Science.gov

Sample records for accelerating electric field

  1. Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    DTIC Science & Technology

    2006-12-01

    DAMD17-98-1-8519 TITLE: Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing PRINCIPAL INVESTIGATOR...2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Do Capacity Coupled Electric Fields Accelerate Tibial Stress Fracture Healing 5b. GRANT NUMBER...To determine the effect of capacitively coupled electric field stimulation on tibial stress fracture healing in men and women. Methods: A

  2. The acceleration of a neutron in a static electric field

    NASA Astrophysics Data System (ADS)

    Cappelletti, R. L.

    2012-06-01

    We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov-Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov-Casher effect, there is no acceleration, while in Mott-Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction.

  3. Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L.-J.; Germaschewski, K.; Bhattacharjee, A.

    2015-11-01

    Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (ωpe/Ωe)-2 and on the background plasma density as nb-1/2. In the Earth's magnetotail, the parameter ωpe/Ωe˜9 and the background (lobe) density can be of the order of 0.01 cm-3, and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions.

  4. Electric field simulation and measurement of a pulse line ion accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Kang; Zhang, Zi-Min; Cao, Shu-Chun; Zhao, Hong-Wei; Wang, Bo; Shen, Xiao-Li; Zhao, Quan-Tang; Liu, Ming; Jing, Yi

    2012-07-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix.

  5. Charged particle acceleration by induction electric field in Neptune magnetotail

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Malova, H. V.; Artemyev, A. V.; Zelenyi, L. M.

    2012-12-01

    The precession of the Neptune magnetic dipole leads to strong dynamics of the magnetosphere and results in continuous transformation from the “Earth-like” configuration to the “pole-on” one and vice versa. In the present work we use simple model of the Neptune magnetotail to investigate the influence of magnetotail topology transformation on particle acceleration and transport through the tail. Energy spectra are obtained for protons penetrating from the solar wind and heavier ions N+ from the Neptune ionosphere. We have found that protons and heavier ions are accelerated up to ∼330 keV and ∼150 keV, respectively. More particles are accelerated and leave the tail during transformations from the “pole-on” configuration to the “Earth-like” one than during inverse transformations. We have shown that the dusk-dawn convection field is responsible for particle leaving through the dawn flank. We briefly compare our results with Voyager-2 observations.

  6. Generation of macroscopic magnetic-field-aligned electric fields by the convection surge ion acceleration mechanism

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.

    1989-01-01

    The 'convection surge' model for ion acceleration, designed by Mauk (1986) to explain the observed ion distributions and the field-aligned character of middle magnetospheric ion distributions during the expansion phase of a substorm, was extended to include the self-consistent generation of magnetic-field-aligned electric fields. Results from the modified model show that the convection surge mechanism leads to the generation of dynamical macroscopic magnetic field-aligned electric fields that begin their strongest developments very near the magnetic equator and then propagate to higher latitudes. Potential drops as high as 1 to 10 kV might be expected, depending on the mass species of the ions and on the electron temperatures. It is speculated that the convection surge mechanism could be a key player in the transient field-aligned electromagnetic processes observed to operate within the middle magnetosphere.

  7. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    NASA Astrophysics Data System (ADS)

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  8. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    SciTech Connect

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  9. New Features of Time Domain Electric-Field Structures in the Auroral Acceleration Region

    SciTech Connect

    Mozer, F.S.; Ergun, R.; Temerin, M.; Cattell, C.; Dombeck, J.; Wygant, J.

    1997-08-01

    The Polar Satellite carries the first three-axis electric field detector flown in the magnetosphere. Its direct measurement of electric field components perpendicular and parallel to the local magnetic field has revealed new classes and features of electric field structures associated with the plasma acceleration that produces discrete auroras and that populates the magnetosphere with plasma of ionospheric origin. These structures, associated with the hydrogen ion cyclotron mode, include very large solitary waves, spiky field structures, wave envelopes of parallel electric fields, and very large amplitude, nonlinear, coherent ion cyclotron waves. {copyright} {ital 1997} {ital The American Physical Society}

  10. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2016-08-01

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  11. Acceleration of ions by electric field pulses in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Artemyev, A.; Liu, J.; Angelopoulos, V.; Runov, A.

    2015-12-01

    Using THEMIS observations and test particle modeling, we investigate particle acceleration around L-shell ~7-9 in the nightside magnetosphere and demonstrate that intense (~5-15 mV/m), short-lived (<1 min) electric field pulses can effectively accelerate ions with tens of keV initial energy to hundreds of keV. This acceleration occurs because the ion gyroradius is comparable to the spatial scale of the localized electric field pulse at the leading edge of the earthward-propagating, dipolarizing flux bundles before it stops. The proposed acceleration mechanism can reproduce observed spectra of high-energy ions. We conclude that the electric field associated with dipolarizing flux bundles prior to their stoppage in the inner magnetosphere provides a natural site for intense local ion acceleration.

  12. Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere.

    PubMed

    Marklund, G T; Ivchenko, N; Karlsson, T; Fazakerley, A; Dunlop, M; Lindqvist, P A; Buchert, S; Owen, C; Taylor, M; Vaivalds, A; Carter, P; André, M; Balogh, A

    2001-12-13

    The bright night-time aurorae that are visible to the unaided eye are caused by electrons accelerated towards Earth by an upward-pointing electric field. On adjacent geomagnetic field lines the reverse process occurs: a downward-pointing electric field accelerates electrons away from Earth. Such magnetic-field-aligned electric fields in the collisionless plasma above the auroral ionosphere have been predicted, but how they could be maintained is still a matter for debate. The spatial and temporal behaviour of the electric fields-a knowledge of which is crucial to an understanding of their nature-cannot be resolved uniquely by single satellite measurements. Here we report on the first observations by a formation of identically instrumented satellites crossing a beam of upward-accelerated electrons. The structure of the electric potential accelerating the beam grew in magnitude and width for about 200 s, accompanied by a widening of the downward-current sheet, with the total current remaining constant. The 200-s timescale suggests that the evacuation of the electrons from the ionosphere contributes to the formation of the downward-pointing magnetic-field-aligned electric fields. This evolution implies a growing load in the downward leg of the current circuit, which may affect the visible discrete aurorae.

  13. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2012-06-12

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  14. Geometric multigrid to accelerate the solution of the quasi-static electric field problem by tetrahedral finite elements.

    PubMed

    Hollaus, K; Weiss, B; Magele, Ch; Hutten, H

    2004-02-01

    The acceleration of the solution of the quasi-static electric field problem considering anisotropic complex conductivity simulated by tetrahedral finite elements of first order is investigated by geometric multigrid.

  15. Neutral wind acceleration in the polar lower E-region during an intense electric-field

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo T.; Buchert, Stephan C.; Nozawa, Satonori; Oyama, Shin-ichiro; Ogawa, Yasunobu; Fujii, Ryoichi

    2016-04-01

    The Joule heating and ion drag effects are considered as important factors in the neutral wind dynamics in the polar E-region. However, quantitative evaluations for these effects are insufficient for correct understanding, particularly, in the lower E-region (100-110 km heights) where the anomalous heating effect, related with the electron Pedersen currents, can occur during the intense electric field. In the present study, using EISCAT Svalbard radar data, we have investigated, for the first time, the normal and anomalous heating effects to the neutral wind acceleration in the lower E-region.

  16. Magnetic field-aligned electric field acceleration and the characteristics of the optical aurora

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.; Lyons, L. R.; Hecht, J. H.; Sivjee, G. G.; Meier, R. R.

    1987-01-01

    The long-recognized association of brighter aurora with more deeply penetrating, and hence more energetic, electrons is examined. Using the Knight (1973) relation between the magnetic-field-aligned current density and potential drop (derived from the theory of single-particle motion in the presence of a magnetic-field-aligned electric field), an approximate expression relating the energy flux of the precipitating electrons over discrete aurora and the mean particle energy is derived. This expression is used in conjunction with an auroral optical excitation and emission model to specify the dependence of the red/blue ratio of auroral optical emissions on the brightness of the aurora. It is shown that the quantitative predictions of the discrete auroral theory are in accord with observations of the aurora.

  17. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    SciTech Connect

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  18. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  19. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  20. Particle in Cell Simulations of the Pulsar Y-Point -- Nature of the Accelerating Electric Field

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail

    2016-06-01

    Over the last decade, satellite observations have yielded a wealth of data on pulsed high-energy emission from pulsars. Several different models have been advanced to fit this data, all of which “paint” the emitting region onto a different portion of the magnetosphere.In the last few years, particle in cell simulations of pulsar magnetospheres have reached the point where they are able to self-consistently model particle acceleration and dissipation. One of the key findings of these simulations is that the region of the current sheet in and around the Y-point provides the highest rate of dissipation of Poynting flux (Belyaev 2015a). On the basis of this physical evidence, it is quite plausible that this region should be associated with the pulsed high energy emission from pulsars. We present high resolution PIC simulations of an axisymmetric pulsar magnetosphere, which are run using PICsar (Belyaev 2015b). These simulations focus on the particle dynamics and electric fields in and around the Y-point region. We run two types of simulations -- first, a force-free magnetosphere and second, a magnetosphere with a gap between the return current layer and the outflowing plasma in the polar wind zone. The latter setup is motivated by studies of pair production with general relativity (Philippov et al. 2015, Belyaev & Parfrey (in preparation)). In both cases, we find that the Y-point and the current sheet in its direct vicinity act like an “electric particle filter” outwardly accelerating particles of one sign of charge while returning the other sign of charge back to the pulsar. We argue that this is a natural behavior of the plasma as it tries to adjust to a solution that is as close to force-free as possible. As a consequence, a large E dot J develops in the vicinity of the Y-point leading to dissipation of Poynting flux. Our work is relevant for explaining the plasma physical mechanisms underlying pulsed high energy emission from pulsars.

  1. The role of the electron convection term for the parallel electric field and electron acceleration in MHD simulations

    SciTech Connect

    Matsuda, K.; Terada, N.; Katoh, Y.; Misawa, H.

    2011-08-15

    There has been a great concern about the origin of the parallel electric field in the frame of fluid equations in the auroral acceleration region. This paper proposes a new method to simulate magnetohydrodynamic (MHD) equations that include the electron convection term and shows its efficiency with simulation results in one dimension. We apply a third-order semi-discrete central scheme to investigate the characteristics of the electron convection term including its nonlinearity. At a steady state discontinuity, the sum of the ion and electron convection terms balances with the ion pressure gradient. We find that the electron convection term works like the gradient of the negative pressure and reduces the ion sound speed or amplifies the sound mode when parallel current flows. The electron convection term enables us to describe a situation in which a parallel electric field and parallel electron acceleration coexist, which is impossible for ideal or resistive MHD.

  2. Scaling investigation for the dynamics of charged particles in an electric field accelerator

    NASA Astrophysics Data System (ADS)

    Gouvêa Ladeira, Denis; Leonel, Edson D.

    2012-12-01

    Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant.

  3. Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields

    NASA Astrophysics Data System (ADS)

    Varady, M.; Karlický, M.; Moravec, Z.; Kašparová, J.

    2014-03-01

    Context. The collisional thick-target model (CTTM) of the impulsive phase of solar flares, together with the famous Carmichael, Sturrock, Hirayama, and Kopp-Pneuman (CSHKP) model, presented for many years a "standard" model, which straightforwardly explained many observational aspects of flares. On the other hand, many critical issues appear when the concept is scrutinised theoretically or with the new generation of hard X-ray (HXR) observations. The famous "electron number problem" or problems related to transport of enormous particle fluxes though the corona represent only two of them. To resolve the discrepancies, several modifications of the CTTM appeared. Aims: We study two of them based on the global and local re-acceleration of non-thermal electrons by static and stochastic electric fields during their transport from the coronal acceleration site to the thick-target region in the chromosphere. We concentrate on a comparison of the non-thermal electron distribution functions, chromospheric energy deposits, and HXR spectra obtained for both considered modifications with the CTTM itself. Methods: The results were obtained using a relativistic test-particle approach. We simulated the transport of non-thermal electrons with a power-law spectrum including the influence of scattering, energy losses, magnetic mirroring, and also the effects of the electric fields corresponding to both modifications of the CTTM. Results: We show that both modifications of the CTTM change the outcome of the chromospheric bombardment in several aspects. The modifications lead to an increase in chromospheric energy deposit, change of its spatial distribution, and a substantial increase in the corresponding HXR spectrum intensity. Conclusions: The re-acceleration in both models reduces the demands on the efficiency of the primary coronal accelerator, on the electron fluxes transported from the corona downwards, and on the total number of accelerated coronal electrons during flares.

  4. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  5. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  6. The role of waves and DC electric fields for electron heating and acceleration in the diffusion region

    NASA Astrophysics Data System (ADS)

    Graham, Daniel; Khotyaintsev, Yuri; Vaivads, Andris; Norgren, Cecilia; Andre, Mats; Lindqvist, Per-Arne; Le Contel, Olivier; Ergun, Robert; Goodrich, Katherine; Torbert, Roy; Burch, James; Russell, Christopher; Magnes, Werner; Giles, Barbara; Pollock, Craig; Mauk, Barry; Fuselier, Stephen

    2016-04-01

    Magnetic reconnection is a fundamental process in solar and astrophysical plasmas. The processes operating at electron spatial-scales, which enable magnetic field lines to reconnect, are generally difficult to resolve and identify. However, the recently launched Magnetospheric Multiscale (MMS) mission is specifically designed to resolve electron spatial scales. We use the MMS spacecraft to investigate the process operating within the diffusion region to determine the causes of electron heating and acceleration. In particular, we investigate the type of electrostatic and electromagnetic waves that develop and how they affect the electron distributions. We also compare the roles of wave-particle interactions with DC electric fields to determine which is responsible for the electron heating observed in diffusion regions.

  7. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  8. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  9. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration

    SciTech Connect

    Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe

    2011-09-09

    A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.

  10. Electron acceleration during guide field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Lapenta, Giovanni; Delzanno, Gian Luca; Egedal, Jan

    2008-03-01

    Particle-in-cell simulations of the guide field intermittent magnetic reconnection are performed to study electron acceleration and pitch angle distributions. During the growing stage of reconnection, the power-law distribution function for the high-energy electrons and the pitch angle distributions of the low-energy electrons are obtained and compare favorably with observations by the Wind spacecraft. Direct evidence is found for the secondary acceleration during the later reconnection stage. A correlation between the generation of energetic electrons and the induced reconnection electric field is found. Energetic electrons are accelerated first around the X line, and then in the region outside the diffusion region, when the reconnection electric field has a bipolar structure. The physical mechanisms of these accelerations are discussed. The in-plane electrostatic field that traps the low-energy electrons and causes the anisotropic pitch angle distributions has been observed.

  11. Measurement of Ion Transverse Energy and the Electric Field in the Acceleration Gap of a Magnetically Insulated Diode

    DTIC Science & Technology

    1983-05-01

    practical diodes. The principles of the measurements in the present experiment are as follows. The accelerating ions, drawn from a surface - flashover ...magnetic field6 for magnetic insulation at the applied voltge of 400 kV is 5.7 kG. When the high voltage pulse was applied, a surface - flashover plasma ...the presence of multikilovolt Ba+ ions even ignor- ing the normal 10-15 ns turn-on time of the surface flashover anode plasma . 1 In Fig. 3, the total

  12. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  13. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  14. Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus.

    PubMed

    Hemm, Simone; Pison, Daniela; Alonso, Fabiola; Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jacques; Wårdell, Karin

    2016-01-01

    Despite an increasing use of deep brain stimulation (DBS) the fundamental mechanisms of action remain largely unknown. Simulation of electric entities has previously been proposed for chronic DBS combined with subjective symptom evaluations, but not for intraoperative stimulation tests. The present paper introduces a method for an objective exploitation of intraoperative stimulation test data to identify the optimal implant position of the chronic DBS lead by relating the electric field (EF) simulations to the patient-specific anatomy and the clinical effects quantified by accelerometry. To illustrate the feasibility of this approach, it was applied to five patients with essential tremor bilaterally implanted in the ventral intermediate nucleus (VIM). The VIM and its neighborhood structures were preoperatively outlined in 3D on white matter attenuated inversion recovery MR images. Quantitative intraoperative clinical assessments were performed using accelerometry. EF simulations (n = 272) for intraoperative stimulation test data performed along two trajectories per side were set-up using the finite element method for 143 stimulation test positions. The resulting EF isosurface of 0.2 V/mm was superimposed to the outlined anatomical structures. The percentage of volume of each structure's overlap was calculated and related to the corresponding clinical improvement. The proposed concept has been successfully applied to the five patients. For higher clinical improvements, not only the VIM but as well other neighboring structures were covered by the EF isosurfaces. The percentage of the volumes of the VIM, of the nucleus intermediate lateral of the thalamus and the prelemniscal radiations within the prerubral field of Forel increased for clinical improvements higher than 50% compared to improvements lower than 50%. The presented new concept allows a detailed and objective analysis of a high amount of intraoperative data to identify the optimal stimulation target. First

  15. Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus

    PubMed Central

    Hemm, Simone; Pison, Daniela; Alonso, Fabiola; Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jacques; Wårdell, Karin

    2016-01-01

    Despite an increasing use of deep brain stimulation (DBS) the fundamental mechanisms of action remain largely unknown. Simulation of electric entities has previously been proposed for chronic DBS combined with subjective symptom evaluations, but not for intraoperative stimulation tests. The present paper introduces a method for an objective exploitation of intraoperative stimulation test data to identify the optimal implant position of the chronic DBS lead by relating the electric field (EF) simulations to the patient-specific anatomy and the clinical effects quantified by accelerometry. To illustrate the feasibility of this approach, it was applied to five patients with essential tremor bilaterally implanted in the ventral intermediate nucleus (VIM). The VIM and its neighborhood structures were preoperatively outlined in 3D on white matter attenuated inversion recovery MR images. Quantitative intraoperative clinical assessments were performed using accelerometry. EF simulations (n = 272) for intraoperative stimulation test data performed along two trajectories per side were set-up using the finite element method for 143 stimulation test positions. The resulting EF isosurface of 0.2 V/mm was superimposed to the outlined anatomical structures. The percentage of volume of each structure’s overlap was calculated and related to the corresponding clinical improvement. The proposed concept has been successfully applied to the five patients. For higher clinical improvements, not only the VIM but as well other neighboring structures were covered by the EF isosurfaces. The percentage of the volumes of the VIM, of the nucleus intermediate lateral of the thalamus and the prelemniscal radiations within the prerubral field of Forel increased for clinical improvements higher than 50% compared to improvements lower than 50%. The presented new concept allows a detailed and objective analysis of a high amount of intraoperative data to identify the optimal stimulation target

  16. Test particle acceleration in turbulent reconnecting magnetic fields

    NASA Technical Reports Server (NTRS)

    Ambrosiano, John; Matthaeus, William H.; Goldstein, Melvyn L.; Plante, Daniel

    1988-01-01

    The effect of turbulence on particle acceleration in a MHD field was investigated by computing test particle trajectories in turbulent MHD reconnecting fields, including reconnection simulations at different magnetic Reynolds numbers. The dynamics of individual particles were investigated making it possible to examine the acceleration mechanism in great detail. It was found that turbulence influences the acceleration in two ways. It enhances the reconnection electric field while producing a stochastic electric field that gives rise to momentum diffusion; and it produces magnetic 'bubbles' and other irregularities that can temporarily trap test particles in the strong reconnection electric field for times comparable to the magnetofluid characteristic time.

  17. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    SciTech Connect

    Zou, D. B.; Zhuo, H. B. Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.; Wu, H. C.

    2015-02-15

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ∼2.74 × 10{sup 22 }W∕cm{sup 2}, a quasi-monoenergetic proton beam with a peak energy of ∼1.5 GeV/u, density ∼10n{sub c}, and transverse size ∼1λ{sub 0} can be obtained.

  18. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    SciTech Connect

    Baxter, Van D.; Murphy, Richard W.; Rice, C. Keith; Linkous, Randall Lee

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  19. Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Lazar, C; Nowé, A; Hinsenkamp, M

    2013-01-01

    An acceleration of differentiation at the expense of proliferation is observed in our previous publications and in the literature after exposure of various biological models to low frequency and low-amplitude electric and electromagnetic fields. This observation is related with a significant modification of genes expression. We observed and compared over time this modification. This study use microarray data obtained on epidermis cultures harvested from human abdominoplasty exposed to ELF electric fields. This protocol is repeated with samples collected on three different healthy patients. The sampling over time allows comparison of the effect of the stimulus at a given time with the evolution of control group. After 4 days, we observed a significant difference of the genes expression between control (D4C) and stimulated (D4S) (p < 0.05). On the control between day 4 and 7, we observed another group of genes with significant difference (p < 0.05) in their expression. We identify the common genes between these two groups and we select from them those expressing no difference between stimulate at 4 days (D4S) and control after 7 days (D7C). The same analysis was performed with D4S-D4C-D12C and D7S-D7C-D12C. The lists of genes which follow this pattern show acceleration in their expressions under stimulation appearing on control at a later time. In this list, genes such as DKK1, SPRR3, NDRG4, and CHEK1 are involved in cell proliferation or differentiation. Numerous other genes are also playing a function in mitosis, cell cycle or in the DNA replication transcription and translation.

  20. A relaxation-accelerated propagator method for calculations of electron energy distribution function and electron transport parameters in gas under dc electric fields

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirotake

    2017-04-01

    A propagator method (PM), a numerical technique to solve the Boltzmann equation (BE) for the electron velocity or energy distribution function (EVDF/EEDF) of electron swarms in gases, was customized to obtain the equilibrium solution quickly. The PM calculates the number of electrons in cells defined in velocity space using an operator called the propagator or Green’s function. The propagator represents the intercellular transfer of electrons corresponding to the electron velocity change due to the acceleration by the electric field and the collisional events with gas molecules. The relaxation of the EVDF to its drift equilibrium solution proceeds with iterative propagator operations for the EVDF. Merits of the PM are that the series expansion of the EVDF as done in the BE analyses is not required and that time evolution of the electron swarm can be observed if necessary. On the other hand, in case only the equilibrium solution of the EVDF is wanted, the relaxation can be accelerated numerically. A demonstration achieved a shortening of the computational time by about three orders of magnitude. Furthermore, this scheme was applied to calculations of a set of electron transport parameters required in fluid-model simulations, i.e. the effective ionization frequency, the centroid drift velocity and the longitudinal diffusion coefficient, using the zeroth-, first- and second-order moment equations derived from the BE. A detailed description on the PM calculation was presented.

  1. Electric Mars: The first survey of Martian parallel electric fields.

    NASA Astrophysics Data System (ADS)

    Collinson, G.; Mitchell, D. L.; Glocer, A.; Grebowsky, J. M.; Peterson, W. K.; Connerney, J. E. P.; Andersson, L.; Espley, J. R.; Mazelle, C. X.; Savaud, J. A.; Fedorov, A.; Ma, Y.; Bougher, S. W.; Lillis, R. J.; Ergun, R. E.; Jakosky, B. M.

    2015-12-01

    We present the results of the first survey of parallel electric fields at Mars, using electron measurements from the MAVEN Solar Wind Electron Analyzer (SWEA), and the Magnetometer (MAG). We discuss three fields: (1) The first upper limit on the strength of the "Polar Wind" ambipolar electric field; (2) The "trans-terminator" field, a newly discovered electric force accelerating ions on closed field lines from day to nightside, and (3) possible signatures of very high strength electrostatic mirroring during the passage of a Coronal Mass Ejection.

  2. Electrical stimulation to accelerate wound healing

    PubMed Central

    Thakral, Gaurav; LaFontaine, Javier; Najafi, Bijan; Talal, Talal K.; Kim, Paul; Lavery, Lawrence A.

    2013-01-01

    Background There are several applications of electrical stimulation described in medical literature to accelerate wound healing and improve cutaneous perfusion. This is a simple technique that could be incorporated as an adjunctive therapy in plastic surgery. The objective of this review was to evaluate the results of randomized clinical trials that use electrical stimulation for wound healing. Method We identified 21 randomized clinical trials that used electrical stimulation for wound healing. We did not include five studies with treatment groups with less than eight subjects. Results Electrical stimulation was associated with faster wound area reduction or a higher proportion of wounds that healed in 14 out of 16 wound randomized clinical trials. The type of electrical stimulation, waveform, and duration of therapy vary in the literature. Conclusion Electrical stimulation has been shown to accelerate wound healing and increase cutaneous perfusion in human studies. Electrical stimulation is an adjunctive therapy that is underutilized in plastic surgery and could improve flap and graft survival, accelerate postoperative recovery, and decrease necrosis following foot reconstruction. PMID:24049559

  3. Classification of electrical discharges in DC Accelerators

    NASA Astrophysics Data System (ADS)

    Banerjee, Srutarshi; Deb, A. K.; Rajan, Rehim N.; Kishore, N. K.

    2016-08-01

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  4. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  5. Role of DC Electric Fields and Wave Heating in Cavity Profiles of Depleted Density and Transverse Ion Acceleration in Laboratory and Space Plasmas

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Reynolds, E. W.; Knudsen, D. J.

    2007-05-01

    Laboratory experiments on the WVU Q Machine, test-particle simulations, and Monte Carlo simulations are shown to provide evidence for explaining the inhomogeneity in both the plasma-density profile and the ion- temperature profile associated with cylindrically symmetric lower-hybrid cavities observed by the GEODESIC sounding rocket, the OEDIPUS-C sounding rocket, and the Freja satellite. Two potential contributions to the inhomogeneous profiles are identified. Both mechanisms (one dc and the other ac) rely on finite values of the Larmor radius and can result in nonlocal effects that deplete ion density within the cavity and enhance ion density immediately outside the cavity to form ion-gyroradius-scale shoulders encircling the cavity perimeter. In the absence of waves, a cylindrically symmetric, radial, DC electric field can be responsible for a polarization shift that produces such inhomogeneity in the density profile [1]. In the presence of waves, wave-induced transverse ion acceleration occurring within the cavity can produce such inhomogeneity in the density profile [2]. In combination, the two effects are shown to be comparable, necessitating an interpretation that includes both mechanisms for quantitative agreement. For the lab data, laser-induced fluorescence techniques provide high resolution in coordinate space and velocity space. [1] Reynolds et al., Inhomogeneity scale lengths in a magnetized, low temperature, collisionless, Q-machine plasma column containing perpendicular-velocity shear, Phys. Plasmas 13, 092106 (2006). [2] Knudsen et al., Lower-hybrid cavity density depletions as a result of transverse ion acceleration localized on the gyroradius scale, J. Geophys. Res. 109, A04212 (2004). This research is supported by NSF.

  6. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  7. Electric field imaging

    NASA Astrophysics Data System (ADS)

    Smith, Joshua Reynolds

    The physical user interface is an increasingly significant factor limiting the effectiveness of our interactions with and through technology. This thesis introduces Electric Field Imaging, a new physical channel and inference framework for machine perception of human action. Though electric field sensing is an important sensory modality for several species of fish, it has not been seriously explored as a channel for machine perception. Technological applications of field sensing, from the Theremin to the capacitive elevator button, have been limited to simple proximity detection tasks. This thesis presents a solution to the inverse problem of inferring geometrical information about the configuration and motion of the human body from electric field measurements. It also presents simple, inexpensive hardware and signal processing techniques for makin the field measurements, and several new applications of electric field sensing. The signal processing contribution includes synchronous undersampling, a narrowband, phase sensitive detection technique that is well matched to the capabilities of contemporary microcontrollers. In hardware, the primary contributions are the School of Fish, a scalable network of microcontroller-based transceive electrodes, and the LazyFish, a small footprint integrated sensing board. Connecting n School of Fish electrodes results in an array capable of making heterodyne measurements of any or all n(n - 1) off-diagonal entries in the capacitance matrix. The LazyFish uses synchronous undersampling to provide up to 8 high signal- to-noise homodyne measurements in a very small package. The inverse electrostatics portion of the thesis presents a fast, general method for extracting geometrical information about the configuration and motion of the human body from field measurements. The method is based on the Sphere Expansion, a novel fast method for generating approximate solutions to the Laplace equation. Finally, the thesis describes a variety

  8. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  9. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  10. Electric potential and electric field imaging

    NASA Astrophysics Data System (ADS)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  11. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  12. Scalar fields and particle accelerators

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin

    2015-06-01

    The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked

  13. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  14. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  15. Electric Field Containerless Processing Technology

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Rhim, W. K.

    1985-01-01

    The objective of this task is to develop the science and technology base required to design and construct a high temperature electric field positioning module that could be used by materials scientists to conduct containerless science experiments in a low gravity environment. Containerless science modules that employ electric fields to position and manipulate samples offer several advantages over acoustic or electromagnetic systems. The electric field system will operate not only at atmospheric pressures but also in a vacuum, in contrast to the acoustic modules which can only operate in atmosphere where the acoustic forces are sufficient. The electric field technique puts minimum energy into the sample, whereas the electromagnetic system can deposit energy into the sample through eddy current heat as well as physical mixing in the sample. Two types of electric field modules have been constructed and tested to date. One employs a charged sample and uses electrostatic forces to position and control the sample. The second type of module induces electrical polarization of the sample and electric field gradients to position and control the sample.

  16. Photoionization of atomic hydrogen in electric field

    SciTech Connect

    Gorlov, Timofey V; Danilov, Viatcheslav V

    2010-01-01

    Laser assisted ionization of high energy hydrogen beams in magnetic fields opens wide application possibilities in accelerator physics and other fields. The key theoretical problem of the method is the calculation of the ionization probability of a hydrogen atom affected by laser and static electric fields in the particle rest frame. A method of solving this problem with the temporal Schr dinger equation including a continuum spectrum is presented in this paper in accurate form for the first time. This method allows finding the temporal evolution of the wave function of the hydrogen atom as a function of laser and static electric fields. Solving the problem of photoionization reveals quantum effects that cannot be described by the cross sectional approach. The effects play a key role in the problems of photoionization of H0 beams with the large angular or energy spread.

