Sample records for accelerates cytoskeletal protein

  1. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration.

    PubMed

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Athanasakis, Emmanouil; Aloisio, Michelangelo; Monasta, Lorenzo; Ricci, Giuseppe

    2016-05-01

    Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.

  2. Analysis of Cytoskeletal and Motility Proteins in the Sea Urchin Genome Assembly

    PubMed Central

    RL, Morris; MP, Hoffman; RA, Obar; SS, McCafferty; IR, Gibbons; AD, Leone; J, Cool; EL, Allgood; AM, Musante; KM, Judkins; BJ, Rossetti; AP, Rawson; DR, Burgess

    2007-01-01

    The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development. PMID:17027957

  3. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    PubMed Central

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  4. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists

    PubMed Central

    Dawson, Scott C.; Paredez, Alexander R.

    2016-01-01

    Microbial eukaryotes encompass the majority of eukaryotic evolutionary and cytoskeletal diversity. The cytoskeletal complexity observed in multicellular organisms appears to be an expansion of components present in genomes of diverse microbial eukaryotes such as the basal lineage of flagellates, the Excavata. Excavate protists have complex and diverse cytoskeletal architectures and life cycles – essentially alternative cytoskeletal “landscapes” – yet still possess conserved microtubule- and actin-associated proteins. Comparative genomic analyses have revealed that a subset of excavates, however, lack many canonical actin-binding proteins central to actin cytoskeleton function in other eukaryotes. Overall, excavates possess numerous uncharacterized and “hypothetical” genes, and may represent an undiscovered reservoir of novel cytoskeletal genes and cytoskeletal mechanisms. The continued development of molecular genetic tools in these complex microbial eukaryotes will undoubtedly contribute to our overall understanding of cytoskeletal diversity and evolution. PMID:23312067

  5. Unique expression of cytoskeletal proteins in human soft palate muscles.

    PubMed

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  6. Diversity of Histologic Patterns and Expression of Cytoskeletal Proteins in Canine Skeletal Osteosarcoma.

    PubMed

    Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Kadosawa, T; Taniyama, H

    2015-09-01

    Osteosarcoma (OS), the most common bone tumor, includes OS of the head (OSH) and appendicular OS (OSA). In dogs, it is classified into 6 histologic subtypes: osteoblastic, chondroblastic, fibroblastic, telangiectatic, giant cell, and poorly differentiated. This study investigated the significance of the histologic classification relevant to clinical outcome and the histologic and immunohistochemical relationships between pleomorphism and expression of cytoskeletal proteins in 60 cases each of OSH and OSA. Most neoplasms exhibited histologic diversity, and 64% of OS contained multiple subtypes. In addition to the above 6 subtypes, myxoid, round cell, and epithelioid subtypes were observed. Although the epithelioid subtypes were observed in only OSH, no significant difference in the frequency of other subtypes was observed. Also, no significant relevance was observed between the clinical outcome and histologic subtypes. Cytokeratin (CK) was expressed in both epithelioid and sarcomatoid tumor cells in various subtypes, and all CK-positive tumor cells also expressed vimentin. Vimentin and α-smooth muscle actin (SMA) were expressed in all subtypes. A few SMA-positive spindle-shaped tumor cells exhibited desmin expression. Glial fibrillary acidic protein-positive tumor cells were observed in many subtypes, and some of these cells showed neurofilament expression. Although OSH exhibited significantly stronger immunoreactivity for SMA than OSA, no significant difference in other cytoskeletal proteins was observed. Some tumor cells had cytoskeletal protein expression compatible with the corresponding histologic subtypes, such as CK in the epithelioid subtype and SMA in the fibroblastic subtype. Thus, canine skeletal OS is composed of pleomorphic and heterogenous tumor cells as is reflected in the diversity of histologic patterns and expression of cytoskeletal proteins. © The Author(s) 2015.

  7. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less

  8. Functional Interaction between Phosducin-like Protein 2 and Cytosolic Chaperonin Is Essential for Cytoskeletal Protein Function and Cell Cycle Progression

    PubMed Central

    Stirling, Peter C.; Srayko, Martin; Takhar, Karam S.; Pozniakovsky, Andrei; Hyman, Anthony A.

    2007-01-01

    The C haperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2. PMID:17429077

  9. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  10. Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern.

    PubMed Central

    Loeb, K R; Haas, A L

    1994-01-01

    Ubiquitin cross-reactive protein (UCRP), a 15-kDa interferon-induced protein, is a sequence homolog of ubiquitin that is covalently ligated to intracellular proteins in a parallel enzymatic reaction and is found at low levels within cultured cell lines and human tissues not exposed to interferon. Ubiquitin and UCRP ligation reactions apparently target distinct subsets of intracellular proteins, as judged from differences in the distributions of the respective adducts revealed on immunoblots. In this study, successive passages of the human lung carcinoma line A549 in the presence of neutralizing antibodies against alpha and beta interferons had no effect on the levels of either free or conjugated UCRP, indicating that these UCRP pools are constitutively present within uninduced cells and are thus not a consequence of autoinduction by low levels of secreted alpha/beta interferon. In an effort to identify potential targets for UCRP conjugation, the immunocytochemical distribution of UCRP was examined by using affinity-purified polyclonal antibodies against recombinant polypeptide. UCRP distributes in a punctate cytoskeletal pattern that is resistant to extraction by nonionic detergents (e.g., Triton X-100) in both uninduced and interferon-treated A549 cells. The cytoskeletal pattern colocalizes with the intermediate filament network of epithelial and mesothelial cell lines. Immunoblots of parallel Triton X-100-insoluble cell extracts suggest that the cytoskeletal association largely results from the noncovalent association of UCRP conjugates with the intermediate filaments rather than direct ligation of the polypeptide to structural components of the filaments. A significant increase in the sequestration of UCRP adducts on intermediate filaments accompanies interferon induction. These results suggest that UCRP may serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments. Images PMID:7526157

  11. Analysis of cytoskeletal proteins in posterior capsule opacification after implantation of acrylic and hydrogel intraocular lenses.

    PubMed

    Matsushima, Hiroyuki; Mukai, Kouichiro; Obara, Yoshitaka; Yoshida, Shinichiro; Clark, John I

    2004-01-01

    To analyze selected lens cytoskeletal proteins in posterior capsule opacification (PCO) 2 weeks after intraocular lens (IOL) implantation in rabbits. Department of Ophthalmology, Dokkyo University School of Medicine, Tochigi, Japan. Eight 10-week-old albino rabbits were prepared and anesthetized for phacoemulsification and aspiration of the crystalline lens and implantation of an acrylic or a hydrogel IOL. Two weeks postoperatively, the rabbits were killed and the IOLs removed for immunohistochemistry. Deparaffinized tissue sections were processed with antibodies against alpha-smooth muscle actin (alpha-SMA) and beta-crystallin to observe the types of PCO with the 2 IOL types. The proteins in the PCO tissue and the normal lens were homogenized, centrifuged, and analyzed using SDS-polyacrylamide gel electrophoresis (SDS-PAGE) densitometric analysis and Western immunoblotting for actin and vimentin. Immunohistochemistry demonstrated a fibroblastic cell type expressing alpha-SMA and partial regeneration of epithelial cells, resulting in a lenticular structure that stained irregularly for beta-crystallin. The immunoreactivity of fibroblast-like cells to beta-crystallin appeared weaker than that of the regenerated lenticular structure. SDS-PAGE showed variability in the content of cytoskeletal proteins in the insoluble fractions of the PCO. Degradation of the cytoskeletal components was greater with the acrylic IOL than with the hydrogel IOL. Cytoskeletal proteins expressed during the formation of PCO and IOL implantation may have potential as therapeutic target proteins to improve the biocompatibility of IOLs.

  12. Acute fluoride poisoning alters myocardial cytoskeletal and AMPK signaling proteins in rats.

    PubMed

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-02-15

    Our previous findings revealed that increased oxidative stress, apoptosis and necrosis were implicated in acute fluoride (F - ) induced cardiac dysfunction apart from hypocalcemia and hyperkalemia. Cardiac intermediate filaments (desmin and vimentin) and cytoskeleton linker molecule vinculin plays an imperative role in maintaining the architecture of cardiac cytoskeleton. In addition, AMPK is a stress activated kinase that regulates the energy homeostasis during stressed state. The present study was aimed to examine the role of cytoskeletal proteins and AMPK signaling molecules in acute F - induced cardiotoxicity in rats. In order to study this, male Wistar rats were treated with single oral doses of 45 and 90mg/kgF - for 24h. Acute F - intoxicated rats showed declined cytoskeletal protein expression of desmin, vimentin and vinculin in a dose dependent manner compared to control. A significant increase in phosphorylation of AMPKα (Thr172), AMPKß1 (Ser108) and Acetyl-coA carboxylase (ACC) (Ser79) in the myocardium and associated ATP deprivation were found in acute F - intoxicated rats. Further, ultra-structural studies confirmed myofibril lysis with interruption of Z lines, dilated sarcoplasmic reticulum and damaged mitochondrion were observed in both the groups of F - intoxicated rats. Taken together, these findings reveal that acute F - exposure causes sudden heart failure by altering the expression of cytoskeletal proteins and AMPK signaling molecules. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cytoskeletal protein transformation in HIV-1-infected macrophage giant cells.

    PubMed

    Kadiu, Irena; Ricardo-Dukelow, Mary; Ciborowski, Pawel; Gendelman, Howard E

    2007-05-15

    The mechanisms linking HIV-1 replication, macrophage biology, and multinucleated giant cell formation are incompletely understood. With the advent of functional proteomics, the characterization, regulation, and transformation of HIV-1-infected macrophage-secreted proteins can be ascertained. To these ends, we performed proteomic analyses of culture fluids derived from HIV-1 infected monocyte-derived macrophages. Robust reorganization, phosphorylation, and exosomal secretion of the cytoskeletal proteins profilin 1 and actin were observed in conjunction with productive viral replication and giant cell formation. Actin and profilin 1 recruitment to the macrophage plasma membrane paralleled virus-induced cytopathicity, podosome formation, and cellular fusion. Poly-l-proline, an inhibitor of profilin 1-mediated actin polymerization, inhibited cytoskeletal transformations and suppressed, in part, progeny virion production. These data support the idea that actin and profilin 1 rearrangement along with exosomal secretion affect viral replication and cytopathicity. Such events favor the virus over the host cell and provide insights into macrophage defense mechanisms used to contain viral growth and how they may be affected during progressive HIV-1 infection.

  14. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis.

    PubMed

    Madeddu, Roberto; Farace, Cristiano; Tolu, Paola; Solinas, Giuliana; Asara, Yolande; Sotgiu, Maria Alessandra; Delogu, Lucia Gemma; Prados, Jose Carlos; Sotgiu, Stefano; Montella, Andrea

    2013-02-01

    The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.

  15. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  16. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system.

    PubMed

    Segura-Uribe, Julia J; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E; Guerra-Araiza, Christian

    2017-08-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.

  17. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system

    PubMed Central

    Segura-Uribe, Julia J.; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E.; Guerra-Araiza, Christian

    2017-01-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects. PMID:28966632

  18. Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase).

    PubMed

    Odronitz, Florian; Kollmar, Martin

    2006-11-29

    Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein.

  19. Influence of maternal hyperthyroidism in the rat on the expression of neuronal and astrocytic cytoskeletal proteins in fetal brain.

    PubMed

    Evans, I M; Pickard, M R; Sinha, A K; Leonard, A J; Sampson, D C; Ekins, R P

    2002-12-01

    Maternal hypothyroidism during pregnancy impairs brain function in human and rat offspring, but little is known regarding the influence of maternal hyperthyroidism on neurodevelopment. We have previously shown that the expression of neuronal and glial differentiation markers in fetal brain is compromised in hypothyroid rat dam pregnancies and have now therefore extended this investigation to hyperthyroid rat dams. Study groups comprised partially thyroidectomised dams, implanted with osmotic pumps infusing either vehicle (TX dams) or a supraphysiological dose of thyroxine (T4) (HYPER dams), and euthyroid dams infused with vehicle (N dams). Cytoskeletal protein abundance was determined in fetal brain at 21 days of gestation by immunoblot analysis. Relative to N dams, circulating total T4 levels were reduced to around one-third in TX dams but were doubled in HYPER dams. Fetal brain weight was increased in HYPER dams, whereas litter size and fetal body weight were reduced in TX dams. Glial fibrillary acidic protein expression was similar in HYPER and TX dams, being reduced in both cases relative to N dams. alpha-Internexin (INX) abundance was reduced in HYPER dams and increased in TX dams, whereas neurofilament 68 (NF68) exhibited increased abundance in HYPER dams. Furthermore, INX was inversely related to - and NF68 directly related to - maternal serum total T4 levels, independently of fetal brain weight. In conclusion, maternal hyperthyroidism compromises the expression of neuronal cytoskeletal proteins in late fetal brain, suggestive of a pattern of accelerated neuronal differentiation.

  20. Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase)

    PubMed Central

    Odronitz, Florian; Kollmar, Martin

    2006-01-01

    Background Annotation of protein sequences of eukaryotic organisms is crucial for the understanding of their function in the cell. Manual annotation is still by far the most accurate way to correctly predict genes. The classification of protein sequences, their phylogenetic relation and the assignment of function involves information from various sources. This often leads to a collection of heterogeneous data, which is hard to track. Cytoskeletal and motor proteins consist of large and diverse superfamilies comprising up to several dozen members per organism. Up to date there is no integrated tool available to assist in the manual large-scale comparative genomic analysis of protein families. Description Pfarao (Protein Family Application for Retrieval, Analysis and Organisation) is a database driven online working environment for the analysis of manually annotated protein sequences and their relationship. Currently, the system can store and interrelate a wide range of information about protein sequences, species, phylogenetic relations and sequencing projects as well as links to literature and domain predictions. Sequences can be imported from multiple sequence alignments that are generated during the annotation process. A web interface allows to conveniently browse the database and to compile tabular and graphical summaries of its content. Conclusion We implemented a protein sequence-centric web application to store, organize, interrelate, and present heterogeneous data that is generated in manual genome annotation and comparative genomics. The application has been developed for the analysis of cytoskeletal and motor proteins (CyMoBase) but can easily be adapted for any protein. PMID:17134497

  1. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants. Copyright © 2015 Elsevier Inc. All

  2. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization.

    PubMed

    Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan

    2018-07-04

    The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.

  3. Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms.

    PubMed

    Rodal, Avital A; Del Signore, Steven J; Martin, Adam C

    2015-05-01

    For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms. © 2015 Wiley Periodicals, Inc.

  4. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli.

    PubMed

    Vats, Purva; Shih, Yu-Ling; Rothfield, Lawrence

    2009-04-01

    The Escherichia coli actin homologue MreB is part of a helical cytoskeletal structure that winds around the cell between the two poles. It has been shown that MreB redistributes during the cell cycle to form circumferential ring structures that flank the cytokinetic FtsZ ring and appear to be associated with division and segregation of the helical cytoskeleton. We show here that the MreB cytoskeletal ring also contains the MreC, MreD, Pbp2 and RodA proteins. Assembly of MreB, MreC, MreD and Pbp2 into the ring structure required the FtsZ ring but no other known components of the cell division machinery, whereas assembly of RodA into the cytoskeletal ring required one or more additional septasomal components. Strikingly, MreB, MreC, MreD and RodA were each able to independently assemble into the cytoskeletal ring and coiled cytoskeletal structures in the absence of any of the other ring components. This excludes the possibility that one or more of these proteins acts as a scaffold for incorporation of the other proteins into these structures. In contrast, incorporation of Pbp2 required the presence of MreC, which may provide a docking site for Pbp2 entry.

  5. Skelemins: cytoskeletal proteins located at the periphery of M-discs in mammalian striated muscle

    PubMed Central

    1987-01-01

    The cytoskeletons of mammalian striated and smooth muscles contain a pair of high molecular weight (HMW) polypeptides of 220,000 and 200,000 mol wt, each with isoelectric points of about 5 (Price, M. G., 1984, Am. J. Physiol., 246:H566-572) in a molar ratio of 1:1:20 with desmin. The HMW polypeptides of mammalian muscle have been named "skelemins," because they are in the insoluble cytoskeletons of striated muscle and are at the M-discs. I have used two-dimensional peptide mapping to show that the two skelemin polypeptides are closely related to each another. Polyclonal antibodies directed against skelemins were used to demonstrate that they are immunologically distinct from talin, fodrin, myosin heavy chain, synemin, microtubule-associated proteins, and numerous other proteins of similar molecular weight, and are not oligomers of other muscle proteins. Skelemins appear not to be proteolytic products of larger proteins, as shown by immunoautoradiography on 3% polyacrylamide gels. Skelemins are predominantly cytoskeletal, with little extractable from myofibrils by various salt solutions. Human, bovine, and rat cardiac, skeletal, and smooth muscles, but not chicken muscles, contain proteins cross- reacting with anti-skelemin antibodies. Skelemins are localized by immunofluorescence at the M-lines of cardiac and skeletal muscle, in 0.4-micron-wide smooth striations. Cross sections reveal that skelemins are located at the periphery of the M-discs. Skelemins are seen in threads linking isolated myofibrils at the M-discs. There is sufficient skelemin in striated muscle to wrap around the M-disc about three times, if the skelemin molecules are laid end to end, assuming a length- to-weight ratio similar to M-line protein and other elongated proteins. The results indicate that skelemins form linked rings around the periphery of the myofibrillar M-discs. These cytoskeletal rings may play a role in the maintenance of the structural integrity of striated muscle throughout

  6. The mammalian iris-ciliary complex affects organization and synthesis of cytoskeletal proteins of organ and tissue cultured lens epithelial cells.

    PubMed

    Banerjee, A; Emanuel, K; Parafina, J; Bagchi, M

    1992-10-01

    A water soluble growth inhibitor was isolated from the mammalian ocular iris-ciliary complex. The molecular weight of this protein is 10 kD or lower as determined by ultrafiltration fractionation. The iris-ciliary (IC) complex water soluble protein(s) significantly inhibits synthesis of lower molecular weight proteins of the epithelial cells of the organ cultured mammalian ocular lens. It was also found that this inhibitory effect of IC is mediated via the structural organization of the lens. Monolayer cultures of the lens epithelial cells exposed to IC did not manifest any inhibition of their protein synthesis. Moreover, these tissue cultured lens epithelial (TCLE) cells showed a significant increase in their protein synthetic activities in response to the presence of IC factors in the culture medium. It is postulated that the IC activity is modulated via either the lens capsule, an extracellular matrix, or due to the specific organization of the intact lens. The specific effects of IC on the cytoskeletal organization and synthesis in the organ cultured lens epithelial (OCLE) and TCLE cells were also examined. Both groups, treated with IC factors, manifested significant alterations in their protein synthetic activities and cytoskeletal architecture. The 3H-leucine incorporation experiments showed that alpha-actin and alpha-tubulin synthesis is partially inhibited by IC factors in OCLE cells but vimentin synthesis is not, whereas in TCLE cells all of them showed increased synthesis in response to IC factors. Turnover rates of these proteins in both OCLE and TCLE cells were also computed. The immunofluorescence and microscopic evaluation of OCLE and TCLE cells exposed to IC factors illustrated significant alteration in the cytoarchitecture of the filaments. We demonstrate that an inhibitor(s) molecule of 10 kD or lower size isolated from IC inhibited protein synthesis of OCLE cells and stimulated protein synthesis in TCLE cells. The IC factor also affects the

  7. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.

    PubMed Central

    D'Souza-Schorey, C; Boshans, R L; McDonough, M; Stahl, P D; Van Aelst, L

    1997-01-01

    The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1. PMID:9312003

  8. Cytoskeletal defects in Bmpr2-associated pulmonary arterial hypertension.

    PubMed

    Johnson, Jennifer A; Hemnes, Anna R; Perrien, Daniel S; Schuster, Manfred; Robinson, Linda J; Gladson, Santhi; Loibner, Hans; Bai, Susan; Blackwell, Tom R; Tada, Yuji; Harral, Julie W; Talati, Megha; Lane, Kirk B; Fagan, Karen A; West, James

    2012-03-01

    The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.

  9. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks.

    PubMed

    Ramkumar, Amrita; Murthy, Divya; Raja, Desingu Ayyappa; Singh, Archana; Krishnan, Anusha; Khanna, Sangeeta; Vats, Archana; Thukral, Lipi; Sharma, Pushkar; Sivasubbu, Sridhar; Rani, Rajni; Natarajan, Vivek T; Gokhale, Rajesh S

    2017-08-03

    Macroautophagy/autophagy is a dynamic and inducible catabolic process that responds to a variety of hormonal and environmental cues. Recent studies highlight the interplay of this central pathway in a variety of pathophysiological diseases. Although defective autophagy is implicated in melanocyte proliferation and pigmentary disorders, the mechanistic relationship between the 2 pathways has not been elucidated. In this study, we show that autophagic proteins LC3B and ATG4B mediate melanosome trafficking on cytoskeletal tracks. While studying melanogenesis, we observed spatial segregation of LC3B-labeled melanosomes with preferential absence at the dendritic ends of melanocytes. This LC3B labeling of melanosomes did not impact the steady-state levels of these organelles but instead facilitated their intracellular positioning. Melanosomes primarily traverse on microtubule and actin cytoskeletal tracks and our studies reveal that LC3B enables the assembly of microtubule translocon complex. At the microtubule-actin crossover junction, ATG4B detaches LC3B from melanosomal membranes by enzymatic delipidation. Further, by live-imaging we show that melanosomes transferred to keratinocytes lack melanocyte-specific LC3B. Our study thus elucidates a new role for autophagy proteins in directing melanosome movement and reveal the unconventional use of these proteins in cellular trafficking pathways. Such crosstalk between the central cellular function and housekeeping pathway may be a crucial mechanism to balance melanocyte bioenergetics and homeostasis.

  10. Neisseria meningitidis Opc invasin binds to the cytoskeletal protein alpha-actinin.

    PubMed

    Sa E Cunha, Claudia; Griffiths, Natalie J; Murillo, Isabel; Virji, Mumtaz

    2009-03-01

    Neisseria meningitidis Opc protein is an effective invasin for human endothelial cells. We have investigated novel human endothelial receptors targeted by Opc and observed that Opc-expressing bacteria interacted with a 100 kDa protein in whole-cell lysates of human endothelial and epithelial cells. The identity of the protein was established as alpha-actinin by mass spectrometry. Opc expression was essential for the recognition of alpha-actinin whether provided in a purified form or in cell extracts. The interaction of the two proteins did not involve intermediate molecules. As there was no demonstrable expression of alpha-actinin on the surfaces of any of the eight cell lines studied, the likelihood of the interactions after meningococcal internalization was examined. Confocal imaging demonstrated considerable colocalization of N. meningitidis with alpha-actinin especially after a prolonged period of internalization. This may imply that bacteria and alpha-actinin initially occur in separate compartments and co-compartmentalization occurs progressively over the 8 h infection period used. In conclusion, these studies have identified a novel and an intracellular target for the N. meningitidis Opc invasin. Since alpha-actinin is a modulator of a variety of signalling pathways and of cytoskeletal functions, its targeting by Opc may enable bacteria to survive/translocate across endothelial barriers.

  11. Actin and microtubule-based cytoskeletal cues direct polarized targeting of proteins in neurons

    PubMed Central

    Arnold, Don B.

    2010-01-01

    Neuronal proteins are transported to either the axon or dendrites through the action of kinesin motors; however understanding of how cytoskeletal elements steer these cargo-motor complexes to one compartment or the other has remained elusive. Three recent developments, the discovery of an actin-based filter within the axon initial segment, the identification of the pivotal role played by myosin motors in dendritic targeting, and the determination of the properties of a kinesin motor that cause it to prefer axonal to dendritic microtubules, have now provided a structural framework for understanding polarized targeting in neurons. PMID:19671926

  12. Cytoskeletal and cellular adhesion proteins in zebrafish (Danio rerio) myogenesis.

    PubMed

    Costa, M L; Escaleira, R; Manasfi, M; de Souza, L F; Mermelstein, C S

    2003-08-01

    The current myogenesis and myofibrillogenesis model has been based mostly on in vitro cell culture studies, and, to a lesser extent, on in situ studies in avian and mammalian embryos. While the more isolated artificial conditions of cells in culture permitted careful structural analysis, the actual in situ cellular structures have not been described in detail because the embryos are more difficult to section and manipulate. To overcome these difficulties, we used the optically clear and easy to handle embryos of the zebrafish Danio rerio. We monitored the expression of cytoskeletal and cell-adhesion proteins (actin, myosin, desmin, alpha-actinin, troponin, titin, vimentin and vinculin) using immunofluorescence microscopy and video-enhanced, background-subtracted, differential interference contrast of 24- to 48-h zebrafish embryos. In the mature myotome, the mononucleated myoblasts displayed periodic striations for all sarcomeric proteins tested. The changes in desmin distribution from aggregates to perinuclear and striated forms, although following the same sequence, occurred much faster than in other models. All desmin-positive cells were also positive for myofibrillar proteins and striated, in contrast to that which occurs in cell cultures. Vimentin appeared to be striated in mature cells, while it is developmentally down-regulated in vitro. The whole connective tissue septum between the somites was positive for adhesion proteins such as vinculin, instead of the isolated adhesion plaques observed in cell cultures. The differences in the myogenesis of zebrafish in situ and in cell culture in vitro suggest that some of the previously observed structures and protein distributions in cultures could be methodological artifacts.

  13. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition.

    PubMed

    Fey, E G; Wan, K M; Penman, S

    1984-06-01

    Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well-preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the

  14. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition

    PubMed Central

    1984-01-01

    Madin-Darby canine kidney (MDCK) cells grow as differentiated, epithelial colonies that display tissue-like organization. We examined the structural elements underlying the colony morphology in situ using three consecutive extractions that produce well-defined fractions for both microscopy and biochemical analysis. First, soluble proteins and phospholipid were removed with Triton X-100 in a physiological buffer. The resulting skeletal framework retained nuclei, dense cytoplasmic filament networks, intercellular junctional complexes, and apical microvillar structures. Scanning electron microscopy showed that the apical cell morphology is largely unaltered by detergent extraction. Residual desmosomes, as can be seen in thin sections, were also well- preserved. The skeletal framework was visualized in three dimensions as an unembedded whole mount that revealed the filament networks that were masked in Epon-embedded thin sections of the same preparation. The topography of cytoskeletal filaments was relatively constant throughout the epithelial sheet, particularly across intercellular borders. This ordering of epithelial skeletal filaments across contiguous cell boundaries was in sharp contrast to the more independent organization of networks in autonomous cells such as fibroblasts. Further extraction removed the proteins of the salt-labile cytoskeleton and the chromatin as separate fractions, and left the nuclear matrix-intermediate filament (NM-IF) scaffold. The NM-IF contained only 5% of total cellular protein, but whole mount transmission electron microscopy and immunofluorescence showed that this scaffold was organized as in the intact epithelium. Immunoblots demonstrate that vimentin, cytokeratins, desmosomal proteins, and a 52,000-mol-wt nuclear matrix protein were found almost exclusively in the NM-IF scaffold. Vimentin was largely perinuclear while the cytokeratins were localized at the cell borders. The 52,000-mol-wt nuclear matrix protein was confined to the

  15. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J.

    PubMed

    Barón-Mendoza, Isabel; García, Octavio; Calvo-Ochoa, Erika; Rebollar-García, Jorge Omar; Garzón-Cortés, Daniel; Haro, Reyes; González-Arenas, Aliesha

    2018-06-06

    Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficient social interaction, impaired communication as well as repetitive behaviors. ASD subjects present connectivity and neuroplasticity disturbances associated with morphological alterations in axons, dendrites, and dendritic spines. Given that the neuronal cytoskeleton and astrocytes have an essential role in regulating several mechanisms of neural plasticity, the aim of this work was to study alterations in the content of neuronal cytoskeletal components actin and tubulin and their associated proteins, as well as astrocytic proteins GFAP and TSP-1 in the brain of a C58/J mouse model of ASD. We determined the expression and regulatory phosphorylation state of cytoskeletal components in the prefrontal cortex, hippocampus, and cerebellum of C58/J mice by means of Western blotting. Our results show that autistic-like mice present: 1) region-dependent altered expression and phosphorylation patterns of Tau isoforms, associated with anomalous microtubule depolymerization; 2) reduced MAP2 A content in prefrontal cortex; 3) region-dependent changes in cofilin expression and phosphorylation, associated with abnormal actin filament depolymerizing dynamics; 4) diminished synaptopodin levels in the hippocampus; and 5) reduced content of the astrocyte-secreted protein TSP-1 in the prefrontal cortex and hippocampus. Our work demonstrates changes in the expression and phosphorylation of cytoskeletal proteins as well as in TSP-1 in the brain of the autistic-like mice C58/J, shedding light in one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain and laying the foundation for future investigations in this topic. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Length-dependent modulation of cytoskeletal remodeling and mechanical energetics in airway smooth muscle.

    PubMed

    Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming

    2011-06-01

    Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.

  17. Computational modeling of single‐cell mechanics and cytoskeletal mechanobiology

    PubMed Central

    Holmes, William R.; Lee, Peter Vee Sin

    2017-01-01

    Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state‐of‐the‐art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed‐forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: 1Models of Systems Properties and Processes > Mechanistic Models2Physiology > Mammalian Physiology in Health and Disease3Models of Systems Properties and Processes > Cellular Models PMID:29195023

  18. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    PubMed

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling. © 2016. Published by The Company of Biologists Ltd.

  19. Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.

    PubMed

    Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje

    2011-11-01

    Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology.

    PubMed

    Rajagopal, Vijay; Holmes, William R; Lee, Peter Vee Sin

    2018-03-01

    Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  1. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    PubMed

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeletal protein vinculin.

    PubMed Central

    Kadurugamuwa, J L; Rohde, M; Wehland, J; Timmis, K N

    1991-01-01

    The spread of Shigella flexneri in a monolayer of infected Henle and HeLa cells was studied by using immunofluorescence and electron microscopy. Infected cells produced numerous bacterium-containing membranous protrusions up to 18 microns in length that penetrated adjacent cells and were subsequently phagocytosed. Fluorescence staining of actin and vinculin in infected cells with phalloidin and monoclonal antibody to vinculin, respectively, demonstrated that the protrusions containing the bacteria consisted of these cytoskeletal proteins. Actin accumulated predominantly at the poles of bacteria distal to the tip of protrusions and appeared as trails extending back towards the host cell cytoplasm. Vinculin, however, was distributed uniformly around the bacteria and throughout the protrusion. A profound rearrangement of vinculin occurred in Henle and HeLa cells following infection with shigellae: whereas in uninfected cells it was distributed mainly around the cell periphery, in infected cells it concentrated mainly around clusters of bacteria in the cytoplasm. This suggests a possible involvement of the vinculin cytoskeletal protein in the intercellular spread of shigellae during an infection. Images PMID:1910001

  3. Platelet Proteomic Analysis Revealed Differential Pattern of Cytoskeletal- and Immune-Related Proteins at Early Stages of Alzheimer's Disease.

    PubMed

    González-Sánchez, Marta; Díaz, Teresa; Pascual, Consuelo; Antequera, Desiree; Herrero-San Martín, Alejandro; Llamas-Velasco, Sara; Villarejo-Galende, Alberto; Bartolome, Fernando; Carro, Eva

    2018-03-30

    Platelets are considered a good model system to study a number of elements associated with neuronal pathways as they share biochemical similarities. Platelets represent the major source of amyloid-β (Aβ) in blood contributing to the Aβ accumulation in the brain parenchyma and vasculature. Peripheral blood platelet alterations including cytoskeletal abnormalities, abnormal cytoplasmic calcium fluxes or increased oxidative stress levels have been related to Alzheimer's disease (AD) pathology. Therefore, platelets can be considered a peripheral model to study metabolic mechanisms occurring in AD. To investigate peripheral molecular alterations, we examined platelet protein expression in a cohort of 164 subjects, including mild cognitive impairment (MCI), and AD patients, and healthy aged-matched controls. A two-dimensional difference gel electrophoresis (2D-DIGE) discovery phase revealed significant differences between patients and controls in five proteins: talin, vinculin, moesin, complement C3b and Rho GDP, which are known to be involved in cytoskeletal regulation including focal adhesions, inflammation and immune functions. Western blot analysis verified that talin was found to be increased in mild and moderate AD groups versus control, while the other three were found to be decreased. We also analysed amyloid precursor protein (APP), amyloid-β 1-40 (Aβ 40 ) and 1-42 (Aβ 42 ) levels in platelets from the same groups of subjects. Upregulation of platelet APP and Aβ peptides was found in AD patients compared to controls. These findings complement and expand previous reports concerning the morphological and functional alterations in AD platelets, and provide more insights into possible mechanisms that participate in the multifactorial and systemic damage in AD.

  4. The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1

    PubMed Central

    Walensky, Loren D.; Gascard, Philippe; Field, Michael E.; Blackshaw, Seth; Conboy, John G.; Mohandas, Narla; Snyder, Solomon H.

    1998-01-01

    We have identified a novel generally expressed homologue of the erythrocyte membrane cytoskeletal protein 4.1, named 4.1G, based on the interaction of its COOH-terminal domain (CTD) with the immunophilin FKBP13. The 129-amino acid peptide, designated 4.1G–CTD, is the first known physiologic binding target of FKBP13. FKBP13 is a 13-kD protein originally identified by its high affinity binding to the immunosuppressant drugs FK506 and rapamycin (Jin, Y., M.W. Albers, W.S. Lane, B.E. Bierer, and S.J. Burakoff. 1991. Proc. Natl. Acad. Sci. USA. 88:6677– 6681); it is a membrane-associated protein thought to function as an ER chaperone (Bush, K.T., B.A. Henrickson, and S.K. Nigam. 1994. Biochem. J. [Tokyo]. 303:705–708). We report the specific association of FKBP13 with 4.1G–CTD based on yeast two-hybrid, in vitro binding and coimmunoprecipitation experiments. The histidyl-proline moiety of 4.1G–CTD is required for FKBP13 binding, as indicated by yeast experiments with truncated and mutated 4.1G–CTD constructs. In situ hybridization studies reveal cellular colocalizations for FKBP13 and 4.1G–CTD throughout the body during development, supporting a physiologic role for the interaction. Interestingly, FKBP13 cofractionates with the red blood cell homologue of 4.1 (4.1R) in ghosts, inside-out vesicles, and Triton shell preparations. The identification of FKBP13 in erythrocytes, which lack ER, suggests that FKBP13 may additionally function as a component of membrane cytoskeletal scaffolds. PMID:9531554

  5. Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures

    PubMed Central

    2015-01-01

    Background The hardware accelerators will provide solutions to computationally complex problems in bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection of an appropriate accelerator requires some consideration. Results In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation. The GPU implementation performed the protein-protein docking calculations approximately five times faster than the MIC offload mode implementation. The MIC native mode implementation has the advantage in the implementation costs. However, the performance was worse with larger protein pairs because of memory limitations. Conclusion The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein docking applications. PMID:25707855

  6. Cyclic stretch-induced the cytoskeleton rearrangement and gene expression of cytoskeletal regulators in human periodontal ligament cells.

    PubMed

    Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun

    2017-10-01

    This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.

  7. Espin cytoskeletal proteins in the sensory cells of rodent taste buds

    PubMed Central

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli

  8. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. Networks that link cytoskeletal regulators and diaphragm proteins underpin filtration function in Drosophila nephrocytes.

    PubMed

    Muraleedharan, Simi; Sam, Aksah; Skaer, Helen; Inamdar, Maneesha S

    2018-03-15

    Insect nephrocytes provide a valuable model for kidney disease, as they are structurally and functionally homologous to mammalian kidney podocytes. They possess an exceptional macromolecular assembly, the nephrocyte diaphragm (ND), which serves as a filtration barrier and helps maintain tissue homeostasis by filtering out wastes and toxic products. However, the elements that maintain nephrocyte architecture and the ND are not understood. We show that Drosophila nephrocytes have a unique cytoplasmic cluster of F-actin, which is maintained by the microtubule cytoskeleton and Rho-GTPases. A balance of Rac1 and Cdc42 activity as well as proper microtubule organization and endoplasmic reticulum structure, are required to position the actin cluster. Further, ND proteins Sns and Duf also localize to this cluster and regulate organization of the actin and microtubule cytoskeleton. Perturbation of any of these inter-dependent components impairs nephrocyte ultrafiltration. Thus cytoskeletal components, Rho-GTPases and ND proteins work in concert to maintain the specialized nephrocyte architecture and function. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The use of neural networks and texture analysis for rapid objective selection of regions of interest in cytoskeletal images.

    PubMed

    Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L

    2012-02-01

    Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.

  11. Expression of cytoskeletal proteins, cross-reacting with anti-CYP1A, in Mytilus sp. exposed to organic contaminants.

    PubMed

    Jonsson, Henrik; Schiedek, Doris; Goksøyr, Anders; Grøsvik, Bjørn Einar

    2006-06-01

    The possible use of cytoskeletal components as biomarkers of organic pollution in mussels has been investigated. Responses of non-muscular actin and tropomyosin (TM), two bivalve proteins that were recently demonstrated to cross-react with anti-fish-CYP1A, were analysed in digestive tissue of blue mussels (Mytilus sp.) exposed to a wide range of organic contaminants. The results were evaluated with ELISA and Western blot assays, utilising commercial monoclonal antibodies, and compared with expression of Hsp70, a marker of chemical stress. Furthermore, mussels were sampled from the Baltic Sea at sites with different degrees of pollution to assess the expression of these proteins, and to monitor seasonal changes in relation to energy reserves and water temperature. The results demonstrated that expression of microsomal actin was significantly higher (p<0.02) in mussels exposed to a brominated flame retardant (BDE-47), and lower, however not significantly, in specimens exposed to crude oil, alone and spiked with alkylphenols and PAHs. Hsp70 was strongly induced in all exposure groups, which also included bisphenol A and diallylphthalate. Furthermore, microsomal actin exhibited seasonal variations, and expression was negatively correlated with water temperature. No correlation was seen between actin and the microfilament-binding protein TM, indicating that regulation of these two cytoskeletal components are not coupled. Furthermore, parallel and significant (p<0.05) up-regulations of TM and Hsp70 were seen in individuals sampled from a strongly polluted field site, whereas the seasonal analysis showed that TM expression was positively correlated with energy reserves (total glycogen content) in mussels, suggesting the use of TM as a marker of growth. In conclusion, this study has demonstrated the cytoskeleton to be a target of contaminants in mussels, calling for further attention. Exposure-induced increase of microsomal actin can be interpreted either as stimulated

  12. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ

    PubMed Central

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-01-01

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654

  13. Entropic forces drive contraction of cytoskeletal networks.

    PubMed

    Braun, Marcus; Lansky, Zdenek; Hilitski, Feodor; Dogic, Zvonimir; Diez, Stefan

    2016-05-01

    The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells. © 2016 WILEY Periodicals, Inc.

  14. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    PubMed Central

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  15. Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Mofrad, Mohammad R. K.; Kamm, Roger D.

    2011-08-01

    1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.

  16. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity.

    PubMed

    Wu, Xiaoyang; Kodama, Atsuko; Fuchs, Elaine

    2008-10-03

    Coordinated interactions between microtubule (MT) and actin cytoskeletons are involved in many polarized cellular processes. Spectraplakins are enormous (>500 kDa) proteins able to bind both MTs and actin filaments (F-actin) directly. To elucidate the physiological significance and functions of mammalian spectraplakin ACF7, we've conditionally targeted it in skin epidermis. Intriguingly, ACF7 deficiency compromises the targeting of microtubules along F-actin to focal adhesions (FAs), stabilizes FA-actin networks, and impairs epidermal migration. Exploring underlying mechanisms, we show that ACF7's binding domains for F-actin, MTs, and MT plus-end proteins are not sufficient to rescue the defects in FA-cytoskeletal dynamics and migration functions of ACF7 null keratinocytes. We've uncovered an intrinsic actin-regulated ATPase domain in ACF7 and demonstrate that it is both functional and essential for these roles. Our findings provide insight into the functions of this important cytoskeletal crosslinking protein in regulating dynamic interactions between MTs and F-actin to sustain directional cell movement.

  17. Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics.

    PubMed

    Kandel, Judith; Picard, Martin; Wallace, Douglas C; Eckmann, David M

    2017-06-01

    Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions. © 2017 The Author(s).

  18. Effect of fast pH decline during the early postmortem period on calpain activity and cytoskeletal protein degradation of broiler M. pectoralis major.

    PubMed

    Huang, J C; Yang, J; Huang, F; Huang, M; Chen, K J; Xu, X L; Zhou, G H

    2016-10-01

    The objective of this study was to determine the effects of fast pH decline during the early postmortem period on calpain activity and the degradation of cytoskeletal proteins in broilers. Eighty broilers were randomly categorized into two groups: physical restraint (PR) and free struggle (FS). M. pectoralis major (PM) was used for determination of calpain activity, shear value, ultrastructure of myofibrils, and the degradation of desmin, titin, nebulin, and troponin-T. The pH (6.05) of FS group is significantly low than PR group (6.38) at 0.3 h postmortem. Fast pH decline during the early postmortem period led to a decrease of μ/m-calpain activities at 0.3 and 3 h postmortem (P < 0.05), but did not affect the ultimate μ/m-calpain activity. An initial fast decrease in pH increased the degradation of desmin, titin, nebulin, and increased the 30 kDa degradation fragments of troponin-T. Therefore, the fast pH decline during the early postmortem period decreased the μ/m-calpain activity and increased the degradation of cytoskeletal proteins in broiler muscle. It is possible that the fast pH decline experienced an earlier activation of calpains that resulted in earlier protein degradation and ultimately lower shear force. © 2016 Poultry Science Association Inc.

