing at ARL

    DTIC Science & Technology

    2017-11-01

    report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of...Parameters 2 4. Evaluation 3 4.1 Preparation for Rating 3 4.2 Evaluation of Creepage from Scribe 3 4.3 Evaluation of Unscribed Areas 4 5...operational parameters of the chamber. Test sample evaluations are explained with respect to both corrosion originating from the scribe and

  1. Development of Improved Accelerated Corrosion Qualification Test Methodology for Aerospace Materials

    DTIC Science & Technology

    2014-11-01

    irradiation and ozone gas • Cumulative damage model for predicting atmospheric corrosion rates of 1010 steel was developed using inputs from weather...data: – Temperature, – Relative humidity (%RH) – Atmospheric contaminants (chloride, SO2, and ozone ) levels Silver Al Alloy 7075 Al Alloy...2024 Al Alloy 6061 Copper Steel Ozone generator Ozone monitor 10 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

  2. Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading

    NASA Astrophysics Data System (ADS)

    Shokrieh, Mahmood M.; Memar, Mahdi

    2010-04-01

    The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.

  3. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  4. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    NASA Astrophysics Data System (ADS)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  5. A Corrosion Control Manual for Rail Rapid Transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)

    1982-01-01

    This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.

  6. The effects of Nitinol phases on corrosion and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  7. Corrosion Assessment of Candidate Materials for the SHINE Subcritical Assembly Vessel and Components FY15 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J.

    2016-01-01

    In the previous report of this series, a literature review was performed to assess the potential for substantial corrosion issues associated with the proposed SHINE process conditions to produce 99Mo. Following the initial review, substantial laboratory corrosion testing was performed emphasizing immersion and vapor-phase exposure of candidate alloys in a wide variety of solution chemistries and temperatures representative of potential exposure conditions. Stress corrosion cracking was not identified in any of the exposures up to 10 days at 80°C and 10 additional days at 93°C. Mechanical properties and specimen fracture face features resulting from slow-strain rate tests further supported amore » lack of sensitivity of these alloys to stress corrosion cracking. Fluid velocity was found not to be an important variable (0 to ~3 m/s) in the corrosion of candidate alloys at room temperature and 50°C. Uranium in solution was not found to adversely influence potential erosion-corrosion. Potentially intense radiolysis conditions slightly accelerated the general corrosion of candidate alloys, but no materials were observed to exhibit an annualized rate above 10 μm/y.« less

  8. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  9. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  10. The role of lipopolysaccharide on the electrochemical behavior of titanium.

    PubMed

    Barão, V A; Mathew, M T; Assunção, W G; Yuan, J C; Wimmer, M A; Sukotjo, C

    2011-05-01

    Lipopolysaccharide (LPS) may induce peri-implantitis and implant failure. However, the role of LPS in titanium (Ti) electrochemical behavior remains unknown. We hypothesized that LPS in saliva with different pHs affects Ti corrosion properties. Thirty-six Ti discs (15 mm × 3 mm) were divided into 12 groups according to saliva pH (3, 6.5, and 9) and Escherichia coli LPS concentration (0, 0.15, 15, and 150 µg/mL). Electrochemical tests, such as open circuit potential, potentiodynamic, and electrochemical impedance spectroscopy, were conducted in a controlled environment. Data were evaluated by Pearson correlation and regression analysis (α = 0.05). LPS and pH affected Ti corrosive behavior. In general, lower pH and higher LPS concentration accelerated Ti corrosion. In the control group, the increase of pH significantly reduced the corrosion rate and increased the capacitance of the double layer. In LPS groups, the decrease of pH significantly increased the corrosion rate of Ti. LPS negatively influenced Ti corrosion behavior. C(dl), capacitance of double layer; E(corr), corrosion potential; EIS, electrochemical impedance spectroscopy; I(corr), corrosion current density; I(pass), passivation current density; LPS, lipopolysaccharide; OCP, open circuit potential; R(p), polarization resistance; Ti, titanium.

  11. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  12. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  13. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  14. Laboratory Evaluation of Expedient Low-Temperature Concrete Admixtures for Repairing Blast Holes in Cold Weather

    DTIC Science & Technology

    2013-01-08

    This re- search ignores effects on long-term durability, trafficability, temperature rebar corrosion , and other concerns that are of minimal... concrete because it can cause corrosion of steel reinforcement. However, the corrosion problem develops slowly with time; therefore, this problem has a...ER D C/ CR RE L TR -1 3- 1 Laboratory Evaluation of Expedient Low- Temperature Concrete Admixtures for Repairing Blast Holes in Cold

  15. Long-Term, Deep Ocean Test of Concrete Spherical Structures - Results after 13 Years.

    DTIC Science & Technology

    1985-07-01

    corrosion of reinforcing steel are problems, even though the concrete becomes saturated with seawater. Uncoated concrete has a very low rate of permeation... concrete matrix nor corrosion of reinforcing steel are problems, even though the concrete becomes saturated with seawater. Uncoated concrete I has a...which concrete protects the steel against corrosion in the deep ocean environ- ment. The ocean depth range for the spheres corresponds to predicled

  16. Atmospheric corrosion of metals in industrial city environment.

    PubMed

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust.

  17. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steammore » purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.« less

  18. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation.

    PubMed

    Gąsiorek, Jolanta; Szczurek, Anna; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-26

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

  19. Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation

    PubMed Central

    Gąsiorek, Jolanta; Babiarczuk, Bartosz; Kaleta, Jerzy; Jones, Walis; Krzak, Justyna

    2018-01-01

    Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented. PMID:29373540

  20. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy.

    PubMed

    Harandi, Shervin Eslami; Banerjee, Parama Chakraborty; Easton, Christopher D; Singh Raman, R K

    2017-11-01

    It is essential for any temporary implant to possess adequate strength to maintain their mechanical integrity under the synergistic effects of mechanical loading characteristics of human body and the corrosive physiological environment. Such synergistic effects can cause stress corrosion cracking (SCC). The aim of the present study is to investigate the effect of the addition of bovine serum albumin (BSA) to Hanks' solution in corrosion and SCC susceptibility of AZ91D magnesium alloy. The electrochemical impedance spectroscopy (EIS) results indicated that the addition of BSA increased corrosion resistance of the alloy during the first 48h of immersion and then decreased it rapidly. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses indicated adsorption of BSA on the alloy surface during initial hours of immersion. However, with the increasing immersion time, BSA chelated with the corrosion products causing disruption of the protective film; thus, it accelerated the corrosion of the alloy. Both the mechanical data and fractographic evidence have confirmed susceptibility of the alloy to SCC. However, in the presence of BSA, the alloy suffered greater SCC which was attributed to its increased susceptibility towards localized corrosion. Copyright © 2017. Published by Elsevier B.V.

  1. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  2. Corrosion and Protection of Metal in the Seawater Desalination

    NASA Astrophysics Data System (ADS)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  3. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel.

    PubMed

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing

    2017-11-14

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  4. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    PubMed Central

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912

  5. Cyclic Oxidation and Hot Corrosion of NiCrY-Coated Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Miller, Robert A.; Sudbrack, Chantal K.; Draper, Susan L.; Nesbitt, James A.; Rogers, Richard B.; Telesman, Ignacy; Ngo, Vanda; Healy, Jonathan

    2016-01-01

    Powder metallurgy disk superalloys have been designed for higher engine operating temperatures through improvement of their strength and creep resistance. Yet, increasing disk application temperatures to 704 degrees Centigrade and higher could enhance oxidation and activate hot corrosion in harmful environments. Protective coatings could be necessary to mitigate such attack. Cylindrical coated specimens of disk superalloys LSHR and ME3 were subjected to thermal cycling to produce cyclic oxidation in air at a maximum temperature of 760 degrees Centigrade. The effects of substrate roughness and coating thickness on coating integrity after cyclic oxidation were considered. Selected coated samples that had cyclic oxidation were then subjected to accelerated hot corrosion tests. This cyclic oxidation did not impair the coating's resistance to subsequent hot corrosion pitting attack.

  6. The use of test structures for reliability prediction and process control of integrated circuits and photovoltaics

    NASA Astrophysics Data System (ADS)

    Trachtenberg, I.

    How a reliability model might be developed with new data from accelerated stress testing, failure mechanisms, process control monitoring, and test structure evaluations is illustrated. The effects of the acceleration of temperature on operating life is discussed. Test structures that will further accelerate the failure rate are discussed. Corrosion testing is addressed. The uncoated structure is encapsulated in a variety of mold compounds and subjected to pressure-cooker testing.

  7. Structural Area Inspection Frequency Evaluation (SAIFE). Volume III. Demonstration Input, Inspection Survey, and MRR Data

    DTIC Science & Technology

    1978-04-01

    3 1.7 Production Rate Change Time . . . . 3 1.8 Time of Fatigue Test Start . ..... 3 1.9 Fatigue Test Acceleration Factor . 3 1.10 Corrosion...simulation logic. SAIFE accounts for the following factors : (1) aircraft design analysis; (2) component and full-scale fatigue testing; (3) production ...reliability; production , servi ce,Information Service, Springfield, and corrosion defects; crack or corrosi on Virginia 22151 detection probability; crack

  8. Corrosion and Biofouling of OTEC System Surfaces - Design Factors

    DTIC Science & Technology

    1978-11-01

    condition between different areas on a given member can lead to accelerated attack by a differential envirornment cell . These differences can be...resistance. As shown in Figure 1, -. gal- vanic cell is essentially a battery/load system. When the intermetallic resistance, R1 , or the environmental...members of a couple should be maximized when possible. Also, insulating or high resistance F bushings, etc., can reduce or el4 !.minate galvanic corrosion

  9. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    DTIC Science & Technology

    2016-06-01

    Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC

  10. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.

    PubMed

    Zhang, Peiyu; Xu, Dake; Li, Yingchao; Yang, Ke; Gu, Tingyue

    2015-02-01

    In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Seismic evaluation and retrofit of deteriorated concrete bridge components.

    DOT National Transportation Integrated Search

    2013-06-01

    Corrosion of steel bars in reinforced concrete structures is a major durability problem for bridges constructed in the New York State : (NYS). The heavy use of deicing salt compounds this problem. Corrosion of steel bars results in loss of steel cros...

  12. Phased array ultrasonic steel corrosion mapping for bridges and ancillary structures.

    DOT National Transportation Integrated Search

    2017-08-01

    Steel corrosion on bridges and ancillary structures due to environmental effects and deicing chemicals is a serious problem for Minnesota's infrastructure. The ability to detect, locate, and measure corrosion is an important aspect of structure inspe...

  13. Molten salt corrosion of SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.; Smialek, J. L.; Fox, D. S.

    1986-01-01

    The most severe type of corrosion encountered in heat engines is corrosion by molten sodium sulfate, formed by the reaction of ingested sodium chloride and sulfur impurities in the fuel. This problem was studied extensively for superalloys, but only recently examined for ceramics. This problem is addressed with laboratory studies to understand the fundamental reaction mechanisms and with burner studies to provide a more realistic simulation of the conditions encountered in a heat engine. In addition the effect of corrosion on the strengths of these materials was assessed. Each of these aspects will be reviewed and some ideas toward possible solutions will be discussed.

  14. Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, M.L.

    1995-08-01

    A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made frommore » the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.« less

  15. Fastener Corrosion: A Result of Moisture Problems in the Building Envelope

    Treesearch

    Samuel L. Zelinka

    2013-01-01

    This paper reviews recent literature on the corrosion of metals embedded in wood and highlights the link be-tween moisture accumulation in wood and fastener cor-rosion. Mechanisms of fastener corrosion are described including dependence upon wood moisture content. These fundamental concepts are applied to practical examples by explaining how hygrothermal models can be...

  16. Atmospheric corrosion of metals in industrial city environment

    PubMed Central

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  17. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  18. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, whichmore » is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide (visible as a black corrosion product) forms during anodic dissolution. The sulfide is electronically conductive, and gives an increase of several orders of magnitude in the electrode capacitance; the sulfide also causes anodic activation to persist after the pure metals and steels were removed from the thiocyanate-containing electrolyte and transferred to a thiocyanate-free electrolyte. The main practical implications of this work are that low concentrations of reduced sulfur compounds strongly affect anodic dissolution of stainless steels, and that selecting steels with elevated concentrations of chromium, nickel or molybdenum would serve to limit the anodic dissolution rate in the presence of reduced sulfur compounds.« less

  19. Development of a prototype version of an embeddable corrosivity measuring instrument for reinforced concrete.

    DOT National Transportation Integrated Search

    2002-01-01

    To address the problem of safely and quantifiably detecting corrosion in a cost-effective and timely manner, the University of Virginia and Virginia Technologies, Inc. have developed a remotely accessible, networked, embedded corrosion instrument. Th...

  20. INTERNAL CORROSION AND DEPOSITION CONTROL

    EPA Science Inventory

    Corrosion is one of the most important problems in the drinking water industry. It can affect public health, public acceptance of a water supply, and the cost of providing safe water. Deterioration of materials resulting from corrosion can necessitate huge yearly expenditures o...

  1. A Survey of Corrosion and Conditions of Corrosion Protection Systems in Civil Works Structures of the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2014-09-01

    corrosion: coatings and cathodic protection (CP). Coatings consist of paints, epoxies, enamels , metalizing, and other coatings. CP is a chem- ical means...environmental factors such as water quality and resistivity. One of the major problems associated with lock gates is structural cracking in the...One of the problems described by Mr. Davis is fatigue crack growth resulting from the poor welding usually associated with stress risers and

  2. Corrosion monitoring on a large steel pressure vessel by thin-layer activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, G.; Boulton, L.H.; Hodder, D.

    1989-12-01

    Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of themore » same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.« less

  3. Alloy Corrosion Considerations in Low-Cost, Clean Biomass Cookstoves for the Developing World

    DOE PAGES

    Brady, Michael P.; Banta, Kelly; Mizia, John; ...

    2017-04-01

    In nearly 40% of the world cooks on open fires or inefficient biomass-fueled cookstoves. The resulting smoke is a health hazard, contributing to an estimated 4 million premature deaths per year, as well as a major source of black carbon emissions. One solution is the introduction of improved, clean-burning biomass cookstoves. One of the most challenging components is the combustor, which must operate at high temperatures (often ≥ 600 °C) in the presence of highly corrosive species released from biomass fuel combustion, yet be sufficiently low cost to permit widespread adoption. In our present work we report the development ofmore » accelerated corrosion test screening protocols employing highly corrosive salt and water vapor species, specifically designed to evaluate alloys for clean biomass cookstove combustors, and corrosion findings for a range of commercial and developmental alloys. Lastly, a new Fe-Cr-Si base alloy that offers promise for improved corrosion resistance at lower cost than state-of the art FeCrAl and stainless steel alloys is also reported.« less

  4. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    PubMed Central

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established. PMID:22291514

  5. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  6. Alloy Corrosion Considerations in Low-Cost, Clean Biomass Cookstoves for the Developing World

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Michael P.; Banta, Kelly; Mizia, John

    In nearly 40% of the world cooks on open fires or inefficient biomass-fueled cookstoves. The resulting smoke is a health hazard, contributing to an estimated 4 million premature deaths per year, as well as a major source of black carbon emissions. One solution is the introduction of improved, clean-burning biomass cookstoves. One of the most challenging components is the combustor, which must operate at high temperatures (often ≥ 600 °C) in the presence of highly corrosive species released from biomass fuel combustion, yet be sufficiently low cost to permit widespread adoption. In our present work we report the development ofmore » accelerated corrosion test screening protocols employing highly corrosive salt and water vapor species, specifically designed to evaluate alloys for clean biomass cookstove combustors, and corrosion findings for a range of commercial and developmental alloys. Lastly, a new Fe-Cr-Si base alloy that offers promise for improved corrosion resistance at lower cost than state-of the art FeCrAl and stainless steel alloys is also reported.« less

  7. Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Hui-yan; Dong, Chao-fang; Xiao, Kui; Li, Xiao-gang; Zhong, Ping

    2016-11-01

    The effects of Cl- ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel (UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist (approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.

  8. Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro- scales.

    PubMed

    Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav

    2018-05-22

    The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.

  9. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  10. Extended Performance Assessment in Accelerated Corrosion and Adhesion of CARC Prepared Aluminum Alloy 5059-H131 for Three Different Pretreatment Methods

    DTIC Science & Technology

    2008-03-01

    conversion coating, only works well as part of a complete coating system as was the case in this study. Trivalent chromium pretreatments such as TCP must...conditions. The pretreatment conditions were abrasive blasted, a nonchromate pretreatment (NCP)1, and a commercial trivalent chromate pretreatment...ease of manufacturing via welds , excellent performance against fragmentation based threats, and excellent corrosion resistance. As threat levels have

  11. Biobased polymers for corrosion protection of metals

    USDA-ARS?s Scientific Manuscript database

    Anticorrosive biobased polymers were developed in our lab. We isolated an exopolysaccharide produced by a microbe that, when coated on metal substrates, exhibited unique corrosion inhibition. Corrosion is a worldwide problem and impacts the economy, jeopardizes human health and safety, and impedes t...