  17. Electrical Coupling Efficiency of Inductive Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.

    2005-01-01

    A single-stage pulsed inductive plasma accelerator is modeled as an inductive mass-driver. The plasma is treated as a rigid slug, which acts as the armature. The system is a transformer, with the drive coil serving as the primary and the slug as the secondary. We derive a set of coupled dynamic-circuit equations, which depend on five dimensionless coefficients, and on the functional form of the mutual inductance profile, M (z). For a given coil geometry, M (z) was determined experimentally and compared to the results of calculations carried out with QuickField. The equations are solved with various coefficient values, in order to determine the conditions that yield high efficiencies. It was found that the coupling efficiency can be quite high and likely scales with power, although this does not preclude operation at lower power with acceptable efficiency. The effect of an imbedded magnetic bias flux, as for the case of a plasmoid thruster, was also included in the calculations.

  18. Microwave electric field sensing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  19. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  20. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  1. THOR Electric Field Instrument - EFI

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri; Bale, Stuart D.; Bonnell, John W.; Lindqvist, Per-Arne; Phal, Yamuna; Rothkaehl, Hanna; Soucek, Jan; Vaivads, Andris; Åhlen, Lennart

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) will measure the vector electric field from 0 to 200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above ~1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic scale plasma

  2. Electric fields and quantum wormholes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  3. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  4. High-field dipoles for future accelerators

    SciTech Connect

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  5. Influence of electric field on cellular migration

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields (EFs) and respond to them with a directed migratory movement. Dictyostelium discoideum (D.d.) cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an EF. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. Whereas genes and proteins that mediate the electric sensing as well as that define the migration direction have been previously investigated in D.d. cells, a deeper knowledge about the cellular kinematic effects caused by the EF is still lacking. Here we show that besides triggering a directional bias the electric field influences the cellular kinematics by accelerating the movement of cells along their path. We found that the migratory velocity of the cells in an EF increases linearly with the exposure time. Through the analysis of the PI3K and Phg2 distribution in the cytosol and of the cellular adherence to the substrate we aim at elucidating whereas this speed up effect in the electric field is due to either a molecular signalling or the interaction with the substrate. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  6. PIC simulation of electrodeless plasma thruster with rotating electric field

    SciTech Connect

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-27

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  7. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  8. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  9. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  10. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  11. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  12. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  13. Mapping of acceleration field in FSA configuration of a LIS

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.; Monteduro, L.; Giuffreda, E.

    2016-05-01

    The Front Surface Acceleration (FSA) obtained in Laser Ion Source (LIS) systems is one of the most interesting methods to produce accelerated protons and ions. We implemented a LIS to study the ion acceleration mechanisms. In this device, the plasma is generated by a KrF excimer laser operating at 248 nm, focused on an aluminum target mounted inside a vacuum chamber. The laser energy was varied from 28 to 56 mJ/pulse and focused onto the target by a 15 cm focal lens forming a spot of 0.05 cm in diameter. A high impedance resistive probe was used to map the electric potential inside the chamber, near the target. In order to avoid the effect of plasma particles investing the probe, a PVC shield was realized. Particles inevitably streaked the shield but their influence on the probe was negligible. We detected the time resolved profiles of the electric potential moving the probe from 4.7 cm to 6.2 cm with respect to the main target axis, while the height of the shield from the surface normal on the target symmetry center was about 3 cm. The corresponding electric field can be very important to elucidate the phenomenon responsible of the accelerating field formation. The behavior of the field depends on the distance x as 1/x1.85 with 28 mJ laser energy, 1/x1.77 with 49 mJ and 1/x1.74 with 56 mJ. The dependence of the field changes slightly for our three cases, the power degree decreases at increasing laser energy. It is possible to hypothesize that the electric field strength stems from the contribution of an electrostatic and an induced field. Considering exclusively the induced field at the center of the created plasma, a strength of some tenth kV/m could be reached, which could deliver ions up to 1 keV of energy. These values were justified by measurement performed with an electrostatic barrier.

  14. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  15. Electric currents and voltage drops along auroral field lines

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1983-01-01

    An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.

  16. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  17. Laser produced streams of Ge ions accelerated and optimized in the electric fields for implantation into SiO{sub 2} substrates

    SciTech Connect

    Rosinski, M.; Parys, P.; Gasior, P.; Wolowski, J.; Giuffrida, L.; Torrisi, L.; Fazio, E.; Mezzasalma, A. M.; Ando, L.

    2012-02-15

    Ge crystals were prepared by means of laser-induced ion implantation technique. A Nd:YAG pulsed laser (repetition rate: 10 Hz; pulse duration: 3.5 ns; pulse energy: {approx}0.5 J) was used both as an ion source and to carry out the ablation processes. The optimization of the laser-generated ion beam parameters in a broad energy and current density range has been obtained controlling the electrostatic field parameters. Numerical simulations of the focusing system, performed adopting an OPERA 3D code, and an investigation of the ion characteristics, using the ion time-of-flight method, have allowed to optimize the preparation parameters. The structural properties of the samples were investigated by means of x-ray photoelectron, micro-Raman spectroscopies, and scanning electron microscopy techniques. Experimental results show that, by appropriately varying the ion implantation parameters and by a post-preparation annealing treatment, it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one.

  18. Laser produced streams of Ge ions accelerated and optimized in the electric fields for implantation into SiO2 substrates.

    PubMed

    Rosinski, M; Giuffrida, L; Parys, P; Gasior, P; Fazio, E; Mezzasalma, A M; Torrisi, L; Ando, L; Wolowski, J

    2012-02-01

    Ge crystals were prepared by means of laser-induced ion implantation technique. A Nd:YAG pulsed laser (repetition rate: 10 Hz; pulse duration: 3.5 ns; pulse energy: ∼0.5 J) was used both as an ion source and to carry out the ablation processes. The optimization of the laser-generated ion beam parameters in a broad energy and current density range has been obtained controlling the electrostatic field parameters. Numerical simulations of the focusing system, performed adopting an OPERA 3D code, and an investigation of the ion characteristics, using the ion time-of-flight method, have allowed to optimize the preparation parameters. The structural properties of the samples were investigated by means of x-ray photoelectron, micro-Raman spectroscopies, and scanning electron microscopy techniques. Experimental results show that, by appropriately varying the ion implantation parameters and by a post-preparation annealing treatment, it is possible to achieve the development of a micrometer-sized crystalline Ge phase and∕or an amorphous one.

  19. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  20. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  1. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  2. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph A. (Inventor); Eppich, Henry M. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  3. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  4. Acceleration of superparamagnetic particles with magnetic fields

    NASA Astrophysics Data System (ADS)

    Stange, R.; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations.

  5. Planned waveguide electric field breakdown studies

    SciTech Connect

    Wang Faya; Li Zenghai

    2012-12-21

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  6. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  7. Runaway electrons in a magnetized plasma in an rf electric field

    SciTech Connect

    Razdorskii, V.G.

    1982-01-01

    Runaway electrons may appear during electron-cyclotron heating of a plasma. In a constant magnetic field crossed with an rf electric field an effective acceleration of plasma electrons across the magnetic field takes place. When Coulomb collisions are taken into account, this acceleration gives rise to a stream of runaway electrons. The current in this stream is determined as a function of the amplitude of the electric field and the plasma parameters.

  8. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  9. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  10. Influence of the ambient acceleration field upon acute acceleration tolerance in chickens

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Spangler, W. L.; Rhode, E. A.; Burton, R. R.

    1979-01-01

    The paper measured the acceleration tolerance of domestic fowl (Rhode Island Red cocks), acutely exposed to a 6 Gz field, as the time over which a normal heart rate can be maintained. This period of circulatory adjustment ends abruptly with pronounced bradycardia. For chickens which previously have been physiologically adapted to 2.5 -G field, the acute acceleration tolerance is greatly increased. The influence of the ambient acceleration field on the adjustment of the circulatory system appears to be a general phenomenon.

  11. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  12. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    SciTech Connect

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  13. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  14. Combustion in an acceleration field: A survey of Soviet literature

    NASA Technical Reports Server (NTRS)

    Radloff, S. J.; Osborn, J. R.

    1980-01-01

    The effect of an acceleration field on the burning rate of a solid propellant was measured from -900g's to +1000g's using both double base and ammonium perchlorate based propellants. The acceleration fields were simulated using a centrifuge device and the burning rate was recorded. Both metalized and non-metalized variations of each propellant were tested and it was found that acceleration fields affect the burning rate. For the most part the theoretical predictions and the experimental results agreed.

  15. Displacement Current and the Generation of Parallel Electric Fields

    SciTech Connect

    Song Yan; Lysak, Robert L.

    2006-04-14

    We show for the first time the dynamical relationship between the generation of magnetic field-aligned electric field (E{sub parallel}) and the temporal changes and spatial gradients of magnetic and velocity shears, and the plasma density in Earth's magnetosphere. We predict that the signatures of reconnection and auroral particle acceleration should have a correlation with low plasma density, and a localized voltage drop (V{sub parallel}) should often be associated with a localized magnetic stress concentration. Previous interpretations of the E{sub parallel} generation are mostly based on the generalized Ohm's law, causing serious confusion in understanding the nature of reconnection and auroral acceleration.

  16. Electric-field guiding of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  17. Design of a nonscaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Courant, E. D.; Blaskiewicz, M.

    2005-05-01

    We present a design of nonscaling fixed field alternating gradient accelerators (FFAG) minimizing the dispersion action function H. The design is considered both analytically and via computer modeling. We present the basic principles of a nonscaling FFAG lattice and discuss optimization strategies so that one can accelerate over a broad range of momentum with reasonable apertures. Acceleration schemes for muons are discussed.

  18. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    SciTech Connect

    Racz, Peter; Dombi, Peter

    2011-12-15

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  19. Electric field enhanced conductivity in strongly coupled dense metal plasma

    SciTech Connect

    Stephens, J.; Neuber, A.

    2012-06-15

    Experimentation with dense metal plasma has shown that non-negligible increases in plasma conductivity are induced when a relatively low electric field ({approx}6 kV/cm) is applied. Existing conductivity models assume that atoms, electrons, and ions all exist in thermal equilibrium. This assumption is invalidated by the application of an appreciable electric field, where electrons are accelerated to energies comparable to the ionization potential of the surrounding atoms. Experimental data obtained from electrically exploded silver wire is compared with a finite difference hydrodynamic model that makes use of the SESAME equation-of-state database. Free electron generation through both thermal and electric field excitations, and their effect on plasma conductivity are applied and discussed.

  20. Electric field enhanced conductivity in strongly coupled dense metal plasma

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Neuber, A.

    2012-06-01

    Experimentation with dense metal plasma has shown that non-negligible increases in plasma conductivity are induced when a relatively low electric field (˜6 kV/cm) is applied. Existing conductivity models assume that atoms, electrons, and ions all exist in thermal equilibrium. This assumption is invalidated by the application of an appreciable electric field, where electrons are accelerated to energies comparable to the ionization potential of the surrounding atoms. Experimental data obtained from electrically exploded silver wire is compared with a finite difference hydrodynamic model that makes use of the SESAME equation-of-state database. Free electron generation through both thermal and electric field excitations, and their effect on plasma conductivity are applied and discussed.

  1. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  2. Imaging electric field dynamics with graphene optoelectronics

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-12-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena.

  3. Imaging electric field dynamics with graphene optoelectronics

    PubMed Central

    Horng, Jason; Balch, Halleh B.; McGuire, Allister F.; Tsai, Hsin-Zon; Forrester, Patrick R.; Crommie, Michael F.; Cui, Bianxiao; Wang, Feng

    2016-01-01

    The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz. Our imaging platform enables parallel detection of electric fields over a large field of view and can be tailored to broad applications spanning lab-on-a-chip device engineering to analysis of bioelectric phenomena. PMID:27982125

  4. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  5. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    SciTech Connect

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  6. The electron signature of parallel electric fields

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Gurgiolo, C.; Menietti, J. D.

    1990-12-01

    Dynamics Explorer I High-Altitude Plasma Instrument electron data are presented. The electron distribution functions have characteristics expected of a region of parallel electric fields. The data are consistent with previous test-particle simulations for observations within parallel electric field regions which indicate that typical hole, bump, and loss-cone electron distributions, which contain evidence for parallel potential differences both above and below the point of observation, are not expected to occur in regions containing actual parallel electric fields.

  7. Multi-GPU Jacobian Accelerated Computing for Soft Field Tomography

    PubMed Central

    Borsic, A.; Attardo, E. A.; Halter, R. J.

    2012-01-01

    Image reconstruction in soft-field tomography is based on an inverse problem formulation, where a forward model is fitted to the data. In medical applications, where the anatomy presents complex shapes, it is common to use Finite Element Models to represent the volume of interest and to solve a partial differential equation that models the physics of the system. Over the last decade, there has been a shifting interest from 2D modeling to 3D modeling, as the underlying physics of most problems are three-dimensional. Though the increased computational power of modern computers allows working with much larger FEM models, the computational time required to reconstruct 3D images on a fine 3D FEM model can be significant, on the order of hours. For example, in Electrical Impedance Tomography applications using a dense 3D FEM mesh with half a million elements, a single reconstruction iteration takes approximately 15 to 20 minutes with optimized routines running on a modern multi-core PC. It is desirable to accelerate image reconstruction to enable researchers to more easily and rapidly explore data and reconstruction parameters. Further, providing high-speed reconstructions are essential for some promising clinical application of EIT. For 3D problems 70% of the computing time is spent building the Jacobian matrix, and 25% of the time in forward solving. In the present work, we focus on accelerating the Jacobian computation by using single and multiple GPUs. First, we discuss an optimized implementation on a modern multi-core PC architecture and show how computing time is bounded by the CPU-to-memory bandwidth; this factor limits the rate at which data can be fetched by the CPU. Gains associated with use of multiple CPU cores are minimal, since data operands cannot be fetched fast enough to saturate the processing power of even a single CPU core. GPUs have a much faster memory bandwidths compared to CPUs and better parallelism. We are able to obtain acceleration factors of

  8. Electrically small, complementary electric-field-coupled resonator antennas

    NASA Astrophysics Data System (ADS)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka <1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  9. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  10. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  11. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  12. Modeling the electric field of weakly electric fish.

    PubMed

    Babineau, David; Longtin, André; Lewis, John E

    2006-09-01

    Weakly electric fish characterize the environment in which they live by sensing distortions in their self-generated electric field. These distortions result in electric images forming across their skin. In order to better understand electric field generation and image formation in one particular species of electric fish, Apteronotus leptorhynchus, we have developed three different numerical models of a two-dimensional cross-section of the fish's body and its surroundings. One of these models mimics the real contour of the fish; two other geometrically simple models allow for an independent study of the effects of the fish's body geometry and conductivity on electric field and image formation. Using these models, we show that the fish's tapered body shape is mainly responsible for the smooth, uniform field in the rostral region, where most electroreceptors are located. The fish's narrowing body geometry is also responsible for the relatively large electric potential in the caudal region. Numerical tests also confirm the previous hypothesis that the electric fish body acts approximately like an ideal voltage divider; this is true especially for the tail region. Next, we calculate electric images produced by simple objects and find they vary according to the current density profile assigned to the fish's electric organ. This explains some of the qualitative differences previously reported for different modeling approaches. The variation of the electric image's shape as a function of different object locations is explained in terms of the fish's geometrical and electrical parameters. Lastly, we discuss novel cues for determining an object's rostro-caudal location and lateral distance using these electric images.

  13. Electric fields are novel determinants of human macrophage functions.

    PubMed

    Hoare, Joseph I; Rajnicek, Ann M; McCaig, Colin D; Barker, Robert N; Wilson, Heather M

    2016-06-01

    Macrophages are key cells in inflammation and repair, and their activity requires close regulation. The characterization of cues coordinating macrophage function has focused on biologic and soluble mediators, with little known about their responses to physical stimuli, such as the electrical fields that are generated naturally in injured tissue and which accelerate wound healing. To address this gap in understanding, we tested how properties of human monocyte-derived macrophages are regulated by applied electrical fields, similar in strengths to those established naturally. With the use of live-cell video microscopy, we show that macrophage migration is directed anodally by electrical fields as low as 5 mV/mm and is electrical field strength dependent, with effects peaking ∼300 mV/mm. Monocytes, as macrophage precursors, migrate in the opposite, cathodal direction. Strikingly, we show for the first time that electrical fields significantly enhance macrophage phagocytic uptake of a variety of targets, including carboxylate beads, apoptotic neutrophils, and the nominal opportunist pathogen Candida albicans, which engage different classes of surface receptors. These electrical field-induced functional changes are accompanied by clustering of phagocytic receptors, enhanced PI3K and ERK activation, mobilization of intracellular calcium, and actin polarization. Electrical fields also modulate cytokine production selectively and can augment some effects of conventional polarizing stimuli on cytokine secretion. Taken together, electrical signals have been identified as major contributors to the coordination and regulation of important human macrophage functions, including those essential for microbial clearance and healing. Our results open up a new area of research into effects of naturally occurring and clinically applied electrical fields in conditions where macrophage activity is critical.

  14. Relation between electric current densities and X-ray emissions from particles accelerated during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    The energy released during solar flares is believed to be stored in non-potential magnetic fields associated with electric currents. This energy is partially transferred to particle acceleration. We studied for several X-class flares located near the solar disk center the relation between the location of the X-ray emissions produced by energetic electrons accelerated in the corona and the magnetic field and vertical component of the electric current density in the photosphere. The study is based on X-ray images with data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and magnetic field maps and current density maps calculated with the UNNOFIT inversion and Metcalf disambiguation codes from the spectropolarimetric measurements of the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO). A comparison between X-ray and Extreme Ultraviolet (EUV) images from the SDO Atmospheric Imaging Assembly (AIA) complete the study. We shall present preliminary conclusions on the link between particle acceleration and the presence of electric currents in the active region.

  15. Electric-field and magnetic-field sensors

    NASA Astrophysics Data System (ADS)

    Wieckowski, T. W.

    1993-05-01

    Analysis of double-loaded loop antennas and their properties has led to the design of new measuring sensors which enable has led to determination of both electric field strength and magnetic field strength. Sensors of the design proposed are applicable to a quasipoint measurement providing independent determination of the electric and magnetic component of the field.

  16. Estimating Electric Fields from Vector Magnetogram Sequences

    NASA Astrophysics Data System (ADS)

    Fisher, George H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J.

    2009-05-01

    We describe a new technique for estimating the three-dimensional vector electric field in the solar atmosphere by using a time-sequence of vector magnetograms to find an electric field distribution that obeys all 3 components of Faraday's law. The technique uses a ``poloidal-toroidal'' decomposition (PTD) to describe the electric field in terms of two scalar functions. The ``inductive'' PTD solutions to Faraday's Law are not unique, however, since additional contributions to the electric field from a potential function have no effect on Faraday's law. We then describe how estimates for the total electric field including both the inductive and potential components can be made by using variational techniques. The variational approach we develop is similar to Longcope's ``Minimum Energy Fit'' technique, in that the electric field obeys the vertical component of the magnetic induction equation, while also minimizing a positive definite functional. The purely potential part of the electric field can then be recovered by subtracting the PTD electric field from the total field.

  17. DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2009-06-17

    Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

  18. Electric Potential and Electric Field Imaging with Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  19. Broadband Electric-Field Sensor Array Technology

    DTIC Science & Technology

    2012-08-05

    and lithium niobate is a promising technology for broadband electric field sensor arrays. The results of this research program advance the state-of...interfaces without the use of an intermediate layer. Direct bonding typically requires very flat surfaces, demanding process technology , and...REPORT Broadband Electric-Field Sensor Array Technology 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report the development of a broadband electric

  20. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  1. ADJUSTED FIELD PROFILE FOR THE CHROMATICITY CANCELLATION IN FFAG ACCELERATORS.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    In an earlier report they have reviewed four major rules to design the lattice of Fixed-Field Alternating-Gradient (FFAG) accelerators. One of these rules deals with the search of the Adjusted Field Profile, that is the field non-linear distribution along the length and the width of the accelerator magnets, to compensate for the chromatic behavior, and thus to reduce considerably the variation of betatron tunes during acceleration over a large momentum range. The present report defines the method for the search of the Adjusted Field Profile.

  2. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  3. Electric field generation in martian dust devils

    NASA Astrophysics Data System (ADS)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2016-04-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Mars in situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the Macroscopic Triboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric Modeling System (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system. Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  4. Electric Field Generation in Martian Dust Devils

    NASA Technical Reports Server (NTRS)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  5. Core field accelerations from Swarm and ground observatory data

    NASA Astrophysics Data System (ADS)

    Kotsiaros, S.; Finlay, C. C.; Olsen, N.; Gillet, N.; Tøffner-clausen, L.

    2015-12-01

    On sub-decadal timescales the evolution of Earth's core-generated magnetic field is characterized by localized acceleration events, including oscillations. Our observational knowledge of these features, which are an important signature of the dynamics taking place within the core, is however still at a rudimentary stage. In this contribution we describe how observations from the Swarm multi-satellite mission, combined with data from ground observatories, can now be used to study the most recent field accelerations. An updated version of the CHAOS time-dependent geomagnetic field model will be presented, with a focus on details of the selection and incorporation of Swarm data including field gradient estimates. Comparisons between field accelerations observed by Swarm and at ground observatories will be presented. Implications for the strengthening and weakening of the field at specific locations at Earth's surface will be described. Finally, we will discuss the resolution of acceleration events at the core surface and possible underlying core flows.

  6. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  7. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  8. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  9. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field.

    PubMed

    Xiao, K D; Huang, T W; Ju, L B; Li, R; Yang, S L; Yang, Y C; Wu, S Z; Zhang, H; Qiao, B; Ruan, S C; Zhou, C T; He, X T

    2016-04-01

    Energetic electron acceleration processes in a plasma hollow tube irradiated by an ultraintense laser pulse are investigated. It is found that the longitudinal component of the laser field is much enhanced when a linear polarized Gaussian laser pulse propagates through the plasma tube. This longitudinal field is of π/2 phase shift relative to the transverse electric field and has a π phase interval between its upper and lower parts. The electrons in the plasma tube are first pulled out by the transverse electric field and then trapped by the longitudinal electric field. The trapped electrons can further be accelerated to higher energy in the presence of the longitudinal electric field. This acceleration mechanism is clearly illustrated by both particle-in-cell simulations and single particle modelings.

  10. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field

    NASA Astrophysics Data System (ADS)

    Xiao, K. D.; Huang, T. W.; Ju, L. B.; Li, R.; Yang, S. L.; Yang, Y. C.; Wu, S. Z.; Zhang, H.; Qiao, B.; Ruan, S. C.; Zhou, C. T.; He, X. T.

    2016-04-01

    Energetic electron acceleration processes in a plasma hollow tube irradiated by an ultraintense laser pulse are investigated. It is found that the longitudinal component of the laser field is much enhanced when a linear polarized Gaussian laser pulse propagates through the plasma tube. This longitudinal field is of π /2 phase shift relative to the transverse electric field and has a π phase interval between its upper and lower parts. The electrons in the plasma tube are first pulled out by the transverse electric field and then trapped by the longitudinal electric field. The trapped electrons can further be accelerated to higher energy in the presence of the longitudinal electric field. This acceleration mechanism is clearly illustrated by both particle-in-cell simulations and single particle modelings.

  11. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  12. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  13. Physics and Chemistry in High Electric Fields

    DTIC Science & Technology

    1992-10-06

    in heterogeneous catalysis and in chemical vapor deposition, may be established. To discuss field effects qualitatively, we look, in Fig. 1, at a...fields thus opening up new reaction pathways in heterogeneous catalysis . Most work so far has been concentrating on static electric fields; how- ever

  14. Pulsar Emission Geometry and Accelerating Field Strength

    DTIC Science & Technology

    2011-11-01

    ar X iv :1 11 1. 03 25 v1 [ as tr o- ph .H E ] 1 N ov 2 01 1 2011 Fermi Symposium, Roma., May. 9-12 1 Pulsar Emission Geometry and Accelerating...observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems. The high...the Vela and CTA 1 pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission

  15. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  16. Electric field control of the magnetocaloric effect.

    PubMed

    Gong, Yuan-Yuan; Wang, Dun-Hui; Cao, Qing-Qi; Liu, En-Ke; Liu, Jian; Du, You-Wei

    2015-02-04

    Through strain-mediated magnetoelectric coupling, it is demonstrated that the magnetocaloric effect of a ferromagnetic shape-memory alloy can be controlled by an electric field. Large hysteresis and the limited operating temperature region are effectively overcome by applying an electric field on a laminate comprising a piezoelectric and the alloy. Accordingly, a model for an active magnetic refrigerator with high efficiency is proposed in principle.

  17. Microwave ovens: mapping the electrical field distribution.

    PubMed

    Ng, K H

    1991-07-01

    Uniformity of electric field intensity of microwaves within the microwave oven cavity is necessary to ensure even load-heating, and is particularly important in pathology procedures where small volume irradiation is carried out. A simple and rapid method for mapping electric field distribution, using reversible thermographic paint, is described. Spatial heating patterns for various positions, and the effects of introducing dummy loads to modify heating distributions, have been obtained for a dedicated microwave processor, and comparison made with a domestic microwave oven.

  18. Pulsed Electric Fields for Biological Weapons Defense

    DTIC Science & Technology

    2002-01-01

    studies of Bacillus atrophaeus (formerly Bacillus subtilis var. niger). 15. SUBJECT TERMS nanosecond high-field electric pulse, electroperturbation...sterility monitoring kit, which utilizes spores of Bacillus atrophaeus (formerly Bacillus subtilis var. niger) deposited on paper in glassine envelopes, has...report a study of the application of ultra- short high-field electric pulses (5 MV/m, 100-ns pulse width, 4-ns rise time) to Bacillus atrophaeus spores

  19. OBLIQUELY ROTATING PULSARS: SCREENING OF THE INDUCTIVE ELECTRIC FIELD

    SciTech Connect

    Melrose, D. B.; Yuen Rai

    2012-02-01

    Pulsar electrodynamics has been built up by taking ingredients from two models, the vacuum-dipole model, which ignores the magnetosphere but includes the inductive electric field due to the obliquely rotating magnetic dipole, and the corotating-magnetosphere model, which neglects the vacuum inductive electric field and assumes a corotating magnetosphere. We argue that the inductive field can be neglected only if it is screened by a current, J{sub sc}, which we calculate for a rigidly rotating magnetosphere. Screening of the parallel component of the inductive field can be effective, but the perpendicular component cannot be screened in a pulsar magnetosphere. The incompletely screened inductive electric field has not been included in any model for a pulsar magnetosphere, and taking it into account has important implications. One effect is that it implies that the magnetosphere cannot be corotating, and we suggest that drift relative to corotation offers a natural explanation for the drifting of subpulses. A second effect is that this screening of the parallel inductive electric field must break down in the outer magnetosphere, and this offers a natural explanation for the acceleration of the electrons that produce pulsed gamma-ray emission.

  20. Control of the Electric Field Profile in the Hall Thruster

    SciTech Connect

    A. Fruchtman; N. J. Fisch; Y. Raitses

    2000-10-05

    Control of the electric field profile in the Hall Thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows one further control of the electric field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage.

  1. Electric/magnetic field sensor

    SciTech Connect

    Schill, Jr., Robert A.; Popek, Marc

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  2. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  3. Electric field measurements with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.

    1989-01-01

    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued.

  4. Rotating Capacitor Measures Steady Electric Fields

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Kirkham, H.; Eng, B.

    1986-01-01

    Portable sensor measures electric fields created by dc powerlines or other dc-high-voltage sources. Measures fields from 70 to 50,000 V/m with linearity of 2 percent. Sensor used at any height above ground. Measures both magnitude and direction of field and provides signals representing these measurements to remote readout device. Sensor functions with minimal disturbance of field it is measuring.

  5. Midday reversal of equatorial ionospheric electric field

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.

    1997-10-01

    A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956-1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  6. Factors that differentiate acceleration ability in field sport athletes.

    PubMed

    Lockie, Robert G; Murphy, Aron J; Knight, Timothy J; Janse de Jonge, Xanne A K

    2011-10-01

    Speed and acceleration are essential for field sport athletes. However, the mechanical factors important for field sport acceleration have not been established in the scientific literature. The purpose of this study was to determine the biomechanical and performance factors that differentiate sprint acceleration ability in field sport athletes. Twenty men completed sprint tests for biomechanical analysis and tests of power, strength, and leg stiffness. The sprint intervals analyzed were 0-5, 5-10, and 0-10 m. The subjects were split into a faster and slower group based on 0- to 10-m velocity. A 1-way analysis of variance determined variables that significantly (p ≤ 0.05) distinguished between faster and slower acceleration. All subject data were then pooled for a correlation analysis to determine factors contributing most to acceleration. The results showed that 0- to 5-m (∼16% difference) and 0- to 10-m (∼11% difference) contact times for the faster group were significantly lower. Times to peak vertical and horizontal force during ground contact were lower for the faster group. This was associated with the reduced support times achieved by faster accelerators and their ability to generate force quickly. Ground contact force profiles during initial acceleration are useful discriminators of sprint performance in field sport athletes. For the strength and power measures, the faster group demonstrated a 14% greater countermovement jump and 48% greater reactive strength index. Significant correlations were found between velocity (0-5, 5-10, and 0-10 m) and most strength and power measures. The novel finding of this study is that training programs directed toward improving field sport sprint acceleration should aim to reduce contact time and improve ground force efficiency. It is important that even during the short sprints required for field sports, practitioners focus on good technique with short contact times.

  7. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  8. Evolution of tachyon kink with electric field

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Kwon, O.-Kab; Lee, Chong Oh

    2007-04-01

    We investigate the decay of an inhomogeneous D1-brane wrapped on a S1 with an electric field. The model that we consider consists of an array of tachyon kink and anti-kink with a constant electric flux. Beginning with an initially static configuration, we numerically evolve the tachyon field with some perturbations under a fixed boundary condition at diametrically opposite points on the circle S1. When the electric flux is smaller than the critical value, the tachyon kink becomes unstable; the tachyon field rolls down the potential, and the lower dimensional D0- and bar D0-brane become thin, which resembles the caustic formation known for this type of the system in the literature. For the supercritical values of the electric flux, the tachyon kink remains stable.