  19. Spectraplakins: Master orchestrators of cytoskeletal dynamics

    PubMed Central

    Suozzi, Kathleen C.; Wu, Xiaoyang

    2012-01-01

    The dynamics of different cytoskeletal networks are coordinated to bring about many fundamental cellular processes, from neuronal pathfinding to cell division. Increasing evidence points to the importance of spectraplakins in integrating cytoskeletal networks. Spectraplakins are evolutionarily conserved giant cytoskeletal cross-linkers, which belong to the spectrin superfamily. Their genes consist of multiple promoters and many exons, yielding a vast array of differential splice forms with distinct functions. Spectraplakins are also unique in their ability to associate with all three elements of the cytoskeleton: F-actin, microtubules, and intermediate filaments. Recent studies have begun to unveil their role in a wide range of processes, from cell migration to tissue integrity. PMID:22584905

  20. Simulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes

    NASA Technical Reports Server (NTRS)

    Melhado, C. D.; Sanford, G. L.; Bosah, F.; Harris-Hooker, S.

    1998-01-01

    Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal

  1. The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression.

    PubMed

    Middelbeek, Jeroen; Vrenken, Kirsten; Visser, Daan; Lasonder, Edwin; Koster, Jan; Jalink, Kees; Clark, Kristopher; van Leeuwen, Frank N

    2016-11-01

    Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics

  2. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology

    PubMed Central

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T.; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2015-01-01

    Alzheimer’s disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia and accounts for 60 to 70% of demented individuals. In view of the early appearance of neuronal deposits of the hyperphosphorylated cytoskeletal protein tau in the transentorhinal and entorhinal regions of the allocortex (i.e. in Braak and Braak AD stage I in the evolution of the AD-related cortical tau cytoskeletal pathology) it has been believed for a long time that these allocortical regions represent the first brain targets of the AD-related tau cytoskeletal pathology. However, recent pathoanatomical studies suggested that the subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions may also comprise AD-related cytoskeletal changes already at very early Braak and Braak AD stages. In order to corroborate these initial results we systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all the subcortical nuclei known to send efferent projections to these vulnerable allocortical regions of three individuals with Braak and Braak AD stage 0 and fourteen individuals with Braak and Braak AD stage I by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive neuronal tau cytoskeletal pathology in a subset of these subcortical nuclei (i.e. medial septal nucleus, nuclei of the vertical and horizontal limbs of the diagonal band of Broca, basal nucleus of Meynert; claustrum; hypothalamic ventromedial, tuberomamillary and supramamillary nuclei, perifornical region and lateral area; thalamic central medial, laterodorsal, subparafascicular, and central lateral nuclei, medial pulvinar and limitans-suprageniculate complex; peripeduncular nucleus, dopaminergic substantia nigra and ventral tegmental area, periaqueductal gray, midbrain and pontine dorsal raphe nuclei, locus

  3. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  4. Cytoskeletal Regulation Dominates Temperature-Sensitive Proteomic Changes of Hibernation in Forebrain of 13-Lined Ground Squirrels

    PubMed Central

    Hindle, Allyson G.; Martin, Sandra L.

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy – wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  5. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinasemore » C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in

  6. Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles.

    PubMed

    Raynel, Sarah; Padula, Matthew P; Marks, Denese C; Johnson, Lacey

    2015-10-01

    Cryopreservation of platelets (PLTs) in dimethyl sulfoxide (DMSO) and storage at -80 °C extends the PLT shelf life to at least 2 years, allowing greater accessibility in military and rural environments. While cryopreserved PLTs have been extensively characterized, the microparticles formed as a result of cryopreservation are yet to be fully described. Apheresis PLTs were cryopreserved at -80 °C with 5% DMSO and sampled before freezing and after thawing. Microparticle number, size, surface receptor phenotype, and function were assessed by microscopy, flow cytometry, dynamic light scattering, and thrombin-generating capacity. Proteomic changes were examined using two-dimensional gel electrophoresis and Western blotting. PLT cryopreservation resulted in a 15-fold increase in the number of microparticles compared to fresh PLTs. The surface receptor phenotype of these microparticles differed to microparticles from fresh PLTs, with more microparticles expressing glycoprotein (GP)IV, GPIIb, and the GPIb-V-IX complex. Cryopreservation drastically altered the abundance of many cytoskeletal proteins in the PLT microparticles, including actin, filamin, gelsolin, and tropomyosin. Despite these changes, PLT microparticles were functional and contributed to phosphatidylserine- and tissue factor- induced thrombin generation. This study demonstrates that PLT microparticles formed by cryopreservation are phenotypically distinct from those present before freezing. These differences may be associated with the procoagulant properties of cryopreserved PLTs. © 2015 AABB.

  7. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans

    PubMed Central

    Higashibata, Akira; Hashizume, Toko; Nemoto, Kanako; Higashitani, Nahoko; Etheridge, Timothy; Mori, Chihiro; Harada, Shunsuke; Sugimoto, Tomoko; Szewczyk, Nathaniel J; Baba, Shoji A; Mogami, Yoshihiro; Fukui, Keiji; Higashitani, Atsushi

    2016-01-01

    Although muscle atrophy is a serious problem during spaceflight, little is known about the sequence of molecular events leading to atrophy in response to microgravity. We carried out a spaceflight experiment using Caenorhabditis elegans onboard the Japanese Experiment Module of the International Space Station. Worms were synchronously cultured in liquid media with bacterial food for 4 days under microgravity or on a 1-G centrifuge. Worms were visually observed for health and movement and then frozen. Upon return, we analyzed global gene and protein expression using DNA microarrays and mass spectrometry. Body length and fat accumulation were also analyzed. We found that in worms grown from the L1 larval stage to adulthood under microgravity, both gene and protein expression levels for muscular thick filaments, cytoskeletal elements, and mitochondrial metabolic enzymes decreased relative to parallel cultures on the 1-G centrifuge (95% confidence interval (P⩽0.05)). In addition, altered movement and decreased body length and fat accumulation were observed in the microgravity-cultured worms relative to the 1-G cultured worms. These results suggest protein expression changes that may account for the progressive muscular atrophy observed in astronauts. PMID:28725720

  8. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  9. Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces.

    PubMed

    Gov, N S

    2018-05-26

    Eukaryote cells have flexible membranes that allow them to have a variety of dynamical shapes. The shapes of the cells serve important biological functions, both for cells within an intact tissue, and during embryogenesis and cellular motility. How cells control their shapes and the structures that they form on their surface has been a subject of intensive biological research, exposing the building blocks that cells use to deform their membranes. These processes have also drawn the interest of theoretical physicists, aiming to develop models based on physics, chemistry and nonlinear dynamics. Such models explore quantitatively different possible mechanisms that the cells can employ to initiate the spontaneous formation of shapes and patterns on their membranes. We review here theoretical work where one such class of mechanisms was investigated: the coupling between curved membrane proteins, and the cytoskeletal forces that they recruit. Theory indicates that this coupling gives rise to a rich variety of membrane shapes and dynamics, while experiments indicate that this mechanism appears to drive many cellular shape changes.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  10. Cytoskeletal Regulation of Dermal Regeneration

    PubMed Central

    Strudwick, Xanthe L.; Cowin, Allison J.

    2012-01-01

    Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556

  11. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth

    PubMed Central

    1987-01-01

    We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they

  12. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.

    PubMed Central

    Stout, A. L.; Axelrod, D.

    1994-01-01

    removed most of the band 3. CF-4.1 binded significantly less to these trypsinized membranes and most of the decrease was a loss of the irreversibly binding sites. The third treatment simply preserved the native 4.1 and ankyrin. CF-4.1 binded less to this sample too, and the loss involved both the irreversible and reversible sites. The fourth treatment blocked the gycophorin C sites on the native 4.1-stripped membranes with an antibody. CF-4.1 again binded less to this sample than to a nonimmune serum control, and almost all of the decrease is a loss of irreversible sites. These rest suggest that 1) protein 4.1 binds to membrane or submembrane sites at least in part reversibly ; 2) the most reversible sites are probably not proteinaceous and not glycophorin C, but possibly are phospholipids (especially phosphatidylserine); and 3) TIWRFRAP can successfully examine the fast reversible dynamics of cytoskeletal components binding to biological membranes. Images FIGURE 2 FIGURE 3 FIGURE 4 PMID:7811947

  13. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    PubMed

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  14. Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: Implications for cytoskeletal integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choong, Grace; Liu, Ying; Xiao, Weiqun

    2013-10-15

    Cadmium disrupts the actin cytoskeleton in rat mesangial cells, and we have previously shown that this involves a complex interplay involving activation of kinase signaling, protein translocation, and disruption of focal adhesions. Here we investigate the role that glutathionylation of actin plays in Cd{sup 2+}-associated cytoskeletal reorganization. Low concentrations of Cd{sup 2+} (0.5–2 μM) caused an increase in actin glutathionylation by 6 h, whereas at higher concentrations glutathionylation remained at basal levels. Although oxidation with diamide increased glutathionylation, reactive oxygen species (ROS) were not involved in the Cd{sup 2+}-dependent effect, as only Cd{sup 2+} concentrations above 2 μM were sufficientmore » to increase ROS. However, low [Cd{sup 2+}] increased total glutathione levels without affecting the ratio of reduced/oxidized glutathione, and inhibition of glutathione synthesis suppressed actin glutathionylation. Cadmium increased the activity of the enzyme glutaredoxin, which influences the equilibrium between glutathionylated and deglutathionylated proteins and thus may influence levels of glutathionylated actin. Together these observations show that cadmium-dependent effects on actin glutathionylation are affected by glutathione metabolism and not by direct effects of ROS on thiol chemistry. In vitro polymerization assays with glutathionylated actin show a decreased rate of polymerization. In contrast, immunofluorescence of cytoskeletal structure in intact cells suggests that increases in actin glutathionylation accompanying increased glutathione levels occurring under low Cd{sup 2+} exposure are protective in vivo, with cytoskeletal disruption ensuing only when higher Cd{sup 2+} concentrations increase ROS levels and prevent an increase in actin–glutathione conjugates. - Highlights: • Cadmium disrupts the actin cytoskeleton in mesangial cells. • Cadmium induces glutathionylation of actin at low concentrations.

  15. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein

    PubMed Central

    Ma, Xiaolan; Ehrhardt, David W.; Margolin, William

    1996-01-01

    In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring. PMID:8917533

  16. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C; Jahng, Wan Jin

    2012-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.

  17. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress

    PubMed Central

    Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C.; Jahng, Wan Jin

    2016-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress. PMID:27974994

  18. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  19. Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation-contraction coupling in skeletal muscle.

    PubMed

    Vlahovich, Nicole; Kee, Anthony J; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S; Parton, Robert G; Gunning, Peter W; Hardeman, Edna C

    2009-01-01

    The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation-contraction coupling in skeletal muscle.

  20. Cytoskeletal Tropomyosin Tm5NM1 Is Required for Normal Excitation–Contraction Coupling in Skeletal Muscle

    PubMed Central

    Vlahovich, Nicole; Kee, Anthony J.; Van der Poel, Chris; Kettle, Emma; Hernandez-Deviez, Delia; Lucas, Christine; Lynch, Gordon S.; Parton, Robert G.; Gunning, Peter W.

    2009-01-01

    The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation–contraction coupling in skeletal muscle. PMID:19005216

  1. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries

    PubMed Central

    Hocking, Kyle M.; Baudenbacher, Franz J.; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm. PMID:23593369

  2. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries.

    PubMed

    Hocking, Kyle M; Baudenbacher, Franz J; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  3. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  4. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling

    PubMed Central

    Ray, Poulomi; Chapman, Susan C.

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  5. The cytoskeletal scaffold Shank3 is recruited to pathogen-induced actin rearrangements

    PubMed Central

    Huett, Alan; Leong, John M; Podolsky, Daniel K.; Xavier, Ramnik J.

    2009-01-01

    Summary The common gastrointestinal pathogens enteropathogenic Escherichia coli (EPEC) and Salmonella Typhimurium both reorganize the gut epithelial cell actin cytoskeleton to mediate pathogenesis, utilizing mimicry of the host signaling apparatus. The PDZ domain-containing protein Shank3, is a large cytoskeletal scaffold protein with known functions in neuronal morphology and synaptic signaling, and is also capable of acting as a scaffolding adaptor during Ret tyrosine kinase signaling in epithelial cells. Using immunofluorescent and functional RNA-interference approaches we show that Shank3 is present in both EPEC- and S. Typhimurium-induced actin rearrangements and is required for optimal EPEC pedestal formation. We propose that Shank3 is one of a number of host synaptic proteins likely to play key roles in bacteria-host interactions. PMID:19371741

  6. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells

    PubMed Central

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Changyaleket, Benjarat; Whitlon, Donna S.; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca2+-resistant fashion, bound actin monomer via a WASP homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53 and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5- bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in a variety of mechanosensory and chemosensory cells. PMID:15190118

  7. Gene Targeting of Envoplakin, a Cytoskeletal Linker Protein and Precursor of the Epidermal Cornified Envelope

    PubMed Central

    Määttä, Arto; DiColandrea, Teresa; Groot, Karen; Watt, Fiona M.

    2001-01-01

    Envoplakin, a member of the plakin family of cytoskeletal linker proteins, is localized in desmosomes of stratified epithelial cells and is a component of the epidermal cornified envelope. Gene targeting in mouse embryonic stem cells was used to generate a null allele of envoplakin. No envoplakin transcripts from the targeted allele could be detected in the skin of newborn mice. Mice homozygous for the targeted allele were born in the normal Mendelian ratio and were fertile. They did not develop any discernible pathological phenotype up to the age of 1 year. The ultrastructural appearance of cornified envelopes from adult epidermis was indistinguishable between wild-type and knockout mice, and there was no evidence that the absence of envoplakin affected the subcellular distribution of periplakin or desmoplakin, two other plakins found in desmosomes. The proportion of immature cornified envelopes in the epidermis of newborn mice was greater in envoplakin-null animals than in heterozygous littermates or wild-type mice, and the envelopes had a larger surface area. This correlated with a slight delay in barrier acquisition during embryonic development. We conclude that although envoplakin is part of the scaffolding on which the cornified envelope is assembled, it is not essential for envelope formation or epidermal barrier function. PMID:11564887

  8. Forced Unfolding of Proteins Within Cells

    PubMed Central

    Johnson, Colin P.; Tang, Hsin-Yao; Carag, Christine; Speicher, David W.; Discher, Dennis E.

    2009-01-01

    To identify cytoskeletal proteins that change conformation or assembly within stressed cells, in situ labeling of sterically shielded cysteines with fluorophores was analyzed by fluorescence imaging, quantitative mass spectrometry, and sequential two-dye labeling. Within red blood cells, shotgun labeling showed that shielded cysteines in the two isoforms of the cytoskeletal protein spectrin were increasingly labeled as a function of shear stress and time, indicative of forced unfolding of specific domains. Within mesenchymal stem cells—as a prototypical adherent cell—nonmuscle myosin IIA and vimentin are just two of the cytoskeletal proteins identified that show differential labeling in tensed versus drug-relaxed cells. Cysteine labeling of proteins within live cells can thus be used to fluorescently map out sites of molecular-scale deformation, and the results also suggest means to colocalize signaling events such as phosphorylation with forced unfolding. PMID:17673662

  9. The protective effect of niacinamide on CHO AA8 cell line against ultraviolet radiation in the context of main cytoskeletal proteins.

    PubMed

    Izdebska, Magdalena; Hałas-Wiśniewska, Marta; Adamczyk, Iwona; Lewandowska, Ismena; Kwiatkowska, Iga; Gagat, Maciej; Grzanka, Alina

    2018-03-13

    Niacinamide is a stable and water-soluble form of vitamin B3, a valuable and versatile cosmetic ingredient, which is well absorbed and tolerated by the skin. A large body of literature has reported on the antioxidant and cell repair properties of niacinamide. Therefore, it has been shown to be useful in the protection of the skin against ultraviolet B (UVB) radiation and free radicals. Despite numerous hypotheses on the mechanism of vitamin B3, its protective effects have not yet been fully elucidated. The aim of the study was to determine the protective effects of niacinamide on CHO AA8 cell line against UVB radiation. We assessed the following factors: cell death, cell cycle phase distributions, reorganization of main cytoskeletal proteins, such as F-actin, vimentin and β-tubulin, and also alterations at the ultrastructural level. The material used for our research was Chinese hamster ovary cell line (CHO AA8). We used 4 research groups: 1) control cells; 2) cells treated with niacinamide; 3) cells exposed to UV radiation; and 4) cells co-incubated with niacinamide and next exposed to ultraviolet. The cell death and cell cycle were evaluated by a Tali® based-image cytometer. A fluorescence microscope was used to assess the reorganization of cytoskeletal proteins, whereas a transmission electron microscope enabled the evaluation of the alterations at the ultrastructural level of cells. We showed that UV-induced apoptosis and cell cycle distributions during treatment with niacinamide resulted in a non-statistical significance in cell survival and no significant changes in the morphology and cytoskeleton in comparison to the control group. In turn, a combination of both factors led to an increase in the population of live cells and a decreased level of apoptotic cells in comparison to UV-exposed cells. Our results confirmed the harmful effects of UV radiation on CHO AA8 cell line. Furthermore, niacinamide can protect cells against these factors, and the mechanism

  10. Vibration Induced Osteogenic Commitment of Mesenchymal Stem Cells is Enhanced by Cytoskeletal Remodeling but not Fluid Shear

    PubMed Central

    Uzer, Gunes; Pongkitwitoon, Suphannee; Chan, M Ete; Judex, Stefan

    2013-01-01

    Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell’s sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04Pa to 5Pa. Vibrations were applied at magnitudes of 0.15g, 1g, and 2g using frequencies of both 100Hz and 30Hz. After 14d and under low fluid shear conditions associated with 100Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30Hz vibrations enhanced mineralization only in the 2g group. Over 3d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott-Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity. PMID:23870506

  11. Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases.

    PubMed

    Balasubramanian, Sundaravadivel; Mani, Santhoshkumar; Shiraishi, Hirokazu; Johnston, Rebecca K; Yamane, Kentaro; Willey, Christopher D; Cooper, George; Tuxworth, William J; Kuppuswamy, Dhandapani

    2006-10-01

    Ubiquitin conjugation of proteins is critical for cell homeostasis and contributes to both cell survival and death. Here we studied ubiquitination of proteins in pressure overloaded (PO) myocardium in the context of cardiomyocyte survival. Analysis using a feline right ventricular pressure overload (RVPO) model revealed a robust and transient increase in ubiquitination of proteins present in the Triton X-100-insoluble fraction in 24 to 48 h PO myocardium, and confocal micrographs indicate this increase in ubiquitination occurs subsarcolemmaly near the intercalated disc area of cardiomyocytes. The ubiquitination was accompanied by changes in E3 ligases including Cbl, E6AP, Mdm2 and cIAP in the same period of PO, although atrophy-related E3 ligases, MuRF1 and MuRF3 were unaltered. Furthermore, Cbl displayed a substantial increase in both levels of expression and tyrosine phosphorylation in 48 h PO myocardium. Confocal studies revealed enrichment of Cbl at the intercalated discs of 48 h PO cardiomyocytes, as evidenced by its colocalization with N-cadherin. Although apoptosis was observed in 48 h PO myocardium by TUNEL staining, cardiomyocytes showing ubiquitin staining were not positive for TUNEL staining. Furthermore, 48 h PO resulted in the phosphorylation of inhibitor of nuclear factor kappa B (IkappaB), suggesting its ubiquitin-mediated degradation and the nuclear localization of NFkappaB for the expression of specific cell survival factors such as cIAPs. Together these data indicate that increased levels of E3 ligases that regulate cell homeostasis and promote cell survival could ubiquitinate multiple cytoskeletal protein targets and that these events that occur during the early phase of PO may contribute to both cardiomyocyte survival and hypertrophy.

  12. An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated beta-tubulin isotype.

    PubMed Central

    Caccamo, D. V.; Herman, M. M.; Frankfurter, A.; Katsetos, C. D.; Collins, V. P.; Rubinstein, L. J.

    1989-01-01

    Approximately one third of the female mice of the LTXBO strain develop spontaneous ovarian teratomas. These tumors contain a large neuroepithelial component, which includes primitive neural structures resembling embryonic neural tubes (medulloepithelial rosettes), ependymoblastic and ependymal rosettes, neuroblasts, mature ganglionic neurons, myelinated neurites, and astrocytes. The purpose of this study was to characterize these tumors according to the immunohistochemical location of some well-characterized trophic and regulatory neuropeptides and neurotransmitters, several neuronal-associated cytoskeletal proteins, and other proteins indicative of neuronal and glial differentiation. Medulloepithelial rosettes showed focal serotonin-like, opioid peptide-like and gamma-amino butyric acid-like immunoreactivity, and displayed immunostaining for the neuron-associated class III beta-tubulin isotype. The mature ganglion cells were also immunoreactive for these markers, and, in addition, for somatostatin, cholecystokinin, bombesin, glucagon, vasoactive intestinal peptide, and neuropeptide Y. Mature ganglion cells were also immunoreactive for proteins associated with the neuronal cytoskeleton (including microtubule-associated proteins, MAP2 and tau, and higher molecular weight phosphorylated and non-phosphorylated neurofilament subunits), neuron-specific enolase, and synaptophysin. Undifferentiated stem cells, ependymoblastic and ependymal rosettes, and astroglia all stained with a monoclonal antibody that recognizes all mammalian beta-tubulin isotypes, but did not react with antibodies to neuronal-associated cytoskeletal proteins or neuropeptides. Neuropeptide-like immunoreactivity and demonstration of the class III beta-tubulin isotype indicate early neuronal commitment in neoplastic primitive neuroepithelium. These patterns of immunoreactivity closely follow those encountered in the normal neurocytogenesis of the mammalian and avian forebrain, and increase the

  13. Attomole quantitation of protein separations with accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, J S; Grant, P G; Buccholz, B A

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundancesmore » in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.« less

  14. The cytoskeletal arrangements necessary to neurogenesis

    PubMed Central

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-01-01

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504

  15. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin-Deficient Cells.

    PubMed

    Telford, Bryony J; Chen, Augustine; Beetham, Henry; Frick, James; Brew, Tom P; Gould, Cathryn M; Single, Andrew; Godwin, Tanis; Simpson, Kaylene J; Guilford, Parry

    2015-05-01

    The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC. ©2015 American Association for Cancer Research.

  16. Bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by protein kinase C, and is enhanced by disruption of rho/cytoskeletal pathways.

    PubMed Central

    Seensalu, R; Avedian, D; Barbuti, R; Song, M; Slice, L; Walsh, J H

    1997-01-01

    Isolated canine G cells in primary culture have been used to study calcium, protein kinase C (PKC), and rho/cytoskeletal-dependent intracellular pathways involved in bombesin- stimulated gastrin release. A method to obtain highly purified G cells by culture (64% G cells) after flow cytometry on elutriated fractions of cells from digested canine gastric antral mucosa has been developed. Pretreatment of G cells with thapsigargin (10(-8)-10(-6) M) and release experiments in Ca2+-containing or -depleted media showed that influx of Ca2+ into the cells and not acute release from intracellular stores plays an important role in bombesin-stimulated gastrin release. Inhibition of PKC by the specific inhibitor GF 109 203X did not affect bombesin-stimulated release. Rho, a small GTP-binding protein that regulates the actin cytoskeleton, is specifically antagonized by Clostridium botulinum C3 exoenzyme. C3 (10 microg/ml) enhanced basal and bombesin-stimulated gastrin release by 315 and 266%, respectively. The importance of the cytoskeleton for regulation of gastrin release was emphasized by a more pronounced release of gastrin when the organization of the actin cytoskeleton was disrupted by cytochalasin D (5 x 10(-)7 and 10(-)6 M). Wortmannin, a potent inhibitor of phosphoinositide-3-kinase, did not alter bombesin-stimulated gastrin release. Thus, it is concluded that bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by PKC, and is enhanced by disruption of rho/cytoskeletal pathways. PMID:9276720

  17. Bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by protein kinase C, and is enhanced by disruption of rho/cytoskeletal pathways.

    PubMed

    Seensalu, R; Avedian, D; Barbuti, R; Song, M; Slice, L; Walsh, J H

    1997-09-01

    Isolated canine G cells in primary culture have been used to study calcium, protein kinase C (PKC), and rho/cytoskeletal-dependent intracellular pathways involved in bombesin- stimulated gastrin release. A method to obtain highly purified G cells by culture (64% G cells) after flow cytometry on elutriated fractions of cells from digested canine gastric antral mucosa has been developed. Pretreatment of G cells with thapsigargin (10(-8)-10(-6) M) and release experiments in Ca2+-containing or -depleted media showed that influx of Ca2+ into the cells and not acute release from intracellular stores plays an important role in bombesin-stimulated gastrin release. Inhibition of PKC by the specific inhibitor GF 109 203X did not affect bombesin-stimulated release. Rho, a small GTP-binding protein that regulates the actin cytoskeleton, is specifically antagonized by Clostridium botulinum C3 exoenzyme. C3 (10 microg/ml) enhanced basal and bombesin-stimulated gastrin release by 315 and 266%, respectively. The importance of the cytoskeleton for regulation of gastrin release was emphasized by a more pronounced release of gastrin when the organization of the actin cytoskeleton was disrupted by cytochalasin D (5 x 10(-)7 and 10(-)6 M). Wortmannin, a potent inhibitor of phosphoinositide-3-kinase, did not alter bombesin-stimulated gastrin release. Thus, it is concluded that bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by PKC, and is enhanced by disruption of rho/cytoskeletal pathways.

  18. Active Components of Ginger Potentiate β-Agonist–Induced Relaxation of Airway Smooth Muscle by Modulating Cytoskeletal Regulatory Proteins

    PubMed Central

    Zhang, Yi; Xu, Carrie; Wakita, Ryo; Emala, Charles W.

    2014-01-01

    β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist–induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C–potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist–induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms

  19. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice

    PubMed Central

    Morikawa, Yuka; Zhang, Min; Heallen, Todd; Leach, John; Tao, Ge; Xiao, Yang; Bai, Yan; Li, Wei; Willerson, James T.; Martin, James F.

    2015-01-01

    The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex (DGC), a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to the mechanical changes associated with heart injury to promote repair. PMID:25943351

  20. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  2. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland

    PubMed Central

    Hernández-Ramírez, Laura C.; Morgan, Rhodri M.L.; Barry, Sayka; D’Acquisto, Fulvio; Prodromou, Chrisostomos; Korbonits, Márta

    2018-01-01

    Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-specific function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant findings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was confirmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/stability of multiple chaperone client proteins could be perturbed by a deficient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identified. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our findings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP. PMID:29507682

  3. Methylphenidate disrupts cytoskeletal homeostasis and reduces membrane-associated lipid content in juvenile rat hippocampus.

    PubMed

    Schmitz, Felipe; Pierozan, Paula; Biasibetti-Brendler, Helena; Ferreira, Fernanda Silva; Dos Santos Petry, Fernanda; Trindade, Vera Maria Treis; Pessoa-Pureur, Regina; Wyse, Angela T S

    2017-12-29

    Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.

  4. Androgen Control of Cell Proliferation and Cytoskeletal Reorganization in Human Fibrosarcoma Cells

    PubMed Central

    Chauhan, Sanjay; Kunz, Susan; Davis, Kelli; Roberts, Jordan; Martin, Greg; Demetriou, Manolis C.; Sroka, Thomas C.; Cress, Anne E.; Miesfeld, Roger L.

    2009-01-01

    We recently generated an HT-1080-derived cell line called HT-AR1 that responds to dihydrotestosterone (DHT) treatment by undergoing cell growth arrest in association with cytoskeletal reorganization and induction of neuroendocrine-like cell differentiation. In this report, we show that DHT induces a dose-dependent increase in G0/G1 growth-arrested cells using physiological levels of hormone. The arrested cells increase in cell size and contain a dramatic redistribution of desmoplakin, keratin 5, and chromogranin A proteins. DHT-induced cytoskeletal changes were also apparent from time lapse video microscopy that showed that androgen treatment resulted in the rapid appearance of neuronal-like membrane extensions. Expression profiling analysis using RNA isolated from DHT-treated HT-AR1 cells revealed that androgen receptor activation leads to the coordinate expression of numerous cell signaling genes including RhoB, PTGF-β, caveolin-2, Egr-1, myosin 1B, and EHM2. Because RhoB has been shown to have a role in tumor suppression and neuronal differentiation in other cell types, we investigated RhoB signaling functions in the HT-AR1 steroid response. We found that steroid induction of RhoB was DHT-specific and that newly synthesized RhoB protein was post-translationally modified and localized to endocytic vesicles. Moreover, treatment with a farnesyl transferase inhibitor reduced DHT-dependent growth arrest, suggesting that prenylated RhoB might function to inhibit HT-AR1 cell proliferation. This was directly shown by transfecting HT-AR1 cells with RhoB coding sequences containing activating or dominant negative mutations. PMID:14576147

  5. Identification of Putative Cytoskeletal Protein Homologues in the Protozoan Host Hartmannella vermiformis as Substrates for Induced Tyrosine Phosphatase Activity upon Attachment to the Legionnaires' Disease Bacterium, Legionella pneumophila

    PubMed Central

    Venkataraman, Chandrasekar; Gao, Lian-Yong; Bondada, Subbarao; Kwaik, Yousef Abu

    1998-01-01

    The Legionnaires' disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen that invades and replicates within two evolutionarily distant hosts, free living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaires' disease. We have recently reported the identification of a galactose/N-acetyl-d-galactosamine (Gal/GalNAc) lectin in the protozoan host Hartmannella vermiformis as a receptor for attachment and invasion by L. pneumophila (Venkataraman, C., B.J. Haack, S. Bondada, and Y.A. Kwaik. 1997. J. Exp. Med. 186:537–547). In this report, we extended our studies to the effects of bacterial attachment and invasion on the cytoskeletal proteins of H. vermiformis. We first identified the presence of many protozoan cytoskeletal proteins that were putative homologues to their mammalian counterparts, including actin, pp125FAK, paxillin, and vinculin, all of which were basally tyrosine phosphorylated in resting H. vermiformis. In addition to L. pneumophila–induced tyrosine dephosphorylation of the lectin, bacterial attachment and invasion was associated with tyrosine dephosphorylation of paxillin, pp125FAK, and vinculin, whereas actin was minimally affected. Inhibition of bacterial attachment to H. vermiformis by Gal or GalNAc monomers blocked bacteria-induced tyrosine dephosphorylation of detergent-insoluble proteins. In contrast, inhibition of bacterial invasion but not attachment failed to block bacteria-induced tyrosine dephosphorylation of H. vermiformis proteins. This was further supported by the observation that 10 mutants of L. pneumophila that were defective in invasion of H. vermiformis were capable of inducing tyrosine dephosphorylation of H. vermiformis proteins. Entry of L. pneumophila into H. vermiformis was predominantly mediated by noncoated receptor-mediated endocytosis (93%) but coiling phagocytosis was infrequently observed (7%). We

  6. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xionggao; Department of Ophthalmology, Hainan Medical College, Haikou; Wei, Yantao

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells inducedmore » by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that

  7. Endothelial cell dysfunction and cytoskeletal changes associated with repression of p16INK4a during immortalization

    PubMed Central

    Kan, C-Y; Wen, V W; Pasquier, E; Jankowski, K; Chang, M; Richards, L A; Kavallaris, M; MacKenzie, K L

    2012-01-01

    The immortalization process is a fundamental step in the development of most (if not all) human cancers, including the aggressive endothelial cell (EC)-derived malignancy angiosarcoma. Inactivation of the tumor suppressor p16INK4a and the development of multiple chromosomal abnormalities are features of angiosarcoma that are recapitulated during telomerase-mediated immortalization of human ECs in vitro. The present study used a panel of telomerase-immortalized bone marrow EC (BMEC) lines to define the consequences of inactivation of p16INK4a on EC function and to identify molecular changes associated with repression of p16INK4a. In a comparison of two immortalized BMEC mass cultures and six clones, the cell lines that repressed p16INK4a showed a higher rate of proliferation and an impaired ability to undergo morphogenic differentiation and form vessel-like structures in vitro. Proteomic comparison of a p16INK4a-negative and a p16INK4a-positive BMEC mass culture at early- and late-passage time points following transduction with telomerase reverse transcriptase (hTERT) revealed altered expression of cytoskeletal proteins, including vimentin and α-tropomyosin (αTm), in the immortal cells. Immunoblot analyses of a panel of 11 immortal clones showed that cells that lacked p16INK4a expression tended to accumulate more dramatic changes in these cytoskeletal proteins than cells that retained p16INK4a expression. This corresponded with aberrant cytoskeletal architectures among p16INK4a-negative clones, which featured thicker actin stress fibers and less fluid membrane ruffles than p16INK4a-positive cells. A direct link between p16INK4a repression and defective EC function was confirmed by analysis of normal cells transfected with small interfering RNA (siRNA) targeting p16INK4a. siRNA-mediated repression of p16INK4a significantly impaired random motility and vessel formation in vitro. This report is the first to demonstrate that ECs that repress the expression of p16INK4a

  8. Imaging and quantitative methods for studying cytoskeletal rearrangements during root development and gravitropism.

    PubMed

    Jacques, Eveline; Wells, Darren M; Bennett, Malcolm J; Vissenberg, Kris

    2015-01-01

    High-resolution imaging of cytoskeletal structures paves the way for standardized methods to quantify cytoskeletal organization. Here we provide a detailed description of the analysis performed to determine the microtubule patterns in gravistimulated roots, using the recently developed software tool MicroFilament Analyzer.

  9. TiO2 nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast-like cells in a size dependent manner.

    PubMed

    Ibrahim, Mohamed; Schoelermann, Julia; Mustafa, Kamal; Cimpan, Mihaela R

    2018-04-30

    Human exposure to titanium dioxide nanoparticles (nano-TiO 2 ) is increasing. An internal source of nano-TiO 2 is represented by titanium-based orthopedic and dental implants can release nanoparticles (NPs) upon abrasion. Little is known about how the size of NPs influences their interaction with cytoskeletal protein networks and the functional/homeostatic consequences that might follow at the implant-bone interface with regard to osteoblasts. We investigated the effects of size of anatase nano-TiO 2 on SaOS-2 human osteoblast-like cells exposed to clinically relevant concentrations (0.05, 0.5, 5 mg/L) of 5 and 40 nm spherical nano-TiO 2 . Cell viability and proliferation, adhesion, spread and migration were assessed, as well as the orientation of actin and microtubule cytoskeletal networks. The phosphorylation of focal adhesion kinase (p-FAK Y397 ) and the expression of vinculin in response to nano-TiO 2 were also assessed. Treatment with nano-TiO 2 disrupted the actin and microtubule cytoskeletal networks leading to morphological modifications of SaOS-2 cells. The phosphorylation of p-FAK Y397 and the expression of vinculin were also modified depending on the particle size, which affected cell adhesion. Consequently, the cell migration was significantly impaired in the 5 nm-exposed cells compared to unexposed cells. The present work shows that the orientation of cytoskeletal networks and the focal adhesion proteins and subsequently the adhesion, spread and migration of SaOS-2 cells were affected by the selected nano-TiO 2 in a size dependent manner. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  10. ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons.

    PubMed

    Leiva-Rodríguez, Tatiana; Romeo-Guitart, David; Marmolejo-Martínez-Artesero, Sara; Herrando-Grabulosa, Mireia; Bosch, Assumpció; Forés, Joaquim; Casas, Caty

    2018-05-24

    Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes.

  11. The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study.

    PubMed

    Li, S; Jia, X; Duance, V C; Blain, E J

    2011-06-20

    It is still relatively unclear how intervertebral disc (IVD) cells sense a mechanical stimulus and convert this signal into a biochemical response. Previous studies demonstrated that the cytoskeletal elements are mechano-responsive in many cell types and may contribute to mechano-signalling pathways. The objective of this study was to determine the response of cells from the outer annulus fibrosus (OAF) to physiological levels of cyclic tensile strain; further, cells from the nucleus pulposus (NP) were also subjected to an identical loading regime to compare biological responses across the IVD populations. We determined whether the organisation and expression of the major cytoskeletal elements and their associated accessory proteins are responsive to mechanical stimulation in these cells, and whether these changes correlated with either a catabolic or anabolic phenotype. OAF and NP cells from immature bovine IVD were seeded onto Flexcell® type I collagen coated plates. Cells were subjected to cyclic tensile strain (10 %, 1 Hz) for 60 minutes. Post-loading, cells were processed for immunofluorescence microscopy, RNA extracted for quantitative PCR and protein extracted for Western blotting analysis. F-actin reorganisation was evident in OAF and NP cells subjected to tensile strain; strain induced β-actin at the transcriptional and translational level in OAF cells. β-tubulin mRNA and protein synthesis increased in strained OAF cells, but vimentin expression was significantly inhibited. Cytoskeletal element organisation and expression were less responsive to strain in NP cells. Tensile strain increased type I collagen and differentially regulated extracellular matrix (ECM)-degrading enzymes' mRNA levels in OAF cells. Strain induced type II collagen transcription in NP cells, but had no effect on the transcription of any other genes analysed. Tensile strain induces different mechano-responses in the organisation and/or expression of cytoskeletal elements and on

  12. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease-related cytoskeletal pathology.

    PubMed

    Rüb, U; Del Tredici, K; Schultz, C; Thal, D R; Braak, E; Braak, H

    2001-06-01

    The nuclei of the pontine parabrachial region (medial parabrachial nucleus, MPB; lateral parabrachial nucleus, LPB; subpeduncular nucleus, SPP) together with the intermediate zone of the medullary reticular formation (IRZ) are pivotal relay stations within central autonomic regulatory feedback systems. This study was undertaken to investigate the evolution of the Alzheimer's disease-related cytoskeletal pathology in these four sites of the lower brain stem. We examined the MPB, LPB, SPP and IRZ in 27 autopsy cases and classified the cortical Alzheimer-related cytoskeletal anomalies according to an established staging system (neurofibrillary tangle/neuropil threads [NFT/NT] stages I-VI). The lesions were visualized either with the antibody AT8, which is immunospecific for the abnormally phosphorylated form of the cytoskeletal protein tau, or with a modified Gallyas silver iodide stain. The MPB, SPB, and IRZ display cytoskeletal pathology in stage I and the LPB in stage II, whereby bothstages correspond to the preclinical phase of Alzheimer's disease (AD). In stages III-IV (incipient AD), the MPB and SPP are severely affected. In all of the stage III-IV cases, the lesions in the LPB and IRZ are well developed. In stages V and VI (clinical phase of AD), the MPB and SPP are filled with the abnormal intraneuronal material. At stages V-VI, the LPB is moderately involved and the IRZ shows severe damage. The pathogenesis of the AD-related cytoskeletal lesions in the nuclei of the pontine parabrachial region and in the IRZ conforms with the cortical NFT/NT staging sequence I-VI. In the event that the cytoskeletal pathology observed in this study impairs the function of the nerve cells involved, it is conceivable that autonomic mechanisms progressively deteriorate with advancing cortical NFT/NT stages. This relationship remains to be established, but it could provide insights into the illusive correlation between the AD-related cytoskeletal pathology and the function of

  13. Altered cytoskeletal organization characterized lethal but not surviving Brtl+/− mice: insight on phenotypic variability in osteogenesis imperfecta

    PubMed Central

    Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella

    2015-01-01

    Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579

  14. Acceleration through passive destabilization: protein folding in a weak hydrophobic environment

    NASA Astrophysics Data System (ADS)

    Jewett, Andrew; Baumketner, Andrij; Shea, Joan-Emma

    2004-03-01

    The GroEL chaperonin is a biomolecule which assists the folding of an extremely diverse range of proteins in Eubacteria. Some proteins undergo many rounds of ATP-regulated binding and dissociation from GroEL/ES before folding. It has been proposed that transient stress from ATP-regulated binding and release from GroEL/ES frees frustrated proteins from misfolded conformations. However recent evidence suggests that chaperonin-accelerated protein folding can take place entirely within a mutated GroEL+ES cavity that is unable to open and release the protein. Using molecular dynamics, we demonstrate that static confinement within a weakly hydrophobic (attractive) cavity (similar to the interior of the cavity formed by the GroEL+ES complex) is sufficient to significantly accelerate the folding of a highly frustrated protein-like heteropolymer. Our frustrated molecule benifits kinetically from a static hydrophobic environment that destabilizes misfolded conformations. This may shed light on the mechanisms used by other chaperones which do not depend on ATP.

  15. Accelerated molecular dynamics simulations of protein folding.

    PubMed

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.

  16. Serum extravasation and cytoskeletal alterations following traumatic brain injury in rats. Comparison of lateral fluid percussion and cortical impact models.

