Science.gov

Sample records for accelerating electric field

  1. Electron acceleration by parallel and perpendicular electric fields during magnetic reconnection without guide field

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L.-J.; Germaschewski, K.; Bhattacharjee, A.

    2015-11-01

    Electron acceleration due to the electric field parallel to the background magnetic field during magnetic reconnection with no guide field is investigated by theory and two-dimensional electromagnetic particle-in-cell simulations and compared with acceleration due to the electric field perpendicular to the magnetic field. The magnitude of the parallel electric potential shows dependence on the ratio of the plasma frequency to the electron cyclotron frequency as (ωpe/Ωe)-2 and on the background plasma density as nb-1/2. In the Earth's magnetotail, the parameter ωpe/Ωe˜9 and the background (lobe) density can be of the order of 0.01 cm-3, and it is expected that the parallel electric potential is not large enough to accelerate electrons up to 100 keV. Therefore, we must consider the effect of the perpendicular electric field to account for electron energization in excess of 100 keV in the Earth's magnetotail. Trajectories for high-energy electrons are traced in a simulation to demonstrate that acceleration due to the perpendicular electric field in the diffusion region is the dominant acceleration mechanism, rather than acceleration due to the parallel electric fields in the exhaust regions. For energetic electrons accelerated near the X line due to the perpendicular electric field, pitch angle scattering converts the perpendicular momentum to the parallel momentum. On the other hand, for passing electrons that are mainly accelerated by the parallel electric field, pitch angle scattering converting the parallel momentum to the perpendicular momentum occurs. In this way, particle acceleration and pitch angle scattering will generate heated electrons in the exhaust regions.

  2. The role of magnetic-field-aligned electric fields in auroral acceleration

    SciTech Connect

    Block, L.P.; Faelthammar, C.G. )

    1990-05-01

    Electric field measurements on the Swedish satellite Viking have confirmed and extended earlier observations on S3-3 and provided further evidence of the role of dc electric fields in auroral acceleration processes. On auroral magnetic field lines the electric field is strongly fluctuating both transverse and parallel to the magnetic field. The significance of these fluctuations for the auroral acceleration process is discussed. A definition of dc electric fields is given in terms of their effects on charged particles. Fluctuations below several hertz are experienced as dc by typical auroral electrons if the acceleration length is a few thousand kilometers. For ions the same is true below about 0.1 Hz. The magnetic-field-aligned (as well as the transverse) component of the electric field fluctuations has a maximum below 1 Hz, in a frequency range that appears as dc to the electrons but not to the ions. This allows it to cause a selective acceleration, which may be important in explaining some of the observed characteristics of auroral particle distributions. The electric field observations on Viking support the conclusion that magnetic-field-aligned potential drops play an important role in auroral acceleration, in good agreement with particle observations boht on Viking and on the DE satellites. They also show that a large part, or even all, of the accelerating potential drop may be accounted for by numerous weak (about a volt) electric double layers, in agreement with earlier observations on the S3-3 satellite and with an early theoretical suggestion by L. Block.

  3. Laser-driven electron acceleration in a plasma channel with an additional electric field

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-01

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  4. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    SciTech Connect

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  5. New Features of Time Domain Electric-Field Structures in the Auroral Acceleration Region

    SciTech Connect

    Mozer, F.S.; Ergun, R.; Temerin, M.; Cattell, C.; Dombeck, J.; Wygant, J.

    1997-08-01

    The Polar Satellite carries the first three-axis electric field detector flown in the magnetosphere. Its direct measurement of electric field components perpendicular and parallel to the local magnetic field has revealed new classes and features of electric field structures associated with the plasma acceleration that produces discrete auroras and that populates the magnetosphere with plasma of ionospheric origin. These structures, associated with the hydrogen ion cyclotron mode, include very large solitary waves, spiky field structures, wave envelopes of parallel electric fields, and very large amplitude, nonlinear, coherent ion cyclotron waves. {copyright} {ital 1997} {ital The American Physical Society}

  6. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Bárta, M.; Gan, W.; Liu, S.

    2016-08-01

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  7. FAST Observations of Acceleration Processes in the Cusp--Evidence for Parallel Electric Fields

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.. Jr.; Carlson, C.; McFadden, J.; Ergun, R.; Clemmons, J.; Klumpar D.; Strangeway, R.

    1999-01-01

    The existence of precipitating keV ions in the Earth's cusp originating at the magnetosheath provide unique means to test our understanding of particle acceleration and parallel electric fields in the lower altitude acceleration region. On numerous occasions, the FAST (The Fast Auroral Snapshot) spacecraft has encountered the Earth's cusp regions near its apogee of 4175 km which are characterized by their signatures of dispersed keV ion injections. The FAST instruments also reveal a complex microphysics inherent to many, but not all, of the cusp regions encountered by the spacecraft, that include upgoing ion beams and conics, inverted-V electrons, upgoing electron beams, and spikey DC-coupled electric fields and plasma waves. Detailed inspection of the FAST data often show clear modulation of the precipitating magnetosheath ions that indicate that they are affected by local electric potentials. For example, the magnetosheath ion precipitation is sometimes abruptly shut off precisely in regions where downgoing localized inverted-V electrons are observed. Such observations support the existence of a localized process, such as parallel electric fields, above the spacecraft which accelerate the electrons downward and consequently impede the precipitating ion precipitation. Other acceleration events in the cusp are sometimes organized with an apparent cellular structure that suggests Alfven waves or other large-scale phenomena are controlling the localized potentials. We examine several cusp encounters by the FAST satellite where the modulation of energetic session on acceleration particle populations reveals evidence of localized acceleration, most likely by parallel electric fields.

  8. Loss of spin entanglement for accelerated electrons in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Doukas, Jason; Hollenberg, Lloyd C. L.

    2009-05-01

    Using an open quantum system we calculate the time dependence of the concurrence between two maximally entangled electron spins with one accelerated uniformly in the presence of constant electric and magnetic fields, and the other at rest and isolated from fields. We find at high Rindler temperature that the proper time for the entanglement to be extinguished is proportional to the inverse of the acceleration cubed.

  9. Venus nightside ionospheric holes - The signatures of parallel electric field acceleration regions

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Curtis, S. A.

    1981-01-01

    Attention is given to the existence of 'holes', that is, regions of density depletion in the nightside Venus ionosphere associated with regions of radial magnetic fields. The properties of the electrons within the core of these holes are thought to suggest an acceleration process along the magnetic field lines, a process also suggested by the Venera 9 and 10 observations of energetic ions in the Venus tail. On the basis of the observational information, these Venusian plasma depletions are attributed to the presence of parallel electric fields similar to those observed in the terrestrial auroral ionosphere. The resulting electric field accelerates electrons down the field lines, heating the depleted thermal electron population within the hole and producing ionization below the hole. At the same time, ionospheric ions are accelerated outward toward the plasmasheet.

  10. Acceleration of ions by electric field pulses in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Liu, J.; Angelopoulos, V.; Runov, A.

    2015-06-01

    Intense (˜5-15 mV/m), short-lived (≤1 min) electric field pulses have been observed to accompany earthward propagating, dipolarizing flux bundles (flux tubes with a strong magnetic field) before they are stopped by the strong dipole field. Using Time History of Events and Macroscale Interactions during Substorms observations and test particle modeling, we investigate particle acceleration around L shell ˜7-9 in the nightside magnetosphere and demonstrate that such pulses can effectively accelerate ions with tens of keV initial energy to hundreds of keV. This acceleration occurs because the ion gyroradius is comparable to the spatial scale of the localized electric field pulse at the leading edge of the flux bundle before it stops. The proposed acceleration mechanism can reproduce observed spectra of high-energy ions. We conclude that the electric field associated with dipolarizing flux bundles prior to their stoppage in the inner magnetosphere provides a natural site for intense local ion acceleration.

  11. Particle acceleration by inductive electric fields in the Earth’s magnetosphere

    NASA Astrophysics Data System (ADS)

    Ilie, Raluca; Daldorff, Lars K. S.; Ganushkina, Natalia; Liemohn, Michael

    2015-04-01

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances, leading to an increase in the near Earth currents. These energetic particles are injected from the magnetotail into the inner magnetosphere through two primary mechanisms. One transport method is the potential-driven convection. This occurs during periods of southward Interplanetary Magnetic Field (IMF), which allows part of the dawn-to-dusk solar wind electric field to effectively map down to the polar ionosphere. The second transport process, substorm activity, involves a sudden reconfiguration of the magnetic field and the creation of transient induced electric fields. The relative contribution of potential and inductive electric field driven convection resulting in the development of the storm-time ring current has remained an unresolved question in Geospace research.Since the energy of charged particles can be altered only by means of electric fields, knowledge of the relative contribution of potential versus inductive electric fields at intensifying the hot ion population in the inner magnetosphere is required. However, it is not possible to distinguish the two terms by only measuring the electric field. Therefore assessing the importance of induced electric field is possible by thorough examination of the time varying magnetic field and current systems using global modeling of the entire system.The induced electric field is calculated as a 3D integration over the entire magnetosphere domain. However, though computationally challenging, the full volume integration approach removes the need to trace independent field lines and lifts the assumption that the magnetic field lines can be treated as frozen in a stationary ionosphere.In this work, we quantitatively assess the relative contributions on potential and inductive electric fields at driving plasma sheet ions into the inner magnetosphere, as well as

  12. Re-assessing how much parallel and perpendicular electric fields accelerate electrons during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Bessho, Naoki; Chen, Li-Jen; Germaschewski, Kai; Bhattacharjee, Amitava

    2014-10-01

    By means of 2-D PIC simulations applicable to reconnection in the Earth's magnetotail, we show that the parallel electric field accelerates electrons only up to 40 keV, and further acceleration above that energy in fact comes from the perpendicular electric field, which can explain observations of energetic electrons with energies greater than 100 keV. We show that the parallel potential, which is the integral of the parallel electric field along the field line, is proportional to (ωpe /Ωe) - 2, and also to (nb /n0) - 1 / 2, where ωpe /Ωe is the ratio of the plasma frequency to the electron cyclotron frequency, and nb /n0 is the ratio of the lobe density to the density of the current sheet. Applying the parameters in the Earth's magnetotail to the above relations, we demonstrate that the parallel potential is not more than 40 keV. In addition to pitch angle scattering from the parallel to the perpendicular velocity for electron beams along magnetic field, which was suggested in previous studies, energetic electrons accelerated by the perpendicular electric field experience pitch angle scattering from the perpendicular to the parallel velocity, which can isotropize plasma in the exhaust.

  13. Dynamics of Electric Fields Driving the Laser Acceleration of Multi-MeV Protons

    SciTech Connect

    Romagnani, L.; Borghesi, M.; Kar, S.; Fuchs, J.; Antici, P.; Audebert, P.; Ceccherini, F.; Macchi, A.; Cowan, T.; Grismayer, T.; Mora, P.; Pretzler, G.; Toncian, T.; Willi, O.; Schiavi, A.

    2005-11-04

    The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense ({approx}10{sup 18} W/cm{sup 2}) and short ({approx}1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.

  14. Evidence for parallel electric field particle acceleration in the dayside auroral oval

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Carlson, C. W.

    1980-01-01

    Electron and ion energy spectra and electron pitch angle distributions are presented for two sounding rocket flights in the dayside auroral zone. At times, effects of dc electric fields parallel to the magnetic field are evident in that: (1) within precipitation features, protons are decelerated by an amount of energy consistent with that which electrons gain and (2) electrons are sometimes aligned to within 3 deg (full width at half maximum) of the magnetic field. A maximum altitude for the accelerating region of several thousand kilometers is deduced from the narrow width of the pitch angle distribution and also from time-of-flight delays between the observation of accelerated electrons and decelerated protons.