  9. Rotationally Vibrating Electric-Field Mill

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  10. Effects of a Parallel Electric Field and the Geomagnetic Field in the Topside Ionosphere on Auroral and Photoelectron Energy Distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  11. Effects of a parallel electric field and the geomagnetic field in the topside ionosphere on auroral and photoelectron energy distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  12. Magnetospheric electric field measurements during sudden commencements

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Skillman, T. L.

    1973-01-01

    Direction measurements of electric fields were made in the outer magnetosphere during two sudden commencements in 1972. These measurements were observed with the double floating probe experiment carried aboard the IMP 6 satellite. The initial variations of the measured electric field consisted of an increase from a background of about 1 mv/meter to some 10 mv/meter at about 7 rE (earth radi) and to some 4 mv/meter at 3 rE. These initial electric field disturbances were longitudinal, oriented counter clockwise about an axis pointed north. A solution of Maxwell's third equation is derived for these measurements using a quasi-static version of Mead's model of the magnetosphere B (t). This solution seems to describe well the magnitude and direction of the initial perturbation of the electric field vectors observed during these two sudden commencements. After the initial increase, the measured electric field rings several times with periods of the order of minutes. This observed oscillatory behavior correlates with magnetic observatory records taken near the foot of the magetic field line passing through the satellite.

  13. Electric field measurements from Halley, Antarctica

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  14. Magnetoexciton in nanotube under external electric field

    NASA Astrophysics Data System (ADS)

    Garcia Russi, L. F.; Paredes Gutiérrez, H.; Santos, Y. F.; Mikhailov, I. D.

    2016-08-01

    We study the Aharonov-Bohm oscillation of the energy levels of an electron-hole pair confined in a narrow nanotube in the presence of the magnetic field applied along the symmetry axis. We show that the electric field applied at the same direction makes the oscillation more pronounced.

  15. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  16. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  17. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    SciTech Connect

    Harada, S.; Baba, T.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yokota, S.; Yamazaki, T.; Shimizu, H.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  18. Stratospheric electric field measurements with transmediterranean balloons

    NASA Astrophysics Data System (ADS)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  19. Electric fields associated with dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Fu, Suiyan; Parks, George K.; Pu, Zuyin; Zong, Qiu-Gang; Liu, Jiang; Yao, Zhonghua; Fu, Huishan; Shi, Quanqi

    2014-07-01

    Electric fields associated with dipolarization fronts (DFs) have been investigated in the magnetotail plasma sheet using Cluster observations. We have studied each term in the generalized Ohm's law using data obtained from the multispacecraft Cluster. Our results show that in the plasma flow frame, electric fields are directed normal to the DF in the magnetic dip region ahead of the DF as well as in the DF layer but in opposite directions. Case and statistical studies show that the Hall electric field is important while the electron pressure gradient term is much smaller. The ions decouple from the magnetic field in the DF layer and dip region (E + Vi×B ≠ 0), whereas electrons remain frozen-in (E + Ve×B=∇pe/nee).

  20. A model for polar cap electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1976-01-01

    A model is proposed relating polar cap ionospheric electric fields to the parameters of the solar wind near the orbit of the earth. The model ignores the notion of field line merging. An essential feature is the role played by velocity shear instabilities in regions of the outer magnetosphere, in which mapping of the magnetosheath electric field would produce sunward convection. The anomalous resistivity which arises from velocity shear turbulence, suffices to essentially disconnect the magnetosphere from the magnetosheath, at any place where that resistivity is large enough. The magnetosheath-magnetosphere system, as a consequence, acts as a kind of diode or rectifier for the magnetosheath electric fields. Predictions of the model are compared with several observations related to polar cap convection.

  1. Studying electric fields in dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-11-01

    In Earth's magnetotail, sharp increases in the magnetic field known as dipolarization fronts are associated with high-speed plasma flows that connect Earth's ionosphere via electric currents. Some aspects of these dipolarization fronts have puzzled scientists; in particular, the dip in magnetic field that occurs just ahead of the dipolarization front layer is not well understood. Sun et al. analyze observations made using the Cluster satellites to elucidate the details of electric fields associated with dipolarization fronts. The study shows that a type of electric current known as a Hall current dominates in the dipolarization front region and in the region where the magnetic field dips, but this current flows in opposite directions in these two regions.

  2. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  3. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  4. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  5. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  6. Quasi-Static Electric Field Generator

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  7. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  8. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  9. BIOPHYSICS. Comment on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    PubMed

    Chen, Deliang; Savidge, Tor

    2015-08-28

    Fried et al. (Reports, 19 December 2014, p. 1510) demonstrate electric field-dependent acceleration of biological catalysis using ketosteroid isomerase as a prototypic example. These findings were not extended to aqueous solution because water by itself has field fluctuations that are too large and fast to provide a catalytic effect. Given physiological context, when water electrostatic interactions are considered, electric fields play a less important role in the catalysis.

  10. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  11. Velocity modulation of microtubules in electric fields.

    PubMed

    Dujovne, Irene; van den Heuvel, Martin; Shen, Yi; de Graaff, Martijn; Dekker, Cees

    2008-12-01

    We show that the speed of microtubules gliding over a kinesin-coated surface can be controlled over a wide range of values by the application of an electric field. The speed can be increased by up to a factor of 5 compared to the speed at zero field when assisting forces are applied and slowed down to zero velocity for opposing fields. Sideways applied fields also induce significant motion. The kinesin surface density impacts the rate of velocity change, whereas the ATP concentration does not seem to play a major role, provided that it is nonzero. A simple grab-and-release model is presented that explains the velocity change with applied electric fields.

  12. Microfluidic Screening of Electric Fields for Electroporation.

    PubMed

    Garcia, Paulo A; Ge, Zhifei; Moran, Jeffrey L; Buie, Cullen R

    2016-02-19

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX(®), which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX(®) after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  13. Microfluidic Screening of Electric Fields for Electroporation

    PubMed Central

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  14. Microfluidic Screening of Electric Fields for Electroporation

    NASA Astrophysics Data System (ADS)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  15. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  16. Drug Release from Electric Field Responsive Nanoparticles

    PubMed Central

    Ge, Jun; Neofytou, Evgenios; Cahill, Thomas J.; Beygui, Ramin E.; Zare, Richard N.

    2012-01-01

    We describe a new temperature and electric field dual-stimulus responsive nanoparticle system for programmed drug delivery. Nanoparticles of a conducting polymer (polypyrrole) are loaded with therapeutic pharmaceuticals and are subcutaneously localized in vivo with the assistance of a temperature-sensitive hydrogel (PLGA-PEG-PLGA). We have shown that drug release from the conductive nanoparticles is controlled by the application of a weak, external DC electric field. This approach represents a novel interactive drug delivery system that can show an externally tailored release profile with an excellent spatial, temporal, and dosage control. PMID:22111891

  17. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  18. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    PubMed

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  19. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    NASA Astrophysics Data System (ADS)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  20. Electric field-driven currents in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Lillis, R. J.; Ma, Y.

    2011-10-01

    Mars has a complex magnetic topology. Crustal magnetic fields can interact with the solar wind magnetic field to form magnetic cusps. On the nightside, solar wind electron precipitation can produce regions of enhanced ionization at cusps while closed field regions adjacent to cusps can be devoid of significant ionization. Previously, using an electron transport model, we calculated the electron density and spatial structure of the nightside ionosphere of Mars using Mars Global Surveyor electron measurements as input. Localized regions of enhanced ionospheric density were found to occur at magnetic cusps adjacent to low density voids [1]. Additionally, we calculated the horizontal ionospheric currents driven by strong plasma gradients and by thermospheric neutral winds. In the dynamo region of the ionosphere, the collisional ions move in the direction of the applied force (the plasma gradient or neutral wind) while the magnetized electrons move perpendicular to both the applied force and ambient magnetic field. This difference in motion drives horizontal currents. Subsequently, we considered the existence of wind-driven cusp electrojets created by secondary currents arising from polarization electric fields which form in the presence of strong conductivity gradients [2]. At Earth, ionospheric currents at high latitudes are driven predominantly by externally imposed (magnetospheric) electric fields. Here, we compute the horizontal ionospheric currents in the vicinity of magnetic cusps resulting from external electric fields. In the absence of electric field observations, we use the electric field calculated from a global model of the Mars-solar wind interaction as input. We compare the magnitude of these currents with those driven by neutral winds and plasma gradients. Additionally, we estimate the magnitude of the electric field-driven electrojets, analogous to Earth's auroral electrojets. These enhanced currents can lead to localized, enhanced Joule heating

  1. Electric Field Effects in RUS Measurements

    SciTech Connect

    Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  2. Electric field effects in RUS measurements.

    PubMed

    Darling, Timothy W; Allured, Bradley; Tencate, James A; Carpenter, Michael A

    2010-02-01

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material--a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the "statistical residual" strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  3. Kinematic Determinants of Early Acceleration in Field Sport Athletes

    PubMed Central

    Murphy, Aron J.; Lockie, Robert G.; Coutts, Aaron J.

    2003-01-01

    Acceleration performance is important for field sport athletes that require a high level of repeat sprint ability. Although acceleration is widely trained for, there is little evidence outlining which kinematic factors delineate between good and poor acceleration. The aim of this study was to investigate the kinematic differences between individuals with fast and slow acceleration. Twenty field sport athletes were tested for sprint ability over the first three steps of a 15m sprint. Subjects were filmed at high speed to determine a range of lower body kinematic measures. For data analysis, subjects were then divided into relatively fast (n = 10) and slow (n = 10) groups based on their horizontal velocity. Groups were then compared across kinematic measures, including stride length and frequency, to determine whether they accounted for observed differences in sprint velocity. The results showed the fast group had significantly lower (~11-13%) left and right foot contact times (p < .05), and an increased stride frequency (~9%), as compared to the slow group. Knee extension was also significantly different between groups (p < .05). There was no difference found in stride length. It was concluded that those subjects who are relatively fast in early acceleration achieve this through reduced ground contact times resulting in an improved stride frequency. Training for improved acceleration should be directed towards using coaching instructions and drills that specifically train such movement adaptations. PMID:24688275

  4. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  5. Electric fields and double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  6. Airborne biological particles and electric fields

    NASA Astrophysics Data System (ADS)

    Benninghoff, William S.; Benninghoff, Anne S.

    1982-01-01

    In November and December 1977 at McMurdo Station in Antarctica we investigated the kinds, numbers, and deposition of airborne particles larger than 2 μm while measuring electric field gradient at 2.5 m above the ground. Elementary collecting devices were used: Staplex Hi-Volume and Roto-rod samplers, Tauber (static sedimentation) traps, petrolatum-coated microscope slides, and snow (melted and filtered). The electric fields were measured by a rotating dipole (Stanford Radioscience Laboratory field mill number 2). During periods of blowing snow and dust the electric field gradient was + 500 to + 2500 V/m, and Tauber traps with grounded covers collected 2 or more times as much snow and dust as the ones with ungrounded covers. During falling snow the electric field gradient was -1000 to -1500 V/m, and the ungrounded traps collected almost twice as much snow and dust as those grounded. These observations suggest that under the prevailing weather conditions in polar regions the probable net effect is deposition of greater quantities of dust, including diaspores and minute organisms, on wet, grounded surfaces. This hypothesis needs examination for its use in explanation of biological distribution patterns.

  7. The fields of uniformly accelerated charges in de Sitter spacetime.

    PubMed

    Bicák, Jirí; Krtous, Pavel

    2002-05-27

    The scalar and electromagnetic fields of charges uniformly accelerated in de Sitter spacetime are constructed. They represent the generalization of the Born solutions describing fields of two particles with hyperbolic motion in flat spacetime. In the limit Lambda-->0, the Born solutions are retrieved. Since in the de Sitter universe the infinities I+/- are spacelike, the radiative properties of the fields depend on the way in which a given point of I+/- is approached. The fields must involve both retarded and advanced effects: Purely retarded fields do not satisfy the constraints at the past infinity I-.

  8. The dust nature of micro field emitters in accelerators

    NASA Astrophysics Data System (ADS)

    Volkov, V.; Petrov, V. M.

    2016-11-01

    Field emission currents emitted by micro-emitters are a limiting factor for the operational gradients of accelerating radio frequency (rf) cavities. Within the rf field emission theory the existence of needle like micro field emitters with very high length relative to the radius and corresponding high enhancement factor (β) is assumed. In this article the hypothesis that micro field emitters consists of long chains of conductive micro-particles is considered. Five different forces acting onto the particles in a high rf field are considered and the respective equations are derived. Some experimental observations and their explanation within this hypothesis are discussed.

  9. Electric and magnetic fields in cryopreservation.

    PubMed

    Wowk, Brian

    2012-06-01

    Electromagnetic warming has a long history in cryobiology as a preferred method for recovering large tissue masses from cryopreservation, especially from cryopreservation by vitrification. It is less well-known that electromagnetic fields may be able to influence ice formation during cryopreservation by non-thermal mechanisms. Both theory and published data suggest that static and oscillating electric fields can respectively promote or inhibit ice formation under certain conditions. Evidence is less persuasive for magnetic fields. Recent claims that static magnetic fields smaller than 1 mT can improve cryopreservation by freezing are specifically questioned.

  10. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  11. Critical electric field strengths of onion tissues treated by pulsed electric fields.

    PubMed

    Asavasanti, Suvaluk; Ersus, Seda; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2010-09-01

    The impact of pulsed electric fields (PEF) on cellular integrity and texture of Ranchero and Sabroso onions (Allium cepa L.) was investigated. Electrical properties, ion leakage rate, texture, and amount of enzymatically formed pyruvate were measured before and after PEF treatment for a range of applied field strengths and number of pulses. Critical electric field strengths or thresholds (E(c)) necessary to initiate membrane rupture were different because dissimilar properties were measured. Measurement of electrical characteristics was the most sensitive method and was used to detect the early stage of plasma membrane breakdown, while pyruvate formation by the enzyme alliinase was used to identify tonoplast membrane breakdown. Our results for 100-μs pulses indicate that breakdown of the plasma membrane occurs above E(c)= 67 V/cm for 10 pulses, but breakdown of the tonoplast membrane is above either E(c)= 200 V/cm for 10 pulses or 133 V/cm for 100 pulses. This disparity in field strength suggests there may be 2 critical electrical field strengths: a lower field strength for plasma membrane breakdown and a higher field strength for tonoplast membrane breakdown. Both critical electric field strengths depended on the number of pulses applied. Application of a single pulse at an electric field up to 333 V/cm had no observable effect on any measured properties, while significant differences were observed for n≥10. The minimum electric field strength required to cause a measurable property change decreased with the number of pulses. The results also suggest that PEF treatment may be more efficient if a higher electric field strength is applied for a fewer pulses.

  12. Electric current quadratic in an applied electric field

    NASA Astrophysics Data System (ADS)

    Deyo, Eric

    The theory of the photogalvanic effect in a low frequency electric field is developed. We complete the semiclassical theory of the effect in bulk samples lacking inversion symmetry, taking into account contributions from the asymmetry of scattering, the shift current, and the effect of Berry's phase. We consider the effect in such samples both in the presence and absence of a constant magnetic field. It is found that by experimentally measuring this effect, that Berry's curvature and the average shift of the center of mass of an electron during a scattering event can be extracted. We also investigate the magnetic field dependence of the part of the electrical current which is quadratic in voltage in mesoscopic conductors. We find that the part of the current which is quadratic in bias voltage, and linear in an applied magnetic field can be related to the effective electron-electron interaction strength. We also find that in the case when the magnetic field is oriented parallel to the plane of a two dimensional sample, that the spin-orbit scattering rate can be measured.

  13. Full Electric Field Control of Exchange Bias

    NASA Astrophysics Data System (ADS)

    Wu, Stephen

    2014-03-01

    Exchange bias is the shift of a magnetic hysteresis curve due to interfacial magnetic coupling between a ferromagnet (FM) and an antiferromagnet (AFM). This ubiquitous effect has long been used in the electronics industry to bias the magnetization of FM layers in magnetic devices. Its continued understanding is of critical importance to advance the development of future high-density magnetic storage media and other novel magnetic devices. However, due to the technological limitations of manipulating and observing an atomically thin interface, exchange bias is not well understood. In this talk we present a multiferroic field effect device with BiFeO3 (BFO) (antiferromagnetic-ferroelectric) as the gate dielectric and La0.7Sr0.3MnO3 (LSMO) (ferromagnetic) as the conducting channel, which exhibits the direct, bipolar electric control of exchange bias. Here the magnetic states at the AFM/FM interface can be directly manipulated with electric fields and the results can be observed as a change in exchange bias polarity and magnitude. Control of exchange bias at this level has significant implications because it represents a form of electric field control of magnetism and may potentially offer a route toward the eventual full electric field control of magnetization. In this device, exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond BFO poling is needed for this bipolar modulation effect. Detailed temperature dependent measurements and a model will be presented which will attribute this effect to the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe3+ in BFO relative to Mn3 + / 4 + in LSMO.

  14. Longitudinal ultrasonic waves in DC electric field

    NASA Astrophysics Data System (ADS)

    Sobotka, Jerzy

    2009-06-01

    The results of experimental studies of the propagation of longitudinal waves in saturated rock samples in which there is a flow of electric charges are presented. It is shown that the electric field affects elastic parameters in heterophase media by changing their dynamic characteristics. The aim of the study of the effect of electric field on the propagation of elastic waves in saturated porous media was to determine the optimum conditions for this effect, and to construct a set of effective parameters which could be used to increase the effectiveness of seismoacoustic prospecting methods, particularly acoustic logging, and be helpful for developing new methods of increasing the effectiveness of oil extraction from productive wells.

  15. Health of workers exposed to electric fields.

    PubMed Central

    Broadbent, D E; Broadbent, M H; Male, J C; Jones, M R

    1985-01-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields. PMID:3970875

  16. Non-intrusive electric field sensing

    NASA Astrophysics Data System (ADS)

    Schultz, S. M.; Selfridge, R.; Chadderdon, S.; Perry, D.; Stan, N.

    2014-04-01

    This paper presents an overview of non-intrusive electric field sensing. The non-intrusive nature is attained by creating a sensor that is entirely dielectric, has a small cross-sectional area, and has the interrogation electronics a long distance away from the system under test. One non-intrusive electric field sensing technology is the slab coupled optical fiber sensor (SCOS). The SCOS consists of an electro-optic crystal attached to the surface of a D-shaped optical fiber. It is entirely dielectric and has a cross-sectional area down to 0.3mm by 0.3mm. The SCOS device functions as an electric field sensor through use of resonant mode coupling between the crystal waveguide and the core of a D-shaped optical fiber. The resonant mode coupling of a SCOS device occurs at specific wavelengths whose spectral locations are determined in part by the effective refractive index of the modes in the slab. An electric field changes the refractive index of the slab causing a shift in the spectral position of the resonant modes. This paper describes an overview of the SCOS technology including the theory, fabrication, and operation. The effect of crystal orientation and crystal type are explained with respect to directional sensitivity and frequency response.

  17. Nonthermal processing by radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  18. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  19. Static electric fields modify the locomotory behaviour of cockroaches.

    PubMed

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  20. OEDIPUS-C observations of electrons accelerated by radio frequency fields at whistler-mode frequencies

    NASA Astrophysics Data System (ADS)

    James, H. G.; Sotnikov, V. I.; Burke, W. J.; Huang, C. Y.

    1999-10-01

    Simultaneous measurements of transmitted 500 kHz electric fields and of electron fluxes nonlinearly energized by those fields were made during the ionospheric flight of the rocket double payload OEDIPUS C. Given the local plasma parameters, 500 kHz corresponded to the whistler mode of cold-plasma propagation. As the separation between each payload end increased from 153 to 537 m, enhanced electron fluxes were detected at energies up to 20 keV, at the receiver end of the tether. Rf (radio frequency) electric fields created by the OEDIPUS-C transmitter have been computed for positions close to the whistler-mode group resonance cone and also for locations very close to the active dipoles. Test-particle trajectory tracings show that linear acceleration can account for the energy increases of electrons with starting energies up to about 100 eV. Neither resonant field-particle interactions of background energetic electrons nor strong turbulence of the background thermal particles explain the creation of sounder-accelerated electrons at 1-10 keV. The calculated magnitudes of the very near potentials, up to 550 V, point to acceleration by intense fields in the rf sheath region.

  1. National Program on High Field Accelerator Magnet R&D

    SciTech Connect

    Apollinari, G.; Cooley, L.; Zlobin, A. V.; Caspi, S.; Gourlay, S.; Prestemon, S.; Larbalestier, D.; Gupta, R.; Wanderer, P.

    2014-09-26

    A National High-Field Magnet (HFM) Program is proposed as a thrust of the updated DOE-HEP General Accelerator R&D Program. The program responds to Recommendation 24 of the 2014 Particle Physics Project Prioritization Panel (P5) Report.

  2. Field quality study in Nb(3)Sn accelerator magnets

    SciTech Connect

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; DiMarco, J.; Kashikhin, V.S.; Lamm, M.; Novitski, I.; Schlabach, P.; Velev, G.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-05-01

    Four nearly identical Nb{sub 3}Sn dipole models of the same design were built and tested at Fermilab. It provided a unique opportunity of systematic study the field quality effects in Nb{sub 3}Sn accelerator magnets. The results of these studies are reported in the paper.

  3. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2003-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away

  4. Composite lateral electric field excited piezoelectric resonator.

    PubMed

    Zaitsev, B D; Shikhabudinov, A M; Borodina, I A; Teplykh, A A; Kuznetsova, I E

    2017-01-01

    The novel method of suppression of parasitic oscillations in lateral electric field excited piezoelectric resonator is suggested. Traditionally such resonator represents the piezoelectric plate with two electrodes on one side of the plate. The crystallographic orientation of the plate is selected so that the tangential components of electric field excite bulk acoustic wave with given polarization travelling along the normal to the plate sides. However at that the normal components of field excite the parasitic Lamb waves and bulk waves of other polarization which deteriorate the resonant properties of the resonator. In this work we suggest to separate the source of the HF electric field and resounded piezoelectric plate by air gap. In this case the tangential components of the field in piezoelectric plate do not practically weaken but normal components significantly decrease. This method is realized on the composite resonator having the structure "glass plate with rectangular electrodes - air gap - plate of 128 Y-X lithium niobate." It has been shown that there exist the optimal value of the width gap which ensure the good quality of series and parallel resonances in frequency range 3-4MHz with record values of Q-factor of ∼15,000 in both cases.

  5. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  6. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  7. Coupling effect of the electric and temperature fields on the growth of nanocrystalline copper films

    SciTech Connect

    Cao Zhenhua; Wang Feng; Wang Lei; Meng Xiangkang

    2010-03-15

    The effect of an external static electric field on the grain growth in nanocrystalline Cu films was studied at different annealing temperatures. Transmission electron microscopy and x-ray diffraction indicate that the grain growth in Cu films is accelerated with various rates by an external electric field at different annealing temperatures. It is found that there is a coupling effect from the external electric and temperature fields on grain growth in Cu films during annealing. The growth rate is accelerated proportional to a factor f(E)centre dotmu{sup T/100} deg. C, which is determined from the theoretical derivation. The analysis indicates that the enhanced grain growth is achieved by the effect of the electric field on the vacancies migration and dislocation climb along grain boundaries.

  8. High-field plasma acceleration in a high-ionization-potential gas

    SciTech Connect

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.

  9. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGES

    Corde, S.; Adli, E.; Allen, J. M.; ...

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  10. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  11. Modification of electron spin properties in a GaAs epilayer by an in-plane electric field

    NASA Astrophysics Data System (ADS)

    MacMahon, Michael; Sih, Vanessa

    The interaction of electron spins with accelerating electric fields in bulk gallium arsenide results in many effects that are relevant to proposed spin-based devices. For example, in-plane electric fields have been shown to change the g-factor, generate spin polarization, and decrease the spin lifetime. Most such studies have used only very low electric fields, typically less than 100 V/cm. We investigate the dependence of spin lifetime on electric field at high electric fields and separate the contribution due to heating. This work was supported in part by ONR and the Rackham Graduate School.

  12. Acceleration Kinematics in Cricketers: Implications for Performance in the Field

    PubMed Central

    Robert, G. Lockie; Callaghan, Samuel J.; Jeffriess, Matthew D.

    2014-01-01

    Cricket fielding often involves maximal acceleration to retrieve the ball. There has been no analysis of acceleration specific to cricketers, or for players who field primarily in the infield (closer to the pitch) or outfield (closer to the boundary). This study analyzed the first two steps of a 10-m sprint in experienced cricketers. Eighteen males (age = 24.06 ± 4.87 years; height = 1.81 ± 0.06 m; mass = 79.67 ± 10.37 kg) were defined as primarily infielders (n = 10) or outfielders (n = 8). Timing lights recorded 0-5 and 0-10 m time. Motion capture measured first and second step kinematics, including: step length; step frequency; contact time; shoulder motion; lead and rear arm elbow angle; drive leg hip and knee extension, and ankle plantar flexion; swing leg hip and knee flexion, and ankle dorsi flexion. A one-way analysis of variance (p < 0.05) determined between-group differences. Data was pooled for a Pearson’s correlation analysis (p < 0.05) to analyze kinematic relationships. There were no differences in sprint times, and few variables differentiated infielders and outfielders. Left shoulder range of motion related to second step length (r = 0.471). First step hip flexion correlated with both step lengths (r = 0.570-0.598), and frequencies (r = -0.504--0.606). First step knee flexion related to both step lengths (r = 0.528-0.682), and first step frequency (r = -0.669). First step ankle plantar flexion correlated with second step length (r = -0.692) and frequency (r = 0.726). Greater joint motion ranges related to longer steps. Cricketers display similar sprint kinematics regardless of fielding position, likely because players may field in the infield or outfield depending on match situation. Due to relationships with shoulder and leg motion, and the importance and trainability of step length, cricketers should target this variable to enhance acceleration. Key Points Regardless of whether cricketers field predominantly in the infield or outfield, they

  13. Field-aligned currents and ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.

    1977-01-01

    It is shown that the observed distribution of the ionospheric electric field can be deduced from an equation combining Ohm's law with the current continuity equation by using the 'observed' distribution of field-aligned currents as the boundary condition for two models of the ionosphere. The first model has one conductive annular ring representing the quiet-time auroral precipitation belt; the second has two conductive annular rings that simulate the discrete and diffuse auroral regions. An analysis is performed to determine how well the electric-field distribution can be reproduced. The results indicate that the first model reproduces the Sq(p)-type distribution, the second model reproduces reasonably well a substorm-type potential and ionospheric current patterns together with the Harang discontinuity, and that the distribution of field-aligned currents is the same for both models.

  14. Amplification of Relativistic Electron Bunches by Acceleration in Laser Fields

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Abicht, F.; Ehrentraut, L.; Platonov, K.; Schnürer, M.

    2017-01-01

    Direct acceleration of electrons in a coherent, intense light field is revealed by a remarkable increase of the electron number in the MeV energy range. Laser irradiation of thin polymer foils with a peak intensity of ˜1 ×1020 W /cm2 releases electron bunches along the laser propagation direction that are postaccelerated in the partly transmitted laser field. They are decoupled from the laser field at high kinetic energies, when a second foil target at an appropriate distance prevents their subsequent deceleration in the declining laser field. The scheme is established with laser pulses of high temporal contrast (1010 peak to background ratio) and two ultrathin polymer foils at a distance of 500 μ m . 2D particle in cell simulations and an analytical model confirm a significant change of the electron spectral distribution due to the double foil setup, which leads to an amplification of about 3 times of the electron number around a peak at 1 MeV electron energy. The result verifies a theoretical concept of direct electron bunch acceleration in a laser field that is scalable to extreme acceleration potential gradients. This method can be used to enhance the density and energy spread of electron bunches injected into postaccelerator stages of laser driven radiation sources.

  15. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  16. Atomic excitation and acceleration in strong laser fields

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Eichmann, U.

    2016-10-01

    Atomic excitation in the tunneling regime of a strong-field laser-matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results.

  17. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.

  18. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  19. Characteristics of parallel electric fields in the downward current region of the aurora.

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Ergun, R. E.; Newman, D. L.; McFadden, J. P.; Carlson, C. W.; Su, Y.

    2002-05-01

    Direct measurements of parallel electric fields suggest that they are, in part, self-consistently supported as strong double layers in the auroral downward current region. The observed parallel electric fields have amplitudes reaching nearly 1 V/m and are confined to a thin layer of approximately ten Debye lengths. The structures are moving at roughly the ion acoustic speed in the direction of the accelerated electrons, i.e. anti-Earthward. On the high-potential side of the parallel electric field, there is a clear signature of an accelerated electron beam which rapidly plateaus within a few hundred Debye lengths from the parallel electric field. Strong wave turbulence is observed in the vicinity of the plateaued electron distribution. Fast solitary waves, identified as a signature of electron phase-space holes, are seen farther away from the parallel electric field on the high-potential side. The observed ion distributions also reflect the presence of the parallel electric field. On the low-potential side of the double layer an ion beam is observed moving in the opposite direction of the electron beam and ion conics appear to be trapped between their mirror point and the moving double layer. Interestingly, a reflected, or perhaps accelerated, ion population is moving with the structure on the high-potential side.

  20. Electron cyclotron resonance acceleration of electrons to relativistic energies by a microwave field in a mirror trap

    SciTech Connect

    Sergeichev, K. F.; Karfidov, D. M.; Lukina, N. A.

    2007-06-15

    Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of {>=}10 V/cm and air pressures of 10{sup -6}-10{sup -4} Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3-0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as 'red sprites.'.

  1. Field-Guided Proton Acceleration at Reconnecting x-Points in Flares

    NASA Astrophysics Data System (ADS)

    Hamilton, B.; McCLEMENTS, K. G.; Fletcher, L.; Thyagaraja, A.

    2003-06-01

    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to γ-ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.

  2. Fiber optic electric field sensor technology

    NASA Technical Reports Server (NTRS)

    Jarzynski, J.; De Paula, R. P.