    PubMed

    Hicks, R R; Baldwin, S A; Scheff, S W

    1997-01-01

    Disruption of the blood-brain barrier (BBB) and neuronal cytoskeletal damage were evaluated in two commonly used rat models of traumatic brain injury. Adult rats received a lateral cortical impact (CI) or lateral fluid percussion (FP) injury of mild or moderate severity or a sham procedure. Six hours after trauma, the brains were removed and analyzed with immunocytochemical techniques for alterations in the serum protein, IgG, and the cytoskeletal protein, microtubule-associated protein 2 (MAP2). Both models induced profound alterations in these proteins in the ipsilateral cortex and hippocampus compared to sham-injured controls. Following an injury of moderate severity, the CI injury resulted in greater IgG extravasation in the cortex and hippocampus than the FP injury. Conversely, after a mild injury, IgG extravasation in the hippocampus was greater for FP than CI. All of the animals in the CI group and most of the FP group showed a loss of MAP2 in the hippocampus. The specific subregions within the cortex and hippocampus that were affected by the injury varied between models, despite having identical impact sites. These data demonstrate that there are both similarities and differences between a CI and FP injury on vascular and neuronal cystoskeletal integrity, which should be considered when utilizing these animal models to study selected features of human head injury.

  17. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    NASA Astrophysics Data System (ADS)

    Coughlin, Mark F.; Fredberg, Jeffrey J.

    2013-12-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.

  18. Cytoskeletal perturbation induced by herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).

    PubMed

    Zhao, Y; Li, W; Chou, I N

    1987-01-01

    To understand the mechanisms of toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), we have studied their effects on the cytoskeletal organization, particularly microtubules (MT) and microfilaments (MF), DNA synthesis, and the synthesis and composition of cytoskeletal proteins in mouse 3T3 cells. Exposure of cells to 2,4-D or 2,4,5-T resulted in a dose-dependent inhibition of DNA synthesis; 50% inhibition occurred at 2.21 mM and 0.90 mM for 2,4-D and 2,4,5-T, respectively. Furthermore, a strong synergistic inhibition of DNA synthesis was produced by mixtures (each having a total concentration of 1.25 mM) of 2,4-D with 2,4,5-T. Similarly, 2,4,5-T is more potent than 2,4-D in causing cytoskeletal perturbation as revealed by fluorescence microscopy. Treatment of cells with 2,4-D (2.5 mM) or 2,4,5-T (1.25 mM) for 20 h resulted in severe MT aggregation and the appearance of large bundles, which were organized in a rope-like structure in the former and a dramatic octopus-like pattern in the latter. Further, MT bundling is particularly severe in the cell center. Under these conditions, marked changes in MF organization also occurred as evidenced by clustering and crisscrossing of MF in the perinuclear region. A 1:1 mixture (final = 1.25 mM) of 2,4-D and 2,4,5-T, a formulation equivalent to Agent Orange composition, also induced a dramatic perturbation to the organization of MT and MF, resulting in the formation of ring-like structures. MT bundling is still apparent, especially around the outer edge of the "rings." MF are localized predominantly along the cell periphery, where they appear to be aggregated tightly forming patches. Surprisingly, the synthesis and composition of cytoskeletal proteins, which are resistant to detergent extraction but released by CaCl2, are essentially unaffected by 2,4-D or 2,4,5-T. These results suggest that the dramatic perturbation of the cytoskeletal morphology caused by these herbicides

  19. Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes

    NASA Astrophysics Data System (ADS)

    de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric

    2015-11-01

    The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.

  20. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure.

    PubMed

    Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella

    2015-10-30

    The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1-5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP.

  1. Changes in Ultrastructure and Cytoskeletal Aspects of Human Normal and Osteoarthritic Chondrocytes Exposed to Interleukin-1β and Cyclical Hydrostatic Pressure

    PubMed Central

    Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella

    2015-01-01

    The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1–5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP. PMID:26528971

  2. Mechanical stress and network structure drive protein dynamics during cytokinesis.

    PubMed

    Srivastava, Vasudha; Robinson, Douglas N

    2015-03-02

    Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regulation. In addition to signaling pathways, mechanical stresses also direct cytoskeletal protein accumulation [5-7]. A myosin-II-based mechanosensory system controls cellular contractility and shape during cytokinesis and under applied stress [6, 8]. In Dictyostelium, this system tunes myosin II accumulation by feedback through the actin network, particularly through the crosslinker cortexillin I. Cortexillin-binding IQGAPs are major regulators of this system. Here, we defined the short timescale dynamics of key cytoskeletal proteins during cytokinesis and under mechanical stress, using fluorescence recovery after photobleaching and fluorescence correlation spectroscopy, to examine the dynamic interplay between these proteins. Equatorially enriched proteins including cortexillin I, IQGAP2, and myosin II recovered much more slowly than actin and polar crosslinkers. The mobility of equatorial proteins was greatly reduced at the furrow compared to the interphase cortex, suggesting their stabilization during cytokinesis. This mobility shift did not arise from a single biochemical event, but rather from a global inhibition of protein dynamics by mechanical-stress-associated changes in the cytoskeletal structure. Mechanical tuning of contractile protein dynamics provides robustness to the cytoskeletal framework responsible for regulating cell shape and contributes to cytokinesis fidelity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    PubMed

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection. © 2014 Wiley Periodicals, Inc.

  4. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development.

    PubMed

    Shapiro, Lauren P; Parsons, Ryan G; Koleske, Anthony J; Gourley, Shannon L

    2017-05-01

    The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used Western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and midadolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2, and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development

    PubMed Central

    Shapiro, Lauren P.; Parsons, Ryan G.; Koleske, Anthony J.; Gourley, Shannon L.

    2016-01-01

    The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of “adult” mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness. Here we briefly discuss the anatomical connections of the medial and orbital prefrontal cortex (mPFC and OFC, respectively). We then present original findings suggesting that dendritic spines on deep-layer excitatory neurons in the mouse mPFC and OFC prune at different adolescent ages, with later pruning in the OFC. In parallel, we used western blotting to define levels of several cytoskeletal regulatory proteins during early, mid-, and late adolescence, focusing on tropomyosin-related kinase receptor B (TrkB) and β1-integrin-containing receptors and select signaling partners. We identified regional differences in the levels of several proteins in early and mid-adolescence that then converged in early adulthood. We also observed age-related differences in TrkB levels, both full-length and truncated isoforms, Rho-kinase 2 (ROCK2), and synaptophysin in both PFC subregions. Finally, we identified changes in protein levels in the dorsal and ventral hippocampus that were distinct from those in the PFC. We conclude with a general review of the manner in which TrkB- and β1-integrin-mediated signaling influences neuronal structure in the postnatal brain. Elucidating the role of cytoskeletal regulatory factors throughout adolescence may identify critical mechanisms of PFC development. PMID:27735056

  6. Intermediate filament protein evolution and protists.

    PubMed

    Preisner, Harald; Habicht, Jörn; Garg, Sriram G; Gould, Sven B

    2018-03-23

    Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity. © 2018 Wiley Periodicals, Inc.

  7. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9,more » and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.« less

  8. Cytoskeletal mechanics: Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas

    2008-03-01

    The actin cytoskeleton, a dynamic network of semiflexible filaments and associated regulatory proteins, is responsible for the extraordinary viscoelastic properties of cells. Especially for cellular motility the controlled self assembly to defined structures and the dynamic reorganization on different time scales are of outstanding importance. A prominent example for the controlled self assembly are actin bundles: in many cytoskeletal processes cells rely on the tight control of the structural and mechanical properties of the actin bundles. Using an in vitro model system we show that size control relies on a mismatch between the helical structure of individual actin filaments and the packing symmetry within bundles. While such self assembled structure may evoke the picture of a static network the contrary is the case: the cytoskeleton is highly dynamic and a constant remodeling takes place in vivo. Such dynamic reorganization of the cytoskeleton relies on the non-static nature of single actin/ABP bonds. Here, we study the thermal and forced unbinding events of individual ABP in such in vitro networks. The binding kinetics of the transient crosslinkers determines the mechanical response of such networks -- in the linear as well in the non-linear regime. These effects are important prerequisites for the high adaptability of cells and at the same time might be the molecular mechanism employed by them for mechanosensing.

  9. Drosophila gene tao-1 encodes proteins with and without a Ste20 kinase domain that affect cytoskeletal architecture and cell migration differently

    PubMed Central

    Pflanz, Ralf; Voigt, Aaron; Yakulov, Toma; Jäckle, Herbert

    2015-01-01

    Tao-1, the single representative of the Sterile 20 kinase subfamily in Drosophila, is best known for destabilizing microtubules at the actin-rich cortex, regulating the cytoskeletal architecture of cells. More recently, Tao-1 was shown to act in the Salvador–Warts–Hippo pathway by phosphorylating Hippo, regulating cell growth as well as cell polarity. Here, we show that tao-1 encodes two proteins, one with the Sterile 20 kinase domain (Tao-L) and one without it (Tao-S), and that they act in an antagonistic manner. Tao-L expression causes lamellipodia-like cell protrusions, whereas Tao-S expression results in filopodia-like structures that make cells stick to the surface they attach to. Ectopic Tao-1 expression in the anterior region of Drosophila embryos results in pole cell formation as normally observed at the posterior end. Tao-S expression causes primordial germ cells (PGCs) to adhere to the inner wall of the gut primordia and prevents proper transepithelial migration to the gonads. Conversely, RNAi knockdowns of Tao-1 cause disordered migration of PGCs out of the gut epithelium, their dispersal within the embryo and cell death. The results reveal a novel function of Tao-1 in cell migration, which is based on antagonistic activities of two proteins encoded by a single gene. PMID:25589578

  10. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.).

    PubMed

    Galinousky, Dmitry; Padvitski, Tsimafei; Bayer, Galina; Pirko, Yaroslav; Pydiura, Nikolay; Anisimova, Natallia; Nikitinskaya, Tatyana; Khotyleva, Liubov; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2017-08-09

    Fiber flax is an important source of natural fiber and a comprehensive model for the plant fiber biogenesis studies. Cellulose-synthase (CesA) and cytoskeletal genes are known to be important for the cell wall biogenesis in general and for the biogenesis of flax fibers in particular. Currently, knowledge about activity of these genes during the plant growth is limited. In this study, we have investigated flax fiber biogenesis by measuring expression of CesA and cytoskeletal genes at two stages of the flax development (seedlings and stems at the rapid growth stage) in several flax subspecies (elongatum, mediterraneum, crepitans). RT-qPCR has been used to quantify the expression of LusСesA1, LusСesA4, LusСesA7, LusСesA6, Actin, and α-Tubulin genes in plant samples. We report that CesA genes responsible for the secondary cell wall synthesis (LusCesA4, LusCesA7) have different expression pattern compared with CesA genes responsible for the primary cell wall synthesis (LusCesA1, LusCesA6): an average expression of LusCesA4 and LusCesA7 genes is relatively high in seedlings and further increases in stems at the rapid growth stage, whereas an average expression of LusCesA1 and LusCesA6 genes decreases. Interestingly, LusCesA1 is the only studied gene with different expression dynamics between the flax subspecies: its expression decreases by 5.2-10.7 folds in elongatum and mediterraneum but does not change in crepitans subspecies when the rapid growth stage and seedlings are compared. The expression of cytoskeleton genes (coding actin and α-tubulin) is relatively stable and significantly higher than the expression of cellulose-synthase genes in all the studied samples. © 2017 International Federation for Cell Biology.

  11. Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner

    2016-01-01

    In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their

  12. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    PubMed

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  13. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy

    PubMed Central

    Mucsi, Ashley D.; Meng, Junchen; Yan, Jiacong; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D.; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W.

    2017-01-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell–DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1–dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin–cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1–dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell–mediated DC suppression in a contact-dependent manner. PMID:28082358

  14. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on

  15. Characterizing active cytoskeletal dynamics with magnetic microposts

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Henry, Steven; Crocker, John; Reich, Daniel

    Characterization of an active matter system such as the cellular cytoskeleton requires knowledge of three frequency dependent quantities: the dynamic shear modulus, G*(ω) describing its viscoelasticity, the Fourier power spectrum of forces in the material due to internal force generators f (ω) , and the spectrum of the material's active strain fluctuations x(ω) . Via use of PDMS micropost arrays with magnetic nanowires embedded in selected posts, we measure the local complex modulus of cells through mechanical actuation of the magnetic microposts. The micrometer scale microposts are also used as passive probes to measure simultaneously the frequency dependent strain fluctuations. We present data on 3T3 fibroblasts, where we find power law behavior for both the frequency dependence of cells' modulus | G (ω) | ω 0 . 27 and the power spectrum of strain fluctuations |x(ω) | ω-2 . Results for the power spectrum of active cytoskeletal stresses determined from these two measurements, and implications of this mesoscale characterization of cytoskeletal dynamics for cellular biophysics will also be discussed. Supported in part by NIH Grant 1R01HL127087.

  16. Preservation of tissue microstructure and functionality during freezing by modulation of cytoskeletal structure

    PubMed Central

    Park, Seungman; Seawright, Angela; Park, Sinwook; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo

    2015-01-01

    Cryopreservation is one of the key enabling technologies for tissue engineering and regenerative medicine, which can provide a reliable long-term storage of engineered tissues (ETs) without losing their functionality. However, it is still extremely difficult to design and develop cryopreservation protocols guaranteeing the post-thaw tissue functionality. One of the major challenges in cryopreservation is associated with the difficulty of identifying effective and less toxic cryoprotective agents (CPAs) to guarantee the post-thaw tissue functionality. In this study, thus, a hypothesis was tested that the modulation of the cytoskeletal structure of cells embedded in the extracellular matrix (ECM) can mitigate the freezing-induced changes of the functionality and can reduce the amount of CPA necessary to preserve the functionality of ETs during cryopreservation. In order to test this hypothesis, we prepared dermal equivalents by seeding fibroblasts in type I collagen matrices resulting in three different cytoskeletal structures. These ETs were exposed to various freeze/thaw (F/T) conditions with and without CPAs. The freezing-induced cell-fluid-matrix interactions and subsequent functional properties of the ETs were assessed. The results showed that the cytoskeletal structure and the use of CPA were strongly correlated to the preservation of the post-thaw functional properties. As the cytoskeletal structure became stronger via stress fiber formation, the ETs functionality was preserved better. It also reduced the necessary CPA concentration to preserve the post-thaw functionality. However, if the extent of the freezing-induced cell-fluid-matrix interaction was too excessive, the cytoskeletal structure was completely destroyed and the beneficial effects became minimal. PMID:25679482

  17. FPGA accelerator for protein secondary structure prediction based on the GOR algorithm

    PubMed Central

    2011-01-01

    Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582

  18. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    PubMed

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  19. A new method of preparing embeddment-free sections for transmission electron microscopy: applications to the cytoskeletal framework and other three-dimensional networks

    PubMed Central

    1984-01-01

    Diethylene glycol distearate is used as a removable embedding medium to produce embeddment -free sections for transmission electron microscopy. The easily cut sections of this material float and form ribbons in a water-filled knife trough and exhibit interference colors that aid in the selection of sections of equal thickness. The images obtained with embeddment -free sections are compared with those from the more conventional epoxy-embedded sections, and illustrate that embedding medium can obscure important biological structures, especially protein filament networks. The embeddment -free section methodology is well suited for morphological studies of cytoskeletal preparations obtained by extraction of cells with nonionic detergent in cytoskeletal stabilizing medium. The embeddment -free section also serves to bridge the very different images afforded by embedded sections and unembedded whole mounts. PMID:6539336

  20. A new method of preparing embeddment-free sections for transmission electron microscopy: applications to the cytoskeletal framework and other three-dimensional networks.

    PubMed

    Capco, D G; Krochmalnic, G; Penman, S

    1984-05-01

    Diethylene glycol distearate is used as a removable embedding medium to produce embeddment -free sections for transmission electron microscopy. The easily cut sections of this material float and form ribbons in a water-filled knife trough and exhibit interference colors that aid in the selection of sections of equal thickness. The images obtained with embeddment -free sections are compared with those from the more conventional epoxy-embedded sections, and illustrate that embedding medium can obscure important biological structures, especially protein filament networks. The embeddment -free section methodology is well suited for morphological studies of cytoskeletal preparations obtained by extraction of cells with nonionic detergent in cytoskeletal stabilizing medium. The embeddment -free section also serves to bridge the very different images afforded by embedded sections and unembedded whole mounts.

  1. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    PubMed

    Abdelhak, Ahmed; Junker, Andreas; Brettschneider, Johannes; Kassubek, Jan; Ludolph, Albert C; Otto, Markus; Tumani, Hayrettin

    2015-07-31

    Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.

  2. Active Polar Gels: a Paradigm for Cytoskeletal Dynamics

    NASA Astrophysics Data System (ADS)

    Julicher, Frank

    2006-03-01

    The cytoskeleton of eucaryotic cells is an intrinsically dynamic network of rod-like filaments. Active processes on the molecular scale such as the action of motor proteins and the polymerization and depolymerization of filaments drive active dynamic behaviors while consuming chemical energy in the form of a fuel. Such emergent dynamics is regulated by the cell and is important for many cellular processes such as cell locomotion and cell division. From a general point of view the cytoskeleton represents an active gel-like material with interesting material properties. We present a general theory of active viscoelastic materials made of polar filaments which is motivated by the the cytoskeleton. The continuous consumption of a fuel generates a non- equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to experiments in which cytoskeletal patterns are set in motion by active processes such as those which are at work in cells. It can also capture generic aspects of the flows and stress profiles which occur during cell locomotion.

  3. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations.

    PubMed

    Whiteman, Ineka T; Gervasio, Othon L; Cullen, Karen M; Guillemin, Gilles J; Jeong, Erica V; Witting, Paul K; Antao, Shane T; Minamide, Laurie S; Bamburg, James R; Goldsbury, Claire

    2009-10-14

    In Alzheimer's disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads), and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that, during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence resonance energy transfer analysis revealed colocalization of cofilin-GFP (green fluorescent protein) and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and small interfering RNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally, we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous amyloid-beta (Abeta) peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction, or Abeta peptides, all suspected initiators of synaptic loss and neurodegeneration in AD.

  4. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    PubMed Central

    Abdelhak, Ahmed; Junker, Andreas; Brettschneider, Johannes; Kassubek, Jan; Ludolph, Albert C.; Otto, Markus; Tumani, Hayrettin

    2015-01-01

    Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs. PMID:26263977

  5. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.

    PubMed

    Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei

    2016-09-01

    Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  6. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  7. Transiently disordered tails accelerate folding of globular proteins.

    PubMed

    Mallik, Saurav; Ray, Tanaya; Kundu, Sudip

    2017-07-01

    Numerous biological proteins exhibit intrinsic disorder at their termini, which are associated with multifarious functional roles. Here, we show the surprising result that an increased percentage of terminal short transiently disordered regions with enhanced flexibility (TstDREF) is associated with accelerated folding rates of globular proteins. Evolutionary conservation of predicted disorder at TstDREFs and drastic alteration of folding rates upon point-mutations suggest critical regulatory role(s) of TstDREFs in shaping the folding kinetics. TstDREFs are associated with long-range intramolecular interactions and the percentage of native secondary structural elements physically contacted by TstDREFs exhibit another surprising positive correlation with folding kinetics. These results allow us to infer probable molecular mechanisms behind the TstDREF-mediated regulation of folding kinetics that challenge protein biochemists to assess by direct experimental testing. © 2017 Federation of European Biochemical Societies.

  8. Contribution of cytoskeletal elements to the axonal mechanical properties

    PubMed Central

    2013-01-01

    Background Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. Results Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted. Conclusion We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons. PMID:24007256

  9. Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4

    PubMed Central

    Ijaz, Faryal; Hatanaka, Yasue; Hatanaka, Takahiro; Tsutsumi, Koji; Iwaki, Takayuki; Umemura, Kazuo; Ikegami, Koji; Setou, Mitsutoshi

    2017-01-01

    Mammalian red blood cells (RBCs) circulate through blood vessels, including capillaries, for tens of days under high mechanical stress. RBCs tolerate this mechanical stress while maintaining their shape because of their elastic membrane skeleton. This membrane skeleton consists of spectrin-actin lattices arranged as quasi-hexagonal units beneath the plasma membrane. In this study, we found that the organization of the RBC cytoskeleton requires tubulin tyrosine ligase–like 4 (Ttll4). RBCs from Ttll4-knockout mice showed larger average diameters in smear test. Based on the rate of hemolysis, Ttll4-knockout RBCs showed greater vulnerability to phenylhydrazine-induced oxidative stress than did wild-type RBCs. Ultrastructural analyses revealed the macromolecular aggregation of cytoskeletal components in RBCs of Ttll4-knockout mice. Immunoprecipitation using the anti-glutamylation antibody GT335 revealed nucleosome assembly protein 1 (NAP1) to be the sole target of TTLL4 in the RBCs, and NAP1 glutamylation was completely lost in Ttll4-knockout RBCs. In wild-type RBCs, the amount of glutamylated NAP1 in the membrane was nearly double that in the cytosol. Furthermore, the absence of TTLL4-dependent glutamylation of NAP1 weakened the binding of NAP1 to the RBC membrane. Taken together, these data demonstrate that Ttll4 is required for proper cytoskeletal organization in RBCs. PMID:27974641

  10. Lattice model for self-assembly with application to the formation of cytoskeletal-like structures

    NASA Astrophysics Data System (ADS)

    Stewman, Shannon F.; Dinner, Aaron R.

    2007-07-01

    We introduce a stochastic approach for self-assembly in systems far from equilibrium. The building blocks are represented by a lattice of discrete variables (Potts-like spins), and physically meaningful mechanisms are obtained by restricting transitions through spatially local rules based on experimental data. We use the method to study nucleation of filopodia-like bundles in a system consisting of purified actin, fascin, actin-related protein 2/3 , and beads coated with Wiskott-Aldrich syndrome protein. Consistent with previous speculation based on static experimental images, we find that bundles derive from Λ -precursor-like patterns of spins on the lattice. The ratcheting of the actin network relative to the surface that represents beads plays an important role in determining the number and orientation of bundles due to the fact that branching is the primary means for generating barbed ends pointed in directions that allow rapid filament growth. By enabling the de novo formation of coexisting morphologies without the computational cost of explicit representation of proteins, the approach introduced complements earlier models of cytoskeletal behavior in vitro and in vivo.

  11. Cytoskeletal dynamics in fission yeast: a review of models for polarization and division

    PubMed Central

    Drake, Tyler; Vavylonis, Dimitrios

    2010-01-01

    We review modeling studies concerning cytoskeletal activity of fission yeast. Recent models vary in length and time scales, describing a range of phenomena from cellular morphogenesis to polymer assembly. The components of cytoskeleton act in concert to mediate cell-scale events and interactions such as polarization. The mathematical models reduce these events and interactions to their essential ingredients, describing the cytoskeleton by its bulk properties. On a smaller scale, models describe cytoskeletal subcomponents and how bulk properties emerge. PMID:21119765

  12. The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families.

    PubMed

    Röper, Katja; Gregory, Stephen L; Brown, Nicholas H

    2002-11-15

    Recent studies have characterised a family of giant cytoskeletal crosslinkers encoded by the short stop gene in Drosophila and the dystonin/BPAG1 and MACF1 genes in mammals. We refer to the products of these genes as spectraplakins to highlight the fact that they share features with both the spectrin and plakin superfamilies. These genes produce a variety of large proteins, up to almost 9000 residues long, which can potentially extend 0.4 micro m across a cell. Spectraplakins can interact with all three elements of the cytoskeleton: actin, microtubules and intermediate filaments. The analysis of mutant phenotypes in BPAG1 in mouse and short stop in Drosophila demonstrates that spectraplakins have diverse roles. These include linking the plasma membrane and the cytoskeleton, linking together different elements of the cytoskeleton and organising membrane domains.

  13. Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster.

    PubMed

    Das, Ravi; Bhattacharjee, Shatabdi; Patel, Atit A; Harris, Jenna M; Bhattacharya, Surajit; Letcher, Jamin M; Clark, Sarah G; Nanda, Sumit; Iyer, Eswar Prasad R; Ascoli, Giorgio A; Cox, Daniel N

    2017-12-01

    Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation. Copyright © 2017 by the Genetics Society of America.

  14. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    PubMed Central

    Möller, Winfried; Brown, David M; Kreyling, Wolfgang G; Stone, Vicki

    2005-01-01

    Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only. PMID:16202162

  15. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress

    NASA Astrophysics Data System (ADS)

    Zhang, Liyong; Chen, Xin; Sharma, Parveen; Moon, Mark; Sheftel, Alex D.; Dawood, Fayez; Nghiem, Mai P.; Wu, Jun; Li, Ren-Ke; Gramolini, Anthony O.; Sorensen, Poul H.; Penninger, Josef M.; Brumell, John H.; Liu, Peter P.

    2014-03-01

    The HECT E3 ubiquitin ligase HACE1 is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling protein degradation. Hace1 deficiency in mice results in accelerated heart failure and increased mortality under haemodynamic stress. Hearts from Hace1-/- mice display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of LC3, p62 and ubiquitinated proteins enriched for cytoskeletal species, indicating impaired autophagy. Our data suggest that HACE1 mediates p62-dependent selective autophagic turnover of ubiquitinated proteins by its ankyrin repeat domain through protein-protein interaction, which is independent of its E3 ligase activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that HACE1 has a protective function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and therapeutic target for heart disease.

  16. Thymosin β4 has a major role in dermal burn wound healing that involves actin cytoskeletal remodelling via heat-shock protein 70.

    PubMed

    Kim, Sokho; Kwon, Jungkee

    2017-04-01

    Rapid vascular remodelling of damaged dermal tissue is required to heal burn wounds. Thymosin β4 (Tβ4) is a growth factor that has been shown to promote angiogenesis and dermal wound repair. However, the underlying mechanisms based on Tβ4 function have not yet been fully investigated. In the present study, we investigated how Tβ4 improves dermal burn wound healing via actin cytoskeletal remodelling and the action of heat-shock proteins (HSPs), which are a vital set of chaperone proteins that respond to heat shock. Our in vitro results achieved with the use of human umbilical vein endothelial cells (HUVECs) revealed a possible signal between Tβ4 and HSP70. Moreover, we confirmed that remodelling of filamentous actin (F-actin) was regulated by Tβ4-induced HSP70 in HUVECs. Based on these in vitro results, we confirmed the healing effects of Tβ4 in an adapted dermal burn wound in vivo model. Tβ4 improved wound-healing markers, such as wound closure and vascularization. Moreover, Tβ4 maintained the long-term expression of HSP70, which is associated with F-actin regulation during the wound-healing period. These results suggest that an association between Tβ4 and HSP70 is responsible for the healing of burn wounds, and that this association may regulate F-actin remodelling. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC.

    PubMed

    Ladurelle, Nataly; Gabriel, Cecilia; Viggiano, Adela; Mocaër, Elisabeth; Baulieu, Etienne E; Bianchi, Massimiliano

    2012-06-01

    Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression. The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions. Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC). Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling. Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT(2C) antagonist properties of the compound.

  18. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.

    PubMed

    Hirokawa, N; Funakoshi, T; Sato-Harada, R; Kanai, Y

    1996-02-01

    In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.

  19. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins.

    PubMed

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-28

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  20. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-01

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  1. Cross-linkers both drive and brake cytoskeletal remodeling and furrowing in cytokinesis.

    PubMed

    Descovich, Carlos Patino; Cortes, Daniel B; Ryan, Sean; Nash, Jazmine; Zhang, Li; Maddox, Paul S; Nedelec, Francois; Maddox, Amy Shaub

    2018-03-01

    Cell shape changes such as cytokinesis are driven by the actomyosin contractile cytoskeleton. The molecular rearrangements that bring about contractility in nonmuscle cells are currently debated. Specifically, both filament sliding by myosin motors, as well as cytoskeletal cross-linking by myosins and nonmotor cross-linkers, are thought to promote contractility. Here we examined how the abundance of motor and nonmotor cross-linkers affects the speed of cytokinetic furrowing. We built a minimal model to simulate contractile dynamics in the Caenorhabditis elegans zygote cytokinetic ring. This model predicted that intermediate levels of nonmotor cross-linkers are ideal for contractility; in vivo, intermediate levels of the scaffold protein anillin allowed maximal contraction speed. Our model also demonstrated a nonlinear relationship between the abundance of motor ensembles and contraction speed. In vivo, thorough depletion of nonmuscle myosin II delayed furrow initiation, slowed F-actin alignment, and reduced maximum contraction speed, but partial depletion allowed faster-than-expected kinetics. Thus, cytokinetic ring closure is promoted by moderate levels of both motor and nonmotor cross-linkers but attenuated by an over-abundance of motor and nonmotor cross-linkers. Together, our findings extend the growing appreciation for the roles of cross-linkers in cytokinesis and reveal that they not only drive but also brake cytoskeletal remodeling. © 2018 Descovich, Cortes, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Streamlining workflow and automation to accelerate laboratory scale protein production.

    PubMed

    Konczal, Jennifer; Gray, Christopher H

    2017-05-01

    Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. An ADP-Ribosylation Factor GTPase-activating Protein Git2-short/KIAA0148 Is Involved in Subcellular Localization of Paxillin and Actin Cytoskeletal Organization

    PubMed Central

    Mazaki, Yuichi; Hashimoto, Shigeru; Okawa, Katsuya; Tsubouchi, Asako; Nakamura, Kuniaki; Yagi, Ryohei; Yano, Hajime; Kondo, Akiko; Iwamatsu, Akihiro; Mizoguchi, Akira; Sabe, Hisataka

    2001-01-01

    Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein β-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during

  4. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis.

    PubMed

    Satchwell, Timothy J; Hawley, Bethan R; Bell, Amanda J; Ribeiro, M Leticia; Toye, Ashley M

    2015-01-01

    Band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex. The absence of band 3 in human erythrocytes has only been reported once, in the homozygous band 3 Coimbra patient. We used in vitro culture of erythroblasts derived from this patient, and separately short hairpin RNA-mediated depletion of band 3, to investigate the development of a band 3-deficient erythrocyte membrane and to specifically assess the stability and retention of band 3 dependent proteins in the absence of this core protein during terminal erythroid differentiation. Further, using lentiviral transduction of N-terminally green fluorescent protein-tagged band 3, we demonstrated the ability to restore expression of band 3 to normal levels and to rescue secondary deficiencies of key proteins including glycophorin A, protein 4.2, CD47 and Rh proteins arising from the absence of band 3 in this patient. By transducing band 3-deficient erythroblasts from this patient with band 3 mutants with absent or impaired ability to associate with the cytoskeleton we also demonstrated the importance of cytoskeletal connectivity for retention both of band 3 and of its associated dependent proteins within the reticulocyte membrane during the process of erythroblast enucleation. Copyright© Ferrata Storti Foundation.

  5. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis

    PubMed Central

    Satchwell, Timothy J; Hawley, Bethan R; Bell, Amanda J; Ribeiro, M. Leticia; Toye, Ashley M

    2015-01-01

    Band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex. The absence of band 3 in human erythrocytes has only been reported once, in the homozygous band 3 Coimbra patient. We used in vitro culture of erythroblasts derived from this patient, and separately short hairpin RNA-mediated depletion of band 3, to investigate the development of a band 3-deficient erythrocyte membrane and to specifically assess the stability and retention of band 3 dependent proteins in the absence of this core protein during terminal erythroid differentiation. Further, using lentiviral transduction of N-terminally green fluorescent protein-tagged band 3, we demonstrated the ability to restore expression of band 3 to normal levels and to rescue secondary deficiencies of key proteins including glycophorin A, protein 4.2, CD47 and Rh proteins arising from the absence of band 3 in this patient. By transducing band 3-deficient erythroblasts from this patient with band 3 mutants with absent or impaired ability to associate with the cytoskeleton we also demonstrated the importance of cytoskeletal connectivity for retention both of band 3 and of its associated dependent proteins within the reticulocyte membrane during the process of erythroblast enucleation. PMID:25344524

  6. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaskos, J., E-mail: flaskos@vet.auth.gr; Nikolaidis, E.; Harris, W.

    2011-11-15

    GAP-43 protein are reduced Black-Right-Pointing-Pointer Neurofilament heavy chain forms aggregates in cell bodies Black-Right-Pointing-Pointer Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent.« less

  7. Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16

    PubMed Central

    Maruthappu, Thiviyani; Chikh, Anissa; Fell, Benjamin; Delaney, Paul J.; Brooke, Matthew A.; Levet, Clemence; Moncada-Pazos, Angela; Ishida-Yamamoto, Akemi; Blaydon, Diana; Waseem, Ahmad; Leigh, Irene M.; Freeman, Matthew; Kelsell, David P.

    2017-01-01

    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2−/− mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this ‘stress' keratin is regulated. PMID:28128203

  8. The N and C Termini of ZO-1 Are Surrounded by Distinct Proteins and Functional Protein Networks*

    PubMed Central

    Van Itallie, Christina M.; Aponte, Angel; Tietgens, Amber Jean; Gucek, Marjan; Fredriksson, Karin; Anderson, James Melvin

    2013-01-01

    The proteins and functional protein networks of the tight junction remain incompletely defined. Among the currently known proteins are barrier-forming proteins like occludin and the claudin family; scaffolding proteins like ZO-1; and some cytoskeletal, signaling, and cell polarity proteins. To define a more complete list of proteins and infer their functional implications, we identified the proteins that are within molecular dimensions of ZO-1 by fusing biotin ligase to either its N or C terminus, expressing these fusion proteins in Madin-Darby canine kidney epithelial cells, and purifying and identifying the resulting biotinylated proteins by mass spectrometry. Of a predicted proteome of ∼9000, we identified more than 400 proteins tagged by biotin ligase fused to ZO-1, with both identical and distinct proteins near the N- and C-terminal ends. Those proximal to the N terminus were enriched in transmembrane tight junction proteins, and those proximal to the C terminus were enriched in cytoskeletal proteins. We also identified many unexpected but easily rationalized proteins and verified partial colocalization of three of these proteins with ZO-1 as examples. In addition, functional networks of interacting proteins were tagged, such as the basolateral but not apical polarity network. These results provide a rich inventory of proteins and potential novel insights into functions and protein networks that should catalyze further understanding of tight junction biology. Unexpectedly, the technique demonstrates high spatial resolution, which could be generally applied to defining other subcellular protein compartmentalization. PMID:23553632

  9. WAVE2 Protein Complex Coupled to Membrane and Microtubules.

    PubMed

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion.

  10. WAVE2 Protein Complex Coupled to Membrane and Microtubules

    PubMed Central

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion. PMID:22315597

  11. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    PubMed

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  12. The cytoskeletal system of nucleated erythrocytes. I. Composition and function of major elements

    PubMed Central

    1982-01-01

    We have studied the dogfish erythrocyte cytoskeletal system, which consists of a marginal band of microtubules (MB) and trans-marginal band material (TBM). The TBM appeared in whole mounts as a rough irregular network and in thin sections as a surface-delimiting layer completely enclosing nucleus and MB. In cells incubated at 0 degrees C for 30 min or more, the MB disappeared but the TBM remained. MB reassembly occurred with rewarming, and was inhibited by colchicine. Flattened elliptical erythrocyte morphology was retained even when MBs were absent. Total solubilization of MB and TBM at low pH, or dissolution of whole anucleate cytoskeletons, yielded components comigrating with actin, spectrin, and tubulin standards during gel electrophoresis. Mass-isolated MBs, exhibiting ribbonlike construction apparently maintained by cross-bridges, contained four polypeptides in the tubulin region of the gel. Only these four bands were noticeably increased in the soluble phase obtained from cells with 0 degrees C- disassembled MBs. The best isolated MB preparations contained tubulin but no components comigrating with high molecular weight microtubule- associated proteins, spectrin, or actin. Actin and spectrin therefore appear to be major TBM constituents, with tubulin localized in the MB. The results are interpreted in terms of an actin- and spectrin- containing subsurface cytoskeletal layer (TBM), related to that of mammalian erythrocytes, which maintains cell shape in the absence of MBs. Observations on abnormal pointed erythrocytes containing similarly pointed MBs indicate further that the MB can deform the TBM from within so as to alter cell shape. MBs may function in this manner during normal cellular morphogenesis and during blood flow in vivo. PMID:6889600

  13. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  14. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    PubMed

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  15. Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness

    NASA Astrophysics Data System (ADS)

    Pongkitwitoon, Suphannee; Uzer, Gunes; Rubin, Janet; Judex, Stefan

    2016-10-01

    Mesenchymal stem cells (MSC) responding to mechanical cues generated by physical activity is critical for skeletal development and remodeling. Here, we utilized low intensity vibrations (LIV) as a physiologically relevant mechanical signal and hypothesized that the confined cytoskeletal configuration imposed by 2D culture will enable human bone marrow MSCs (hBMSC) to respond more robustly when LIV is applied in-plane (horizontal-LIV) rather than out-of-plane (vertical-LIV). All LIV signals enhanced hBMSC proliferation, osteogenic differentiation, and upregulated genes associated with cytoskeletal structure. The cellular response was more pronounced at higher frequencies (100 Hz vs 30 Hz) and when applied in the horizontal plane. Horizontal but not vertical LIV realigned the cell cytoskeleton, culminating in increased cell stiffness. Our results show that applying very small oscillatory motions within the primary cell attachment plane, rather than perpendicular to it, amplifies the cell’s response to LIV, ostensibly facilitating a more effective transfer of intracellular forces. Transcriptional and structural changes in particular with horizontal LIV, together with the strong frequency dependency of the signal, emphasize the importance of intracellular cytoskeletal configuration in sensing and responding to high-frequency mechanical signals at low intensities.

  16. Alterations in the lenticular protein profile in experimental selenite-induced cataractogenesis and prevention by ellagic acid.

    PubMed

    Sakthivel, Muniyan; Geraldine, Pitchairaj; Thomas, Philip A

    2011-08-01

    Accumulating evidence suggests that oxidative stress underlies age-related formation of cataract, and that antioxidants retard cataractogenesis. This study aimed to evaluate whether ellagic acid, a natural polyphenol with antioxidant properties, prevents alterations in the lenticular protein profile in an experimental model of selenite cataract. Alterations in lenticular protein were determined by two-dimensional electrophoresis (2DE) and image analysis. Eluted αA-crystallin spots were analyzed by mass spectrometry. Western blot analysis was also performed to confirm the differential expression of certain crystallins and cytoskeletal proteins. In cataractous lenses, 2DE and image analysis revealed approximately 45 and 60 prominent spots in soluble and insoluble protein fractions respectively. Analysis of the pI and molecular weight of protein spots revealed differences in the expression of crystallin proteins in soluble and insoluble fractions. Western blot analysis confirmed changes in the expression of αA- and βB1- crystallins in both soluble and insoluble protein fractions, while mass spectrometry confirmed the degradation of αA-crystallin in selenite cataractous lenses. Western blot analysis also confirmed the occurrence of altered expression of certain cytoskeletal proteins in insoluble fractions. However, the lenticular protein profile in lenses from selenite-challenged, ellagic acid-treated rats was essentially similar to that noted in lenses from normal rats. The present study confirms the importance of structural and cytoskeletal proteins in the maintenance of lenticular transparency; the results also suggest that ellagic acid prevents lenticular protein alterations induced by selenite in an experimental setting.

  17. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  18. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    PubMed Central

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian

    2017-01-01

    T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087

  19. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for

  20. Controlling protein molecular dynamics: How to accelerate folding while preserving the native state

    NASA Astrophysics Data System (ADS)

    Jensen, Christian H.; Nerukh, Dmitry; Glen, Robert C.

    2008-12-01

    The dynamics of peptides and proteins generated by classical molecular dynamics (MD) is described by using a Markov model. The model is built by clustering the trajectory into conformational states and estimating transition probabilities between the states. Assuming that it is possible to influence the dynamics of the system by varying simulation parameters, we show how to use the Markov model to determine the parameter values that preserve the folded state of the protein and at the same time, reduce the folding time in the simulation. We investigate this by applying the method to two systems. The first system is an imaginary peptide described by given transition probabilities with a total folding time of 1μs. We find that only small changes in the transition probabilities are needed to accelerate (or decelerate) the folding. This implies that folding times for slowly folding peptides and proteins calculated using MD cannot be meaningfully compared to experimental results. The second system is a four residue peptide valine-proline-alanine-leucine in water. We control the dynamics of the transitions by varying the temperature and the atom masses. The simulation results show that it is possible to find the combinations of parameter values that accelerate the dynamics and at the same time preserve the native state of the peptide. A method for accelerating larger systems without performing simulations for the whole folding process is outlined.

  1. Cytoskeletal actin genes function downstream of HNF-3beta in ascidian notochord development.

    PubMed

    Jeffery, W R; Ewing, N; Machula, J; Olsen, C L; Swalla, B J

    1998-11-01

    We have examined the expression and regulation of cytoskeletal actin genes in ascidians with tailed (Molgula oculata) and tailless larvae (Molgula occulta). Four cDNA clones were isolated representing two pairs of orthologous cytoskeletal actin genes (CA1 and CA2), which encode proteins differing by five amino acids in the tailed and tailless species. The CA1 and CA2 genes are present in one or two copies, although several related genes may also be present in both species. Maternal CA1 and CA2 mRNA is present in small oocytes but transcript levels later decline, suggesting a role in early oogenesis. In the tailed species, embryonic CA1 and CA2 mRNAs first appear in the presumptive mesenchyme and muscle cells during gastrulation, subsequently accumulate in the presumptive notochord cells, and can be detected in these tissues through the tadpole stage. CA1 mRNAs accumulate initially in the same tissues in the tailless species but subsequently disappear, in concert with the arrest of notochord and tail development. In contrast, CA2 mRNAs were not detected in embryos of the tailless species. Fertilization of eggs of the tailless species with sperm of the tailed species, which restores the notochord and the tail, also results in the upregulation of CA1 and CA2 gene expression in hybrid embryos. Antisense oligodeoxynucleotide experiments suggest that CA1 and CA2 expression in the notochord, but not in the muscle cells, is dependent on prior expression of Mocc FHI, an ascidian HNF-3beta-like gene. The expression of the CA1 and CA2 genes in the notochord in the tailed species, downregulation in the tailless species, upregulation in interspecific hybrids, and dependence on HNF-3beta activity is consistent with a role of these genes in development of the ascidian notochord.