  12. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  13. A synergistic effect of albumin and H₂O₂ accelerates corrosion of Ti6Al4V.

    PubMed

    Yu, Fei; Addison, Owen; Davenport, Alison J

    2015-10-01

    The synergistic effect of albumin and H2O2 on corrosion of titanium alloy Ti6Al4V in physiological saline was investigated with long-term immersion tests and electrochemical methods. It was found that in the presence of both albumin and H2O2, the rate of metal release in immersion tests was far higher than in the presence of either species alone. Electrochemical polarisation curves and potentiostatic tests showed that H2O2 increased both the rates of the anodic and cathodic reactions, whilst albumin significantly decreased the rate of the cathodic reaction and slightly decreased the rate of the anodic reaction. The synergistic effect of albumin and H2O2 during immersion tests was attributed to the effect of adsorption of albumin in lowering the rate of the cathodic reaction and thus lowering the open circuit potential into the active region of titanium where complexation by H2O2 increased the corrosion rate. The corrosion attack was found to be greater in the β-phase of the alloy. The findings suggest that current standard tests in physiological or phosphate-buffered saline may underestimate the rate of corrosion in the peri-implant environment, in which albumin is the predominant protein, and reactive oxygen species such as H2O2 can occur as a result of inflammatory reactions in response to surgery, infection, or implant corrosion products. Corrosion of many biomedical implant materials occurs in the body leading to adverse biological responses. Several components of the environment into which a metal implant is placed including proteins and products of cellular physiology, been shown to modify corrosion resistance. Previously all studies on such components including the common protein albumin and the inflammatory product H2O2 have considered the effects of these species in isolation. For the first time we report a synergistic interaction between albumin and H2O2 significantly accelerating corrosion of Ti6Al4V at physiological pH and temperature. This is attributed to an increased rate of the anodic reaction caused by H2O2 complexation of Ti, suppression of cathodic reaction by albumin adsorption shifting OCP to the active region of Ti6Al4V. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  15. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  16. Sol-gel, One Technology by Produced Nanohybrid with Anticorrosive Properties

    NASA Astrophysics Data System (ADS)

    Hernández-Padrón, Genoveva; García-Garduño, Margarita V.

    The evolution of nanotechnology has been allowed modify the material properties since of chemical architecture. In this work, we development nanohybrids sol-gel process, silica particles are incorporated a functionalized polymer resin (type epoxy and/or phenolic) with carboxylic groups. When the metallic plate is coating formed film ceramic glass. The incorporation this particles into to polymeric matrix, allowed to obtain performance corrosive properties. The structural characteristics of the different materials prepared, phenolic resin (RF), the resin functionalized (RFF) and its corresponding hybrids (RF-SiO2 and RFF- SiO2), were studied by infrared spectroscopy and morphological changes were analyzed by scanning electron microscopy. Then cooper plates were coated with these materials to evaluate their corrosion performance. The corrosion performance evaluation for each of these coatings RF, RFF, RE- SiO2 and RFF- SiO2 were determined by the following tests: a misty saline chamber operated under accelerated corrosive conditions for corrosion advance measurement, abrasion and adhesion.

  17. Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures

    NASA Technical Reports Server (NTRS)

    Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.

    2013-01-01

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  18. Magnetic fields from electric toothbrushes promote corrosion in orthodontic stainless steel appliances but not in titanium appliances.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Oda, Hirotake; Sano, Natsuki; Batbayar, Nomintsetseg; Terashima, Yukari; Sato, Soh; Terada, Kazuto

    2013-01-01

    Electric toothbrushes are widely used, and their electric motors have been reported to produce low-frequency electromagnetic fields that induced electric currents in metallic objects worn by the users. In this study, we showed that electric toothbrushes generated low-frequency magnetic fields (MFs) and induced electric currents in orthodontic appliances in artificial saliva (AS), which accelerated corrosion in stainless steel (SUS) appliances, but not in titanium (Ti) appliances; the corrosion was evaluated by using an inductively coupled plasma-optical emission spectrometer and a three-dimensional laser confocal microscope. The pH of AS used for appliance immersion did not change during or after MF exposure. These results suggested that MF-induced currents from electric toothbrushes could erode SUS appliances, but not Ti appliances, because of their high corrosion potentials. Further studies are required to clarify the mechanisms of metallic corrosion by induced currents in dental fields, which may trigger metal allergies in patients.

  19. Environmentally friendly corrosion preventive compounds for ground support structures

    NASA Astrophysics Data System (ADS)

    Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark

    The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.

  20. Erosion-corrosion and cavitation-erosion measurements on copper alloys utilizing thin layer activation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.; Hsu, K.Y.; Kai, J.J.

    1992-12-31

    The surface layers of copper alloy specimens were made radioactive by bombarding with 5 MeV protons from a van de Graaff accelerator which converted Cu-65 into Zn-65 through (p,n) reaction. The amount of surface material loss could then be monitored by measuring the total remaining {gamma}-ray activity generated from Zn-65 decay. This technique, termed thin layer activation (TLA), has the advantage of in situ monitoring the rate of surface removal due to corrosion, erosion-corrosion, wearing, etc. In this work, the erosion-corrosion tests on aluminum brass and 90Cu-10Ni were conducted in circulating sea water and the erosion-corrosion rates measured using TLAmore » and conventional methods such as linear polarization resistance (LPR) method and weight loss coupons were compared. A vibrational cavitation-erosion test was also performed on aluminum bronze, in which the measurements by TLA were compared with those of weight loss measurements.« less

  1. Effect of the amount of Na2SO4 on the high temperature corrosion of Udimet-700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Kohl, F. J.

    1983-01-01

    The corrosion of Udimet-700, coated with different doses of Na2SO4, was studied in an isothermal thermogravimetric test in the temperature range 900 to 950 C. The weight gain curve is characterized by five distinct stages: an initial period of linear corrosion; an induction period; a period of accelerated corrosion; a period of decelerating corrosion; and a period of parabolic oxidation. The time required for the failure of the alloy increases with an increase in the amount of Na2SO4, reaches a peak and then decreases with further increase in the amount of Na2SO4. For low and intermediate doses (0.3 to 2.0 mg/sq cm), the catastrophic failure of the material occurs by the formation of Na2MoO4 and interaction of the liquid Na2MoO4 with the alloy. For heavy doses, the degradation of the material is due to the formation of large amounts of sulfides.

  2. Solving A Corrosion Problem

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The corrosion problem, it turned out, stemmed from the process called electrolysis. When two different metals are in contact, an electrical potential is set up between them; when the metals are surrounded by an electrolyte, or a conducting medium, the resulting reaction causes corrosion, often very rapid corrosion. In this case the different metals were the copper grounding system and the ferry's aluminum hull; the dockside salt water in which the hull was resting served as the electrolyte. After identifying the source of the trouble, the Ames engineer provided a solution: a new wire-and-rod grounding system made of aluminum like the ferry's hull so there would no longer be dissimilar metals in contact. Ames research on the matter disclosed that the problem was not unique to the Golden Gate ferries. It is being experienced by many pleasure boat operators who are probably as puzzled about it as was the Golden Gate Transit Authority.

  3. Problems, pitfalls and probes: Welcome to the jungle of electrochemical noise technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgemon, G.L.

    1998-02-19

    The rise in electrochemical noise (EN) as a corrosion monitoring technique has resulted in unique problems associated with the field application of this method. Many issues relate to the design of the EN probe electrodes. The ability of an electrochemical noise monitoring system to identify and discriminate between localized corrosion mechanisms is related primarily to the capability of the probe to separate the corrosion cell anode from the corresponding cathode. Effectiveness of this separation is largely determined by the details of and the proper design of the probe that is in the environment of interest. No single probe design ormore » geometry can be effectively use in every situation to monitor all types of corrosion. In this paper the authors focus on a case study and probe development history related to monitoring corrosion in an extremely hostile environment using EN. While the ultimate application of EN was and continues to be successful, the case study shows that patience and persistence was necessary to meet and properly implement the monitoring program. Other possible source of problems and frustration with implementing EN are also discussed.« less

  4. Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009.

    PubMed

    Pitchure, D J; Ricker, R E; Williams, M E; Claggett, S A

    2010-01-01

    Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure.

  5. Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009

    PubMed Central

    Pitchure, D. J.; Ricker, R. E.; Williams, M. E.; Claggett, S. A.

    2010-01-01

    Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure. PMID:27134786

  6. An evaluation of new inhibitors for rebar corrosion in concrete.

    DOT National Transportation Integrated Search

    2003-01-01

    The corrosion of reinforcing steel in concrete is estimated to affect more than 50% of the 575,000 bridges in the United States. One approach to mitigating this problem is to use corrosion-inhibitive compounds admixed into the concrete paste. This st...

  7. An electrochemical approach to development of a method for accele strength evaluation of hard tissue replacement materials

    NASA Astrophysics Data System (ADS)

    Lee, Byung Jun; Kim, Min Gun

    2003-04-01

    To develop a method of accelerating the strength evaluation of hard tissue replacement materials (Ti-6Al-4V alloy) with an electrochemical approach in the short term, corrosion tests were carried out on Ti-6Al-4V alloy) by means of applying a uniform current to a simulated physiological environment and the potental difference was scanned to check the variations in the resistance of the specimens. As a result, the corrosion behavior was monitored by scanning the potential difference and an empirical formula for controlling the corrosion behavior of the Ti-6Al-4V alloy in the simulated physiological environment was proposed.

  8. Effect of Phosphate-Buffered Solution Corrosion on the Ratcheting Fatigue Behavior of a Duplex Mg-Li-Al Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Yu, Dunji; Gao, Li-Lan; Gao, Hong

    2016-05-01

    This work reports the uniaxial ratcheting and fatigue behavior of a duplex Mg-Li-Al alloy under the influence of phosphate-buffered solution corrosion. Microstructural observations reveal pitting and filament corrosion defects, which impair the load-bearing capacity of the alloy and cause stress concentration, thus leading to an accelerated accumulation of ratcheting strain and shortened fatigue life under the same nominal loading conditions. Comparing Smith model, Smith-Watson-Topper model, and Paul-Sivaprasad-Dhar model, a ratcheting fatigue life prediction model based on the Broberg damage rule and the Paul-Sivaprasad-Dhar model was proposed, and the model yielded a superior prediction for the studied magnesium alloy.

  9. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  10. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  11. Measuring the surface area of fasteners

    Treesearch

    Douglas R. Rammer; Samuel L. Zelinka

    2011-01-01

    New product provides a easy way for companies to identify the surface area of threaded and nonthreaded fasteners, especially as changes in wood preservative treatments act to accelerate metal fastener corrosion in wood.

  12. Accelerated Storage Stability and Corrosion Characteristics Study Protocol

    EPA Pesticide Factsheets

    EPA has determined that studies using this protocol will, in certain circumstances, provide the Agency with all the information it needs to make a determination on the storage stability of pesticides.

  13. Graphene coatings for protection against microbiologically induced corrosion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Ajay

    Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of this form of corrosion. Chapter 1 introduces the basics of microbiologically induced corrosion and graphene. A comprehensive review of literature is used to discuss the role of micro-organisms, their impact on corrosion and their eradication. The conflicting results behind the use of graphene as a coating material are evaluated using the available literature and its future as an effective MIC resistant coating is then discussed. Chapter 2 is a study of the effectiveness of graphene based coatings for passivating metal surfaces against microbial induced corrosion. The effectiveness of graphene is evaluated against a bare metal electrode and a regular carbon based electrode using Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Spectrophotometry and Scanning Electron Microscopy (SEM). Results indicate 3-orders-of-magnitude lower corrosion currents in the graphene coated electrode and about two orders of magnitude higher impedance to interfacial electrochemical reactions. After establishing the superiority of graphene over bare metal electrode, further studies were conducted to compare its performance over other state of the art polymer coatings such as parylene and polyurethane. This study is discussed in detail in Chapter 3. Quantitatively, graphene outperforms the polymer coated electrodes by offering close to two orders of magnitude higher MIC resistance, while qualitatively, optical images indicate severe oxidation in both the polymer coated metal structures. The chapter is concluded with discussions on the unparalleled corrosion resistance provided by graphene based coatings. The success/failure of coating techniques is not purely dictated by their ability to protect the surface, but also by the ease of coating application onto any given surface. Chapter 4 explains the methods by which high quality graphene can be used to protect surfaces that are not conducive to graphene growth and the problems associated with the current transfer techniques. A Raman Spectroscopy based surface mapping is performed to understand the defect peak intensities across the surface and the reasons for coating failure when using the state-of-the-art transfer techniques is discussed.

  14. Dynamic Multivariate Accelerated Corrosion Test Protocol

    DTIC Science & Technology

    2014-10-01

    atmospheric, accelerated, AA2024-T3, AA6061-T6, AA7075-T3, 1010 steel, AgCl, rare earth conversion coat, magnesium rich primer, polyurethane , Eyring, Monte...morphology and elemental analysis by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and electrochemical determinations of...in the FT-IR analysis; degradation of the components of the high performance polyurethane coatings exposed in the UV/ozone chamber were more

  15. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and 4.28 × 10‑14 kg s‑1, respectively, while after the thermal deformation of the triple grids, the ion beam current has over-perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 1.41 × 10‑13 kg s‑1 and 4.1 × 10‑13 kg s‑1, respectively. The anode current is a key factor for the triple grid lifetime in situations where the structural strength of the grids does not change with temperature variation. The average sputtering rates of the accelerator grid and the decelerator grid, which were measured during the 1500 h lifetime test in 5 kW operating conditions, are 2.2 × 10‑13 kg s‑1 and 7.3 × 10‑13 kg s‑1, respectively. These results are in accordance with the simulation, and the error comes mainly from the calculation distribution of the upstream plasma density of the grids.

  16. A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES

    EPA Science Inventory

    Localized corrosion of copper premise plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Despite the fact that water quality is an important factor associated with localized copper corrosion, definitive appr...

  17. A Comprehensive Investigation of Copper Pitting Corrosion in a Drinking Water Distribution System

    EPA Science Inventory

    Copper pipe pitting is a complicated corrosion process for which exact causes and solutions are uncertain. This paper presents the findings of a comprehensive investigation of a cold water copper pitting corrosion problem in a drinking water distribution system, including a refi...

  18. Corrosion Protection of Steel by Thin Coatings of Starch-oil Emulsions

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. This research investigated the inhibition of corrosive behavior by jet-cooked starch-soybean oil composites on SAE 1010 steel. Electrochemical Impedance Spectroscopy (EIS) was used to evaluate t...

  19. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment

    PubMed Central

    Li, Xuan; Kappler, Ulrike; Jiang, Guangming; Bond, Philip L.

    2017-01-01

    Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching. PMID:28473816

  20. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment.

    PubMed

    Li, Xuan; Kappler, Ulrike; Jiang, Guangming; Bond, Philip L

    2017-01-01

    Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11-10 (pristine concrete) to pH 2-4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H 2 S levels in the sewer gas phase, although CO 2 , organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.

  1. Oxide inclusions in laser additive manufactured stainless steel and their effects on impact toughness and stress corrosion cracking behavior

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoyuan; Andresen, Peter L.; Rebak, Raul B.

    2018-02-01

    Intergranular and intragranular Si and Mn rich oxide inclusions are present in laser additive manufactured austenitic stainless steel. The uniform oxide dispersions in additive manufactured material promoted early initiation of microvoids and reduced its impact toughness relative to powder metallurgy (hot isostatic pressing) and wrought materials. For stress corrosion cracking in high temperature water, the silica inclusions along the grain boundaries preferentially dissolved and appeared to accelerate oxidation and caused extensive crack branching.

  2. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  3. A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES

    EPA Science Inventory

    Localized corrosion of copper plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Although water quality is one factor that can be responsible for localized copper corrosion, there is not a good approach to ...

  4. Copper and Lead Corrosion in a Full Scale Home Plumbning system Simulation

    EPA Science Inventory

    The corrosion of household or premise plumbing materials (such as copper, brass, and solder) and the metal release that results from that corrosion can cause numerous problems, ranging from elevated lead and copper levels to blue water and copper pinhole leaks. If left untreate...

  5. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced 3 worldwide by industry. This research investigated the inhibition of corrosive behavior a 4 dry lubricant formulation consisting of jet-cooked corn starch and soybean oil on SAE 5 1010 steel. Electrochemical Impedance ...