    1987-01-01

    The properties of piezoactive plastics are reviewed as well as the fiber-optic electric field sensors studied so far. A particular configuration consisting of a concentric piezoactive jacket on the glass fiber is discussed in detail and the frequency response of this sensor is projected over a wide range of frequencies. The present design has the practical advantages of leading to a compact lightweight sensor; longer fiber lengths may be used to increase sensitivity. It is predicted that, at low frequencies, a fiber-optic antenna using a 1-km length of fiber would be capable of detecting a minimum electric field of 43 microV/m assuming a minimum phase sensitivity of 10 to the -6th radians for the optical Mach-Zehnder interferometer.

  3. Two-Channel Rectangular Dielectric Wake Field Accelerator Structure Experiment

    SciTech Connect

    Sotnikov, G. V.; Marshall, T. C.; Shchelkunov, S. V.; Didenko, A.; Hirshfield, J. L.

    2009-01-22

    A design is presented for a two-channel 30-GHz rectangular dielectric wake field accelerator structure being built for experimental tests at Argonne National Laboratory (ANL). This structure allows for a transformer ratio T much greater than two, and permits continuous coupling of energy from drive bunches to accelerated bunches. It consists of three planar slabs of cordierite ceramic ({epsilon} = 4.7) supported within a rectangular copper block, forming a drive channel 12 mmx6 mm, and an accelerator channel 2 mmx6 mm. When driven by a 50 nC, 14 MeV single bunch available at ANL, theory predicts an acceleration field of 6 MeV/m, and T = 12.6. Inherent transverse wake forces introduce deflections and some distortion of bunch profiles during transit through the structure that are estimated to be tolerable. Additionally, a cylindrical two-channel DWFA is introduced which shares many advantages of the rectangular structure including high T, and the added virtue of axisymmetry that eliminates lowest-order transverse deflecting forces.

  4. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  5. Electric fields produced by Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Livingston, J. M.; Krider, E. P.

    1978-01-01

    Twenty-five field mill sites provided data on the electric fields produced during both the intense and the final, less active periods of summer air mass thunderstorms in east central Florida. During the periods of intense lightning activity, time- and area-averaged fields were usually -0.8 to -2.1 kV/m, while for the less active periods, the field values were typically in the range of -2.3 to -4.3 kV/m. Furthermore, during the active storm periods, which represented about 27% of the total storm durations, about 71% of all lightning discharges occurred. Also, fewer lightning discharges in the final storm period than in the active period reached the ground.

  6. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  7. Relativistic particle acceleration by obliquely propagating electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Villalón, Elena; Burke, William J.

    1987-12-01

    The relativistic equations of motion are analyzed for charged particles in a magnetized plasma and externally imposed electromagnetic fields (ω, k), which have wave vectors k that are at arbitrary angles. The particle energy is obtained from a set of nonlinear differential equations, as a function of time, initial conditions, and cyclotron harmonic numbers. For a given cyclotron resonance, the energy oscillates in time within the limits of a potential well; stochastic acceleration occurs if the widths of different Hamiltonian potentials overlap. The net energy gain for a given harmonic increase with the angle of propagation, and decreases as the magnitude of the wave magnetic field increases. Potential applications of these results to the acceleration of ionsopheric electrons are presented.

  8. The effect of a longitudinal density gradient on electron plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2016-12-01

    Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

  9. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  10. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  11. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    NASA Astrophysics Data System (ADS)

    Timoshkin, I. V.; MacGregor, S. J.; Fouracre, R. A.; Crichton, B. H.; Anderson, J. G.

    2006-02-01

    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  12. Electric Field Induced Surface Modification of Au

    SciTech Connect

    Erchak, A.A.; Franklin, G.F.; Houston, J.E.; Mayer, T.M.; Michalske, T.A.

    1999-02-15

    We discuss the role of localized high electric fields in the modification of Au surfaces with a W probe using the Interfacial Force Microscope. Upon bringing a probe close to a Au surface, we measure both the interfacial force and the field emission current as a function of separation with a constant potential of 100 V between tip and sample. The current initially increases exponentially as the separation decreases. However, at a distance of less than {approximately} 500{angstrom} the current rises sharply as the surface begins to distort and rapidly close the gap. Retraction of the tip before contact is made reveals the formation of a mound on the surface. We propose a simple model, in which the localized high electric field under the tip assists the production of mobile Au adatoms by detachment from surface steps, and a radial field gradient causes a net flux of atoms toward the tip by surface diffusion. These processes give rise to an unstable surface deformation which, if left unchecked, results in a destructive mechanical contact. We discuss our findings with respect to earlier work using voltage pulses in the STM as a means of nanofabrication.

  13. Aircraft electric field measurements: Calibration and ambient field retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Bailey, Jeff; Christian, Hugh J.; Mach, Douglas M.

    1994-01-01

    An aircraft locally distorts the ambient thundercloud electric field. In order to determine the field in the absence of the aircraft, an aircraft calibration is required. In this work a matrix inversion method is introduced for calibrating an aircraft equipped with four or more electric field sensors and a high-voltage corona point that is capable of charging the aircraft. An analytic, closed form solution for the estimate of a (3 x 3) aircraft calibration matrix is derived, and an absolute calibration experiment is used to improve the relative magnitudes of the elements of this matrix. To demonstrate the calibration procedure, we analyze actual calibration date derived from a Lear jet 28/29 that was equipped with five shutter-type field mill sensors (each with sensitivities of better than 1 V/m) located on the top, bottom, port, starboard, and aft positions. As a test of the calibration method, we analyze computer-simulated calibration data (derived from known aircraft and ambient fields) and explicitly determine the errors involved in deriving the variety of calibration matrices. We extend our formalism to arrive at an analytic solution for the ambient field, and again carry all errors explicitly.

  14. Electron transport in argon in crossed electric and magnetic fields

    PubMed

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field.

  15. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  16. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    SciTech Connect

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m–1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

  17. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    DOE PAGES

    Clayton, C. E.; Adli, E.; Allen, J.; ...

    2016-08-16

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m–1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less

  18. Some experimental observations on circulating currents in a crossed field plasma accelerator

    NASA Technical Reports Server (NTRS)

    Jedlicka, J.; Haacker, J.

    1971-01-01

    Experiments on a thermally ionized argon plasma suggest that applying a Lorentz force by means of orthogonal electric and magnetic fields to an electrically conducting fluid flow imposes necessary but not sufficient conditions for acceleration. There are, in fact, many combinations of current and magnetic field which cause decelerations of the fluid. The deceleration arises from a retarding force which may be larger than the applied Lorentz force. The retarding force causing the deceleration is a consequence of currents circulating completely within the fluid. These currents arise from differences in velocity between the central and wall regions of the duct which interact with the imposed magnetic field to produce differences in induced voltages. The observed physical effects of the circulating currents cause a loss in velocity in the central region of the duct, an increase in thermal energy in the sidewall region, and little change in thermal energy near the electrode wall region. For similar velocity profiles, the adverse effects appear to be related to the product of electrical conductivity and velocity, and performance as an accelerator appears to be controlled by the Hoffman loading parameter (i.e., the ratio of the applied to the induced currents).

  19. Charging and the cross-field discharge during electron accelerator operation on a rocket

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Monson, Steven J.

    1988-01-01

    Preliminary results are presented from experiments to study the neutralization processes around an electron beam emitting rocket. The rocket, SCEX II, was flown on January 31, 1987 from Alaska, with a payload consisting of two independent electron accelerators and two arms with conducting elements to act as Langmuir probes and to measure floating potentials. It was expected that electrons in the strong electric fields around the charged rocket would gain sufficient energy to ionize neutrals, producing ions which would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. The measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket.

  20. Enhanced proton acceleration in an applied longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Toncian, Toma; Arefiev, Alexey; Fiksel, Gennady

    2016-10-01

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the laser energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The predicted improved characteristics of laser-driven proton beams would be critical for a number of applications. The work was supported by U.S. Department of Energy - National Nuclear Security Administration Cooperative Agreement No. DE-NA0002008. HPC resources were provided by the Texas Advanced Computing Center at The University of Texas.

  1. Electron acceleration by laser fields in a gas

    NASA Astrophysics Data System (ADS)

    Fontana, J. R.

    1991-09-01

    The strong fields lasers can produce allow high energy acceleration of charged particles. As the phase velocity of the fields cannot be matched in vacuum to the particle velocity, cumulative interaction over arbitrarily long straight trajectories is impossible. However, over limited regions a large energy gain as well as considerable focusing action can be achieved with suitably shaped laser beams. Away from boundaries, all laser fields consist of superpositions of plane wave components. We describe the properties of several practical configurations, beginning with a single plane wave. Only straight particle trajectories are considered in this analysis and it is assumed the energy is large enough so their speed is nearly constant and very close to that of light. The particles considered are electrons. The physical limitation of the interaction region may be obtained by reflecting surfaces which generate no evanescent waves, with the electron beam crossing the boundaries through holes small enough not to disturb the fields. The laser power density over these reflectors could impose a practical limit to field intensity in the interaction region. An alternative way to limit the interaction range is by bending magnets to deflect the electrons; but the energy radiated must then be taken into consideration. In the rest of this paper, no further discussion is given of interaction region boundaries, although they must be present in every case. This paper contains a quantitative analysis of the acceleration and focusing properties of a particular laser configuration, and discusses means of extending the useful interaction range by phase compensation surfaces.

  2. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  3. Electric field-free gas breakdown in explosively driven generators

    SciTech Connect

    Shkuratov, Sergey I.; Baird, Jason; Talantsev, Evgueni F.; Altgilbers, Larry L.

    2010-07-15

    All known types of gas discharges require an electric field to initiate them. We are reporting on a unique type of gas breakdown in explosively driven generators that does not require an electric field.

  4. Motional sideband excitation using rotating electric fields

    NASA Astrophysics Data System (ADS)

    Isaac, C. A.

    2013-04-01

    A form of motional sideband excitation is described in which a rotating dipole electric field is applied asymmetrically onto a Penning-type trap in the presence of a mechanism for cooling the axial motion of the trapped particles. In contrast to the traditional motional sideband excitation, which uses an oscillating electric field, the rotating field results in only one active sideband in each sense of rotation and so avoids accidental excitation of the other sideband making it applicable to Penning-type traps with a large degree of anharmonicity. Expressions are derived for the magnetron radius expansion and compression rates attainable, and approximations are made for the case of strong and weak drives. A comparison is made with data, taken using a two-stage positron accumulator presented by Isaac [C. A. Isaac, C. J. Baker, T. Mortensen, D. P. van der Werf, and M. Charlton, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.033201 107, 033201 (2011)], showing good agreement between the model and experiment.

  5. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  6. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  7. Electric Field Dependence of Photo-Induced Field Emission Current.

    NASA Astrophysics Data System (ADS)

    Egert, Charles Michael

    We have measured the photo-induced field emission current from a tungsten field emitter as a function of electric field. These experiments were performed with a retardation energy analyzer to measure total current and a 127(DEGREES) cylindrical differential energy analyzer to measure the energy resolved PFE current. The results of these experiments are compared with a simple theory of PFE, developed by Schwartz and Schaich, which is an extension of field emission theory including the surface photoeffect, but assuming constant photoexcitation matrix elements. Our experimental results disagree with this theory in two ways: First, for high fields and photon energy (electrons emitted above the field emission barrier maximum) theory predicts a larger increase in PFE current than is observed experimentally. Second, we have also confirmed the existence of a field dependent oscillatory component of the PFE current emitted from the W(110) surface with photon energies of 2.7 eV and 3.5 eV. The simple theory described here, as well as more sophisticated calculations, have been unable to explain this oscillatory feature. We have also reported, for the first time, the field dependence of the energy resolved PFE current measured with a 127(DEGREES) cylindrical energy analyzer. These preliminary results show evidence of the oscillatory component previously only observed in the total PFE current.

  8. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure

  9. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation

  10. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  11. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  12. Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields

    SciTech Connect

    William Detmold; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-03-01

    Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. We devise combinations of baryon two-point functions in external electric fields to isolate both observables. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how magnetic moments and electric polarizabilities can be determined from lattice QCD simulations in background electric fields. We obtain results for both the neutron and proton. Our study is currently limited to electrically neutral sea quarks.

  13. Impact of electric fields on honey bees

    SciTech Connect

    Bindokas, V.P.

    1985-01-01

    Biological effects in honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) were confirmed using controlled dosimetry and treatment reversal to replicate findings within the same season. Hives in the same environment but shielded from E field are normal, suggesting effects are caused by interaction of E field with the hive. Bees flying through the ambient E field are not demonstrably affected. Different thresholds and severity of effects were found in colonies exposed to 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m at incremental distances from the line. Most colonies exposed at 7 kV/m failed in 8 weeks and failed to overwinter at greater than or equal to4.1 kV/m. Data suggest the limit of a biological effects corridor lies between 15 and 27 m (4.1 and 1.8 kV/m) beyond the outer phase of the transmission line. Mechanisms to explain colony disturbance fall into two categories, direct perception of enhanced in-hive E fields, and perception of shock from induced currents. The same effects induced in colonies with total-hive E-field exposure can be reproduced with shock or E-field exposure of worker bees in extended hive entranceways (= porches). Full-scale experiments demonstrate bee exposure to E fields including 100 kV/m under moisture-free conditions within a non-conductive porch causes no detectable effect on colony behavior. Exposure of bees on a conductive (e.g. wet) substrate produces been disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. Thresholds for effects caused by step-potential-induced currents are: 275-350 nA - disturbance of single bees; 600 nA - onset of abnormal propolization; and 900 nA - sting.

  14. Quantitative studies of electric field intensity on atom diffusion of Cu/Ta/Si stacks during annealing

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Asempah, Isaac; Dong, Song-Tao; Yin, Pian-Pian; Jin, Lei

    2017-03-01

    It has been shown that enhanced electric field intensity (0-4.0 kV/cm) has an obvious effect on accelerating atom diffusion in Cu/Ta/Si interconnect stacks at 650 °C. The theoretical deduction proves that diffusion coefficient is accelerated proportional to an acceleration factor (1 + a·αE/0.8)2. The analysis indicates that the accelerating effect is mainly attributed to the perturbation of the electric state of the defects and enhanced vacancy and dislocation densities.

  15. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  16. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lian, Zhijie; Wang, Jianming; Chen, Qingliang; Sun, Yukuan; Li, Xiuyan; Duan, Xiaojie; Cui, Ziqiang; Wang, Huaxiang

    2016-11-01

    Electrical impedance tomography (EIT) reconstruction is a nonlinear and ill-posed problem. Exact reconstruction of an EIT image inverts a high dimensional mathematical model to calculate the conductivity field, which causes significant problems regarding that the computational complexity will reduce the achievable frame rate, which is considered as a major advantage of EIT imaging. The single-step method, state estimation method, and projection method were always used to accelerate reconstruction process. The basic principle of these methods is to reduce computational complexity. However, maintaining high resolution in space together with not much cost is still challenging, especially for complex conductivity distribution. This study proposes an idea to accelerate image reconstruction of EIT based on compressive sensing (CS) theory, namely, CSEIT method. The novel CSEIT method reduces the sampling rate through minimizing redundancy in measurements, so that detailed information of reconstruction is not lost. In order to obtain sparse solution, which is the prior condition of signal recovery required by CS theory, a novel image reconstruction algorithm based on patch-based sparse representation is proposed. By applying the new framework of CSEIT, the data acquisition time, or the sampling rate, is reduced by more than two times, while the accuracy of reconstruction is significantly improved.

  17. Electric fields and double layers in plasmas

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-05-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  18. Assembly of LIGA using Electric Fields

    SciTech Connect

    FEDDEMA, JOHN T.; WARNE, LARRY K.; JOHNSON, WILLIAM A.; OGDEN, ALLISON J.; ARMOUR, DAVID L.

    2002-04-01

    The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

  19. Assembly of LIGA Using Electric Fields

    NASA Astrophysics Data System (ADS)

    Feddema, J. T.; Warne, L. K.; Johnson, W. A.; Ogden, A. J.; Armour, D. L.

    2002-04-01

    The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LlGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LlGA parts. The eventual use of this tool will be to assemble metal and non-metal LlGA parts into small electromechanical systems.

  20. Statistical model for field emitter activation on metallic surfaces used in high-gradient accelerating structures

    NASA Astrophysics Data System (ADS)

    Lagotzky, S.; Müller, G.

    2016-01-01

    Both super- and normal-conducting high-gradient linear accelerators are limited by enhanced field emission (EFE) in the accelerating structures, e.g. due to power loss or ignition of discharges. We discuss the dependence of the number density of typical emitters, i.e. particulates and surface defects, on the electric field level at which they are activated for naturally oxidized metallic surfaces. This activation is explained by the transition of a metal-insulator interface into geometric features that enhance the EFE process. A statistical model is successfully compared to systematic studies of niobium and copper relevant for recent and future linear accelerators. Our results show that the achievable surface quality of Nb might be sufficient for the suppression of EFE in the superconducting accelerating structures for the actual European XFEL but not for the planned International Linear Collider. Moreover, some effort will be required to reduce EFE and thus the breakdown rate of the normal conducting Cu structures for the Compact Linear Collider.

  1. Kinetic Alfven Waves Carrying Intense Field Aligned Currents: Particle Trapping and Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Artemyev, A.

    2015-12-01

    It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].

  2. Electric and magnetic field exposure, chemical exposure, and leukemia risk in electrical'' occupations

    SciTech Connect

    Bowman, J.D.; Sobel, E.; London, S.J.; Thomas, D.C.; Garabrant, D.H.; Pearce, N.; Peters, J.M. . Dept. of Preventive Medicine)

    1992-12-01

    This project was conducted to address what are the extremely low frequency (ELF) magnetic and electric field exposures of workers in electrical'' occupations and do they exceed exposures encountered in non-electrical'' occupations and what are the chemical and physical exposures in the electrical'' occupations and do they exceed exposures encountered in non-electrical'' occupations Two subsidiary issues were does characterization and quantification of ELF magnetic field exposure in the electrical'' occupations provide data to support a dose response relationship between leukemia risk and electric or magnetic field exposure and do dffferences in chemical exposure between the occupations help explain the previously observed leukemia risk associated with these electrical'' occupations Data were collected in 3 regions in which electrical workers had been reported to have an excess of leukemia - New Zealand, Los Angeles and Seattle Measurements of magnetic fields were made on 493 electrical workers and 163 non-electrical workers.

  3. Electric and magnetic field exposure, chemical exposure, and leukemia risk in ``electrical`` occupations. Final report

    SciTech Connect

    Bowman, J.D.; Sobel, E.; London, S.J.; Thomas, D.C.; Garabrant, D.H.; Pearce, N.; Peters, J.M.

    1992-12-01

    This project was conducted to address what are the extremely low frequency (ELF) magnetic and electric field exposures of workers in ``electrical`` occupations and do they exceed exposures encountered in ``non-electrical`` occupations? and what are the chemical and physical exposures in the ``electrical`` occupations and do they exceed exposures encountered in ``non-electrical`` occupations? Two subsidiary issues were does characterization and quantification of ELF magnetic field exposure in the ``electrical`` occupations provide data to support a dose response relationship between leukemia risk and electric or magnetic field exposure? and do dffferences in chemical exposure between the occupations help explain the previously observed leukemia risk associated with these ``electrical`` occupations? Data were collected in 3 regions in which electrical workers had been reported to have an excess of leukemia - New Zealand, Los Angeles and Seattle Measurements of magnetic fields were made on 493 electrical workers and 163 non-electrical workers.

  4. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Datta, T.; Yin, Ming; Vargas, Jose

    2004-02-01

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kähler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  5. Influence of relative humidity on analyzing electric field exposure using ELF electric field measurements.

    PubMed

    Korpinen, Leena H; Kuisti, Harri A; Tarao, Hiroo; Elovaara, Jarmo A

    2013-07-01

    The objective of the study was to investigate the influence of humidity on analyzing electric field exposure using extremely low frequency (ELF) electric field measurements. The study included 322 measurements in a climate room. We used two commercial three-axis meters, EFA-3 and EFA-300, and employed two measurement techniques in the climate room where we varied the temperature from 15 to 25 °C, the relative humidity from 55% to 95%, and the electric field from 1 to 25 kV/m. We calculated Pearson correlations between humidity and percentage errors for all data and for data at different levels of humidity. When the relative humidity was below 70%, the results obtained by the different measurement methods in terms of percentage errors were of the same order of magnitude for the considered temperatures and field strength, but the results were less reliable when the relative humidity was higher than 80%. In the future, it is important to take humidity into account when electric field measurement results will be compared to the values given in different exposure guidelines.

  6. Parallel electric field generation in the ionosphere over thunderstorms and the interaction with ionospheric electrons

    NASA Astrophysics Data System (ADS)

    Rowland, D.; Wygant, J.; Pfaff, R.; Farrell, W.; Goetz, K.; Monson, S.

    Sounding rockets launched by Mike Kelley and his group at Cornell demonstrated the existence of transient (1 ms) electric fields associated with lightning strikes at high altitudes above active thunderstorms. These electric fields had a component parallel to the Earth's magnetic field, and were unipolar and large in amplitude. They were thought to be strong enough to energize electrons and generate strong turbulence as the beams thermalized. The parallel electric fields were observed on multiple flights, but high time resolution measurements were not made within 100 km horizontal distance of lightning strokes, where the electric fields are largest. In 2000 the ``Lightning Bolt'' sounding rocket (NASA 27.143) was launched directly over an active thunderstorm to an apogee near 300 km. The sounding rocket was equipped with sensitive electric and magnetic field instruments as well as a photometer and electrostatic analyser for measuring accelerated electrons. The electric and magnetic fields were sampled at 10 million samples per second, letting us fully resolve the structure of the parallel electric field pulse up to and beyond the plasma frequency. We will present results from the Lightning Bolt mission, concentrating on the parallel electric field pulses that arrive before the lower-frequency whistler wave modes. We observe pulses with peak electric fields of a few mV/m lasting for a substantial fraction of a millisecond. Superimposed on this is high-frequency turbulence, comparable in amplitude to the pulse itself. This is the first direct observation of this structure in the parallel electric field, within 100 km horizontal distance of the lightning stroke. We will present evidence for the method of generation of these parallel fields, and discuss their probable effect on ionospheric electrons.

  7. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  8. Potential Structures and Particle Acceleration on Auroral Field Lines.

    DTIC Science & Technology

    2014-09-26

    heated ions at low altitude has been noted, and a causal relationship between downward electric fields and ion conics is suggested., IucUmNT...Transversely Heated Ion Distributions (Ion Conics ) Observed by the S3-3 Satellite Within and Above the Heating Altitude ....... 0........0..........0...with Ion Conics . ........ , ...... .............. . . . .. . . . . .... 22 9. A Plot of Computed Ion Trajectories in v and Altitude (h) with a Heating

  9. Particle acceleration and transport in a chaotic magnetic field

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, G.; Dasgupta, B.

    2012-12-01

    Time-dependent chaotic magnetic field can arise from a simple asymmetric current wire-loop system (CWLS). Such simple CWLSs exist, for example, in solar flares. Indeed one can use an ensemble of such systems to model solar active region magnetic field [1,2]. Here we use test particle simulation to investigate particle transport and energization in such a time-dependent chaotic magnetic field, and through induction, a chaotic electric field. We first construct an ensemble of simple systems based on the estimated size and field strength of solar active region. By following the trajectories of single charged particles, we will examine how particle energy is changed. Diffusion coefficients in both real space and momentum space can be calculated as well as the average trapped time of the particles within chaotic field region. Particle energy spectrum as a function of time will be examined. [1] Dasgupta, B. and Abhay K. Ram, (2007) Chaotic magnetic fields due to asymmetric current configurations -application to cross field diffusion of particles in cosmic rays, (Presented at the 49th Annual Meeting of the DPP, APS, Abstract # BP8.00102) [2] G. Li, B. Dasgupta, G. Webb, and A. K. Ram, (2009) Particle Motion and Energization in a Chaotic Magnetic Field, AIP Conf. Proc. 1183, pp. 201-211; doi: http://dx.doi.org/10.1063/1.3266777

  10. Saturation of the Electric Field Transmitted to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  11. Nonlinear response of electric fields at a neutral point

    NASA Astrophysics Data System (ADS)

    Berkovsky, Mikhail; Dufty, James W.; Calisti, Annette; Stamm, Roland; Talin, Bernard

    1995-05-01

    The complex dynamics of electric fields at a neutral point in a plasma is studied via a model of noninteracting ``quasiparticles.'' The simplicity of the model allows the reduction of the many-body problem to an effective single-particle analysis-all properties of interest can be reduced to quadratures. Still, the final calculations to extract a quantitative or even qualitative understanding of the field dynamics can be difficult. Attention here is focused on the dynamics of the conditional electric field: the field value at time t for a given initial value of the field. In addition to the relevant linear response function (electric field time correlation function), this property provides the complete nonlinear response of the electric field to arbitrary initial field perturbations. The static properties (distribution of electric fields and field time derivatives) and the electric field time correlation function have been known for some time for this model. We compare these results and the present result for the conditional electric field with molecular dynamics simulations including interactions. The comparisons suggest that the model provides a quantitative representation of electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are compared also with those obtained by modeling the electric field as a stochastic variable obeying a kangaroo process. The latter can be constructed to yield both the exact stationary distribution and the exact electric field time correlation function. However, we find that the conditional field is never well approximated by this process. An alternative representation of the joint distribution for electric fields, consistent with the exact stationary distribution, field correlation function, and conditional electric field, is suggested.

  12. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  13. The Electric Field Wave Instrument on the Radiation Belt Storm Probe Mission

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Cattell, C. A.; Dombeck, J.; Bonnell, J.; Mozer, F.; Bale, S.; Chaston, C.; Ergun, B.; Baker, D.; Li, X.; Hudson, M. K.; Strangeway, R.; Alpert, J.; Brautigam, D.; Mann, I.; Foster, J.

    2006-12-01

    The purpose of the Electric Field-Wave Instrument on the two RBSP spacecraft is to investigate the role of plasma structures and waves in the physical processes responsible for the acceleration, transport, and loss of energetic particles in the inner magnetosphere of the Earth. Some of these processes include: prompt acceleration induced by powerful interplanetary shocks, acceleration by the large scale convection electric field, abrupt energization by intense substorm injection fronts propagating in from the tail, coherent and stochastic radial transport by large scale MHD fluctuations, multi-step local energization and cattering by whistler waves, and scattering and energization by kinetic Alfven waves, ion cycltron waves, and other small scale waves and structures. In order to understand the role of these processes in accelerating particles, the EFW instrument measures the three dimensional electric field from dc to greater than 500 kHz. The spin plane electric field vector is obtained from spherical sensors at the ends of two pair of orthogonal booms with tip-to- tip separations of 80 and 100 m. The spin axis measurement is obtained by opposed stacer booms with a tip- to-tip separation of 12 meters or greater. The electric field below 12 Hz is telemetered continuously while higher time resolution is obtained from a programmable burst memory with a maximum sampling rate for six quantities of greater 30,000 samples/s each. DC magnetic fields from the fluxgate magnetometer and wave magnetic fields from the search coil, both associated with the University of Iowa Instrument are input into the EFW instrument for processing in the burst memory and in the Digital Signal Processing Board (DSP). The DSP provides wave spectra and cross spectra of electric and magnetic field data over the frequency range between 50 Hz and 10 kHz with a typical cadence of once per 12 seconds with a maximum rate of ~ 1 Hz in order to provide continuous information on wave properties

  14. Aircraft measurement of electric field - Self-calibration

    NASA Technical Reports Server (NTRS)

    Winn, W. P.

    1993-01-01

    Aircraft measurement of electric fields is difficult as the electrically conducting surface of the aircraft distorts the electric field. Calibration requires determining the relations between the undistorted electric field in the absence of the vehicle and the signals from electric field meters that sense the local distorted fields in their immediate vicinity. This paper describes a generalization of a calibration method which uses pitch and roll maneuvers. The technique determines both the calibration coefficients and the direction of the electric vector. The calibration of individual electric field meters and the elimination of the aircraft's self-charge are described. Linear combinations of field mill signals are examined and absolute calibration and error analysis are discussed. The calibration method was applied to data obtained during a flight near thunderstorms.

  15. Dynamics of an electric dipole moment in a stochastic electric field.

    PubMed

    Band, Y B

    2013-08-01

    The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole moment and the average angular momentum along the deterministic electric-field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all three components. The components of the average electric dipole moment and the average angular momentum perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance grows with time.

  16. Electric Mars: A large trans-terminator electric potential drop on closed magnetic field lines above Utopia Planitia

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrey; Liemohn, Mike; Andersson, Laila; Jakosky, Bruce

    2017-02-01

    Parallel electric fields and their associated electric potential structures play a crucial role in ionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout, we present the discovery and measurement of a substantial (ΦMars=7.7 ± 0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (ΦMars) of 10.9 ± 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.

  17. Self-consistent stationary MHD shear flows in the solar atmosphere as electric field generators

    NASA Astrophysics Data System (ADS)

    Nickeler, D. H.; Karlický, M.; Wiegelmann, T.; Kraus, M.

    2014-09-01

    Context. Magnetic fields and flows in coronal structures, for example, in gradual phases in flares, can be described by 2D and 3D magnetohydrostatic (MHS) and steady magnetohydrodynamic (MHD) equilibria. Aims: Within a physically simplified, but exact mathematical model, we study the electric currents and corresponding electric fields generated by shear flows. Methods: Starting from exact and analytically calculated magnetic potential fields, we solved the nonlinear MHD equations self-consistently. By applying a magnetic shear flow and assuming a nonideal MHD environment, we calculated an electric field via Faraday's law. The formal solution for the electromagnetic field allowed us to compute an expression of an effective resistivity similar to the collisionless Speiser resistivity. Results: We find that the electric field can be highly spatially structured, or in other words, filamented. The electric field component parallel to the magnetic field is the dominant component and is high where the resistivity has a maximum. The electric field is a potential field, therefore, the highest energy gain of the particles can be directly derived from the corresponding voltage. In our example of a coronal post-flare scenario we obtain electron energies of tens of keV, which are on the same order of magnitude as found observationally. This energy serves as a source for heating and acceleration of particles.