  2. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    PubMed

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  3. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    PubMed

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  4. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization

    PubMed Central

    Hummel, Thomas; Leifker, Karin; Klämbt, Christian

    2000-01-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron–glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2–SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding. PMID:10766742

  5. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability.

    PubMed

    Thom, Stephen R; Bhopale, Veena M; Yu, Kevin; Huang, Weiliang; Kane, Maureen A; Margolis, David J

    2017-11-03

    Microparticles are lipid bilayer-enclosed vesicles produced by cells under oxidative stress. MP production is elevated in patients with diabetes, but the underlying cellular mechanisms are poorly understood. We hypothesized that raising glucose above the physiological level of 5.5 mm would stimulate leukocytes to produce MPs and activate the nucleotide-binding domain, leucine-rich repeat pyrin domain-containing 3 (NLRP3) inflammasome. We found that when incubated in buffer with up to 20 mm glucose, human and murine neutrophils, but not monocytes, generate progressively more MPs with high interleukin (IL)-1β content. Enhanced MP production required generation of reactive chemical species by mitochondria, NADPH oxidase, and type 2 nitric-oxide synthase (NOS-2) and resulted in S -nitrosylation of actin. Depleting cells of capon (C-terminal PDZ ligand of neuronal nitric-oxide synthase protein), apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC), or pro-IL-1β prevented the hyperglycemia-induced enhancement of reactive species production, MP generation, and IL-1β synthesis. Additional components required for these responses included inositol 1,3,5-triphosphate receptors, PKC, and enhancement of filamentous-actin turnover. Numerous proteins become localized to short filamentous actin in response to S -nitrosylation, including vasodilator-stimulated phosphoprotein, focal adhesion kinase, the membrane phospholipid translocation enzymes flippase and floppase, capon, NLRP3, and ASC. We conclude that an interdependent oxidative stress response to hyperglycemia perturbs neutrophil cytoskeletal stability leading to MP production and IL-1β synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice.

    PubMed

    Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2015-02-01

    The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  8. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  9. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    PubMed

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies. © 2016 Elsevier Inc. All rights reserved.

  10. Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins.

    PubMed

    Corne, Tobias D J; Sieprath, Tom; Vandenbussche, Jonathan; Mohammed, Danahe; Te Lindert, Mariska; Gevaert, Kris; Gabriele, Sylvain; Wolf, Katarina; De Vos, Winnok H

    2017-09-03

    The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.

  11. Biological role and structural mechanism of twinfilin–capping protein interaction

    PubMed Central

    Falck, Sandra; Paavilainen, Ville O; Wear, Martin A; Grossmann, J Günter; Cooper, John A; Lappalainen, Pekka

    2004-01-01

    Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin–CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics. PMID:15282541

  12. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    PubMed

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  13. Mitochondrial dynamics and respiration within cells with increased open pore cytoskeletal meshes

    PubMed Central

    Jang, David H.; Seeger, Sarah C.; Grady, Martha E.; Shofer, Frances S.

    2017-01-01

    ABSTRACT The cytoskeletal architecture directly affects the morphology, motility, and tensional homeostasis of the cell. In addition, the cytoskeleton is important for mitosis, intracellular traffic, organelle motility, and even cellular respiration. The organelle responsible for a majority of the energy conversion for the cell, the mitochondrion, has a dependence on the cytoskeleton for mobility and function. In previous studies, we established that cytoskeletal inhibitors altered the movement of the mitochondria, their morphology, and their respiration in human dermal fibroblasts. Here, we use this protocol to investigate applicability of power law diffusion to describe mitochondrial locomotion, assessment of rates of fission and fusion in healthy and diseased cells, and differences in mitochondria locomotion in more open networks either in response to cytoskeletal destabilizers or by cell line. We found that mitochondria within fibrosarcoma cells and within fibroblast cells treated with an actin-destabilizing toxin resulted in increased net travel, increased average velocity, and increased diffusion of mitochondria when compared to control fibroblasts. Although the mitochondria within the fibrosarcoma travel further than mitochondria within their healthy counterparts, fibroblasts, the dependence on mitochondria for respiration is much lower with higher rates ofhydrogen peroxide production and was confirmed using the OROBOROS O2K. We also found that rates of fission and fusion of the mitochondria equilibrate despite significant alteration of the cytoskeleton. Rates ranged from 15% to 25%, where the highest rates were observed within the fibrosarcoma cell line. This result is interesting because the fibrosarcoma cell line does not have increased respiration metrics including when compared to fibroblast. Mitochondria travel further, faster, and have an increase in percent mitochondria splitting or joining while not dependent on the mitochondria for a majority of

  14. Collective effects in force generation by multiple cytoskeletal filaments pushing an obstacle

    NASA Astrophysics Data System (ADS)

    Aparna, J. S.; Das, Dipjyoti; Padinhateeri, Ranjith; Das, Dibyendu

    2015-09-01

    We report here recent findings that multiple cytoskeletal filaments (assumed rigid) pushing an obstacle typically generate more force than just the sum of the forces due to individual ones. This interesting phenomenon, due to the hydrolysis process being out of equilibrium, escaped attention in previous experimental and theoretical literature. We first demonstrate this numerically within a constant force ensemble, for a well known model of cytoskeletal filament dynamics with random mechanism of hydrolysis. Two methods of detecting the departure from additivity of the collective stall force, namely from the force-velocity curve in the growing phase, and from the average collapse time versus force curve in the bounded phase, is discussed. Since experiments have already been done for a similar system of multiple microtubules in a harmonic optical trap, we study the problem theoretically under harmonic force. We show that within the varying harmonic force ensemble too, the mean collective stall force of N filaments is greater than N times the mean stall force due to a single filament; the actual extent of departure is a function of the monomer concentration.

  15. The MYO6 interactome reveals adaptor complexes coordinating early endosome and cytoskeletal dynamics.

    PubMed

    O'Loughlin, Thomas; Masters, Thomas A; Buss, Folma

    2018-04-01

    The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine-tune motor activity in time and space. These motor-adaptor-cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling-based proteomics strategy to map the interactome of the unique minus end-directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6-adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG-Induced F-actin for Tethering) complex that controls endosome positioning and motility through RHO-driven actin polymerisation; and the DISP (DOCK7-Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, butmore » F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.« less

  17. Acf7 (MACF) is an actin and microtubule linker protein whose expression predominates in neural, muscle, and lung development.

    PubMed

    Bernier, G; Pool, M; Kilcup, M; Alfoldi, J; De Repentigny, Y; Kothary, R

    2000-10-01

    Several proteins belonging to the plakin family of cytoskeletal linker proteins have recently been identified, including dystonin/Bpag1 and plectin. These proteins are unique in their abilities to form bridges between different cytoskeletal elements through specialized modular domains. We have previously reported the cloning and partial characterization of Acf7, a novel member of the plakin family. More recently, the full-length cDNA for mouse Acf7 has been reported. Acf7 has a hybrid composition, with extended homology to dystonin/Bpag1 and plectin in the N-terminal half, and to dystrophin in the central and C-terminal half. Recent studies have demonstrated that Acf7 has functional actin and microtubule binding domains. Here, we describe the developmental expression profile for mouse Acf7. RNA in situ hybridization experiments revealed Acf7 transcripts in the dermomyotome and neural fold of day 8.5 mouse embryos. Later in development, Acf7 expression was predominant in neural and muscle tissues and was strongly up-regulated just before birth in type II alveolar cells of the lung. Altogether, our results suggest that Acf7 functions as a versatile cytoskeletal linker protein and plays an important role in neural, muscle, and lung development. Copyright 2000 Wiley-Liss, Inc.

  18. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  19. Quality control methodology for high-throughput protein-protein interaction screening.

    PubMed

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  20. Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter.

    PubMed

    Gedeon, Patrick C; Thomas, James R; Madura, Jeffry D

    2015-01-01

    Molecular dynamics simulation provides a powerful and accurate method to model protein conformational change, yet timescale limitations often prevent direct assessment of the kinetic properties of interest. A large number of molecular dynamic steps are necessary for rare events to occur, which allow a system to overcome energy barriers and conformationally transition from one potential energy minimum to another. For many proteins, the energy landscape is further complicated by a multitude of potential energy wells, each separated by high free-energy barriers and each potentially representative of a functionally important protein conformation. To overcome these obstacles, accelerated molecular dynamics utilizes a robust bias potential function to simulate the transition between different potential energy minima. This straightforward approach more efficiently samples conformational space in comparison to classical molecular dynamics simulation, does not require advanced knowledge of the potential energy landscape and converges to the proper canonical distribution. Here, we review the theory behind accelerated molecular dynamics and discuss the approach in the context of modeling protein conformational change. As a practical example, we provide a detailed, step-by-step explanation of how to perform an accelerated molecular dynamics simulation using a model neurotransmitter transporter embedded in a lipid cell membrane. Changes in protein conformation of relevance to the substrate transport cycle are then examined using principle component analysis.

  1. Accelerators of Osteogenesis by Recombinant Human Bone Morphogenetic Protein-2

    PubMed Central

    Okubo, Yasunori; Kusumoto, Kenji; Bessho, Kazuhisa

    2007-01-01

    Bone morphogenetic protein (BMP) appears to be one of the most promising cytokine and for clinical use in reconstructive surgery for bony defects and augmentation. To evaluate the effect of basic fibroblast growth factor (bFGF), FK506, elcatonin, and hyperbaric oxygenation (HBO) on osteoinduction by recombinant human bone morphogenetic protein-2 (rhBMP-2), 2 or 5 μg of rhBMP-2 was implanted into intramuscular sites of rats. At 21 days after implantation, the osteoinductive activity in the treatment group and control group was compared radiographically, biochemically, and histologically. The amount of new bone in the treatment group was significantly greater than that in the control group. The alkaline phosphatase activity and calcium content in the treatment group were significantly higher than those in the control group. These results suggest that bFGF, FK506, elcatonin, and HBO accelerated the activity and rate of osteoinduction by rhBMP2. These results may be useful when BMP is applied clinically in near future. PMID:21901062

  2. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs.

    PubMed

    Unachukwu, Uchenna; Trischler, Jordis; Goldklang, Monica; Xiao, Rui; D'Armiento, Jeanine

    2017-06-01

    The present study tested the hypothesis that maternal smoke exposure results in fetal lung growth retardation due to dysregulation in various signaling pathways, including the Wnt (wingless-related integration site)/β-catenin pathway. Pregnant female C57BL/6J mice were exposed to cigarette smoke (100-150 mg/m 3 ) or room air, and offspring were humanely killed on 12.5, 14.5, 16.5, and 18.5 d post coitum (dpc). We assessed lung stereology with Cavalieri estimation; apoptosis with proliferating cell nuclear antigen, TUNEL, and caspase assays; and gene expression with quantitative PCR (qPCR) and RNA sequencing on lung epithelium and mesenchyme retrieved by laser capture microdissection. Results demonstrated a significant decrease in body weight and lung volume of smoke-exposed embryos. At 16.5 dpc, the reduction in lung volume was due to loss of lung mesenchymal tissue correlating with a decrease in cell proliferation ( n = 10; air: 61.65% vs. smoke: 44.21%, P < 0.05). RNA sequence analysis demonstrated an alteration in the Wnt pathway, and qPCR confirmed an increased expression of secreted frizzled-related protein 1 (sFRP-1) [ n = 12; relative quantification (RQ) 1 vs. 2.33, P < 0.05] and down-regulation of Cyclin D1 ( n = 7; RQ 1 vs. 0.61, P < 0.05) in mesenchymal tissue. Furthermore, genome expression studies revealed a smoke-induced up-regulation of Rho-GTPase-dependent actin cytoskeletal signaling that can lead to loss of tissue integrity.-Unachukwu, U., Trischler, J., Goldklang, M., Xiao, R., D'Armiento, J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs. © FASEB.

  3. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex; Manhart, Angelika

    2018-01-01

    The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.

  4. Prefoldin–Nascent Chain Complexes in the Folding of Cytoskeletal Proteins

    PubMed Central

    Hansen, William J.; Cowan, Nicholas J.; Welch, William J.

    1999-01-01

    In vitro transcription/translation of actin cDNA and analysis of the translation products by native-PAGE was used to study the maturation pathway of actin. During the course of actin synthesis, several distinct actin-containing species were observed and the composition of each determined by immunological procedures. After synthesis of the first ∼145 amino acids, the nascent ribosome-associated actin chain binds to the recently identified heteromeric chaperone protein, prefoldin (PFD). PFD remains bound to the relatively unfolded actin polypeptide until its posttranslational delivery to cytosolic chaperonin (CCT). We show that α- and β-tubulin follow a similar maturation pathway, but to date find no evidence for an interaction between PFD and several noncytoskeletal proteins. We conclude that PFD functions by selectively targeting nascent actin and tubulin chains pending their transfer to CCT for final folding and/or assembly. PMID:10209023

  5. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating.

    PubMed

    Unterlander, Nicole; Doucette, Alan Austin

    2018-02-08

    SDS plays a key role in proteomics workflows, including protein extraction, solubilization and mass-based separations (e.g. SDS-PAGE, GELFrEE). However, SDS interferes with mass spectrometry and so it must be removed prior to analysis. We recently introduced an electrophoretic platform, termed transmembrane electrophoresis (TME), enabling extensive depletion of SDS from proteins in solution with exceptional protein yields. However, our prior TME runs required 1 h to complete, being limited by Joule heating which causes protein aggregation at higher operating currents. Here, we demonstrate effective strategies to maintain lower TME sample temperatures, permitting accelerated SDS depletion. Among these strategies, the use of a magnetic stir bar to continuously agitate a model protein system (BSA) allows SDS to be depleted below 100 ppm (>98% removal) within 10 min of TME operations, while maintaining exceptional protein recovery (>95%). Moreover, these modifications allow TME to operate without any user intervention, improving throughput and robustness of the approach. Through fits of our time-course SDS depletion curves to an exponential model, we calculate SDS depletion half-lives as low as 1.2 min. This promising electrophoretic platform should provide proteomics researchers with an effective purification strategy to enable MS characterization of SDS-containing proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Smooth muscle-protein translocation and tissue function.

    PubMed

    Eddinger, Thomas J

    2014-09-01

    Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems. © 2014 Wiley Periodicals, Inc.

  7. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation.

    PubMed

    Nolz, Jeffrey C; Gomez, Timothy S; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B; Shimizu, Yoji; Burkhardt, Janis K; Freedman, Bruce D; Billadeau, Daniel D

    2006-01-10

    The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.

  8. The WAVE2 Complex Regulates Actin Cytoskeletal Reorganization and CRAC-Mediated Calcium Entry during T Cell Activation

    PubMed Central

    Nolz, Jeffrey C.; Gomez, Timothy S.; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B.; Shimizu, Yoji; Burkhardt, Janis K.; Freedman, Bruce D.; Billadeau, Daniel D.

    2007-01-01

    Summary Background The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. Results By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and β-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCγ1 activation and IP3-mediated store release. Conclusions These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation. PMID:16401421

  9. Deep nuclear invaginations are linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture.

    PubMed

    Jorgens, Danielle M; Inman, Jamie L; Wojcik, Michal; Robertson, Claire; Palsdottir, Hildur; Tsai, Wen-Ting; Huang, Haina; Bruni-Cardoso, Alexandre; López, Claudia S; Bissell, Mina J; Xu, Ke; Auer, Manfred

    2017-01-01

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues. © 2017. Published by The Company of Biologists Ltd.

  10. Deep nuclear invaginations are linked to cytoskeletal filaments – integrated bioimaging of epithelial cells in 3D culture

    PubMed Central

    Inman, Jamie L.; Wojcik, Michal; Robertson, Claire; Tsai, Wen-Ting; Huang, Haina; Bruni-Cardoso, Alexandre; López, Claudia S.; Bissell, Mina J.; Xu, Ke

    2017-01-01

    ABSTRACT The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues. PMID:27505896

  11. Deep nuclear invaginations are linked to cytoskeletal filaments – integrated bioimaging of epithelial cells in 3D culture

    DOE PAGES

    Jorgens, Danielle M.; Inman, Jamie L.; Wojcik, Michal; ...

    2016-08-05

    The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growtharrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect tomore » the outer nuclear envelope. Also, the cytoskeleton is connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues.« less

  12. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  13. Displacement of plasma protein and conduction velocity in rats under action of acceleration forces and hypokinesia

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Edelwejn, Z.; Wojtkowiak, M.

    1980-01-01

    The permeability of capillary vessels was investigated in order to determine if acceleration alone or following prolonged hypokinesia would induce changes in the vascular wall leading to the penetration by l-albumins and/or proteins with larger molecules. In rats undergoing action of +5 Gz accelerations, no increase in vascular permeability, as tested with the use of (Cr-5k)-globulin, was demostrated. In rats immobilized for 4 weeks before centrifugation, rather weak migration of (Cr-51)-globulin from the vessels was observed. Immobilization resulted also in lowering of conduction velocity in the sciatic nerve.

  14. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    PubMed Central

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  15. Anomalous gravitropic response of Chara rhizoids during enhanced accelerations.

    PubMed

    Braun, M

    1996-07-01

    Centrifugal accelerations of 50-250 g were applied to rhizoids of Chara globularis Thuill. at stimulation angles (alpha) of 5-90 degrees between the acceleration vector and the rhizoid axis. After the start of centrifugation, the statoliths were pressed asymmetrically onto the centrifugal flank of the apical cell wall. In contrast to the well-known bending (by bowing) under 1 g, the rhizoids responded in two distinct phases. Following an initial phase of sharp bending (by bulging), which is similar to the negatively gravitropic response of Chara protonemata, rhizoids stopped bending and, in the second phase, grew straight in directions clearly deviating from the direction of acceleration. These response angles (beta) between the axis of the bent part of the rhizoid and the acceleration vector were strictly correlated with the g-level of acceleration. The higher the acceleration the greater was beta. Except for the sharp bending, the shape and growth rate of the centrifuged rhizoids were not different from those of gravistimulated control rhizoids at 1 g. These results indicate that gravitropic bending of rhizoids during enhanced accelerations (5 degrees < or = alpha < or = 90 degrees) is caused not only by subapical differential flank growth, as it is the case at 1 g, but also by also by the centripetal displacement of the growth centre as was recently discussed for the negative gravitropism of Chara protonemata. A hypothesis for cytoskeletally mediated polar growth is presented based on data from positive gravitropic bending of Chara rhizoids at 1 g and from the anomalous gravitropic bending of rhizoids compared with the negatively gravitropic bending of Chara protonemata. The data obtained are also relevant to a general understanding of graviperception in higher-plant organs.

  16. Kynurenic Acid Prevents Cytoskeletal Disorganization Induced by Quinolinic Acid in Mixed Cultures of Rat Striatum.

    PubMed

    Pierozan, Paula; Biasibetti-Brendler, Helena; Schmitz, Felipe; Ferreira, Fernanda; Pessoa-Pureur, Regina; Wyse, Angela T S

    2018-06-01

    Kynurenic acid (KYNA) is a neuroactive metabolite of tryptophan known to modulate a number of mechanisms involved in neural dysfunction. Although its activity in the brain has been widely studied, the effect of KYNA counteracting the actions of quinolinic acid (QUIN) remains unknown. The present study aims at describing the ability of 100 μM KYNA preventing cytoskeletal disruption provoked by QUIN in astrocyte/neuron/microglia mixed culture. KYNA totally preserved cytoskeletal organization, cell morphology, and redox imbalance in mixed cultures exposed to QUIN. However, KYNA partially prevented morphological alteration in isolated primary astrocytes and failed to protect the morphological alterations of neurons caused by QUIN exposure. Moreover, KYNA prevented QUIN-induced microglial activation and upregulation of ionized calcium-binding adapter molecule 1 (Iba-1) and partially preserved tumor necrosis factor-α (TNF-α) level in mixed cultures. TNF-α level was also partially preserved in astrocytes. In addition to the mechanisms dependent on redox imbalance and microglial activation, KYNA prevented downregulation of connexin-43 and the loss of functionality of gap junctions (GJs), preserving cell-cell contact, cytoskeletal organization, and cell morphology in QUIN-treated cells. Furthermore, the toxicity of QUIN targeting the cytoskeleton of mixed cultures was not prevented by the N-methyl-D-aspartate (NMDA) antagonist MK-801. We suggest that KYNA protects the integrity of the cytoskeleton of mixed cultures by complex mechanisms including modulating microglial activation preventing oxidative imbalance and misregulated GJs leading to disrupted cytoskeleton in QUIN-treated cells. This study contributed to elucidate the molecular basis of KYNA protection against QUIN toxicity.

  17. SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome

    PubMed Central

    Hirschey, Matthew D.; Shimazu, Tadahiro; Jing, Enxuan; Grueter, Carrie A.; Collins, Amy M.; Aouizerat, Bradley; Stančáková, Alena; Goetzman, Eric; Lam, Maggie M.; Schwer, Bjoern; Stevens, Robert D.; Muehlbauer, Michael J.; Kakar, Sanjay; Bass, Nathan M.; Kuusisto, Johanna; Laakso, Markku; Alt, Frederick W.; Newgard, Christopher B.; Farese, Robert V.; Kahn, C. Ronald; Verdin, Eric

    2013-01-01

    SUMMARY Acetylation is increasingly recognized as an important metabolic regulatory post-translational protein modification, yet the metabolic consequence of mitochondrial protein hyperacetylation is unknown. We find that high-fat diet (HFD) feeding induces hepatic mitochondrial protein hyperacetylation in mice and downregulation of the major mitochondrial protein deacetylase SIRT3. Mice lacking SIRT3 (SIRT3KO) placed on a HFD show accelerated obesity, insulin resistance, hyperlipidemia, and steatohepatitis compared to wild-type (wt) mice. The lipogenic enzyme stearoyl-CoA desaturase 1 is highly induced in SIRT3KO mice, and its deletion rescues both wt and SIRT3KO mice from HFD-induced hepatic steatosis and insulin resistance. We further identify a single nucleotide polymorphism in the human SIRT3 gene that is suggestive of a genetic association with the metabolic syndrome. This polymorphism encodes a point-mutation in the SIRT3 protein, which reduces its overall enzymatic efficiency. Our findings show loss of SIRT3 and dysregulation of mitochondrial protein acetylation contribute to the metabolic syndrome. PMID:21856199

  18. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia.

    PubMed

    Muñiz, Javier; Romero, Juan; Holubiec, Mariana; Barreto, George; González, Janneth; Saint-Martin, Madeleine; Blanco, Eduardo; Carlos Cavicchia, Juan; Castilla, Rocío; Capani, Francisco

    2014-05-14

    Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed β-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication.

    PubMed

    Ostrov, Nili; Fichman, Galit; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    Supramolecular protein assemblies can serve as templates for the fabrication of inorganic nanowires due to their morphological reproducibility and innate proclivity to form well-ordered structures. Amongst the variety of naturally occurring nano-scale assemblies, cytoskeletal fibers from diverse biological sources represent a unique family of scaffolds for biomimetics as they efficiently self-assemble in vitro in a controllable manner to form stable filaments. Here, we harness the bacterial FtsZ filament system as a scaffold for protein-based metal nanowires, and further demonstrate the control of wire alignment with the use of an external magnetic field. Due to the ease at which the bacterial FtsZ is overexpressed and purified, as well as the extensive studies of its ultrastructural properties and physiological significance, FtsZ filaments are an ideal substrate for large-scale production and chemical manipulation. Using a biologically compatible electroless metal deposition technique initiated by adsorption of platinum as a surface catalyst, we demonstrate the coating of assembled FtsZ filaments with iron, nickel, gold, and copper to fabricate continuous nanowires with diameters ranging from 10-50 nm. Organic-inorganic hybrid wires were analyzed using high-resolution field-emission-gun transmission and scanning electron microscopy, and confirmed by energy-dispersive elemental analysis. We also achieved alignment of ferrofluid-coated FtsZ filaments using an external magnetic field. Overall, we provide evidence for the robustness of the FtsZ filament system as a molecular scaffold, and offer an efficient, biocompatible procedure for facile bottom-up assembly of metallic wires on biological templates. We believe that bottom-up fabrication methods as reported herein significantly contribute to the expanding toolkit available for the incorporation of biological materials in nano-scale devices for electronic and electromechanical applications.

  20. The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells

    PubMed Central

    Li, Shanwei; Sun, Tiantian; Ren, Haiyun

    2015-01-01

    In higher plants, microtubule (MT)-based, and actin filament (AF)-based structures play important roles in mitosis and cytokinesis. Besides the mitotic spindle, the evolution of a band comprising cortical MTs and AFs, namely, the preprophase band (PPB), is evident in plant cells. This band forecasts a specific division plane before the initiation of mitosis. During cytokinesis, another plant-specific cytoskeletal structure called the phragmoplast guides vesicles in the creation of a new cell wall. In addition, a number of cytoskeleton-associated proteins are reportedly involved in the formation and function of the PPB, mitotic spindle, and phragmoplast. This review summarizes current knowledge on the cytoskeleton-associated proteins that mediate the cytoskeletal arrays during mitosis and cytokinesis in plant cells and discusses the interaction between MTs and AFs involved in mitosis and cytokinesis. PMID:25964792

  1. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    PubMed

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  2. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network

    PubMed Central

    Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  3. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew

    2015-11-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.

  4. Accelerated Growth Rate Induced by Neonatal High-Protein Milk Formula Is Not Supported by Increased Tissue Protein Synthesis in Low-Birth-Weight Piglets

    PubMed Central

    Jamin, Agnès; Sève, Bernard; Thibault, Jean-Noël; Floc'h, Nathalie

    2012-01-01

    Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass. PMID:22315674

  5. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  6. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energiesmore » and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.« less

  7. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    PubMed Central

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.

    2014-01-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418

  8. Accelerating the Pace of Protein Functional Annotation With Intel Xeon Phi Coprocessors.

    PubMed

    Feinstein, Wei P; Moreno, Juana; Jarrell, Mark; Brylinski, Michal

    2015-06-01

    Intel Xeon Phi is a new addition to the family of powerful parallel accelerators. The range of its potential applications in computationally driven research is broad; however, at present, the repository of scientific codes is still relatively limited. In this study, we describe the development and benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the prediction of ligand-binding sites in proteins. Implemented for the Intel Xeon Phi platform, the parallelization of the structure alignment portion of eFindSite using pragma-based OpenMP brings about the desired performance improvements, which scale well with the number of computing cores. Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the CPU and the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. For example, ligand-binding predictions for 501 benchmarking proteins are completed in 2.1 hours on a single Stampede node equipped with the Intel Xeon Phi card compared to 3.1 hours without the accelerator and 36.8 hours required by a serial version. In addition to the satisfactory parallel performance, porting existing scientific codes to the Intel Xeon Phi architecture is relatively straightforward with a short development time due to the support of common parallel programming models by the coprocessor. The parallel version of eFindSite is freely available to the academic community at www.brylinski.org/efindsite.

  9. HIV-1 Proteins Accelerate HPA Axis Habituation in Female Rats

    PubMed Central

    Panagiotakopoulos, Leonidas; Kelly, Sean; Neigh, Gretchen N.

    2015-01-01

    Congenital infection by the Human Immunodeficiency Virus (HIV) has been shown to lead to multiple co-morbidities, and people living with HIV have a higher incidence of affective and anxiety disorders. A marked increase in mood disorders is evident during the sensitive phase of adolescence and this is further pronounced in females. Depression has been linked to dysfunction of the intracellular response system to corticosteroids at the level of the hippocampus (HC) and prefrontal cortex (PFC) with a notable role of the glucocorticoid receptor (GR) and its co-chaperones (FKBP5 and FKBP4). The current study examined the extent to which HIV protein expression in adolescent female rats altered the stress response at both the level of corticosterone output and molecular regulation of the glucocorticoid receptor in the brain. WT and HIV-1 genotype female rats were randomly allocated in control, acute stress and repeat stress groups. Corticosterone plasma levels and expression of GR, FKBP4, and FKBP5 in the HC and PFC were measured. The presence of HIV-1 proteins facilitate habituation of the corticosterone response to repeated stressors, such that HIV-1 TG rats habituated to repeated restraint and WT rats did not. This was reflected by interactions between stress exposure and HIV-1 protein expression at the level of GR co-chaperones. Although expression of the GR was similarly reduced after acute and repeat stress in both genotypes, expression of FKBP5 and FKBP4 was altered in a brain-region specific manner depending on the duration of the stress exposure and the presence or absence of HIV-1 proteins. Collectively, the data presented demonstrate that HIV-1 proteins accelerate habituation to repeated stressors and modify the influence of acute and repeat stressors on GR co-chaperones in a brain region-specific manner. PMID:25666308

  10. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8.

    PubMed

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2017-02-01

    Sarcopenia is a condition of the loss of muscle mass that is associated with aging and that increases the risk for bedridden state, thereby warranting studies of interventions that attenuate sarcopenia. Here the effects of 2-month dietary L-lysine (Lys) supplementation (1.5-3.0 %) on myofibrillar protein degradation and major proteolytic systems were investigated in senescence-accelerated mouse prone 8 (SAMP8). At 36 weeks of age, skeletal muscle and lean body mass was reduced in SAMP8 when compared with control senescence-accelerated mouse resistant 1 (SAMR1). The myofibrillar protein degradation, which was evaluated by the release of 3-methylhistidine, was stimulated in SAMP8, and the autophagy activity, which was evaluated by light chain 3-II, was stimulated in the skeletal muscle of SAMP8. The activation of ubiquitin-proteasome system was not observed in the muscles of SAMP8. However, myofibrillar protein degradation and autophagic activity in skeletal muscles of SAMP8 were suppressed by dietary intake of 3.0 % Lys. The present data indicate that myofibrillar protein degradation by bulk autophagy is stimulated in the skeletal muscles of SAMP8 and that dietary Lys supplementation attenuates sarcopenia in SAMP8 by suppressing autophagic proteolysis.

  11. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential.

    PubMed

    Coughlin, Mark F; Bielenberg, Diane R; Lenormand, Guillaume; Marinkovic, Marina; Waghorne, Carol G; Zetter, Bruce R; Fredberg, Jeffrey J

    2013-03-01

    We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.

  12. Rationally engineering natural protein assemblies in nanobiotechnology.

    PubMed

    Howorka, Stefan

    2011-08-01

    Multimeric protein assemblies are essential components in viruses, bacteria, eukaryotic cells, and organisms where they act as cytoskeletal scaffold, storage containers, or for directional transport. The bottom-up structures can be exploited in nanobiotechnology by harnessing their built-in properties and combining them with new functional modules. This review summarizes the design principles of natural protein assemblies, highlights recent progress in their structural elucidation, and shows how rational engineering can create new biomaterials for applications in vaccine development, biocatalysis, materials science, and synthetic biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions.

    PubMed

    Ritchie, David W; Kozakov, Dima; Vajda, Sandor

    2008-09-01

    Predicting how proteins interact at the molecular level is a computationally intensive task. Many protein docking algorithms begin by using fast Fourier transform (FFT) correlation techniques to find putative rigid body docking orientations. Most such approaches use 3D Cartesian grids and are therefore limited to computing three dimensional (3D) translational correlations. However, translational FFTs can speed up the calculation in only three of the six rigid body degrees of freedom, and they cannot easily incorporate prior knowledge about a complex to focus and hence further accelerate the calculation. Furthemore, several groups have developed multi-term interaction potentials and others use multi-copy approaches to simulate protein flexibility, which both add to the computational cost of FFT-based docking algorithms. Hence there is a need to develop more powerful and more versatile FFT docking techniques. This article presents a closed-form 6D spherical polar Fourier correlation expression from which arbitrary multi-dimensional multi-property multi-resolution FFT correlations may be generated. The approach is demonstrated by calculating 1D, 3D and 5D rotational correlations of 3D shape and electrostatic expansions up to polynomial order L=30 on a 2 GB personal computer. As expected, 3D correlations are found to be considerably faster than 1D correlations but, surprisingly, 5D correlations are often slower than 3D correlations. Nonetheless, we show that 5D correlations will be advantageous when calculating multi-term knowledge-based interaction potentials. When docking the 84 complexes of the Protein Docking Benchmark, blind 3D shape plus electrostatic correlations take around 30 minutes on a contemporary personal computer and find acceptable solutions within the top 20 in 16 cases. Applying a simple angular constraint to focus the calculation around the receptor binding site produces acceptable solutions within the top 20 in 28 cases. Further constraining the

  14. Identification of proteins interacting with lactate dehydrogenase in claw muscle of the porcelain crab Petrolisthes cinctipes

    PubMed Central

    Cayenne, Andrea P.; Gabert, Beverly; Stillman, Jonathon H.

    2011-01-01

    Biochemical adaptation of enzymes involves conservation of activity, stability and affinity across a wide range of intracellular and environmental conditions. Enzyme adaptation by alteration of primary structure is well known, but the roles of protein-protein interactions in enzyme adaptation are less well understood. Interspecific differences in thermal stability of lactate dehydrogenase (LDH) in porcelain crabs (genus Petrolisthes) are related to intrinsic differences among LDH molecules and by interactions with other stabilizing proteins. Here, we identified proteins that interact with LDH in porcelain crab claw muscle tissue using co-immunoprecipitation, and showed LDH exists in high molecular weight complexes using size exclusion chromatography and Western blot analyses. Co-immunoprecipitated proteins were separated using 2D SDS PAGE and analyzed by LC/ESI using peptide MS/MS. Peptide MS/MS ions were compared to an EST database for Petrolisthes cinctipes to identify proteins. Identified proteins included cytoskeletal elements, glycolytic enzymes, a phosphagen kinase, and the respiratory protein hemocyanin. Our results support the hypothesis that LDH interacts with glycolytic enzymes in a metabolon structured by cytoskeletal elements that may also include the enzyme for transfer of the adenylate charge in glycolytically produced ATP. Those interactions may play specific roles in biochemical adaptation of glycolytic enzymes. PMID:21968246

  15. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    PubMed

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A growing family: the expanding universe of the bacterial cytoskeleton

    PubMed Central

    Ingerson-Mahar, Michael; Gitai, Zemer

    2014-01-01

    Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes. PMID:22092065

  17. Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture

    PubMed Central

    Bernhart, Eva; Kollroser, Manfred; Rechberger, Gerald; Reicher, Helga; Heinemann, Akos; Schratl, Petra; Hallström, Seth; Wintersperger, Andrea; Nusshold, Christoph; DeVaney, Trevor; Zorn-Pauly, Klaus; Malli, Roland; Graier, Wolfgang; Malle, Ernst; Sattler, Wolfgang

    2014-01-01

    Microglia, the immunocompetent cells of the CNS, are rapidly activated in response to injury and microglia migration towards and homing at damaged tissue plays a key role in CNS regeneration. Lysophosphatidic acid (LPA) is involved in signaling events evoking microglia responses through cognate G protein-coupled receptors. Here we show that human immortalized C13NJ microglia express LPA receptor subtypes LPA1, LPA2, and LPA3 on mRNA and protein level. LPA activation of C13NJ cells induced Rho and extracellular signal-regulated kinase activation and enhanced cellular ATP production. In addition, LPA induced process retraction, cell spreading, led to pronounced changes of the actin cytoskeleton and reduced cell motility, which could be reversed by inhibition of Rho activity. To get an indication about LPA-induced global alterations in protein expression patterns a 2-D DIGE/LC-ESI-MS proteomic approach was applied. On the proteome level the most prominent changes in response to LPA were observed for glycolytic enzymes and proteins regulating cell motility and/or cytoskeletal dynamics. The present findings suggest that naturally occurring LPA is a potent regulator of microglia biology. This might be of particular relevance in the pathophysiological context of neurodegenerative disorders where LPA concentrations can be significantly elevated in the CNS. PMID:19899077

  18. The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway

    PubMed Central

    Ward, Yvona; Yap, Seow-Fong; Ravichandran, V.; Matsumura, Fumio; Ito, Masaaki; Spinelli, Beth; Kelly, Kathleen

    2002-01-01

    The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) α and β. Gem binds ROKβ independently of RhoA in the ROKβ coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKβ-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKβ. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKβ- and Rad opposed ROKα-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKβ containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKβ is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK. PMID:11956230

  19. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  20. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    PubMed

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.

    PubMed

    Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L

    2013-04-16

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  3. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea

    PubMed Central

    Szarama, Katherine B.; Gavara, Núria; Petralia, Ronald S.; Kelley, Matthew W.; Chadwick, Richard S.

    2012-01-01

    Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure. PMID:22573615

  4. Selective Blockade of Cytoskeletal Actin Remodeling Reduces Experimental Choroidal Neovascularization

    PubMed Central

    Caballero, Sergio; Yang, Ru; Chaqour, Brahim

    2011-01-01

    Purpose. The efficacy of the peptide Ac-EEED on reducing cell adhesion and proliferation in vitro and choroidal neovascularization (CNV) in vivo was examined. Methods. The peptide chimera containing the Ac-EEED sequence was chemically linked to the N terminus of the XMTM delivery peptide from the Erns viral surface protein. Ac-EEED or scrambled control peptide (SCRAM) was added to cultures of vascular smooth muscle cells, pericytes, endothelial cells, and fibroblasts, and adhesion, growth, and matrix production was assessed. Ac-EEED or SCRAM was injected into the vitreous of mice undergoing laser rupture of Bruch's membrane to induce CNV and lesion volume, neovascularization and lesion fibrosis were assessed. Results. Ac-EEED–induced changes in the morphology of the actin cytoskeleton by inhibiting polymerization of G-actin and disrupting the formation of stress fibers. Pretreatment with Ac-EEED resulted in endothelial cells becoming less responsive to the mitogenic and pro-adhesive effects of VEGF. Ac-EEED treatment in fibroblasts reduced TGF-β–induced fibrosis as assessed by decreased levels of connective tissue growth factor, cysteine-rich 61, collagen I (COL1A2), and collagen III (COL3A1). CNV lesion size and fibrosis were reduced in a concentration-dependent manner by up to 60%. Conclusions. In vitro studies showed that Ac-EEED affects a broad range of mechanical properties associated with cytoskeletal actin to reduce growth factor effects. The utilization of Ac-EEED in vivo may offer a novel therapeutic strategy by both suppressed neovessel growth and curtailing fibrosis typically associated with the involutional stage of CNV. PMID:21178140

  5. Damage effects of protoporphyrin IX - sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells.

    PubMed

    Zhao, Xia; Liu, Quanhong; Tang, Wei; Wang, Xiaobing; Wang, Pan; Gong, Liyan; Wang, Yuan

    2009-01-01

    In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34 MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80 microM PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80 microM PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.

  6. Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem.

    PubMed

    Rüb, U; Del Tredici, K; Schultz, C; de Vos, R A I; Jansen Steur, E N H; Arai, K; Braak, H

    2002-02-01

    The medial and lateral parabrachial nuclei (MPB, LPB), the gigantocellular reticular nucleus (GI), the raphes magnus (RMG) and raphes obscurus nuclei (ROB), as well as the intermediate reticular zone (IRZ) represent pivotal subordinate brainstem centres, all of which control autonomic functions. In this study, we investigated the occurrence and severity of the neuronal and glial cytoskeletal pathology in these six brainstem nuclei from 17 individuals with clinically diagnosed and neuropathologically confirmed progressive supranuclear palsy (PSP). The association between the severity of the pathology and the duration of the disease was investigated by means of correlation analysis. The brainstem nuclei in all of the PSP cases were affected by the neuronal cytoskeletal pathology, with the IRZ and GI regularly showing severe involvement, the MPB, RMG, and ROB marked involvement, and the LPB mild involvement. In the six nuclear greys studied, glial cells undergo alterations of their cytoskeleton on an irregular basis, whereby diseased oligodendrocytes predominantly presented as coiled bodies and affected astrocytes as thorn-shaped astrocytes. In all six nuclei, the severity of the neuronal or glial cytoskeletal pathology showed no correlation with the duration of PSP. In view of their functional role, the neuronal pathology in the nuclei studied offers a possible explanation for the autonomic dysfunctions that eventually develop in the course of PSP.

  7. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  8. Elucidating the structure and function of S100 proteins in membranes

    NASA Astrophysics Data System (ADS)

    Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.

    2006-01-01

    S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.

  9. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability

    PubMed Central

    Deerinck, Thomas J.; Chen, Yibang; He, John C.; Ellisman, Mark H.; Iyengar, Ravi

    2017-01-01

    Kidney podocytes’ function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology. PMID:28301477

  10. WASp Family Verprolin-homologous Protein-2 (WAVE2) and Wiskott-Aldrich Syndrome Protein (WASp) Engage in Distinct Downstream Signaling Interactions at the T Cell Antigen Receptor Site*

    PubMed Central

    Pauker, Maor H.; Reicher, Barak; Joseph, Noah; Wortzel, Inbal; Jakubowicz, Shlomi; Noy, Elad; Perl, Orly; Barda-Saad, Mira

    2014-01-01

    T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins. PMID:25342748

  11. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  12. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis.