  15. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2012-06-12

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  16. Three-dimensional Non-vacuum Pulsar Outer-gap Model: Localized Acceleration Electric Field in the Higher Altitudes

    NASA Astrophysics Data System (ADS)

    Hirotani, Kouichi

    2015-01-01

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  17. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    SciTech Connect

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  18. Transverse ion heating, field-aligned electron acceleration, and parallel electric fields in the auroral acceleration region: Modeling several FAST events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nguyen, T. T.; Jasperse, J. R.; Basu, B.

    2008-12-01

    Many of the ions in the magnetosphere originate in the ionosphere, whence they are extracted by wave heating perpendicular to the magnetic field. Much of this ion heating occurs in regions where electrons are also accelerated along the magnetic field, and the differing anisotropies lead to a charge separation which is balanced by a parallel electric field.a Using a recently developed model which includes turbulent heating,b,c we investigate the distribution of parallel electric fields in several events measured with the FAST satellite. We investigate the effects of different model closures on the predicted parallel electric fields. The goal of the research is to develop a physics-based module of ion outflow to include in global models of the magnetosphere. a Alfvén, H., and C.-G. Fälthammar (1963), Cosmical Electrodynamics: Fundamental Principles, Clarendon Press, Oxford. b Jasperse, J. R., et al. (2006), Phys. Plasmas 13, 072903. c Jasperse, J. R., et al. (2006), Phys. Plasmas 13, 112902.

  19. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  20. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  1. Particle in Cell Simulations of the Pulsar Y-Point -- Nature of the Accelerating Electric Field

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail

    2016-06-01

    Over the last decade, satellite observations have yielded a wealth of data on pulsed high-energy emission from pulsars. Several different models have been advanced to fit this data, all of which “paint” the emitting region onto a different portion of the magnetosphere.In the last few years, particle in cell simulations of pulsar magnetospheres have reached the point where they are able to self-consistently model particle acceleration and dissipation. One of the key findings of these simulations is that the region of the current sheet in and around the Y-point provides the highest rate of dissipation of Poynting flux (Belyaev 2015a). On the basis of this physical evidence, it is quite plausible that this region should be associated with the pulsed high energy emission from pulsars. We present high resolution PIC simulations of an axisymmetric pulsar magnetosphere, which are run using PICsar (Belyaev 2015b). These simulations focus on the particle dynamics and electric fields in and around the Y-point region. We run two types of simulations -- first, a force-free magnetosphere and second, a magnetosphere with a gap between the return current layer and the outflowing plasma in the polar wind zone. The latter setup is motivated by studies of pair production with general relativity (Philippov et al. 2015, Belyaev & Parfrey (in preparation)). In both cases, we find that the Y-point and the current sheet in its direct vicinity act like an “electric particle filter” outwardly accelerating particles of one sign of charge while returning the other sign of charge back to the pulsar. We argue that this is a natural behavior of the plasma as it tries to adjust to a solution that is as close to force-free as possible. As a consequence, a large E dot J develops in the vicinity of the Y-point leading to dissipation of Poynting flux. Our work is relevant for explaining the plasma physical mechanisms underlying pulsed high energy emission from pulsars.

  2. The role of the electron convection term for the parallel electric field and electron acceleration in MHD simulations

    SciTech Connect

    Matsuda, K.; Terada, N.; Katoh, Y.; Misawa, H.

    2011-08-15

    There has been a great concern about the origin of the parallel electric field in the frame of fluid equations in the auroral acceleration region. This paper proposes a new method to simulate magnetohydrodynamic (MHD) equations that include the electron convection term and shows its efficiency with simulation results in one dimension. We apply a third-order semi-discrete central scheme to investigate the characteristics of the electron convection term including its nonlinearity. At a steady state discontinuity, the sum of the ion and electron convection terms balances with the ion pressure gradient. We find that the electron convection term works like the gradient of the negative pressure and reduces the ion sound speed or amplifies the sound mode when parallel current flows. The electron convection term enables us to describe a situation in which a parallel electric field and parallel electron acceleration coexist, which is impossible for ideal or resistive MHD.

  3. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  4. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  5. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  6. Modifications of thick-target model: re-acceleration of electron beams by static and stochastic electric fields

    NASA Astrophysics Data System (ADS)

    Varady, M.; Karlický, M.; Moravec, Z.; Kašparová, J.

    2014-03-01

    Context. The collisional thick-target model (CTTM) of the impulsive phase of solar flares, together with the famous Carmichael, Sturrock, Hirayama, and Kopp-Pneuman (CSHKP) model, presented for many years a "standard" model, which straightforwardly explained many observational aspects of flares. On the other hand, many critical issues appear when the concept is scrutinised theoretically or with the new generation of hard X-ray (HXR) observations. The famous "electron number problem" or problems related to transport of enormous particle fluxes though the corona represent only two of them. To resolve the discrepancies, several modifications of the CTTM appeared. Aims: We study two of them based on the global and local re-acceleration of non-thermal electrons by static and stochastic electric fields during their transport from the coronal acceleration site to the thick-target region in the chromosphere. We concentrate on a comparison of the non-thermal electron distribution functions, chromospheric energy deposits, and HXR spectra obtained for both considered modifications with the CTTM itself. Methods: The results were obtained using a relativistic test-particle approach. We simulated the transport of non-thermal electrons with a power-law spectrum including the influence of scattering, energy losses, magnetic mirroring, and also the effects of the electric fields corresponding to both modifications of the CTTM. Results: We show that both modifications of the CTTM change the outcome of the chromospheric bombardment in several aspects. The modifications lead to an increase in chromospheric energy deposit, change of its spatial distribution, and a substantial increase in the corresponding HXR spectrum intensity. Conclusions: The re-acceleration in both models reduces the demands on the efficiency of the primary coronal accelerator, on the electron fluxes transported from the corona downwards, and on the total number of accelerated coronal electrons during flares.

  7. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  8. The role of waves and DC electric fields for electron heating and acceleration in the diffusion region

    NASA Astrophysics Data System (ADS)

    Graham, Daniel; Khotyaintsev, Yuri; Vaivads, Andris; Norgren, Cecilia; Andre, Mats; Lindqvist, Per-Arne; Le Contel, Olivier; Ergun, Robert; Goodrich, Katherine; Torbert, Roy; Burch, James; Russell, Christopher; Magnes, Werner; Giles, Barbara; Pollock, Craig; Mauk, Barry; Fuselier, Stephen

    2016-04-01

    Magnetic reconnection is a fundamental process in solar and astrophysical plasmas. The processes operating at electron spatial-scales, which enable magnetic field lines to reconnect, are generally difficult to resolve and identify. However, the recently launched Magnetospheric Multiscale (MMS) mission is specifically designed to resolve electron spatial scales. We use the MMS spacecraft to investigate the process operating within the diffusion region to determine the causes of electron heating and acceleration. In particular, we investigate the type of electrostatic and electromagnetic waves that develop and how they affect the electron distributions. We also compare the roles of wave-particle interactions with DC electric fields to determine which is responsible for the electron heating observed in diffusion regions.

  9. Large scale electron acceleration by parallel electric fields during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Le, A.; Daughton, W.

    2011-10-01

    Magnetic reconnection is an ubiquitous phenomenon in plasmas. It permits an explosive release of energy through changes in the magnetic field line topology. In the Earth's magnetotail, reconnection energizes electrons up to hundreds of keV and solar flares events can channel up to 50% of the magnetic energy into the electrons resulting in superthermal populations. Electron energization is also fundamentally important to astrophysical applications, where X-rays generated by relativistic electrons provide a unique window into the extreme environments. Here we show that during reconnection powerful energization of electrons by E∥ can occur over spatial scales which hugely exceed what previously thought possible. Thus, our results are contrary to a fundamental assumption that a hot plasma - a highly conducting medium for electrical current - cannot support any significant E∥ over length scales large compared to the small electron inertial length de = c /ωpe . In our model E∥ is supported by strongly anisotropic features in the electron distributions not permitted in standard fluid formulations, but routinely observed by spacecraft in the Earth's magnetosphere. This allows for electron energization in spatial regions that exceed the regular de scale electron diffusion region by at least three orders of magnitude. Magnetic reconnection is an ubiquitous phenomenon in plasmas. It permits an explosive release of energy through changes in the magnetic field line topology. In the Earth's magnetotail, reconnection energizes electrons up to hundreds of keV and solar flares events can channel up to 50% of the magnetic energy into the electrons resulting in superthermal populations. Electron energization is also fundamentally important to astrophysical applications, where X-rays generated by relativistic electrons provide a unique window into the extreme environments. Here we show that during reconnection powerful energization of electrons by E∥ can occur over spatial

  10. Large scale electron acceleration by parallel electric fields during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Le, A.; Daughton, W.

    2011-10-01

    Magnetic reconnection is an ubiquitous phenomenon in plasmas. It permits an explosive release of energy through changes in the magnetic field line topology. In the Earth's magnetotail, reconnection energizes electrons up to hundreds of keV and solar flares events can channel up to 50% of the magnetic energy into the electrons. Electron energization is also fundamentally important toastrophysical applications, where X-rays generated by relativistic electrons provide a unique window into the extreme environments. Here we show that during reconnection powerful energization of electrons by E∥ can occur over spatial scales which hugely exceed what previously thought possible. Thus, our results are contrary to a fundamental assumption that a hot plasma - a highly conducting medium for electrical current - cannot support any significant E∥ over length scales large compared to the small electron inertial length de = c /ωpe . In our model E∥ is supported by non-thermal and strongly anisotropic features in the electron distributions not permitted in standard fluid formulations, but routinely observed by spacecraft in the Earth's magnetosphere. This allows for electron energization in spatial regions that excide the regular de scale electron diffusion region by at least three orders of magnitude. This work was supported by NSF CAREER Award 0844620.

  11. Collective field accelerator

    DOEpatents

    Luce, John S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a .nu./.gamma. of .about. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam.

  12. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration

    SciTech Connect

    Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe

    2011-09-09

    A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.

  13. In-situ observation of electric-field-induced acceleration in crystal growth of tetrathiafulvalene-tetracyanoquinodimethane

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro

    2013-04-01

    In-situ observations of vapor-phase growth of tetrathiafulvalene (TTF)-tetracyanoquinodimethane (TCNQ) crystals under an electric field were conducted without influencing the actual crystal growth process. The shortest incubation time of TTF-TCNQ nuclei and the highest initial growth rate of the crystals are obtained on the anode side and in high electric field regions. It is demonstrated that the distribution of molecules thermally diffusing on the substrate surface is controlled by an external electric field. These results indicate the potential for selective growth of highly conductive organic wires for micro- and nanoscale wiring in organic nanodevices.

  14. A new method of measuring the poloidal magnetic and radial electric fields in a tokamak using a laser-accelerated ion-beam trace probe.

    PubMed

    Yang, X Y; Chen, Y H; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    Both the poloidal magnetic field (Bp) and radial electric field (Er) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both Bp and Er at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both Bp and Er. In this paper, we present the basic principle and some preliminary theoretical results. PMID:25430336

  15. Statistical altitude distribution of Cluster auroral electric fields, indicating mainly quasi-static acceleration below 2.8 RE and Alfvénic above

    NASA Astrophysics Data System (ADS)

    Li, B.; Marklund, G.; Alm, L.; Karlsson, T.; Lindqvist, P.-A.; Masson, A.