  18. Manipulation of nano-entities in suspension by electric fields

    NASA Astrophysics Data System (ADS)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  19. Electrical integrity of oxides in a radiation field

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  20. Electron density and parallel electric field distribution of the auroral density cavity

    NASA Astrophysics Data System (ADS)

    Alm, L.; Marklund, G. T.; Karlsson, T.

    2015-11-01

    We present an event study in which Cluster satellites C1 and C3 encounters the flux tube of a stable auroral arc in the premidnight sector. C1 observes the midcavity, while C3 enters the flux tube of the auroral arc at an altitude which is below the acceleration region, before crossing into the top half of the acceleration region. This allows us to study the boundary between the ionosphere and the density cavity, as well as large portion of the upper density cavity. The position of the two satellites, in relation to the acceleration region, is described using a pseudo altitude derived from the distribution of the parallel potential drop above and below the satellites. The electron density exhibits an anticorrelation with the pseudo altitude, indicating that the lowest electron densities are found near the top of the density cavity. Over the entire pseudo altitude range, the electron density distribution is similar to a planar sheath, formed out of a plasma sheet dominated electron distribution, in response to the parallel electric field of the acceleration region. This indicates that the parallel electric fields on the ionosphere-cavity boundary, as well as the midcavity parallel electric fields, are part of one unified structure rather than two discrete entities. The results highlight the strong connection between the auroral density cavity and auroral acceleration as well as the necessity of studying them in a unified fashion.

  1. The evolution of the electric field at a nonstationary perpendicular shock

    SciTech Connect

    Yang, Z. W.; Lu, Q. M.; Wang, S.

    2009-12-15

    Particle-in-cell simulations evidenced that supercritical, quasiperpendicular shocks are nonstationary and may suffer a self-reformation on the ion gyroscale. In this brief communication, we investigate the evolution of the electric field at a nonstationary, supercritial perpendicular shock. The contributions of the ion Lorentz, Hall, and electron pressure terms to the electric field are analyzed. During the evolution of the perpendicular shock, a new ramp may be formed in front of the old ramp, and its amplitude becomes larger and larger. At last, the new ramp exceeds the old one, and such a nonstationary process can be formed periodically. When the new ramp begins to be formed in front of the old ramp, the Hall term becomes more and more important. The electric field E{sub x} is dominated by the Hall term when the new ramp exceeds the old one. The significance of the evolution of the electric field on shock acceleration is also discussed.

  2. Photoinduced Charge Transport in a BHJ Solar Cell Controlled by an External Electric Field

    PubMed Central

    Li, Yongqing; Feng, Yanting; Sun, Mengtao

    2015-01-01

    This study investigated theoretical photoinduced charge transport in a bulk heterojunction (BHJ) solar cell controlled by an external electric field. Our method for visualizing charge difference density identified the excited state properties of photoinduced charge transfer, and the charge transfer excited states were distinguished from local excited states during electronic transitions. Furthermore, the calculated rates for the charge transfer revealed that the charge transfer was strongly influenced by the external electric field. The external electric field accelerated the rate of charge transfer by up to one order when charge recombination was significantly restrained. Our research demonstrated that photoinduced charge transport controlled by an external electric field in a BHJ solar cell is efficient, and the exciton dissociation is not the limiting factor in organic solar cells.Our research should aid in the rational design of a novel conjugated system of organic solar cells. PMID:26353997

  3. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  4. Liquid methanol under a static electric field

    SciTech Connect

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  5. Empirical models of high latitude electric fields

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.

    1976-01-01

    Model cross sections of the high latitude dawn-dusk electric field based on OGO-6 data are presented for the signature profiles, most frequently encountered for both + and -Y orientations of the interplanetary magnetic field. Line integrals give a total potential of 76 keV in each case. To illustrate extremes, examples of model cross-sections with total potentials of 23 keV and 140 keV are also given. Model convection patterns are also presented utilizing OGO-6 data on boundary locations at other magnetic local times. When this information is combined with characteristic field geometries in the region of the Harang discontinuity, and is supplemented by data from Ba+ cloud motions in the polar cap, it becomes possible to construct realistic convection patterns on the nightside which deviate from the usual sun-aligned patterns. The observational models presented are of limited applicability as a consequence of the variability of observed distributions. These limitations are emphasized with particular attention given to several types of recurrent deviations which have not previously been discussed.

  6. Electric field structure inside the secondary island in the reconnection diffusion region

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Deng, X. H.; Huang, S. Y.

    2012-04-01

    Secondary islands have recently been intensively studied because of their essential role in dissipating energy during reconnection. Secondary islands generally form by tearing instability in a stretched current sheet, with or without guide field. In this article, we study the electric field structure inside a secondary island in the diffusion region using large-scale two-and-half dimensional particle-in-cell (PIC) simulation. Intense in-plane electric fields, which point toward the center of the island, form inside the secondary island. The magnitudes of the in-plane electric fields Ex and Ez inside the island are much larger than those outside the island in the surrounding diffusion region. The maximum magnitudes of the fields are about three times the B0VA, where B0 is the asymptotic magnetic field strength and VA is the Alfvén speed based on B0 and the initial current sheet density. Our results could explain the intense electric field (~100 mV/m) inside the secondary island observed in the Earth's magnetosphere. The electric field Ex inside the secondary island is primarily balanced by the Hall term (j × B)/ne, while Ez is balanced by a combination of (j × B)/ne, -(vi × B), and the divergence of electron pressure tensor, with (j × B)/ne term being dominant. This large Hall electric field is due to the large out-of-plane current density jy inside the island, which consists mainly of accelerated electrons forming a strong bulk flow in the -y direction. The electric field Ey shows a bipolar structure across the island, with negative Ey corresponding to negative Bz and positive Ey corresponding to positive Bz. It is balanced by (j × B)/ne and the convective electric field. There are significant parallel electric fields, forming a quadrupolar structure inside the island, with maximum amplitude of about 0.3B0VA.

  7. Electropumping of water with rotating electric fields.

    PubMed

    De Luca, Sergio; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-04-21

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  8. Electropumping of water with rotating electric fields

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2013-04-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  9. Electric field response in bilayer graphene: Ab initio investigation

    NASA Astrophysics Data System (ADS)

    Mori, Yutaro; Minamitani, Emi; Ando, Yasunobu; Kasamatsu, Shusuke; Watanabe, Satoshi

    2016-11-01

    Stimulated by quantum capacitance measurements, we have investigated the electric properties of bilayer graphene (BLG) with carrier doping under an external electric field using ab initio calculations. We found that the relative permittivity of BLG depends weakly on the applied electric field, and that the BLG can be regarded as a dielectric material rather than a pair of metallic films. We also found that carrier doping affects the band gap of BLG under electric fields, although carrier doping has a much smaller effect on the band gap and density of states than the application of electric fields.

  10. Electric field observations of equatorial bubbles

    NASA Astrophysics Data System (ADS)

    Aggson, T. L.; Maynard, N. C.; Hanson, W. B.; Saba, Jack L.

    1992-03-01

    Results from the double floating probe experiment performed on the San Marco D satellite are presented, with emphasis on the observation of large incremental changes in the convective electric field vector at the boundary of equatorial plasma bubbles. Attention is given to isolated bubble structures in the upper ionospheric F regions; these observed bubble encounters are divided into two types - type I (live bubbles) and type II (dead bubbles). Type I bubbles show varying degrees of plasma depletion and large upward velocities range up to 1000 km/s. The geometry of these bubbles is such that the spacecraft orbit may cut them where they are tilting either eastward or (more often) westward. Type II bubbles exhibit plasma density depletion but no appreciable upward convection. Both types of events are usually surrounded by a halo of plasma turbulence, which can extend considerably beyond the region of plasma depletion.

  11. Electric field observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Maynard, N. C.; Hanson, W. B.; Saba, Jack L.

    1992-01-01

    Results from the double floating probe experiment performed on the San Marco D satellite are presented, with emphasis on the observation of large incremental changes in the convective electric field vector at the boundary of equatorial plasma bubbles. Attention is given to isolated bubble structures in the upper ionospheric F regions; these observed bubble encounters are divided into two types - type I (live bubbles) and type II (dead bubbles). Type I bubbles show varying degrees of plasma depletion and large upward velocities range up to 1000 km/s. The geometry of these bubbles is such that the spacecraft orbit may cut them where they are tilting either eastward or (more often) westward. Type II bubbles exhibit plasma density depletion but no appreciable upward convection. Both types of events are usually surrounded by a halo of plasma turbulence, which can extend considerably beyond the region of plasma depletion.

  12. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  13. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  14. Sequential accelerated tests: Improving the correlation of accelerated tests to module performance in the field

    NASA Astrophysics Data System (ADS)

    Felder, Thomas; Gambogi, William; Stika, Katherine; Yu, Bao-Ling; Bradley, Alex; Hu, Hongjie; Garreau-Iles, Lucie; Trout, T. John

    2016-09-01

    DuPont has been working steadily to develop accelerated backsheet tests that correlate with solar panels observations in the field. This report updates efforts in sequential testing. Single exposure tests are more commonly used and can be completed more quickly, and certain tests provide helpful predictions of certain backsheet failure modes. DuPont recommendations for single exposure tests are based on 25-year exposure levels for UV and humidity/temperature, and form a good basis for sequential test development. We recommend a sequential exposure of damp heat followed by UV then repetitions of thermal cycling and UVA. This sequence preserves 25-year exposure levels for humidity/temperature and UV, and correlates well with a large body of field observations. Measurements can be taken at intervals in the test, although the full test runs 10 months. A second, shorter sequential test based on damp heat and thermal cycling tests mechanical durability and correlates with loss of mechanical properties seen in the field. Ongoing work is directed toward shorter sequential tests that preserve good correlation to field data.

  15. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  16. High-Field, {mu}J-Class THz Pulses from a Laser Wakefield Accelerator

    SciTech Connect

    Matlis, N. H.; Tilborg, J. van; Geddes, C. G. R.; Toth, Cs.; Schroeder, C. B.; Plateau, G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    We present observation and characterization of microjoule-MV/cm-level THz pulses from a laser wakefield accelerator. THz emitted as coherent transition radiation from the plasma-vacuum boundary is collected and refocused by off-axis parabolas to a test stand where a suite of diagnostics is performed, including energy measurement by a Golay cell and electro-optic sampling of the spatio-temporal electric field using a probe pulse split from the main laser. Frequency Domain Holography is also implemented for the first time to capture spatio-temporal field distributions in a single shot. The four techniques strongly corroborate detection of THz pulses of {approx}0.4 ps duration, with peak fields of several hundred kV/cm and energies of 5-10 {mu}J. The advantages and disadvantages of each technique are discussed.

  17. Electric field effects in combustion with non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Casey, Tiernan Albert

    Chemically reacting zones such as flames act as sources of charged species and can thus be considered as weakly-ionized plasmas. As such, the action of an externally applied electric field has the potential to affect the dynamics of reaction zones by enhancing transport, altering the local chemical composition, activating reaction pathways, and by providing additional thermal energy through the interaction of electrons with neutral molecules. To investigate these effects, one-dimensional simulations of reacting flows are performed including the treatment of charged species transport and non-thermal electron chemistry using a modified reacting fluid solver. A particular area of interest is that of plasma assisted ignition, which is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields by applied voltages across the domain, resulting in non-thermal behavior of the electron sub-fluid formed during the discharge. Strong electric fields cause charged species to be rapidly transported from the ignition zone across the domain in opposite directions as charge fronts, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect. This phenomenon results in an increase in the energy of the electrons in the fresh mixture with increasing time, accelerating electron impact dissociation processes. A semi-analytic model to represent this dynamic electrode effect is constructed to highlight the relative simplicity of the electrodynamic problem admitted by the far more detailed chemistry and transport. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame's preheat zone. The effect of nanosecond pulses are to

  18. Detection and learning of floral electric fields by bumblebees.

    PubMed

    Clarke, Dominic; Whitney, Heather; Sutton, Gregory; Robert, Daniel

    2013-04-05

    Insects use several senses to forage, detecting floral cues such as color, shape, pattern, and volatiles. We report a formerly unappreciated sensory modality in bumblebees (Bombus terrestris), detection of floral electric fields. These fields act as floral cues, which are affected by the visit of naturally charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator's memory of floral rewards. Because floral electric fields can change within seconds, this sensory modality may facilitate rapid and dynamic communication between flowers and their pollinators.

  19. Measurement of the magnetic field coefficients of particle accelerator magnets

    SciTech Connect

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab.

  20. The Electric Fields and Waves Instrument on the Radiation Belt Storm Probe Spacecraft

    NASA Astrophysics Data System (ADS)

    Wygant, John

    The purpose of the Electric Field-Wave (EFW) Instrument on the two RBSP spacecraft is to investigate the role of electric field structures and waves in the physical processes responsible for the acceleration, transport, and loss of energetic particles in the inner magnetosphere of the Earth. The RBSP spacecraft apogee will be at about 5.8 Re near the equatorial plane. Perigee will be at about 400 kms altitude. Some of processes that will be investigated by the RBSP-EFW instrument include: prompt acceleration induced by powerful interplanetary shocks, acceleration by the large scale convection electric field, abrupt energization by intense substorm injection fronts propagating in from the tail, coherent and stochastic radial transport by large scale MHD fluctuations, and multi-step local energization and loss by whistler waves. In order to understand the role of these processes in accelerating particles, the EFW instrument measures the three dimensional electric field and cold plasma density estimates from the spacecraft potential all over a frequency range from dc to ˜500 kHz. Measurements from the spatially separated spacecraft will provide information on azimuthal and radial spatial scales and propagation velocities of large scale structures. The spin plane electric field vector is obtained from spherical sensors at the ends of two pair of orthogonal booms with tip to tip separations of 80 and 100 m. The spin axis measurement is obtained from a pair of stace booms with a tip to tip separation of ˜12 meters. The electric field below 12 Hz is telemetered continuously while higher time resolution is obtained from a programmable burst memory with a maximum sampling rate for six quantities of ˜ 30,000 samples/s. High time resolution data includes interferometric timing measurements between individual probe at the ends of the booms which provide information on small scale structures and phase velocities. DC magnetic fields from the fluxgate magnetometer and wave

  1. Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines

    SciTech Connect

    Erlandson, R.E.; Zanetti, L.J.; Acuna, M.H.; Eliasson, L.; Boehm, M.H.; Blomberg, L.G.

    1994-08-15

    Extremely low-frequency (ELF) magnetic and electric field plasma wave emissions were recorded on 2 October 1993 on auroral field lines by the Magnetic Field Experiment during Freja orbit 4770. The ELF wave frequencies were below the local oxygen gyrofrequency (25 Hz) and between the helium and proton gyrofrequencies (100 to 400 Hz). The ELF waves, interpreted as electromagnetic ion cyclotron (EMIC) waves, were observed in a region of inverted-V-type electron precipitation. The EMIC waves were correlated over time with auroral and lower energy ({approximately} 100 eV) electrons, which are both possible sources of free energy, and also with transversely accelerated oxygen ions. The waves above the helium gyrofrequency were more closely correlated with the transverse oxygen ion acceleration than the waves below the oxygen gyrofrequency. These observations are consistent with a scenario in which electron beams generate EMIC waves, which then produce transverse oxygen ion acceleration through a gyroresonant interaction. 16 refs., 4 figs.

  2. Static electric field detection and behavioural avoidance in cockroaches.

    PubMed

    Newland, Philip L; Hunt, Edmund; Sharkh, Suleiman M; Hama, Noriyuki; Takahata, Masakazu; Jackson, Christopher W

    2008-12-01

    Electric fields are pervasively present in the environment and occur both as a result of man-made activities and through natural occurrence. We have analysed the behaviour of cockroaches to static electric fields and determined the physiological mechanisms that underlie their behavioural responses. The behaviour of animals in response to electric fields was tested using a Y-choice chamber with an electric field generated in one arm of the chamber. Locomotory behaviour and avoidance were affected by the magnitude of the electric fields with up to 85% of individuals avoiding the charged arm when the static electric field at the entrance to the arm was above 8-10 kV m(-1). Electric fields were found to cause a deflection of the antennae but when the antennae were surgically ablated, the ability of cockroaches to avoid electric fields was abolished. Fixation of various joints of the antennae indicated that hair plate sensory receptors at the base of the scape were primarily responsible for the detection of electric fields, and when antennal movements about the head-scape joint were prevented cockroaches failed to avoid electric fields. To overcome the technical problem of not being able to carry out electrophysiological analysis in the presence of electric fields, we developed a procedure using magnetic fields combined with the application of iron particles to the antennae to deflect the antennae and analyse the role of thoracic interneurones in signalling this deflection. The avoidance of electric fields in the context of high voltage power lines is discussed.

  3. Rayleigh-Taylor Instability and Excitation of Super-Dreicer Electric Fields in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-11-01

    Within the framework of the long-standing so-called "number problem" in the physics of solar flares, we consider the excitation of a super-Dreicer electric field at the leading edge of the electric current pulse that occurs at the chromospheric legs of a coronal magnetic loop as a result of the magnetic Rayleigh-Taylor instability. It is shown that for a sufficiently strong electric current, I0 ≥ 10^{10} A, the current pulse propagates in the non-linear mode and generates a strong longitudinal electric field Ez, which strongly depends on the current (Ez ∝ I03) and can exceed the Dreicer field (Ez > ED). In this case, the bulk of electrons in the site of the current pulse is in a runaway mode, and the energy release rate in the chromosphere increases significantly. Super-Dreicer electric fields also provide injection of protons into the regime of acceleration by Langmuir turbulence generated by fast electrons at the leading edge of the electric current pulse. The electric field at the pulse edge can exceed the Dreicer field starting from the chromosphere level with the number density n ≈ 10^{13} cm^{-3}. At a lower current I0 < 10^{10} A, a super-Dreicer mode at the higher levels of the chromosphere with n < 10^{12} cm^{-3} occurs.

  4. Simultaneous measurement of nanoscale electric and magnetic optical fields

    NASA Astrophysics Data System (ADS)

    Le Feber, B.; Rotenberg, N.; Beggs, D. M.; Kuipers, L.

    2014-01-01

    Control of light-matter interactions at the nanoscale has advanced fields such as quantum optics, photovoltaics and telecommunications. These advances are driven by an improved understanding of the nanoscale behaviour of light, enabled by direct observations of the local electric fields near photonic nanostructures. With the advent of metamaterials that respond to the magnetic component of light, schemes have been developed to measure the nanoscale magnetic field. However, these structures interact not only with the magnetic field, but also with the electric field of light. Here, we demonstrate the essential simultaneous detection of both electric and magnetic fields with subwavelength resolution. By explaining our measurements through reciprocal considerations, we create a route towards designing probes sensitive to specific desired combinations of electric and magnetic field components. Simultaneous access to nanoscale electric and magnetic fields will pave the way for new designs of optical nanostructures and metamaterials.

  5. A new probe for measuring small electric fields in plasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1991-01-01

    A dipolar double probe has been developed for in situ measurements of small electric fields in laboratory plasmas. The probe measures dc to ac electric fields (f values between 0 and 20 MHz) with high sensitivity (Emin about 10 microV/cm) and responds to both space charge electric fields and inductive electric fields. Using voltage-to-frequency conversion, the probe signal is obtained free of errors and loading effects by a transmission line. Various examples of useful applications for the new probe are presented, such as measurements of dc ambipolar fields, ac space-charge fields of ion acoustic waves, ac inductive fields of whistler waves, and mixed inductive and space-charge electric fields in current-carrying magnetoplasmas.

  6. Studying electric field enhancement factor of the nanostructured emission surface

    NASA Astrophysics Data System (ADS)

    Zartdinov, A. N.; Nikiforov, K. A.

    2016-08-01

    Mathematical model of nanostructured field emission surface is proposed. In order to determine geometrical parameters of the surface structure digital processing of scanning electron microscopy images was used. Effective value of local electrical field enhancement factor is defined and calculated within the Fowler-Nordheim theory. It was found effective enhancement factor decreases as the applied electrical field increases for a fixed geometry.

  7. Flow-driven cell migration under external electric fields

    PubMed Central

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  8. Lattice vacancies in silicon film exposed to external electric field

    NASA Astrophysics Data System (ADS)

    Mao, Yuliang; Caliste, Damien; Pochet, Pascal

    2013-07-01

    Density functional calculations based on wavelet basis set are performed to investigate the structure, internal electric-charge distribution, and formation energy of lattice vacancies in silicon film under electric fields. It was found that the formation energies of vacancies both in JT⊥ (Jahn-Teller distortion orthogonal to electric field) and JT‖ (Jahn-Teller distortion parallel to electric field) distortions are decreased with the increasing of field strength, due to the charge polarization in the whole space of silicon film. For the split vacancy, it can lower its energy by moving further away from the split space to form a tetragonal JT⊥ vacancy under electric field. Our results also demonstrate the importance of the potential fluctuations induced by the electric fields on the charge redistribution within the vacancy defects.

  9. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  10. Introduction to extremely-low-frequency electric and magnetic fields

    SciTech Connect

    Tenforde, T.S.

    1989-07-01

    The interaction with living systems of electromagnetic fields in the extremely-low-frequency (ELF) range below 300 Hz will be summarized briefly in this paper. In materials with the electrical and magnetic properties of living tissues, these fields have a long wavelength (5000 m) and skin depth (150 m). As a consequence, in their interactions with humans and other living organisms ELF fields behave as though they are composed of independent electric and magnetic components of an ELF field is commonly referred to as the quasi-static approximation,'' which permits the radiating properties of the field to be neglected in describing its interaction with living organisms. The electric and magnetic components of an ELF field have several distinctly different features in their interactions with humans and other living organisms. First, the electrical conductivity of tissue is approximately 14 to 15 orders of magnitude greater than that of air at ELF electric fields. Consequently, the body behaves like a good electrical conductor in ELF electric fields. As a result, an electrical charge is developed on the surface of a living object in an external ELF field, but the electric field penetrates into the body only to a very limited extent.

  11. Strong Peak Electric Field in Streamer Discharges Caused by Rapid Changes in the External Electric Field

    NASA Astrophysics Data System (ADS)

    Ihaddadene, K. M. A.; Celestin, S. J.

    2015-12-01

    Laboratory spark discharges in air and lightning stepped leaders produce X-rays [e.g., Dwyer et al., GRL, 32, L20809, 2005; Nguyen et al., J. Phys. D: Appl. Phys., 41, 234012, 2008; Rahman et al., GRL, 35, L06805, 2008; March and Montanyà, GRL, 37, L19801, 2010; 38, L04803, 2011; Kochkin et al., J. Phys. D: Appl., 45, 425202, 2012; 48, 025205, 2015]. However, the processes behind the production of these X-rays are still not fully understood. Recently, the encounter between negative and positive streamers has been suggested as a plausible mechanism for the production of X-rays by spark discharges [Cooray et al., JASTP, 71, 1890, 2009; Kochkin et al., J. Phys. D: Appl. Phys., 45, 425202, 2012], but the increase of the electric field involved in this process is accompanied by a strong increase of the conductivity, which in turn makes this electric field collapse over a few tens of picoseconds, preventing the production of significant X-ray emissions [Ihaddadene and Celestin, GRL, 45, 5644, 2015]. Moreover, it has been reported that X-ray emission in laboratory spark discharges is influenced by the time derivative of the applied voltage [March and Montanya, GRL, 37, L19801, 2010]. Additionally, Celestin and Pasko [JGR, 116, A03315, 2011, Section 3.3] have indicated that quickly increasing applied voltages had an impact on peak electric fields in streamer numerical models. In this work, we simulate numerically the effect of impulsive applied electric fields on the dynamics of streamer discharges in air at ground level and investigate conditions under which production of thermal runaway electrons and the associated X-rays is possible.

  12. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  13. Electric field induced bacterial flocculation of Enteroaggregative Escherichia coli 042

    SciTech Connect

    Kumar, Aloke; Mortensen, Ninell P; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogeneous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  14. Microscopic mechanism on coalescence of the nano-droplets in present non-uniform electric field by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Chen, Qicheng; Ma, Jie; Wang, Bingbing; Zhang, Yingjin

    2016-11-01

    Molecular dynamics simulations are performed to investigate the nano-droplets coalescence process in a non-uniform electric field. Coalescence of droplets driven by dielectrophoresis (DEP) could be observed clearly in a strong electric field. The efficiency of coalescence is remarkably improved about 2 times for non-uniform electric field as much as the efficiency for the uniform electric field. Increasing the gradient of the field, it is found that the DEP force will accelerate the droplets motion of coalescence. But when the gradient of the field increases to a certain degree, the DEP force acting on the droplets presents strongly and rapidly nonlinear increasing and induces the droplets forming the chain structure due to intensively elongating. Moreover, the average operating voltages is much lower in non-uniform electric field.

  15. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  16. Spectral studies of the sources of ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kelley, M. C.

    1987-01-01

    Spectral analyses (applying the Fourier analysis methods) were performed on three incoherent scatter radar data sets (obtained at Jicamarca, Peru; Chatanika, Alaska; and Arecibo, Puerto Rico) with the aim of investigating the origin of ionospheric electric fields in the frequency range of 0.01-2 cycles/h. In quiet times, atmospheric gravity waves appeared to be the most likely source of the ionospheric electric field. This hypothesis was tested by a direct simultaneous comparison of measurements of gravity waves in the mesosphere and of electric fields in the thermosphere during very quiet conditions. The results indicated that a gravity wave source is a plausible candidate for the electric field fluctuations.

  17. Neoclassical Radial Electric Field and Transport with Finite Orbits

    SciTech Connect

    Wang, W. X.; Hinton, F. L.; Wong, S. K.

    2001-07-30

    Neoclassical transport in a toroidal plasma with finite ion orbits is studied, including for the first time the self-consistent radial electric field. Using a low-noise {delta}f particle simulation, we demonstrate that a deep electric-field well develops in a region with a steep density gradient, because of the self-collision--driven ion flux. We find that the electric field agrees with the standard neoclassical expression, when the toroidal rotation is zero, even for a steep density gradient. Ion thermal transport is modified by the electric-field well in a way which is consistent with the orbit squeezing effect, but smoothed by the finite orbits.

  18. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  19. Power signatures of electric field and thermal switching regimes in memristive SET transitions

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick R.; Hughart, David; Lohn, Andrew J.; Gao, Xujiao; Mamaluy, Denis; Marinella, Matthew J.

    2016-06-01

    We present a study of the ‘snap-back’ regime of resistive switching hysteresis in bipolar TaO x memristors, identifying power signatures in the electronic transport. Using a simple model based on the thermal and electric field acceleration of ionic mobilities, we provide evidence that the ‘snap-back’ transition represents a crossover from a coupled thermal and electric-field regime to a primarily thermal regime, and is dictated by the reconnection of a ruptured conducting filament. We discuss how these power signatures can be used to limit filament radius growth, which is important for operational properties such as power, speed, and retention.

  20. Extracting nucleon magnetic moments and electric polarizabilities from lattice QCD in background electric fields

    SciTech Connect

    Detmold, W.; Tiburzi, B. C.; Walker-Loud, A.

    2010-03-01

    Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. This is analogous to the experimental situation, for which determination of polarizabilities from the Compton amplitude requires subtraction of Born terms. With the background field method, we devise combinations of nucleon correlation functions in constant electric fields that isolate magnetic moments and electric polarizabilities. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how both observables can be determined from lattice QCD simulations in background electric fields. We obtain results for the neutron and proton, however, our study is currently limited to electrically neutral sea quarks. The value we extract for the nucleon isovector magnetic moment is comparable to those obtained from measuring lattice three-point functions at similar pion masses.

  1. Pulsed electric field assisted assembly of polyaniline.

    PubMed

    Kumar, Arun; Kazmer, David O; Barry, Carol M F; Mead, Joey L

    2012-08-24

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker's theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  2. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  3. Pulsed electric field assisted assembly of polyaniline

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Kazmer, David O.; Barry, Carol M. F.; Mead, Joey L.

    2012-08-01

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker’s theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  4. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  5. Electric Field and Density Measurements with STEREO-SWaves.

    NASA Astrophysics Data System (ADS)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.; Bale, S. D.; Maksimovic, M.

    2007-12-01

    The STEREO experiment SWaves has a low frequency part which is designed to make measurements of low frequency electric fields and rapid measurements of density fluctuations, using the three 6 meter stacer monopole antennas. The short antennas of STEREO respond both to density fluctuations and to electric fields. Therefore, it is desired to obtain four quantities, density and 3 components of electric field, from three measurements, the potentials on the three orthogonal antennas relative to the spacecraft, which requires some additional information. One possibility is to add a fourth equation implied by the large plasma conductivity, so large that electric field parallel to the magnetic field is zero, a condition which has often been used in electric field measurements. Under selected conditions, this seems to work. There are also conditions, for example ion acoustic waves, where the responses to density fluctuations and to electric fields are available from dispersion relations, and this provides another possible solution. A situation where it is not likely that the parallel electric field is zero is the case of solitary, intense bursts of Langmuir waves. For this case, it is expected that there is an electron density depression due to the ponderomotive pressure, and a resulting low frequency electric field from the non-neutrality which would be expected to have components parallel to the magnetic field. Examples will be discussed.

  6. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  7. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators.

    PubMed

    Followill, David S; Stovall, Marilyn S; Kry, Stephen F; Ibbott, Geoffrey S

    2003-01-01

    The shielding calculations for high energy (>10 MV) linear accelerators must include the photoneutron production within the head of the accelerator. Procedures have been described to calculate the treatment room door shielding based on the neutron source strength (Q value) for a specific accelerator and energy combination. Unfortunately, there is currently little data in the literature stating the neutron source strengths for the most widely used linear accelerators. In this study, the neutron fluence for 36 linear accelerators, including models from Varian, Siemens, Elekta/Philips, and General Electric, was measured using gold-foil activation. Several of the models and energy combinations had multiple measurements. The neutron fluence measured in the patient plane was independent of the surface area of the room, suggesting that neutron fluence is more dependent on the direct neutron fluence from the head of the accelerator than from room scatter. Neutron source strength, Q, was determined from the measured neutron fluences. As expected, Q increased with increasing photon energy. The Q values ranged from 0.02 for a 10 MV beam to 1.44(x10(12)) neutrons per photon Gy for a 25 MV beam. The most comprehensive set of neutron source strength values, Q, for the current accelerators in clinical use are presented for use in calculating room shielding.