    PubMed

    Medjkane, Souhila; Perez-Sanchez, Cristina; Gaggioli, Cedric; Sahai, Erik; Treisman, Richard

    2009-03-01

    Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors and regulate transcriptional activation through myocardin-related transcription factors (MRTFs), which are co-activators for serum response factor (SRF). We used RNA interference to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, in which basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduced cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis. MRTF-depleted tumour cell xenografts showed reduced cell motility but proliferated normally. Tumour cells depleted of MRTF or SRF failed to colonize the lung from the bloodstream, being unable to persist after their arrival in the lung. Only a few genes show MRTF-dependent expression in both cell lines. Two of these, MYH9 (NMHCIIa) and MYL9 (MLC2), are also required for invasion and lung colonization. Conversely, expression of activated MAL/MRTF-A increases lung colonization by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus require Rho-dependent nuclear signalling through the MRTF-SRF network.

  13. Linking TGF-beta-mediated Cdc25A inhibition and cytoskeletal regulation through RhoA/p160(ROCK) signaling.

    PubMed

    Brown, Kimberly; Bhowmick, Neil A

    2004-04-01

    Transforming growth factor-beta (TGF-beta) can mediate G(1)/S cell-cycle inhibition and changes in the cytoskeletal organization through multiple parallel downstream signaling pathways. Recent findings regarding TGF-beta-mediated cell-cycle checkpoint control and epithelial to mesenchymal transition have converged to the RhoA/p160(ROCK) signaling pathway. The activation of TGF-beta-mediated p160(ROCK)rapidly inhibits the Cdc25A phosphatase as a component of the G(1)/S checkpoint control at the time cytoskeletal re-organization occurs. This can be likened to the ability to preserve genomic integrity in circumstances of genotoxic stress. The inactivation of the RhoA/p160(ROCK) pathway may be a mechanism by which cancer cells bypass growth inhibition even in the presence of TGF-beta.

  14. A growing family: the expanding universe of the bacterial cytoskeleton.

    PubMed

    Ingerson-Mahar, Michael; Gitai, Zemer

    2012-01-01

    Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis.

    PubMed

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M; Sparks, J Alan; Blancaflor, Elison B

    2008-08-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs.

  16. A microstructural approach to cytoskeletal mechanics based on tensegrity

    NASA Technical Reports Server (NTRS)

    Stamenovic, D.; Fredberg, J. J.; Wang, N.; Butler, J. P.; Ingber, D. E.

    1996-01-01

    Mechanical properties of living cells are commonly described in terms of the laws of continuum mechanics. The purpose of this report is to consider the implications of an alternative approach that emphasizes the discrete nature of stress bearing elements in the cell and is based on the known structural properties of the cytoskeleton. We have noted previously that tensegrity architecture seems to capture essential qualitative features of cytoskeletal shape distortion in adherent cells (Ingber, 1993a; Wang et al., 1993). Here we extend those qualitative notions into a formal microstructural analysis. On the basis of that analysis we attempt to identify unifying principles that might underlie the shape stability of the cytoskeleton. For simplicity, we focus on a tensegrity structure containing six rigid struts interconnected by 24 linearly elastic cables. Cables carry initial tension ("prestress") counterbalanced by compression of struts. Two cases of interconnectedness between cables and struts are considered: one where they are connected by pin-joints, and the other where the cables run through frictionless loops at the junctions. At the molecular level, the pinned structure may represent the case in which different cytoskeletal filaments are cross-linked whereas the looped structure represents the case where they are free to slip past one another. The system is then subjected to uniaxial stretching. Using the principal of virtual work, stretching force vs. extension and structural stiffness vs. stretching force relationships are calculated for different prestresses. The stiffness is found to increase with increasing prestress and, at a given prestress, to increase approximately linearly with increasing stretching force. This behavior is consistent with observations in living endothelial cells exposed to shear stresses (Wang & Ingber, 1994). At a given prestress, the pinned structure is found to be stiffer than the looped one, a result consistent with data on

  17. The Drosophila TIPE family member Sigmar interacts with the Ste20-like kinase Misshapen and modulates JNK signaling, cytoskeletal remodeling and autophagy

    PubMed Central

    Chittaranjan, Suganthi; Xu, Jing; Kuzyk, Michael; Dullat, Harpreet K.; Wilton, James; DeVorkin, Lindsay; Lebovitz, Chandra; Morin, Gregg B.; Marra, Marco A.; Gorski, Sharon M.

    2015-01-01

    TNFAIP8 and other mammalian TIPE family proteins have attracted increased interest due to their associations with disease-related processes including oncogenic transformation, metastasis, and inflammation. The molecular and cellular functions of TIPE family proteins are still not well understood. Here we report the molecular and genetic characterization of the Drosophila TNFAIP8 homolog, CG4091/sigmar. Previous gene expression studies revealed dynamic expression of sigmar in larval salivary glands prior to histolysis. Here we demonstrate that in sigmar loss-of-function mutants, the salivary glands are morphologically abnormal with defects in the tubulin network and decreased autophagic flux. Sigmar localizes subcellularly to microtubule-containing projections in Drosophila S2 cells, and co-immunoprecipitates with the Ste20-like kinase Misshapen, a regulator of the JNK pathway. Further, the Drosophila TNF ligand Eiger can induce sigmar expression, and sigmar loss-of-function leads to altered localization of pDJNK in salivary glands. Together, these findings link Sigmar to the JNK pathway, cytoskeletal remodeling and autophagy activity during salivary gland development, and provide new insights into TIPE family member function. PMID:25836674

  18. Apocrine Secretion in Drosophila Salivary Glands: Subcellular Origin, Dynamics, and Identification of Secretory Proteins

    PubMed Central

    Farkaš, Robert; Ďatková, Zuzana; Mentelová, Lucia; Löw, Péter; Beňová-Liszeková, Denisa; Beňo, Milan; Sass, Miklós; Řehulka, Pavel; Řehulková, Helena; Raška, Otakar; Kováčik, Lubomír; Šmigová, Jana; Raška, Ivan; Mechler, Bernard M.

    2014-01-01

    In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity. PMID:24732043

  19. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  20. A cytoskeletal activator and inhibitor are downstream targets of the frizzled/starry night planar cell polarity pathway in the Drosophila epidermis.

    PubMed

    Adler, Paul N

    2018-04-10

    The frizzled pathway regulates the planar polarity of epithelial cells. In insects this is manifested by the polarity of cuticular structures such as hairs (trichomes) and sensory bristles. A variety of evidence has established that this is achieved by regulating the subcellular location for activating the cytoskeleton in the epithelial cells. How this is accomplished is still poorly understood. In the best-studied tissue, the Drosophila pupal wing two important cytoskeletal regulators have been identified. One, shavenoid (sha), appears to be an activator while the second multiple wing hairs (mwh), appears to be an inhibitor. In vitro biochemistry has confirmed that the Multiple Wing Hairs protein inhibits the elongation of F-actin chains and surprisingly that it also bundles F-actin. These two activities can explain the multifaceted mwh mutant phenotype. Copyright © 2018. Published by Elsevier Ltd.

  1. The Accelerated Late Adsorption of Pulmonary Surfactant

    PubMed Central

    2011-01-01

    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351

  2. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  3. The Brainstem Tau Cytoskeletal Pathology of Alzheimer's Disease: A Brief Historical Overview and Description of its Anatomical Distribution Pattern, Evolutional Features, Pathogenetic and Clinical Relevance.

    PubMed

    Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Turco, Domenico Del; Seidel, Kay; Dunnen, Wilfred den; Korf, Horst-Werner

    2016-01-01

    The human brainstem is involved in the regulation of the sleep/waking cycle and normal sleep architectonics and is crucial for the performance of a variety of somatomotor, vital autonomic, oculomotor, vestibular, auditory, ingestive and somatosensory functions. It harbors the origins of the ascending dopaminergic, cholinergic, noradrenergic, serotonergic systems, as well the home base of the descending serotonergic system. In contrast to the cerebral cortex the affection of the brainstem in Alzheimer's disease (AD) by the neurofibrillary or tau cytoskeletal pathology was recognized only approximately fourty years ago in initial brainstem studies. Detailed pathoanatomical investigations of silver stained or tau immunostained brainstem tissue sections revealed nerve cell loss and prominent ADrelated cytoskeletal changes in the raphe nuclei, locus coeruleus, and in the compact parts of the substantia nigra and pedunculopontine nucleus. An additional conspicuous AD-related cytoskeletal pathology was also detected in the auditory brainstem system of AD patients (i.e. inferior colliculus, superior olive, dorsal cochlear nucleus), in the oculomotor brainstem network (i.e. rostral interstitial nucleus of the medial longitudinal fascicle, Edinger-Westphal nucleus, reticulotegmental nucleus of pons), autonomic system (i.e. central and periaqueductal grays, parabrachial nuclei, gigantocellular reticular nucleus, dorsal motor vagal and solitary nuclei, intermediate reticular zone). The alterations in these brainstem nuclei offered for the first time adequate explanations for a variety of less understood disease symptoms of AD patients: Parkinsonian extrapyramidal motor signs, depression, hallucinations, dysfunctions of the sleep/wake cycle, changes in sleeping patterns, attentional deficits, exaggerated pupil dilatation, autonomic dysfunctions, impairments of horizontal and vertical saccades, dysfunctional smooth pursuits. The very early occurrence of the AD

  4. BAR domain proteins regulate Rho GTPase signaling.

    PubMed

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  5. Neuronal ELAV proteins enhance mRNA stability by a PKCα-dependent pathway

    PubMed Central

    Pascale, Alessia; Amadio, Marialaura; Scapagnini, Giovanni; Lanni, Cristina; Racchi, Marco; Provenzani, Alessandro; Govoni, Stefano; Alkon, Daniel L.; Quattrone, Alessandro

    2005-01-01

    More than 1 in 20 human genes bear in the mRNA 3′ UTR a specific motif called the adenine- and uridine-rich element (ARE), which posttranscriptionally determines its expression in response to cell environmental signals. ELAV (embryonic lethal abnormal vision) proteins are the only known ARE-binding factors that are able to stabilize the bound mRNAs, thereby positively controlling gene expression. Here, we show that in human neuroblastoma SH-SY5Y cells, neuron-specific ELAV (nELAV) proteins (HuB, HuC, and HuD) are up-regulated and redistributed by 15 min of treatment with the activators of PKC phorbol esters and bryostatin-1. PKC stimulation also induces nELAV proteins to colocalize with the translocated PKCα isozyme preferentially on the cytoskeleton, with a concomitant increase of nELAV threonine phosphorylation. The same treatment promotes stabilization of growth-associated protein 43 (GAP-43) mRNA, a well known nELAV target, and induces an early increase in GAP-43 protein concentration, again only in the cytoskeletal cell fraction. Genetic or pharmacological inactivation of PKCα abolishes nELAV protein cytoskeletal up-regulation, GAP-43 mRNA stabilization, and GAP-43 protein increase, demonstrating the primary role of this specific PKC isozyme in the cascade of nELAV recruitment. Finally, in vivo PKC activation is associated with an up-regulation of nELAV proteins in the hippocampal rat brain. These findings suggest a model for gene expression regulation by nELAV proteins through a PKCα-dependent pathway that is relevant for the cellular programs in which ARE-mediated control plays a pivotal role. PMID:16099831

  6. WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich syndrome protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site.

    PubMed

    Pauker, Maor H; Reicher, Barak; Joseph, Noah; Wortzel, Inbal; Jakubowicz, Shlomi; Noy, Elad; Perl, Orly; Barda-Saad, Mira

    2014-12-12

    T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Dystonin/Bpag1 is a necessary endoplasmic reticulum/nuclear envelope protein in sensory neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Kevin G.; University of Ottawa Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario; Kothary, Rashmi

    2008-09-10

    Dystonin/Bpag1 proteins are cytoskeletal linkers whose loss of function in mice results in a hereditary sensory neuropathy with a progressive loss of limb coordination starting in the second week of life. These mice, named dystonia musculorum (dt), succumb to the disease and die of unknown causes prior to sexual maturity. Previous evidence indicated that cytoskeletal defects in the axon are a primary cause of dt neurodegeneration. However, more recent data suggests that other factors may be equally important contributors to the disease process. In the present study, we demonstrate perikaryal defects in dorsal root ganglion (DRG) neurons at stages precedingmore » the onset of loss of limb coordination in dt mice. Abnormalities include alterations in endoplasmic reticulum (ER) chaperone protein expression, indicative of an ER stress response. Dystonin in sensory neurons localized in association with the ER and nuclear envelope (NE). A fusion protein ofthe dystonin-a2 isoform, which harbors an N-terminal transmembrane domain, associated with and reorganized the ER in cell culture. This isoform also interacts with the NE protein nesprin-3{alpha}, but not nesprin-3{beta}. Defects in dt mice, as demonstrated here, may ultimately result in pathogenesis involving ER dysfunction and contribute significantly to the dt phenotype.« less

  8. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix. PMID:25550503

  9. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR.

    PubMed

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-13

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix.

  10. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    PubMed

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum.

    PubMed

    Soares Moretti, Ana Iochabel; Martins Laurindo, Francisco Rafael

    2017-03-01

    Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets. Copyright © 2016. Published by Elsevier Inc.

  12. Non-Equilibrium Cytoquake Dynamics in Cytoskeletal Remodeling and Stabilization

    PubMed Central

    Alencar, Adriano Mesquita; Ferraz, Mariana Sacrini Ayres; Park, Chan Young; Millet, Emil; Trepat, Xavier; Butler, James P.; Fredberg, Jeffrey J.

    2016-01-01

    The cytoskeleton (CSK) is a tensed fiber framework that supports, shapes and stabilizes the cell. The CSK is in a constant state of remodeling, moreover, which is an active non-equilibrium thermodynamic process. We report here that cytoskeletal remodeling involves reconfigurations that are not only sudden but also are transmitted to great distances within the cell in a fashion reminiscent of quakes in the Earth's crust. Remarkably, these events in the cell conform both qualitatively and quantitatively to empirical laws typical of earthquakes, including hierarchical fault structures, cumulative energy distributions following the Gutenberg-Richter law, and rate of after-shocks following Omori's law. While it is well-established that remodeling and stabilization of the cytoskeleton are non-equilibrium process, these new unanticipated observations establish that these processes are also remarkably non-local and strongly cooperative. PMID:27722665

  13. A Class I ADP-Ribosylation Factor GTPase-Activating Protein Is Critical for Maintaining Directional Root Hair Growth in Arabidopsis1[W][OA

    PubMed Central

    Yoo, Cheol-Min; Wen, Jiangqi; Motes, Christy M.; Sparks, J. Alan; Blancaflor, Elison B.

    2008-01-01

    Membrane trafficking and cytoskeletal dynamics are important cellular processes that drive tip growth in root hairs. These processes interact with a multitude of signaling pathways that allow for the efficient transfer of information to specify the direction in which tip growth occurs. Here, we show that AGD1, a class I ADP ribosylation factor GTPase-activating protein, is important for maintaining straight growth in Arabidopsis (Arabidopsis thaliana) root hairs, since mutations in the AGD1 gene resulted in wavy root hair growth. Live cell imaging of growing agd1 root hairs revealed bundles of endoplasmic microtubules and actin filaments extending into the extreme tip. The wavy phenotype and pattern of cytoskeletal distribution in root hairs of agd1 partially resembled that of mutants in an armadillo repeat-containing kinesin (ARK1). Root hairs of double agd1 ark1 mutants were more severely deformed compared with single mutants. Organelle trafficking as revealed by a fluorescent Golgi marker was slightly inhibited, and Golgi stacks frequently protruded into the extreme root hair apex of agd1 mutants. Transient expression of green fluorescent protein-AGD1 in tobacco (Nicotiana tabacum) epidermal cells labeled punctate bodies that partially colocalized with the endocytic marker FM4-64, while ARK1-yellow fluorescent protein associated with microtubules. Brefeldin A rescued the phenotype of agd1, indicating that the altered activity of an AGD1-dependent ADP ribosylation factor contributes to the defective growth, organelle trafficking, and cytoskeletal organization of agd1 root hairs. We propose that AGD1, a regulator of membrane trafficking, and ARK1, a microtubule motor, are components of converging signaling pathways that affect cytoskeletal organization to specify growth orientation in Arabidopsis root hairs. PMID:18539780

  14. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  15. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations.

    PubMed

    Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Shaw, David E

    2016-01-01

    Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  16. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  17. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doller, Anke; Badawi, Amel; Schmid, Tobias

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuRmore » amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin

  18. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion.

    PubMed

    Young, Adelaide Ij; Timpson, Paul; Gallego-Ortega, David; Ormandy, Christopher J; Oakes, Samantha R

    2017-12-21

    Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.

  19. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  20. The Drosophila TIPE family member Sigmar interacts with the Ste20-like kinase Misshapen and modulates JNK signaling, cytoskeletal remodeling and autophagy.

    PubMed

    Chittaranjan, Suganthi; Xu, Jing; Kuzyk, Michael; Dullat, Harpreet K; Wilton, James; DeVorkin, Lindsay; Lebovitz, Chandra; Morin, Gregg B; Marra, Marco A; Gorski, Sharon M

    2015-04-02

    TNFAIP8 and other mammalian TIPE family proteins have attracted increased interest due to their associations with disease-related processes including oncogenic transformation, metastasis, and inflammation. The molecular and cellular functions of TIPE family proteins are still not well understood. Here we report the molecular and genetic characterization of the Drosophila TNFAIP8 homolog, CG4091/sigmar. Previous gene expression studies revealed dynamic expression of sigmar in larval salivary glands prior to histolysis. Here we demonstrate that in sigmar loss-of-function mutants, the salivary glands are morphologically abnormal with defects in the tubulin network and decreased autophagic flux. Sigmar localizes subcellularly to microtubule-containing projections in Drosophila S2 cells, and co-immunoprecipitates with the Ste20-like kinase Misshapen, a regulator of the JNK pathway. Further, the Drosophila TNF ligand Eiger can induce sigmar expression, and sigmar loss-of-function leads to altered localization of pDJNK in salivary glands. Together, these findings link Sigmar to the JNK pathway, cytoskeletal remodeling and autophagy activity during salivary gland development, and provide new insights into TIPE family member function. © 2015. Published by The Company of Biologists Ltd.

  1. Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots.

    PubMed

    Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan

    2010-10-01

    The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.

  2. Highly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping

    PubMed Central

    Chen, Qiwen; Liu, Ting; Chen, Gang

    2011-01-01

    Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification. PMID:22379392

  3. α-Crystallins Are Small Heat Shock Proteins: Functional and Structural Properties.

    PubMed

    Tikhomirova, T S; Selivanova, O M; Galzitskaya, O V

    2017-02-01

    During its life cycle, a cell can be subjected to various external negative effects. Many proteins provide cell protection, including small heat shock proteins (sHsp) that have chaperone-like activity. These proteins have several important functions involving prevention of apoptosis and retention of cytoskeletal integrity; also, sHsp take part in the recovery of enzyme activity. The action mechanism of sHsp is based on the binding of hydrophobic regions exposed to the surface of a molten globule. α-Crystallins presented in chordate cells as two αA- and αB-isoforms are the most studied small heat shock proteins. In this review, we describe the main functions of α-crystallins, features of their secondary and tertiary structures, and examples of their partners in protein-protein interactions.

  4. Effects of cytoskeletal disruption on transport, structure, and rheology within mammalian cells

    PubMed Central

    Weihs, Daphne; Mason, Thomas G.; Teitell, Michael A.

    2009-01-01

    Quantification of cellular responses to stimuli is challenging. Cells respond to changing external conditions through internal structural and compositional and functional modifications, thereby altering their transport and mechanical properties. By properly interpreting particle-tracking microrheology, we evaluate the response of live cells to cytoskeletal disruption mediated by the drug nocodazole. Prior to administering the drug, the particles exhibit an apparently diffusive behavior that is actually a combination of temporally heterogeneous ballistic and caged motion. Selectively depolymerizing microtubules with the drug causes actively crawling cells to halt, providing a means for assessing drug efficacy, and making the caged motion of the probes readily apparent. PMID:19816550

  5. Induction of Plant Curvature by Magnetophoresis and Cytoskeletal Changes during Root Graviresponse

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.; Kuznetsov, Oleg A.; Blancaflor, Eilson B.

    1996-01-01

    High gradient magnetic fields (HGMF) induce curvature in roots and shoots. It is considered that this response is likely to be based on the intracellular displacement of bulk starch (amyloplasts) by the ponderomotive force generated by the HGMF. This process is called magnetophoresis. The differential elongation during the curvature along the concave and convex flanks of growing organs may be linked to the microtubular and/or microfilament cytoskeleton. The possible existence of an effect of the HGMF on the cytoskeleton was tested for, but none was found. The application of cytoskeletal stabilizers or depolymerizers showed that neither microtubules, nor microfilaments, are involved in the graviresponse.

  6. CONSERVED ROLES FOR CYTOSKELETAL COMPONENTS IN DETERMINING LATERALITY

    PubMed Central

    McDowell, Gary S.; Lemire, Joan M.; Paré, Jean-Francois; Cammarata, Garrett; Lowery, Laura Anne; Levin, Michael

    2016-01-01

    SUMMARY Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently “rescued” by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking

  7. Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Sanjay, Archana

    2010-03-01

    The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In ex vivo cultures, M-CSF and receptor activator of nuclear factor-kappaB ligand-mediated differentiation of bone marrow precursors from Cbl(YF/YF) mice generated increased number of osteoclasts; however, osteoclast numbers in Cbl(YF/YF) cultures were unchanged with increasing doses of M-CSF. We found that Cbl(YF/YF) osteoclasts have enhanced intrinsic ability to survive, and this response was further augmented upon exposure to M-CSF. Treatment of osteoclasts with M-CSF-induced actin reorganization and lamellipodia formation in wild-type osteoclasts; however, in Cbl(YF/YF) osteoclasts lamellipodia formation was compromised. Collectively, these results indicate that abrogation of the Cbl-PI3K interaction, although not affecting M-CSF-induced proliferation and differentiation of precursors, is required for regulation of survival and actin cytoskeletal reorganization of mature osteoclasts.

  8. Investigation of carbohydrate and protein metabolism in the digestive organs of the rabbit under the combined influence of vibration, acceleration and irradiation

    NASA Technical Reports Server (NTRS)

    Yuy, R. I.

    1975-01-01

    During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.

  9. GDP-GTP exchange processes of G{alpha}i1 protein are accelerated/decelerated depending on the type and the concentration of added detergents.

    PubMed

    Kubota, Makoto; Tanaka, Takeshi; Kohno, Toshiyuki; Wakamatsu, Kaori

    2009-12-01

    Although detergents have been widely used in G-protein studies to increase solubility and stability of the protein, we noticed that detergents modulate the nucleotide-binding properties of G-proteins. Hence, we analysed the effects of detergents on guanine nucleotide exchange reactions of Galpha(i1). Lubrol PX, a non-ionic detergent, which has been widely used in nucleotide dissociation/binding assays, was found to accelerate both GDP dissociation and GTPgammaS binding from/to Galpha in parallel at above its critical micelle concentration (cmc). Sodium cholate, an anionic detergent, which have been used to extract G-proteins from animal tissues, decelerated and accelerated GDP dissociation below and above its cmc, respectively. Surprisingly, micellar cholate decelerated GTPgammaS binding, and the binding rate constant was decreased by three orders of magnitude in the presence of 2% cholate. These results demonstrate that the guanine nucleotide exchange reactions of Galpha(i1) are drastically modulated by detergents differently depending on the type and the state (monomeric or micellar) of the detergents and that dissociation of GDP from Galpha(i1) does not necessarily lead to immediate binding of GTP to Galpha(i1) in some cases. These effects of detergents on G-proteins must be taken into account in G-protein experiments.

  10. Molecular Characterization of abLIM, a Novel Actin-binding and Double Zinc Finger Protein

    PubMed Central

    Roof, Dorothy J.; Hayes, Annmarie; Adamian, Michael; Chishti, Athar H.; Li, Tiansen

    1997-01-01

    Molecules that couple the actin-based cytoskeleton to intracellular signaling pathways are central to the processes of cellular morphogenesis and differentiation. We have characterized a novel protein, the actin-binding LIM (abLIM) protein, which could mediate such interactions between actin filaments and cytoplasmic targets. abLIM protein consists of a COOH-terminal cytoskeletal domain that is fused to an NH2-terminal domain consisting of four double zinc finger motifs. The cytoskeletal domain is ∼50% identical to erythrocyte dematin, an actin-bundling protein of the red cell membrane skeleton, while the zinc finger domains conform to the LIM motif consensus sequence. In vitro expression studies demonstrate that abLIM protein can bind to F-actin through the dematin-like domain. Transcripts corresponding to three distinct isoforms have a widespread tissue distribution. However, a polypeptide corresponding to the full-length isoform is found exclusively in the retina and is enriched in biochemical extracts of retinal rod inner segments. abLIM protein also undergoes extensive phosphorylation in light-adapted retinas in vivo, and its developmental expression in the retina coincides with the elaboration of photoreceptor inner and outer segments. Based on the composite primary structure of abLIM protein, actin-binding capacity, potential regulation via phosphorylation, and isoform expression pattern, we speculate that abLIM may play a general role in bridging the actin-based cytoskeleton with an array of potential LIM protein-binding partners. The developmental time course of abLIM expression in the retina suggests that the retina-specific isoform may have a specialized role in the development or elaboration of photoreceptor inner and outer segments. PMID:9245787

  11. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress.

    PubMed

    Mészáros, István; Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-08-15

    The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT - ) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT - virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT - viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment. IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT - PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more severe and

  12. The SAT Protein of Porcine Parvovirus Accelerates Viral Spreading through Induction of Irreversible Endoplasmic Reticulum Stress

    PubMed Central

    Tóth, Renáta; Olasz, Ferenc; Tijssen, Peter; Zádori, Zoltán

    2017-01-01

    ABSTRACT The SAT protein (SATp) of porcine parvovirus (PPV) accumulates in the endoplasmic reticulum (ER), and SAT deletion induces the slow-spreading phenotype. The in vitro comparison of the wild-type Kresse strain and its SAT knockout (SAT−) mutant revealed that prolonged cell integrity and late viral release are responsible for the slower spreading of the SAT− virus. During PPV infection, regardless of the presence or absence of SATp, the expression of downstream ER stress response proteins (Xbp1 and CHOP) was induced. However, in the absence of SATp, significant differences in the quantity and the localization of CHOP were detected, suggesting a role of SATp in the induction of irreversible ER stress in infected cells. The involvement of the induction of irreversible ER stress in porcine testis (PT) cell necrosis and viral egress was confirmed by treatment of infected cells by ER stress-inducing chemicals (MG132, dithiothreitol, and thapsigargin), which accelerated the egress and spreading of both the wild-type and the SAT− viruses. UV stress induction had no beneficial effect on PPV infection, underscoring the specificity of ER stress pathways in the process. However, induction of CHOP and its nuclear translocation cannot alone be responsible for the biological effect of SAT, since nuclear CHOP could not complement the lack of SAT in a coexpression experiment. IMPORTANCE SATp is encoded by an alternative open reading frame of the PPV genome. Earlier we showed that SATp of the attenuated PPV NADL-2 strain accumulates in the ER and accelerates virus release and spreading. Our present work revealed that slow spreading is a general feature of SAT− PPVs and is the consequence of prolonged cell integrity. PPV infection induced ER stress in infected cells regardless of the presence of SATp, as demonstrated by the morphological changes of the ER and expression of the stress response proteins Xbp1 and CHOP. However, the presence of SATp made the ER stress more

  13. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis.

    PubMed

    Jamerson, Melissa; Schmoyer, Jacqueline A; Park, Jay; Marciano-Cabral, Francine; Cabral, Guy A

    2017-03-01

    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis.

  14. Reduced Levels of Chloroplast FtsH Protein in Tobacco Mosaic Virus–Infected Tobacco Leaves Accelerate the Hypersensitive Reaction

    PubMed Central

    Seo, Shigemi; Okamoto, Masaji; Iwai, Takayoshi; Iwano, Megumi; Fukui, Kiichi; Isogai, Akira; Nakajima, Nobuyoshi; Ohashi, Yuko

    2000-01-01

    In tobacco cultivars resistant to tobacco mosaic virus (TMV), infection results in the death of the infected cells accompanying the formation of necrotic lesions. To identify the genes involved in this hypersensitive reaction, we isolated the cDNA of tobacco DS9, the transcript of which decreases before the appearance of necrotic lesions. The DS9 gene encodes a chloroplastic homolog of bacterial FtsH protein, which serves to maintain quality control of some cytoplasmic and membrane proteins. A large quantity of DS9 protein was found in healthy leaves, whereas the quantity of DS9 protein in infected leaves decreased before the lesions appeared. In transgenic tobacco plants containing less and more DS9 protein than wild-type plants, the necrotic lesions induced by TMV were smaller and larger, respectively, than those on wild-type plants. These results suggest that a decrease in the level of DS9 protein in TMV-infected cells, resulting in a subsequent loss of function of the chloroplasts, accelerates the hypersensitive reaction. PMID:10852937

  15. Immunopurification of adenomatous polyposis coli (APC) proteins

    PubMed Central

    2013-01-01

    Background The adenomatous polyposis coli (APC) tumour suppressor gene encodes a 2843 residue (310 kDa) protein. APC is a multifunctional protein involved in the regulation of β-catenin/Wnt signalling, cytoskeletal dynamics and cell adhesion. APC mutations occur in most colorectal cancers and typically result in truncation of the C-terminal half of the protein. Results In order to investigate the biophysical properties of APC, we have generated a set of monoclonal antibodies which enable purification of recombinant forms of APC. Here we describe the characterisation of these anti-APC monoclonal antibodies (APC-NT) that specifically recognise endogenous APC both in solution and in fixed cells. Full-length APC(1–2843) and cancer-associated, truncated APC proteins, APC(1–1638) and APC(1–1311) were produced in Sf9 insect cells. Conclusions Recombinant APC proteins were purified using a two-step affinity approach using our APC-NT antibodies. The purification of APC proteins provides the basis for detailed structure/function analyses of full-length, cancer-truncated and endogenous forms of the protein. PMID:24156781

  16. Combined effects of physiologically relevant disturbed wall shear stress and glycated albumin on endothelial cell functions associated with inflammation, thrombosis and cytoskeletal dynamics.

    PubMed

    Maria, Zahra; Yin, Wei; Rubenstein, David Alan

    2014-07-01

    Diabetes mellitus is a major risk factor in the development of cardiovascular diseases (CVDs). The presence of advanced glycation end-products (AGEs) promotes CVDs by upregulating endothelial cell (EC) inflammatory and thrombotic responses, in a similar manner as disturbed shear stress. However, the combined effect of disturbed shear stress and AGEs on EC function has yet to be determined. Our goal was to evaluate these effects on EC responses. ECs were incubated with AGEs for 5 days. ECs were then subjected to physiological or pathological shear stress. Cell metabolic activity, surface expression of intercellular adhesion molecule-1, thrombomodulin, connexin-43 and caveolin-1, and cytoskeleton organization were quantified. The results show that irreversibly glycated albumin and pathological shear stress increased EC metabolic activity, and upregulated and downregulated the EC surface expression of intercellular adhesion molecule-1 and thrombomodulin, respectively. Expression of connexin-43, caveolin-1 and cytoskeletal organization was independent of shear stress; however, the presence of irreversibly glycated AGEs markedly increased connexin-43, and decreased caveolin-1 expression and actin cytoskeletal connectivity. Our data suggest that irreversibly glycated albumin and disturbed shear stress could promote CVD pathogenesis by enhancing EC inflammatory and thrombotic responses, and through the deterioration of the cytoskeletal organization.

  17. Alpha-Helical Protein Domains Unify Strength and Robustness through Hierarchical Nanostructures

    DTIC Science & Technology

    2009-01-23

    backbone atom (hydrogen donor) of peptide i + 4 in the polypeptide chain. Consequently, at each convolution , 3.5 H- bonds are found in a parallel...signaling and deformation behavior of cytoskeletal protein networks in cells (e.g. intermediate filaments vimentin and lamin as well as actin [7, 8... convolution . The Hierarchical Bell model enables one to predict the strength of different hierarchical bond arrangements as a function of the

  18. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer.

    PubMed

    Birukova, Anna A; Arce, Fernando T; Moldobaeva, Nurgul; Dudek, Steven M; Garcia, Joe G N; Lal, Ratnesh; Birukov, Konstantin G

    2009-03-01

    Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.

  19. Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan

    2012-01-01

    Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951

  20. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.

  1. Amyloid-β protein precursor regulates phosphorylation and cellular compartmentalization of microtubule associated protein tau.

    PubMed

    Nizzari, Mario; Barbieri, Federica; Gentile, Maria Teresa; Passarella, Daniela; Caorsi, Calentina; Diaspro, Alberto; Taglialatela, Maurizio; Pagano, Aldo; Colucci-D'Amato, Luca; Florio, Tullio; Russo, Claudio

    2012-01-01

    Tau is a multifunctional protein detected in different cellular compartments in neuronal and non-neuronal cells. When hyperphosphorylated and aggregated in atrophic neurons, tau is considered the culprit for neuronal death in familial and sporadic tauopathies. With regards to Alzheimer's disease (AD) pathogenesis, it is not yet established whether entangled tau represents a cause or a consequence of neurodegeneration. In fact, it is unquestionably accepted that amyloid-β protein precursor (AβPP) plays a pivotal role in the genesis of the disease, and it is postulated that the formation of toxic amyloid-β peptides from AβPP is the primary event that subsequently induces abnormal tau phosphorylation. In this work, we show that in the brain of AD patients there is an imbalance between the nuclear and the cytoskeletal pools of phospho-tau. We observed that in non-AD subjects, there is a stable pool of phospho-tau which remains strictly confined to neuronal nuclei, while nuclear localization of phospho-tau is significantly underrepresented in neurons of AD patients bearing neurofibrillary tangles. A specific phosphorylation of tau is required during mitosis in vitro and in vivo, likely via a Grb2-ERK1/2 signaling cascade. In differentiated neuronal A1 cells, the overexpression of AβPP modulates tau phosphorylation, altering the ratio between cytoskeletal and nuclear pools, and correlates with cell death. Altogether our data provide evidence that AβPP, in addition to amyloid formation, modulates the phosphorylation of tau and its subcellular compartmentalization, an event that may lead to the formation of neurofibrillary tangles and to neurodegeneration when occurring in postmitotic neurons.

  2. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  3. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance

    PubMed Central

    Soda, Neelam; Sharan, Ashutosh; Gupta, Brijesh K.; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2016-01-01

    Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms. PMID:27708383

  4. Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours

    PubMed Central

    Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios

    2010-01-01

    We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909

  5. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes*

    PubMed Central

    Sanchez, Marco A.; Tran, Khoa D.; Valli, Jessica; Hobbs, Sam; Johnson, Errin; Gluenz, Eva; Landfear, Scott M.

    2016-01-01

    African trypanosomes and related kinetoplastid parasites selectively traffic specific membrane proteins to the flagellar membrane, but the mechanisms for this trafficking are poorly understood. We show here that KHARON, a protein originally identified in Leishmania parasites, interacts with a putative trypanosome calcium channel and is required for its targeting to the flagellar membrane. KHARON is located at the base of the flagellar axoneme, where it likely mediates targeting of flagellar membrane proteins, but is also on the subpellicular microtubules and the mitotic spindle. Hence, KHARON is probably a multifunctional protein that associates with several components of the trypanosome cytoskeleton. RNA interference-mediated knockdown of KHARON mRNA results in failure of the calcium channel to enter the flagellar membrane, detachment of the flagellum from the cell body, and disruption of mitotic spindles. Furthermore, knockdown of KHARON mRNA induces a lethal failure of cytokinesis in both bloodstream (mammalian host) and procyclic (insect vector) life cycle stages, and KHARON is thus critical for parasite viability. PMID:27489106

  6. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    PubMed

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  7. Polarized trafficking: the palmitoylation cycle distributes cytoplasmic proteins to distinct neuronal compartments.

    PubMed

    Tortosa, Elena; Hoogenraad, Casper C

    2018-02-01

    In neurons, polarized cargo distribution occurs mainly between the soma and axonal and dendritic compartments, and requires coordinated regulation of cytoskeletal remodeling and membrane trafficking. The Golgi complex plays a critical role during neuronal polarization and secretory trafficking has been shown to differentially transport proteins to both axons and dendrites. Besides the Golgi protein sorting, recent data revealed that palmitoylation cycles are an efficient mechanism to localize cytoplasmic, non-transmembrane proteins to particular neuronal compartments, such as the newly formed axon. Palmitoylation allows substrate proteins to bind to and ride with Golgi-derived secretory vesicles to all neuronal compartments. By allowing cytoplasmic proteins to 'hitchhike' on transport carriers in a non-polarized fashion, compartmentalized depalmitoylation may act as a selective retention mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Actin-binding proteins sensitively mediate F-actin bundle stiffness

    NASA Astrophysics Data System (ADS)

    Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.

    2006-09-01

    Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.

  9. Protein kinase A-dependent increase in WAVE2 expression induced by the focal adhesion protein vinexin.

    PubMed

    Mitsushima, Masaru; Sezaki, Takuhito; Akahane, Rie; Ueda, Kazumitsu; Suetsugu, Shiro; Takenawa, Tadaomi; Kioka, Noriyuki

    2006-03-01

    The focal adhesion protein vinexin is a member of a family of adaptor proteins that are thought to participate in the regulation of cell adhesion, cytoskeletal reorganization, and growth factor signaling. Here, we show that vinexin beta increases the amount of and reduces the mobility on SDS-PAGE of Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) 2 protein, which is a key factor modulating actin polymerization in migrating cells. This mobility retardation disappeared after in vitro phosphatase treatment. Co-immunoprecipitation assays revealed the interaction of vinexin beta with WAVE2 as well as WAVE1 and N-WASP. Vinexin beta interacts with the proline-rich region of WAVE2 through the first and second SH3 domains of vinexin beta. Mutations disrupting the interaction impaired the ability of vinexin beta to increase the amount of WAVE2 protein. Treatments with proteasome inhibitors increased the amount of WAVE2, but did not have an additive effect with vinexin beta. Inhibition of protein kinase A (PKA) activity suppressed the vinexin-induced increase in WAVE2 protein, while activation of PKA increased WAVE2 expression without vinexin beta. These results suggest that vinexin beta regulates the proteasome-dependent degradation of WAVE2 in a PKA-dependent manner.

  10. Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth.

    PubMed

    Motes, Christy M; Pechter, Priit; Yoo, Cheol Min; Wang, Yuh-Shuh; Chapman, Kent D; Blancaflor, Elison B

    2005-12-01

    Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dalpha (PLDalpha) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms.

  11. DROIDS 1.20: A GUI-Based Pipeline for GPU-Accelerated Comparative Protein Dynamics.

    PubMed

    Babbitt, Gregory A; Mortensen, Jamie S; Coppola, Erin E; Adams, Lily E; Liao, Justin K

    2018-03-13

    Traditional informatics in comparative genomics work only with static representations of biomolecules (i.e., sequence and structure), thereby ignoring the molecular dynamics (MD) of proteins that define function in the cell. A comparative approach applied to MD would connect this very short timescale process, defined in femtoseconds, to one of the longest in the universe: molecular evolution measured in millions of years. Here, we leverage advances in graphics-processing-unit-accelerated MD simulation software to develop a comparative method of MD analysis and visualization that can be applied to any two homologous Protein Data Bank structures. Our open-source pipeline, DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations), works in conjunction with existing molecular modeling software to convert any Linux gaming personal computer into a "comparative computational microscope" for observing the biophysical effects of mutations and other chemical changes in proteins. DROIDS implements structural alignment and Benjamini-Hochberg-corrected Kolmogorov-Smirnov statistics to compare nanosecond-scale atom bond fluctuations on the protein backbone, color mapping the significant differences identified in protein MD with single-amino-acid resolution. DROIDS is simple to use, incorporating graphical user interface control for Amber16 MD simulations, cpptraj analysis, and the final statistical and visual representations in R graphics and UCSF Chimera. We demonstrate that DROIDS can be utilized to visually investigate molecular evolution and disease-related functional changes in MD due to genetic mutation and epigenetic modification. DROIDS can also be used to potentially investigate binding interactions of pharmaceuticals, toxins, or other biomolecules in a functional evolutionary context as well. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue.

    PubMed

    Martins-de-Souza, Daniel; Cassoli, Juliana S; Nascimento, Juliana M; Hensley, Kenneth; Guest, Paul C; Pinzon-Velasco, Andres M; Turck, Christoph W

    2015-10-01

    Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis.

    PubMed

    Gatineau, Eva; Savary-Auzeloux, Isabelle; Migné, Carole; Polakof, Sergio; Dardevet, Dominique; Mosoni, Laurent

    2015-05-01

    Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather

  14. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    PubMed

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  15. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae.

    PubMed

    Wang, Hao; Lai, Duo; Yuan, Mei; Xu, Hanhong

    2014-04-01

    Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics.