    2014-11-01

    Results are presented from a statistical study of high-altitude electric fields and plasma densities using Cluster satellite data collected during 9.5 years between 2 and 4 RE. The average electric fields are most intense on the nightside and associated with an extensive plasma density cavity, with densities of 1 cm-3 or less. The intense electric fields are concentrated in two regions, separated by an altitude gap at about 2.8 RE. Below this, the average electric field magnitudes reach about 50 mV/m (mapped to the ionosphere) between 22 and 01 magnetic local time (MLT). Above 3 RE, the fields are about twice as high and spread over a broader MLT range. These fields occur in a region where the (ΔE/ΔB)/VA ratio is close to unity, which suggests an Alfvénic origin. The intense low-altitude electric fields are interpreted to be quasi-static, associated with the auroral acceleration region. This is supported by their location in MLT and altitude, and by a (ΔE/ΔB)/VA ratio much below unity. The local electric field minimum between the two regions indicates a partial closure of the electrostatic potentials in the lower region. These results show similarities with model results of reflected Alfvén waves by Lysak and Dum (1983), and with the O-shaped potential model, with associated wave-particle interaction at its top, proposed by Janhunen et al. (2000).

  16. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Wu, H. C.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.

    2015-02-01

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ˜2.74 × 1022 W/cm2, a quasi-monoenergetic proton beam with a peak energy of ˜1.5 GeV/u, density ˜10nc, and transverse size ˜1λ0 can be obtained.

  17. Optically thin H Lyman alpha production on outer planets - Low-energy proton acceleration in parallel electric fields and neutral H atom precipitation from ring current

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Singhal, R. P.

    1993-06-01

    A Monte Carlo model has been constructed to describe the energization and energy degradation of low-energy protons in an H2 atmosphere in the presence of parallel electric field. Numerical experiments have been performed to study the effect of initial proton energy, electric field, neutral number density, initial pitch angle, and cutoff limit on H Ly-alpha volume-emission rate. Energization of solar EUV-generated low-energy protons by parallel electric fields is incapable of producing optically thin Ly-alpha emissions on Uranus through direct collision with H2. However, nonthermal H atoms, produced through acceleration of protons in parallel electric fields, play an important role in enhancing the Ly-alpha intensity through resonant scattering of solar Ly-alpha flux; the resulting emissions are consistent with the broadening of the Ly-alpha line observed on Jupiter by IUE. The Monte Carlo model is also applied to the problem of Doppler-shifted H Ly-alpha emissions from the auroral atmosphere of Jupiter.

  18. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  19. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  20. MMS Observations of Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Goodrich, K.; Wilder, F. D.; Sturner, A. P.; Holmes, J.; Stawarz, J. E.; Malaspina, D.; Usanova, M.; Torbert, R. B.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Goldman, M. V.; Drake, J. F.; Phan, T.; Nakamura, R.

    2015-12-01

    Parallel electric fields are a necessary condition for magnetic reconnection with non-zero guide field and are ultimately accountable for topological reconfiguration of a magnetic field. Parallel electric fields also play a strong role in charged particle acceleration and turbulence. The Magnetospheric Multiscale (MMS) mission targets these three universal plasma processes. The MMS satellites have an accurate three-dimensional electric field measurement, which can identify parallel electric fields as low as 1 mV/m at four adjacent locations. We present preliminary observations of parallel electric fields from MMS and provide an early interpretation of their impact on magnetic reconnection, in particular, where the topological change occurs. We also examine the role of parallel electric fields in particle acceleration. Direct particle acceleration by parallel electric fields is well established in the auroral region. Observations of double layers in by the Van Allan Probes suggest that acceleration by parallel electric fields may be significant in energizing some populations of the radiation belts. THEMIS observations also indicate that some of the largest parallel electric fields are found in regions of strong field-aligned currents associated with turbulence, suggesting a highly non-linear dissipation mechanism. We discuss how the MMS observations extend our understanding of the role of parallel electric fields in some of the most critical processes in the magnetosphere.

  1. Electric Field Lines

    NASA Astrophysics Data System (ADS)

    Arribas, E.; Gallardo, C.; Molina, M.; Sanjosé, V.

    We present the computer program called LINES which is able to calculate and visualize the electric field lines due to seven different discrete configurations of electric point charges. Also we show two examples of the graphic screens generated by LINES.

  2. Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target

    SciTech Connect

    Zou, D. B.; Zhuo, H. B. Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ge, Z. Y.; Wu, H. C.

    2015-02-15

    A foil-in-cone target is proposed to enhance stable laser-radiation-pressure-driven proton acceleration by avoiding the beam degradation in whole stage of acceleration. Two and three-dimensional particle-in-cell simulations demonstrate that the guiding cone can substantially improve the spectral and spatial properties of the ion beam and lead to better preservation of the beam quality. This can be attributed to the focusing effect of the radial sheath electric fields formed on the inner walls of the cone, which co-move with the accelerated foil and effectively suppress the undesirable transverse explosion of the foil. It is shown that, by using a transversely Gaussian laser pulse with intensity of ∼2.74 × 10{sup 22 }W∕cm{sup 2}, a quasi-monoenergetic proton beam with a peak energy of ∼1.5 GeV/u, density ∼10n{sub c}, and transverse size ∼1λ{sub 0} can be obtained.

  3. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    Observations of plasmas and electric field activity within regions of auroral particle acceleration have verified the existence of electric fields with components parallel to the magnetic field over large altitude regions. Evidence is presented which indicates that small-ampliatude double layers along the auroral magnetic field lines may provide a mechanism for the maintenance of auroral ion potential. Evidence is also presented of downward-directed parallel electric fields along the magnetic field lines in the return current region. It is suggested that the downward electric fields may have significant effects on ion trajectories, and further theoretical investigation of the effects of downward parallel electric fields on ion conic formation is recommended.

  4. Pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  5. Distillation under electric fields

    SciTech Connect

    Shah, V.M.; Blankenship, K.D.; Tsouris, C.

    1997-11-01

    Distillation Is the most common separation process used in the chemical and petroleum industry. Major limitations in the applicability and efficiency of distillation come from thermodynamic equilibria, that is, vapor-liquid equilibria (VLE), and heat and mass transfer rates. In this work, electric fields are used to manipulate the VLE of mixtures. VLE experiments are performed for various binary mixtures in the presence of electric fields on the order of a few kilovolts per centimeter. The results show that the VLE is changed by electric fields, with changes in the separation factor as high as 10% being observed. Batch distillation experiments are also carried out for binary mixtures of 2-propanol and water with and without an applied electric field. Results show enhanced distillation rates and separation efficiency in the presence of an electric field but decreased separation enhancement when the electric current is increased. The latter phenomenon is caused by the formation at the surface of the liquid mixture of microdroplets that are entrained by the vapor. These observations suggest that there should be an electric field strength for each system for which the separation enhancement is maximum.

  6. Electrical stimulation to accelerate wound healing

    PubMed Central

    Thakral, Gaurav; LaFontaine, Javier; Najafi, Bijan; Talal, Talal K.; Kim, Paul; Lavery, Lawrence A.

    2013-01-01

    Background There are several applications of electrical stimulation described in medical literature to accelerate wound healing and improve cutaneous perfusion. This is a simple technique that could be incorporated as an adjunctive therapy in plastic surgery. The objective of this review was to evaluate the results of randomized clinical trials that use electrical stimulation for wound healing. Method We identified 21 randomized clinical trials that used electrical stimulation for wound healing. We did not include five studies with treatment groups with less than eight subjects. Results Electrical stimulation was associated with faster wound area reduction or a higher proportion of wounds that healed in 14 out of 16 wound randomized clinical trials. The type of electrical stimulation, waveform, and duration of therapy vary in the literature. Conclusion Electrical stimulation has been shown to accelerate wound healing and increase cutaneous perfusion in human studies. Electrical stimulation is an adjunctive therapy that is underutilized in plastic surgery and could improve flap and graft survival, accelerate postoperative recovery, and decrease necrosis following foot reconstruction. PMID:24049559

  7. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  8. Classification of electrical discharges in DC Accelerators

    NASA Astrophysics Data System (ADS)

    Banerjee, Srutarshi; Deb, A. K.; Rajan, Rehim N.; Kishore, N. K.

    2016-08-01

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  9. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  10. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  11. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  12. Scalar fields and particle accelerators

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin

    2015-06-01

    The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked

  13. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  14. Potential structures and particle acceleration on auroral field lines

    NASA Astrophysics Data System (ADS)

    Gorney, D. J.

    1985-05-01

    In the 1970's major advances in the understanding of auroral processes were brought about by observations of plasmas and electric fields within the regions of space responsible for auroral particle acceleration. The major contribution of these observations was the verification of the existence of electric fields with components parallel to the magnetic field over large regions of altitude (1000 to 20000 kilometers). These electric fields constitute potential drops of several kilovolts, accelerating magnetospheric electrons downward to form the aurora and ionospheric ions upward, where they contribute significantly to the magnetospheric hot ion population. Perpendicular spatial scales of about 100 kilometers are most common, although finer scales have been observed embedded, and individual small amplitude double layers occur on much smaller parallel spatial scales. More recently, the same data sets have revealed the existance of about 100 V electric potential drops directed downward in return current regions. Downward electric fields are in a direction to accelerate electrons out of the ionsphere and tend to retard the propagation of ions upward. An association between upflowing electron beams and transversely heated ions at low altitude has been noted, and a casual relationship between downward electric fields and ion conics is suggested.

  15. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  16. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  17. Argonne plasma wake-field acceleration experiments

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Gai, W.; Konecny, R.; Norem, J.; Schoessow, P.; Simpson, J.

    1989-03-14

    Four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These wake-fields are of interest both in the laboratory, for acceleration and focusing of electrons and positrons in future linear colliders, and in nature as a possible cosmic ray acceleration mechanism. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory. Some of the topics discussed are: the Argonne Advanced Accelerator Test Facility; linear plasma wake-field theory; measurement of linear plasma wake-fields; review of nonlinear plasma wave theory; and experimental measurement of nonlinear plasma wake-fields. 25 refs., 11 figs.

  18. Electric Field Containerless Processing Technology

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Rhim, W. K.

    1985-01-01

    The objective of this task is to develop the science and technology base required to design and construct a high temperature electric field positioning module that could be used by materials scientists to conduct containerless science experiments in a low gravity environment. Containerless science modules that employ electric fields to position and manipulate samples offer several advantages over acoustic or electromagnetic systems. The electric field system will operate not only at atmospheric pressures but also in a vacuum, in contrast to the acoustic modules which can only operate in atmosphere where the acoustic forces are sufficient. The electric field technique puts minimum energy into the sample, whereas the electromagnetic system can deposit energy into the sample through eddy current heat as well as physical mixing in the sample. Two types of electric field modules have been constructed and tested to date. One employs a charged sample and uses electrostatic forces to position and control the sample. The second type of module induces electrical polarization of the sample and electric field gradients to position and control the sample.

  19. Introducing electric fields

    NASA Astrophysics Data System (ADS)

    Roche, John

    2016-09-01

    The clear introduction of basic concepts and definitions is crucial for teaching any topic in physics. I have always found it difficult to teach fields. While searching for better explanations I hit on an approach of reading foundational texts and electromagnetic textbooks in ten year lots, ranging from 1840 to the present. By combining this with modern techniques of textual interpretation I attempt to clarify three introductory concepts: how the field is defined; the principle of superposition and the role of the electrostatic field in a circuit.

  20. Electric and magnetic field measurements

    NASA Astrophysics Data System (ADS)

    McKnight, R. H.; Kotter, F. R.; Misakian, M.; Ortiz, P.

    1981-02-01

    The NBS program concerned with developing methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion-related electrical quantities in the vicinity of high-voltage direct current (HVDC) transmission lines is described. Apparatus designed to simulate the transmission line environment is also considered.