  6. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    USDA-ARS?s Scientific Manuscript database

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  7. Corrosion Propagation of Rebar Embedded in High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Nazim, Manzurul

    The FDOT has been using supplementary cementitious materials while constructing steel reinforced concrete marine bridge structures for over 3 decades. Previous findings indicated that such additions in concrete mix make the concrete more durable. To better understand corrosion propagation of rebar in high performance concrete: mature concrete samples that were made (2008/2009) with Portland cement, a binary mix, a ternary mix and recently prepared (April 2016 with 50% OPC + 50% slag and 80% OPC + 20% Fly ash) concrete samples were considered. None of these concretes had any admixed chloride to start with. An accelerated chloride transport process was used to drive chloride ions into the concrete so that chlorides reach and exceed the chloride threshold at the rebar surface and initiate corrosion. Electrochemical measurements were taken at regular intervals (during and after the electro-migration process) to observe the corrosion propagation in each sample.

  8. Strength and Durability of Fly Ash-Based Fiber-Reinforced Geopolymer Concrete in a Simulated Marine Environment

    NASA Astrophysics Data System (ADS)

    Martinez Rivera, Francisco Javier

    This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.

  9. High-Performance Polyimide Powder Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Much of the infrastructure at Kennedy Space Center and other NASA sites has been subjected to outside weathering effects for more than 40 years. Because much of this infrastructure has metallic surfaces, considerable effort is continually devoted to developing methods to minimize the effects of corrosion on these surfaces. These efforts are especially intense at KSC, where offshore salt spray and exhaust from Solid Rocket Boosters accelerate corrosion. Coatings of various types have traditionally been the choice for minimizing corrosion, and improved corrosion control methods are constantly being researched. Recent work at KSC on developing an improved method for repairing Kapton (polyimide)-based electrical wire insulation has identified polyimides with much lower melting points than traditional polyimides used for insulation. These lower melting points and the many other outstanding physical properties of polyimides (thermal stability, chemical resistance, and electrical properties) led us to investigate whether they could be used in powder coatings.

  10. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Care, S.; Nguyen, Q.T.; L'Hostis, V.

    This paper describes the mechanical effects of rust layer formed in reinforced mortar through accelerated tests of corrosion. The morphological and physico-chemical properties (composition, structures) of the corrosion system were characterized at different stages by using optical microscope and scanning electron microscope coupled with energy dispersive spectroscopy. The corrosion pattern was mainly characterized by a rust layer confined at the interface between the steel and the mortar. Expansion coefficient of rust products was determined from the rust thickness and the Faraday's law. Furthermore, in order to understand the mechanical effects of corrosion on the damage of mortar, displacement field measurementsmore » were obtained by using digital image correlation. An analytical model (hollow cylinder subjected to inner and outer pressures) was used with a set of experimental data to deduce the time of cracking and the order of magnitude of the mechanical properties of the rust layer.« less

  11. Investigation of Al Coated Mg for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Elmrabet, Nabila; Roe, Martin; Neate, Nigel; Grant, David M.; Brown, Paul D.

    The corrosion resistant properties of 1-2 μm thick Al coatings deposited by radio frequency magnetron sputtering on polished Mg surfaces, within Ar and Ar/H2 environments, have been appraised. The coatings were heat-treated at 300°C for 5 h to induce the formation of bioinert Al2O3, and samples were corroded within phosphate buffered saline solution at 37°C to mimic the biological environment. Both the as-deposited and heat-treated coatings were found to delay the onset of corrosion, but showed higher initial corrosion rates, once established, as compared with polished Mg surfaces. Slightly improved performance of the coatings was achieved through the addition of H2 to the system which acted to inhibit Al-Mg alloying and MgO formation. However, localized accelerated corrosion associated with substrate polishing damage emphasized the need for improved process control and coating uniformity.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nehm, F., E-mail: frederik.nehm@iapp.de; Müller-Meskamp, L.; Klumbies, H.

    A major failure mechanism is identified in electrical calcium corrosion tests for quality assessment of high-end application moisture barriers. Accelerated calcium corrosion is found at the calcium/electrode junction, leading to an electrical bottleneck. This causes test failure not related to overall calcium loss. The likely cause is a difference in electrochemical potential between the aluminum electrodes and the calcium sensor, resulting in a corrosion element. As a solution, a thin, full-area copper layer is introduced below the calcium, shifting the corrosion element to the calcium/copper junction and inhibiting bottleneck degradation. Using the copper layer improves the level of sensitivity formore » the water vapor transmission rate (WVTR) by over one order of magnitude. Thin-film encapsulated samples with 20 nm of atomic layer deposited alumina barriers this way exhibit WVTRs of 6 × 10{sup −5} g(H{sub 2}O)/m{sup 2}/d at 38 °C, 90% relative humidity.« less

  13. The effect of platform switching on the levels of metal ion release from different implant–abutment couples

    PubMed Central

    Alrabeah, Ghada O; Knowles, Jonathan C; Petridis, Haralampos

    2016-01-01

    The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant–abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt–chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant–abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant–abutment couples. PMID:27357323

  14. Sodium sulfate-induced corrosion of pure nickel and superalloy Udimet 700 in a high velocity burner rig at 900 C

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1987-01-01

    Sodium sulfate-induced corrosion of pure nickel and a commercial nickel-base superalloy, Udimet 700 (U-700), were studied at 900 C in a Mach 0.3 burner rig with different Na levels in the combustor. The corrosion rate of Ni was independent of the Na level in the combustor and considerably lower than that measured in laboratory salt spray tests. The lower rates are associated with the deposition of only a small amount of Na2SO4 on the surface of the NiO scale. Corrosion of U-700 was observed to occur in two stages. During the first stage, the corrosion proceeds by reaction of Cr2O3 scale with the Na2SO4 and evaporation of the Na2CrO4 reaction product from the surface of the corroding sample. Cr depletion in the alloy occurs and small sulfide particles are formed in the Cr depletion zone. Extensive sulfidation occurs during the second state of corrosion, and a thick scale forms. The relationship between the corrosion rate of U-700 and the Na level in the combustor gives a good correlation in the range of 0.3 to 1.5 ppm by weight Na. Very low levels of Na in the combustor cause accelerated oxidation of U-700 without producing the typical hot corrosion morphology.

  15. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    PubMed

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Preliminary Investigation of the Corrosion Behavior of Proprietary Micro-alloyed Steels in Aerated and Deaerated Brine Solutions

    NASA Astrophysics Data System (ADS)

    Onyeji, Lawrence; Kale, Girish

    2017-12-01

    The corrosion performance of fairly new generation of micro-alloyed steels was compared in different concentrations of aerated and deaerated brines. Electrochemical polarization, weight loss and surface analyses techniques were employed. The results showed a threshold of corrosion rate at 3.5 wt.% NaCl in both aerated and deaerated solutions. The average corrosion current density for steel B, for example, increased from 1.3 µA cm-2 in 1 wt.% NaCl to 1.5 µA cm-2 in 3.5 wt.% NaCl, but decreased to 1.4 µA cm-2 in 10 wt.% deaerated NaCl solutions. The aerated solutions exhibited an average of over 80% increase in corrosion current density in the respective concentrations when compared with the deaerated solution. These results can be attributed to the effects of dissolved oxygen (DO) which has a maximum solubility in 3.5 wt.% NaCl. DO as a depolarizer and electron acceptor in cathodic reactions accelerates anodic metal dissolution. The difference in carbon content and microstructures occasioned by thermo-mechanical treatment contributed to the witnessed variation in corrosion performance of the steels. Specifically, the results of the various corrosion techniques corroborated each other and showed that the corrosion rate of the micro-alloyed steels can be ranked as CRSteel A < CRX65 < CRSteel B < CRSteel C.

  17. Effect of sodium, potassium, magnesium, calcium, and chlorine on the high temperature corrosion of IN-100, U-700, IN-792, and Mar M-509. [coal-derived liquid fuel combustion in turbines

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Sidik, S. M.; Deadmore, D. L.

    1980-01-01

    The effects of potential impurities such as Na, K, Mg, Ca, and Cl, in coal-derived liquid fuels on accelerated corrosion of IN-100, U-700, IN-792, and Mar M-509 were investigated using a Mach 0.3 burner rig for times to 200 hours in one hour cycles. These impurities were injected in combination as aqueous solutions into the combustor. Other variables were time, temperature, and fuel-to-air ratio. The experimental matrix was a central composite fractional fractorial design divided into blocks to allow modification of the design as data was gathered. The extent of corrosion was determined by metal consumption. The time exponent was near 1.0 for the least corrosion resistant alloys, U-700 and IN-100; near 0.8 for the moderately resistant IN-792; and close to Mar M-509, the most corrosion resistant alloy. As anticipated, corrosion rapidly increased with increasing temperature as well as Na and K concentrations, while corrosion decreased somewhat as the Ca concentration increased for all alloys. Mg was beneficial for the Ni-base alloys but had little effect on the Co-base alloy. Surprisingly, the effect of increasing Cl was to decrease the corrosion of all alloys. Little interaction among the dopants was noted.

  18. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  19. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  20. In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris

    NASA Astrophysics Data System (ADS)

    Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun

    2018-05-01

    Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

  1. In vitro corrosion of magnesium alloy AZ31 — a synergetic influence of glucose and Tris

    NASA Astrophysics Data System (ADS)

    Li, Ling-Yu; Liu, Bin; Zeng, Rong-Chang; Li, Shuo-Qi; Zhang, Fen; Zou, Yu-Hong; Jiang, Hongwei George; Chen, Xiao-Bo; Guan, Shao-Kang; Liu, Qing-Yun

    2018-06-01

    Biodegradable Mg alloys have generated great interest for biomedical applications. Accurate predictions of in vivo degradation of Mg alloys through cost-effective in vivo evaluations require the latter to be conducted in an environment close to that of physiological scenarios. However, the roles of glucose and buffering agents in regulating the in vivo degradation performance of Mg alloys has not been elucidated. Herein, degradation behavior of AZ31 alloy is investigated by hydrogen evolution measurements, pH monitoring and electrochemical tests. Results indicate that glucose plays a content-dependent role in degradation of AZ31 alloy in buffer-free saline solution. The presence of a low concentration of glucose, i.e. 1.0 g/L, decreases the corrosion rate of Mg alloy AZ31, whereas the presence of 2.0 and 3.0 g/L glucose accelerates the corrosion rate during long term immersion in saline solution. In terms of Tris-buffered saline solution, the addition of glucose increases pH value and promotes pitting corrosion or general corrosion of AZ31 alloy. This study provides a novel perspective to understand the bio-corrosion of Mg alloys in buffering agents and glucose containing solutions.

  2. Corrosion of SiC by Molten Salt

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Smialek, James L.

    1987-01-01

    Advanced ceramic materials considered for wide range of applications as in gas turbine engines and heat exchangers. In such applications, materials may be in corrosive environments that include molten salts. Very corrosive to alloys. In order to determine extent of problem for ceramic materials, corrosion of SiC by molten salts studied in both jet fuel burners and laboratory furnaces. Surface of silicon carbide corroded by exposure to flame seeded with 4 parts per million of sodium. Strength of silicon carbide decreased by corrosion in flame and tube-furnace tests.

  3. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.

    PubMed

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-04-15

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions.

  4. Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoru Takahashi; Masayuki Igashira; Toru Obara

    2002-07-01

    Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less

  5. Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere

    NASA Astrophysics Data System (ADS)

    Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai

    2016-12-01

    The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.

  6. Taking Advantage of a Corrosion Problem to Solve a Pollution Problem

    ERIC Educational Resources Information Center

    Palomar-Ramirez, Carlos F.; Bazan-Martinez, Jose A.; Palomar-Pardave, Manuel E.; Romero-Romo, Mario A.; Ramirez-Silva, Maria Teresa

    2011-01-01

    Some simple chemistry is used to demonstrate how Fe(II) ions, formed during iron corrosion in acid aqueous solution, can reduce toxic Cr(VI) species, forming soluble Cr(III) and Fe(III) ions. These ions, in turn, can be precipitated by neutralizing the solution. The procedure provides a treatment for industrial wastewaters commonly found in…

  7. Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles

    DTIC Science & Technology

    2010-02-01

    deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and

  8. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Deramus, G. E., Jr.

    1977-01-01

    Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild-steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.

  9. Predicting, examining, and evaluating FAC in US power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohn, M.J.; Garud, Y.S.; Raad, J. de

    1999-11-01

    There have been many pipe failures in fossil and nuclear power plant piping systems caused by flow-accelerated corrosion (FAC). In some piping systems, this failure mechanism maybe the most important type of damage to mitigate because FAC damage has led to catastrophic failures and fatalities. Detecting the damage and mitigating the problem can significantly reduce future forced outages and increase personnel safety. This article discusses the implementation of recent developments to select FAC inspection locations, perform cost-effective examinations, evaluate results, and mitigate FAC failures. These advances include implementing the combination of software to assist in selecting examination locations and anmore » improved pulsed eddy current technique to scan for wall thinning without removing insulation. The use of statistical evaluation methodology and possible mitigation strategies also are discussed.« less

  10. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.; Frank, J.R.; St. Martin, E.J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. The authors have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of themore » trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean-square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less

  11. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y. J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trendmore » of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less

  12. Corrosion of Tungsten Microelectrodes used in Neural Recording Applications

    PubMed Central

    Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu

    2011-01-01

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  13. Corrosion of tungsten microelectrodes used in neural recording applications.

    PubMed

    Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu

    2011-06-15

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of datamore » representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.« less

  15. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  16. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  17. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  18. A Comparative Study of the Corrosion Behavior of Three Stainless Steels in an Eutectic (Li,Na,K)2CO3 Melt with and without (Na,K)Cl Additives at 973K in Air

    NASA Astrophysics Data System (ADS)

    Zeng, C. L.; Liu, Y.

    2011-04-01

    The ternary carbonate eutectic mixture of Li2CO3, K2CO3 and Na2CO3 as a heat transfer and storage medium has excellent thermophysical properties, but with high viscidity as compared with some other inorganic salts such as chlorides and nitrates. The addition of chlorides or fluorides to molten carbonates may improve their fluidity, but possibly making the melt become more corrosive. In this study, the corrosion behavior of type 304, 310 and 316 stainless steels in an eutectic (Li,Na,K)2CO3 melt with and without an eutectic mixture of NaCl and KCl at 973K in air have been examined. The experimental results indicated that 310 steel shows a much better corrosion resistance in molten carbonates than both 304 and 316 steels, due to the formation of a continuous LiCrO2 scale. The addition of chlorides to carbonates melt accelerated the corrosion of the steels, especially 310 steel, producing scales with more porosity.

  19. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  20. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    NASA Astrophysics Data System (ADS)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  1. Steam generator degradation: Current mitigation strategies for controlling corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.

    1997-02-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degreemore » or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).« less

  2. Galvanic Liquid Applied Coating System For Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; Curran, Jerome; Voska, N. (Technical Monitor)

    2002-01-01

    Corrosion of reinforcing steel in concrete is an insidious problem facing Kennedy Space Center (KSC), other Government Agencies, and the general public. These problems include KSC launch support structures, highway bridge infrastructure, and building structures such as condominium balconies. Due to these problems, the development of a Galvanic Liquid Applied Coating System would be a breakthrough technology having great commercial value for the following industries: Transportation, Infrastructure, Marine Infrastructure, Civil Engineering, and the Construction Industry. This sacrificial coating system consists of a paint matrix that may include metallic components, conducting agents, and moisture attractors. Similar systems have been used in the past with varying degrees of success. These systems have no proven history of effectiveness over the long term. In addition, these types of systems have had limited success overcoming the initial resistance between the concrete/coating interface. The coating developed at KSC incorporates methods proven to overcome the barriers that previous systems could not achieve. Successful development and continued optimization of this breakthrough system would produce great interest in NASA/KSC for corrosion engineering technology and problem solutions. Commercial patents on this technology would enhance KSC's ability to attract industry partners for similar corrosion control applications.