    PubMed

    Miao, Yinglong; Nichols, Sara E; McCammon, J Andrew

    2014-04-14

    G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).

  17. PIP2: choreographer of actin-adaptor proteins in the HIV-1 dance

    PubMed Central

    Rocha-Perugini, Vera; Gordon-Alonso, Mónica; Sánchez-Madrid, Francisco

    2014-01-01

    The actin cytoskeleton plays a key role during the replication cycle of human immunodeficiency virus-1 (HIV-1). HIV-1 infection is affected by cellular proteins that influence the clustering of viral receptors or the subcortical actin cytoskeleton. Several of these actin-adaptor proteins are controlled by the second messenger phosphatidylinositol 4,5-biphosphate (PIP2), an important regulator of actin organization. PIP2 production is induced by HIV-1 attachment and facilitates viral infection. However, the importance of PIP2 in regulating cytoskeletal proteins and thus HIV-1 infection has been overlooked. This review examines recent reports describing the roles played by actin-adaptor proteins during HIV-1 infection of CD4+ T cells, highlighting the influence of the signaling lipid PIP2 in this process. PMID:24768560

  18. Characterization of muscle ankyrin repeat proteins in human skeletal muscle.

    PubMed

    Wette, Stefan G; Smith, Heather K; Lamb, Graham D; Murphy, Robyn M

    2017-09-01

    Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1 ) the absolute amount of MARPs and 2 ) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule. Copyright © 2017 the American Physiological Society.

  19. Methods for modeling cytoskeletal and DNA filaments

    NASA Astrophysics Data System (ADS)

    Andrews, Steven S.

    2014-02-01

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities.

  20. Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model.

    PubMed

    Wang, Lina; Cheng, Wei; Zhang, Zhimin

    2017-07-01

    Emerging evidence has demonstrated that endoplasmic reticulum stress (ER) is involved in the pathogenesis of idiopathic pulmonary fibrosis, however, the underlying mechanism remains unclear. Viral infection often triggers a hyperinflammatory response by an expansion of the ER. The present study was designed to observe the role of respiratory syncytial virus infection (RSV)‑induced ER stress on lung fibrosis. In order to determine the role of ER stress on the onset and progression of pulmonary fibrosis, mice received an intratracheal combined injection of RSV and bleomycin on day 0. At day 7, 14 and 21 following combined injection, RSV in the lung tissues was assayed by immunohistochemistry, cellular classification was assayed by direct microscopic observation after Wright staining and the secretion of cytokines in the broncho‑alveolar lavage fluid (BALF) was assayed by ELISA. The expression of collagen type I was assayed by immunofluorescence and western blot analysis. The expression of ER stress related proteins was analyzed by western blot. In addition, the correlations of ER‑stress related proteins with collagen type‑1 were examined. RSV administration resulted in increased inflammation, as demonstrated by increased levels of leukocytes and pro‑inflammatory cytokines in the BALF, and increased collagen type‑1 deposition in the lung tissues of bleomycin-induced pulmonary fibrosis animal model at 7, 14 and 21 days. RSV promoted the expression of phosphorylated protein kinase R‑like endoplasmic reticulum kinase (p‑PERK), 78 kDa glucose‑regulated protein (GRP78) and activating transcription factor 6α (ATF6α), which accelerated the severity and process of fibrosis in bleomycin‑induced animal models. The present study provides evidence that RSV infection accelerated the unfolded protein response and bleomycin‑induced lung fibrosis, which may improve our understanding of the pathogenesis of pulmonary fibrosis.

  1. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains.

    PubMed

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-10-01

    Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  2. Prokaryotic cytoskeletons: protein filaments organizing small cells.

    PubMed

    Wagstaff, James; Löwe, Jan

    2018-04-01

    Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

  3. Study of cytoskeletal changes induced by okadaic acid in BE(2)-M17 cells by means of a quantitative fluorimetric microplate assay.

    PubMed

    Leira, F; Alvarez, C; Vieites, J M; Vieytes, M R; Botana, L M

    2001-01-01

    The diarrhogenic activity of the marine toxin okadaic acid (OA) has been associated to its actin-disrupting effect, which could reflect the loosening of tight junctions in vivo. In this report, we present results obtained using a fluorimetric microplate assay for quantitative measurements of OA-induced changes on F-actin pools in BE(2)-M17 cells. The proposed method shows important advantages over classical methods in terms of rapidity, sensitivity (less than 5000 cells per well) and reproducibility, thus providing a very useful tool for studying F-actin levels in living cells. Results obtained demonstrate a time- and dose-dependent decrease of F-actin pools (IC(50)=100 nM at 1 h) in OA-treated cells, which was partly counteracted by TPA, H89, forskolin, wortmannin, ionomycin and orthovanadate at early stages, but remained unaffected after 24 h of incubation. Cells exposed for 1 h to 1 nM OA showed a slight increase of F-actin pools (1.5-fold), which was blocked by genistein and lavendustin A, thus suggesting a role for tyrosine kinases-dependent pathways in OA-induced polymerization at low concentrations. These results suggest direct interactions of Ser/Thr protein phosphatases with actin-binding proteins in the regulation of actin polymerization, thus indicating that disruption of cytoskeletal structure may be a key mechanism of OA-induced diarrhea.

  4. Regulation of tumor cell migration by protein tyrosine phosphatase (PTP)-proline-, glutamate-, serine-, and threonine-rich sequence (PEST)

    PubMed Central

    Zheng, Yanhua; Lu, Zhimin

    2013-01-01

    Protein tyrosine phosphatase (PTP)–proline-, glutamate-, serine-, and threonine-rich sequence (PEST) is ubiquitously expressed and is a critical regulator of cell adhesion and migration. PTP-PEST activity can be regulated transcriptionally via gene deletion or mutation in several types of human cancers or via post-translational modifications, including phosphorylation, oxidation, and caspase-dependent cleavage. PTP-PEST interacts with and dephosphorylates cytoskeletal and focal adhesion-associated proteins. Dephosphorylation of PTP-PEST substrates regulates their enzymatic activities and/or their interaction with other proteins and plays an essential role in the tumor cell migration process. PMID:23237212

  5. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells.

    PubMed

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan

    2015-10-01

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-10-30

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.

  7. Actin grips: circular actin-rich cytoskeletal structures that mediate the wrapping of polymeric microfibers by endothelial cells.

    PubMed

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pécot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John J; Thomas, Jessica; Cole, Sara L; Moldovan, Leni; Moldovan, Nicanor I

    2015-06-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them 'actin grips'. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  9. Intermicrotubular actin filaments in the transalar cytoskeletal arrays of Drosophila.

    PubMed

    Mogensen, M M; Tucker, J B

    1988-11-01

    Rabbit muscle myosin subfragment S1 decorates 6 nm diameter filaments in Drosophila wing epidermal cells in the arrowhead fashion characteristic of the binding of subfragment S1 to actin filaments. The filaments in question are concentrated between microtubules that are mostly composed of 15 protofilaments and form cell surface-associated transcellular bundles. There are indications that the majority of the actin filaments have the same polarity and that, like the microtubules, they may elongate from sites at the apical surfaces of the cells. The bundles of F actin and microtubules occur in dorsal and ventral epidermal cell layers of a wing blade. They are joined in dorso-ventral pairs by attachment desmosomes. These transalar cytoskeletal arrays may provide an example of a situation where actin filaments operate as stiffeners rather than active generators of force in conjunction with myosin. The arrays probably function as noncontractile pillars to maintain basal cell extensions and keep haemocoelic spaces open in the highly folded and expanding wing blades of late pupae.

  10. Raf Kinase Inhibitory Protein Protects Cells against Locostatin-Mediated Inhibition of Migration

    PubMed Central

    Shemon, Anne N.; Eves, Eva M.; Clark, Matthew C.; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira

    2009-01-01

    Background Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. Methods/Findings We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP−/−) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP−/− MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. Conclusions/Significance These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells. PMID:19551145

  11. Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.

    PubMed

    Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H

    2016-05-01

    Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice

  12. Why is cytoskeletal contraction required for cardiac fusion before but not after looping begins?

    NASA Astrophysics Data System (ADS)

    Shi, Yunfei; Varner, Victor D.; Taber, Larry A.

    2015-02-01

    Cytoskeletal contraction is crucial to numerous morphogenetic processes, but its role in early heart development is poorly understood. Studies in chick embryos have shown that inhibiting myosin-II-based contraction prior to Hamburger-Hamilton (HH) stage 10 (33 h incubation) impedes fusion of the mesodermal heart fields that create the primitive heart tube (HT), as well as the ensuing process of cardiac looping. If contraction is inhibited at or after looping begins at HH10, however, fusion and looping proceed relatively normally. To explore the mechanisms behind this seemingly fundamental change in behavior, we measured spatiotemporal distributions of tissue stiffness, stress, and strain around the anterior intestinal portal (AIP), the opening to the foregut where contraction and cardiac fusion occur. The results indicate that stiffness and tangential tension decreased bilaterally along the AIP with distance from the embryonic midline. The gradients in stiffness and tension, as well as strain rate, increased to peaks at HH9 (30 h) and decreased afterward. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that they are mainly generated by active cytoskeletal contraction, and finite-element modeling indicates that the measured mechanical gradients are consistent with a relatively uniform contraction of the endodermal layer in conjunction with constraints imposed by the attached mesoderm. Taken together, our results suggest that, before HH10, endodermal contraction pulls the bilateral heart fields toward the midline where they fuse to create the HT. By HH10, however, the fusion process is far enough along to enable apposing cardiac progenitor cells to keep ‘zipping’ together during looping without the need for continued high contractile forces. These findings should shed new light on a perplexing question in early heart development.

  13. A modified method for determining tannin-protein precipitation capacity using accelerated solvent extraction (ASE) and microplate gel filtration.

    PubMed

    McArt, Scott H; Spalinger, Donald E; Kennish, John M; Collins, William B

    2006-06-01

    The protein precipitation assay used by Robbins et al., (1987) Ecology 68:98-107 has been shown to predict successfully the reduction in protein availability to some ruminants due to tannins. The procedure, however, is expensive and laborious, which limits its utility, especially for quantitative ecological or nutritional applications where large numbers of assays may be required. We have modified the method to decrease its cost and increase laboratory efficiency by: (1) automating the extraction by using Accelerated Solvent Extraction (ASE); and (2) by scaling and automating the precipitation reaction, chromatography, and spectrometry with microplate gel filtration and an automated UV-VIS microplate spectrometer. ASE extraction is shown to be as effective at extracting tannins as the hot methanol technique. Additionally, the microplate assay is sensitive and precise. We show that the results from the new technique correspond in a nearly 1:1 relationship to the results of the previous technique. Hence, this method could reliably replace the older method with no loss in relevance to herbivore protein digestion. Moreover, the ASE extraction technique should be applicable to other tannin-protein precipitation assays and possibly other phenolic assays.

  14. Dietary egg-white protein increases body protein mass and reduces body fat mass through an acceleration of hepatic β-oxidation in rats.

    PubMed

    Matsuoka, Ryosuke; Shirouchi, Bungo; Umegatani, Minami; Fukuda, Meguri; Muto, Ayano; Masuda, Yasunobu; Kunou, Masaaki; Sato, Masao

    2017-09-01

    Egg-white protein (EWP) is known to reduce lymphatic TAG transport in rats. In this study, we investigated the effects of dietary EWP on body fat mass. Male rats, 4 weeks old, were fed diets containing either 20 % EWP or casein for 28 d. Carcass protein levels and gastrocnemius leg muscle weights in the EWP group were significantly higher than those in the casein group. In addition, carcass TAG levels and abdominal fat weights in the EWP group were significantly lower than those in the casein group; adipocyte size in abdominal fat in the EWP group was smaller than that in the casein group. To identify the involvement of dietary fat levels in the rats, one of two fat levels (5 or 10 %) was added to their diet along with the different protein sources (EWP and casein). Abdominal fat weight and serum and hepatic TAG levels were significantly lower in the EWP group than in the casein group. Moreover, significantly higher values of enzymatic activity related to β-oxidation in the liver were observed in the EWP group compared with the casein group. Finally, abdominal fat weight reduction in the EWP group with the 10 % fat diet was lower than that in the EWP group with the 5 % fat diet. In conclusion, our results indicate that, in addition to the inhibition of dietary TAG absorption reported previously, dietary EWP reduces body fat mass in rats through an increase of body protein mass and the acceleration of β-oxidation in the liver.

  15. Enlazin, a Natural Fusion of Two Classes of Canonical Cytoskeletal Proteins, Contributes to Cytokinesis Dynamics

    PubMed Central

    Octtaviani, Edelyn; Effler, Janet C.

    2006-01-01

    Cytokinesis requires a complex network of equatorial and global proteins to regulate cell shape changes. Here, using interaction genetics, we report the first characterization of a novel protein, enlazin. Enlazin is a natural fusion of two canonical classes of actin-associated proteins, the ezrin-radixin-moesin family and fimbrin, and it is localized to actin-rich structures. A fragment of enlazin, enl-tr, was isolated as a genetic suppressor of the cytokinesis defect of cortexillin-I mutants. Expression of enl-tr disrupts expression of endogenous enlazin, indicating that enl-tr functions as a dominant-negative lesion. Enlazin is distributed globally during cytokinesis and is required for cortical tension and cell adhesion. Consistent with a role in cell mechanics, inhibition of enlazin in a cortexillin-I background restores cytokinesis furrowing dynamics and suppresses the growth-in-suspension defect. However, as expected for a role in cell adhesion, inhibiting enlazin in a myosin-II background induces a synthetic cytokinesis phenotype, frequently arresting furrow ingression at the dumbbell shape and/or causing recession of the furrow. Thus, enlazin has roles in cell mechanics and adhesion, and these roles seem to be differentially significant for cytokinesis, depending on the genetic background. PMID:17050732

  16. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    PubMed Central

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  17. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    PubMed

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Live-cell imaging of migrating cells expressing fluorescently-tagged proteins in a three-dimensional matrix.

    PubMed

    Shih, Wenting; Yamada, Soichiro

    2011-12-22

    Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and

  19. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  20. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload.

    PubMed

    Yancey, Danielle M; Guichard, Jason L; Ahmed, Mustafa I; Zhou, Lufang; Murphy, Michael P; Johnson, Michelle S; Benavides, Gloria A; Collawn, James; Darley-Usmar, Victor; Dell'Italia, Louis J

    2015-03-15

    Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β₂-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF.

  1. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload

    PubMed Central

    Yancey, Danielle M.; Guichard, Jason L.; Ahmed, Mustafa I.; Zhou, Lufang; Murphy, Michael P.; Johnson, Michelle S.; Benavides, Gloria A.; Collawn, James; Darley-Usmar, Victor

    2015-01-01

    Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β2-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF. PMID:25599572

  2. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxinmore » gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.« less

  3. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    NASA Technical Reports Server (NTRS)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  4. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility

    PubMed Central

    1993-01-01

    Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174

  5. Small-molecule intramimics of formin autoinhibition: a new strategy to target the cytoskeletal remodeling machinery in cancer cells.

    PubMed

    Lash, L Leanne; Wallar, Bradley J; Turner, Julie D; Vroegop, Steven M; Kilkuskie, Robert E; Kitchen-Goosen, Susan M; Xu, H Eric; Alberts, Arthur S

    2013-11-15

    Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells. ©2013 AACR

  6. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Yongguang; Song Xing; Deng Xiyun

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 couldmore » regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma.« less

  7. Piracy of Decay-Accelerating Factor (CD55) Signal Transduction by the Diffusely Adhering Strain Escherichia coli C1845 Promotes Cytoskeletal F-Actin Rearrangements in Cultured Human Intestinal INT407 Cells

    PubMed Central

    Peiffer, Isabelle; Servin, Alain L.; Bernet-Camard, Marie-Françoise

    1998-01-01

    Diffusely adhering Escherichia coli (DAEC) C1845 (clinical isolate) harboring the fimbrial adhesin F1845 can infect cultured human differentiated intestinal epithelial cells; this process is followed by the disassembly of the actin network in the apical domain. The aim of this study was to examine the mechanism by which DAEC C1845 promotes F-actin rearrangements. For this purpose, we used a human embryonic intestinal cell line (INT407) expressing the membrane-associated glycosylphosphatidylinositol (GPI) protein-anchored decay-accelerating factor (DAF), the receptor of the F1845 adhesin. We show here that infection of INT407 cells by DAEC C1845 can provoke dramatic F-actin rearrangements without cell entry. Clustering of phosphotyrosines was observed, revealing that the DAEC C1845-DAF interaction involves the recruitment of signal transduction molecules. A pharmacological approach with a subset of inhibitors of signal transduction molecules was used to identify the cascade of signal transduction molecules that are coupled to the DAF, that are activated upon infection, and that promote the F-actin rearrangements. DAEC C1845-induced F-actin rearrangements can be blocked dose dependently by protein tyrosine kinase, phospholipase Cγ, phosphatidylinositol 3-kinase, protein kinase C, and Ca2+ inhibitors. F-actin rearrangements and blocking by inhibitors were observed after infection of the cells with two E. coli recombinants carrying the plasmids containing the fimbrial adhesin F1845 or the fimbrial hemagglutinin Dr, belonging to the same family of adhesins. These findings show that the DAEC Dr family of pathogens promotes alterations in the intestinal cell cytoskeleton by piracy of the DAF-GPI signal cascade without bacterial cell entry. PMID:9712744

  8. Molecular cloning and characterization of human trabeculin-alpha, a giant protein defining a new family of actin-binding proteins.

    PubMed

    Sun, Y; Zhang, J; Kraeft, S K; Auclair, D; Chang, M S; Liu, Y; Sutherland, R; Salgia, R; Griffin, J D; Ferland, L H; Chen, L B

    1999-11-19

    We describe the molecular cloning and characterization of a novel giant human cytoplasmic protein, trabeculin-alpha (M(r) = 614,000). Analysis of the deduced amino acid sequence reveals homologies with several putative functional domains, including a pair of alpha-actinin-like actin binding domains; regions of homology to plakins at either end of the giant polypeptide; 29 copies of a spectrin-like motif in the central region of the protein; two potential Ca(2+)-binding EF-hand motifs; and a Ser-rich region containing a repeated GSRX motif. With similarities to both plakins and spectrins, trabeculin-alpha appears to have evolved as a hybrid of these two families of proteins. The functionality of the actin binding domains located near the N terminus was confirmed with an F-actin binding assay using glutathione S-transferase fusion proteins comprising amino acids 9-486 of the deduced peptide. Northern and Western blotting and immunofluorescence studies suggest that trabeculin is ubiquitously expressed and is distributed throughout the cytoplasm, though the protein was found to be greatly up-regulated upon differentiation of myoblasts into myotubes. Finally, the presence of cDNAs similar to, yet distinct from, trabeculin-alpha in both human and mouse suggests that trabeculins may form a new subfamily of giant actin-binding/cytoskeletal cross-linking proteins.

  9. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance

    PubMed Central

    Bearce, Elizabeth A.; Erdogan, Burcu; Lowery, Laura Anne

    2015-01-01

    The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events. PMID:26175669

  10. Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration

    PubMed Central

    Brugués, Jan; Maugis, Benoit; Casademunt, Jaume; Nassoy, Pierre; Amblard, François; Sens, Pierre

    2010-01-01

    Bleb-based cell motility proceeds by the successive inflation and retraction of large spherical membrane protrusions (“blebs”) coupled with substrate adhesion. In addition to their role in motility, cellular blebs constitute a remarkable illustration of the dynamical interactions between the cytoskeletal cortex and the plasma membrane. Here we study the bleb-based motions of Entamoeba histolytica in the constrained geometry of a micropipette. We construct a generic theoretical model that combines the polymerization of an actin cortex underneath the plasma membrane with the myosin-generated contractile stress in the cortex and the stress-induced failure of membrane-cortex adhesion. One major parameter dictating the cell response to micropipette suction is the stationary cortex thickness, controlled by actin polymerization and depolymerization. The other relevant physical parameters can be combined into two characteristic cortex thicknesses for which the myosin stress (i) balances the suction pressure and (ii) provokes membrane-cortex unbinding. We propose a general phase diagram for cell motions inside a micropipette by comparing these three thicknesses. In particular, we theoretically predict and experimentally verify the existence of saltatory and oscillatory motions for a well-defined range of micropipette suction pressures. PMID:20713731

  11. Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics

    PubMed Central

    Williams, Grace R.; Bethard, Jennifer R.; Berkaw, Mary N.; Nagel, Alexis K.; Luttrell, Louis M.; Ball, Lauren E.

    2015-01-01

    The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry combined with bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5 min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation. PMID:26160508

  12. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    PubMed Central

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-01-01

    Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains. PMID:18828911

  13. Cytoskeletal role in protection of the failing heart by β-adrenergic blockade

    PubMed Central

    Cheng, Guangmao; Kasiganesan, Harinath; Baicu, Catalin F.; Wallenborn, J. Grace; Kuppuswamy, Dhandapani

    2012-01-01

    Formation of a dense microtubule network that impedes cardiac contraction and intracellular transport occurs in severe pressure overload hypertrophy. This process is highly dynamic, since microtubule depolymerization causes striking improvement in contractile function. A molecular etiology for this cytoskeletal alteration has been defined in terms of type 1 and type 2A phosphatase-dependent site-specific dephosphorylation of the predominant myocardial microtubule-associated protein (MAP)4, which then decorates and stabilizes microtubules. This persistent phosphatase activation is dependent upon ongoing upstream activity of p21-activated kinase-1, or Pak1. Because cardiac β-adrenergic activity is markedly and continuously increased in decompensated hypertrophy, and because β-adrenergic activation of cardiac Pak1 and phosphatases has been demonstrated, we asked here whether the highly maladaptive cardiac microtubule phenotype seen in pathological hypertrophy is based on β-adrenergic overdrive and thus could be reversed by β-adrenergic blockade. The data in this study, which were designed to answer this question, show that such is the case; that is, β1- (but not β2-) adrenergic input activates this pathway, which consists of Pak1 activation, increased phosphatase activity, MAP4 dephosphorylation, and thus the stabilization of a dense microtubule network. These data were gathered in a feline model of severe right ventricular (RV) pressure overload hypertrophy in response to tight pulmonary artery banding (PAB) in which a stable, twofold increase in RV mass is reached by 2 wk after pressure overloading. After 2 wk of hypertrophy induction, these PAB cats during the following 2 wk either had no further treatment or had β-adrenergic blockade. The pathological microtubule phenotype and the severe RV cellular contractile dysfunction otherwise seen in this model of RV hypertrophy (PAB No Treatment) was reversed in the treated (PAB β-Blockade) cats. Thus these data

  14. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice.

    PubMed

    Hashimoto, Yoko; Mori, Mayumi; Kobayashi, Shuichiro; Hanya, Akira; Watanabe, Shin-Ichi; Ohara, Naoki; Noguchi, Toshihide; Kawai, Tatsushi; Okuyama, Harumi

    2014-01-01

    Canola oil (Can) and hydrogenated soybean oil (H2-Soy) are commonly used edible oils. However, in contrast to soybean oil (Soy), they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP) rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK) 1 in H2-Soy and unidentified component(s) in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP)-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC) and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC]) levels were significantly lower in the Can group than in the Soy group ( p < 0.05). However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044) or was almost significantly lower (in H2-Soy; p = 0.053) than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s) among the three dietary groups.

  15. Chemical Synthesis of Hydrocarbon-Stapled Peptides for Protein Interaction Research and Therapeutic Targeting

    PubMed Central

    Bird, Gregory H.; Crannell, W. Christian; Walensky, Loren D.

    2016-01-01

    The peptide alpha-helix represents one of Nature’s most featured protein shapes and is employed in a diversity of protein architectures, spanning the very cytoskeletal infrastructure of the cell to the most intimate contact points between crucial signaling proteins. By installing an all-hydrocarbon crosslink into native sequences, we recapitulate the shape and biological activity of natural peptide alpha-helices, yielding a chemical toolbox to both interrogate the protein interactome and modulate interaction networks for potential therapeutic benefit. Here, we describe our latest approach to synthesizing Stabilized Alpha-Helices (SAH) corresponding to key protein interaction domains. We emphasize a stepwise approach to the production of crosslinking non-natural amino acids, their incorporation into peptide templates, and the application of ruthenium-catalyzed ring closing metathesis to generate hydrocarbon-stapled peptides. Through facile derivatization and functionalization steps, SAHs can be tailored for a broad range of applications in biochemical, structural, proteomic, cellular and in vivo studies. PMID:23801563

  16. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  17. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    PubMed Central

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  18. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  19. Cytoskeletal remodeling of connective tissue fibroblasts in response to static stretch is dependent on matrix material properties

    PubMed Central

    Abbott, Rosalyn D; Koptiuch, Cathryn; Iatridis, James C; Howe, Alan K; Badger, Gary J; Langevin, Helene M

    2012-01-01

    In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross-sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in and dissociated from areolar and dense connective tissue in response to 2 hours of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet-like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch-induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells’ tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. PMID:22552950

  20. Ly49Q, a member of the Ly49 family that is selectively expressed on myeloid lineage cells and involved in regulation of cytoskeletal architecture

    PubMed Central

    Toyama-Sorimachi, Noriko; Tsujimura, Yusuke; Maruya, Mikako; Onoda, Atsuko; Kubota, Toshiyuki; Koyasu, Shigeo; Inaba, Kayo; Karasuyama, Hajime

    2004-01-01

    Here, we identified and characterized a Ly49 family member, designated as Ly49Q. The Ly49q gene encodes a 273-aa protein with an immunoreceptor tyrosine-based inhibitory motif (ITIM) at the N terminus of its cytoplasmic domain. We show that the ITIM of Ly49Q can recruit SHP-2 and SHP-1 in a tyrosine phosphorylation-dependent manner. In contrast to other known members of the Ly49 family, Ly49Q was found not to be expressed on NK1.1+ cells, but instead was detectable on virtually all Gr-1+ cells, such as myeloid precursors in bone marrow. Monocytes/macrophages also expressed low levels of Ly49Q, and the expression was enhanced by the treatment of cells with IFN-γ. Treatment of activated macrophages with anti-Ly49Q mAb induced rapid formation of polarized actin structures, showing filopodia-like structure on one side and lamellipodial-like structure on the other side. A panel of proteins became tyrosine-phosphorylated in myeloid cells when treated with the mAb. Induction of the phosphorylation depends on the ITIM of Ly49Q. Thus, Ly49Q has unique features different from other known Ly49 family members and appears to be involved in regulation of cytoskeletal architecture of macrophages through ITIM-mediated signaling. PMID:14732700

  1. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    PubMed Central

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  2. Proteomic analysis in giant axonal neuropathy: new insights into disease mechanisms.

    PubMed

    Mussche, Silke; De Paepe, Boel; Smet, Joél; Devreese, Katrien; Lissens, Willy; Rasic, Vedrana Milic; Murnane, Matthew; Devreese, Bart; Van Coster, Rudy

    2012-08-01

    Giant axonal neuropathy (GAN) is a progressive hereditary disease that affects the peripheral and central nervous systems. It is characterized morphologically by aggregates of intermediate filaments in different tissues. Mutations have been reported in the gene that codes for gigaxonin. Nevertheless, the underlying molecular mechanism remains obscure. Cell lines from 4 GAN patients and 4 controls were analyzed by iTRAQ. Among the dysregulated proteins were ribosomal protein L29, ribosomal protein L37, galectin-1, glia-derived nexin, and aminopeptidase N. Also, nuclear proteins linked to formin-binding proteins were found to be dysregulated. Although the major role of gigaxonin is reported to be degradation of cytoskeleton-associated proteins, the amount of 76 structural cytoskeletal proteins was unaltered. Several of the dysregulated proteins play a role in cytoskeletal reorganization. Based on these findings, we speculate that disturbed cytoskeletal regulation is responsible for formation of aggregates of intermediate filaments. Copyright © 2012 Wiley Periodicals, Inc.

  3. Cytoskeletal mechanisms in positioning of the second-division spindles and meiotic restitution in tobacco (Nicotiana tabacum L.) microsporogenesis.

    PubMed

    Sidorchuk, Yuriy Vladimirovich; Deineko, Elena Victorovna

    2017-06-01

    Microsporogenesis patterns of the polyploid (2n = 4x = 96) and diploid (2n = 2x = 48) Nicotiana tabacum L. (cv. Havana Petit line SR1) plants have been analyzed and compared. Four types of abnormal positions of the second-division spindles-tripolar, parallel, proximal, and fused-have been observed. Of these abnormalities, only tripolar (2.4%) and parallel (1.4%) spindles are observable in diploid plants. As for polyploids, the increased ploidy is accompanied by an increase in the incidence of tripolar (22.8%) and parallel (8.1%) spindle orientations and emergence of two remaining abnormalities (proximal and fused spindles, 3.3%). As has been shown, the spindle position abnormalities in diploid plants have no effect on the meiotic products, whereas both dyads and triads are detectable among the tetrads in polyploid plants. Analysis of cytoskeletal remodeling has allowed for the insight into the role of interzonal radial microtubule system in spindle positioning during the second division. The reason underlying the change in spindle positioning is disturbed polymerization-depolymerization processes and interdigitation of microtubule plus ends within the interzonal cytoskeleton system in late telophase I-interkinesis and prophase II. As has been demonstrated, fused second-division spindles are formed as a result of fused cytoskeletal structures in prophase-prometaphase II in the case when the nuclei are drawn abnormally close to one another. © 2017 International Federation for Cell Biology.

  4. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.

    PubMed

    Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.

  5. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon

    PubMed Central

    Schmidt, Thomas; Bremmer, Felix; Burfeind, Peter; Kaulfuß, Silke

    2015-01-01

    The focal adhesion protein leupaxin (LPXN) is overexpressed in a subset of prostate cancers (PCa) and is involved in the progression of PCa. In the present study, we analyzed the LPXN-mediated adhesive and cytoskeletal changes during PCa progression. We identified an interaction between the actin-binding protein caldesmon (CaD) and LPXN and this interaction is increased during PCa cell migration. Furthermore, knockdown of LPXN did not affect CaD expression but reduced CaD phosphorylation. This is known to destabilize the affinity of CaD to F-actin, leading to dynamic cell structures that enable cell motility. Thus, downregulation of CaD increased migration and invasion of PCa cells. To identify the kinase responsible for the LPXN-mediated phosphorylation of CaD, we used data from an antibody array, which showed decreased expression of TGF-beta-activated kinase 1 (TAK1) after LPXN knockdown in PC-3 PCa cells. Subsequent analyses of the downstream kinases revealed the extracellular signal-regulated kinase (ERK) as an interaction partner of LPXN that facilitates CaD phosphorylation during LPXN-mediated PCa cell migration. In conclusion, we demonstrate that LPXN directly influences cytoskeletal dynamics via interaction with the actin-binding protein CaD and regulates CaD phosphorylation by recruiting ERK to highly dynamic structures within PCa cells. PMID:26079947

  6. Presence of an SH2 domain in the actin-binding protein tensin.

    PubMed

    Davis, S; Lu, M L; Lo, S H; Lin, S; Butler, J A; Druker, B J; Roberts, T M; An, Q; Chen, L B

    1991-05-03

    The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.

  7. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans

    DOE PAGES

    Dhondt, Ineke; Petyuk, Vladislav A.; Cai, Huaihan; ...

    2016-09-13

    Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. But, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. We found that this slowdown wasmore » most prominent for translation-related and mitochondrial proteins. Conversely, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory.« less

  8. Application of GFP technique for cytoskeleton visualization onboard the International Space Station.

    PubMed

    Kordyum, E L; Shevchenko, G V; Yemets, A I; Nyporko, A I; Blume, Ya B

    2005-03-01

    Cytoskeleton recently attracted wide attention of cell and molecular biologists due to its crucial role in gravity sensing and trunsduction. Most of cytoskeletal research is conducted by the means of immunohistochemical reactions, different modifications of which are beneficial for the ground-based experiments. But for the performance onboard the space vehicles, they represent quite complicated technique which requires time and special skills for astronauts. In addition, immunocytochemistry provides only static images of the cytoskeleton arrangement in fixed cells while its localization in living cells is needed for the better understanding of cytoskeletal function. In this connection, we propose a new approach for cytoskeletal visualization onboard the ISS, namely, application of green fluorescent protein (GFP) from Aequorea victoria, which has the unique properties as a marker for protein localization in vivo. The creation of chimerical protein-GFP gene constructs, obtaining the transformed plant cells possessed protein-GFP in their cytoskeletal composition will allow receiving a simple and efficient model for screening of the cytoskeleton functional status in microgravity. c2004 Elsevier Ltd. All rights reserved.

  9. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  10. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlikova, Nela, E-mail: nela.pavlikova@lf3.cuni.cz; Smetana, Pavel; Halada, Petr

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cellmore » line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE. - Highlights: • Epidemiologic studies connect pollution with incidence of diabetes mellitus. • We explored the effect of DDT and DDE on protein expression in the NES2Y pancreatic beta cell line. • One month exposure to three sublethal concentrations of DDT and DDE was employed. • Expression of alpha

  11. Proteins associated with critical sperm functions and sperm head shape are differentially expressed in morphologically abnormal bovine sperm induced by scrotal insulation.

    PubMed

    Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2013-04-26

    The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding

  12. Fluorescence-based assay probing regulator of G protein signaling partner proteins.

    PubMed

    Huang, Po-Shiun; Yeh, Hsin-Sung; Yi, Hsiu-Ping; Lin, Chain-Jia; Yang, Chii-Shen

    2012-04-01

    The regulator of G protein signaling (RGS) proteins are one of the essential modulators for the G protein system. Besides regulating G protein signaling by accelerating the GTPase activity of Gα subunits, RGS proteins are implicated in exerting other functions; they are also known to be involved in several diseases. Moreover, the existence of a single RGS protein in plants and its seven-transmembrane domain found in 2003 triggered efforts to unveil detailed structural and functional information of RGS proteins. We present a method for real-time examination of the protein-protein interactions between RGS and Gα subunits. AtRGS1 from plants and RGS4 from mammals were site-directedly labeled with the fluorescent probe Lucifer yellow on engineered cysteine residues and used to interact with different Gα subunits. The physical interactions can be revealed by monitoring the real-time fluorescence changes (8.6% fluorescence increase in mammals and 27.6% in plants); their correlations to functional exertion were shown with a GTPase accelerating activity assay and further confirmed by measurement of K(d). We validate the effectiveness of this method and suggest its application to the exploration of more RGS signaling partner proteins in physiological and pathological studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Protein lipoxidation: Detection strategies and challenges

    PubMed Central

    Aldini, Giancarlo; Domingues, M. Rosário; Spickett, Corinne M.; Domingues, Pedro; Altomare, Alessandra; Sánchez-Gómez, Francisco J.; Oeste, Clara L.; Pérez-Sala, Dolores

    2015-01-01

    Enzymatic and non-enzymatic lipid metabolism can give rise to reactive species that may covalently modify cellular or plasma proteins through a process known as lipoxidation. Under basal conditions, protein lipoxidation can contribute to normal cell homeostasis and participate in signaling or adaptive mechanisms, as exemplified by lipoxidation of Ras proteins or of the cytoskeletal protein vimentin, both of which behave as sensors of electrophilic species. Nevertheless, increased lipoxidation under pathological conditions may lead to deleterious effects on protein structure or aggregation. This can result in impaired degradation and accumulation of abnormally folded proteins contributing to pathophysiology, as may occur in neurodegenerative diseases. Identification of the protein targets of lipoxidation and its functional consequences under pathophysiological situations can unveil the modification patterns associated with the various outcomes, as well as preventive strategies or potential therapeutic targets. Given the wide structural variability of lipid moieties involved in lipoxidation, highly sensitive and specific methods for its detection are required. Derivatization of reactive carbonyl species is instrumental in the detection of adducts retaining carbonyl groups. In addition, use of tagged derivatives of electrophilic lipids enables enrichment of lipoxidized proteins or peptides. Ultimate confirmation of lipoxidation requires high resolution mass spectrometry approaches to unequivocally identify the adduct and the targeted residue. Moreover, rigorous validation of the targets identified and assessment of the functional consequences of these modifications are essential. Here we present an update on methods to approach the complex field of lipoxidation along with validation strategies and functional assays illustrated with well-studied lipoxidation targets. PMID:26072467

  14. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  15. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis.

    PubMed

    Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim

    2009-03-01

    The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.

  16. Microcystin-LR Induced Reactive Oxygen Species Mediate Cytoskeletal Disruption and Apoptosis of Hepatocytes in Cyprinus carpio L.

    PubMed Central

    Jiang, Jinlin; Shan, Zhengjun; Xu, Weili; Wang, Xiaorong; Zhou, Junying; Kong, Deyang; Xu, Jing

    2013-01-01

    Microcystins (MCs) are a group of cyclic hepatotoxic peptides produced by cyanobacteria. Microcystin-LR (MC-LR) contains Leucine (L) and Arginine (R) in the variable positions, and is one of the most common and potently toxic peptides. MC-LR can inhibit protein phosphatase type 1 and type 2A (PP1 and PP2A) activities and induce excessive production of reactive oxygen species (ROS). The underlying mechanism of the inhibition of PP1 and PP2A has been extensively studied. The over-production of ROS is considered to be another main mechanism behind MC-LR toxicity; however, the detailed toxicological mechanism involved in over-production of ROS in carp (Cyprinus carpio L.) remains largely unclear. In our present study, the hydroxyl radical (•OH) was significantly induced in the liver of carp after a relatively short-term exposure to MC-LR. The elevated reactive oxygen species (ROS) production may play an important role in the disruption of microtubule structure. Pre-injection of the antioxidant N-acetyl-cysteine (NAC) provided significant protection to the cytoskeleton, however buthionine sulfoximine (BSO) exacerbated cytoskeletal destruction. In addition, the elevated ROS formation induced the expression of apoptosis-related genes, including p38, JNKa, and bcl-2. A significant increase in apoptotic cells was observed at 12 - 48 hours. Our study further supports evidence that ROS are involved in MC-LR induced damage to liver cells in carp, and indicates the need for further study of the molecular mechanisms behind MC-LR toxicity. PMID:24376844

  17. Advanced glycation end‑products affect the cytoskeletal structure of rat glomerular endothelial cells via the Ras‑related C3 botulinum toxin substrate 1 signaling pathway.

    PubMed

    Lan, Lei; Han, Yongsheng; Ren, Wei; Jiang, Jielong; Wang, Peng; Hu, Zhao

    2015-06-01

    The present study aimed to determine the molecular mechanisms leading to the production of advanced glycation end‑products (AGEs) and their effect on the morphology and function of rat glomerular capillary endothelial cells (GECs). Primary rat GECs were treated with AGE‑modified human serum albumin (AGE‑HSA) and divided into groups according to AGE concentration and treatment time. The structure and distribution of cytoskeletal protein F‑actin and the cortical actin binding protein, cortactin, were analyzed using immunofluorescence and confocal microscopy. As the Ras‑related C3 botulinum toxin substrate 1 (Rac1) signaling pathway was previously identified to be involved in mediating the contraction of endothelial actin‑myosin activity, Rac1 was examined subsequent to treatment of the cells with the Rac1 agonist 2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate (O‑Me‑cAMP) for 1 h using a pull‑down assay. Cell permeability was determined by the leakage rate of a fluorescein isothiocyanate fluorescent marker protein. AGE‑HSA treatment resulted in alterations in the structure and distribution of F‑actin and cortactin in a dose‑ and time‑dependent manner, while no effect was observed with HSA alone. The effect of AGE on the cytoskeleton was inhibited by the addition of O‑Me‑cAMP. AGE‑HSA significantly reduced the level of Rac1 activity (P<0.05); however, no effect was observed on total protein levels. Furthermore, AGE‑HSA treatment led to a significant increase in the permeability of endothelial cells (P<0.01), which was inhibited by O‑Me‑cAMP (P<0.01). The Rac1 signaling pathway is thus suggested to serve an important function in mediating AGE‑induced alterations in GEC morphology and function.

  18. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli.

    PubMed

    Masuda, Hisako; Tan, Qian; Awano, Naoki; Wu, Kuen-Phon; Inouye, Masayori

    2012-06-01

    All free-living bacteria carry the toxin-antitoxin (TA) systems controlling cell growth and death under stress conditions. YeeU-YeeV (CbtA) is one of the Escherichia coli TA systems, and the toxin, CbtA, has been reported to inhibit the polymerization of bacterial cytoskeletal proteins, MreB and FtsZ. Here, we demonstrate that the antitoxin, YeeU, is a novel type of antitoxin (type IV TA system), which does not form a complex with CbtA but functions as an antagonist for CbtA toxicity. Specifically, YeeU was found to directly interact with MreB and FtsZ, and enhance the bundling of their filamentous polymers in vitro. Surprisingly, YeeU neutralized not only the toxicity of CbtA but also the toxicity caused by other inhibitors of MreB and FtsZ, such as A22, SulA and MinC, indicating that YeeU-induced bundling of MreB and FtsZ has an intrinsic global stabilizing effect on their homeostasis. Here we propose to rename YeeU as CbeA for cytoskeleton bundling-enhancing factor A. © 2012 Blackwell Publishing Ltd.