  1. Electric and magnetic field measurements

    NASA Astrophysics Data System (ADS)

    McKnight, R. H.; Kotter, F. R.; Misakian, M.; Hagler, J. N.

    1982-07-01

    Methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion related electrical quantities in the vicinity of high voltage direct current transmission lines are developed. Apparatus designed to simulate the transmission line environment are also evaluated.

  2. Microwave electric field sensing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  3. THOR Electric Field Instrument - EFI

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri; Bale, Stuart D.; Bonnell, John W.; Lindqvist, Per-Arne; Phal, Yamuna; Rothkaehl, Hanna; Soucek, Jan; Vaivads, Andris; Åhlen, Lennart

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) will measure the vector electric field from 0 to 200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above ~1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic scale plasma

  4. Electric fields and quantum wormholes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  5. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  6. Electrical Coupling Efficiency of Inductive Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Martin, Adam K.; Eskridge, Richard H.

    2005-01-01

    A single-stage pulsed inductive plasma accelerator is modeled as an inductive mass-driver. The plasma is treated as a rigid slug, which acts as the armature. The system is a transformer, with the drive coil serving as the primary and the slug as the secondary. We derive a set of coupled dynamic-circuit equations, which depend on five dimensionless coefficients, and on the functional form of the mutual inductance profile, M (z). For a given coil geometry, M (z) was determined experimentally and compared to the results of calculations carried out with QuickField. The equations are solved with various coefficient values, in order to determine the conditions that yield high efficiencies. It was found that the coupling efficiency can be quite high and likely scales with power, although this does not preclude operation at lower power with acceptable efficiency. The effect of an imbedded magnetic bias flux, as for the case of a plasmoid thruster, was also included in the calculations.

  7. Electric fields in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.

    1972-01-01

    Two techniques, tracking the motions of Ba(+) clouds and measuring the differences in floating potential between symmetric double probes, were successful in: (1) demonstrating the basic convective nature of magnetospheric electric fields, (2) mapping global patterns of convection at upper ionosphere levels, and (3) revealing the physics of electric currents in the ionosphere and the importance of magnetosphere-ionosphere feedback in altering the imposed convection.

  8. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  9. High-field dipoles for future accelerators

    SciTech Connect

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  10. Influence of electric field on cellular migration

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields (EFs) and respond to them with a directed migratory movement. Dictyostelium discoideum (D.d.) cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an EF. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. Whereas genes and proteins that mediate the electric sensing as well as that define the migration direction have been previously investigated in D.d. cells, a deeper knowledge about the cellular kinematic effects caused by the EF is still lacking. Here we show that besides triggering a directional bias the electric field influences the cellular kinematics by accelerating the movement of cells along their path. We found that the migratory velocity of the cells in an EF increases linearly with the exposure time. Through the analysis of the PI3K and Phg2 distribution in the cytosol and of the cellular adherence to the substrate we aim at elucidating whereas this speed up effect in the electric field is due to either a molecular signalling or the interaction with the substrate. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  11. Electrophoresis in strong electric fields.

    PubMed

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  12. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied. PMID:27332828

  13. PIC simulation of electrodeless plasma thruster with rotating electric field

    NASA Astrophysics Data System (ADS)

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-01

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  14. PIC simulation of electrodeless plasma thruster with rotating electric field

    SciTech Connect

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-27

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  15. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  16. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  17. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  18. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  19. Apparatuses and methods for generating electric fields

    SciTech Connect

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  20. Nanoconfined water under electric field

    NASA Astrophysics Data System (ADS)

    Luzar, Alenka; Bratko, D.; Daub, C. D.

    2010-03-01

    We study the effect of electric field on interfacial tension of nanoconfined water [1,2] using molecular simulations. Our analysis and simulations confirm that classical electrostriction characterizes usual electrowetting behavior in nanoscale hydrophobic channels and nanoporous materials [3]. We suggest a new mechanism to orient nanoparticles by an applied electric field even when the particles carry no charges or dipoles of their own. Coupling to the field can be accomplished trough solvent-mediated interaction between the electric field and a nanoparticle [4]. For nanoscale particles in water, we find the response to the applied field to be sufficiently fast to make this mechanism relevant for biological processes, design of novel nanostructures and sensors, and development of nanoengineering methods [5]. [1]C. D. Daub, D. Bratko, K. Leung and A. Luzar, J. Phys. Chem. C 111, 505 (2007). [2] D. Bratko, C. D. Daub, K. Leung and A. Luzar, J. Am. Chem. Soc. 129, 2504 (2007) [3] D. Bratko, C. D. Daub and A. Luzar, Phys. Chem. Chem. Phys. 10, 6807 (2008). [4] D. Bratko, C. D. Daub and A. Luzar, Faraday Discussions 141, 55 (2009). [5] C. D. Daub, D. Bratko, T. Ali and A. Luzar, Phys. Rev. Lett. 103, 207801 (2009).

  1. Electric Field Mediated Droplet Centering

    SciTech Connect

    Bei, Z.-M.; Jones, T.B.; Tucker-Schwartz, A.; Harding, D.R.

    2010-03-12

    Double emulsion droplets subjected to a uniform ac electric field self-assemble into highly concentric structures via the dipole/dipole force if the outer droplet has a higher dielectric constant than the suspending liquid. The dielectric constant of the inner droplet has no influence. To minimize field-induced droplet distortion, the liquids must be density matched to ~0.1%. Centering of ~3 to 6 mm diameter droplets is achieved within ~60 s for field strengths of ~10^4 V_rms /m in liquids of viscosity ~10 cP. Effective centering depends strongly on frequency if the outer shell is conductive.

  2. Mapping of acceleration field in FSA configuration of a LIS

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.; Monteduro, L.; Giuffreda, E.

    2016-05-01

    The Front Surface Acceleration (FSA) obtained in Laser Ion Source (LIS) systems is one of the most interesting methods to produce accelerated protons and ions. We implemented a LIS to study the ion acceleration mechanisms. In this device, the plasma is generated by a KrF excimer laser operating at 248 nm, focused on an aluminum target mounted inside a vacuum chamber. The laser energy was varied from 28 to 56 mJ/pulse and focused onto the target by a 15 cm focal lens forming a spot of 0.05 cm in diameter. A high impedance resistive probe was used to map the electric potential inside the chamber, near the target. In order to avoid the effect of plasma particles investing the probe, a PVC shield was realized. Particles inevitably streaked the shield but their influence on the probe was negligible. We detected the time resolved profiles of the electric potential moving the probe from 4.7 cm to 6.2 cm with respect to the main target axis, while the height of the shield from the surface normal on the target symmetry center was about 3 cm. The corresponding electric field can be very important to elucidate the phenomenon responsible of the accelerating field formation. The behavior of the field depends on the distance x as 1/x1.85 with 28 mJ laser energy, 1/x1.77 with 49 mJ and 1/x1.74 with 56 mJ. The dependence of the field changes slightly for our three cases, the power degree decreases at increasing laser energy. It is possible to hypothesize that the electric field strength stems from the contribution of an electrostatic and an induced field. Considering exclusively the induced field at the center of the created plasma, a strength of some tenth kV/m could be reached, which could deliver ions up to 1 keV of energy. These values were justified by measurement performed with an electrostatic barrier.

  3. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  4. Cosmic Ray Acceleration in Force Free Fields

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling; Li, Hui; Kronberg, Philipp

    2002-11-01

    Galactic, extragalactic, and cluster magnetic fields are in apparent pressure equilibrium with the in-fall pressure of matter from the external medium, IGM, onto the Galaxies and clusters, and from the voids onto the galaxy sheets, (walls), implying fields of 5 , 0.5, & 20 μG respectively. Equipartition or minimum energy, implies β_CR=n_CRm_pc^2/(B^2/8π)˜= 1. The total energy in field and CRs is then ˜= 10^55 ergs Galactic and ˜= 4 ot 10^60 ergs per galaxy in the IGM and less within clusters, e.g., radio lobes, synchrotron "glow" in the IGM (Kronberg), and the UHECRs spectrum, Γ =-2.6. CRs escape from the Galaxy to the IGM, τ˜=10^7y, and similarly from the walls to the voids, ˜=10^8y, less than the GZK cut-off time provided B_galaxy>B_IGM>B_voids. The free energy of black hole formation, The Los Alamos model, is just sufficient. The lack of shocks at the boundaries of over pressured radio lobes and the need for high acceleration efficiency suggests eE_allel˜= eη_reconJ_allel, acceleration by reconnection of these force-free fields.

  5. Electric currents and voltage drops along auroral field lines

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1983-01-01

    An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.

  6. Electrostatic ion acceleration across a diverging magnetic field

    NASA Astrophysics Data System (ADS)

    Ichihara, D.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.

    2016-08-01

    Electrostatic ion acceleration across a diverging magnetic field, which is generated by a solenoid coil, permanent magnets, and a yoke between an upstream ring anode and a downstream off-axis hollow cathode, is investigated. The cathode is set in an almost magnetic-field-free region surrounded by a cusp. Inside the ring anode, an insulating wall is set to form an annular slit through which the working gas is injected along the anode inner surface, so the ionization of the working gas is enhanced there. By supplying 1.0 Aeq of argon as working gas with a discharge voltage of 225 V, the ion beam energy reached about 60% of a discharge voltage. In spite of this unique combination of electrodes and magnetic field, a large electrical potential drop is formed almost in the axial direction, located slightly upstream of the magnetic-field-free region. The ion beam current almost equals the equivalent working gas flow rate. These ion acceleration characteristics are useful for electric propulsion in space.

  7. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  8. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  9. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated. PMID:26651869

  10. Electrical field of electrical appliances versus distance: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Badariah Ahmad; Hani Nordin, Farah; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z. A. M.

    2013-06-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  11. Electric Field Effect in Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  12. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  13. On the field-aligned electric field in the polar cap

    NASA Astrophysics Data System (ADS)

    Wing, Simon; Fairfield, Donald H.; Johnson, Jay R.; Ohtani, Shin-I.

    2015-07-01

    The Johns Hopkins University Applied Physics Laboratory open-field line particle precipitation model predicts downward field-aligned electric field to maintain charge quasi-neutrality. Previous studies confirmed the existence of such electric fields. However, the present study shows that upward field-aligned electric field can be found within upward field-aligned current (FAC) region. In the upward FAC region, upward electric field that accelerates electron downward is seen with the occurrence rates of 82%-96%. In contrast, the occurrence rates in the downward FAC regions are 3%-11%. Polar rain electrons located in the upward FAC region adjacent to closed field lines often show a ramping up of energy with increasing latitude before reaching a plateau. This plateau may be attributed to the magnetosheath electrons that progressively have higher antisunward velocity and lower density with increasing distance from the subsolar point before they asymptotically reach the solar wind values.

  14. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  15. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph A. (Inventor); Eppich, Henry M. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  16. ELECTRIC-FIELD-ENHANCED FABRIC FILTRATION OF ELECTRICALLY CHARGED FLYASH

    EPA Science Inventory

    The paper summarizes measurements in which both external electric field (applied by electrodes at the fabric surface) and flyash electrical charge (controlled by an upstream corona precharger) are independent variables in a factorial performance experiment carried out in a labora...