  8. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    SciTech Connect

    Walsh, D. A. Snedden, E. W.; Jamison, S. P.

    2015-05-04

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  9. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    NASA Astrophysics Data System (ADS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-05-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  10. Global electric field determination in the Earth's outer magnetosphere using energetic charged particles

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Sheldon, R.; Hamilton, D.

    1995-01-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental measurement (for zeroth order MHD equilibrium) has been made infrequently and with poor spatial coverage - the global electric field. This oversight is due in part to the neglect of theorists. However, there is renewed interest in the convection electric field because it is now realized to be central to many magnetospheric processes, including the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere ionosphere coupling, ring current and radiation belt transport, substorm injections, and several acceleration mechanisms. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models) and we are left with an overly simplistic theoretical field, the Volland-Stern electric field model. Single point measurements of the plasmapause were used to infer the appropriate amplitudes of this model, parameterized by K(sub p). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 20 years. The analysis of current data sets requires a great deal more accuracy than can be provided by the Volland-Stern model. The variability of electric field shielding has not been properly addressed although effects of penetrating magnetospheric electric fields has been seen in mid-and low-latitude ionospheric data sets. The growing interest in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus we proposed and developed algorithms for extracting electric fields from particle data taken in the Earth's magnetosphere. As a test of the effectiveness of these new techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit from 1984 to 1989.

  11. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  12. Nanoscale Electric Field Sensor-Development and Testing

    NASA Astrophysics Data System (ADS)

    Brame, Jon; Woods, Nathan

    2008-10-01

    The goal of this project is to test a carbon nanotube based electric field sensing device. The device consists of a miniature gold needle suspended on a mat of carbon nanotubes over a trench on a Si/Si02 substrate. Field tests were made by recording the electric field inside dust devils in a Nevada desert, and those electric fields were simulated in a lab environment. Further tests to determine the device sensitivity were performed by manually manipulating the gold needle with an Atomic Force Microscope (AFM) tip. We report on fabrication techniques, field and lab test results and AFM testing results.

  13. Simultaneous electric-field measurements on nearby balloons.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  14. Do Capactively Coupled Electric Fields Accelerate Tibial Stress Fracture Healing

    DTIC Science & Technology

    2005-12-01

    Triathlon 24 Stanford University 11 Female 21 Running 38 Stanford University 12 Male 45 Running 30 Stanford University 13 Male 22 Ultimate Frisbee 22...Running 6 Griffith University 6 22 Male 33 Triathlon 17 Griffith University 23 Male 25 Running 8 Griffith University 24 Male 25 Running 8...Griffith University 25 Female 34 Triathlon 17 Griffith University 26 Female 23 Step aerobics 19 Griffith University 27 Female 32 Running 17 Griffith

  15. Disrupting long-range polar order with an electric field

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Liu, Xiaoming; Xue, Fei; Chen, Long-Qing; Hong, Wei; Tan, Xiaoli

    2016-05-01

    Electric fields are known to favor long-range polar order through the aligning of electric dipoles in relation to Coulomb's force. Therefore, it would be surprising to observe a disordered polar state induced from an ordered state by electric fields. Here we show such an unusual phenomenon in a polycrystalline oxide where electric fields induce a ferroelectric-to-relaxor phase transition. The nonergodic relaxor phase with disordered dipoles appears as an intermediate state under electric fields during polarization reversal of the ferroelectric phase. Using the phenomenological theory, the underlying mechanism for this unexpected behavior can be attributed to the slow kinetics of the ferroelectric-to-relaxor phase transition, as well as its competition against domain switching during electric reversal. The demonstrated material could also serve as a model system to study the transient stages in first-order phase transitions; the slow kinetics does not require the use of sophisticated ultrafast tools.

  16. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H. (Inventor)

    1973-01-01

    An apparatus for measuring the electric field in the atmosphere which includes a pair of sensors carried on a rocket for sensing the voltages in the atmosphere being measured is described. One of the sensors is an elongated probe with a fine point which causes a corona current to be produced as it passes through the electric field. An electric circuit is coupled between the probe and the other sensor and includes a high ohm resistor which linearizes the relationship between the corona current and the electric field being measured. A relaxation oscillator and transmitter are provided for generating and transmitting an electric signal having a frequency corresponding to the magnitude of the electric field.

  17. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  18. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  19. Middle atmospheric electric fields over thunderstorms

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1992-01-01

    This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.

  20. Electric and Magnetic Fields | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-05-31

    Electromagnetic fields (EMF) are a combination of electric and magnetic fields of energy that surround any electrical device when it is plugged in and turned on. Scientific experiments have not clearly shown whether or not exposure to EMF increases cancer risk. Scientists continue to study the issue.

  1. High School Students' Representations and Understandings of Electric Fields

    ERIC Educational Resources Information Center

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  2. Parallel electric field in flux restoration during ultrafiltration

    SciTech Connect

    Silva, M.; Zaniquelli, M.E.D. ); Galembeck, F. )

    1991-01-01

    Ultrafiltration membrane permeability may be restored by applying an electric field parallel to the plane of the membrane in the feed compartment of ultrafiltration cells. Two different electrode arrangements are described. Under some conditions, flux restoration is complete. An electric field parallel to the membrane can thus be used to eliminate membrane polarization and fouling.

  3. Electric-field-vector measurement in a glow discharge

    SciTech Connect

    Ganguly, B.N.; Garscadden, A.

    1985-10-01

    The magnetic quantum number selection rule implies that radiation that is linearly polarized perpendicular to the electric field will not excite ..delta..m = 0 transitions. This phenomenon in Stark spectra has been used to determine the electric field vector in a positive column dc discharge in helium. The technique is applicable to both linear and nonlinear Stark effects.

  4. Electric and Magnetic Field Detection in Elasmobranch Fishes

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    1982-11-01

    Sharks, skates, and rays receive electrical information about the positions of their prey, the drift of ocean currents, and their magnetic compass headings. At sea, dogfish and blue sharks were observed to execute apparent feeding responses to dipole electric fields designed to mimic prey. In training experiments, stingrays showed the ability to orient relative to uniform electric fields similar to those produced by ocean currents. Voltage gradients of only 5 nanovolts per centimeter would elicit either behavior.

  5. Exploiting Electric and Magnetic Fields for Underwater Characterization

    DTIC Science & Technology

    2011-03-01

    numerical models in order to quantify the practical limits on standoff excitation for induction coil (magnetic dipole) and electrode (electric dipole...commercially available electric (Ag/AgCl electrodes) and magnetic (wideband induction coil B-field sensors) receivers formed an initial testbed for...improved performance using an electric field source rather than marinized versions of terrestrial induction coil sources (e.g., EM-61S).  Interaction with

  6. NOTE: Installation of the 1.5 T MRI accelerator next to clinical accelerators: impact of the fringe field

    NASA Astrophysics Data System (ADS)

    Kok, J. G. M.; Raaymakers, B. W.; Lagendijk, J. J. W.; Overweg, J.; de Graaff, C. H. W.; Brown, K. J.

    2009-09-01

    In the UMC Utrecht a prototype MRI accelerator has been installed to investigate the feasibility of real-time, MRI guided radiotherapy. The system consists of a 6 MV Elekta (Crawley, UK) accelerator and a 1.5 T Philips (Best, The Netherlands) MRI system. The system is installed in a standard radiotherapy bunker. The bunker is at the corner of a block of six bunkers, so there are three neighbouring clinical Elekta accelerators. During ramping of the magnet, the magnetic fringe field in the two nearest bunkers was measured as a function of the magnetic field strength of the MRI magnet. At 8 m, a maximum increase of 1.5 G was measured, at 12 m, 0.6 G. This is up to three times the earth's magnetic field. The clinical accelerators are needed to be re-calibrated in order to operate in such an external magnetic field. The resulting radiation field flatness of the clinical accelerators was measured and was similar to the situation before ramping the magnet.

  7. Installation of the 1.5 T MRI accelerator next to clinical accelerators: impact of the fringe field.

    PubMed

    Kok, J G M; Raaymakers, B W; Lagendijk, J J W; Overweg, J; de Graaff, C H W; Brown, K J

    2009-09-21

    In the UMC Utrecht a prototype MRI accelerator has been installed to investigate the feasibility of real-time, MRI guided radiotherapy. The system consists of a 6 MV Elekta (Crawley, UK) accelerator and a 1.5 T Philips (Best, The Netherlands) MRI system. The system is installed in a standard radiotherapy bunker. The bunker is at the corner of a block of six bunkers, so there are three neighbouring clinical Elekta accelerators. During ramping of the magnet, the magnetic fringe field in the two nearest bunkers was measured as a function of the magnetic field strength of the MRI magnet. At 8 m, a maximum increase of 1.5 G was measured, at 12 m, 0.6 G. This is up to three times the earth's magnetic field. The clinical accelerators are needed to be re-calibrated in order to operate in such an external magnetic field. The resulting radiation field flatness of the clinical accelerators was measured and was similar to the situation before ramping the magnet.

  8. Lamb-shift and electric field measurements in plasmas

    NASA Astrophysics Data System (ADS)

    Doveil, F.; Chérigier-Kovacic, L.; Ström, P.

    2017-01-01

    The electric field is a quantity of particular relevance in plasma physics. Indeed, its fluctuations are responsible for different macroscopic phenomena such as anomalous transport in fusion plasmas. Answering a long-standing challenge, we offer a new method to locally and non-intrusively measure weak electric fields and their fluctuations in plasmas, by means of a beam of hydrogen ions or atoms. We present measurements of the electric field in vacuum and in a plasma where Debye shielding is measured. For the first time, we have used the Lamb-shift resonance to measure oscillating electric fields around 1 GHz and observed the strong enhancement of the Lyman-α signal. The measurement is both direct and non-intrusive. This method provides sensitivity (mV cm-1) and temporal resolution (ns) that are three orders higher compared to current diagnostics. It thus allows measuring fluctuations of the electric field at scales not previously reached experimentally.

  9. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  10. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  11. Influence of electric field on the microstructures and magnetic softness of FeNi nanoparticle films

    NASA Astrophysics Data System (ADS)

    Xia, Zhenjun; He, Jun; Ou, Xiulong; He, Shuli; Zhao, Dongliang; Yu, Guanghua

    2016-09-01

    The nanosized Fe50Ni50 particles were synthesized by a newly developed electric field-assisted deposition technology in a high energetic cluster deposition system. Their microstructures and lattice characteristics were observed by in situ TEM. The magnetic properties were characterized by a superconducting quantum interference device magnetometer. The purpose of the application of electric field during deposition is to accelerate the condensed nanoparticles to form the compact films with in-plane magnetic softness. The overlarge electric field can induce the appearance of lattice kinks and shoulder characteristics of loops. The in situ variable temperature TEM experiments with the measurement of magnetic properties indicated that excellent in-plane magnetic softness could be obtained by annealing. The thermomagnetization curves verified the ferromagnetic characteristics of the deposited films without any magnetic impurity phase.

  12. Novel electric field effects on Landau levels in graphene.

    PubMed

    Lukose, Vinu; Shankar, R; Baskaran, G

    2007-03-16

    A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted. Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our theoretical results, strikingly different from the standard 2D electron gas, are explained using a "Lorentz boost," and as an "instability of a relativistic quantum field vacuum." It is a remarkable case of emergent relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental consequence.

  13. Radial electric fields in the vicinity of locked magnetic islands

    SciTech Connect

    Nishimura, S.; Itoh, K.; Ida, K.; Yagi, M.; Itoh, S.-I.

    2010-12-15

    The radial electric field in the vicinity of magnetic islands locked by resonant magnetic perturbations (static error fields) is numerically studied using a set of reduced two-fluid equations. The asymmetric radial electric fields across locked magnetic islands are observed, which are due to the symmetry breaking effects such as the cylindrical geometry and inhomogeneous electron diamagnetic drift. It is found that the magnitude of the difference (between maximum and minimum radial electric fields around O-point) is proportional to the averaged electron diamagnetic drift frequency inside magnetic islands and the square of the island width, but inversely proportional to the square root of the ion viscosity.

  14. Charge and current reservoirs for electric and magnetic field enhancement.

    PubMed

    Wang, Dongxing; Yang, Tian; Crozier, Kenneth B

    2010-05-10

    Two optical antenna designs incorporating structures termed charge and current reservoirs are proposed to realize localized high electric and magnetic field enhancement, respectively. Simulation results show that the fan-rod electric antenna design combines the advantages of the rod antenna and the bowtie antenna, and has higher field enhancement than either. The performance of a loop shaped magnetic antenna consisting of a pair of metallic strips with offsets is also verified numerically, with high magnetic field enhancement being observed in the simulation. In both of the designs, the concepts of charge and current reservoirs contribute to high electric and magnetic field enhancement.

  15. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    PubMed Central

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nVcm–1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  16. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  17. Electric-field-induced rotation of Brownian metal nanowires.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2013-09-01

    We describe the physical mechanism responsible for the rotation of Brownian metal nanowires suspended in an electrolyte exposed to a rotating electric field. The electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole and to the induced-charge electro-osmotic flow around the particle. Experiments demonstrate that the primary driving mechanism is the former of these two. Our analysis contrasts with previous work describing the electrical manipulation of metallic particles with electric fields, which neglected the electrical double layer. Theoretical values for the rotation speed are calculated and good agreement with experiments is found.

  18. Target normal sheath acceleration sheath fields for arbitrary electron energy distribution

    SciTech Connect

    Schmitz, Holger

    2012-08-15

    Relativistic electrons, generated by ultraintense laser pulses, travel through the target and form a space charge sheath at the rear surface which can be used to accelerate ions to high energies. If the laser pulse duration is comparable or shorter than the time needed for the electrons to travel through the target, the electrons will not have the chance to form an equilibrium distribution but must be described by a non-equilibrium distribution. We present a kinetic theory of the rear sheath for arbitrary electron distribution function f(E), where E is the electron energy, and evaluate it for different shapes of f(E). We find that the far field is mainly determined by the high energy tail of the distribution, a steep decay of f(E) for high energies results in a small electric field and vice versa. The model is extended to account for electrons escaping the sheath region thereby allowing a finite potential drop over the sheath. The consequences of the model for the acceleration of ions are discussed.

  19. Recent measurements of middle atmospheric electric fields and related parameters

    NASA Astrophysics Data System (ADS)

    Zadorozhny, A. M.; Tyutin, A. A.; Bragin, O. A.; Kikhtenko, V. N.

    1994-03-01

    In 1989, two series of rocket measurements were carried out to investigate middle atmosphere electric fields. The measurements were taken both in the Northern Hemisphere on Heiss Island (80 deg 37 N and 58 deg 03 min E) and in the Southern Hemisphere in the Indian Ocean (40-60 deg S and approx. 45 deg E) on board the research vessel 'Akademik Shirshov'. Along with the vertical electric fields, aerosol content and positive ion density were also measured. Some of the rocket launches were made during the extremely strong solar proton events (SPE) of October 1989. The experiments showed the strong variability of the electric fields in the middle atmosphere at polar and high middle latitudes. In all the measurements the maximum of the vertical electric field height profile in the lower mesosphere was observed to be more than approx. 1 V/m. The electric field strength and the field direction at maximum varied considerably among the launches. A maximum value of +12 V/m was detected at a height of about 58 km at 58 deg 30 mins on 21 October 1989 during the SPE. The simultaneous measurements of the electric field strength, positive ion density and aerosols point out both an ion-aerosol interaction and a connection between the mesospheric electric fields and aerosol content.

  20. Electromagnetic field-computation for particle accelerators, today and tomorrow

    SciTech Connect

    Turner, L.R.; Kettunen, L.

    1991-01-01

    In this paper, we first review the magnets needed in accelerators, then discuss computations for accelerator magnets performed with present codes, and finally describe a new volume integral code which shows promise, and should be suitable for parallel computation. 9 refs., 10 figs.

  1. Electric toothbrushes induce electric current in fixed dental appliances by creating magnetic fields.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.

  2. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  3. Fast Magnetic Reconnection and Particle Acceleration in Relativistic Low-density Electron-Positron Plasmas without Guide Field

    NASA Astrophysics Data System (ADS)

    Bessho, Naoki; Bhattacharjee, A.

    2012-05-01

    Magnetic reconnection and particle acceleration in relativistic Harris sheets in low-density electron-positron plasmas with no guide field have been studied by means of two-dimensional particle-in-cell simulations. Reconnection rates are of the order of one when the background density in a Harris sheet is of the order of 1% of the density in the current sheet, which is consistent with previous results in the non-relativistic regime. It has been demonstrated that the increase of the Lorentz factors of accelerated particles significantly enhances the collisionless resistivity needed to sustain a large reconnection electric field. It is shown analytically and numerically that the energy spectrum of accelerated particles near the X-line is the product of a power law and an exponential function of energy, γ-1/4exp (- aγ1/2), where γ is the Lorentz factor and a is a constant. However, in the low-density regime, while the most energetic particles are produced near X-lines, many more particles are energized within magnetic islands. Particles are energized in contracting islands by multiple reflection, but the mechanism is different from Fermi acceleration in magnetic islands for magnetized particles in the presence of a guide field. In magnetic islands, strong core fields are generated and plasma beta values are reduced. As a consequence, the fire-hose instability condition is not satisfied in most of the island region, and island contraction and particle acceleration can continue. In island coalescence, reconnection between two islands can accelerate some particles, however, many particles are decelerated and cooled, which is contrary to what has been discussed in the literature on particle acceleration due to reconnection in non-relativistic hydrogen plasmas.

  4. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    SciTech Connect

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.

  5. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  6. Direct laser acceleration of electrons in a strong azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Toncian, Toma; Stark, David; Arefiev, Alexey

    2016-10-01

    Recently published particle-in-cell simulations indicate that a high-intensity laser irradiating an over-critical plasma can induce relativistic transparency and drive a Megatesla magnetic field while propagating into the plasma. At the same time, the quasi-static electric field in this regime is an order of magnitude weaker than the quasi-static magnetic field as a result of ion mobility and the fact that electrons are irradiated by a high intensity laser pulse. We have examined analytically and numerically direct laser acceleration of electrons in such an azimuthal magnetic field. We have considered a general case of a laser beam propagating with a superluminal phase velocity and compared the results to those for a luminal case. Our key finding is that the maximum gamma-factor that can be attained by electrons has a pronounced threshold, with a significant enhancement of the electron energy taking place above the threshold. The threshold is a function of the azimuthal magnetic field and of the initial transverse electron momentum. This work was supported by the National Science Foundation under Grant No. 1632777.

  7. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    PubMed Central

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  8. Electric Field-Mediated Processing of Polymers. Appendix 1

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Bowlin, G. L.; Haas, T. W.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. We suggest that a broad range of properties can be achieved using a relatively small number of polymers, with electric fields providing the ability to tailor properties via the control of shape, morphology, and orientation. Specific attention is given to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options.

  9. Beyond Orientation: The Impact of Electric Fields on Block Copolymers

    SciTech Connect

    Liedel, Clemens; Boker, A.; Pester, Christian; Ruppel, Markus A; Urban, Volker S

    2012-01-01

    Since the first report on electric field-induced alignment of block copolymers (BCPs) in 1991, electric fields have been shown not only to direct the orientation of BCP nanostructures in bulk, solution, and thin films, but also to reversibly induce order-order transitions, affect the order-disorder transition temperature, and control morphologies' dimensions with nanometer precision. Theoretical and experimental results of the past years in this very interesting field of research are summarized and future perspectives are outlined.

  10. Fermionic Particle Production by Varying Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Sogut, Kenan; Yanar, Hilmi; Havare, Ali

    2016-11-01

    Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined. Supported by the Research Fund of Mersin University in TURKEY with project number: 2016-1-AP4-1425

  11. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.

    PubMed

    Liu, Tongxu; Li, Xiaomin; Zhang, Wei; Hu, Min; Li, Fangbai

    2014-06-01

    Klebsiella pneumoniae L17 is a fermentative bacterium that can reduce iron oxide and generate electricity under anoxic conditions, as previously reported. This study reveals that K. pneumoniae L17 is also capable of dissimilatory nitrate reduction, producing NO2(-), NH4(+), NO and N2O under anoxic conditions. The presence of Fe(III) oxides (i.e., α-FeOOH, γ-FeOOH, α-Fe2O3 and γ-Fe2O3) significantly accelerates the reduction of nitrate and generation of electricity by K. pneumoniae L17, which is similar to a previous report regarding another fermentative bacterium, Bacillus. No significant nitrate reduction was observed upon treatment with Fe(2+) or α-FeOOH+Fe(2+), but a slight facilitation of nitrate reduction and electricity generation was observed upon treatment with L17+Fe(2+). This result suggests that aqueous Fe(II) or mineral-adsorbed Fe(II) cannot reduce nitrate abiotically but that L17 can catalyze the reduction of nitrate and generation of electricity in the presence of Fe(II) (which might exist as cell surface-bound Fe(II)). To rule out the potential effect of Fe(II) produced by L17 during microbial iron reduction, treatments with the addition of TiO2 or Al2O3 instead of Fe(III) oxides also exhibited accelerated microbial nitrate reduction and electricity generation, indicating that cell-mineral sorption did account for the acceleration effect. However, the acceleration caused by Fe(III) oxides is only partially attributed to the cell surface-bound Fe(II) and cell-mineral sorption but may be driven by the iron oxide conduction band-mediated electron transfer from L17 to nitrate or an electrode, as proposed previously. The current study extends the diversity of bacteria of which nitrate reduction and electricity generation can be facilitated by the presence of iron oxides and confirms the positive role of Fe(III) oxides on microbial nitrate reduction and electricity generation by particular fermentative bacteria in anoxic environments.

  12. Analysis of DE-1 PWI electric field data

    NASA Technical Reports Server (NTRS)

    Weimer, Daniel

    1994-01-01

    The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.

  13. Variations of electric field and electric resistivity of air caused by dust motion

    NASA Astrophysics Data System (ADS)

    Seran, E.; Godefroy, M.; Renno, N.; Elliott, H.

    2013-08-01

    report results of a field campaign conducted in the Nevada desert with a suite of electric field instruments consisting of a field mill (FM) and a short dipole antenna (SDA). Furthermore, we show that a combination of the measurements of these two instruments allows the estimation of the electric resistivity of air, an important quantity that is extremely difficult to measure near the Earth's surface. The electric resistivity of air is found to vary between 1.5 · 1013 and 6 · 1013 Ω m and to correlate with changes in electric field. Vertical DC electric fields with amplitudes up to 6 kV m-1 were observed to correspond to clouds of dust blowing through the measurement site. Enhanced DC and AC electric fields are measured during periods when horizontal wind speed exceeds 7 m s-1, or around twice the background value. We suggest that low-frequency emissions, below ~200 Hz, are generated by the motion of electrically charged particles in the vicinity of the SDA electrode and propose a simple model to reproduce the observed spectra. According to this model, the spectral response is controlled by three parameters, (i) the speed of the charged particles, (ii) the charge concentration, and (iii) the minimum distance between the particle and the electrode. In order to explain the electric fields measured with the FM sensors at different heights, we developed a multilayer model that relates the electric field to the charge distribution. For example, a nonlinear variation of the electric field observed by the FM sensors below 50 cm is simulated by a near-surface layer of tens of centimeters that is filled with electrically charged particles that carry a predominantly negative charge in the vicinity of the soil. The charge concentration inside this layer is estimated to vary between 1012 and 5 · 1013 electrons m-3.

  14. Effects of an electric field on interaction of aromatic systems.

    PubMed

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density.

  15. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  16. Generation of strong electric fields in an ice film capacitor.

    PubMed

    Shin, Sunghwan; Kim, Youngsoon; Moon, Eui-seong; Lee, Du Hyeong; Kang, Hani; Kang, Heon

    2013-08-21

    We present a capacitor-type device that can generate strong electrostatic field in condensed phase. The device comprises an ice film grown on a cold metal substrate in vacuum, and the film is charged by trapping Cs(+) ions on the ice surface with thermodynamic surface energy. Electric field within the charged film was monitored through measuring the film voltage using a Kelvin work function probe and the vibrational Stark effect of acetonitrile using IR spectroscopy. These measurements show that the electric field can be increased to ∼4 × 10(8) V m(-1), higher than that achievable by conventional metal plate capacitors. In addition, the present device may provide several advantages in studying the effects of electric field on molecules in condensed phase, such as the ability to control the sample composition and structure at molecular scale and the spectroscopic monitoring of the sample under electric field.

  17. Electric Field Induced Selective Disordering in Lamellar Block Copolymers

    SciTech Connect

    Ruppel, Markus A; Pester, Christian W; Langner, Karol M; Sevink, Geert; Schoberth, Heiko; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy; Boker, Alexander

    2013-01-01

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the orderdisorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the orderdisorder transition and well below it.

  18. Electric field induced selective disordering in lamellar block copolymers.

    PubMed

    Ruppel, Markus; Pester, Christian W; Langner, Karol M; Sevink, Geert J A; Schoberth, Heiko G; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy W; Böker, Alexander

    2013-05-28

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the order-disorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the order-disorder transition and well below it.

  19. Species-Independent Femtosecond Localized Electric Field Measurement

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Goldberg, Benjamin M.; O'Byrne, Sean; Miles, Richard B.

    2017-02-01

    We present an optical measurement method using a femtosecond laser for nonintrusive measurements of electric field strength and orientation in virtually any gas or gas mixture via second-harmonic generation. This simple method takes advantage of the asymmetry in polarizability induced by an applied electric field, which enables the otherwise forbidden second-harmonic generation in any centrosymmetric or homogeneous media. The use of a femtosecond laser source permits high intensities without avalanche breakdown and leads to the measurement of electric field strength down to approximately 100 V / cm in air with submillimeter spatial resolution governed by the confocal parameter and femtosecond temporal resolution governed by the laser-pulse duration.

  20. Electric field induced lateral instability in a simple autocatalytic front

    NASA Astrophysics Data System (ADS)

    Horváth, Dezsö; Tóth, Ágota; Yoshikawa, Kenichi

    1999-07-01

    The effect of ionic drift caused by small constant electric field on autocatalytic reaction fronts of ionic species is studied both theoretically and numerically. Besides varying the velocity of propagation, the electric field parallel to the direction of propagation may induce lateral instability in planar fronts resulting in the emergence of cellular structures. The difference in the diffusivities at the onset of instability are lowered when the electric field tends to separate the species spatially. The predictions of the linear stability analysis based on a thin-front approximation are confirmed by the numerical integration of the full two-dimensional system.

  1. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  2. Field-Induced Phenomena in Electrical Insulation.

    DTIC Science & Technology

    1984-09-29

    excitation (penetrating charged particle or electron beam, electrical circuit), conditions of excitation (intensity, wave form),[lO] polarity...known as thermal breakdown.[66 ] Additionally, any rise in temperature due to dielectric losses within the polymer will tend to accelarate the

  3. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  4. Formation of Organized Protein Thin Films with External Electric Field.

    PubMed

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  5. Increase of the electric field in head-on collisions between negative and positive streamers

    NASA Astrophysics Data System (ADS)

    Ihaddadene, Mohand A.; Celestin, Sebastien

    2015-07-01

    Head-on collisions between negative and positive streamer discharges have recently been suggested to be responsible for the production of high electric fields leading to X-rays emissions. Using a plasma fluid approach, we model head-on collisions between negative and positive streamers. We observe the occurrence of a very strong electric field at the location of the streamer collision. However, the enhancement of the field produces a strong increase in the electron density, which leads to a collapse of the field over only a few picoseconds. Using a Monte Carlo model, we have verified that this process is therefore not responsible for the acceleration of a significant number of electrons to energy >1 keV. We conclude that no significant X-ray emission could be produced by the head-on encounter of nonthermal streamer discharges. Moreover, we quantify the optical emissions produced in the streamer collision.

  6. Generation of superDreicer electric fields in the solar chromosphere

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-12-01

    The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh-Taylor magnetic instability at loop footpoints, has been considered. During the τA ≈ l/V A ≈ 5-25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh-Taylor instability), a disturbance related to the magnetic field tension B ϕ( r,t), "escapes" the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz( z - V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ϕ 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2 I z 3 V A/ c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.

  7. Near-field plume properties of an ion beam formed by alternating extraction and acceleration of oppositely charged ions

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Aanesland, A.; Chabert, P.; Lounes-Mahloul, S.; Bendib, A.

    2016-10-01

    This paper is devoted to study the expansion of a beam composed of packets of positively and negatively charged ions generated by alternating extraction and acceleration. This beam is extracted from an ion-ion plasma, i.e. the electron density is negligible compared to the negative ion density. The alternating acceleration of ions is ensured by two grids placed in the ion-ion plasma region. The screen grid in contact with the plasma is biased with a square voltage waveform while the acceleration grid is grounded. A two-dimensional particle-in-cell (2D-PIC) code and an analytical model are used to study the properties of the near-field plume downstream of the acceleration grid. It is shown that the possible operating bias frequency is delimited by an upper limit and a lower one that are in the low MHz range. The simulations show that alternating acceleration with bias frequencies close to the upper frequency limit for the system can achieve high ion exhaust velocities, similar to traditional gridded ion thrusters, and with lower beam divergence than in classical systems. Indeed, ion-ion beam envelope might be reduced to 15° with 70% of ion flux contained within an angle of 3°. Thus, this alternating acceleration method is promising for electric space propulsion.