  19. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    DOE PAGES

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less

  20. Fourier transform infrared spectral evidences for protein conformational changes in immature cataractous human lens capsules accelerated by myopia and/or systemic hypertension

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Yang; Lee, Shui-Mei; Li, Mei-Jane; Liang, Run-Chu

    1997-08-01

    The possible changes in protein structures of the cataractous human lens capsules of the immature patients with myopia and/or systemic hypertension have been investigated using Fourier transform infrared (FT-IR) microspectroscopy. Second-derivative and deconvolution methods have been applied to obtain the position of the overlapping components of the amide I band and assign them to different secondary structures. Changes in the protein secondary structure and composition of amide I band were estimated quantitatively from Fourier self-deconvolution and curve fitting algorithms. The results indicate that myopia and/or systemic hypertension were found to significantly modify the protein secondary structure of the cataractous human lens capsules to increase the β-type structure and random coil and decrease the α-helix structure. Myopia-induced conformational change in triple helix structure was more pronounced. In conclusion, myopia and/or systemic hypertension seem to modify the conformation of the protein structures in cataractous human lens capsule to change ionic permeation through lens capsule to accelerate the cataract formation of senile patients.

  1. Protein half-life determines expression of proteostatic networks in podocyte differentiation.

    PubMed

    Schroeter, Christina B; Koehler, Sybille; Kann, Martin; Schermer, Bernhard; Benzing, Thomas; Brinkkoetter, Paul T; Rinschen, Markus M

    2018-04-25

    Podocytes are highly specialized, epithelial, postmitotic cells, which maintain the renal filtration barrier. When adapting to considerable metabolic and mechanical stress, podocytes need to accurately maintain their proteome. Immortalized podocyte cell lines are a widely used model for studying podocyte biology in health and disease in vitro. In this study, we performed a comprehensive proteomic analysis of the cultured human podocyte proteome in both proliferative and differentiated conditions at a depth of >7000 proteins. Similar to mouse podocytes, human podocyte differentiation involved a shift in proteostasis: undifferentiated podocytes have high expression of proteasomal proteins, whereas differentiated podocytes have high expression of lysosomal proteins. Additional analyses with pulsed stable-isotope labeling by amino acids in cell culture and protein degradation assays determined protein dynamics and half-lives. These studies unraveled a globally increased stability of proteins in differentiated podocytes. Mitochondrial, cytoskeletal, and membrane proteins were stabilized, particularly in differentiated podocytes. Importantly, protein half-lives strongly contributed to protein abundance in each state. These data suggest that regulation of protein turnover of particular cellular functions determines podocyte differentiation, a paradigm involving mitophagy and, potentially, of importance in conditions of increased podocyte stress and damage.-Schroeter, C. B., Koehler, S., Kann, M., Schermer, B., Benzing, T., Brinkkoetter, P. T., Rinschen, M. M. Protein half-life determines expression of proteostatic networks in podocyte differentiation.

  2. Accelerated aging: prediction of chemical stability of pharmaceuticals.

    PubMed

    Waterman, Kenneth C; Adami, Roger C

    2005-04-11

    Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.

  3. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans

    PubMed Central

    Grussendorf, Kelly A.; Trezza, Christopher J.; Salem, Alexander T.; Al-Hashimi, Hikmat; Mattingly, Brendan C.; Kampmeyer, Drew E.; Khan, Liakot A.; Hall, David H.; Göbel, Verena; Ackley, Brian D.; Buechner, Matthew

    2016-01-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans. In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn’s disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  4. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration.

    PubMed

    Jeon, Eun Young; Choi, Bong-Hyuk; Jung, Dooyup; Hwang, Byeong Hee; Cha, Hyung Joon

    2017-07-01

    Skin scarring after deep dermal injuries is a major clinical problem due to the current therapies limited to established scars with poor understanding of healing mechanisms. From investigation of aberrations within the extracellular matrix involved in pathophysiologic scarring, it was revealed that one of the main factors responsible for impaired healing is abnormal collagen reorganization. Here, inspired by the fundamental roles of decorin, a collagen-targeting proteoglycan, in collagen remodeling, we created a scar-preventive collagen-targeting glue consisting of a newly designed collagen-binding mussel adhesive protein and a specific glycosaminoglycan. The collagen-targeting glue specifically bound to type I collagen in a dose-dependent manner and regulated the rate and the degree of fibrillogenesis. In a rat skin excisional model, the collagen-targeting glue successfully accelerated initial wound regeneration as defined by effective reepithelialization, neovascularization, and rapid collagen synthesis. Moreover, the improved dermal collagen architecture was demonstrated by uniform size of collagen fibrils, their regular packing, and a restoration of healthy tissue component. Collectively, our natural healing-inspired collagen-targeting glue may be a promising therapeutic option for improving the healing rate with high-quality and effective scar inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.

    PubMed

    Jiang, Hanyu; Ganesan, Narayan

    2016-02-27

    HMMER software suite is widely used for analysis of homologous protein and nucleotide sequences with high sensitivity. The latest version of hmmsearch in HMMER 3.x, utilizes heuristic-pipeline which consists of MSV/SSV (Multiple/Single ungapped Segment Viterbi) stage, P7Viterbi stage and the Forward scoring stage to accelerate homology detection. Since the latest version is highly optimized for performance on modern multi-core CPUs with SSE capabilities, only a few acceleration attempts report speedup. However, the most compute intensive tasks within the pipeline (viz., MSV/SSV and P7Viterbi stages) still stand to benefit from the computational capabilities of massively parallel processors. A Multi-Tiered Parallel Framework (CUDAMPF) implemented on CUDA-enabled GPUs presented here, offers a finer-grained parallelism for MSV/SSV and Viterbi algorithms. We couple SIMT (Single Instruction Multiple Threads) mechanism with SIMD (Single Instructions Multiple Data) video instructions with warp-synchronism to achieve high-throughput processing and eliminate thread idling. We also propose a hardware-aware optimal allocation scheme of scarce resources like on-chip memory and caches in order to boost performance and scalability of CUDAMPF. In addition, runtime compilation via NVRTC available with CUDA 7.0 is incorporated into the presented framework that not only helps unroll innermost loop to yield upto 2 to 3-fold speedup than static compilation but also enables dynamic loading and switching of kernels depending on the query model size, in order to achieve optimal performance. CUDAMPF is designed as a hardware-aware parallel framework for accelerating computational hotspots within the hmmsearch pipeline as well as other sequence alignment applications. It achieves significant speedup by exploiting hierarchical parallelism on single GPU and takes full advantage of limited resources based on their own performance features. In addition to exceeding performance of other

  7. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  8. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells.

    PubMed

    Hu, Jingjie; Zhou, Yuxiao; Obayemi, John D; Du, Jing; Soboyejo, Winston O

    2018-05-30

    An improved understanding of the evolution of cell structure and viscoelasticity with cancer malignancy could enable the development of a new generation of biomarkers and methods for cancer diagnosis. Hence, in this study, we present the viscoelastic properties (moduli and viscosities) and the actin cytoskeletal structures of triple negative breast cancer (TNBC) cells with different metastatic potential. These include: MCF-10A normal breast cells (studied as a control); MDA-MB-468 cells (less metastatic TNBC cells), and MDA-MB-231 cells (highly metastatic TNBC cells). A combination of shear assay and digital imaging correlation (DIC) techniques is used to measure the local viscoelastic properties of live breast cells subjected to constant shear stress. The local moduli and viscosities of the nuclei and cytoplasm are characterized using a generalized Maxwell model, which is used to determine the time-dependent creep responses of cells. The nuclei are shown to be stiffer and more viscous than the cytoplasms of the normal breast cells and TNBC cells. The MCF-10A normal breast cells are found to be twice as stiff as the less metastatic MDA-MB-468 breast cancer cells and over ten times stiffer than the highly metastatic MDA-MB-231 breast cancer cells. Similar trends are also observed in the viscosities of the nuclei and the cytoplasms. The measured differences in cell viscoelastic properties are also associated with significant changes in the cell cytoskeletal structure, which is studied using confocal fluorescence microscopy. This reveals significant differences in the levels of actin expression and organization in TNBC cells as they become highly metastatic. Our results suggest that the shear assay measurements of cell viscoelastic properties may be used as effective biomarkers for TNBC diagnosis and screening. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  10. TES is a novel focal adhesion protein with a role in cell spreading.

    PubMed

    Coutts, Amanda S; MacKenzie, Elaine; Griffith, Elen; Black, Donald M

    2003-03-01

    Previously, we identified TES as a novel candidate tumour suppressor gene that mapped to human chromosome 7q31.1. In this report we demonstrate that the TES protein is localised at focal adhesions, actin stress fibres and areas of cell-cell contact. TES has three C-terminal LIM domains that appear to be important for focal adhesion targeting. Additionally, the N-terminal region is important for targeting TES to actin stress fibres. Yeast two-hybrid and biochemical analyses yielded interactions with several focal adhesion and/or cytoskeletal proteins including mena, zyxin and talin. The fact that TES localises to regions of cell adhesion suggests that it functions in events related to cell motility and adhesion. In support of this, we demonstrate that fibroblasts stably overexpressing TES have an increased ability to spread on fibronectin.

  11. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis.

    PubMed

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC.

  12. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis

    PubMed Central

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC. PMID:29403558

  13. Acceleration of protein folding by four orders of magnitude through a single amino acid substitution

    PubMed Central

    Roderer, Daniel J. A.; Schärer, Martin A.; Rubini, Marina; Glockshuber, Rudi

    2015-01-01

    Cis prolyl peptide bonds are conserved structural elements in numerous protein families, although their formation is energetically unfavorable, intrinsically slow and often rate-limiting for folding. Here we investigate the reasons underlying the conservation of the cis proline that is diagnostic for the fold of thioredoxin-like thiol-disulfide oxidoreductases. We show that replacement of the conserved cis proline in thioredoxin by alanine can accelerate spontaneous folding to the native, thermodynamically most stable state by more than four orders of magnitude. However, the resulting trans alanine bond leads to small structural rearrangements around the active site that impair the function of thioredoxin as catalyst of electron transfer reactions by more than 100-fold. Our data provide evidence for the absence of a strong evolutionary pressure to achieve intrinsically fast folding rates, which is most likely a consequence of proline isomerases and molecular chaperones that guarantee high in vivo folding rates and yields. PMID:26121966

  14. Role of cytoskeletal mechanics and cell membrane fluidity in the intracellular delivery of molecules mediated by laser-activated carbon nanoparticles.

    PubMed

    Holguin, Stefany Y; Anderson, Caleb F; Thadhani, Naresh N; Prausnitz, Mark R

    2017-10-01

    Exposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET. Stabilization of actin filaments using jasplakinolide had no significant effect on uptake or viability loss caused by TNET. To study the role of plasma membrane fluidity, we increased fluidity by depletion of membrane cholesterol using methyl-β-cyclodextrin and decreased fluidity by enrichment of the membrane with cholesterol using water-soluble cholesterol. Neither of these membrane fluidity changes significantly altered cellular uptake or viability loss caused by TNET. We conclude that weakening mechanical integrity of the cytoskeleton can increase intracellular uptake and decrease loss of cell viability, while plasma membrane fluidity does not appear to play a significant role in uptake or viability loss caused by TNET. The positive effects of cytoskeletal weakening may be due to an enhanced ability of the cell to recover from the effects of TNET and maintain viability. Biotechnol. Bioeng. 2017;114: 2390-2399. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Inflammation Drives Retraction, Stiffening, and Nodule Formation via Cytoskeletal Machinery in a Three-Dimensional Culture Model of Aortic Stenosis.

    PubMed

    Lim, Jina; Ehsanipour, Arshia; Hsu, Jeffrey J; Lu, Jinxiu; Pedego, Taylor; Wu, Alexander; Walthers, Chris M; Demer, Linda L; Seidlits, Stephanie K; Tintut, Yin

    2016-09-01

    In calcific aortic valve disease, the valve cusps undergo retraction, stiffening, and nodular calcification. The inflammatory cytokine, tumor necrosis factor (TNF)-α, contributes to valve disease progression; however, the mechanisms of its actions on cusp retraction and stiffening are unclear. We investigated effects of TNF-α on murine aortic valvular interstitial cells (VICs) within three-dimensional, free-floating, compliant, collagen hydrogels, simulating their natural substrate and biomechanics. TNF-α increased retraction (percentage of diameter), stiffness, and formation of macroscopic, nodular structures with calcification in the VIC-laden hydrogels. The effects of TNF-α were attenuated by blebbistatin inhibition of myosin II-mediated cytoskeletal contraction. Inhibition of actin polymerization with cytochalasin-D, but not inhibition of Rho kinase with Y27632, blocked TNF-α-induced retraction in three-dimensional VIC hydrogels, suggesting that actin stress fibers mediate TNF-α-induced effects. In the hydrogels, inhibitors of NF-κB blocked TNF-α-induced retraction, whereas simultaneous inhibition of c-Jun N-terminal kinase was required to block TNF-α-induced stiffness. TNF-α also significantly increased collagen deposition, as visualized by Masson's trichrome staining, and up-regulated mRNA expression of discoidin domain receptor tyrosine kinase 2, fibronectin, and α-smooth muscle actin. In human aortic valves, calcified cusps were stiffer and had more collagen deposition than noncalcified cusps. These findings suggest that inflammation, through stimulation of cytoskeletal contractile activity, may be responsible for valvular cusp retraction, stiffening, and formation of calcified nodules. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Cytoskeletal and morphologic impact of cellular oxidant injury.

    PubMed Central

    Hinshaw, D. B.; Sklar, L. A.; Bohl, B.; Schraufstatter, I. U.; Hyslop, P. A.; Rossi, M. W.; Spragg, R. G.; Cochrane, C. G.

    1986-01-01

    The relationship between changes in cell morphology and the cytoskeleton in oxidant injury was examined in the P388D1 cell line. Flow cytometry of cells stained with NBD-phallacidin, a fluorescent probe specific for filamentous (F) actin, revealed a substantial increase in F actin content in H2O2-injured cells over 3-4 hours. Doses of H2O2 as low as 500 microM produced sustained increases in F actin content. Experiments where catalase was used to interrupt H2O2 exposure over a long time course revealed 15-30 minutes to be the critical period of exposure to 5 mM H2O2 necessary for a sustained increase in F actin as well as large increases in membrane blebbing and later cell death. The increase in F actin with H2O2 injury was confirmed with the use of electrophoresis in acrylamide gels of 1% Triton X-100 cytoskeletal extracts from P388D1 cells. Scanning electron microscopy revealed major loss of surface convolutions in addition to the formation of blebs. Fluorescence microscopy of adherent cells using rhodamine phalloidin showed considerable cell rounding and rearrangement of cellular F actin by 30 minutes of exposure to H2O2. Transmission electron microscopy revealed side to side aggregation of F actin bundles (microfilaments) developing during this time. Considerable swelling of mitochondria and other subcellular organelles was seen after 2 hours of injury. The apparent area of attachment to the substrate was markedly diminished in injured cells. H2O2 injury produced a marked increase in F actin with an associated rearrangement of the microfilaments and simultaneous changes in the plasma membrane prior to cell death in the P388D1 cell line. Images Figure 5 Figure 6 Figure 7 Figure 8 PMID:3717299

  17. Gaussian Accelerated Molecular Dynamics in NAMD

    PubMed Central

    2016-01-01

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310

  18. Gaussian Accelerated Molecular Dynamics in NAMD.

    PubMed

    Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew

    2017-01-10

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.

  19. Plasmodium falciparum-induced CD36 clustering rapidly strengthens cytoadherence via p130CAS-mediated actin cytoskeletal rearrangement

    PubMed Central

    Davis, Shevaun P.; Amrein, Matthias; Gillrie, Mark R.; Lee, Kristine; Muruve, Daniel A.; Ho, May

    2012-01-01

    The adhesion of infected red blood cells (IRBCs) to microvascular endothelium is critical in the pathogenesis of severe malaria. Here we used atomic force and confocal microscopy to examine the adhesive forces between IRBCs and human dermal microvascular endothelial cells. Initial contact of the cells generated a mean ± sd adhesion force of 167 ± 208 pN from the formation of single or multiple bonds with CD36. The strength of adhesion increased by 5- to 6-fold within minutes of contact through a signaling pathway initiated by CD36 ligation by live IRBCs, or polystyrene beads coated with anti-CD36 or PpMC-179, a recombinant peptide representing the minimal binding domain of the parasite ligand PfEMP1 to CD36. Engagement of CD36 led to localized phosphorylation of Src family kinases and the adaptor protein p130CAS, resulting in actin recruitment and CD36 clustering by 50–60% of adherent beads. Uninfected red blood cells or IgG-coated beads had no effect. Inhibition of the increase in adhesive strength by the Src family kinase inhibitor PP1 or gene silencing of p130CAS decreased adhesion by 39 ± 12 and 48 ± 20%, respectively, at 10 dyn/cm2 in a flow chamber assay. Modulation of adhesive strength at PfEMP1-CD36-actin cytoskeleton synapses could be a novel target for antiadhesive therapy.—Davis, S. P., Amrein, M., Gillrie, M. R., Lee, K., Muruve, D. A., Ho, M. Plasmodium falciparum-induced CD36 clustering rapidly strengthens cytoadherence via p130CAS-mediated actin cytoskeletal rearrangement. PMID:22106368

  20. Protein profiles of hatchery egg shell membrane.

    PubMed

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  1. Decreased expression of Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2 may be involved in the development of pre-eclampsia.

    PubMed

    Li, Juan; Luo, Xin; Xiao, Xiaoqiu; Zhang, Xuemei; Qi, Hongbo; Liu, Xiru; Zhang, Hua; Gao, Li; Yang, Zhongmei

    2014-01-01

    Wiskott–Aldrich syndrome protein family verprolin-homologous protein 2 (WAVE2) is a protein that mediates actin cytoskeletal reorganization and lamellipodia protrusion formation, which are required for cell migration and invasion. The primary purpose of this study was to determine whether there is an association between reactive oxygen species (ROS) and WAVE2 in pre-eclampsia, and whether WAVE2 expression in trophoblast cells is vulnerable to oxidative stress. This study observed excessive generation of ROS and decreased expression of WAVE2 in pre-eclamptic placentas compared with normotensive controls. Moreover, there was a significant negative correlation between ROS and WAVE2 protein in pre-eclamptic placenta (P < 0.001). An in-vitro model of hypoxia–reoxygenation (H/R) was used to imitate oxidative stress in placental trophoblasts, and it was found that the expression of WAVE2 protein in trophoblasts was decreased after H/R treatment. Additionally, compared with normoxia, decreased cell proliferation, higher cell apoptosis and attenuated cell migration and invasion were detected in trophoblasts exposed to H/R. In conclusion, the findings strongly suggest that excessive oxidative stress can decrease WAVE2 expression in trophoblasts and that the decreased expression of WAVE2 in trophoblast cells may be involved in the development of pre-eclampsia. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. Carbon Monoxide and Nitric Oxide Mediate Cytoskeletal Reorganization in Microvascular Cells via Vasodilator-Stimulated Phosphoprotein Phosphorylation

    PubMed Central

    Li Calzi, Sergio; Purich, Daniel L.; Chang, Kyung Hee; Afzal, Aqeela; Nakagawa, Takahiko; Busik, Julia V.; Agarwal, Anupam; Segal, Mark S.; Grant, Maria B.

    2008-01-01

    OBJECTIVE— We examined the effect of the vasoactive agents carbon monoxide (CO) and nitric oxide (NO) on the phosphorylation and intracellular redistribution of vasodilator-stimulated phosphoprotein (VASP), a critical actin motor protein required for cell migration that also controls vasodilation and platelet aggregation. RESEARCH DESIGN AND METHODS— We examined the effect of donor-released CO and NO in endothelial progenitor cells (EPCs) and platelets from nondiabetic and diabetic subjects and in human microvascular endothelial cells (HMECs) cultured under low (5.5 mmol/l) or high (25 mmol/l) glucose conditions. VASP phosphorylation was evaluated using phosphorylation site-specific antibodies. RESULTS— In control platelets, CO selectively promotes phosphorylation at VASP Ser-157, whereas NO promotes phosphorylation primarily at Ser-157 and also at Ser-239, with maximal responses at 1 min with both agents on Ser-157 and at 15 min on Ser-239 with NO treatment. In diabetic platelets, neither agent resulted in VASP phosphorylation. In nondiabetic EPCs, NO and CO increased phosphorylation at Ser-239 and Ser-157, respectively, but this response was markedly reduced in diabetic EPCs. In endothelial cells cultured under low glucose conditions, both CO and NO induced phosphorylation at Ser-157 and Ser-239; however, this response was completely lost when cells were cultured under high glucose conditions. In control EPCs and in HMECs exposed to low glucose, VASP was redistributed to filopodia-like structures following CO or NO exposure; however, redistribution was dramatically attenuated under high glucose conditions. CONCLUSIONS— Vasoactive gases CO and NO promote cytoskeletal changes through site- and cell type–specific VASP phosphorylation, and in diabetes, blunted responses to these agents may lead to reduced vascular repair and tissue perfusion. PMID:18559661

  3. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  4. Variable-angle epifluorescence microscopy characterizes protein dynamics in the vicinity of plasma membrane in plant cells.

    PubMed

    Chen, Tong; Ji, Dongchao; Tian, Shiping

    2018-03-14

    The assembly of protein complexes and compositional lipid patterning act together to endow cells with the plasticity required to maintain compositional heterogeneity with respect to individual proteins. Hence, the applications for imaging protein localization and dynamics require high accuracy, particularly at high spatio-temporal level. We provided experimental data for the applications of Variable-Angle Epifluorescence Microscopy (VAEM) in dissecting protein dynamics in plant cells. The VAEM-based co-localization analysis took penetration depth and incident angle into consideration. Besides direct overlap of dual-color fluorescence signals, the co-localization analysis was carried out quantitatively in combination with the methodology for calculating puncta distance and protein proximity index. Besides, simultaneous VAEM tracking of cytoskeletal dynamics provided more insights into coordinated responses of actin filaments and microtubules. Moreover, lateral motility of membrane proteins was analyzed by calculating diffusion coefficients and kymograph analysis, which represented an alternative method for examining protein motility. The present study presented experimental evidence on illustrating the use of VAEM in tracking and dissecting protein dynamics, dissecting endosomal dynamics, cell structure assembly along with membrane microdomain and protein motility in intact plant cells.

  5. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats

    PubMed Central

    Kopylova, Lyudmila V.; Cherepanov, Ivan V.; Snytnikova, Olga A.; Rumyantseva, Yuliya V.; Kolosova, Nataliya G.; Sagdeev, Renad Z.

    2011-01-01

    Purpose To determine the age-related and the cataract-specific changes in the crystallin composition in lenses of accelerated-senescence OXYS (cataract model) and Wistar (control) rats. Methods The water soluble (WS) and insoluble (WIS) fractions of the lens proteins were separated; the identity and relative abundance of each crystallin in WS fraction were determined with the use of two-dimensional electrophoresis (2-DE) and Matrix-Assisted Laser Desorption Ionization – Time Of Flight (MALDI-TOF) mass spectrometry. All statistical calculations were performed using the software package Statistica 6.0 by factor dispersion analysis (ANOVA/MANOVA) and Newman-Keuls post-hoc test for comparison of group mean values. Results The WIS protein content increased significantly in the aged animal lenses; the WIS/WS ratio increases in approximately 8 times to the age of 62 weeks. The interstrain difference was insignificant in this experiment. 2-DE maps of the young rat lenses (3 weeks) showed single spots for each lens protein while in older lenses (12 and 62 weeks) each crystallin was presented by several spots. The abundance of γA-γF-crystallins in WS fraction significantly decreases with age. A significant increase in the percentage abundance was also found for α-crystallins and βB2-crystallin from 3 to 12 weeks. The major differences between Wistar and OXYS lenses are the faster decay of the content of γA-γF-crystallins in OXYS lenses, and the significant decrease of unmodified αA-crystallin abundance in old OXYS lenses. Conclusions The presented results demonstrate that the increase of the water-insoluble (WIS) protein fraction is rather age-specific than cataract-specific phenomenon. The major age-related changes in WS protein composition are the fast insolubilization of γ-crystallins, and the increase of αB- and βB2-crystallin abundance. The main interstrain differences, which could be attributed to the cataract-specific processes, are the faster decay of the

  6. Cytoplasmic segregation and cytoskeletal organization in the electric catfish giant electromotoneuron with special reference to the axon hillock region.

    PubMed

    Braun, N; Schikorski, T; Zimmermann, H

    1993-02-01

    The cytoplasm of the highly polarized nerve cell is permanently segregated into domains with differing organellar composition. The mechanisms maintaining this segregation are largely unknown. In order to elucidate the potential role of cytoskeletal elements in this process we compared the cytoplasmic segregation within the giant electromotoneuron of the electric catfish (Malapterurus electricus) with the distribution of binding sites for antibodies against elements of the cytoskeleton. Most prominent cytoplasmic segregations include the formation of a subplasmalemmal cortical structure free of Nissl bodies and Golgi cisternae, the separation within the soma of domains containing rough endoplasmic reticulum and filament-rich domains, and the soma-axon transition. The cytoplasmic transition at the axon hillock forms a distinct borderline where Nissl bodies, Golgi cisternae and the bulk of lysosomes abruptly terminate and are excluded from the axoplasm. Synaptic vesicles and mitochondria are free to pass compartmental borders. Tropomyosin, spectrin, and alpha-actinin reveal a rather homogeneous immunofluorescence throughout the neuron. In contrast, neurofilament protein and tubulin display a distinctly increased immunofluorescence in the subplasmalemmal cortical layer, in dendrites as well as in the axon. The increase in immunofluorescence at the axon hillock exactly depicts the small transition zone from the somatic cytoplasm rich in Nissl bodies, Golgi cisternae and lysosomes to the differently structured axoplasm. The picture is similar for beta-tubulin, tyrosinylated and detyrosinylated alpha-tubulin. Detyrosinylated tubulin (glu-tubulin, which is contained in microtubules of increased stability) shows the most prominent enrichment in the axon. The distribution of myosin is comparable to that of neurofilament protein but there is less difference in immunofluorescence between the domains. Our results would be compatible with a role of microtubules together with

  7. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

    PubMed

    Jaquemar, D; Schenker, T; Trueb, B

    1999-03-12

    We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.

  8. Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.

    PubMed

    Doshi, Urmi; Hamelberg, Donald

    2014-04-03

    Molecular dynamics simulations can provide valuable atomistic insights into biomolecular function. However, the accuracy of molecular simulations on general-purpose computers depends on the time scale of the events of interest. Advanced simulation methods, such as accelerated molecular dynamics, have shown tremendous promise in sampling the conformational dynamics of biomolecules, where standard molecular dynamics simulations are nonergodic. Here we present a sampling method based on accelerated molecular dynamics in which rotatable dihedral angles and nonbonded interactions are boosted separately. This method (RaMD-db) is a different implementation of the dual-boost accelerated molecular dynamics, introduced earlier. The advantage is that this method speeds up sampling of the conformational space of biomolecules in explicit solvent, as the degrees of freedom most relevant for conformational transitions are accelerated. We tested RaMD-db on one of the most difficult sampling problems - protein folding. Starting from fully extended polypeptide chains, two fast folding α-helical proteins (Trpcage and the double mutant of C-terminal fragment of Villin headpiece) and a designed β-hairpin (Chignolin) were completely folded to their native structures in very short simulation time. Multiple folding/unfolding transitions could be observed in a single trajectory. Our results show that RaMD-db is a promisingly fast and efficient sampling method for conformational transitions in explicit solvent. RaMD-db thus opens new avenues for understanding biomolecular self-assembly and functional dynamics occurring on long time and length scales.

  9. A high-protein diet during hospitalization is associated with an accelerated decrease in soluble urokinase plasminogen activator receptor levels in acutely ill elderly medical patients with SIRS.

    PubMed

    Tavenier, Juliette; Haupt, Thomas H; Andersen, Aino L; Buhl, Sussi F; Langkilde, Anne; Andersen, Jens R; Jensen, Jens-Erik B; Pedersen, Mette M; Petersen, Janne; Andersen, Ove

    2017-05-01

    Acute illness and hospitalization in elderly individuals are often accompanied by the systemic inflammatory response syndrome (SIRS) and malnutrition, both associated with wasting and mortality. Nutritional support and resistance training were shown to increase muscle anabolism and reduce inflammation in healthy elderly. We hypothesized that nutritional support and resistance training would accelerate the resolution of inflammation in hospitalized elderly patients with SIRS. Acutely admitted patients aged >65 years with SIRS were randomized to an intervention consisting of a high-protein diet (1.7 g/kg per day) during hospitalization, and daily protein supplement (18.8 g) and 3 weekly resistance training sessions for 12 weeks after discharge (Intervention, n=14), or to standard-care (Control, n=15). Plasma levels of the inflammatory biomarkers soluble urokinase plasminogen activator receptor (suPAR), interleukin-6, C-reactive protein (CRP), and albumin were measured at admission, discharge, and 4 and 13 weeks after discharge. The Intervention group had an earlier decrease in suPAR levels than the Control group: -15.4% vs. +14.5%, P=.007 during hospitalization, and -2.4% vs. -28.6%, P=.007 between discharge and 4 weeks. There were no significant effects of the intervention on the other biomarkers. All biomarkers improved significantly between admission and 13 weeks, although with different kinetics (suPAR: -22%, interleukin-6: -86%, CRP: -89%, albumin: +11%). Nutritional support during hospitalization was associated with an accelerated decrease in suPAR levels, whereas the combined nutrition and resistance training intervention after discharge did not appear to affect the inflammatory state. Our results indicate that improved nutritional care during hospitalization may accelerate recovery in acutely ill elderly medical patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Lead-induced changes of cytoskeletal protein is involved in the pathological basis in mice brain.

    PubMed

    Ge, Yaming; Chen, Lingli; Sun, Xianghe; Yin, Zhihong; Song, Xiaochao; Li, Chong; Liu, Junwei; An, Zhixing; Yang, Xuefeng; Ning, Hongmei

    2018-04-01

    Lead poisoning is a geochemical disease. On the other hand, lead is highly carcinogenic and exhibits liver and kidney toxicity. This element can also cross the blood-brain barrier, reduce learning and memory ability and damage the structure of the cerebral cortex and hippocampus. To further investigate the mechanism of lead neurotoxicity, 4-week-old Kunming mice were used to explore the effects of different concentrations of Pb 2+ (0, 2.4, 4.8 and 9.6 mM) for 9 days. In this study, pathological and ultrastructural changes in brain cells of the treated group were related to damages to mitochondria, chromatin and the nucleus. Lead content in blood was tested by atomic absorption spectroscopy, which showed high lead concentrations in the blood with increasing doses of lead. Distribution of lead in nerve cells was analysed by transmission electron microscopy with energy dispersive spectroscopy. Data showed the presence of lead in nucleopores, chromatin and nuclear membrane of nerve cells in the treatment groups, whereas lead content increased with increasing doses of lead acetate. Finally, microtubule-associated protein 2 (MAP2) mRNA and protein expression levels were detected by real-time PCR and Western blotting, which showed a reduction in MAP2 expression with increasing lead doses in the mouse brain. These findings suggest that acute lead poisoning can cause significant dose-dependent toxic effects on mouse brain function and can contribute to better understanding of lead-induced toxicity.

  11. A screen for E3 ubiquitination ligases that genetically interact with the adaptor protein Cindr during Drosophila eye patterning

    PubMed Central

    Ketosugbo, Kwami F.; Bushnell, Henry L.

    2017-01-01

    Ubiquitination is a crucial post-translational modification that can target proteins for degradation. The E3 ubiquitin ligases are responsible for recognizing substrate proteins for ubiquitination, hence providing specificity to the process of protein degradation. Here, we describe a genetic modifier screen that identified E3 ligases that modified the rough-eye phenotype generated by expression of cindrRNAi transgenes during Drosophila eye development. In total, we identified 36 E3 ligases, as well as 4 Cullins, that modified the mild cindrRNA mis-patterning phenotype. This indicates possible roles for these E3s/Cullins in processes that require Cindr function, including cytoskeletal regulation, cell adhesion, cell signaling and cell survival. Three E3 ligases identified in our screen had previously been linked to regulating JNK signaling. PMID:29117266

  12. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly

    PubMed Central

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S.; Shaevitz, Joshua W.; Gitai, Zemer

    2011-01-01

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis. PMID:21903929

  13. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.

    PubMed

    van Teeffelen, Sven; Wang, Siyuan; Furchtgott, Leon; Huang, Kerwyn Casey; Wingreen, Ned S; Shaevitz, Joshua W; Gitai, Zemer

    2011-09-20

    Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.

  14. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  15. Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation.

    PubMed

    Malishev, Ravit; Nandi, Sukhendu; Kolusheva, Sofiya; Shaham-Niv, Shira; Gazit, Ehud; Jelinek, Raz

    2016-09-01

    Bacosides, class of compounds extracted from the Bacopa monniera plant, exhibit interesting therapeutic properties, particularly enhancing cognitive functions and putative anti-amyloid activity. We show that bacoside-A exerted significant effects upon fibrillation and membrane interactions of the amyloidogenic fragment of the prion protein [PrP(106-126)]. Specifically, when co-incubated with PrP(106-126), bacoside-A accelerated fibril formation in the presence of lipid bilayers and in parallel inhibited bilayer interactions of the peptide aggregates formed in solution. These interesting phenomena were studied by spectroscopic and microscopic techniques, which suggest that bacoside A-promoted fibrillation reduced the concentration of membrane-active pre-fibrillar species of the prion fragment. This study suggests that induction of fibril formation and corresponding inhibition of membrane interactions are likely the underlying factors for ameliorating amyloid protein toxicity by bacoside-A. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Expression, Localization of SUMO-1, and Analyses of Potential SUMOylated Proteins in Bubalus bubalis Spermatozoa

    PubMed Central

    Brohi, Rahim Dad; Wang, Li; Hassine, Najla Ben; Cao, Jing; Talpur, Hira Sajjad; Wu, Di; Huang, Chun-Jie; Rehman, Zia-Ur; Bhattarai, Dinesh; Huo, Li-Jun

    2017-01-01

    Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1) in the sperm of water buffalo (Bubalus bubalis) using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function. PMID:28659810

  17. Usher syndrome protein network functions in the retina and their relation to other retinal ciliopathies.

    PubMed

    Sorusch, Nasrin; Wunderlich, Kirsten; Bauss, Katharina; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2014-01-01

    The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically and clinically heterogeneous: 15 chromosomal loci assigned to 3 clinical types, USH1-3. All USH1 and 2 proteins are organized into protein networks by the scaffold proteins harmonin (USH1C), whirlin (USH2D) and SANS (USH1G). This has contributed essentially to our current understanding of the USH protein function in the eye and the ear and explains why defects in proteins of different families cause very similar phenotypes. Ongoing in depth analyses of USH protein networks in the eye indicated cytoskeletal functions as well as roles in molecular transport processes and ciliary cargo delivery in photoreceptor cells. The analysis of USH protein networks revealed molecular links of USH to other ciliopathies, including non-syndromic inner ear defects and isolated retinal dystrophies but also to kidney diseases and syndromes like the Bardet-Biedl syndrome. These findings provide emerging evidence that USH is a ciliopathy molecularly related to other ciliopathies, which opens an avenue for common therapy strategies to treat these diseases.

  18. Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model.

    PubMed

    Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok

    2014-01-01

    Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  19. Rate and extent of protein localization is controlled by peptide-binding domain association kinetics and morphology.

    PubMed

    Mills, Evan; Truong, Kevin

    2009-06-01

    Protein localization is an important regulatory mechanism in many cell signaling pathways such as cytoskeletal organization and genetic regulation. The specific mechanism of protein localization determines the kinetics and morphological constraints of protein translocation, and thus affects the rate and extent of localization. To investigate the affect of localization kinetics and morphology on protein localization, we designed a protein localization system based on Ca(2+)-calmodulin and Src homology 3 domain binding peptides that can translocate between specific localizations in response to a Ca(2+) signal. We used a stochastic biomolecular simulator to predict that such a protein localization system will exhibit slower and less complete translocations when the association kinetics of a binding domain and peptide are reduced. As well, we predicted that increasing the diffusion resistance by manipulating the morphology of the system would similarly impair translocation speed and completeness. We then constructed a network of synthetic fusion proteins and showed that these predictions could be qualitatively confirmed in vitro. This work provides a basis for explaining the different characteristics (rate and extent) of protein transport and localization in cells as a consequence of the kinetics and morphology of the transport mechanism.

  20. Novel interactions between erythroblast macrophage protein and cell migration.

    PubMed

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma.

    PubMed

    Leone, A; Mitsiades, N; Ward, Y; Spinelli, B; Poulaki, V; Tsokos, M; Kelly, K

    2001-05-31

    Gem is a small GTP-binding protein within the Ras superfamily whose function has not been determined. We report here that ectopic Gem expression is sufficient to stimulate cell flattening and neurite extension in N1E-115 and SH-SY5Y neuroblastoma cells, suggesting a role for Gem in cytoskeletal rearrangement and/or morphological differentiation of neurons. Consistent with this potential function, in clinical samples of neuroblastoma, Gem protein was most highly expressed within cells which had differentiated to express ganglionic morphology. Gem was also observed in developing trigeminal nerve ganglia in 12.5 day mouse embryos, demonstrating that Gem expression is a property of normal ganglionic development. Although Gem expression is rare in epithelial and hematopoietic cancer cell lines, constitutive Gem levels were detected in several neuroblastoma cell lines and could be further induced as much as 10-fold following treatment with PMA or the acetylcholine muscarinic agonist, carbachol.

  2. Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown–Vialetto disease that is partially rescued by riboflavin

    PubMed Central

    Rizzo, Federica; Ramirez, Agnese; Compagnucci, Claudia; Salani, Sabrina; Melzi, Valentina; Bordoni, Andreina; Fortunato, Francesco; Niceforo, Alessia; Bresolin, Nereo; Comi, Giacomo P.; Bertini, Enrico; Nizzardo, Monica; Corti, Stefania

    2017-01-01

    Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown–Vialetto–Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell–selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy–lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies. PMID:28382968

  3. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth

    PubMed Central

    Malik, Minnie; Segars, James; Catherino, William H.

    2014-01-01

    Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin p1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells. PMID:23023061

  4. Differential gene expression in the endometrium reveals cytoskeletal and immunological genes in lactating dairy cows genetically divergent for fertility traits.

    PubMed

    Moran, Bruce; Butler, Stephen T; Moore, Stephen G; MacHugh, David E; Creevey, Christopher J

    2017-02-01

    Profitable milk production in dairy cows requires good reproductive performance. Calving interval is a trait used to measure reproductive efficiency. Herein we used a novel lactating Holstein cow model of fertility that displayed genetic and phenotypic divergence in calving interval, a trait used to define reproductive performance using a national breeding index in Ireland. Cows had similar genetic merit for milk production traits, but either very good genetic merit for fertility (Fert+; n=7) or very poor genetic merit for fertility (Fert-; n=6). We tested the hypothesis that Fert+ cows would have a corresponding detectable difference in endometrial gene expression compared with the Fert- cows. To do this, we sequenced the transcriptome of endometrial biopsies collected on Day 7 of the oestrous cycle (non-pregnant). This is an important stage for uterine remodelling and initiation of histotroph secretion. Significant differential expression (false discovery rate-adjusted P<0.1) of 403 genes between Fert+ and Fert- cows was found. A novel network-based functional analysis highlighted 123 genes from three physiologically relevant networks of the endometrium: (1) actin and cytoskeletal components; (2) immune function; and (3) ion transportation. In particular, our results indicate an overall downregulation of inflammation-related genes and an upregulation of multiple ion transporters and gated-voltage channels and cytoskeletal genes in Fert+ cows. These three topics, which are discussed in terms of the uterus and in the context of fertility, provide molecular evidence for an association between gene expression in the uterine environment and genetic merit for fertility in dairy cows.

  5. Covisualization in living onion cells of putative integrin, putative spectrin, actin, putative intermediate filaments, and other proteins at the cell membrane and in an endomembrane sheath

    NASA Technical Reports Server (NTRS)

    Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.

  6. Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes.

    PubMed

    Pierozan, Paula; Biasibetti, Helena; Schmitz, Felipe; Ávila, Helena; Parisi, Mariana M; Barbe-Tuana, Florencia; Wyse, Angela T S; Pessoa-Pureur, Regina

    2016-12-01

    QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Calpain-mediated breakdown of cytoskeletal proteins contributes to cholecystokinin-induced damage of rat pancreatic acini.

    PubMed

    Weber, Heike; Hühns, Saskia; Lüthen, Frank; Jonas, Ludwig

    2009-08-01

    The cytosolic cysteine protease calpain is implicated in a multitude of cellular functions but also plays a role in cell damage. Our previous results suggest that an activation of calpain accompanied by a decrease in its endogenous inhibitor calpastatin may contribute to pancreatic damage during cerulein-induced acute pancreatitis. The present study aimed at the time course of secretagogue-induced calpain activation and cellular substrates of the protease. Isolated rat pancreatic acini were incubated with a supramaximal concentration of cholecystokinin (0.1 microM CCK) for 30 min in the presence or absence of the calpain inhibitor Z-Val-Phe methyl ester (100 microM ZVP). The activation of calpain and the expression of calpastatin and the actin cytoskeleton-associated proteins alphaII-spectrin, E-cadherin and vinculin were studied by immunoblotting. The cell damage was assessed by lactate dehydrogenase release and ultrastructural analysis including fluorescence-labelled actin filaments. Immediately after administration, CCK led to activation of both calpain isoforms, mu- and m-calpain. The protease activation was accompanied by a decrease in the E-cadherin level and formation of calpain-specific breakdown products of alphaII-spectrin. A calpain-specific cleavage product of vinculin appeared concomitantly with changes in the actin filament organization. No effect of CCK on calpastatin was found. Inhibition of calpain by ZVP reduced CCK-induced damage of the actin-associated proteins and the cellular ultrastructure including the actin cytoskeleton. The results suggest that CCK-induced acinar cell damage requires activation of calpain and that the actin cytoskeleton belongs to the cellular targets of the protease.