  3. Effect of Homogenization on Microstructure Characteristics, Corrosion and Biocompatibility of Mg-Zn-Mn-xCa Alloys

    PubMed Central

    Li, Jingyuan; Lai, Huiying; Xu, Yuzhao

    2018-01-01

    The corrosion behaviors of Mg-2Zn-0.2Mn-xCa (denoted as MZM-xCa alloys) in homogenization state have been investigated by immersion test and electrochemical techniques in a simulated physiological condition. The microstructure features were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA), and the corrosion mechanism was illustrated using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and confocal laser scanning microscopy (CLSM). The electrochemical and immersion test verify the MZM-0.38% Ca owns the best corrosion performance with the corrosion rate of 6.27 mm/year. Furthermore, the film layer of MZM-0.38% Ca is more compact and denser than that of others. This improvement could be associated with the combined effects of the suitable content of Zn/Ca dissolving into the α-Mg matrix and the modification of Ca-containing compounds by heat-treatment. However, the morphologies were transformed from uniform corrosion to localized pitting corrosion with Ca further addition. It could be explained that the excessive Ca addition can strengthen the nucleation driving force for the second phase formation, and the large volumes fraction of micro-galvanic present interface sites accelerate the nucleation driving force for corrosion propagation. In addition, in vitro biocompatibility tests also show the MZM-0.38% Ca was safe to bone mesenchymal stem cells (BMSCs) and was promising to be utilized as implant materials. PMID:29389894

  4. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  5. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  6. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  7. Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing

    PubMed Central

    Chen, Jun-Zhou; Li, Guo-Ai; Cai, Xin; Jiang, Jian-Tang; Shao, Wen-Zhu; Yang, Li; Zhen, Liang

    2018-01-01

    A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition. PMID:29751493

  8. Microstructure Evolution and the Resulted Influence on Localized Corrosion in Al-Zn-Mg-Cu Alloy during Non-Isothermal Ageing.

    PubMed

    Chen, Jun-Zhou; Li, Guo-Ai; Cai, Xin; Jiang, Jian-Tang; Shao, Wen-Zhu; Yang, Li; Zhen, Liang

    2018-05-03

    A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition.

  9. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less

  10. Modeling pore corrosion in normally open gold- plated copper connectors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less

  11. Effect of Glucose Concentration on Electrochemical Corrosion Behavior of Pure Titanium TA2 in Hanks’ Simulated Body Fluid

    PubMed Central

    Liu, Shuyue; Wang, Bing; Zhang, Peirong

    2016-01-01

    Titanium and its alloys have been widely used as implant materials due to their excellent mechanical property and biocompatibility. In the present study, the effect of glucose concentration on corrosion behavior of pure titanium TA2 in Hanks’ simulated body fluid is investigated by the electrochemical impedance spectrum (EIS) and potentiodynamic polarization methods. The range of glucose concentrations investigated in this research includes 5 mmol/L (limosis for healthy people), 7 mmol/L (after diet for healthy people), 10 mmol/L (limosis for hyperglycemia patient), and 12 mmol/L (after diet for hyperglycemia patient), as well as, 15 mmol/L and 20 mmol/L, which represent different body fluid environments. The results indicate that the pure titanium TA2 demonstrates the best corrosion resistance when the glucose concentration is less than 10 mmol/L, which shows that the pure titanium TA2 as implant material can play an effective role in the body fluids with normal and slight high glucose concentrations. Comparatively, the corrosion for the pure titanium implant is more probable when the glucose concentration is over 10 mmol/L due to the premature penetration through passive film on the material surface. Corrosion defects of pitting and crevice exist on the corroded surface, and the depth of corrosion is limited to three microns with a low corrosion rate. The oxidation film on the surface of pure titanium TA2 has a protective effect on the corrosion behavior of the implant inner material. The corrosion behavior of pure titanium TA2 will happen easily once the passive film has been penetrated through. The corrosion rate for TA2 implant will accelerate quickly and a pure titanium implant cannot be used. PMID:28773993

  12. Detection of active corrosion in reinforced and prestressed concrete: overview of NIST TIP project

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nunez, M. A.; Nanni, A.; Matta, F.; Ziehl, P.

    2011-04-01

    The US transportation infrastructure has been receiving intensive public and private attention in recent years. The Federal Highway Administration estimates that 42 percent of the nearly 600,000 bridges in the Unites States are in need of structural or functional rehabilitation1. Corrosion of reinforcement steel is the main durability issue for reinforced and prestressed concrete structures, especially in coastal areas and in regions where de-icing salts are regularly used. Acoustic Emission (AE) has proved to be a promising method for detecting corrosion in steel reinforced and prestressed concrete members. This type of non-destructive test method primarily measures the magnitude of energy released within a material when physically strained. The expansive ferrous byproducts resulting from corrosion induce pressure at the steel-concrete interface, producing longitudinal and radial microcracks that can be detected by AE sensors. In the experimental study presented herein, concrete block specimens with embedded steel reinforcing bars and strands were tested under accelerated corrosion to relate the AE activity with the onset and propagation stages of corrosion. AE data along with half cell potential measurements and galvanic current were recorded to examine the deterioration process. Finally, the steel strands and bars were removed from the specimens, cleaned and weighed. The results were compared vis-à-vis Faraday's law to correlate AE measurements with degree of corrosion in each block.

  13. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition.

    PubMed

    Shi, Weining; Yang, Shufeng; Li, Jingshe

    2018-03-19

    Effects of the evolution of inclusions on the pitting corrosion resistance of 304 stainless steel with different contents of the rare-earth element yttrium (Y) were studied using thermodynamic calculations, accelerated immersion tests, and electrochemical measurements. The experimental results showed that regular Y 2 O 3 inclusions demonstrated the best pitting resistance, followed in sequence by (Al,Mn)O inclusions, the composite inclusions, and irregular Y 2 O 3 inclusions. The pitting resistance first decreased, then increased, and then decreased again with increasing Y content, because sulfide inclusions were easily generated when the Y content was low and YN inclusions were easily generated at higher Y contents. The best pitting corrosion resistance was obtained for 304 stainless steel with addition of 0.019% Y.

  14. A Microstructural and Kinetic Investigation of the KCl-Induced Corrosion of an FeCrAl Alloy at 600 °C

    DOE PAGES

    Israelsson, Niklas; Unocic, Kinga A.; Hellström, K.; ...

    2015-03-18

    In this paper, the corrosion behaviour of a FeCrAl alloy was investigated at 600 °C in O 2 + H 2O with solid KCl applied. A kinetics and microstructural investigation showed that KCl accelerates corrosion and that potassium chromate formation depletes the protective scale in Cr, thus triggering the formation of a fast-growing iron-rich scale. Iron oxide was found to grow both inward and outward, on either side of the initial oxide. A chromia layer is formed with time underneath the iron oxide. Finally, it was found that although the alloy does not form a continuous pure alumina scale atmore » the investigated temperature, aluminium is, however, always enriched at the oxide/alloy interface.« less

  15. Monitoring the Corrosion Process of Reinforced Concrete Using BOTDA and FBG Sensors

    PubMed Central

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-01-01

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions. PMID:25884790

  16. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.

    PubMed

    Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L

    2011-06-01

    Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.

  17. Radiation chemistry related to nuclear power technology

    NASA Astrophysics Data System (ADS)

    Ishigure, Kenkichi

    A brief review is given to the radiation chemical problems, especially with the emphasis on water radiolysis, in the nuclear power technology. Radiation chemistry in aqueous system is pointed out to be closely related to the problems such as corrosion of Zircaloy, the formation of insoluble corrosion products or crud, stress corrosion cracking of stainless steel in BWR and the radioactive waste managements. The results of the constant extention rate tests on sensitized 304 stainless steel under irradiation are shown, and the computer calculations were carried out to simulate the model experiments on the release of crud from the corroding surface under irradiation and also the water radiolysis in core of BWR.

  18. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    PubMed

    Li, Huabing; Xu, Dake; Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  19. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris

    PubMed Central

    Li, Yingchao; Feng, Hao; Liu, Zhiyong; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2015-01-01

    Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC) of carbon steels. MIC by sulfate reducing bacteria (SRB) is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD) both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry. PMID:26308855

  20. Characterization of iron carbonate scales developed under carbon dioxide corrosion conditions

    NASA Astrophysics Data System (ADS)

    de Moraes, Flavio Dias

    1999-11-01

    Carbon steel CO2 corrosion is a common and very serious problem in the oil industry. It often results in severe damage to pipes and equipment. Besides controlling direct costs associated with loss of production and replacement or repair to the equipment damaged by corrosion, life and environmental safety must be protected with the thorough study of this type of corrosion. For a given type of steel, the CO2 corrosion rates are strongly influenced by many mechanical and environmental factors, such as flow velocity, temperature, gas-liquid ratio, oil-water ratio, CO2 partial pressure, and the chemical composition of the produced water. Under specific conditions, a corrosion product, the iron carbonate (FeCO3), can deposit over the corroding metal as a scale and dramatically reduce the CO2 corrosion rates on carbon steels. The ability to reliably predict the protective characteristics of such scales so that this knowledge may be used to mitigate the CO2 corrosion problem is the main objective of this research. CO2 corrosion tests performed under various CO2 corrosion flowing conditions in a flow loop were used to generate and study FeCO3 scales. In situ Electrochemical Impedance Spectroscopy (EIS) techniques were successfully used to monitor the development of the scales throughout the duration of the tests. The EIS monitoring enabled the identification of the type of scales being formed and the quantification of the protection they give. A procedure using EIS, SEM and X-ray diffraction was developed to electrochemically and morphologically characterize the scales formed. In this work, morphology of the scales was proved to be the most important characteristic related to CO2 corrosion protection, and temperature was found to be the main environmental parameter controlling the morphology of the scales. For the environmental conditions tested, a correlation was developed to predict the type of iron carbonate scales that would be formed and the amount of CO2 corrosion protection these scales would provide to carbon steels.

  1. Improved PFB operations: 400-hour turbine test results. [coal combustion products and hot corrosion in gas turbines

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. J.; Benford, S. M.; Zellars, G. R.

    1980-01-01

    A pressurized fluidized bed (PFB) coal-burning reactor was used to provide hot effluent gases for operation of a small gas turbine. Preliminary tests determined the optimum operating conditions that would result in minimum bed particle carryover in the combustion gases. Solids were removed from the gases before they could be transported into the test turbine by use of a modified two stage cyclone separator. Design changes and refined operation procedures resulted in a significant decrease in particle carryover, from 2800 to 93 ppm (1.5 to 0.05 grains/std cu ft), with minimal drop in gas temperature and pressure. The achievement of stable burn conditions and low solids loadings made possible a 400 hr test of small superalloy rotor, 15 cm (6 in.) in diameter, operating in the effluent. Blades removed and examined metallographically after 200 hr exhibited accelerated oxidation over most of the blade surface, with subsurface alumina penetration to 20 micron m. After 400 hours, average erosion loss was about 25 micron m (1 mil). Sulfide particles, indicating hot corrosion, were present in depletion zones, and their presence corresponded in general to the areas of adherent solids deposit. Sulfidation appears to be a materials problem equal in importance to erosion.

  2. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  3. Effect of immersion time in a modified green death solution on the rust layer of Cu-containing low-alloy steel

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Kwon, Min-Seok; Kim, Jung-Gu

    2017-01-01

    The corrosion resistance of low-alloy steel containing 0.35 wt% copper, as a function of immersion time in a modified green death solution, was investigated using electrochemical methods and surface analysis. After 30 min of immersion, the steel surface was covered with a Cu-enriched film. Improvement of the film properties and increases in the corrosion resistance were realized for the immersion time up to 6 h due to the development of the Cu-enriched layer. However, the Cu particle was formed in the Cu-enriched layer for the immersion time beyond 6 h. Since the formation of the Cu particle generated a Cu-depletion region, micro-galvanic corrosion between the Cu particle and the Cu-depletion region lead to the localized film breakdown on the surface film. The localized film breakdown, which decreased the corrosion properties of the Cu-containing steel, was accelerated by the continuous formation of Cu particles in the rust layer.

  4. Analyzing and Modelling the Corrosion Behavior of Ni/Al2O3, Ni/SiC, Ni/ZrO2 and Ni/Graphene Nanocomposite Coatings

    PubMed Central

    Saeed, Adil; Braun, Wolfgang; Bajwa, Rizwan; Rafique, Saqib

    2017-01-01

    A study has been presented on the effects of intrinsic mechanical parameters, such as surface stress, surface elastic modulus, surface porosity, permeability and grain size on the corrosion failure of nanocomposite coatings. A set of mechano-electrochemical equations was developed by combining the popular Butler–Volmer and Duhem expressions to analyze the direct influence of mechanical parameters on the electrochemical reactions in nanocomposite coatings. Nanocomposite coatings of Ni with Al2O3, SiC, ZrO2 and Graphene nanoparticles were studied as examples. The predictions showed that the corrosion rate of the nanocoatings increased with increasing grain size due to increase in surface stress, surface porosity and permeability of nanocoatings. A detailed experimental study was performed in which the nanocomposite coatings were subjected to an accelerated corrosion testing. The experimental results helped to develop and validate the equations by qualitative comparison between the experimental and predicted results showing good agreement between the two. PMID:29068395

  5. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell

    DOE PAGES

    Mo, Jingke; Steen, Stuart M.; Zhang, Feng-Yuan; ...

    2015-08-05

    The lack of a fundamental understanding of the corrosion mechanisms in the electrochemical environments of proton exchange membrane (PEM) electrolyzer and/or fuel cells (ECs/FCs) has seriously hindered the improvement of performance and efficiency of PEM ECs/FCs. In this study, a stainless steel mesh was purposely used as an anode gas diffusion layer that was intentionally operated with high positive potentials under harsh oxidative environments in a PEMEC to study the corrosion mechanism of metal migration. A significant amount of iron and nickel cations were determined to transport through the anode catalyst layer, the PEM and the cathode catalyst layer duringmore » the PEMEC operation. The formation/deposition of iron oxide and nickel oxide on the carbon paper gas diffusion layer at the cathode side is first revealed by both scanning electron microscope and X-ray diffraction. The results indicate the corrosion elements of iron and nickel are transported from anode to cathode through the catalyst-coated membrane, and deposited on carbon fibers as oxides. This phenomenon could also open a new corrosion-based processing approach to potentially fabricate multifunctional oxide structures on carbon fiber devices. This study has demonstrated a new accelerated test method for investigating the corrosion and durability of metallic materials as well.« less

  6. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Jingke; Steen, Stuart M.; Zhang, Feng-Yuan

    The lack of a fundamental understanding of the corrosion mechanisms in the electrochemical environments of proton exchange membrane (PEM) electrolyzer and/or fuel cells (ECs/FCs) has seriously hindered the improvement of performance and efficiency of PEM ECs/FCs. In this study, a stainless steel mesh was purposely used as an anode gas diffusion layer that was intentionally operated with high positive potentials under harsh oxidative environments in a PEMEC to study the corrosion mechanism of metal migration. A significant amount of iron and nickel cations were determined to transport through the anode catalyst layer, the PEM and the cathode catalyst layer duringmore » the PEMEC operation. The formation/deposition of iron oxide and nickel oxide on the carbon paper gas diffusion layer at the cathode side is first revealed by both scanning electron microscope and X-ray diffraction. The results indicate the corrosion elements of iron and nickel are transported from anode to cathode through the catalyst-coated membrane, and deposited on carbon fibers as oxides. This phenomenon could also open a new corrosion-based processing approach to potentially fabricate multifunctional oxide structures on carbon fiber devices. This study has demonstrated a new accelerated test method for investigating the corrosion and durability of metallic materials as well.« less

  7. The growth of small corrosion fatigue cracks in alloy 2024

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1993-01-01

    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.

  8. Materials technology for coal-conversion processes. Seventeenth quarterly report, January-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingson, W. A.

    1979-01-01

    Studies of slag attack on refractories were continued, utilizing conditions relevant to MHD applications. Addition of 10 wt % K/sub 2/O seed to the slag did not increase its corrosive effect on the refractories tested. A hot gas-stream cleanup erosion-monitoring system using an ANL-developed nondestructive ultrasonic system was installed at the Morgantown Energy Technology Center (METC) during this period and was 75% completed. Characteristic-slope values obtained from broadband and resonant-band acoustic-emission transducers during rapid heating of a 95% Al/sub 2/O/sub 3/ refractory panel are consistent with theory. Corrosion information on type and thickness of corrosion-product layers was obtained on Incoloymore » 800, 310 stainless steel, Inconel 671 and 871 and 982/sup 0/C. Fluid-bed corrosion studies involving sulfation accelerators have shown that addition of 0.3 mol % CaCl/sub 2/ has no significant effect on corrosion behavior of the alloys studied. However, 0.5 mol % NaCl or 1.9 mol % Na/sub 2/CO/sub 3/ increases the corrosion rates of most materials. Failure analyses were performed on components from the slagging gasifier and liquefaction unit at the Grand Forks Energy Technology Center, and a ball valve from the METC Valve Dynamic Test Unit.« less

  9. KCl-Induced High-Temperature Corrosion Behavior of HVAF-Sprayed Ni-Based Coatings in Ambient Air

    NASA Astrophysics Data System (ADS)

    Jafari, Reza; Sadeghimeresht, Esmaeil; Farahani, Taghi Shahrabi; Huhtakangas, Matti; Markocsan, Nicolaie; Joshi, Shrikant

    2018-02-01

    KCl-induced high-temperature corrosion behavior of four HVAF-sprayed Ni-based coatings (Ni21Cr, Ni5Al, Ni21Cr7Al1Y and Ni21Cr9Mo) under KCl deposit has been investigated in ambient air at 600 °C up to 168 h. The coatings were deposited onto 16Mo3 steel—a widely used boiler tube material. Uncoated substrate, 304L and Sanicro 25 were used as reference materials in the test environment. SEM/EDS and XRD techniques were utilized to characterize the as-sprayed and exposed samples. The results showed that the small addition of KCl significantly accelerated degradation to the coatings. All coatings provided better corrosion resistance compared to the reference materials. The alumina-forming Ni5Al coating under KCl deposit was capable of forming a more protective oxide scale compared to the chromia-forming coatings as penetration of Cl through diffusion paths was hindered. Both active corrosion and chromate formation mechanisms were found to be responsible for the corrosion damages. The corrosion resistance of the coatings based on the microstructure analysis and kinetics had the following ranking (from the best to worst): Ni5Al > Ni21Cr > Ni21Cr7Al1Y > Ni21Cr9Mo.