  17. Temperature of the Vacuum Accelerated by External Fields

    NASA Astrophysics Data System (ADS)

    Labun, Lance; Rafelski, Johann

    2012-03-01

    Using the result of M"uller et al. [1], we show that in a constant electric field E, the electron fluctuations <ψψ> display a thermal Bose spectrum with temperature T=eE/mπ=a/π. This result contrasts with the Fermi spectrum and Hawking-Unruh temperature THU=a/2π expected from viewing the vacuum fluctuations of the electrons as accelerated [2,3]. We consider the temperature in the electric field as a function of magnetic moment g. We find that the temperature in the electric field arises from the Dirac spinor nature of the electron with g=2 and, setting arbitrarily g=1, we recover the Hawking-Unruh THU=a/2π with a Fermi spectrum. [4pt] [1] B. Muller, W. Greiner, and J. Rafelski, Phys. Lett. A63, 181 (1977).[0pt] [2] L.C.B. Crispino, A. Higuchi, George E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008).[0pt] [3] W.-Y. Pauchy Hwang and S. P. Kim, Phys.Rev. D80, 065004 (2009).

  18. The spherical probe electric field and wave experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Gustafsson, G.; Aggson, T.; Bostrom, R.; Block, L. P.; Cattell, C.; Decreau, P. M. E.; Egeland, A.; Falthammar, C.-G.; Grard, R. J. L.; Gurnett, D. A.

    1988-01-01

    The experiment is designed to measure the electric field and density fluctuations with sampling rates up to 40,000 samples/sec. The description includes Langmuir sweeps that can be made to determine the electron density and temperature, the study of nonlinear processes that result in acceleration of plasma, and the analysis of large scale phenomena where all four spacecraft are needed.

  19. Planned waveguide electric field breakdown studies

    SciTech Connect

    Wang Faya; Li Zenghai

    2012-12-21

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  20. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  1. Communication: Control of chemical reactions using electric field gradients

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  2. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts. PMID:27208928

  3. Influence of the ambient acceleration field upon acute acceleration tolerance in chickens

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Spangler, W. L.; Rhode, E. A.; Burton, R. R.

    1979-01-01

    The paper measured the acceleration tolerance of domestic fowl (Rhode Island Red cocks), acutely exposed to a 6 Gz field, as the time over which a normal heart rate can be maintained. This period of circulatory adjustment ends abruptly with pronounced bradycardia. For chickens which previously have been physiologically adapted to 2.5 -G field, the acute acceleration tolerance is greatly increased. The influence of the ambient acceleration field on the adjustment of the circulatory system appears to be a general phenomenon.

  4. Pair-production in inhomogeneous electric fields

    SciTech Connect

    Xue Shesheng

    2008-01-03

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  5. Combustion in an acceleration field: A survey of Soviet literature

    NASA Technical Reports Server (NTRS)

    Radloff, S. J.; Osborn, J. R.

    1980-01-01

    The effect of an acceleration field on the burning rate of a solid propellant was measured from -900g's to +1000g's using both double base and ammonium perchlorate based propellants. The acceleration fields were simulated using a centrifuge device and the burning rate was recorded. Both metalized and non-metalized variations of each propellant were tested and it was found that acceleration fields affect the burning rate. For the most part the theoretical predictions and the experimental results agreed.

  6. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  7. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2016-04-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  8. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  9. Displacement current and the generation of parallel electric fields.

    PubMed

    Song, Yan; Lysak, Robert L

    2006-04-14

    We show for the first time the dynamical relationship between the generation of magnetic field-aligned electric field (E||) and the temporal changes and spatial gradients of magnetic and velocity shears, and the plasma density in Earth's magnetosphere. We predict that the signatures of reconnection and auroral particle acceleration should have a correlation with low plasma density, and a localized voltage drop (V||) should often be associated with a localized magnetic stress concentration. Previous interpretations of the E|| generation are mostly based on the generalized Ohm's law, causing serious confusion in understanding the nature of reconnection and auroral acceleration. PMID:16712084

  10. Displacement Current and the Generation of Parallel Electric Fields

    SciTech Connect

    Song Yan; Lysak, Robert L.

    2006-04-14

    We show for the first time the dynamical relationship between the generation of magnetic field-aligned electric field (E{sub parallel}) and the temporal changes and spatial gradients of magnetic and velocity shears, and the plasma density in Earth's magnetosphere. We predict that the signatures of reconnection and auroral particle acceleration should have a correlation with low plasma density, and a localized voltage drop (V{sub parallel}) should often be associated with a localized magnetic stress concentration. Previous interpretations of the E{sub parallel} generation are mostly based on the generalized Ohm's law, causing serious confusion in understanding the nature of reconnection and auroral acceleration.

  11. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  12. Tuning Photoluminescence Response by Electric Field in Electrically Soft Ferroelectrics.

    PubMed

    Khatua, Dipak Kumar; Kalaskar, Abhijeet; Ranjan, Rajeev

    2016-03-18

    We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu^{3+} ion by electric field on a model system Eu-doped 0.94(Na_{1/2}Bi_{1/2}TiO_{3})-0.06(BaTiO_{3}). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field. PMID:27035321

  13. Resistive diffusion of force-free magnetic fields in a passive medium. III - Acceleration of flare particles

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1974-01-01

    A one-dimensional model is considered in which an increasingly large electric field is induced by a rapidly evolving magnetic field. In the case of solar flares, energies are estimated to which protons and electrons may be directly accelerated by such an induced electric field.

  14. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, Estelle; Esarey, Eric H.; Schroeder, Carl B.; Vay, Jean-Luc; Leemans, Wim P.; Bruhwiler, David L.; Cary, John R.; Cowan, Ben; Durant, Marc; Hamill, Paul; Messmer, Peter; Mullowney, Paul; Nieter, Chet; Paul, Kevin; Shasharina, Svetlana; Veitzer, Seth; Weber, Gunther; Rubel, Oliver; Ushizima, Daniela; Bethel, Wes; Wu, John

    2009-03-20

    Compared to conventional particle accelerators, plasmas can sustain accelerating fields that are thousands of times higher. To exploit this ability, massively parallel SciDAC particle simulations provide physical insight into the development of next-generation accelerators that use laser-driven plasma waves. These plasma-based accelerators offer a path to more compact, ultra-fast particle and radiation sources for probing the subatomic world, for studying new materials and new technologies, and for medical applications.

  15. Compact Electric- And Magnetic-Field Sensor

    NASA Technical Reports Server (NTRS)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  16. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  17. Hydrocarbon disperse systems in electric fields

    SciTech Connect

    Deinega, Y.F.

    1983-07-01

    On the basis of method for regulating the smooth adjustment of the charge of the disperse phase of hydrocarbon systems in electric fields from positive to negative values by means of surfactants, a schematic electrokinetic picture of the behavior of the systems is derived. Changes in the structure of the disperse systems in electric fields have a substantial effect on the rheological properties of the system. The effect of electric fields on the formation of crystallization-condensation structures, the mechanism of electrical conduction with a high rate of deformation, and the many practical applications of electrical effects on hydrocarbon disperse systems are also studied.

  18. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  19. Towards Integrated Design and Modeling of High Field Accelerator Magnets

    SciTech Connect

    Caspi, S.; Ferracin, P.

    2006-06-01

    The next generation of superconducting accelerator magnets will most likely use a brittle conductor (such as Nb{sub 3}Sn), generate fields around 18 T, handle forces that are 3-4 times higher than in the present LHC dipoles, and store energy that starts to make accelerator magnets look like fusion magnets. To meet the challenge and reduce the complexity, magnet design will have to be more innovative and better integrated. The recent design of several high field superconducting magnets have now benefited from the integration between CAD (e.g. ProE), magnetic analysis tools (e.g. TOSCA) and structural analysis tools (e.g. ANSYS). Not only it is now possible to address complex issues such as stress in magnet ends, but the analysis can be better detailed an extended into new areas previously too difficult to address. Integrated thermal, electrical and structural analysis can be followed from assembly and cool-down through excitation and quench propagation. In this paper we report on the integrated design approach, discuss analysis results and point out areas of future interest.

  20. Entanglement generation by electric field background

    SciTech Connect

    Ebadi, Zahra Mirza, Behrouz

    2014-12-15

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  1. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  2. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  3. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  4. Particle acceleration in the dynamic magnetotail: Orbits in self-consistent three-dimensional MHD fields

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Hesse, Michael

    1994-01-01

    The acceleration of protons in a dynamically evolving magnetotail is investigated by tracing particles in the fields obtained from a three-dimensional resistive magnetohydrodynamic (MHD) simulation. The MHD simulation, representing plasmoid formation and ejection through a near-Earth reconnection process, leads to cross-tail electric fields of up to approximately 4 mV/m with integrated voltages across the tail of up to approximately 200 kV. Energization of particles takes place over a wide range along the tail, due to the large spatial extent of the increased electric field together with the finite cross-tail extent of the electric field region. Such accelerated particles appear earthward of the neutral line over a significant portion of the closed field line region inside of the separatrix, not just in the vicinity of the separatrix. Two different acceleration processes are identified: a 'quasi-potential' acceleration, due to particle motion in the direction of the cross-tail electric field, and a 'quasi-betatron' effect, which consists of multiple energy gains from repeated crossings of the acceleration region, mostly on Speiser-type orbits, in the spatially varying induced electric field. The major source region for accelerated particles in the hundreds of keV range is the central plasma sheet at the dawn flank outside the reconnection site. Since this source plasma is already hot and dense, its moderate energization by a factor of approximately 2 may be sufficient to explain the observed increases in the energetic particle fluxes. Particles from the tail are the source of beams at the plasma sheet/lobe boundary. The temporal increase in the energetic particle fluxes, estimated from the increase in energy gain, occurs on a fast timescale of a few minutes, coincident with a strong increase in B(sub z), despite the fact that the inner boundary ('injection boundary') of the distribution of energized particles is fairly smooth.

  5. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  6. Electric fields are novel determinants of human macrophage functions.

    PubMed

    Hoare, Joseph I; Rajnicek, Ann M; McCaig, Colin D; Barker, Robert N; Wilson, Heather M

    2016-06-01

    Macrophages are key cells in inflammation and repair, and their activity requires close regulation. The characterization of cues coordinating macrophage function has focused on biologic and soluble mediators, with little known about their responses to physical stimuli, such as the electrical fields that are generated naturally in injured tissue and which accelerate wound healing. To address this gap in understanding, we tested how properties of human monocyte-derived macrophages are regulated by applied electrical fields, similar in strengths to those established naturally. With the use of live-cell video microscopy, we show that macrophage migration is directed anodally by electrical fields as low as 5 mV/mm and is electrical field strength dependent, with effects peaking ∼300 mV/mm. Monocytes, as macrophage precursors, migrate in the opposite, cathodal direction. Strikingly, we show for the first time that electrical fields significantly enhance macrophage phagocytic uptake of a variety of targets, including carboxylate beads, apoptotic neutrophils, and the nominal opportunist pathogen Candida albicans, which engage different classes of surface receptors. These electrical field-induced functional changes are accompanied by clustering of phagocytic receptors, enhanced PI3K and ERK activation, mobilization of intracellular calcium, and actin polarization. Electrical fields also modulate cytokine production selectively and can augment some effects of conventional polarizing stimuli on cytokine secretion. Taken together, electrical signals have been identified as major contributors to the coordination and regulation of important human macrophage functions, including those essential for microbial clearance and healing. Our results open up a new area of research into effects of naturally occurring and clinically applied electrical fields in conditions where macrophage activity is critical. PMID:26718542

  7. Modeling the electric field of weakly electric fish.

    PubMed

    Babineau, David; Longtin, André; Lewis, John E

    2006-09-01

    Weakly electric fish characterize the environment in which they live by sensing distortions in their self-generated electric field. These distortions result in electric images forming across their skin. In order to better understand electric field generation and image formation in one particular species of electric fish, Apteronotus leptorhynchus, we have developed three different numerical models of a two-dimensional cross-section of the fish's body and its surroundings. One of these models mimics the real contour of the fish; two other geometrically simple models allow for an independent study of the effects of the fish's body geometry and conductivity on electric field and image formation. Using these models, we show that the fish's tapered body shape is mainly responsible for the smooth, uniform field in the rostral region, where most electroreceptors are located. The fish's narrowing body geometry is also responsible for the relatively large electric potential in the caudal region. Numerical tests also confirm the previous hypothesis that the electric fish body acts approximately like an ideal voltage divider; this is true especially for the tail region. Next, we calculate electric images produced by simple objects and find they vary according to the current density profile assigned to the fish's electric organ. This explains some of the qualitative differences previously reported for different modeling approaches. The variation of the electric image's shape as a function of different object locations is explained in terms of the fish's geometrical and electrical parameters. Lastly, we discuss novel cues for determining an object's rostro-caudal location and lateral distance using these electric images. PMID:16943504

  8. Magnetic field-aligned electric potentials in nonideal plasma flows

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Hesse, M.; Birn, J.