  8. Insurance for electric and magnetic field litigation: Are you covered

    SciTech Connect

    Anderson, E.R.; Stewart, C.A. III

    1993-04-01

    Electrical power generating companies, power transmission companies and large generators and users of electrical power recently felt the sting of a second shock. The first shock came when lawsuits were first filed against companies in the electrical power industry claiming real or imagined damages from electrical and magnetic fields ([open quotes]EMFs[close quotes]). The new and second shock is potentially more devastating because it comes from the [open quotes]safe hands[close quotes] of the insurance industry. Standard-form comprehensive general liability ([open quotes]CGL[close quotes]) insurance policies purchased by nearly every company in the electrical power industry for generations are supposed to cover EMF bodily injury and property damage claims. Not so, say the lawyers for the most prominent insurance company selling insurance coverage to electric utilities, Associated Electric Gas Insurance Services, Ltd. ([open quotes]AEGIS[close quotes]).

  9. Spectral studies of the sources of ionospheric electric fields

    SciTech Connect

    Earle, G.D.; Kelley, M.C. )

    1987-01-01

    Spectral analyses have been performed upon a number of incoherent scatter radar data sets obtained at Jicamarca, Peru; Chatanika, Alaska; and Arecibo, Puerto Rico, with the goal of understanding the sources of electric fields with periods in the range of 1-10 hours. Two distinct sources are identified and studied in some detail. In quiet times, atmospheric gravity waves seem the most likely source of the ionospheric electric field. In fact, both in an average sense and in the single case study available the mesospheric winds measured at Poker Flat, Alaska, in this frequency range are remarkably similar in magnitude to the quiet time thermospheric plasma drifts measured overhead by the nearby Chatanika radar. Such drifts are driven by electric fields which, the authors argue, could easily be generated by the observed wind fields. Comparison with the spectra of electric field measurements at other latitudes suggests that such a source is worldwide and determines the geophysical noise level of low- and mid-latitude electric field measurements. Turning to active times, the authors present a measure of the transfer function for electric field measurements. Turning to active times, they present a measure of the transfer function for electric field penetration between high- and low-altitude L shells. At the very lowest frequencies (periods of {ge} 10 hours) the low-altitude sites are well shielded, presumably by an Alfven layer at the inner edge of the ring current. Higher frequency fluctuations penetrate very easily to low latitudes. A response peak seems to occur in the 3- to 5-hour range of periods, with a lower response occurring at 1 cycle/hour, although this result must be viewed as preliminary for now. Between L = 5.5 and L = 1.4 the zonal electric field component as projected to the equatorial plane of the magnetosphere penetrates with little or no attenuation.

  10. Electric-field sensing using single diamond spins

    NASA Astrophysics Data System (ADS)

    Dolde, F.; Fedder, H.; Doherty, M. W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.; Wolf, T.; Reinhard, F.; Hollenberg, L. C. L.; Jelezko, F.; Wrachtrup, J.

    2011-06-01

    The ability to sensitively detect individual charges under ambient conditions would benefit a wide range of applications across disciplines. However, most current techniques are limited to low-temperature methods such as single-electron transistors, single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we introduce a quantum-metrology technique demonstrating precision three-dimensional electric-field measurement using a single nitrogen-vacancy defect centre spin in diamond. An a.c. electric-field sensitivity reaching 202+/-6Vcm-1Hz-1/2 has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~150nm from our spin sensor with averaging for one second. The analysis of the electronic structure of the defect centre reveals how an applied magnetic field influences the electric-field-sensing properties. We also demonstrate that diamond-defect-centre spins can be switched between electric- and magnetic-field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic- and electric-field sensitivity, nanoscale detection and ambient operation, our study should open up new frontiers in imaging and sensing applications ranging from materials science to bioimaging.

  11. Field-Induced Superconductivity in Electric Double Layer Transistors

    NASA Astrophysics Data System (ADS)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-03-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possible in principle but impossible in practice. However, in the past several years, this limitation has been overcome by the introduction of an electrochemical concept, and electric-field-induced superconductivity has been realized. In the electric double layer (EDL) formed at the electrochemical interfaces, an extremely high electric field is generated and hence high-density charge carriers sufficient to induce superconductivity exist and are collectively used as a charge accumulation device known as an EDL capacitor. Field-induced superconductivity has been used to establish the relationship between Tc and carrier density and can now be used to search for new superconductors. Here, we review electric-field-induced superconductivity using an FET device, with a particular focus on the latest advances in EDL transistors.

  12. Electric and magnetic fields in medicine and biology

    SciTech Connect

    Not Available

    1985-01-01

    Papers Include: The effects of low frequency (50 Hz) magnetic fields on neuro-chemical transmission in vitro; Morphological changes in E Coli subjected to DC electrical fields; An investigation of some claimed biological effects of electromagnetic fields; Electrical phenomena and bone healing - a comparison of contemporary techniques; Clinical evaluations of a portable module emitting pulsed RF energy; The design, construction and performance of a magnetic nerve stimulator; The principle of electric field tomography and its application to selective read-out of information from peripheral nerves; Applied potential tomography - clinical applications; Impendance imaging using a linear electrode array; Mathematics as an aid to experiment: human body currents induced by power frequency electric fields; Effects of electric field near 750KV transmission line and protection against their harmful consequences; Leukemia and electromagnetic fields: a case-control study; Overhead power lines and childhood cancer; Magnetic measurement of nerve action currents - a new intraoperative recording technique; The potential use of electron spin resonance or impedance measurement to image neuronal electrical activity in the human brain.

  13. Ion trap electric field measurements using slab coupled optical sensors

    NASA Astrophysics Data System (ADS)

    Shumway, L.; Chadderdon, S.; Powell, A.; Li, A.; Austin, D.; Hawkins, A.; Selfridge, R.; Schultz, S.

    2014-03-01

    Ion traps are widely used in the field of mass spectrometry. These devices use high electric fields to mass-selectively trap, eject, and count the particles of a material, producing a mass spectrum of the given material. Because of their usefulness, technology pushes for smaller, more portable ion traps for field use. Making internal ion trap field measurements not yet feasible because current electric field sensors are often too bulky or their metallic composition perturbs field measurements. Using slab coupled optical sensor (SCOS) technology, we are able to build sensors that are compatible with the spacing constraints of the ion trap. These sensors are created by attaching a nonlinear crystal slab waveguide to an optical fiber. When a laser propagates through the fiber, certain wavelengths of light couple out of the fiber via the crystal and create "resonances" in the output light spectrum. These resonances shift in proportion to a given applied electric field, and by measuring that shift, we can approximate the electric field. Developing a sensor that can effectively characterize the electric fields within an ion trap will greatly assist in ion trap design, fabrication, and troubleshooting techniques.

  14. Ocean Electric Field for Oceanography and Surveillance

    DTIC Science & Technology

    2014-10-27

    learn about ONR concerns and provide feedback on issues, such as opportunities and priorities for Arctic Ocean research. I will continue to...University of Washington Applied Physics Laboratory 1013 NE 40th Street Box 355640 Seattle, WA 98105-6698 Final Report Ocean Electric...I supervised. Both were awarded MS degrees by the UW School of Oceanography and are currently employed in ocean studies at APL-JHU and NOAA

  15. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  16. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  17. Imaging Local Electric Field Distribution by Plasmonic Impedance Microscopy.

    PubMed

    Wang, Yixian; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian; Blanchard, Pierre-Yves; Hu, Keke; Mirkin, Michael V

    2016-02-02

    We report on imaging of local electric field on an electrode surface with plasmonic electrochemical impedance microscopy (P-EIM). The local electric field is created by putting an electrode inside a micropipet positioned over the electrode and applying a voltage between the two electrodes. We show that the distribution of the surface charge as well as the local electric field at the electrode surface can be imaged with P-EIM. The spatial distribution and the dependence of the local charge density and electric field on the distance between the micropipet and the surface are measured, and the results are compared with the finite element calculations. The work also demonstrates the possibility of integrating plasmonic imaging with scanning ion conductance microscopy (SICM) and other scanning probe microscopies.

  18. School Facilities and Electric and Magnetic Field Radiation.

    ERIC Educational Resources Information Center

    Carr, Richard L.

    1990-01-01

    The possibility that electric and magnetic field radiation poses a health hazard should be recognized during the planning and designing of a school. A preconstruction assessment of possible exposure should be evaluated before the start of construction. (MLF)

  19. Enhanced Fair-Weather Electric Fields Soon After Sunrise

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.

    1999-01-01

    The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.

  20. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  1. Drop oscillation and mass transfer in alternating electric fields

    SciTech Connect

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  2. Electric field structures in thin films: formation and properties.

    PubMed

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard; Dunger, Jack; Field, David; Jones, Nykola C

    2014-08-21

    A newly discovered class of molecular materials, so-called "spontelectrics", display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 10(7) and 10(8) V/m. Fields may be of the same sign or of opposite sign, the latter enabling the creation of nanoscale potential wells. The formation of fields is followed using an established electron beam technique, employing the ASTRID synchrotron storage ring. The influence of temperature on heterolayer structures, displaying new Curie effects, and the nature of the interfacial region between different spontelectrics are also discussed.

  3. Design of portable electric and magnetic field generators

    NASA Astrophysics Data System (ADS)

    Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.

    2000-11-01

    Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.

  4. Analysis of electric and magnetic fields leaking from induction heaters.

    PubMed

    Andreuccetti, D; Bini, M; Ignesti, A; Olmi, R; Rubino, N; Vanni, R

    1988-01-01

    Results are presented of an investigation on electric and magnetic fields leaking from inductive (magnetic) heaters that are used for thermal processing of high-power electron tubes and lasers in an industrial plant. Measurements of electric and magnetic fields were done using both commercially available and laboratory-developed instrumentation. Isotropic H-field sensors were developed to allow quantitative evaluation of high-intensity magnetic fields. Ten induction heaters with nominal A.C. power ranging from 2.5 kW to 15 kW and operating at frequencies between 300 kHz and 790 kHz were surveyed. Electric field strengths up to 8 kV/m and magnetic field strengths up to 20 A/m were measured.

  5. Effective critical electric field for runaway-electron generation.

    PubMed

    Stahl, A; Hirvijoki, E; Decker, J; Embréus, O; Fülöp, T

    2015-03-20

    In this Letter we investigate factors that influence the effective critical electric field for runaway-electron generation in plasmas. We present numerical solutions of the kinetic equation and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway-electron formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

  6. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  7. Fundamental Studies of Electric-Field-Induced Coherent Raman Scattering

    DTIC Science & Technology

    2011-06-07

    mechanisms of nanosecond- pulsed dielectric barrier discharges generated in open air. Our experimental observations have revealed that, in the pre...dynamics in nanosecond- pulsed discharges . a) Electric-field-induced coherent Raman scattering (E-CRS) In this section, I describe the...the electric field in hydrogen. With E-CRS method, our group has revealed very fast discharge dynamics in repetitively pulsed nanosecond discharges [4

  8. A New Electric Field in Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Malakit, K.; Shay, M. A.; Cassak, P.; Ruffolo, D. J.

    2013-12-01

    Magnetic reconnection is an important plasma process that drives the dynamics of the plasma in the magnetosphere and plays a crucial role in the interaction between magnetospheric and magnetosheath plasma. It has been shown that when a reconnection occurs in a collisionless plasma, it exhibits the Hall electric field, an in-plane electric field structure pointing toward the X-line. In this work, we show that when the reconnection has asymmetric inflow conditions such as the reconnection at the day-side magnetopause, a new in-plane electric field structure can exist. This electric field points away from the X-line and is distinct from the known Hall electric field. We argue that the origin of the electric field is associated with the physics of finite Larmor radius. A theory and predictions of the electric field properties are presented and backed up by results from fully kinetic particle-in-cell simulations of asymmetric reconnection with various inflow conditions. Under normal day-side reconnection inflow conditions, the electric field is expected to occur on the magnetospheric side of the X-line pointing Earthward. Hence, it has a potential to be used as a signature for satellites, such as the upcoming Magnetospheric Multi-Scale (MMS) mission, to locate the reconnection sites at the day-side magnetopause. This research was supported by the postdoctoral research sponsorship of Mahidol University (KM), NSF grants ATM-0645271 - Career Award (MAS) and AGS-0953463 (PAC), NASA grants NNX08A083G - MMS IDS, NNX11AD69G, and NNX13AD72G (MAS) and NNX10AN08A (PAC), and the Thailand Research Fund (DR).

  9. Use of the Atmospheric Electric Field for Terrain Avoidance

    DTIC Science & Technology

    1975-04-01

    realistic enough to yield results applicable in the real world? And if the po- tential gradients are found to be as predicted b,,r Poisson’s equation...electric field is believed to be realistic "since the application of the atmospheric electric field for stabilization or terrain avoidance will be...phenomena) that causes the fluctuations in atmospheric potential (or potential gradient) that makes terrain avoidance or any other application of the

  10. The simulation of TGF origin in lightning leader electric fields by cosmic ray shower electrons

    NASA Astrophysics Data System (ADS)

    Connell, P. H.; Atri, D.

    2015-12-01

    With the TGF simulation package LEPTRACK we can easily create all kinds of electric field geometries and electron flux fields to simulate Relativistic Runaway Electron Avalanches - it is script driven, with the details of high energy scattering physics hidden from the user, and an easily accessible output database for each particle created or scattered. We will show the results of simulating a realistic scenario of TGF origin based on cosmic ray shower electron flux fields in the neighbourhood of electric field geometries expected around lightning leader tips. Electron fluxes are derived from simulations using the CORSIKA cosmic ray simulation package and leader electric field geometry from current models. Presuming a TGF observed at orbital altitudes must come from a lightning leader pointing "upwards", and that cosmic rays enter at angles pointing "downwards" to "horizontal", we will show which combinations allow the electron flux to curve into the compact electric field of the leader and gain sufficient acceleration to create a TGF photon flux observable in orbit.

  11. Effects of high external electric fields on protein conformation

    NASA Astrophysics Data System (ADS)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.

  12. Responsive behavior of polyampholyte brushes in electric fields

    NASA Astrophysics Data System (ADS)

    Cao, Qianqian; Li, Lujuan; Zuo, Chuncheng; Huang, Fengli; Hu, Dongmei

    2016-12-01

    We conducted coarse-grained molecular dynamics simulations to study the responsive behaviors of polyampholyte brushes (PABs) under external electric fields. The effects of charge sequence, chain rigidity and electric field strength on the conformational transition and local structures of grafted chains were addressed systematically. Without electric field, the calculations indicate that the thickness of the PABs is smaller compared to polyelectrolyte brushes (PEBs). The presence of electric field leads to inconsistency of densities between negatively and positively charged monomers except for the alternating brush. Counterions from the PABs can diffuse inside or outside the brush. Unlike the PABs, to separate the polyelectrolytes and their counterions the electric field needs to overcome the osmotic pressure of counterions. The critical field which induces the extension of the flexible PABs is much larger than the PEBs. Meanwhile, it was also found that the critical field which induces the collapse of the PABs decreases as the block length increases. In the limit of strong field studied, the chains with longer blocks are in a local extended state. For diblock brushes, once oppositely charged blocks in a single chain are separated, the chain will become straighter due to strong electrostatic repulsion in intrablock.

  13. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  14. Migration of amoeba cells in an electric field

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  15. The Dynamics of Ultrasonically Levitated Drops in an Electric Field

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Holt, R. G.; Thiessen, D. B.

    1996-01-01

    Ultrasonic and electrostatic levitation techniques have allowed the experimental investigation of the nonlinear oscillatory dynamics of free droplets with diameter between 0.1 and 0.4 cm. The measurement of the resonance frequencies of the first three normal modes of large amplitude shape oscillations in an electric field of varying magnitude has been carried out with and without surface charges for weakly conducting liquids in air. These oscillations of nonspherical levitated drops have been driven by either modulating the ultrasonic field or by using a time-varying electric field, and the free decay from the oscillatory state has been recorded. A decrease in the resonance frequency of the driven fundamental quadrupole mode has been measured for increasing oblate deformation in the absence of an electric field. Similarly, a decrease in this frequency has also been found for increasing DC electric field magnitude. A soft nonlinearity exists in the amplitude dependence of the resonant mode frequencies for freely decaying as well as ultrasonically and electrically driven uncharged drops. This decrease in resonance frequency is accentuated by the presence of free surface charge on the drop. Subharmonic resonance excitation has been observed for drops in a time-varying electric field, and hysteresis exists for resonant modes driven to large amplitude. Mode coupling from lower-order resonances to higher-order modes has been found to be very weak, even for fairly large amplitude shape oscillations. Most of these results are in general agreement with predictions from recent analytical and numerical investigations.

  16. Large amplitude middle atmospheric electric fields - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Siefring, C. L.; Pfaff, R. F., Jr.

    1983-01-01

    An analysis of the measurements of large apparent dc fields in the middle atmosphere, previously gathered by two sounding rockets, shows these fields to be spurious. In the case of one of the rockets, the evidence presented suggests that the measured electric fields, aligned with the rocket's velocity vector, may be due to a negatively charged wake. A comparison of measurements made by various electric field booms also suggests that the insulating boom coatings in one experiment may have affected the results obtained. It is recommended that insulating coatings should not be used at mesospheric altitudes, because of the detrimental effects that frictional charging may have.

  17. Vacuum radiation induced by time dependent electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu

    2017-04-01

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  18. Propagation of Magnetic Fields from Electrical Domestic Appliances

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Gaidamak, M. A.; Borovikov, I. F.

    2016-08-01

    The article presents a research into propagation of magnetic fields from electrical domestic devices. A safe distance at which magnetic induction does not exceed the background level is determined for each type of devices. It is proved that there are two stages of increasing magnetic induction as the distance from the source increases. At the first stage magnetic induction rises and electromagnetic field is formed. At the second stage exponential decrease of magnetic field induction takes place. Mathematical regularities of propagation of magnetic field from electrical domestic devices are experimentally educed.

  19. Influence of initial velocity on trajectories of a charged particle in uniform crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Nurul Khotimah, Siti; Viridi, Sparisoma; Widayani

    2017-03-01

    Magnetic and electric fields can cause a charged particle to form interesting trajectories. In general, each trajectory is discussed separately in university physics textbooks for undergraduate students. In this work, a solution of a charged particle moving in a uniform electric field at right angles to a uniform magnetic field (uniform crossed electric and magnetic fields) is reported; it is limited to particle motion in a plane. Specific solutions and their trajectories are obtained only by varying the initial particle velocity. The result shows five basic trajectory patterns, i.e., straight line, sinusoid-like, cycloid, cycloid-like with oscillation, and circle-like. The region of each trajectory is also mapped in the initial velocity space of the particle. This paper is intended for undergraduate students and describes further the trajectories of a charged particle through the regions of electric and magnetic fields influenced by initial condition of the particle, where electromagnetic radiation of an accelerated particle is not considered.

  20. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  1. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  2. Electric Field-Responsive Mesoporous Suspensions: A Review

    PubMed Central

    Kwon, Seung Hyuk; Piao, Shang Hao; Choi, Hyoung Jin

    2015-01-01

    This paper briefly reviews the fabrication and electrorheological (ER) characteristics of mesoporous materials and their nanocomposites with conducting polymers under an applied electric field when dispersed in an insulating liquid. Smart fluids of electrically-polarizable particles exhibit a reversible and tunable phase transition from a liquid-like to solid-like state in response to an external electric field of various strengths, and have potential applications in a variety of active control systems. The ER properties of these mesoporous suspensions are explained further according to their dielectric spectra in terms of the flow curve, dynamic moduli, and yield stress. PMID:28347119

  3. Electric field and temperature effects in irradiated MOSFETs

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  4. Static electric field enhancement in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  5. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  6. Electronic Properties of Capped Carbon Nanotubes under an Electric Field: Inhomogeneous Electric-Field Screening Induced by Bond Alternation

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ayaka; Okada, Susumu

    2013-06-01

    We study the electronic properties of capped carbon nanotubes under an electric field by investigating their electrostatic potentials, total energies, and energy gaps under a parallel electric field, based on the density functional theory with effective screening medium method. We find that, in the capped carbon nanotubes, screening against the external electric field strongly depends on local atomic arrangement due to the inhomogeneous charge distribution arising from its bond alternation induced by the pentagonal rings in the cap region. In the case of armchair nanotubes, we find that the relative permittivity and energy gap between the highest occupied and the lowest unoccupied states oscillate in triple periodicity in their units with respect to the length. The electric field induces the charge redistribution in which the charge accumulation and depletion only occur around the pentagonal rings at or vicinity of the top/bottom of the nanotubes.

  7. Full 180° magnetization reversal with electric fields.

    PubMed

    Wang, J J; Hu, J M; Ma, J; Zhang, J X; Chen, L Q; Nan, C W

    2014-12-16

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

  8. Reversible electric-field control of magnetization at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Cuellar, F. A.; Liu, Y. H.; Salafranca, J.; Nemes, N.; Iborra, E.; Sanchez-Santolino, G.; Varela, M.; Hernandez, M. Garcia; Freeland, J. W.; Zhernenkov, M.; Fitzsimmons, M. R.; Okamoto, S.; Pennycook, S. J.; Bibes, M.; Barthélémy, A.; Te Velthuis, S. G. E.; Sefrioui, Z.; Leon, C.; Santamaria, J.

    2014-06-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  9. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  10. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  11. Full 180° Magnetization Reversal with Electric Fields

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-12-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals.

  12. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  13. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    NASA Astrophysics Data System (ADS)

    Yeates, Anthony R.

    2017-02-01

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  14. Liquid Spray Characterization in Flow Fields with Centripetal Acceleration

    DTIC Science & Technology

    2014-03-27

    the flame dynamics for a liquid fuel when sprayed into a combustor with centripetal acceleration. This investigation used Phase Doppler Particle... combustors for gas turbine engines that use a circumferential cavity with swirling flow to reduce the length of the combustor . Knowing the spray...1 1.2 The Ultra Compact Combustor

  15. Accelerated Schools in Action: Lessons from the Field.

    ERIC Educational Resources Information Center

    Finnan, Christine, Ed.; And Others

    This book provides insights into one of the nation's largest and most comprehensive school-restructuring movements, the Accelerated Schools Project. Since its inception in 1986, the focus of the movement has been on transforming schools with students at risk of dropping out into schools with high expectations of all students. This is accomplished,…

  16. Transverse wake field simulations for the ILC acceleration structure

    SciTech Connect

    Solyak, N.; Lunin, A.; Yakovlev, V.; /Fermilab

    2008-06-01

    Details of wake potential simulation in the acceleration structure of ILC, including the RF cavities and input/HOM couplers are presented. Transverse wake potential dependence is described versus the bunch length. Beam emittance dilution caused by main and HOM couplers is estimated, followed by a discussion of possible structural modifications allowing a reduction of transverse wake potential.

  17. Double unification of particles with fields and electricity with gravity in non-empty space of continuous complex energies

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2016-11-01

    Non-empty space reading of Maxwell equations as local energy identities explains why a Coulomb field is carried rigidly by electrons in experiments. The analytical solution of the Poisson equation defines the sharp radial shape of charged elementary densities which are proportional to continuous densities of electric self-energy. Both Coulomb field and radial charge densities are free from energy divergences. Non-empty space of electrically charged mass-energy can be described by complex analytical densities resulting in real values for volume mass integrals and in imaginary values for volume charge integrals. Imaginary electric charges in the Newton gravitational law comply with real Coulomb forces. Unification of forces through complex charges rids them of radiation self-acceleration. Strong gravitational fields repeal probe bodies that might explainthe accelerated expansion of the dense Metagalaxy. Outward and inward spherical waves form the standing wave process within the radial carrier of complex energy.

  18. Limiting electric fields of HVDC overhead power lines.

    PubMed

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  19. Electric fields in micro-gravity can replace gravity

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    The influence of the world-wide atmospheric electric field on the growth of plants seems to have been neglected. The confirmation of the existence of electrotropism shows effects on some plants similar to gravity. I propose space ex eriments withp plants that grow in microgravity but are exposed to different electric field configurations with various field strengths and polarity. The electric field in terrestrial environment shows strong effects on some plants that can be regarded as due to phototropism. In microgravity we have full control of light and electric field, and thus we can practically eliminate the effects of gravity and we can study to what degree the electric field can replace the gravitational effects on plants. In this way we can create a new habitat for some plants and study its role in the rate of growth as well as in the sensing of free space for growth of plants in absence of gravity. By varying the strength and direction of illumination of plants we can also study the relative role of phototropism and electrotropism on different plants. This should enable us to select the most suitable plants for Advanced Life Support systems (ALS) for long-duration missions in microgravity environment. Some simple space experiments for verification of these assumptions are described that should answer the basic questions how should we design the ALS for the future high performance space stations and long duration manned space flights. The selection of the suitable plants for such ALS may go along two approaches: the self supporting electrotropic plants using the optimal electric field strength and its range of variation, non electrotropic plants that creep along the "ground" or other supporting plants or special structures. Ground based fitotron experiments have shown that several kV/m electric fields overwhelm the gravity better than clinostats can do. It happens in case of electrotropic plants but also after several days for non-electrotropic plants

  20. Electric field by pick-up ions and electrons

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Behar, Etienne; Nilsson, Hans; Holmstrom, Mats

    2016-04-01

    Observations by the Rosetta Plasma Consortium (RPC) showed increasing distortion of the solar wind flow as Rosetta approached the Sun, i.e., as the density of the newly born ions increased. This indicates azimuthal momentum transfer from the solar wind to the newly born ions because they are displaced by the solar wind electric field up to the ion gyroradius this the solar wind velocity, and conservation of the momentum (center of the mass) makes the solar wind to azimuthally shift by "counter action" of these pick-up ion motions. To understand this azimuthal momentum transfer, it is inevitable to model the electric field by the displacement of these pick-up ions and electrons. Although the E×B drift does not make charge separation when the scale size is larger than the ion gyroradius, ions and electrons move in the opposite direction to each other within the short distance up to a gyroradius, and therefore, the charge separation occurs. Thus, the newly-ionized neutrals (ion-electron pairs) create the electric field in the opposite (shielding) direction to the solar wind electric field (like the ionopause of Venus and Mars). However, such a newly induced "shielding" electric field will simultaneously be weakened by the solar wind electrons because the solar wind is also moved by this shielding electric field to reduce it, in the same way as the plasma oscillation (time scale of about 10-4 s). In other words, the solar wind tries to maintain the solar wind electric field as far as the momentum allows. These two opposite effects must be combined when modelling the azimuthal electric field, and resultant ion/electron motions within a gyroradius, like the case for ROSETTA. Furthermore, the effect of the induced electric field by the pick-up ions and electrons will be different when the newly born ions are created as the result of photo-ionization and of the charge exchange because the electron effect is different between them. In the presentation, we model the

  1. High school students' representations and understandings of electric fields

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Brizuela, Bárbara M.

    2016-12-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields postinstruction as indicated by students' performance on textbook-style questions. It has, however, inadequately captured student ideas expressed in other situations yet informative to educational research. In this study, we explore students' ideas of electric fields preinstruction as shown by students' representations produced in open-ended activities. 92 participant students completed a worksheet that involved drawing comic strips about electric charges as characters of a cartoon series. Three students who had spontaneously produced arrow diagrams were interviewed individually after class. We identified nine ideas related to electric fields that these three students spontaneously leveraged in the comic strip activity. In this paper, we describe in detail each idea and its situated context. As most research in the literature has understood students as having relatively fixed conceptions and mostly identified divergences in those conceptions from canonical targets, this study shows students' reasoning to be more variable in particular moments, and that variability includes common sense resources that can be productive for learning about electric fields.

  2. Consistency restrictions on maximal electric-field strength in quantum field theory.

    PubMed

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  3. Hydraulic coupling for generating electrical power inside a high-voltage accelerator terminal

    NASA Astrophysics Data System (ADS)

    Sumbar, Edmund; Vermeulen, F. E.; Lawson, R. P. W.

    1985-04-01

    A hydraulic apparatus used to generate electrical power inside a 280-kV ion accelerator terminal is described. In this system, pressurized hydraulic oil flows through insulating hoses, transferring fluid power between ground and the high-voltage terminal. A maximum of 750 W was generated with the present equipment. Leakage current along the hydraulic-fluid lines was recorded as a function of time for an applied voltage of 280 kV. This current initially rose at an average rate of about 8 μA/min, reaching a maximum of about 760 μA within 2 h. Beyond 2 h, leakage current slowly decreased with time.

  4. High electric field phenomena in insulation

    NASA Astrophysics Data System (ADS)

    Laghari, J. R.; Sarjeant, W. J.

    1989-01-01

    The present study extends previous work to include electron radiation-induced changes in monoisopropyl biphenyl (MIPB)-impregnated polypropylene film as well as the effects of neutron/gamma radiation on dry polypropylene films. Effects that were quite similar were induced by both electron and neutron radiation on the properties of interest of the polypropylene films. Impregnation of the film with MIPB had a mitigatory effect on the degradation of the properties. This report also contains the results of a simultaneous electrical and thermal aging study of a capacitor-grade polypropylene film. The data obtained in this study was fitted to models that will enable realistic prediction of lifetimes under operating conditions.

  5. 15 Years of R&D on high field accelerator magnets at FNAL

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  6. Electron acceleration by an electromagnetic wave propagating across a magnetic field in periodic structures

    NASA Astrophysics Data System (ADS)

    Buts, V. A.; Ognivenko, V. V.

    1990-05-01

    The possibility of the acceleration of charged particles captured by an electromagnetic wave propagating across a constant magnetic field in periodic slow-wave structures is demonstrated. A plane waveguide with perfectly conducting walls is examined as an example of an electrodynamic structure in which such an acceleration mechanism is possible. The acceleration rate is determined, and the stability of captured particle motion is investigated.

  7. Atmospheric electric field effect in different neutron multiplicities according to Emilio Segre Obervatory one minute data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'eman, Yu.; Pustilnik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    2001-08-01

    On the basis of cosmic ray and atmospherice lectric field one minute data obtained by NM and EFS ofE milio Segre' Observatory (hight 2025 m above s.l., cut-offr igidity for vertical direction 10.8 GV) we determine thea tmospheric electric field effect in CR for total neutroni ntensity and for multiplicities m ≥1, m ≥2, m ≥3, m ≥4,m ≥5, m ≥6, m ≥7, and m ≥8, as well as for m=1, m=2,m =3, m=4, m=5, m=6, and m=7. For comparison ande xcluding primary CR variations we use also data obtainedb y NM of University "Roma Tre" (about sea level, cut-off rigidity 6.7 GV). According to the theoretical calculations of Dorman and Dorman (1995) the electric field effect in the NM counting rate must be caused mainly by catching ofs low negative muons by lead nucleus with escaping fewn eutrons. As it was shown in Dorman et al. (1999), theb iggest electric field effect is expected in the multiplicitym =1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We will control this conclusion ont he basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field._

  8. Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng

    2016-09-01

    Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.