  10. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Alan; Colbow, Vesna; Harvey, David

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stressmore » test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.« less

  11. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs.

  12. A Comparative Study of Cyclic Oxidation and Sulfates-Induced Hot Corrosion Behavior of Arc-Sprayed Ni-Cr-Ti Coatings at Moderate Temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao

    2015-06-01

    The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.

  13. FLOW SEPARATION CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS

    EPA Science Inventory

    Biofilm formations on pipe walls have been found in potable water distribution mains. The biofilm layers contribute to accelerated corrosion rates, increased flow resistance, and formation of encrustations that may deteriorate drinking water quality. Research to evaluate the depe...

  14. Electrochemical impedance spectroscopy of biofilms

    USDA-ARS?s Scientific Manuscript database

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Pharmac...

  15. Maintenance and design of steel abutment piles in Iowa bridges.

    DOT National Transportation Integrated Search

    2014-09-01

    Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of : numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and : chl...

  16. Corrosion and Microstructure Correlation in Molten LiCl-KCl Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Mathiya, S.; Thyagarajan, K.; Kamachi Mudali, U.

    2010-07-01

    Pyrochemical reprocessing in molten chloride salt medium has been considered as one of the best options for the reprocessing of spent metallic fuels of future fast breeder reactors. The unit operations such as salt preparation, electrorefining, and cathode processing involve the presence of molten LiCl-KCl eutectic salt from 673 to 1373 K (400 to 1100 °C). The present work discusses the corrosion behavior of electroformed nickel (EF Ni) without and with nickel-tungsten (Ni-W) coating, 316L SS, and INCONEL 625 alloy in molten LiCl-KCl eutectic salt at 673 K, 773 K, and 873 K (400 °C, 500 °C, and 600 °C) in the presence of air. The weight percent loss of the exposed samples was determined by the weight loss method and surface morphology of the salt exposed, and product layers were examined by scanning electron microscopy (SEM). X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis were also carried out on the exposed and corrosion product layers to understand the phases present and the corrosion mechanism involved. The results of the present study indicated that INCONEL 625 alloy showed superior corrosion resistance compared to electroformed nickel (EF Ni), EF Ni with nickel-tungsten (Ni-W) coating (EF Ni-W), and 316L SS. The EF Ni with Ni-W coating exhibits better corrosion resistance than EF Ni without tungsten coating. Based on the surface morphology, XRD, and EDX analysis of corrosion product layers, the mechanism of corrosion of INCONEL 625 and 316L involves formation of chromium-rich compound at the surface and subsequent spallation. For the EF Ni, the porous thick NiO corrosion product allows the penetration of salt, thus accelerating the corrosion. Improved corrosion resistance of EF Ni-W was attributed to the W-rich NiO layer, while for INCONEL 625, the adherent and protective NiO layer improved the corrosion resistance. The article highlights the results of the present investigation.

  17. Corrosion and scaling in solar heating systems

    NASA Astrophysics Data System (ADS)

    Foresti, R. J., Jr.

    1981-12-01

    Corrosion, as experienced in solar heating systems, is described in simplistic terms to familiarize designers and installers with potential problems and their solutions. The role of a heat transfer fluid in a solar system is briefly discussed, and the choice of an aqueous solution is justified. The complexities of the multiple chemical and physical reactions are discussed in order that uncertainties of corrosion behavior can be anticipated. Some basic theories of corrosion are described, aggressive environments for some common metals are identified, and the role of corrosion inhibitors is delineated. The similarities of thermal and material characteristics of a solor system and an automotive cooling system are discussed. Based on the many years of experience with corrosion in automotive systems, it is recommended that similar antifreezes and corrosion inhibitors should be used in solar systems. The importance of good solar system design and fabrication is stressed and specific characteristics that affect corrosion are identified.

  18. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  19. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  20. Steel-free hybrid reinforcement system for concrete bridge decks, phase 1

    DOT National Transportation Integrated Search

    2006-05-01

    Use of nonferrous fiber-reinforced polymer (FRP) reinforcement bars (rebars) offers one promising alternative to mitigating the corrosion problem in steel reinforced concrete bridge decks. Resistance to chloride ion driven corrosion, high tensile str...

  1. Protection of structural concrete substructures.

    DOT National Transportation Integrated Search

    1992-12-01

    The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride a...

  2. Corrosion resistant alloys for reinforced concrete [2009

    DOT National Transportation Integrated Search

    2009-04-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for four-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focus...

  3. Corrosion resistant alloys for reinforced concrete [2007

    DOT National Transportation Integrated Search

    2007-07-01

    Deterioration of concrete bridges because of reinforcing steel corrosion has been recognized for 4-plus decades as a major technical and economic challenge for the United States. As an option for addressing this problem, renewed interest has focused ...

  4. Concrete Solution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Space Act Agreement between Kennedy Space Center and Surtreat Southeast, Inc., resulted in a new treatment that keeps buildings from corroding away over time. Structural corrosion is a multi-billion dollar problem in the United States. The agreement merged Kennedy Space Center's research into electrical treatments of structural corrosion with chemical processes developed by Surtreat. Combining NASA and Surtreat technologies has resulted in a unique process with broad corrosion-control applications.

  5. Field Demonstration of a Novel Biotreatment Process for Perchlorate Reduction in Groundwater

    DTIC Science & Technology

    2010-06-01

    biological reduction and/or reaction with ZVI, and arsenic hexavalent chromium and/or uranium by adsorption on corrosion products. • Simple rugged...problems and troubleshooting measures ................................... 22 5.2 Laboratory Evaluation of Porosity Decrease and Corrosion Products...reactor when it was dismantled showing the heavy deposits of iron corrosion products and quasi total loss of porosity. Figure 5.14 Picture of the column

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickman, D.O.

    Various aspects of zirconium alloy development for light water reactors in the UK and Scandinavia are reviewed, including the contribution made by some unique nuclear testing facilities. Among the problems encountered were the irradiation enhancement of corrosion and hydrogen pickup, crud deposition, iodine-induced stress-corrosion cracking on power ramping, and severe cladding deformation in loss-of-coolant accident conditions. The causes and behavior of defects, including hydride defects and fretting corrosion, are discussed.

  7. --No Title--

    Science.gov Websites

    Security Robots Lasers RSS Feed Prev Next Air Force scientists are developing an improved system for coating materials performance evaluations that will accelerate the implementation of new aircraft coatings . New Evaluation System Helps Air Force Better Understand Corrosion Air Force scientists are developing

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, J.J.; Nejedlik, J.F.; Vogt, J.W.

    The SNAP II system consists of a reactor heat source, a mercury Rankine engine, and an alternator. The problems involved in selecting materials for the SNAP II mercury system were studied. A discussion is given of the corrosion mechanisms involved in a system in which mercury is the working fluid. The problem resolves itself into selecting materials with the best combination of engineering properties for the application and highest resistance to mercury corrosion at the anticipated temperature. (auth)

  9. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  10. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy.

    PubMed

    Choi, H Y; Kim, W J

    2015-11-01

    The combination of solid solution heat treatments and severe plastic deformation by high-ratio differential speed rolling (HRDSR) resulted in the formation of an ultrafine-grained microstructure with high thermal stability in a Mg-5Zn-0.5Zr (ZK60) alloy. When the precipitate particle distribution was uniform in the matrix, the internal stresses and dislocation density could be effectively removed without significant grain growth during the annealing treatment (after HRDSR), leading to enhancement of corrosion resistance. When the particle distribution was non-uniform, rapid grain growth occurred in local areas where the particle density was low during annealing, leading to development of a bimodal grain size distribution. The bimodal grain size distribution accelerated corrosion by forming a galvanic corrosion couple between the fine-grained and coarse-grained regions. The HRDSR-processed ZK60 alloy with high thermal stability exhibited high corrosion resistance, high strength and high ductility, and excellent superplasticity, which allow the fabrication of biodegradable magnesium devices with complicated designs that have a high mechanical integrity throughout the service life in the human body. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    NASA Astrophysics Data System (ADS)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-06-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  12. Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

    NASA Astrophysics Data System (ADS)

    Ye, Zhi-hao; Cai, Wen-xin; Li, Jin-feng; Chen, Xiang-rong; Zhang, Rui-feng; Birbilis, Nick; Chen, Yong-lai; Zhang, Xu-hu; Ma, Peng-cheng; Zheng, Zi-qiao

    2018-04-01

    The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ' (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

  13. High temperature corrosion of cold worked YUS409D bellows of bellow-sealed valve in LBE

    NASA Astrophysics Data System (ADS)

    Mustari1, A. P. A.; Irwanto1, D.; Takahashi, M.

    2017-01-01

    Lead-bismuth eutectic (LBE) loop test is highly contributes to the lead-alloy-cooled fast breeder reactor (LFR) and accelerator driven system (ADS) research and development by providing comprehensive results of both corrosion and erosion phenomenon. Bellows-sealed valve is a crucial part in the LBE loop test apparatus, due to its capability of preventing corrosion on valve spring, thus improves the operation time of the system. LBE is very corrosive to stainless steel by formation of oxide layer or elemental dissolution, e.g. Ni. Thus, new type of bellows for bellows-sealed valve made of nickel free material, i.e. YUS409D, is proposed to be used in the LBE. Bellows material undergo heat treatments for mechanical improvement including cold working and annealing. The thickness reduction by the heat treatments is about 90% of initial condition. Corrosion behavior of the bellows has been studied in stagnant LBE at 500 and 600 °C for 500 hours. The oxygen concentration was controlled at about 10-7 wt%. Typical oxide layers were developed on the surface. Oxidation rate was sharply increased at 600°C.

  14. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-05-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  15. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-04-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  16. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg2Si composites for biodegradable implant applications.

    PubMed

    Sikora-Jasinska, M; Paternoster, C; Mostaed, E; Tolouei, R; Casati, R; Vedani, M; Mantovani, D

    2017-12-01

    Recently, Fe and Fe-based alloys have shown their potential as degradable materials for biomedical applications. Nevertheless, the slow corrosion rate limits their performance in certain situations. The shift to iron matrix composites represents a possible approach, not only to improve the mechanical properties, but also to accelerate and tune the corrosion rate in a physiological environment. In this work, Fe-based composites reinforced by Mg 2 Si particles were proposed. The initial powders were prepared by different combinations of mixing and milling processes, and finally consolidated by hot rolling. The influence of the microstructure on mechanical properties and corrosion behavior of Fe/Mg 2 Si was investigated. Scanning electron microscopy and X-ray diffraction were used for the assessment of the composite structure. Tensile and hardness tests were performed to characterize the mechanical properties. Potentiodynamic and static corrosion tests were carried out to investigate the corrosion behavior in a pseudo-physiological environment. Samples with smaller Mg 2 Si particles showed a more homogenous distribution of the reinforcement. Yield and ultimate tensile strength increased when compared to those of pure Fe (from 400MPa and 416MPa to 523MPa and 630MPa, respectively). Electrochemical measurements and immersion tests indicated that the addition of Mg 2 Si could increase the corrosion rate of Fe even twice (from 0.14 to 0.28mm·year -1 ). It was found that the preparation method of the initial composite powders played a major role in the corrosion process as well as in the corrosion mechanism of the final composite. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dealloying, Microstructure and the Corrosion/Protection of Cast Magnesium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sieradzki, Karl; Aiello, Ashlee; McCue, Ian

    The purpose of this project was to develop a greater understanding of micro-galvanic corrosion effects in cast magnesium alloys using both experimental and computational methods. Experimental accomplishments have been made in the following areas of interest: characterization, aqueous free-corrosion, atmospheric corrosion, ionic liquid dissolution, rate kinetics of oxide dissolution, and coating investigation. Commercial alloys (AZ91D, AM60, and AZ31B), binary-phase alloys (αMg-2at.%Al, αMg-5at.%Al, and Mg-8at.%Al), and component phases (Mg, Al, β-Mg, β-1%Zn, MnAl3) were obtained and characterized using energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Full immersion in aqueous chloride was used to characterize the corrosionmore » behavior of alloys. Rotating disc electrodes (RDEs) were used to observe accelerated long-term corrosion behavior. Al surface redistribution for freely corroded samples was analyzed using SEM, EDS, and lithium underpotential deposition (Li UPD). Atmospheric corrosion was observed using contact angle evolution, overnight pH monitoring, and surface pH evolution studies. Ionic liquid corrosion characterization was performed using linear sweep voltammetry and potentiostatic dissolution in 150° choline chloride-urea (cc-urea). Two surface coatings were investigated: (1) Li-carbonate and (2) cc-urea. Li-carbonate coatings were characterized using X-ray photoelectron spectroscopy (XPS), SEM, and aqueous free corrosion potential monitoring. Hydrophobic cc-urea coatings were characterized using contact angle measurements and electrochemical impedance spectroscopy. Oxide dissolution rate kinetics were studied using inductively coupled plasma mass spectroscopy (ICP-MS). Computational accomplishments have been made through the development of Kinetic Monte Carlo (KMC) simulations which model time- and composition-dependent effects on the microstructure due to spatial redistribution of alloying elements during corrosion.« less

  18. Conjoint corrosion and wear in titanium alloys.

    PubMed

    Khan, M A; Williams, R L; Williams, D F

    1999-04-01

    When considering titanium alloys for orthopaedic applications it is important to examine the conjoint action of corrosion and wear. In this study we investigate the corrosion and wear behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in phosphate buffered saline (PBS), bovine albumin solutions in PBS and 10% foetal calf serum solutions in PBS. The tests were performed under four different conditions to evaluate the influence of wear on the corrosion and corrosion on the wear behaviour as follows: corrosion without wear, wear-accelerated corrosion, wear in a non-corrosive environment and wear in a corrosive environment. The corrosion behaviour was investigated using cyclic polarisation studies to measure the ability of the surface to repassivate following breakdown of the passive layer. The properties of the repassivated layer were evaluated by measuring changes in the surface hardness of the alloys. The amount of wear that had occurred was assessed from weight changes and measurement of the depth of the wear scar. It was found that in the presence of wear without corrosion the wear behaviour of Ti-13Nb-13Zr was greater than that of Ti-6Al-7Nb or Ti-6Al-4V and that in the presence of proteins the wear of all three alloys is reduced. In the presence of corrosion without wear Ti-13Nb-13Zr was more corrosion resistant than Ti-6Al-7Nb which was more corrosion resistant than Ti-6Al-4V without proteins whereas in the presence of protein the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb was reduced and that of Ti-6Al-4V increased. In the presence of corrosion and wear the corrosion resistance of Ti-13Nb-13Zr is higher than that of Ti-6Al-7Nb or Ti-6Al-4V in PBS but in the presence of proteins the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb are very similar but higher than that of Ti-6Al-4V. The wear of Ti-13Nb-13Zr is lower than that of Ti-6Al-7Nb and Ti-6Al-4V with or without the presence of proteins in a corrosive environment. Therefore the overall degradation when both corrosion and wear processes are occurring is lowest for Ti-13Nb-13Zr and highest for Ti-6Al-4V and the presence of proteins reduces the degradation of all three alloys.

  19. Corrosion consequences of microfouling in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Mitchell, Ralph

    1991-01-01

    This paper examines the potential fouling and corrosion problems associated with microbial film formation throughout the water reclamation system (WRS) designed for the Space Station Freedom. It is shown that the use of advanced metal sputtering techiques combined with image analysis and FTIR spectroscopy will present realistic solutions for investigating the formation and function of biofilm on different alloys, the subsequent corrosion, and the efficiency of different treatments. These techniques, used in combination with electrochemical measurements of corrosion, will provide a powerful approach to examinations of materials considered for use in the WRS.