    1991-01-01

    The electric field component parallel to the magnetic field arising from plasma flows which violate the frozen-in field condition of ideal magnetohydrodynamics is discussed. The quantity of interest is the potential U = integral E parallel ds where the integral is extended along field lines. It is shown that U can be directly related to magnetic field properties, expressed by Euler potentials, even when time-dependence is included. These results are applicable to earth's magnetosphere, to solar flares, to aligned-rotator models of compact objects, and to galactic rotation. On the basis of order-of-magnitude estimates, these results support the view that parallel electric fields associated with nonideal plasma flows might play an important role in cosmic particle acceleration.

  9. Manipulation of molecules with electric fields

    NASA Astrophysics Data System (ADS)

    Meijer, Gerard

    2004-05-01

    During the last few years we have been experimentally exploring the possibilities of manipulating neutral polar molecules with electric fields [1]. Arrays of time-varying, inhomogeneous electric fields have been used to reduce in a stepwise fashion the forward velocity of molecules in a beam. With this so-called 'Stark-decelerator', the equivalent of a LINear ACcelerator (LINAC) for charged particles, one can transfer the high phase-space density that is present in the moving frame of a pulsed molecular beam to a reference frame at any desired velocity; molecular beams with a computer-controlled (calibrated) velocity and with a narrow velocity distribution, corresponding to sub-mK longitudinal temperatures, can be produced. These decelerated beams offer new possibilities for collision studies, for instance, and enable spectroscopic studies with an improved spectral resolution; first proof-of-principle high-resolution spectroscopic studies have been performed. These decelerated beams have also been used to load neutral ammonia molecules in an electrostatic trap at a density of (better than) 10^7 mol/cm^3 and at temperatures of around 25 mK. In another experiment, a decelerated beam of ammonia molecules is injected in an electrostatic storage ring. The package of molecules in the ring can be observed for more than 50 distinct round trips, corresponding to 40 meter in circular orbit and almost 0.5 sec. storage time, sufficiently long for a first investigation of its transversal motion in the ring. A scaled up version of the Stark-decelerator and molecular beam machine has just become operational, and has been used to produce decelerated beams of ground-state OH and electronically excited (metastable) NH radicals. The NH radical is particularly interesting, as an optical pumping scheme enables the accumulation of decelerated bunches of slow NH molecules, either in a magnetic or in an optical trap. By miniaturizing the electrode geometries, high electric fields can be

  10. Substorm electric fields at nightside low latitude

    NASA Astrophysics Data System (ADS)

    Hashimoto, K. K.; Kikuchi, T.; Tomizawa, I.; Nagatsuma, T.

    2014-12-01

    The convection electric field penetrates from the polar ionosphere to low latitude and drives the DP2 currents in the global ionosphere with an intensified equatorial electrojet (EEJ). The electric field often reverses its direction, that is, the overshielding occurs and causes the equatorial counterelectrojet (CEJ) during storm and substorms. In this paper we report that the overshielding electric field is detected by the HF Doppler sounders at low latitude on the nightside. We analyzed the Doppler frequency of the HF radio signals propagated over 120 km in Japan at frequencies of 5 and 8 MHz and compared with the equatorial EEJ/CEJ during the substorm expansion phase. We found that the overshielding electric field reaches around 2 mV/m during major substorms (AL <-1800 nT). Taking the geometrical attenuation into account, we estimate the equatorial electric field to be about 1.5 mV/m. We also found that the correlation coefficient was 0.94 between the overshielding electric field and eastward equatorial electrojet at YAP on the night side. The electric field drives the eastward electrojets in the equatorial ionosphere on the night side. It is to be noted that the overshielding electric field is observed on the nightside at low latitude during the major substorms, while the convection electric field is dominant during smaller size substorms, as the CEJ flows on the dayside. These results suggest that the overshielding electric field associated with the Region-2 field-aligned currents becomes dominant during substorms at low latitude on the nightside as well as on the dayside.

  11. DC-like Phase Space Manipulation and Particle Acceleration Using Chirped AC Fields

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2009-06-17

    Waves in plasmas can accelerate particles that are resonant with the wave. A DC electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. We investigate the effect on a Hamiltonian distribution of an accelerating potential waveform, which could, for example, represent the average ponderomotive effect of two counterpropagating electromagnetic waves. In particular, we examine the apparent DC-like time-asymptotic response of the distribution in regimes where the potential structure is accelerated adiabatically. A highly resonant population within the distribution is always present, and we characterize its nonadiabatic response during wave-particle resonance using an integral method in the noninertial reference frame moving with the wave. Finally, we show that in the limit of infinitely slow acceleration of the wave, these highly resonant particles disappear and the response

  12. Large electric fields in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Boehm, M. H.; Cattell, C. A.; Temerin, M.; Wygant, J. R.

    1985-01-01

    The Langmuir solitonlike structures which contain plasma frequency oscillations of 500 mV/m and parallel electric fields of about 100 mV/m, observed in the auroral zone below 1000 km, are studied. The characteristics of electrostatic shocks that contain perpendicular fields of 1000 mV/m and parallel fields of 100 mV/m, and of double layers that have parallel fields of 10 mV/m are described. Observations of the geomagnetic tail reveal the presence of 100 mV/m turbulent electric fields and 5-10 mV/m quasi-static fields in the high latitude boundary of the plasma sheet, and inside the plasma sheet fields of 5-10 mV/m are detected. The large amplitude quasi-static electric field fluctuations of 100 mV/m and the dc fields of approximately 5 mV/m observed in the bow shock are examined.

  13. Electric field generation in martian dust devils

    NASA Astrophysics Data System (ADS)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2016-04-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Mars in situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the Macroscopic Triboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric Modeling System (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system. Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  14. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  15. Electric Field Dependence of the Electrical Conductivity of VOx

    NASA Astrophysics Data System (ADS)

    Garcia, N.

    1985-01-01

    We have observed non-ohmic behavior in the resistivity of VOx for very small electric fields. In an attempt to explain these results several models are considered. We suggest that the sharpening of the transition to the insulating state with applied electric field is due to a reduction of the length of time during which regions of the sample fluctuate into the insulating state.

  16. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  17. Scaling Laws of Lissajous Helicon Plasma Accelerator toward Electric Propulsion in Space

    NASA Astrophysics Data System (ADS)

    Funaki, Ikkou; Matsuoka, T.; Nakamura, T.; Yokoi, K.; Nishida, H.; Shamrai, K. P.; Tanikawa, T.; Hada, T.; Shinohara, S.

    2010-11-01

    Scaling law of Lissajous Helicon Plasma Accelerator(LHPA) is derived and tested via PIC simulations with code VORPAL. In the LHPA, rotating transverse electric field in external longitudinal uniform magnetic field drives azimuthal current via ExB drift then thrust is produced due to Lorentz force. An 1D analytical model is developed which includes field penetration and ExB current estimation based on trajectory analysis. Scaling law of thrust as a function of parameters of RF drive frequency, applied RF voltage, plasma density, size of the thruster will be shown.

  18. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  19. Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma

    SciTech Connect

    Qiao Bin; He, X.T.; Zhu Shaoping; Zheng, C.Y.

    2005-08-15

    The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field E{sub s}{sup l}, azimuthal quasistatic magnetic field B{sub s{theta}} and the axial one B{sub sz}) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by E{sub s}{sup l}, furthermore, B{sub s{theta}} pinches and B{sub sz} collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.

  20. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  1. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field

    PubMed Central

    Terasaka, K.; Yoshimura, S.; Ogiwara, K.; Aramaki, M.; Tanaka, M. Y.

    2010-01-01

    The flow structure of ions in a diverging magnetic field has been experimentally studied in an electron cyclotron resonance plasma. The flow velocity field of ions has been measured with directional Langmuir probes calibrated with the laser induced fluorescence spectroscopy. For low ion-temperature plasmas, it is concluded that the ion acceleration due to the axial electric field is important compared with that of gas dynamic effect. It has also been found that the detachment of ion stream line from the magnetic field line takes place when the parameter |fciLB∕Vi| becomes order unity, where fci, LB, and Vi are the ion cyclotron frequency, the characteristic scale length of magnetic field inhomogeneity, and the ion flow velocity, respectively. In the detachment region, a radial electric field is generated in the plasma and the ions move straight with the E×B rotation driven by the radial electric field. PMID:20838424

  2. Electric fields in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    Middle atmospheric electrodynamics is characterized by discussing the present understanding of the background electrical conductivity and the sources for electric fields and currents within the medium. Results of recent research that contradicts the historical view of the region are presented. Of principal interest to the present direction of the field is the attempt to quantize the low and high altitude electric generators such as thunderstorms or ionospheric convection. It is noted that the many-fold increase in available electric parameter data from within the middle atmosphere has been a great stimulus to recent research; however, these measurements have tended to raise more questions than they give answers.

  3. Mapping transient electric fields with picosecond electron bunches.

    PubMed

    Chen, Long; Li, Runze; Chen, Jie; Zhu, Pengfei; Liu, Feng; Cao, Jianming; Sheng, Zhengming; Zhang, Jie

    2015-11-24

    Transient electric fields, which are an important but hardly explored parameter of laser plasmas, can now be diagnosed experimentally with combined ultrafast temporal resolution and field sensitivity, using femtosecond to picosecond electron or proton pulses as probes. However, poor spatial resolution poses great challenges to simultaneously recording both the global and local field features. Here, we present a direct 3D measurement of a transient electric field by time-resolved electron schlieren radiography with simultaneous 80-μm spatial and 3.7-ps temporal resolutions, analyzed using an Abel inversion algorithm. The electric field here is built up at the front of an aluminum foil irradiated with a femtosecond laser pulse at 1.9 × 10(12) W/cm(2), where electrons are emitted at a speed of 4 × 10(6) m/s, resulting in a unique "peak-valley" transient electric field map with the field strength up to 10(5) V/m. Furthermore, time-resolved schlieren radiography with charged particle pulses should enable the mapping of various fast-evolving field structures including those found in plasma-based particle accelerators. PMID:26554022

  4. Mapping transient electric fields with picosecond electron bunches

    PubMed Central

    Chen, Long; Li, Runze; Chen, Jie; Zhu, Pengfei; Liu, Feng; Cao, Jianming; Sheng, Zhengming; Zhang, Jie

    2015-01-01

    Transient electric fields, which are an important but hardly explored parameter of laser plasmas, can now be diagnosed experimentally with combined ultrafast temporal resolution and field sensitivity, using femtosecond to picosecond electron or proton pulses as probes. However, poor spatial resolution poses great challenges to simultaneously recording both the global and local field features. Here, we present a direct 3D measurement of a transient electric field by time-resolved electron schlieren radiography with simultaneous 80-μm spatial and 3.7-ps temporal resolutions, analyzed using an Abel inversion algorithm. The electric field here is built up at the front of an aluminum foil irradiated with a femtosecond laser pulse at 1.9 × 1012 W/cm2, where electrons are emitted at a speed of 4 × 106 m/s, resulting in a unique “peak–valley” transient electric field map with the field strength up to 105 V/m. Furthermore, time-resolved schlieren radiography with charged particle pulses should enable the mapping of various fast-evolving field structures including those found in plasma-based particle accelerators. PMID:26554022

  5. Molecular dynamics in high electric fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  6. Axial current generation from electric field: chiral electric separation effect.