  9. Radiation reaction dynamics in an electromagnetic wave and constant electric field

    NASA Astrophysics Data System (ADS)

    Atlee Jackson, E.

    1984-05-01

    The relativistic motion of a charged particle is studied when it is acted on simultaneously by a constant electric field and a plane electromagnetic wave, propagating in the direction of the electric field (x axis). The dynamics includes the radiation reaction (self-force) on the particle through a standard approximation of the Lorentz-Dirac equation. The interest is to determine the result of the competition between the average acceleration due to the electromagnetic wave (``radiation pressure'') and the acceleration due to the constant force of the static field. Each of these actions alone of course produce an unbounded particle energy asymptotically in time. However, it is proved first that, when the ``forces'' are in opposite directions, the particle can never accelerate (on the average) indefinitely in the x direction, regardless how weak the electric field (E0) is compared to the amplitude of the wave (A). It is then proved that all solutions converge to a region of zero area in a suitable velocity phase space and, if there exists a periodic solution [in the phase ξ=ω (t-x/c)] in a specified region of this phase space, then all solutions must converge to this solution asymptotically (ξ→+∞). In the case when (E0A2/ω2) has a specified bound (ω: wave frequency), an iterative method is developed which explicitly yields such a periodic solution, showing that the energy remains bounded. The direction of the average drift is determined in terms of (A,E0,ω). When the parameter (E0A2/ω2) is above this bound, a combination of numerical and analytic results are obtained which indicate that this periodic solution persists. These results indicate that all motions tend to states with bounded energy, regardless of the field strengths.

  10. Simulational studies of epitaxial semiconductor superlattices: Quantum dynamical phenomena in ac and dc electric fields

    SciTech Connect

    Reynolds, Joseph

    1997-10-08

    Using high-accuracy numerical methods the author investigates the dynamics of independent electrons in both ideal and realistic superlattices subject to arbitrary ac and/or dc electric fields. For a variety of superlattice potentials, optically excited initial wave packets, and combinations of ac and dc electric fields, he numerically solves the time-dependent Schroedinger equation. In the case of ideal periodic superlattice potentials, he investigates a long list of dynamical phenomena involving multiple miniband transitions and time-dependent electric fields. These include acceleration effects associated with interminiband transitions in strong fields, Zener resonances between minibands, dynamic localization with ac fields, increased single-miniband transport with an auxiliary resonant ac field, and enhanced or suppressed interminiband probability exchange using an auxiliary ac field. For all of the cases studied, the resulting time-dependent wave function is analyzed by projecting the data onto convenient orthonormal bases. This allows a detailed comparison with approximately analytic treatments. In an effort to explain the rapid decay of experimentally measured Bloch oscillation (BO) signals the author incorporates a one-dimensional representation of interface roughness (IR) into their superlattice potential. He shows that as a result of IR, the electron dynamics can be characterized in terms of many discrete, incommensurate frequencies near the Block frequency. Chapters 2, 3, 4 and 5 have been removed from this report and will be processed separately.

  11. A laser accelerator. [interaction of polarized light beam with electrons in magnetic field

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1979-01-01

    It is shown that a laser can efficiently accelerate charged particles if a magnetic field is introduced to improve the coupling between the particle and the wave. Solving the relativistic equations of motion for an electron in a uniform magnetic field and superposed, circularly polarized electromagnetic wave, it is found that in energy-position phase space an electron traces out a curtate cycloid: it alternately gains and loses energy. If, however, the parameters are chosen so that the electron's oscillations in the two fields are resonant, it will continually accelerate or decelerate depending on its initial position within a wavelength of light. A laboratory accelerator operating under these resonant conditions appears attractive: in a magnetic field of 10,000 gauss, and the fields of a 5 x 10 to the 12th W, 10 micron wavelength laser, an optimally positioned electron would accelerate to 700 MeV in only 10 m.

  12. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling-Yun; Wang, Peng-Ye

    2008-10-01

    We present an analytical solution for fluid velocity Geld distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration.

  13. Preferential acceleration and magnetic field enhancement in plasmas with e+/e- beam injection

    NASA Astrophysics Data System (ADS)

    Huynh, Cong Tuan; Ryu, Chang-Mo

    2016-03-01

    A theoretical model of current filaments predicting preferential acceleration/deceleration and magnetic field enhancement in a plasma with e+/e- beam injection is presented. When the e+/e- beams are injected into a plasma, current filaments are formed. The beam particles are accelerated or decelerated depending on the types of current filaments in which they are trapped. It is found that in the electron/ion ambient plasma, the e+ beam particles are preferentially accelerated, while the e- beam particles are preferentially decelerated. The preferential particle acceleration/deceleration is absent when the ambient plasma is the e+/e- plasma. We also find that the particle momentum decrease can explain the magnetic field increase during the development of Weibel/filamentation instability. Supporting simulation results of particle acceleration/deceleration and magnetic field enhancement are presented. Our findings can be applied to a wide range of astrophysical plasmas with the e+/e- beam injection.

  14. Wetting of sessile water drop under an external electrical field

    NASA Astrophysics Data System (ADS)

    Vancauwenberghe, Valerie; di Marco, Paolo; Brutin, David; Amu Collaboration; Unipi Collaboration

    2013-11-01

    The enhancement of heat and mass transfer using a static electric field is an interesting process for industrial applications, due to its low energy consumption and potentially high level of evaporation rate enhancement. However, to date, this phenomenon is still not understood in the context of the evaporation of sessile drops. We previously synthesized the state of the art concerning the effect of an electric field on sessile drops with a focus on the change of contact angle and shape and the influence of the evaporation rate [1]. We present here the preliminary results of an new experiment set-up. The novelty of the set-up is the drop injection from the bottom that allows to generate safety the droplet under the electrostatic field. The evaporation at room temperature of water drops having three different volumes has been investigated under an electric field up to 10.5 kV/cm. The time evolutions of the contact angles, volumes and diameters have been analysed. As reported in the literature, the drop elongate along the direction of the electric field. Despite the hysteresis effect of the contact angle, the receding contact angle increases with the strength of the electric field. This is clearly observable for the small drops for which the gravity effect can be neglected.

  15. Electric Field Control of Ferromagnetism and Magnetic Devices Using Multiferroics

    NASA Astrophysics Data System (ADS)

    Heron, John Thomas

    This dissertation presents a study of a heterostructure composed of room temperature magnetoelectric multiferroic BiFeO3 and ferromagnetic Co.90Fe.10, with specific interest in understanding the interfacial coupling mechanisms in this system and establishing the electric field control of a magnetization and spintronic devices. The field of spintronics has been plagued with the problem of a large energy dissipation as a consequence of the resistive losses that come during the writing of the magnetic state (i.e. reversing the magnetization direction). The primary aim of the work presented here is to investigate and understand a novel heterostructure and materials interface that can be demonstrated as a pathway to low energy spintronics. In this dissertation, I will address the specific aspects of multiferroicity, magnetoelectricity, and interface coupling that must be addressed in order to reverse a magnetization with an electric field. Furthermore, I will demonstrate the reversal of a magnetization with an electric field in single and multilayer magnetic devices. The primary advances made as a result of the work described herein are the use of epitaxial constraints to control the nanoscale domain structure of a multiferroic which is then correlated to the domain structure of the exchange coupled ferromagnet. Additionally, the magnetization direction of the ferromagnetic layer is controlled with only an applied electric field at both macroscopic and microscopic scales. Lastly, using this electric field control of ferromagnetism, the first demonstration of a magnetoelectric memory bit is presented.

  16. Polarimetric Radar and Electric Field Observations of a Multicell Storm

    NASA Astrophysics Data System (ADS)

    Bruning, E. C.; Rust, W. D.; Macgorman, D. R.; Schuur, T.; Straka, J.; Krehbiel, P.; Rison, W.

    2004-12-01

    Much prior thunderstorm electrification research uses one-dimensional analyses of vertical profiles of the thunderstorm electric field, often incorporating cloud-to-ground lighting strike data and radar reflectivity observations. New instrumentation has provided the opportunity to investigate thunderstorm electrification and lightning in greater spatial detail. We present data from the late stages of a multicellular storm occurring on 28-29 June 2004 during the Thunderstorm Electrification and Lightning Experiment (TELEX) field program in central Oklahoma. Three-dimensional (3-D) vector electric field (measured by balloon sounding), total lighting mapping, and polarimetric radar are utilized. The maximum measured electric field exceeded -150 kV m-1. Preliminary charge analysis using the electric field vectors indicates a positive layer below 0\\deg C, followed by a large negative layer just above the melting level. Another positive and negative layer follow this. Polarimetric radar signatures within the melting layer are examined in the context of the electric field observations. Mapped lightning flashes are used to clarify and support the inferred charge structure. An interactive 3-D display is used to combine these data sources. Temporal evolution of the storm is also considered.

  17. Dirac oscillator in perpendicular magnetic and transverse electric fields

    SciTech Connect

    Nath, D.; Roy, P.

    2014-12-15

    We study (2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field B{sub c} such that the spectrum is different in the two regions B>B{sub c} and Belectric field. • Exact solutions are found. • Critical cases have been examined.

  18. Electro-optic probe measurements of electric fields in plasmas.

    PubMed

    Nishiura, M; Yoshida, Z; Mushiake, T; Kawazura, Y; Osawa, R; Fujinami, K; Yano, Y; Saitoh, H; Yamasaki, M; Kashyap, A; Takahashi, N; Nakatsuka, M; Fukuyama, A

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  19. Preliminary Studies on Pulsed Electric Field Breakdown of Lead Azide

    DTIC Science & Technology

    1976-10-01

    subjected to combinations of 400.0 nm irradiation (strongly absorbed by Pb(N_)-) and strong field, for both polarities, again with no effect . It has...II n»Kt*tmy mad I4mtlty by MeeM mmt»mr) .± Lead Azide Electric Field Initiation Contact Effects Surface Effects Radiation Effect ! A9STMACT...reported. Specifically, ws-d4*eu«s the effects of contacts on the initiation of explosives by electric fields, and present preliminary weaouresents

  20. Tuning the mechanical behaviour of structural elements by electric fields

    NASA Astrophysics Data System (ADS)

    Di Lillo, Luigi; Raither, Wolfram; Bergamini, Andrea; Zündel, Manuel; Ermanni, Paolo

    2013-06-01

    This work reports on the adoption of electric fields to tune the mechanical behaviour of structural elements. A mechanical characterization procedure, consisting of double lap joint and 3-point bending tests, is conducted on copper-polyimide laminates while applying electric fields of varying intensity. Field dependence and, thus, adaptability of shear strength and bending stiffness are shown as a function of the overlapping length and interfaces number, respectively. Further, the impact of remaining charges is investigated in both testing configurations. The findings herein lay the foundation for the implementation of electro-adaptive components in structural applications.

  1. Electro-optic probe measurements of electric fields in plasmas

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  2. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    SciTech Connect

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  3. Ionization and recombination in attosecond electric field pulses

    SciTech Connect

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-10-15

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers.

  4. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    PubMed Central

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  5. Regional United States electric field and GIC hazard impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Gannon, J. L.; Balch, C. C.; Trichtchenko, L.

    2013-12-01

    Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.

  6. Intense ionospheric electric and magnetic field pulses generated by lightning

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Ding, J. G.; Holzworth, R. H.

    1990-01-01

    Electric and magnetic field measurements have been made in the ionosphere over an active thunderstorm and an optical detector onboard the same rocket yielded an excellent time base for the study of waves radiated into space from the discharge. In addition to detection of intense, but generally well understood whistler mode waves, very unusual electric and magnetic field pulses preceded the 1-10 kHz component of the radiated signal. These pulses lasted several ms and had a significant electric field component parallel to the magnetic field. No known propagating wave mode has this polarization nor a signal propagation velocity as high as those measured here. This study investigated and rejected an explanation based on an anomalous skin depth effect. Although only a hypothesis at this time, a more promising explanation involving the generation of the pulse via a nonlinear decay of whistler mode waves in the frequency range 10-80 kHz is being investigated.

  7. The electric field and global electrodynamics of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1979-01-01

    The conception of the electrodynamics of the quiet-time magnetosphere obtained during the last four years of magnetospheric study is presented. Current understandings of the open magnetosphere, convective plasma flows in the plasma sheet, the shielding of the inner magnetosphere from the convective magnetospheric electric field, the space charge produced when injected electrons drift towards dawn and injected ions drift towards dusk, the disruption of the flow of the Birkeland current by plasma instabilities and the shielding of the convective electric field by the dayside magnetopause are discussed. Attention is also given to changes of magnetic field line topology magnetic storms and substorms. Unresolved questions and new tools which may play a role in the further understanding of magnetospheric electrodynamics and the role of the magnetospheric electric field are presented.

  8. Skin rejuvenation with non-invasive pulsed electric fields.

    PubMed

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P; Albadawi, Hassan; Felix Broelsch, G; Watkins, Michael T; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C; Austen, William G; Yarmush, Martin L

    2015-05-12

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  9. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  10. Manipulation of red blood cells with electric field

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  11. Electric-field control of magnetic moment in Pd

    PubMed Central

    Obinata, Aya; Hibino, Yuki; Hayakawa, Daichi; Koyama, Tomohiro; Miwa, Kazumoto; Ono, Shimpei; Chiba, Daichi

    2015-01-01

    Several magnetic properties have recently become tunable with an applied electric field. Particularly, electrically controlled magnetic phase transitions and/or magnetic moments have attracted attention because they are the most fundamental parameters in ferromagnetic materials. In this study, we showed that an electric field can be used to control the magnetic moment in films made of Pd, usually a non-magnetic element. Pd ultra-thin films were deposited on ferromagnetic Pt/Co layers. In the Pd layer, a ferromagnetically ordered magnetic moment was induced by the ferromagnetic proximity effect. By applying an electric field to the ferromagnetic surface of this Pd layer, a clear change was observed in the magnetic moment, which was measured directly using a superconducting quantum interference device magnetometer. The results indicate that magnetic moments extrinsically induced in non-magnetic elements by the proximity effect, as well as an intrinsically induced magnetic moments in ferromagnetic elements, as reported previously, are electrically tunable. The results of this study suggest a new avenue for answering the fundamental question of “can an electric field make naturally non-magnetic materials ferromagnetic?” PMID:26391306

  12. Coherent anti-Stokes Raman scattering under electric field stimulation

    NASA Astrophysics Data System (ADS)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  13. Electric Field Induced Superconductivity in Layered Materials

    NASA Astrophysics Data System (ADS)

    Ye, J. T.; Craciun, M. F.; Russo, S.; Morpurgo, M. F.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y.

    2011-03-01

    Using electric double layer (EDL) gating, large amount of carriers can be accumulated on a broad range of materials, which provides new opportunities in effectively manipulating their electronic properties in complementary with the chemical doping. In searching for novel transport phenomena, layered materials are advantageous because atomically flat surface can be easily fabricated using the graphene techniques. We used layered material: ZrNCl and graphite to act as the channel of EDL transistors. For both ZrNCl and graphene, we achieved high carrier density up to 1014 cm-2 , electrostatically. For graphene, we studied the high carrier density transport for graphene of 1-3 layers. Transport properties at the high carrier density exhibit clear layer dependence governed by the intrinsic band structures of graphene and its multi-layers. For ZrNCl EDL transistor, we observed metallic states at gate voltage higher than 3.5 V followed by gate-induced superconductivity after metal-insulator transition when the transistor was cooled down to about 15 K.

  14. Electric field measurements during supercharging events on the MAIMIK rocket experiment

    SciTech Connect

    Denig, W.F.; Maynard, N.C.; Burke, W.J. ); Maehlum, B.N. )

    1991-03-01

    The authors on the observation and analysis of quasi-DC electric fields measured during active electron emission from the MAIMIK sounding rocket. The MAIMIK mother-daughter tethered rocket comsisted of two separately instrumented payload sections which were detached in-flight. The daughter payload included a variable current, 8-keV electron accelerator and instrumentation to measure the vehicle potential relative to the ionosphere plasma. The electric field detector was part of the quiescent mother payload which separated from the daughter at a constant speed. Of particular interest to the present study were the observations of impulsive electric fields measured at the initiation of the beam for emission currents which drove the daughter payload into an overcharged state. At locations well removed from the active payload the electric field signature consisted of a 1- to 2-ms, monopolar impulse field that had a rapid risetime and a more gradual decay. The components of the vector field were examined using a cylindrical coordinate system that placed the active payload at the origin and fixed the azimuthal injection angle of the beam. In general, the radial components of the field were directed out from the positively charged central body and presumed to be electrostatic origin. The tangential components had consistent positive deflections indicating that these field components were mostly electromagnetic in nature. They suggest that the measured impulse fields were due to a shielded ion blast wave propagating away from the highly charged central body with azimuthal asymmetries created by the distribution of space charge associated with a virtual cathode and escaping beam electrons. The time-varying electrostatic fields drove transient Hall currents that were carried by cold electrons E {times} B drifting near the head of the blast wave.

  15. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.

    PubMed

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-02-07

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimate electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r=0.89) and depth (r=0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials.

  16. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    PubMed Central

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.4 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.89) and depth (r = 0.84) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  17. On the High- and Low- Altitude Limits of the Auroral Electric Field Region

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Lu, G.; Burch, J. L.; Winningham, J. D.; Frank, L. A.; Craven, J. D.; Peterson, W. K.; Heelis, R. A.

    1993-01-01

    Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both die high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through die auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are approx. 1 kV potentials observed, typically associated with polar cap or 'theta' arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (approx. 2000 km) near the

  18. On the high- and low-altitude limits of the auroral electric field region

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Lu, G.; Burch, J. L.; Winningham, J. D.; Frank, L. A.; Craven, J. D.; Peterson, W. K.; Heelis, R. A.

    Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both the high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through the auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are -1 kV potentials observed, typically associated with polar cap or "theta" arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (˜2000 km) near the edges of the arc

  19. Analytical and numerical investigations of bubble behavior in electric fields

    NASA Astrophysics Data System (ADS)

    Vorreiter, Janelle Orae

    The behavior of gas bubbles in liquids is important in a wide range of applications. This study is motivated by a desire to understand the motion of bubbles in the absence of gravity, as in many aerospace applications. Phase-change devices, cryogenic tanks and life-support systems are some of the applications where bubbles exist in space environments. One of the main difficulties in employing devices with bubbles in zero gravity environments is the absence of a buoyancy force. The use of an electric field is found to be an effective means of replacing the buoyancy force, improving the control of bubbles in space environments. In this study, analytical and numerical investigations of bubble behavior under the influence of electric fields are performed. The problem is a difficult one in that the physics of the liquid and the electric field need to be considered simultaneously to model the dynamics of the bubble. Simplifications are required to reduce the problem to a tractable form. In this work, for the liquid and the electric field, assumptions are made which reduce the problem to one requiring only the solution of potentials in the domain of interest. Analytical models are developed using a perturbation analysis applicable for small deviations from a spherical shape. Numerical investigations are performed using a boundary integral code. A number of configurations are found to be successful in promoting bubble motion by varying properties of the electric fields. In one configuration, the natural frequencies of a bubble are excited using time-varying electric and pressure fields. The applied electric field is spatially uniform with frequencies corresponding to shape modes of the bubble. The resulting bubble velocity is related to the strength of the electric field as well as the characteristics of the applied fields. In another configuration, static non-uniform fields are used to encourage bubble motion. The resulting motion is related to the degree of non

  20. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    NASA Astrophysics Data System (ADS)

    Anderson, L. E.

    1992-06-01

    Studies were conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function; (2) experiments on cancer development in animals; and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats were shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies were conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels were shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements were performed which form the basis for animals and human exposure comparisons.

  1. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    SciTech Connect

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  2. Additional electric field in real trench MOS barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  3. Electric field assisted switching in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wang, Weigang; Li, Mingen; Hagemen, Stephen; Chien, C. L.

    2012-02-01

    It is of great interest to acquire large effects of electric field on magnetic properties, partly driven by the premise that voltage-controlled magnetization reversal would be far more energy efficient and be compatible with the ubiquitous voltage-controlled semiconductor devices. Normally the effect of electric field in metallic systems is negligible because the electric field can only penetrate into the materials by a few monolayers due to screening by the free electrons. Here we report the pronounced effects of electric field in magnetic tunnel junctions (MTJs) with very thin CoFeB electrodes, where the magnetic anisotropy originates solely from the CoFeB/MgO interfaces. The MTJs have the key structure of Co40Fe40B20(1.2-1.3nm)/MgO(1.2-2nm)/Co40Fe40B20(1.6nm) and the tunneling magnetoresistance in all junctions is in excess of 100%. Due to the redistribution of electrons among the different 3d orbitals of Fe and Co, the perpendicular magnetic anisotropy of the CoFeB electrodes can be significantly modified by an applied electric field. As a result, the coercivity, the magnetic configuration, and the tunneling magnetoresistance of the MTJs can be manipulated by voltage pulses, such that the high and low resistance states of the MTJ can be reversibly controlled by voltages less than 1.5 V in magnitude and with much smaller current densities.

  4. Electric field detection in sawfish and shovelnose rays.

    PubMed

    Wueringer, Barbara E; Squire, Lyle; Kajiura, Stephen M; Tibbetts, Ian R; Hart, Nathan S; Collin, Shaun P

    2012-01-01

    In the aquatic environment, living organisms emit weak dipole electric fields, which spread in the surrounding water. Elasmobranchs detect these dipole electric fields with their highly sensitive electroreceptors, the ampullae of Lorenzini. Freshwater sawfish, Pristis microdon, and two species of shovelnose rays, Glaucostegus typus and Aptychotrema rostrata were tested for their reactions towards weak artificial electric dipole fields. The comparison of sawfishes and shovelnose rays sheds light on the evolution and function of the elongated rostrum ('saw') of sawfish, as both groups evolved from a shovelnose ray-like ancestor. Electric stimuli were presented both on the substrate (to mimic benthic prey) and suspended in the water column (to mimic free-swimming prey). Analysis of around 480 behavioural sequences shows that all three species are highly sensitive towards weak electric dipole fields, and initiate behavioural responses at median field strengths between 5.15 and 79.6 nV cm(-1). The response behaviours used by sawfish and shovelnose rays depended on the location of the dipoles. The elongation of the sawfish's rostrum clearly expanded their electroreceptive search area into the water column and enables them to target free-swimming prey.

  5. Electric Field Detection in Sawfish and Shovelnose Rays

    PubMed Central

    Wueringer, Barbara E.; Jnr, Lyle Squire; Kajiura, Stephen M.; Tibbetts, Ian R.; Hart, Nathan S.; Collin, Shaun P.

    2012-01-01

    In the aquatic environment, living organisms emit weak dipole electric fields, which spread in the surrounding water. Elasmobranchs detect these dipole electric fields with their highly sensitive electroreceptors, the ampullae of Lorenzini. Freshwater sawfish, Pristis microdon, and two species of shovelnose rays, Glaucostegus typus and Aptychotrema rostrata were tested for their reactions towards weak artificial electric dipole fields. The comparison of sawfishes and shovelnose rays sheds light on the evolution and function of the elongated rostrum (‘saw’) of sawfish, as both groups evolved from a shovelnose ray-like ancestor. Electric stimuli were presented both on the substrate (to mimic benthic prey) and suspended in the water column (to mimic free-swimming prey). Analysis of around 480 behavioural sequences shows that all three species are highly sensitive towards weak electric dipole fields, and initiate behavioural responses at median field strengths between 5.15 and 79.6 nVcm−1. The response behaviours used by sawfish and shovelnose rays depended on the location of the dipoles. The elongation of the sawfish’s rostrum clearly expanded their electroreceptive search area into the water column and enables them to target free-swimming prey. PMID:22848543

  6. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  7. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  8. Formation of electric dipoles in pea stem tissue due to an electric field

    NASA Astrophysics Data System (ADS)

    Ahmadi, Fatemeh; Farahani, Elham

    2016-07-01

    For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.

  9. Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano scale SOI MOSFETs

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2017-04-01

    To achieve reliable transistors, we propose a new silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) with an amended electric field in the channel for improved electrical and thermal performance, with an emphasis on current leakage improvement. The amended electric field leads to lower electric field crowding and thereby we assume enhanced reliability, leakage current, gate-induced drain leakage (GIDL), and electron temperature. To modify the electric field distribution, an additional rectangular metal region (RMR) is utilized in the buried oxide of the SOI MOSFET. The location and dimensions of the RMR have been carefully optimized to achieve the best results. The electrical, thermal, and radiofrequency characteristics of the proposed structure were analyzed using two-dimensional (2-D) numerical simulations and compared with the characteristics of the conventional, fully depleted SOI MOSFET (C-SOI). Also, critical short-channel effects (SCEs) such as threshold voltage, drain-induced barrier lowering (DIBL), subthreshold slope degradation, hot-carrier effect, GIDL, and leakage power consumption are improved. According to the results obtained, the proposed nano SOI MOSFET is a reliable device, especially for use in low-power and high-temperature applications.

  10. ELECTRIC AND MAGNETIC FIELDS <100 KHZ IN ELECTRIC AND GASOLINE-POWERED VEHICLES.

    PubMed

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m(-1) for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m(-1) for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model.

  11. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  12. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  13. Symmetry breaking and onset of cosmic acceleration in scalar field models

    NASA Astrophysics Data System (ADS)

    Mohseni Sadjadi, H.; Honardoost, M.; Sepangi, H. R.

    2016-12-01

    We propose a new scenario for the onset of positive acceleration of our Universe based on symmetry breaking in coupled dark energy scalar field model. In a symmetry breaking process where the scalar field rolls down its own potential, the potential reduction is not in favor of acceleration. In our model, when dark matter density becomes less than a critical value, the shape of the effective potential is changed and, the quintessence field climbs up along its own potential while rolls down the effective potential. We show that this procedure may establish the positivity of the potential required for the Universe to accelerate. In addition, we show that by choosing an appropriate interaction between dark sectors there is the possibility that the scalar field resides in a new vacuum giving rise to a positive cosmological constant which is responsible for a permanent late time acceleration.

  14. Electric field enhanced hydrogen storage on polarizable materials substrates.

    PubMed

    Zhou, J; Wang, Q; Sun, Q; Jena, P; Chen, X S

    2010-02-16

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H(2) molecules is adsorbed on a BN sheet, the binding energy per H(2) molecule increases from 0.03 eV/H(2) in the field-free case to 0.14 eV/H(2) in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H(2) can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H(2) molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.

  15. Investigation of RF Emissions from Electric Field Dominated Plasmas

    DTIC Science & Technology

    1989-03-31

    Equilibrium and Force 3 Balance in Electric Field Dominated Plasmas". This paper brought to bear experimental evidence that macroscopic stability of electric...continuity-equation oscillation has been recognized in standard monographs and compilations such as A. I. Akhiezer et 5al. Plasma Electrodynamics , and F...has been recognized in standard monographs and compilations such as A. I. Akhiezer et al. Plasma Electrodynamics , and F. Cap’s Handbook on Plasma

  16. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  17. Electric field effect in ultrathin black phosphorus

    NASA Astrophysics Data System (ADS)

    Koenig, Steven P.; Doganov, Rostislav A.; Schmidt, Hennrik; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-01

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO2 and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm2/Vs and drain current modulation of over 103. At low temperatures, the on-off ratio exceeds 105, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  18. Transduction of nanovolt signals: Limits of electric-field detection

    NASA Astrophysics Data System (ADS)

    Kalmijn, J.

    1989-11-01

    Life scientists discussed the extreme electrical sensitivity of marine sharks, skates, and rays. After reviewing the results of earlier studies on the electric sense at the animal and system levels, the participants discussed the basic process of signal transduction in terms of voltage-sensitive ionic channels. Struck by the small charge displacements needed for excitation, they strongly recommended that sensory biologists, physiologists, and biophysicists join in a concerted effort to initiate new research on the ionic mechanisms of electric field detection. To obtain detailed information on the electroreceptive membrane and its ionic channels, high resolution recording techniques will be mandatory.

  19. Control of focusing fields for positron acceleration in nonlinear plasma wakes using multiple laser modes

    SciTech Connect

    Yu, L.-L. Li, F.-Y.; Chen, M.; Weng, S.-M.; Schroeder, C. B.; Benedetti, C.; Esarey, E.; Sheng, Z.-M.

    2014-12-15

    Control of transverse wakefields in the nonlinear laser-driven bubble regime using a combination of Hermite-Gaussian laser modes is proposed. By controlling the relative intensity ratio of the two laser modes, the focusing force can be controlled, enabling matched beam propagation for emittance preservation. A ring bubble can be generated with a large longitudinal accelerating field and a transverse focusing field suitable for positron beam focusing and acceleration.

  20. Role of the electric double layer in the ice nucleation of water droplets under an electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Xiong; Li, Xin-Hao; Chen, Min

    2016-09-01

    Figuring out the mechanism of ice nucleation on charged aerosols or in thunderstorms is of fundamental importance in atmospheric science. However, findings on whether the electric field promotes or suppresses heterogeneous ice nucleation are conflicting. In this work, we design an apparatus and test the influence of the electric field on ice nucleation by freezing a series of deionized water droplets resting on solid surfaces with an electric field perpendicular to the substrates. Results show that ice nucleation is obviously promoted under the electric field and is independent of the field direction. Theoretic analyses show that the promotion is due to the reduction of Gibbs free energy which can be partially rationalized by the electric field sustained in the electric double layer at the solid-water interface, with strength about two orders higher than that of the external electric field. Moreover, water-droplet deformation under the electric field is not expected to be the cause of the ice-nucleation promotion.