  20. Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent

    NASA Technical Reports Server (NTRS)

    Benford, S. M.; Zellars, G. R.; Lowell, C. E.

    1981-01-01

    Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.

  1. Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles

    PubMed Central

    Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay

    2014-01-01

    We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118

  2. Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles.

    PubMed

    Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay

    2014-01-07

    We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.

  3. Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol-gel layers.

    PubMed

    Burnat, B; Dercz, G; Blaszczyk, T

    2014-03-01

    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol-gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 °C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode's physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 °C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate-layer interaction. From the point of view of corrosion, the best TiO2 sol-gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 °C.

  4. Corrosion Behavior of Plasma-Passivated Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbour, J.C.; Braithwaite, J.W.; Son, K.A.

    1999-07-09

    A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less

  5. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  6. Microstructure and corrosion study of porous Mg-Zn-Ca alloy in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Erryani, Aprilia; Lestari, Franciska P.; Nyoman Putrayasa, I.; Gede, P. A.; Kartika, Ika

    2017-03-01

    Magnesium alloys had been considered as promising biomedical devices due to their biocompatibility and biodegradability. In this present work, microstructure and corrosion properties of Mg-Zn-Ca-CaCO3 porous magnesium alloy were examined. Porous metals were fabricated through powder metallurgy process with CaCO3 addition as a foaming agent. CaCO3 content was varied (1, 5, and 10%wt) followed by sintering process in 650 °C in Argon atmosphere for 10 and 15 h. The microstructure of the resulted alloys was analyzed by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry data (EDS). Further, to examine corrosion properties, electrochemical test were conducted using G750 Gamry Instrument in accordance with ASTM standard G5-94 in simulated body fluid (Hank’s solution). As it was predicted, increasing content of foaming agent was in line with the increasing of pore formation. The electrochemical testing indicated corrosion rate would increase along with the increasing of foaming agent. The porous Mg-Zn-Ca alloy which has more porosity and connecting area will corrode much faster because it can transport the solution containing chloride ion which accelerated the chemical reaction. Highest corrosion resistance was given by Mg-Zn-Ca-1CaCO3-10 h sintering with potential corrosion of  -1.59 VSCE and corrosion rate of 1.01 mmpy. From the microstructure after electrochemical testing, it was revealed that volcano shaped structure and crack would occur after exposure to Hank’s solution

  7. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents.

    PubMed

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W; Yun, Yeoheung

    2014-08-15

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO₃ - ) and mucin in Gamble's solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble's solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies.

  8. Effect of Mucin and Bicarbonate Ion on Corrosion Behavior of AZ31 Magnesium Alloy for Airway Stents

    PubMed Central

    Jang, Yongseok; Owuor, Daniel; Waterman, Jenora T.; White, Leon; Collins, Boyce; Sankar, Jagannathan; Gilbert, Thomas W.; Yun, Yeoheung

    2014-01-01

    The biodegradable ability of magnesium alloys is an attractive feature for tracheal stents since they can be absorbed by the body through gradual degradation after healing of the airway structure, which can reduce the risk of inflammation caused by long-term implantation and prevent the repetitive surgery for removal of existing stent. In this study, the effects of bicarbonate ion (HCO3−) and mucin in Gamble’s solution on the corrosion behavior of AZ31 magnesium alloy were investigated, using immersion and electrochemical tests to systematically identify the biodegradation kinetics of magnesium alloy under in vitro environment, mimicking the epithelial mucus surfaces in a trachea for development of biodegradable airway stents. Analysis of corrosion products after immersion test was performed using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) was used to identify the effects of bicarbonate ions and mucin on the corrosion behavior of AZ31 magnesium alloys with the temporal change of corrosion resistance. The results show that the increase of the bicarbonate ions in Gamble’s solution accelerates the dissolution of AZ31 magnesium alloy, while the addition of mucin retards the corrosion. The experimental data in this work is intended to be used as foundational knowledge to predict the corrosion behavior of AZ31 magnesium alloy in the airway environment while providing degradation information for future in vivo studies. PMID:28788166

  9. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  10. Design of Artificially Cracked Concrete Specimens for Virginia Department of Transportation Material Evaluation

    DOT National Transportation Integrated Search

    2018-05-01

    The penetration of chloride ions and moisture through cracks in reinforced concrete structures can accelerate the corrosion of steel reinforcement and shorten the service life of the structure. The purpose of this study was to develop a method for si...

  11. Survey of Nickel-Aluminium-Bronze Casting Alloys on Marine Applications,

    DTIC Science & Technology

    1981-04-01

    and corrosion performance of nickel-aluminium bronze (NAB)/covered by naval specification DGS-8520 and DGS-348 have been investigated. No evidence was...found to suggest that there would be any significant difference in corrosion performance between alloys meeting the two specifications. Early... corrosion problems associated with the weld repair areas of castings have been overcome largely by using improved foundry and welding techniques followed by a

  12. Ultimate strength performance of tankers associated with industry corrosion addition practices

    NASA Astrophysics Data System (ADS)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee

    2014-09-01

    In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  13. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  14. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; ...

    2012-07-24

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayercoating in the 25–80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. In conclusion, the barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  15. Evaluation of corrosion inhibitor : final report.

    DOT National Transportation Integrated Search

    1980-05-01

    Solution to the problem of deterioration of bridge decks due to the corrosion of embedded steel has been sought by engineers for a long time. The purpose of the study was to evaluate, under laboratory conditions, the properties of concrete using a co...

  16. Characterization of Copper Corrosion Products in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  17. Characterization of Copper Corrosion Products Formed in Drinking Water by Combining Electrochemical and Surface Analyses

    EPA Science Inventory

    This study focuses on the application of electrochemical approaches to drinking water copper corrosion problems. Applying electrochemical approaches combined with copper solubility measurements, and solid surface analysis approaches were discussed. Tafel extrapolation and Electro...

  18. The corrosive nature of manganese in drinking water.

    PubMed

    Alvarez-Bastida, C; Martínez-Miranda, V; Vázquez-Mejía, G; Solache-Ríos, M; Fonseca-Montes de Oca, G; Trujillo-Flores, E

    2013-03-01

    Corrosion problems having to do with drinking water distribution systems are related to many processes and factors and two of them are ionic acidity and carbon dioxide, which were considered in this work. The corrosion character of water is determined by the corrosion indexes of Langelier, Ryznar, Larson, and Mojmir. The results show that pipes made of different materials, such as plastics or metals, are affected by corrosion, causing manganese to be deposited on materials and dissolved in water. The deterioration of the materials, the degree of corrosion, and the deposited corrosion products were determined by X-ray diffraction and Scanning Electron Microscopy. High levels of manganese and nitrate ions in water may cause serious damage to the health of consumers of water. Three wells were examined, one of them presented a high content of manganese; the others had high levels of nitrate ions, which increased the acidity of the water and, therefore, the amount of corrosion of the materials in the distribution systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Effect of chloride ion on corrosion of two commonly used dental alloys].

    PubMed

    Chen, Lei; Zhang, Weidan; Zhang, Yuanyuan

    2014-11-01

    To investigate the eff ect of chloride concentration on the corrosion of Co-Cr alloy and pure Ti in a simulated oral environment. The electrochemical corrosion tests of pure Ti and Co-Cr alloy were carried out in neutral artificial saliva solutions with different NaCl concentrations (0.9%, 2.0%, and 3.0%). Th e morphologies of corroded surface for pure Ti and Co-Cr alloy were observed by scanning electron microscope (SEM). Th e changes in the self-corrosion potentials (Ecorr) for pure Ti and Co-Cr alloy in three kinds of artificial saliva solutions was not obvious. However, the self-corrosion current densities (Icorr) of pure Ti were much lower than those of Co-Cr. The Icorr of Co-Cr alloy increased in a concentration-dependent manner of NaCl, whereas the breakdown potential (Eb) of Co-Cr alloy decreased in a concentration-dependent manner. Th e potential ranged for the breakdown of oxide film (Ev) was shortened in a concentration-dependent manner of NaCl. There was no obvious difference in the Icorr of pure Ti with different concentrations of NaCl. The breakdown potential was not seen according to the polarization curves. In a certain range, the increase of the concentration of Cl- leads to accelerate the corrosion behavior of Co-Cr alloy, but it does not affect pure Ti.

  20. Initial experimental evaluation of crud-resistant materials for light water reactors

    NASA Astrophysics Data System (ADS)

    Dumnernchanvanit, I.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Carlson, M. B.; Hussey, D.; Short, M. P.

    2018-01-01

    The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud causes serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each assumes that it will always be present. In this study, we report on the development of crud-resistant materials as fuel cladding coatings, to reduce or eliminate these problems altogether. Integrated loop testing experiments at flowing LWR conditions show significantly reduced crud adhesion and surface crud coverage, respectively, for TiC and ZrN coatings compared to ZrO2. The loop testing results roughly agree with the London dispersion component of van der Waals force predictions, suggesting that they contribute most significantly to the adhesion of crud to fuel cladding in out-of-pile conditions. These results motivate a new look at ways of reducing crud, thus avoiding many expensive LWR operational issues.

  1. Steel reinforcement corrosion detection with coaxial cable sensors

    NASA Astrophysics Data System (ADS)

    Muchaidze, Iana; Pommerenke, David; Chen, Genda

    2011-04-01

    Corrosion processes in the steel reinforced structures can result in structural deficiency and with time create a threat to human lives. Millions of dollars are lost each year because of corrosion. According to the U. S. Federal Highway Administration (FHWA) the average annual cost of corrosion in the infrastructure sector by the end of 2002 was estimated to be $22.6 billion. Timely remediation/retrofit and effective maintenance can extend the structure's live span for much less expense. Thus the considerable effort should be done to deploy corrosion monitoring techniques to have realistic information on the location and the severity of damage. Nowadays commercially available techniques for corrosion monitoring require costly equipment and certain interpretational skills. In addition, none of them is designed for the real time quality assessment. In this study the crack sensor developed at Missouri University of Science and Technology is proposed as a distributed sensor for real time corrosion monitoring. Implementation of this technology may ease the pressure on the bridge owners restrained with the federal budget by allowing the timely remediation with the minimal financial and labor expenses. The sensor is instrumented in such a way that the location of any discontinuity developed along its length can be easily detected. When the sensor is placed in immediate vicinity to the steel reinforcement it is subjected to the same chemical process as the steel reinforcement. And corrosion pitting is expected to develop on the sensor exactly at the same location as in the rebar. Thus it is expected to be an effective tool for active corrosion zones detection within reinforced concrete (RC) members. A series of laboratory tests were conducted to validate the effectiveness of the proposed methodology. Nine sensors were manufactured and placed in the artificially created corrosive environment and observed over the time. To induce accelerated corrosion 3% and 5% NaCL solutions were used. Based on the test results, the proposed/corrosion distributed sensor is capable of delivering fairly accurate information on the location of a discontinuity along the sensor caused by corrosion pitting. Forensic study was also conducted to validate the concept. In order to test the sensors in real live condition, 27 sensors were prepared to be placed into RC beams. The beams will be subjected to corrosive environment. After that the sensors will be monitored over the time for signs of corrosion.

  2. Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation.

    PubMed

    Sun, Yuankui; Guan, Xiaohong; Wang, Jianmin; Meng, Xiaoguang; Xu, Chunhua; Zhou, Gongming

    2014-06-17

    In this study, a weak magnetic field (WMF), superimposed with a permanent magnet, was utilized to improve ZVI corrosion and thereby enhance As(V)/As(III) removal by ZVI at pHini 3.0-9.0. The experiment with real arsenic-bearing groundwater revealed that WMF could greatly improve arsenic removal by ZVI even in the presence of various cations and anions. The WMF-induced improvement in As(V)/As(III) removal by ZVI should be primarily associated with accelerated ZVI corrosion, as evidenced by the pH variation, Fe(2+) release, and the formation of corrosion products as characterized with X-ray absorption fine structure spectroscopy. The arsenic species analysis in solution/solid phases at pHini 3.0 revealed that As(III) oxidation to As(V) in aqueous phase preceded its subsequent sequestration by the newly formed iron (hydr)oxides. However, both As(V) adsorption following As(III) oxidation to As(V) in solution and As(III) adsorption preceding its conversion to As(V) in solid phase were observed at pHini 5.0-9.0. The application of WMF accelerated the transformation of As(III) to As(V) in both aqueous and solid phases at pHini 5.0-9.0 and enhanced the oxidation of As(III) to As(V) in solution at pHini 3.0.

  3. Characterization of microbial growth on processing equipment by electrochemical impedance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Followi...

  4. Intelligent transportation systems assessment of ITS deployment : review of metropolitan areas : dscussions of crosscutting issues

    DOT National Transportation Integrated Search

    2000-08-01

    The study on which this report is based sought to compile data on both accelerated and natural exposure of coating and corrosion test panels and then to relate their deterioration to environmental conditions. The report presents data gathered over a ...

  5. Assessing the service life of corrosion-deteriorated reinforced concrete member highway bridges in West Virginia.

    DOT National Transportation Integrated Search

    2014-09-01

    Corrosion of steel-reinforced concrete bridges is a serious problem facing the WVDOT. This : paper provides an overview of techniques for evaluating the condition of reinforced concrete : bridge elements; methods for modeling the remaining service li...

  6. UNSOLVED PROBLEMS WITH CORROSION AND DISTRIBUTION SYSTEM INORGANICS

    EPA Science Inventory

    This presentation provides an overview of new research results and remaining research needs with respect to both corrosion control issues (lead, copper, iron) and to issues of inorganic contaminants that can form or accumulate in distribution system water, pipe scales and distrib...

  7. Nuclear Repository steel canister: experimental corrosion rates

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.; Norskog, K.

    2017-12-01

    The U.S. Spent Fuel & Waste Science & Technology campaign evaluates various generic geological repositories for the disposal of spent nuclear fuel. This experimental work analyzed and characterized the canister corrosion and steel interface mineralogy of bentonite-based EBS 304 stainless steel (SS), 316 SS, and low-carbon steel coupons in brine at higher heat loads and pressures. Experiments contrasted EBS with and without an argillite wall rock. Unprocessed bentonite from Colony, Wyoming simulated the clay buffer and Opalinus Clay represented the wall rock. Redox conditions were buffered at the magnetite-iron oxygen fugacity univariant curve. A K-Na-Ca-Cl-based brine was chosen to replicate generic granitic groundwater compositions, while Opalinous Clay groundwater was used in the wall rock series of experiments. Most experiments were run at 150 bar and 300°C for 4 to 6 weeks and one was held at elevated conditions for 6 months. The two major experimental mixtures were 1) brine-bentonite clay- steel, and 2) brine-bentonite clay-Opalinus Clay-steel. Both systems were equilibrated at a high liquid/clay ratio. Mineralogy and aqueous geochemistry of each experiment were evaluated to monitor the reactions that took place. In total 4291 measurements were obtained: 2500 measured steel corrosion depths and 1791 were of phyllosilicate mineral reactions/growths at the interface. The low carbon steel corrosion mechanism was via pit corrosion, while 304 SS and 316 SS were by general corrosion. The low carbon steel corrosion rate (1.95 μm/day) was most rapid. The 304 SS corrosion rate (0.37 μm/day) was slightly accelerated versus the 316 SS corrosion rate (0.26 μm/day). Note that the six month 316 SS experiment shows inhibited corrosion rates (0.07 μm/day). This may be in part due to mantling by the Fe-saponite/chlorite authigenic minerals. All phyllosilicate growth rates at the interface exhibit similar growth rate patterns to the steels (i.e. LCS>304>316> 316 six month).

  8. Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.

  9. Economic impact of corrosion and scaling problems in geothermal energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon, D.W.

    Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly solublemore » in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the Geyser's geothermal plant which is presently reducing plant output by about 10%. This is equivalent to over $3 million per year in increased oil consumption to replace the power. In the course of assessing the cost implications of corrosion and scaling problems, a number of areas of technological uncertainty were identified which should be considered in R and D planning in support of geothermal energy. Materials development with both laboratory and field testing will be necessary. The economic analysis on which this report is based was done in support of an AEC Division of Applied Technology program to assess the factors affecting geothermal plant economics. The results of this report are to be used to develop computer models of overall plant economics, of which corrosion and scaling problems are only a part. The translation of the economic analysis to the report which appears here, was done on AEC Special Studies Funds.« less

  10. Effect of povidone-iodine addition on the corrosion behavior of cp-Ti in normal saline.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Olson, David L

    2010-05-01

    The effect of various concentrations of povidone-iodine (PI) on the corrosion behavior of a commercially pure titanium alloy (Ti-1) has been investigated in normal saline solution to simulate the povidone-iodine addition in an oral environment. The open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization measurements have been used to characterize the electrochemical phenomena occurring on the alloy surface. The open circuit potential values for Ti-1 in various concentrations of PI shift considerably towards noble direction as compared to pure normal saline. In the potentiodynamic polarization curve for Ti-1 in various solutions, the cathodic current density has increased for all concentrations of PI and the anodic current density has decreased. Only the 0.1% PI concentration is able to inhibit corrosion of Ti-1 in normal saline and the other higher concentrations studied, accelerate corrosion. The EIS data for Ti-1 in normal saline and in various concentrations of PI follows a one time constant circuit, suggesting the formation of a single passive film on Ti-1 which is not altered by the addition of PI to normal saline.

  11. Effect of temperature on the passivation behavior of steel rebar

    NASA Astrophysics Data System (ADS)

    Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke

    2014-05-01

    Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.

  12. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Corrosion control for reinforced concrete

    NASA Astrophysics Data System (ADS)

    Torigoe, R. M.

    The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.

  14. Initial investigation of the corrosion stability of craniofacial implants.

    PubMed

    Beline, Thamara; Vechiato Filho, Aljomar José; Wee, Alvin G; Sukotjo, Cortino; Dos Santos, Daniela Micheline; Brandão, Thaís Bianca; Barão, Valentim Adelino Ricardo

    2018-01-01

    Although craniofacial implants have been used for retention of facial prostheses, failures are common. Titanium undergoes corrosion in the oral cavity, but the corrosion of craniofacial implants requires evaluation. The purpose of this in vitro study was to investigate the corrosion stability of commercially pure titanium (CP Ti) exposed to simulated human perspiration at 2 different pH levels (5.5 and 8). Fifteen titanium disks were divided into 3 groups (n=5 per group). The control group was subjected to simulated body fluid (SBF) (control). Disks from the 2 experimental groups were immersed in simulated alkaline perspiration (SA K P) and simulated acidic perspiration (SA C P). Electrochemical tests, including open circuit potential (3600 seconds), electrochemical impedance spectroscopy, and potentiodynamic tests were performed according to the standardized method of 3-cell electrodes. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α=.05). Simulated human perspiration reduced the corrosion stability of CP Ti (P<.05). The SBF group presented the lowest capacitance values (P<.05). SA K P and SA C P groups showed increased values of capacitance and showed no statistically significant differences (P>.05) from each other. The increase in capacitance suggests that the acceleration of the ionic exchanges between the CP Ti and the electrolyte leads to a lower corrosion resistance. SA K P reduced the oxide layer resistance of CP Ti (P<.05), and an increased corrosion rate was noted in both simulated human perspiration groups. Craniofacial implants can corrode when in contact with simulated human perspiration, whereas alkaline perspiration shows a more deleterious effect. Perspiration induces a more corrosive effect than simulated body fluid. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Corrosion performance of alternative steam generator materials and designs. Volume 3. Posttest examination of a freshwater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less

  16. Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy.

    PubMed

    Witecka, Agnieszka; Yamamoto, Akiko; Święszkowski, Wojciech

    2017-02-01

    In this research, the effect of the presence of living cells (SaOS-2) on in vitro degradation of Mg-2.0Zn-0.98Mn (ZM21) magnesium alloy was examined by two methods simple immersion/cell culture tests and electrochemical measurements (electrochemical impedance spectroscopy and potentiodynamic polarization) under cell culture conditions. In immersion/cell culture tests, when SaOS-2 cells were cultured on ZM21 samples, pH of cell culture medium decreased, therefore weight loss and Mg 2+ ion release from the samples increased. Electrochemical measurements revealed the presence of living cells increased corrosion rate (I corr ) and decreased polarization resistance (R p ) after 48h of incubation. This acceleration of ZM21 corrosion can mainly be attributed to the decrease of medium pH due to cellular metabolic activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The influence of main bar corrosion on bond strength in selfcompacting concrete

    NASA Astrophysics Data System (ADS)

    Ayop, S. S.; Emhemed, A. N. K.; Jamaluddin, N.; Sadikin, A.

    2017-11-01

    The experimental study was conducted to determine the influence of main bar corrosion on bond strength in self-compacting concrete (SCC). A total 16 tension pullout tests specimens reinforced with 10 mm and 14 mm diameter bar were used for the bond strength test. The properties of SCC were determined from the slump flow, T50cm, V-funnel and L box test. Reinforcing bars in the concrete were submitted to impressed current to accelerate the corrosion of the bar. It was found that the relationship between bond strength and concrete strength in un-corroded specimens differed from that of corroded specimens set in high-strength concrete because of brittleness in the corroded specimens, which caused a sudden loss of bond strength. The results revealed that specimens of un-corroded and corroded showed a higher percentage of bond strength degradation during the pullout tests.

  18. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1993-10-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  19. A Review of Carbide Fuel Corrosion for Nuclear Thermal Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; El-Genk, Mohamed S.; Butt, Darryl P.

    1994-07-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico's Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  20. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, William

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, andmore » creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superheater tubes to raise their surface temperature above the dew point temperature of alkali chlorides. These design changes offer advantages but introduce other challenges. For example, operating with superheater temperatures above the dew point of alkali chlorides could require the use of creep-resistant tube alloys and doesn't eliminate chloride corrosion. Improved test methods that can be applied within this project include automated dimensional metrology to make a statistical analysis of depth of penetration and corrosion product thickness, and simultaneous thermal analysis measurements to quantify the melting of complex ashes and avoid the unreliability of the standard ash fusion test. Other important developments in testing include the installation of individually-temperature-controlled superheater loops for corrosion testing in operating boilers and temperature gradient testing.« less

  1. The Stress Corrosion Performance Research of Three Kinds of Commonly Used Pipe Materials

    NASA Astrophysics Data System (ADS)

    Hu, Yayun; Zhang, Yiliang; Jia, Xiaoliang

    The corrosion of pipe is most common problem for oil and gas industry. In this article, three kinds of tubes will be analyzed in terms of their resistance against stress corrosion. They are respectively N80 / 1, N80/ Q and P110. The loading method chosen in this test is constant tensile stress loading. In the test, samples will be separated in different groups, gradually loaded under specific levels and then soaked in H2S saturated solution. What can get from this test is threshold value of stress corrosion and stress-life curve, which can be used for evaluating the stress corrosion property of materials, as well as giving guidance for practical engineering.

  2. COPPER PITTING CORROSION: A CASE STUDY

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  3. THE IMPACT OF PHOSPHATE ON COPPER PITTING CORROSION

    EPA Science Inventory

    Pinhole leaks caused by extensive localized or pitting corrosion of copper pipes is a problem for many homeowners. Pinhole water leaks may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole leak proble...

  4. Fiber optic chloride sensing: if corrosion's the problem, chloride sensing is the key

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; MacCraith, Brian D.; Huston, Dryver R.; Guerrina, Mario; Nelson, Matthew

    1997-09-01

    The use of chloride-based deicing agents to help clear US highways of roadway hazards leads to associated chemical related problems. Fouling of local rivers and streams due to runoff of the water borne chlorides is significant and has contributed to local ordances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides. With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. The costs of this corrosion are considerable and have led to the widespread use of chloride/water impermeable membranes on roadways and especially within bridges. Fiber optic sensor have repeatedly been shown to provide measurement capabilities of parameters within such reinforced concrete structures. Development of a fiber optic chloride sensors capable of being embedded within a roadway or bridge deck is reported.

  5. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    PubMed

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  6. Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.

    2012-05-01

    This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.

  7. Assessment of Accelerated Tests Compared to Beachfront Test and Proposed Evaluation Method

    DTIC Science & Technology

    2009-09-03

    Certification Program (ESTCP) funded project entitled “Non-Chromate Aluminum Pretreatments” ( NCAP ) – Funding began in 2000, ended 2004 for Phase I...corrosion tests to beachfront test NCAP Data Assessment Data set includes: – 4 aluminum alloys: 2024, 7075, 2219, 5083 – 9 conversion coatings

  8. High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components.

    PubMed

    Liu, Hongwei; Zhang, Lei; Liu, Hong Fei; Chen, Shuting; Wang, Shihua; Wong, Zheng Zheng; Yao, Kui

    2018-05-16

    Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below ∼100 µm has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Degradation phenomena of magnetic attachments used clinically in the oral environment

    NASA Astrophysics Data System (ADS)

    Chung, Chae-Heon; Choe, Han-Cheol; Kwak, Jong-Ha

    2006-08-01

    The purpose of this study was to investigate the mechanisms involved in the failure of magnetic attachments used to retain dental prostheses. Dyna magnets were retrieved from dentures that had failed after 34 months of clinical use. These magnetic attachments were prepared and sectioned so as to observe the corrosion surface and layer in order to analyze the corrosion behaviors of the attachments. The corroded surface was observed under a field emission scanning electron microscope (FE-SEM) (JSM 840A, JEOL, Japan). An X-ray diffractometer (XRD) was used to analyze the corrosion product formed due to corrosion in the oral environment. Erosion-corrosion started in the uneven portion of the stainless steel cover in the magnetic attachments composed with Nd-Fe-B alloy. Corrosion was initiated on the worn stainless steel surface, followed by spalling of magnetic material due to corrosive solution. The corrosion rate increased drastically after the corrosion product caused spalling in Nd-Fe-B alloy. Corrosion initiated in the uneven stainless steel surface as well as in the welded zone. In conclusion, the failure of magnetic attachments may occur by either welding failure or breakdown of the encapsulating material. Thus, we believe that treating the surface of magnetic attachments would resolve the corrosion problem seen in magnetic attachments to some extent.

  10. Evaluation and control of corrosion and encrustation in tube wells of the Indus Plains, West Pakistan

    USGS Publications Warehouse

    Clarke, Frank Eldridge; Barnes, Ivan

    1969-01-01

    Seepage from rivers and irrigation canals has contributed to waterlogging and soil salinization problems in much of the Indus Plains of West Pakistan. These problems are being overcome in part by tube-well dewatering and deep leaching of salinized soils. The ground waters described here are anaerobic and some are supersaturated with troublesome minerals such as calcium carbonate (calcite) and iron carbonate (siderite). These waters are moderately corrosive to steel. Some wells contain sulfate-reducing bacteria, which catalyze corrosion, and pH-electrode potential relationships favorable to the solution of iron also are rather common. Corrosion is concentrated in the relatively active (anodic) saw slots of water-well filter pipes (screens), where metal loss is least tolerable. Local changes in chemical properties of the water, because of corrosion, apparently cause deposition of calcium carbonate, iron carbonate, and other minerals which clog the filter pipes. In some places well capacities are seriously reduced in very short periods of time. There appears to be no practicable preventive treatment for corrosion and encrustation in these wells. Even chemical sterilization for bacterial control has yielded poor results. Periodic rehabilitation by down-hole blasting or by other effective mechanical or chemical cleaning methods will prolong well life. It may be possible to repair severely damaged well screens by inserting perforated sleeves of plastic or other inert material. The most promising approach to future, well-field development is to use filter pipes of epoxy-resin-bonded fiber glass, stainless steel, or other inert material which minimizes both corrosion and corrosion-catalyzed encrustation. Fiberglass plastic pipe appears to be the most economically practicable construction material at this time and already is being used with promising results.

  11. Nondestructive corrosion detection in concrete through integrated heat induction and IR thermography

    NASA Astrophysics Data System (ADS)

    Kwon, Seung-Jun; Xue, Henry; Feng, Maria Q.; Baek, Seunghoon

    2011-04-01

    Steel corrosion in concrete is a main cause of deterioration and early failure of concrete structures. A novel integration of electromagnetic heat induction and infrared (IR) thermography is proposed for nondestructive detection of steel corrosion in concrete, by taking advantage of the difference in thermal characteristics of corroded and non-corroded steel. This paper focuses on experimental investigation of the concept. An inductive heater is developed to remotely heat the steel rebar from concrete surface, which is integrated with an IR camera. Bare rebar and concrete samples with different cover depths are prepared. Each concrete sample is embedded with a single steel rebar in the middle, resulting an identical cover depth from the front and the back surfaces, which enables heat induction from one surface and IR thermogrphay from the other simultaneously. The impressed current method is adopted to induce accelerated corrosion on the rebar. IR video images are recorded during both heating and cooling periods. The test results demonstrate a clear difference in thermal characteristics between corroded and non-corroded samples. The corroded samples show higher rates of heating and cooling as well as a higher peak IR intensity than those of the non-corroded samples. This study demonstrates a potential for nondestructive detection of rebar corrosion in concrete.

  12. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.

    PubMed

    Wikieł, Agata J; Datsenko, Iaryna; Vera, Mario; Sand, Wolfgang

    2014-06-01

    Sulfate reducing prokaryotes are associated with the steel deterioration. They build heterogeneous biofilms, capable of accelerating corrosion processes. In this study metabolic activity and the biofilm development of Desulfovibrio alaskensis were correlated to electrochemical response of carbon steel surface. In the exponential growth phase sulfide concentration reached its maximum of about 10mM. This phenomenon was responsible for the parallel increase in the corrosion potential (Ecorr) up to -720mV (vs. SCE). Subsequently, during the intensive biofilm formation and development another Ecorr peak (-710mV vs. SCE) occurred. Decrease in Ecorr was registered during the biofilm maturation and kept stable, being 20mV lower than in the control. While carbon steel was protected from the microbial attachment and exposed to metabolic products, only one potential maximum (-730mV vs. SCE) was recorded. Here Ecorr variations coincided with sulfide concentration changes and kept at 120mV lower vs. the control. Weight loss examinations revealed corrosion rates, which did not exceed 0.05mm/y. Confocal microscopy suggested the importance of extracellular proteins in the biofilm formation. Above 150 proteins were detected in the EPS matrix. Surface effects of biofilm and metabolic products were visualised, revealing the role of attached microorganisms in the localised corrosion. © 2013.

  13. Effect of fluid flow, pH and tobacco extracts concentration as organic inhibitors to corrosion characteristics of AISI 1045 steel in 3.5% NaCl environment containing CO2 gas

    NASA Astrophysics Data System (ADS)

    Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri

    2018-04-01

    Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.

  14. The Effect of Some Key Changes in the Chemistry of Water in Relation to Copper and Brass Corrosion Control

    NASA Astrophysics Data System (ADS)

    Gorovei, M. C.; Benea, L.

    2018-06-01

    Corrosion means the degradation of the metals or their alloys, under the action of chemical or electrochemical agents from the environment. The complex corrosion phenomenon has a destructive action, generating undesirable economic consequences: metals and labor losses, appreciable reduction in the lifetime of various metal constructions, insecurity in the operation of industrial machinery. Under the current conditions of accelerated growth in the production of material goods, one of the most important issues is the economy of raw materials and materials, energy and labor force. Copper, having a purity of over 99%, is used in the manufacture of gas and water pipes, roofing materials, utensils and ornamental objects. Brass is used in the manufacture of flexible tubes, pipes, coils, cartridges, various electrochemical parts, jewelry, etc. The aim of this research work was to evaluate the corrosion resistance of copper and brass in various solutions: with different chloride ions as 35 g/L NaCl, waste water and tap water. The corrosion behavior of copper and brass was analyzed by electrochemical methods, such as: open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Pure copper exhibits more noble potential values than its alloy (brass), according to the evolution of free potential in all tested solutions. After performing the electrochemical assays, ex-situ investigations, by optical microscopy, were made and the results confirm that the chloride ions affect the corrosion behavior of copper and brass. Corrosion of materials is a very important process to consider when choosing a material that has to operate in a specific environment.

  15. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOEpatents

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  16. Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    NASA Astrophysics Data System (ADS)

    Huang, I.-Wen

    Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".

  17. CHARACTERIZATION OF LOCALIZED CORROSION OF COPPER PIPES USED IN DRINKING WATER

    EPA Science Inventory

    Localized corrosion of copper, or "copper pitting" in water distribution tubing is a large problem at many utilities. Pitting can lead to pinhole leaks less than a year. Tubing affected by copper pitting will often fail in ultiple locations, resulting in a frustrating situation ...

  18. COPPER PITTING CORROSION AND PINHOLE LEAKS: A CASE STUDY

    EPA Science Inventory

    Localized corrosion, or "pitting", of copper drinking water pipe continues is a problem for many water utilities and their customers. Extreme attack leads to pinhole leaks that can potentially lead to water damage, mold growth, and costly repairs for the homeowners, as well as th...