    PubMed

    Huang, Xu-Guang; Liao, Jinfeng

    2013-06-01

    We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the chiral electric separation effect (CESE). On a very general basis, we argue that the strength of CESE is proportional to μ(V)μ(A) with μ(V) and μ(A) the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable effects of CESE in heavy-ion collisions are also discussed. PMID:25167486

  7. On some theoretical problems of laser wake-field accelerators

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kiriyama, H.; Koga, J. K.; Kotaki, H.; Mori, M.; Kando, M.

    2016-06-01

    Enhancement of the quality of laser wake-field accelerated (LWFA) electron beams implies the improvement and controllability of the properties of the wake waves generated by ultra-short pulse lasers in underdense plasmas. In this work we present a compendium of useful formulas giving relations between the laser and plasma target parameters allowing one to obtain basic dependences, e.g. the energy scaling of the electrons accelerated by the wake field excited in inhomogeneous media including multi-stage LWFA accelerators. Consideration of the effects of using the chirped laser pulse driver allows us to find the regimes where the chirp enhances the wake field amplitude. We present an analysis of the three-dimensional effects on the electron beam loading and on the unlimited LWFA acceleration in inhomogeneous plasmas. Using the conditions of electron trapping to the wake-field acceleration phase we analyse the multi-equal stage and multiuneven stage LWFA configurations. In the first configuration the energy of fast electrons is a linear function of the number of stages, and in the second case, the accelerated electron energy grows exponentially with the number of stages. The results of the two-dimensional particle-in-cell simulations presented here show the high quality electron acceleration in the triple stage injection-acceleration configuration.

  8. On some theoretical problems of laser wake-field accelerators

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kiriyama, H.; Koga, J. K.; Kotaki, H.; Mori, M.; Kando, M.

    2016-06-01

    > Enhancement of the quality of laser wake-field accelerated (LWFA) electron beams implies the improvement and controllability of the properties of the wake waves generated by ultra-short pulse lasers in underdense plasmas. In this work we present a compendium of useful formulas giving relations between the laser and plasma target parameters allowing one to obtain basic dependences, e.g. the energy scaling of the electrons accelerated by the wake field excited in inhomogeneous media including multi-stage LWFA accelerators. Consideration of the effects of using the chirped laser pulse driver allows us to find the regimes where the chirp enhances the wake field amplitude. We present an analysis of the three-dimensional effects on the electron beam loading and on the unlimited LWFA acceleration in inhomogeneous plasmas. Using the conditions of electron trapping to the wake-field acceleration phase we analyse the multi-equal stage and multiuneven stage LWFA configurations. In the first configuration the energy of fast electrons is a linear function of the number of stages, and in the second case, the accelerated electron energy grows exponentially with the number of stages. The results of the two-dimensional particle-in-cell simulations presented here show the high quality electron acceleration in the triple stage injection-acceleration configuration.

  9. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field

    NASA Astrophysics Data System (ADS)

    Xiao, K. D.; Huang, T. W.; Ju, L. B.; Li, R.; Yang, S. L.; Yang, Y. C.; Wu, S. Z.; Zhang, H.; Qiao, B.; Ruan, S. C.; Zhou, C. T.; He, X. T.

    2016-04-01

    Energetic electron acceleration processes in a plasma hollow tube irradiated by an ultraintense laser pulse are investigated. It is found that the longitudinal component of the laser field is much enhanced when a linear polarized Gaussian laser pulse propagates through the plasma tube. This longitudinal field is of π /2 phase shift relative to the transverse electric field and has a π phase interval between its upper and lower parts. The electrons in the plasma tube are first pulled out by the transverse electric field and then trapped by the longitudinal electric field. The trapped electrons can further be accelerated to higher energy in the presence of the longitudinal electric field. This acceleration mechanism is clearly illustrated by both particle-in-cell simulations and single particle modelings.

  10. Poloidal field amplification in a coaxial compact toroid accelerator

    NASA Astrophysics Data System (ADS)

    Horton, R. D.; Hwang, D. Q.; Howard, S.; Brockington, S. J.; Evans, R. W.

    2008-09-01

    The Compact Toroid Injection Experiment (CTIX) produces spheromak-like compact toroids (SCTs) without external power switching, initiating a discharge by pulsed gas injection into a formation region containing a seed magnetic field generated by a solenoidal coil. After formation, the plasma is driven by an inductively delayed capacitor bank into an acceleration region, where surface axial and toroidal magnetic fields are measured at several axial positions. Due to strong eddy-current effects, formation-region magnetic field cannot be simply computed; instead, it is measured using the response of axial and radial test coils in the formation region to short solenoid test current pulses. A temporal and spatial reconstruction method is developed allowing formation-region field to be computed from the test-coil data for any CTIX discharge of identical solenoid geometry. By varying the peak value and timing of solenoidal current, curves of peak accelerator-region field as a function of initial formation-region field are developed. Curves of peak accelerator-region axial magnetic field are thereby found to be highly nonlinear functions of formation-region field, showing a threshold value for the formation-region field of approximately 5 G, above which acceleration-region field saturates at values between 2 and 12 kG. The direction of acceleration-region axial field reverses sign when the direction of solenoid current is reversed. Saturated accelerator-region axial field is a function of axial position and accelerator voltage, and is typically comparable to toroidal field at the same location. The ratio of accelerator-region to formation-region axial field commonly exceeds 1000 near the onset of saturation. This large amplification is of practical advantage for delayed plasma breakdown on CTIX, allowing a modest seed field to produce high poloidal fields, which are necessary for intense SCT acceleration. The results may also provide a useful benchmark for numerical

  11. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  12. Dipole relaxation in an electric field

    NASA Astrophysics Data System (ADS)

    Neumann, Richard M.

    1980-07-01

    From Boltzmann's equation, S=k lnΩ, an expression for the orientational entropy, S of a rigid rod (electric dipole) is derived. The free energy of the dipole in an electric field is then calculated as a function of both the dipole's average orientation and the field strength. Application of the equilibrium criterion to the free energy yields the field dependence of the entropy of the dipole. Irreversible thermodynamics is used to derive the general form of the equation of motion of the dipole's average orientation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium.

  13. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field. PMID:25740132

  14. Nonlinear cell response to strong electric fields

    NASA Astrophysics Data System (ADS)

    Bardos, D. C.; Thompson, C. J.; Yang, Y. S.; Joyner, K. H.

    2000-07-01

    The response of living cells to externally applied electric fields is of widespread interest. In particular, the intensification of electric fields across cell membranes is believed to be responsible, through membrane rupture and reversible membrane breakdown processes, for certain types of tissue damage in electrical trauma cases which cannot be attributed to Joule heating. Large elongated cells such as skeletal muscle fibres are particularly vulnerable to such damage. Previous theoretical studies of field intensification across cell membranes in such cells have assumed the membrane current to be linear in the applied field (Ohmic membrane conductivity) and were limited to sinusoidal applied fields. In this paper, we investigate a simple model of a long cylindrical cell, corresponding to nerve or skeletal muscle cells. Employing the electroquasistatic approximation, a system of coupled first-order differential equations for the membrane electric field is derived which incorporates arbitrary time dependence in the external field and nonlinear membrane response (non-Ohmic conductivity). The behaviour of this model is investigated for a variety of applied fields in both the linear and highly nonlinear regimes. We find that peak membrane fields predicted by the nonlinear model are approximately twice as intense, for low-frequency electrical trauma conditions, as those of the linear theory.

  15. Collapse of DNA under Alternating Electric Fields

    PubMed Central

    Zhou, Chunda; Riehn, Robert

    2016-01-01

    Recent studies have shown that double-stranded DNA can collapse in presence of a strong electric field. Here we provide an in-depth study of the collapse of DNA under weak confinement in microchannels as a function of buffer strength, driving frequency, applied electric field strength, and molecule size. We find that the critical electric field at which DNA molecules collapse (10s of kV/cm) is strongly dependent on driving frequency dependent (100 … 800 Hz) and molecular size (20 … 160 kbp), and weakly dependent on the ionic strength (8 … 60 mM). We argue that an apparent stretching at very high electric fields is an artifact of the finite frame time of video microscopy. PACS numbers: 87.14.gk, 36.20.Ey, 82.35.Lr, 82.35.Rs PMID:26274209

  16. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  17. OBLIQUELY ROTATING PULSARS: SCREENING OF THE INDUCTIVE ELECTRIC FIELD

    SciTech Connect

    Melrose, D. B.; Yuen Rai

    2012-02-01

    Pulsar electrodynamics has been built up by taking ingredients from two models, the vacuum-dipole model, which ignores the magnetosphere but includes the inductive electric field due to the obliquely rotating magnetic dipole, and the corotating-magnetosphere model, which neglects the vacuum inductive electric field and assumes a corotating magnetosphere. We argue that the inductive field can be neglected only if it is screened by a current, J{sub sc}, which we calculate for a rigidly rotating magnetosphere. Screening of the parallel component of the inductive field can be effective, but the perpendicular component cannot be screened in a pulsar magnetosphere. The incompletely screened inductive electric field has not been included in any model for a pulsar magnetosphere, and taking it into account has important implications. One effect is that it implies that the magnetosphere cannot be corotating, and we suggest that drift relative to corotation offers a natural explanation for the drifting of subpulses. A second effect is that this screening of the parallel inductive electric field must break down in the outer magnetosphere, and this offers a natural explanation for the acceleration of the electrons that produce pulsed gamma-ray emission.

  18. Rotating Capacitor Measures Steady Electric Fields

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Kirkham, H.; Eng, B.

    1986-01-01

    Portable sensor measures electric fields created by dc powerlines or other dc-high-voltage sources. Measures fields from 70 to 50,000 V/m with linearity of 2 percent. Sensor used at any height above ground. Measures both magnitude and direction of field and provides signals representing these measurements to remote readout device. Sensor functions with minimal disturbance of field it is measuring.

  19. Electric field measurements with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.

    1989-01-01

    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued.

  20. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  1. Control of the Electric Field Profile in the Hall Thruster

    SciTech Connect

    A. Fruchtman; N. J. Fisch; Y. Raitses

    2000-10-05

    Control of the electric field profile in the Hall Thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows one further control of the electric field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage.

  2. Report of the working group on far field accelerators

    NASA Astrophysics Data System (ADS)

    Tang, Cha-Mei

    1993-04-01

    This report describes the accomplishments of the Working Group on Far Field Accelerators. In addition to hearing presentations of current research, the group produced designs for 100 MeV demonstrations accelerators, 1 GeV conceptual accelerators, and a small electron beam source. Two of the 100 MeV designs, an Inverse Free Electron Laser (IFEL) and an Inverse Cerenkov Accelerator (ICA), use the CO2 laser and the 50 MeV linac at the Advanced Test Facility (ATF) at Brookhaven National Laboratory (BNL), requiring only the modest changes in the current experimental setups. By upgrading the laser, an ICA design demonstrated 1 GeV acceleration in a gas cell about 50 cm in length. For high average power accelerators, examples based on the IFEL concept were also produced utilizing accelerators driven by high average power FELs. The Working Group also designed a small electron beam source based on the inverse electron cyclotron resonance concept. Accelerators based on the IFEL and ICA may be the first to achieve 100 MeV and 1 GeV energy gain demonstration with high accelerating gradients.