  8. Spatial Distribution of Protein Kinase A Activity during Cell Migration Is Mediated by A-kinase Anchoring Protein AKAP Lbc*

    PubMed Central

    Paulucci-Holthauzen, Adriana A.; Vergara, Leoncio A.; Bellot, Larry J.; Canton, David; Scott, John D.; O'Connor, Kathleen L.

    2009-01-01

    Protein kinase A (PKA) has been suggested to be spatially regulated in migrating cells due to its ability to control signaling events that are critical for polarized actin cytoskeletal dynamics. Here, using the fluorescence resonance energy transfer-based A-kinase activity reporter (AKAR1), we find that PKA activity gradients form with the strongest activity at the leading edge and are restricted to the basal surface in migrating cells. The existence of these gradients was confirmed using immunocytochemistry using phospho-PKA substrate antibodies. This observation holds true for carcinoma cells migrating randomly on laminin-1 or stimulated to migrate on collagen I with lysophosphatidic acid. Phosphodiesterase inhibition allows the formation of PKA activity gradients; however, these gradients are no longer polarized. PKA activity gradients are not detected when a non-phosphorylatable mutant of AKAR1 is used, if PKA activity is inhibited with H-89 or protein kinase inhibitor, or when PKA anchoring is perturbed. We further find that a specific A-kinase anchoring protein, AKAP-Lbc, is a major contributor to the formation of these gradients. In summary, our data show that PKA activity gradients are generated at the leading edge of migrating cells and provide additional insight into the mechanisms of PKA regulation of cell motility. PMID:19106088

  9. Crystallographic Studies of Intermediate Filament Proteins.

    PubMed

    Guzenko, Dmytro; Chernyatina, Anastasia A; Strelkov, Sergei V

    Intermediate filaments (IFs), together with microtubules and actin microfilaments, are the three main cytoskeletal components in metazoan cells. IFs are formed by a distinct protein family, which is made up of 70 members in humans. Most IF proteins are tissue- or organelle-specific, which includes lamins, the IF proteins of the nucleus. The building block of IFs is an elongated dimer, which consists of a central α-helical 'rod' domain flanked by flexible N- and C-terminal domains. The conserved rod domain is the 'signature feature' of the IF family. Bioinformatics analysis reveals that the rod domain of all IF proteins contains three α-helical segments of largely conserved length, interconnected by linkers. Moreover, there is a conserved pattern of hydrophobic repeats within each segment, which includes heptads and hendecads. This defines the presence of both left-handed and almost parallel coiled-coil regions along the rod length. Using X-ray crystallography on multiple overlapping fragments of IF proteins, the atomic structure of the nearly complete rod domain has been determined. Here, we discuss some specific challenges of this procedure, such as crystallization and diffraction data phasing by molecular replacement. Further insights into the structure of the coiled coil and the terminal domains have been obtained using electron paramagnetic resonance measurements on the full-length protein, with spin labels attached at specific positions. This atomic resolution information, as well as further interesting findings, such as the variation of the coiled-coil stability along the rod length, provide clues towards interpreting the data on IF assembly, collected by a range of methods. However, a full description of this process at the molecular level is not yet at hand.

  10. Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells.

    PubMed

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haupt, Ygal; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A; Solomon, Benjamin

    2014-02-01

    To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination. Copyright © 2014. Published by Elsevier Inc.

  11. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis.

    PubMed

    Yao, Yifei; Lacroix, Damien; Mak, Arthur F T

    2016-12-01

    Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast's capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex-membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.

  12. FPGA acceleration of rigid-molecule docking codes

    PubMed Central

    Sukhwani, B.; Herbordt, M.C.

    2011-01-01

    Modelling the interactions of biological molecules, or docking, is critical both to understanding basic life processes and to designing new drugs. The field programmable gate array (FPGA) based acceleration of a recently developed, complex, production docking code is described. The authors found that it is necessary to extend their previous three-dimensional (3D) correlation structure in several ways, most significantly to support simultaneous computation of several correlation functions. The result for small-molecule docking is a 100-fold speed-up of a section of the code that represents over 95% of the original run-time. An additional 2% is accelerated through a previously described method, yielding a total acceleration of 36× over a single core and 10× over a quad-core. This approach is found to be an ideal complement to graphics processing unit (GPU) based docking, which excels in the protein–protein domain. PMID:21857870

  13. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus.

    PubMed

    McIntyre, Christa K; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D; Steward, Oswald; Guzowski, John F; McGaugh, James L

    2005-07-26

    Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the beta-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance.

  14. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus

    PubMed Central

    McIntyre, Christa K.; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D.; Steward, Oswald; Guzowski, John F.; McGaugh, James L.

    2005-01-01

    Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the β-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance. PMID:16020527

  15. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    PubMed

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  16. The actin-like MreB proteins in Bacillus subtilis: a new turn.

    PubMed

    Chastanet, Arnaud; Carballido-Lopez, Rut

    2012-06-01

    A decade ago, two breakthrough descriptions were reported: 1) the first helix-like protein localization pattern of MreB and its paralog Mbl in Bacillus subtilis and 2) the crystal structure of Thermotoga maritima MreB1, which was remarkably similar to that of actin. These discoveries strongly stimulated the field of bacterial development, leading to the identification of many new cytoskeletal proteins (1) and the publication of many studies describing the helical patterns of protein, DNA and even lipid domains. However, today, new breakthroughs are shaking up what had become a dogma. Instead of helical structures, MreBs appear to form discrete patches that move circumferentially around the cell, questioning the idea of MreB cables forming an actin-like cytoskeleton. Furthermore, increasing evidence of biochemical properties that are unlike the properties of actin suggest that the molecular behavior of MreB proteins may be different. The aim of this review is to summarize the current knowledge of the so-called "actin-like" MreB cytoskeleton through a discussion of the model Gram-positive bacterium B. subtilis and the most recent findings in this rapidly evolving research field.

  17. An Endogenous Accelerator for Viral Gene Expression Confers a Fitness Advantage

    PubMed Central

    Teng, Melissa W.; Bolovan-Fritts, Cynthia; Dar, Roy D.; Womack, Andrew; Simpson, Michael L.; Shenk, Thomas; Weinberger, Leor S.

    2012-01-01

    Many signaling circuits face a fundamental tradeoff between accelerating their response speed while maintaining final levels below a cytotoxic threshold. Here, we describe a transcriptional circuitry that dynamically converts signaling inputs into faster rates without amplifying final equilibrium levels. Using time-lapse microscopy, we find that transcriptional activators accelerate human cytomegalovirus (CMV) gene expression in single cells without amplifying steady-state expression levels, and this acceleration generates a significant replication advantage. We map the accelerator to a highly self-cooperative transcriptional negative-feedback loop (Hill coefficient ~ 7) generated by homo-multimerization of the virus’s essential transactivator protein IE2 at nuclear PML bodies. Eliminating the IE2-accelerator circuit reduces transcriptional strength through mislocalization of incoming viral genomes away from PML bodies and carries a heavy fitness cost. In general, accelerators may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules. PMID:23260143

  18. Giant axonal neuropathy–associated gigaxonin mutations impair intermediate filament protein degradation

    PubMed Central

    Mahammad, Saleemulla; Murthy, S.N. Prasanna; Didonna, Alessandro; Grin, Boris; Israeli, Eitan; Perrot, Rodolphe; Bomont, Pascale; Julien, Jean-Pierre; Kuczmarski, Edward; Opal, Puneet; Goldman, Robert D.

    2013-01-01

    Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients’ dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan–/– mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease. PMID:23585478

  19. Mining the Giardia genome and proteome for conserved and unique basal body proteins

    PubMed Central

    Lauwaet, Tineke; Smith, Alias J.; Reiner, David S.; Romijn, Edwin P.; Wong, Catherine C. L.; Davids, Barbara J.; Shah, Sheila A.; Yates, John R.; Gillin, Frances D.

    2015-01-01

    Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterized by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signaling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localization in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localize with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localize to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signaling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles. PMID:21723868

  20. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus.

    PubMed

    Bollineni, Ravi Chand; Fedorova, Maria; Blüher, Matthias; Hoffmann, Ralf

    2014-11-07

    Protein carbonylation is a common nonenzymatic oxidative post-translational modification, which is often considered as biomarker of oxidative stress. Recent evidence links protein carbonylation also to obesity and type 2 diabetes mellitus (T2DM), though the protein targets of carbonylation in human plasma have not been identified. In this study, we profiled carbonylated proteins in plasma samples obtained from lean individuals and obese patients with or without T2DM. The plasma samples were digested with trypsin, carbonyl groups were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine, enriched by avidin affinity chromatography, and analyzed by RPC-MS/MS. Signals of potentially modified peptides were targeted in a second LC-MS/MS analysis to retrieve the peptide sequence and the modified residues. A total of 158 unique carbonylated proteins were identified, of which 52 were detected in plasma samples of all three groups. Interestingly, 36 carbonylated proteins were detected only in obese patients with T2DM, whereas 18 were detected in both nondiabetic groups. The carbonylated proteins originated mostly from liver, plasma, platelet, and endothelium. Functionally, they were mainly involved in cell adhesion, signaling, angiogenesis, and cytoskeletal remodeling. Among the identified carbonylated proteins were several candidates, such as VEGFR-2, MMP-1, argin, MKK4, and compliment C5, already connected before to diabetes, obesity and metabolic diseases.

  1. Inclusion bodies as potential vehicles for recombinant protein delivery into epithelial cells

    PubMed Central

    2012-01-01

    Background We present the potential of inclusion bodies (IBs) as a protein delivery method for polymeric filamentous proteins. We used as cell factory a strain of E. coli, a conventional host organism, and keratin 14 (K14) as an example of a complex protein. Keratins build the intermediate filament cytoskeleton of all epithelial cells. In order to build filaments, monomeric K14 needs first to dimerize with its binding partner (keratin 5, K5), which is then followed by heterodimer assembly into filaments. Results K14 IBs were electroporated into SW13 cells grown in culture together with a “reporter” plasmid containing EYFP labeled keratin 5 (K5) cDNA. As SW13 cells do not normally express keratins, and keratin filaments are built exclusively of keratin heterodimers (i.e. K5/K14), the short filamentous structures we obtained in this study can only be the result of: a) if both IBs and plasmid DNA are transfected simultaneously into the cell(s); b) once inside the cells, K14 protein is being released from IBs; c) released K14 is functional, able to form heterodimers with EYFP-K5. Conclusions Soluble IBs may be also developed for complex cytoskeletal proteins and used as nanoparticles for their delivery into epithelial cells. PMID:22624805

  2. Anchoring of protein kinase A by ERM (ezrin-radixin-moesin) proteins is required for proper netrin signaling through DCC (deleted in colorectal cancer).

    PubMed

    Deming, Paula B; Campbell, Shirley L; Stone, Jamie B; Rivard, Robert L; Mercier, Alison L; Howe, Alan K

    2015-02-27

    Netrin-1, acting through its principal receptor DCC (deleted in colorectal cancer), serves as an axon guidance cue during neural development and also contributes to vascular morphogenesis, epithelial migration, and the pathogenesis of some tumors. Several lines of evidence suggest that netrin-DCC signaling can regulate and be regulated by the cAMP-dependent protein kinase, PKA, although the molecular details of this relationship are poorly understood. Specificity in PKA signaling is often achieved through differential subcellular localization of the enzyme by interaction with protein kinase A anchoring proteins (AKAPs). Here, we show that AKAP function is required for DCC-mediated activation of PKA and phosphorylation of cytoskeletal regulatory proteins of the Mena/VASP (vasodilator-stimulated phosphoprotein) family. Moreover, we show that DCC and PKA physically interact and that this association is mediated by the ezrin-radixin-moesin (ERM) family of plasma membrane-actin cytoskeleton cross-linking proteins. Silencing of ERM protein expression inhibits DCC-PKA interaction, DCC-mediated PKA activation, and phosphorylation of Mena/VASP proteins as well as growth cone morphology and neurite outgrowth. Finally, although expression of wild-type radixin partially rescued growth cone morphology and tropism toward netrin in ERM-knockdown cells, expression of an AKAP-deficient mutant of radixin did not fully rescue growth cone morphology and switched netrin tropism from attraction to repulsion. These data support a model in which ERM-mediated anchoring of PKA activity to DCC is required for proper netrin/DCC-mediated signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Accelerated Profile HMM Searches

    PubMed Central

    Eddy, Sean R.

    2011-01-01

    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches. PMID:22039361

  4. Expression of decay-accelerating factor (CD55), membrane cofactor protein (CD46) and CD59 in the human astroglioma cell line, D54-MG, and primary rat astrocytes.

    PubMed

    Yang, C; Jones, J L; Barnum, S R

    1993-09-01

    In this report, we have shown the expression of the complement regulatory proteins decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and CD59 on human D54-MG astroglioma cells by several methods, including immunofluorescence, flow cytometry and Western blotting and Northern blot analysis. These studies demonstrate that all three proteins are structurally and antigenically similar to their counterparts expressed on HepG2 and SW480 cells (hepatocyte and epithelial cell lines, respectively). D54-MG cells express mRNA for all three proteins of the appropriate size(s). The phosphatidylinositol-specific enzyme, PIPLC, cleaved DAF from the surface of D54-MG cells, demonstrating that DAF is linked by a glycophospholipid anchor as has been shown for other cell types. Flow cytometry demonstrates that primary rat astrocytes also constitutively express all three regulatory proteins. These data are the first to demonstrate the expression of CD59 on astrocytes, and the presence of all three regulatory proteins on astrocytes suggests that regulation of complement activation in the central nervous system is important in neural host defense mechanisms.

  5. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    PubMed Central

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  6. Impact of hydrodynamic interactions on protein folding rates depends on temperature

    NASA Astrophysics Data System (ADS)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.

    2018-03-01

    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  7. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  8. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K.; Chubb, C.; Huberman, E.

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less

  9. Protein Alterations in Infiltrating Ductal Carcinomas of the Breast as Detected by Nonequilibrium pH Gradient Electrophoresis and Mass Spectrometry

    PubMed Central

    Kabbage, Maria; Chahed, Karim; Hamrita, Bechr; Guillier, Christelle Lemaitre; Trimeche, Mounir; Remadi, Sami; Hoebeke, Johan; Chouchane, Lotfi

    2008-01-01

    Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, α-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues. PMID:18401453

  10. Self-organized cell motility

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; Doubrovinski, Konstantin

    2011-03-01

    Cell migration plays a key role in a wide range of biological phenomena, such as morphogenesis, chemotaxis, and wound healing. Cell locomotion relies on the cytoskeleton, a meshwork of filamentous proteins, intrinsically out of thermodynamic equilibrium and cross-linked by molecular motors, proteins that turn chemical energy into mechanical work. In the course of locomotion, cells remain polarized, i.e. they retain a single direction of motion in the absence of external cues. Traditionally, polarization has been attributed to intracellular signaling. However, recent experiments show that polarization may be a consequence of self-organized cytoskeletal dynamics. Our aim is to elucidate the mechanisms by which persistent unidirectional locomotion may arise through simple mechanical interactions of the cytoskeletal proteins. To this end, we develop a simple physical description of cytoskeletal dynamics. We find that the proposed description accounts for a range of phenomena associated with cell motility, including spontaneous polarization, persistent unidirectional motion, and the co-existence of motile and non-motile states.

  11. Accelerating the Conformational Sampling of Intrinsically Disordered Proteins.

    PubMed

    Do, Trang Nhu; Choy, Wing-Yiu; Karttunen, Mikko

    2014-11-11

    Intrinsically disordered proteins (IDPs) are a class of proteins lacking a well-defined secondary structure. Instead, they are able to attain multiple conformations, bind to multiple targets, and respond to changes in their surroundings. Functionally, IDPs have been associated with molecular recognition, cell regulation, and signal transduction. The dynamic conformational ensemble of IDPs is highly environmental and binding partner dependent, rendering the characterization of IDPs extremely challenging. Here, we compare the sampling efficiencies of conventional molecular dynamics (MD), well-tempered metadynamics (WT-META), and bias-exchange metadynamics (BE-META). The total simulation time was over 10 μs, and a 20-mer peptide derived from the Neh2 domain of the Nuclear factor erythroid 2-related factor 2 (Nrf2) protein was simulated. BE-META, with a neutral replica and seven biased replicas employing a set of seven relevant collective variables (CVs), provided the most reliable and efficient sampling. Finally, we propose a free-energy reconstruction method based on the probability distribution of the secondary structure contents. This postprocessing analysis confirms the presence of not only the β-hairpin conformation of the free Neh2 peptide but also its rare bound-state-like conformation, both of that have been experimentally observed. In addition, our simulations also predict other possible conformations to be verified with future experiments.

  12. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport

    PubMed Central

    Ozawa, Kentaro; Kondo, Toshikazu; Hori, Osamu; Kitao, Yasuko; Stern, David M.; Eisenmenger, Wolfgang; Ogawa, Satoshi; Ohshima, Tohru

    2001-01-01

    Expression of angiogenic factors such as VEGF under conditions of hypoxia or other kinds of cell stress contributes to neovascularization during wound healing. The inducible endoplasmic reticulum chaperone oxygen-regulated protein 150 (ORP150) is expressed in human wounds along with VEGF. Colocalization of these two molecules was observed in macrophages in the neovasculature, suggesting a role of ORP150 in the promotion of angiogenesis. Local administration of ORP150 sense adenovirus to wounds of diabetic mice, a treatment that efficiently targeted this gene product to the macrophages of wound beds, increased VEGF antigen in wounds and accelerated repair and neovascularization. In cultured human macrophages, inhibition of ORP150 expression caused retention of VEGF antigen within the endoplasmic reticulum (ER), while overexpression of ORP150 promoted the secretion of VEGF into hypoxic culture supernatants. Taken together, these data suggest an important role for ORP150 in the setting of impaired wound repair and identify a key, inducible chaperone-like molecule in the ER. This novel facet of the angiogenic response may be amenable to therapeutic manipulation. PMID:11435456

  13. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    NASA Astrophysics Data System (ADS)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  14. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    PubMed

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  15. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat.

    PubMed

    Uauy, Cristobal; Brevis, Juan Carlos; Dubcovsky, Jorge

    2006-01-01

    High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines (RSLs) segregating for Gpc-B1 is reported here. Flag leaf chlorophyll degradation, change in peduncle colour, and spike water content were completely linked to the Gpc-B1 locus and to the differences in GPC within a 0.3 cM interval corresponding to a physical distance of only 250 kb. The effect of Gpc-B1 was also examined in different environments and genetic backgrounds using a set of tetraploid and hexaploid pairs of isogenic lines. The results were consistent with those observed in the RSLs. The high GPC allele conferred a shorter duration of grain fill due to earlier flag leaf senescence and increased GPC in all four genetic backgrounds. The effect on grain size was more variable, depending on the genotype-environment combinations. These results are consistent with a model in which the wild-type allele of Gpc-B1 accelerates senescence in flag leaves producing pleiotropic effects on nitrogen remobilization, total GPC, and grain size.

  16. Divergent regulation of the sarcomere and the cytoskeleton.

    PubMed

    Schevzov, Galina; Fath, Thomas; Vrhovski, Bernadette; Vlahovich, Nicole; Rajan, Sudarsan; Hook, Jeff; Joya, Josephine E; Lemckert, Frances; Puttur, Franz; Lin, Jim J-C; Hardeman, Edna C; Wieczorek, David F; O'Neill, Geraldine M; Gunning, Peter W

    2008-01-04

    The existence of a feedback mechanism regulating the precise amounts of muscle structural proteins, such as actin and the actin-associated protein tropomyosin (Tm), in the sarcomeres of striated muscles is well established. However, the regulation of nonmuscle or cytoskeletal actin and Tms in nonmuscle cell structures has not been elucidated. Unlike the thin filaments of striated muscles, the actin cytoskeleton in nonmuscle cells is intrinsically dynamic. Given the differing requirements for the structural integrity of the actin thin filaments of the sarcomere compared with the requirement for dynamicity of the actin cytoskeleton in nonmuscle cells, we postulated that different regulatory mechanisms govern the expression of sarcomeric versus cytoskeletal Tms, as key regulators of the properties of the actin cytoskeleton. Comprehensive analyses of tissues from transgenic and knock-out mouse lines that overexpress the cytoskeletal Tms, Tm3 and Tm5NM1, and a comparison with sarcomeric Tms provide evidence for this. Moreover, we show that overexpression of a cytoskeletal Tm drives the amount of filamentous actin.

  17. Tyrosine phosphorylation switching of a G protein.

    PubMed

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Intermediate filament proteins of digestive organs: physiology and pathophysiology.

    PubMed

    Omary, M Bishr

    2017-06-01

    Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs. Copyright © 2017 the American Physiological Society.

  19. Computational Analysis of the Caenorhabditis elegans Germline to Study the Distribution of Nuclei, Proteins, and the Cytoskeleton.

    PubMed

    Gopal, Sandeep; Pocock, Roger

    2018-04-19

    The Caenorhabditis elegans (C. elegans) germline is used to study several biologically important processes including stem cell development, apoptosis, and chromosome dynamics. While the germline is an excellent model, the analysis is often two dimensional due to the time and labor required for three-dimensional analysis. Major readouts in such studies are the number/position of nuclei and protein distribution within the germline. Here, we present a method to perform automated analysis of the germline using confocal microscopy and computational approaches to determine the number and position of nuclei in each region of the germline. Our method also analyzes germline protein distribution that enables the three-dimensional examination of protein expression in different genetic backgrounds. Further, our study shows variations in cytoskeletal architecture in distinct regions of the germline that may accommodate specific spatial developmental requirements. Finally, our method enables automated counting of the sperm in the spermatheca of each germline. Taken together, our method enables rapid and reproducible phenotypic analysis of the C. elegans germline.

  20. Primary cilia proteins: ciliary and extraciliary sites and functions.

    PubMed

    Hua, Kiet; Ferland, Russell J

    2018-05-01

    Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.

  1. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  2. The skeleton in the closet: actin cytoskeletal remodeling in β-cell function.

    PubMed

    Arous, Caroline; Halban, Philippe A

    2015-10-01

    Over the last few decades, biomedical research has considered not only the function of single cells but also the importance of the physical environment within a whole tissue, including cell-cell and cell-extracellular matrix interactions. Cytoskeleton organization and focal adhesions are crucial sensors for cells that enable them to rapidly communicate with the physical extracellular environment in response to extracellular stimuli, ensuring proper function and adaptation. The involvement of the microtubular-microfilamentous cytoskeleton in secretion mechanisms was proposed almost 50 years ago, since when the evolution of ever more sensitive and sophisticated methods in microscopy and in cell and molecular biology have led us to become aware of the importance of cytoskeleton remodeling for cell shape regulation and its crucial link with signaling pathways leading to β-cell function. Emerging evidence suggests that dysfunction of cytoskeletal components or extracellular matrix modification influences a number of disorders through potential actin cytoskeleton disruption that could be involved in the initiation of multiple cellular functions. Perturbation of β-cell actin cytoskeleton remodeling could arise secondarily to islet inflammation and fibrosis, possibly accounting in part for impaired β-cell function in type 2 diabetes. This review focuses on the role of actin remodeling in insulin secretion mechanisms and its close relationship with focal adhesions and myosin II. Copyright © 2015 the American Physiological Society.

  3. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes

    PubMed Central

    Asanuma, Katsuhiko; Campbell, Kirk Nicholas; Kim, Kwanghee; Faul, Christian; Mundel, Peter

    2007-01-01

    Kidney podocytes and their slit diaphragms (SDs) form the final barrier to urinary protein loss. There is mounting evidence that SD proteins also participate in intracellular signaling pathways. The SD protein nephrin serves as a component of a signaling complex that directly links podocyte junctional integrity to actin cytoskeletal dynamics. Another SD protein, CD2-associated protein (CD2AP), is an adaptor molecule involved in podocyte homeostasis that can repress proapoptotic TGF-β signaling in podocytes. Here we show that dendrin, a protein originally identified in telencephalic dendrites, is a constituent of the SD complex, where it directly binds to nephrin and CD2AP. In experimental glomerulonephritis, dendrin relocates from the SD to the nucleus of injured podocytes. High-dose, proapoptotic TGF-β1 directly promotes the nuclear import of dendrin, and nuclear dendrin enhances both staurosporine- and TGF-β1-mediated apoptosis. In summary, our results identify dendrin as an SD protein with proapoptotic signaling properties that accumulates in the podocyte nucleus in response to glomerular injury and provides a molecular target to tackle proteinuric kidney diseases. Nuclear relocation of dendrin may provide a mechanism whereby changes in SD integrity could translate into alterations of podocyte survival under pathological conditions. PMID:17537921

  4. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  5. Actin Cytoskeletal Disruption following Cryopreservation Alters the Biodistribution of Human Mesenchymal Stromal Cells In Vivo

    PubMed Central

    Chinnadurai, Raghavan; Garcia, Marco A.; Sakurai, Yumiko; Lam, Wilbur A.; Kirk, Allan D.; Galipeau, Jacques; Copland, Ian B.

    2014-01-01

    Summary Mesenchymal stromal cells have shown clinical promise; however, variations in treatment responses are an ongoing concern. We previously demonstrated that MSCs are functionally stunned after thawing. Here, we investigated whether this cryopreservation/thawing defect also impacts the postinfusion biodistribution properties of MSCs. Under both static and physiologic flow, compared with live MSCs in active culture, MSCs thawed from cryopreservation bound poorly to fibronectin (40% reduction) and human endothelial cells (80% reduction), respectively. This reduction correlated with a reduced cytoskeletal F-actin content in post-thaw MSCs (60% reduction). In vivo, live human MSCs could be detected in murine lung tissues for up to 24 hr, whereas thawed MSCs were undetectable. Similarly, live MSCs whose actin cytoskeleton was chemically disrupted were undetectable at 24 hr postinfusion. Our data suggest that post-thaw cryopreserved MSCs are distinct from live MSCs. This distinction could significantly affect the utility of MSCs as a cellular therapeutic. PMID:25068122

  6. Toluene Dose-Response and Preliminary Study of Proteomics for Neuronal Cell Lines

    DTIC Science & Technology

    2015-07-01

    related to oxidative stress such as energy reserve metabolism, cell -death signaling, reactive oxygen species (ROS) defense, cytoskeletal rearrangement...protein nodes related to oxidative stress as characterized by gene ontologies for energy reserve metabolism, cell -death signaling, reactive oxygen ...process Myosin I complex myofibril assembly Cytoskeletal matrix assembly DNA methyltransferase Activity Cellular ketone Metabolic process Mesenchymal stem

  7. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen.

    PubMed

    Stefanovic, Branko

    2013-01-01

    Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging.

    PubMed

    Qin, Zhenxia; Dimitrijevic, Aleksandra; Aswad, Dana W

    2015-02-01

    Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis

    PubMed Central

    2010-01-01

    Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis. PMID:20849641

  10. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  11. R4 RGS Proteins: Regulation of G Protein Signaling and Beyond

    PubMed Central

    Bansal, Geetanjali; Druey, Kirk M.; Xie, Zhihui

    2007-01-01

    The Regulators of G protein Signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCRs) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly-appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways as well as a diverse array of non-GPCR-mediated biological responses. PMID:18006065

  12. Eukaryotic elongation factor 2 kinase regulates the synthesis of microtubule-related proteins in neurons.

    PubMed

    Kenney, Justin W; Genheden, Maja; Moon, Kyung-Mee; Wang, Xuemin; Foster, Leonard J; Proud, Christopher G

    2016-01-01

    Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in both neurons and other cell types. Elongation is primarily regulated via eukaryotic elongation factor 2 kinase (eEF2K). However, the consequence of altering eEF2K activity on the synthesis of specific proteins is largely unknown. Using both pharmacological and genetic manipulations of eEF2K combined with two protein-labeling techniques, stable isotope labeling of amino acids in cell culture and bio-orthogonal non-canonical amino acid tagging, we identified a subset of proteins whose synthesis is sensitive to inhibition of eEF2K in murine primary cortical neurons. Gene ontology (GO) analyses indicated that processes related to microtubules are particularly sensitive to eEF2K inhibition. Our findings suggest that eEF2K likely contributes to neuronal function by regulating the synthesis of microtubule-related proteins. Modulation of the elongation phase of protein synthesis is important for numerous physiological processes in neurons. Here, using labeling of new proteins coupled with proteomic techniques in primary cortical neurons, we find that the synthesis of microtubule-related proteins is up-regulated by inhibition of elongation. This suggests that translation elongation is a key regulator of cytoskeletal dynamics in neurons. © 2015 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  13. Machine learning in computational biology to accelerate high-throughput protein expression.

    PubMed

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Live cell imaging of cytoskeletal and organelle dynamics in gravity-sensing cells in plant gravitropism.

    PubMed

    Nakamura, Moritaka; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2015-01-01

    Plants sense gravity and change their morphology/growth direction accordingly (gravitropism). The early process of gravitropism, gravity sensing, is supposed to be triggered by sedimentation of starch-filled plastids (amyloplasts) in statocytes such as root columella cells and shoot endodermal cells. For several decades, many scientists have focused on characterizing the role of the amyloplasts and observed their intracellular sedimentation in various plants. Recently, it has been discovered that the complex sedimentary movements of the amyloplasts are created not only by gravity but also by cytoskeletal/organelle dynamics, such as those of actin filaments and the vacuolar membrane. Thus, to understand how plants sense gravity, we need to analyze both amyloplast movements and their regulatory systems in statocytes. We have developed a vertical-stage confocal microscope that allows multicolor fluorescence imaging of amyloplasts, actin filaments and vacuolar membranes in vertically oriented plant tissues. We also developed a centrifuge microscope that allows bright-field imaging of amyloplasts during centrifugation. These microscope systems provide new insights into gravity-sensing mechanisms in Arabidopsis.

  15. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli.

    PubMed

    Schmideder, Andreas; Cremer, Johannes H; Weuster-Botz, Dirk

    2016-11-01

    In general, fed-batch processes are applied for recombinant protein production with Escherichia coli (E. coli). However, state of the art methods for identifying suitable reaction conditions suffer from severe drawbacks, i.e. direct transfer of process information from parallel batch studies is often defective and sequential fed-batch studies are time-consuming and cost-intensive. In this study, continuously operated stirred-tank reactors on a milliliter scale were applied to identify suitable reaction conditions for fed-batch processes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) induction strategies were varied in parallel-operated stirred-tank bioreactors to study the effects on the continuous production of the recombinant protein photoactivatable mCherry (PAmCherry) with E. coli. Best-performing induction strategies were transferred from the continuous processes on a milliliter scale to liter scale fed-batch processes. Inducing recombinant protein expression by dynamically increasing the IPTG concentration to 100 µM led to an increase in the product concentration of 21% (8.4 g L -1 ) compared to an implemented high-performance production process with the most frequently applied induction strategy by a single addition of 1000 µM IPGT. Thus, identifying feasible reaction conditions for fed-batch processes in parallel continuous studies on a milliliter scale was shown to be a powerful, novel method to accelerate bioprocess design in a cost-reducing manner. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1426-1435, 2016. © 2016 American Institute of Chemical Engineers.

  16. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  17. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.

    PubMed

    Osada, Naoki; Akashi, Hiroshi

    2012-01-01

    Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.

  18. Differential downstream functions of protein kinase Ceta and -theta in EL4 mouse thymoma cells.

    PubMed

    Resnick, M S; Kang, B S; Luu, D; Wickham, J T; Sando, J J; Hahn, C S

    1998-10-16

    Sensitive EL4 mouse thymoma cells (s-EL4) respond to phorbol esters with growth inhibition, adherence to substrate, and production of cytokines including interleukin 2. Since these cells express several of the phorbol ester-sensitive protein kinase C (PKC) isozymes, the function of each isozyme remains unclear. Previous studies demonstrated that s-EL4 cells expressed substantially more PKCeta and PKCtheta than did EL4 cells resistant to phorbol esters (r-EL4). To examine potential roles for PKCeta and PKCtheta in EL4 cells, wild type and constitutively active versions of the isozymes were transiently expressed using a Sindbis virus system. Expression of constitutively active PKCeta, but not PKCtheta, in s- and r-EL4 cells altered cell morphology and cytoskeletal structure in a manner similar to that of phorbol ester treatment, suggesting a role for PKCeta in cytoskeletal organization. Prolonged treatment of s-EL4 cells with phorbol esters results in inhibition of cell cycling along with a decreased expression of most of the PKC isozymes, including PKCtheta. Introduction of virally expressed PKCtheta, but not PKCeta, overcame the inhibitory effects of the prolonged phorbol ester treatment on cell cycle progression, suggesting a possible involvement of PKCtheta in cell cycle regulation. These results support differential functions for PKCeta and PKCtheta in T cell activation.

  19. High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Spermatogenesis.

    PubMed

    Sridharan, Vinod; Heimiller, Joseph; Robida, Mark D; Singh, Ravinder

    2016-01-01

    The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows misregulation of transcripts that have been connected to spermatogenesis, including components of the actomyosin cytoskeletal apparatus. We show, for example, that the Myosin light chain 1 (Mlc1) transcript is aberrantly spliced. Furthermore, bioinformatics analysis reveals that Mlc1 contains a high affinity binding site(s) for dmPTB and that the site is conserved in many Drosophila species. We discuss that Mlc1 and other components of the actomyosin cytoskeletal apparatus offer important molecular links between the loss of dmPTB function and the observed developmental defect in spermatogenesis. This study provides the first comprehensive list of genes misregulated in vivo in the heph2 mutant in Drosophila and offers insight into the role of dmPTB during spermatogenesis.

  20. Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines

    NASA Astrophysics Data System (ADS)

    Schindler, Melvin; Koppel, Dennis E.; Sheetz, Michael P.

    1980-03-01

    The lateral mobility of fluorescein-labeled membrane glycoproteins was measured in whole unlysed erythrocytes and erythrocyte ghosts by the technique of ``fluorescence redistribution after fusion.'' Measurements were made on polyethylene glycol-fused cell pairs in which only one member of the couplet was initially fluorescently labeled. Diffusion coefficients were estimated from the rate of fluorescence redistribution determined from successive scans with a focused laser beam across individual fused pairs. This technique allows for the analysis of diffusion within cell membranes without the possible damaging photochemical events caused by photobleaching. It was found that lateral mobility of erythrocyte proteins can be increased by the addition of polyphosphates (i.e., ATP and 2,3-diphosphoglycerate) and decreased by the addition of organic polyamines (i.e., neomycin and spermine). This control is exerted by these molecules only when they contact the cytoplasmic side of the membrane and is not dependent upon high-energy phosphates. Microviscosity experiments employing diphenylhexatriene demonstrated no changes in membrane lipid state as a function of these reagents. Our results, in conjunction with data on the physical interactions of cytoskeletal proteins, suggest that the diffusion effector molecules alter the lateral mobility of erythrocyte membrane proteins through modifications of interactions in the shell, which is composed of spectrin, actin, and component 4.1.

  1. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.

    PubMed

    Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil

    2013-04-04

    The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.

  2. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and

  3. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  4. Massive elimination of multinucleated osteoclasts by eupatilin is due to dual inhibition of transcription and cytoskeletal rearrangement.

    PubMed

    Kim, Ju-Young; Lee, Myeung Su; Baek, Jong Min; Park, Jongtae; Youn, Byung-Soo; Oh, Jaemin

    2015-12-01

    Osteoporosis is an aging-associated disease requiring better therapeutic modality. Eupatilin is a major flavonoid from Artemisia plants such as Artemisia princeps and Artemisia argyi which has been reported to possess various beneficial biological effects including anti-inflammation, anti-tumor, anti-cancer, anti-allergy, and anti-oxidation activity. Complete blockade of RANK-dependent osteoclastogenesis was accomplished upon stimulation prior to the receptor activator of nuclear factor κB (RANK)-ligand (RANKL) treatment or post-stimulation of bone marrow macrophages (BMCs) in the presence of RANKL with eupatilin. This blockade was accompanied by inhibition of rapid phosphorylation of Akt, GSK3β, ERK and IκB as well as downregulation of c-Fos and NFATc1 at protein, suggesting that transcriptional suppression is a key mechanism for anti-osteoclastogenesis. Transient reporter assays or gain of function assays confirmed that eupatilin was a potent transcriptional inhibitor in osteoclasts (OC). Surprisingly, when mature osteoclasts were cultured on bone scaffolds in the presence of eupatilin, bone resorption activity was also completely blocked by dismantling the actin rings, suggesting that another major acting site of eupatilin is cytoskeletal rearrangement. The eupatilin-treated mature osteoclasts revealed a shrunken cytoplasm and accumulation of multi-nuclei, eventually becoming fibroblast-like cells. No apoptosis occurred. Inhibition of phosphorylation of cofilin by eupatilin suggests that actin may play an important role in the morphological change of multinucleated cells (MNCs). Human OC similarly responded to eupatilin. However, eupatilin has no effects on osteoblast differentiation and shows cytotoxicity on osteoblast in the concentration of 50 μM. When eupatilin was administered to LPS-induced osteoporotic mice after manifestation of osteoporosis, it prevented bone loss. Ovariectomized (OVX) mice remarkably exhibited bone protection effects. Taken

  5. Phosphoproteomics and Bioinformatics Analyses of Spinal Cord Proteins in Rats with Morphine Tolerance

    PubMed Central

    Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine; Wu, Chin-Chen; Ho, Shung-Tai; Wang, Jhi-Joung; Tao, Yuan-Xiang; Shui, Hao-Ai

    2014-01-01

    Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance. PMID:24392096

  6. Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice

    PubMed Central

    Coughlan, Christina; Walker, Douglas I.; Lohr, Kelly M.; Richardson, Jason R.; Saba, Laura M.; Caudle, W. Michael; Fritz, Kristofer S.; Roede, James R.

    2015-01-01

    Epidemiological studies indicate exposures to the herbicide paraquat (PQ) and fungicide maneb (MB) are associated with increased risk of Parkinson's disease (PD). Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg), MB (30 mg/kg), or the combination of PQ and MB (PQMB). Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration. PMID:26345149

  7. Integrin activation and focal complex formation in cardiac hypertrophy.

    PubMed

    Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D

    2000-11-10

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  8. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  9. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury.

    PubMed

    Wang, Yuyu; Wang, Dazhi; Lin, Lin; Wang, Minghua

    2015-01-01

    Mercury is a ubiquitous environmental contaminant which exerts neurotoxicity upon animals. Nevertheless, the molecular mechanisms involved in inorganic mercury neurotoxicity are unknown. We investigated protein profiles of marine medaka, chronically exposed to mercuric chloride using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) analysis. The mercury accumulation and ultrastructure were also examined in the brain. The results showed that mercury was significantly accumulated in the treated brain, and subsequently caused a noticeable damage. The comparison of 2D-DIGE protein profiles between the control and treatment revealed that 16 protein spots were remarkably altered in abundance, which were further submitted for MALDI-TOF-TOF MS analysis. The identified proteins indicated that inorganic mercury may cause neurotoxicity through the induction of oxidative stress, cytoskeletal assembly dysfunction and metabolic disorders. Thus, this study provided a basis for a better understanding of the molecular mechanisms involved in mercury neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Self-assembling enzymes and the origins of the cytoskeleton

    PubMed Central

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  11. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  12. Probing intracellular motor protein activity using an inducible cargo trafficking assay.

    PubMed

    Kapitein, Lukas C; Schlager, Max A; van der Zwan, Wouter A; Wulf, Phebe S; Keijzer, Nanda; Hoogenraad, Casper C

    2010-10-06

    Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok

    2012-09-01

    The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles

    NASA Astrophysics Data System (ADS)

    Shih, Yu-Ling; Le, Trung; Rothfield, Lawrence

    2003-06-01

    The MinCDE proteins of Escherichia coli are required for proper placement of the division septum at midcell. The site selection process requires the rapid oscillatory redistribution of the proteins from pole to pole. We report that the three Min proteins are organized into extended membrane-associated coiled structures that wind around the cell between the two poles. The pole-to-pole oscillation of the proteins reflects oscillatory changes in their distribution within the coiled structure. We also report that the E. coli MreB protein, which is required for maintaining the rod shape of the cell, also forms extended coiled structures, which are similar to the MreB structures that have previously been reported in Bacillus subtilis. The MreB and MinCDE coiled arrays do not appear identical. The results suggest that at least two functionally distinct cytoskeletal-like elements are present in E. coli and that structures of this type can undergo dynamic changes that play important roles in division site placement and possibly other aspects of the life of the cell.

  15. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  16. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  17. Accelerating large-scale protein structure alignments with graphics processing units

    PubMed Central

    2012-01-01

    Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132

  18. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    PubMed

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  19. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways

    PubMed Central

    2014-01-01

    Background Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. Results We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a

  20. Second International Conference on Accelerating Biopharmaceutical Development

    PubMed Central

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637