  19. The Effect of Water Chemistry on the Release of Iron from Pipe Walls

    EPA Science Inventory

    Colored water problems originating from distribution system materials may be reduced by controlling corrosion, iron released from corrosion scales, and better understanding of the form and properties of the iron particles. The objective of this research was to evaluate the effect...

  20. Challenges in Addressing Variability Of Lead in Domestic Plumbing

    EPA Science Inventory

    Current data indicate that lead exposure is of concern even at low concentrations. Corrosion is an important problem in drinking water because it can affect public health due to leaching of lead or other metals into the drinking water. For this reason, a corrosion control program...

  1. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    NASA Astrophysics Data System (ADS)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  2. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  3. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  4. Influence of the bond-slip relationship on the flexural capacity of R.C. joints damaged by corrosion

    NASA Astrophysics Data System (ADS)

    Imperatore, Stefania

    2016-06-01

    In moderate and aggressive environmental condition, old reinforced concrete structures are often subjected to corrosive phenomena. Corrosion causes cracking, loss of diameter in reinforcement and variation of the bond behavior between steel and concrete. Then, in presence of cyclic actions like the seismic ones, old R.C. elements vary their ultimate drift, ductility, plastic rotation capacity and energy dissipation with the corrosion level. The problem is of current interest: the issue has been introduced in some paragraph of the Model Code 2010 and a committee is now drafting a new document on assessment strategies on existing concrete structures also damaged by corrosion. In this work, a first step on the analysis of the impact of the corrosion on the seismic behavior of R.C. elements is assessed: by mean FEM analyses, of a poor detailed column/foundation joint is analyzed in a parametric way in order to evaluate the influence of the bond-slip degradation by corrosion on the element flexural capacity.

  5. External corrosion and leakage detection of oil and gas pipeline using FBG fiber optics and a trigger

    NASA Astrophysics Data System (ADS)

    Ge, Yaomou

    Oil and gas pipelines play a critical role in delivering the energy resources from producing fields to power communities around the world. However, there are many threats to pipeline integrity, which may lead to significant incidents, causing safety, environmental and economic problems. Corrosion has been a big threat to oil and gas pipelines for a long time, which has attributed to approximately 18% of the significant incidents in oil and gas pipelines. In addition, external corrosion of pipelines accounts for a significant portion (more than 25%) of pipeline failure. External corrosion detection is the research area of this thesis. In this thesis, a review of existing corrosion detection or monitoring methods is presented, and optical fiber sensors show a great promise in corrosion detection of oil and gas pipelines. Several scenarios of optical fiber corrosion sensors are discussed, and two of them are selected for future research. A new corrosion and leakage detection sensor, consisting of a custom designed trigger and a FBG optical fiber, will be presented. This new device has been experimentally tested and it shows great promise.

  6. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  7. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA. [high temperature tests of superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium surface-induced hot corrosion of B-1900 and NASA-TRW VIA alloys at 900 C has been studied, with special attention to the chemical reactions during and immediately after the induction period. Thermogravimetric tests were run and data were obtained by chemical analysis of water soluble metal salts and of residual sulfate. Surface analyses of hot corroded samples were obtained by spectroscopic techniques (ESCA). A chemical mechanism for elucidating Na2SO4-induced hot corrosion is proposed indicating that hot corrosion is initiated by basic fluxing of the protective Al2O3 scale. The sequential, catastrophic corrosion results from molybdenum content. The self-sustaining feature is a consequence of the cyclic nature of the acidic fluxing. It is believed that the mechanism is applicable not only to laboratory results, but also to the practical problem of hot corrosion encountered in gas turbine engines.

  8. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry.

  9. An alternate to chromate conversion coatings for the corrosion protection of aluminum 2024-T3

    NASA Astrophysics Data System (ADS)

    Guo, Ruiguang

    Corrosion of high-strength aluminum alloys used for airspace application is an expensive and serious problem. The most significant environmental factor contributing to the corrosion of these alloys is water condensed from humid air and contaminated with soluble chloride salts. The Al 2024 series used for aircraft are particularly susceptible to corrosion in aqueous chloride solutions due to alloying constituents such as copper and other impurities. Chromates are efficient inhibitors of corrosion of aluminum in near neutral aqueous environments containing aggressive anions such as chlorides. Usually, aluminum alloys are initially protected by chromate conversion coatings. Additional polymer coatings are sometimes added during exposure to corrosive atmospheres such as marine environments. Although chromate coatings are widely used, they require the use of noxious solutions, so they have always presented effluent disposal problems. There are health and safety concerns over the use of chromates due to their toxicity and carcinogenic nature and, as a consequence, the environmental and health risks associated with the use of such coatings will be restricted in the future. It was these health and safety concerns that led to the development of alternative non-toxic coating processes with comparable adhesion properties and corrosion protection. A variety of process technologies are under development and are vying for acceptance in industrial markets. As an alternate conversion coating, a new titanate conversion coating was systematically researched and developed. Research concentrated on producing passive surfaces from a simple titanate solution using an immersion process. The corrosion resistance of the treated surface has been evaluated using simple, rapid electrochemical techniques as well as a more long-term salt spray test. Passivation by titanate conversion treatment exhibits many similarities to chromate conversion treatment. Based on this study of corrosion protection of the titanate coating formed at different conditions, a possible formation mechanism of a titanate coating is proposed. A conclusion may be drawn that titanate coating seems to be a viable alternative to chromate coatings.

  10. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on themore » surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.« less

  11. The effects of maintaining temperature in annealing heat treatment for an FSWed 6061-T6 Al alloy.

    PubMed

    Lee, Seung-Jun; Han, Min-Su; Kim, Seong-Jong

    2013-08-01

    The technological development of all kinds of lightweight transportation devices including vehicles, aircraft, ships, etc. has progressed markedly with the demand for energy saving and environmental protection. Aluminum alloy is in the spotlight as it is a suitable environmentally friendly material. However, deformation is a major problem during the welding process because aluminum alloy has a large thermal expansion coefficient. In addition, it is known that its corrosion resistance is excellent; nevertheless, in practice, considerable corrosion is generated and this is a major problem. To solve this problem, the friction stir welding (FSW) technology is applied extensively at various industrial fields as a new welding technique. This method involves a process in which materials are joined by frictional heat and physical force. Therefore, we evaluated improvements in mechanical properties and corrosion resistance through annealing heat treatment after FSW. The electrochemical experiment did not show a significant difference. However, the microstructure observation showed defectless, fine crystal particles, indicating excellent properties at 200-225°C.

  12. Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures

    PubMed Central

    Angst, Ueli M.; Boschmann, Carolina; Wagner, Matthias; Elsener, Bernhard

    2017-01-01

    The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established methods used for mechanical testing. PMID:28892023

  13. Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures.

    PubMed

    Angst, Ueli M; Boschmann, Carolina; Wagner, Matthias; Elsener, Bernhard

    2017-08-31

    The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established methods used for mechanical testing.

  14. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  15. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content.more » Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.« less

  16. Surface Characterization on Corrosion By-products on Cu in Drinking Water Pipes

    EPA Science Inventory

    Copper is widely used in house-hold plumbing due to its anti-corrosion property. However, as water travels within the distribution system into corroded copper pipes, copper may be released into consumer’s tap causing major problems. In an attempt to understand the mechanism and...

  17. Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  18. Durability and performance optimization of cathode materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.

  19. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  20. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells

    DOE PAGES

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...

    2018-03-15

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less

  1. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less

  2. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1981-01-01

    Encapsulant materials and processes for the production of cost-effective, long-life solar cell modules were investigated. The following areas were explored: (1) soil resistant surface treatment; (2) corrosion protecting coatings from mild steel substrates; (3) primers for bonding module interfaces; and (4) RS/4 accelerated aging of candidate encapsulation compounds

  3. Candidate molten salt investigation for an accelerator driven subcritical core

    NASA Astrophysics Data System (ADS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  4. Pipe degradation investigations for optimization of flow-accelerated corrosion inspection location selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, S.; Habicht, P.; Chexal, B.

    1995-12-01

    A large amount of piping in a typical nuclear power plant is susceptible to Flow-Accelerated Corrosion (FAC) wall thinning to varying degrees. A typical PAC monitoring program includes the wall thickness measurement of a select number of components in order to judge the structural integrity of entire systems. In order to appropriately allocate resources and maintain an adequate FAC program, it is necessary to optimize the selection of components for inspection by focusing on those components which provide the best indication of system susceptibility to FAC. A better understanding of system FAC predictability and the types of FAC damage encounteredmore » can provide some of the insight needed to better focus and optimize the inspection plan for an upcoming refueling outage. Laboratory examination of FAC damaged components removed from service at Northeast Utilities` (NU) nuclear power plants provides a better understanding of the damage mechanisms involved and contributing causes. Selected results of this ongoing study are presented with specific conclusions which will help NU to better focus inspections and thus optimize the ongoing FAC inspection program.« less

  5. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    PubMed

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Corrosion casting of the subglottis following endotracheal tube intubation injury: a pilot study in Yorkshire piglets

    PubMed Central

    2013-01-01

    Purpose Subglottic stenosis can result from endotracheal tube injury. The mechanism by which this occurs, however, is not well understood. The purpose of this study was to examine the role of angiogenesis, hypoxia and ischemia in subglottic mucosal injury following endotracheal intubation. Methods Six Yorkshire piglets were randomized to either a control group (N=3, ventilated through laryngeal mask airway for corrosion casting) or accelerated subglottic injury group through intubation and induced hypoxia as per a previously described model (N=3). The vasculature of all animals was injected with liquid methyl methacrylate. After polymerization, the surrounding tissue was corroded with potassium hydroxide. The subglottic region was evaluated using scanning electron microscopy looking for angiogenic and hypoxic or degenerative features and groups were compared using Mann–Whitney tests and Friedman’s 2-way ANOVA. Results Animals in the accelerated subglottic injury group had less overall angiogenic features (P=.002) and more overall hypoxic/degenerative features (P=.000) compared with controls. Amongst angiogenic features, there was decreased budding (P=.000) and a trend toward decreased sprouting (P=.037) in the accelerated subglottic injury group with an increase in intussusception (P=.004), possibly representing early attempts at rapid revascularization. Amongst hypoxic/degenerative features, extravasation was the only feature that was significantly higher in the accelerated subglottic injury group (P=.000). Conclusions Subglottic injury due to intubation and hypoxia may lead to decreased angiogenesis and increased blood vessel damage resulting in extravasation of fluid and a decreased propensity toward wound healing in this animal model. PMID:24401165

  7. Microstructural Study Of Zinc Hot Dip Galvanized Coatings with Titanium Additions In The Zinc Melt

    NASA Astrophysics Data System (ADS)

    Konidaris, S.; Pistofidis, N.; Vourlias, G.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Zinc hot-dip galvanizing is a method for protecting iron and steel against corrosion. Galvanizing with pure Zn or Zn with additions like Ni, Al, Pb and Bi has been extensively studied, but there is a lack of scientific information about other additions. The present work examines the effect of a 0.5 wt% Ti addition in the Zn melt. The samples were exposed to accelerated corrosion in a salt spray chamber (SSC). The microstructure and chemical composition of the coatings were determined by Optical Microscopy, XRD and SEM associated with an EDS Analyzer. The results indicate that the coatings have a typical morphology, while Zn-Ti phases were also detected.

  8. Determination of the neutralization depth of concrete under the aggressive environment influence

    NASA Astrophysics Data System (ADS)

    Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena

    2018-03-01

    Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.

  9. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].

    PubMed

    Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua

    2005-08-01

    The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.

  10. In Vitro Degradation of Pure Magnesium―The Effects of Glucose and/or Amino Acid

    PubMed Central

    Wang, Yu; Cui, Lan-Yue; Li, Shuo-Qi; Zou, Yu-Hong; Han, En-Hou

    2017-01-01

    The influences of glucose and amino acid (L-cysteine) on the degradation of pure magnesium have been investigated using SEM, XRD, Fourier transformed infrared (FTIR), X-ray photoelectron spectroscopy (XPS), polarization and electrochemical impedance spectroscopy and immersion tests. The results demonstrate that both amino acid and glucose inhibit the corrosion of pure magnesium in saline solution, whereas the presence of both amino acid and glucose accelerates the corrosion rate of pure magnesium. This may be due to the formation of -C=N- bonding (a functional group of Schiff bases) between amino acid and glucose, which restricts the formation of the protective Mg(OH)2 precipitates. PMID:28773085

  11. Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces

    NASA Astrophysics Data System (ADS)

    Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.

    2017-11-01

    The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.

  12. Progress on S53 for Rotary Gear Actuators

    DTIC Science & Technology

    2008-02-01

    materials MP35N Ni alloy rods HP-9-4-30 or 4340 high strength steel gears (Cd plated) 17 - 4PH stainless bushings Ti wing spar Bad galvanic couples...Bushings: 17 - 4PH in Ti spar MP35N in gear 6 Galvanic corrosion of current system 7 Extent of the problem This is a problem with all F-18 lugs Matter...Titanium plate with 17 - 4PH bush – also refurbished from previous trials • Gears made from HP9-4-30 or S53 with MP35N bushes STREAMLINED CORROSION TESTING

  13. The Effect of Phosphate on the Morphological and Spectroscopic Properties of Copper Pipes Experiencing Localized Corrosion

    EPA Science Inventory

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    NASA Technical Reports Server (NTRS)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  15. Metal surface corrosion grade estimation from single image

    NASA Astrophysics Data System (ADS)

    Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu

    2018-04-01

    Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.

  16. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  17. Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem

    PubMed Central

    Garrelfs, Julia

    2014-01-01

    About a century ago, researchers first recognized a connection between the activity of environmental microorganisms and cases of anaerobic iron corrosion. Since then, such microbially influenced corrosion (MIC) has gained prominence and its technical and economic implications are now widely recognized. Under anoxic conditions (e.g., in oil and gas pipelines), sulfate-reducing bacteria (SRB) are commonly considered the main culprits of MIC. This perception largely stems from three recurrent observations. First, anoxic sulfate-rich environments (e.g., anoxic seawater) are particularly corrosive. Second, SRB and their characteristic corrosion product iron sulfide are ubiquitously associated with anaerobic corrosion damage, and third, no other physiological group produces comparably severe corrosion damage in laboratory-grown pure cultures. However, there remain many open questions as to the underlying mechanisms and their relative contributions to corrosion. On the one hand, SRB damage iron constructions indirectly through a corrosive chemical agent, hydrogen sulfide, formed by the organisms as a dissimilatory product from sulfate reduction with organic compounds or hydrogen (“chemical microbially influenced corrosion”; CMIC). On the other hand, certain SRB can also attack iron via withdrawal of electrons (“electrical microbially influenced corrosion”; EMIC), viz., directly by metabolic coupling. Corrosion of iron by SRB is typically associated with the formation of iron sulfides (FeS) which, paradoxically, may reduce corrosion in some cases while they increase it in others. This brief review traces the historical twists in the perception of SRB-induced corrosion, considering the presently most plausible explanations as well as possible early misconceptions in the understanding of severe corrosion in anoxic, sulfate-rich environments. PMID:24317078

  18. Corrosion behaviour of tinplate cans in contact with tomato purée and protective (inhibiting) substances.

    PubMed

    Nincević Grassino, A; Grabarić, Z; Pezzani, A; Squitieri, G; Fasanaro, G; Impembo, M

    2009-11-01

    The dissolution of iron and tin from tinplate cans filled with tomato purée (pH 4.34) and dioctyl sebacate oil (DOS), essential onion oil (EOO) or potassium nitrate was studied using atomic absorption spectroscopy (AAS), while nitrate was determined using high-performance liquid chromatography (HPLC). The maximum values found in cans were up to 284 mg kg(-1) for tin and 513 mg kg(-1) for iron at elevated storage temperature. Results indicated that the addition of EOO to tomato purée prevents the corrosion process in the case of tin, where concentrations were lowered from 223 to 28 mg kg(-1) for cans with DOS oil and EOO at 20 degrees C, respectively (inhibition rate of 87%). On the other hand, the presence of EOO enhanced the corrosion process for iron increasing the concentration from 15 to 46 mg kg(-1) during 7 months of storage, although this value did not exceed maximum permitted value (50 mg kg(-1)). In cans with tomato purée and potassium nitrate, dissolution of tin started after 30 (36 degrees C) and 60 (20 degrees C) days of storage as a consequence of nitrate action, which act as a corrosion accelerator. Since the addition of EOO improves the taste of canned tomato purée, its potential use as a corrosion inhibitor would be of interest.

  19. Corrosion behavior of Ti-39Nb alloy for dentistry.

    PubMed

    Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics].

    PubMed

    Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying

    2016-03-01

    Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.

Top