  3. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  4. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  5. Biological effects of electric fields: EPRI's role

    SciTech Connect

    Kavet, R.

    1982-07-01

    Since 1973 the Electric Power Research Institute (EPRI) has supported research to evaluate the biological effects which may result from exposure to electric fields produced by AC overhead transmission lines; more recently, EPRI has also begun DC research. Through 1981 EPRI will have expended $8.7M on these efforts. Ongoing AC projects are studying a variety of lifeforms exposed to electric fields; these include humans, miniature swine, rats, honeybees, chick embryos, and crops. The status of these projects is discussed. The DC program has not as yet produced data. These studies will add to the current data base so as to enable a more complete assessment of health risks which may be associated with exposure to electric fields at power frequencies.

  6. Nanoparticle Near-Surface Electric Field.

    PubMed

    Chkhartishvili, Levan

    2016-12-01

    Theoretical studies show that surface reconstruction in some crystals involves splitting the surface atomic layer into two-upper and lower-sublayers consisting of atoms with only positive or only negative effective electric charges, respectively. In a macroscopic crystal with an almost infinite surface, the electric field induced by such a surface-dipole is practically totally concentrated between the sublayers. However, when the material is powdered and its particles are of sufficiently small sizes, an electric field of a significant magnitude can be induced outside the sublayers as well. We have calculated the distribution of the electric field and its potential induced at the surface of a disc-shaped particle. The suggested novel nanoscale effect explains the increase in physical reactivity of nanopowders with decreasing particle sizes. PMID:26831686

  7. Rotationally Vibrating Electric-Field Mill

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  8. Effects of a Parallel Electric Field and the Geomagnetic Field in the Topside Ionosphere on Auroral and Photoelectron Energy Distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  9. Effects of a parallel electric field and the geomagnetic field in the topside ionosphere on auroral and photoelectron energy distributions

    NASA Technical Reports Server (NTRS)

    Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.

    1993-01-01

    The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.

  10. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  11. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    NASA Astrophysics Data System (ADS)

    Harada, S.; Baba, T.; Uchigashima, A.; Yokota, S.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.; Shimizu, H.

    2014-11-01

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  12. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    SciTech Connect

    Harada, S.; Baba, T.; Uchigashima, A.; Iwakawa, A.; Sasoh, A.; Yokota, S.; Yamazaki, T.; Shimizu, H.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  13. Radionuclide and electric accelerator sources for food irradiation

    NASA Astrophysics Data System (ADS)

    Lagunas-Solar, Manuel C.; Matthews, Stephen M.

    Radiation processing of food requires radiation sources with high intensity, penetrability, reliability, and the flexibility to be adapted to current food processing techniques. Current proposed regulations limit the radiation sources which can be utilized to radionuclides (i.e. 5.27-y Co-60; or 30.2-y Cs-137) or electrically-driven accelerators (i.e. X rays up to 5 MeV, electron beams up to 10 MeV). Therefore, the power; throughput; and use efficiency of these sources are important factors affecting the design; installation; operation; and economics of large-scale food-processing facilities. An analysis of the advantages and disadvantages of these sources is presented here, with special attention to the current status of both technologies, and with emphasis on the needs of the food-processing industry.

  14. Computer Simulation of Electric Field Lines.

    ERIC Educational Resources Information Center

    Kirkup, L.

    1985-01-01

    Describes a computer program which plots electric field line plots. Includes program listing, sample diagrams produced on a BBC model B microcomputer (which could be produced on other microcomputers by modifying the program), and a discussion of the properties of field lines. (JN)

  15. Electric field measurements from Halley, Antarctica

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  16. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  17. Scalar-field-dominated cosmology with a transient acceleration phase.

    PubMed

    Carvalho, F C; Alcaniz, J S; Lima, J A S; Silva, R

    2006-08-25

    A new cosmological scenario driven by a slow rolling homogeneous scalar field whose exponential potential V(Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is discussed. The derived equation of state for the field predicts a transient accelerating phase, in which the Universe was decelerated in the past, began to accelerate at redshift z approximately 1, is currently accelerated, but, finally, will return to a decelerating phase in the future. This overall dynamic behavior is profoundly different from the standard evolution of the cold dark matter model with a cosmological constant, and may alleviate some conflicts in reconciling the idea of a dark-energy-dominated universe with observables in String or M theory. Some theoretical predictions for the present scalar field plus dark matter dominated stage are confronted with cosmological observations in order to test the viability of the scenario. PMID:17026287

  18. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    2007-01-01

    We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.

  19. A nonuniform electrical field electroporation chamber design.

    PubMed

    Hollon, T; Yoshimura, F K

    1989-11-01

    We show an inexpensive design for an electroporation chamber which subjects electroporated cells to a nonuniform electrical field. Our design, which we call an electroporation cylinder, improved transfection efficiency over that of a uniform field design (electroporation cuvettes) by about sixfold when tested in five mouse cell lines with a transient gene expression assay. Electroporation cylinders subjected cells to electrical field strengths at least as powerful as those of electroporation cuvettes, as judged by comparing the percentages of cells killed by electroporation. Cylinder and cuvette designs were similar in their effect on the variability of transfection efficiency. Electroporation cylinders may be particularly useful when the optimal electrical field strength for a cell line is not known or is unattainable with a given power supply. PMID:2610341

  20. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  1. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  2. Electric field profiles in obstructed helium discharge

    NASA Astrophysics Data System (ADS)

    Fendel, Peter; Ganguly, Biswa; Bletzinger, Peter

    2014-10-01

    Axial and radial variations of electric field have been measured in dielectric shielded 25 mm diameter parallel plate electrode for 2 mA, 2250 V helium dc discharge at 1.75 Torr with 6.5 mm gap. The axial and radial electric field profiles have been measured from the polarization dependent Stark splitting of 21S --> 11 1P transition through collision induced fluorescence from 43D --> 23P. The electric field values showed a strong radial variation peaking up to 5 kV/cm near the cathode radial boundary, and decreasing to about 1 kV/cm near the anode, suggesting the formation of an obstructed discharge for this low Pd condition. Also, the on-axis electric field was nearly constant across the gap indicating a radially non-uniform current density. In order to obtain information about the space charge distribution in this obstructed discharge, it was modeled using the 2-d axisymmetric Poisson solver with COMSOL finite element modeling program. The model discharge dimensions were selected to match the experimental dimensions. The best fit to the measured electric field distribution was obtained with a space charge variation of ρ(r) =ρ0 (r/r0)3 , where ρ(r) is the local space charge density, ρ0 is the maximum space-charge density, r the local radial value and r0 the radius of the electrode.

  3. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  4. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  5. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  6. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  7. Electric fields in the dayside auroral oval

    NASA Technical Reports Server (NTRS)

    Jorgensen, T. S.; Mikkelsen, I. S.; Lassen, K.; Haerendel, G.; Reiger, E.; Valenzuela, A.; Mozer, F. S.; Temerin, M.; Holback, B.; Bjoern, L.

    1980-01-01

    The results from four independent electric field experiments flown on three Black Brant 4 rockets in the forenoon dayside auroral oval in December 1974 and January 1975 are correlated with ground-based observations and rocket particle data. The electric field varied from zero to 150 mV/m. The predominant plasma convection was toward noon along the auroral oval with a smaller component directed toward the polar cap. In one case, however, a reversal occurred within the oval with plasma convection away from noon. Comparisons with magnetometer data indicate that in the dayside auroral oval, Hall currents sometimes are responsible for magnetic fluctuations observed on the ground. Comparisons with particle data show that the magnitude of the electric fields is inversely correlated with the electron energy flux.

  8. Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''

    SciTech Connect

    Lundin, R.; Hultqvist, B.

    1989-06-01

    Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O/sup +//H/sup +/ ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. /copyright/ American Geophysical Union 1989

  9. Microfluidic Screening of Electric Fields for Electroporation

    PubMed Central

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  10. Electric field control of the cell orientation

    NASA Astrophysics Data System (ADS)

    Westman, Christopher; Sabirianov, Renat

    2008-03-01

    Many physiological processes depend on the response of biological cells to external forces. The natural electric field at a wound controls the orientation of the cell and its division.[1] We model the cell as an elongated elliptical particle with given Young's modulus with surface charge distribution in the external electric field. Using this simple theoretical model that includes the forces due to electrostatics and the elasticity of cells, we calculated analytically the response of the cell orientation and its dynamics in the presence of time varying electric field. The calculations reflect many experimentally observed features. Our model predicts the response of the cellular orientation to a sinusoidally varying applied electric field as a function of frequency similar to recent stress-induced effects.[2] *Bing Song, Min Zhao, John V. Forrester, and Colin D. McCaig, ``Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo'', PNAS 2002, vol. 99 , 13577-13582. *R. De, A. Zemel, and S.A. Safran, ``Dynamics of cell orientation'', Nature Physics 2007, vol.3, 655.

  11. Microfluidic Screening of Electric Fields for Electroporation

    NASA Astrophysics Data System (ADS)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  12. Microfluidic Screening of Electric Fields for Electroporation.

    PubMed

    Garcia, Paulo A; Ge, Zhifei; Moran, Jeffrey L; Buie, Cullen R

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX(®), which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX(®) after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  13. Simulations of auroral plasma processes - Electric fields, waves and particles

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Plasma processes driven by current sheets of finite thicknesses in an ambient magnetized plasma are studied using a 2 1/2 dimensional particle-in-cell code, and similarities are found between simulated plasma processes and those observed in the auroral plasma. Current sheets are shown to be bounded by large perpendicular electric fields occurring near their edges above the conducting boundary. Shaped potential structures form when the current sheets are narrow, and when the current sheets are wide, potential structures develop a significant parallel potential drop such that the electrons are accelerated upwards. Downward parallel electric fields of variable strength are noted in the downward current region, and double layer formation is seen in both narrow and wide current sheets. High frequency oscillations near the electron plasma frequency and its harmonic are seen, and low frequency waves are observed.

  14. Field-Aligned Electric Potential in the Polar Cap

    NASA Astrophysics Data System (ADS)

    Wing, S.; Hildebrand, L.

    2014-12-01

    Reconnection with the interplanetary magnetic field (IMF) on the dayside magnetosphere opens the previously closed Earth's field line, allowing solar wind particles to enter the magnetosphere, some of which precipitate into the ionosphere. As the open-field line ExB convects to the nightside, fewer ions can enter the magnetosphere. As a result, field-aligned (parallel) electric potential increases with latitude to prevent more electrons from entering, in order to maintain charge quasi-neutrality. The APL open-field line model predicts that the parallel potential drop increases from cusp to mantle to polar rain. This trend has been confirmed in a study that compared phase space densities of ACE solar wind electrons to those of DMSP precipitating electrons. However, the same study also found that sometimes there is an anomaly: the parallel potential drop would have the opposite polarity such that solar wind electrons are accelerated downward in the afternoon polar cap. Using DMSP magnetometer and particle precipitation data, we show that this accelerating potential drop can be found often in the poleward upward field-aligned current region. The velocity shear at the magnetopause boundary leads to a voltage drop across the boundary, which drives the upward field-aligned currents. At higher latitude or further away from noon, the field line maps to the magnetopause location that is further down the magnetotail where the magnetosheath velocity shear is higher and density is lower. When the velocity shear and hence field-aligned current density (J//) is too high or density too low, parallel potential develops to accelerate more electron downward, in accordance with Knight relation.

  15. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  16. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  17. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  18. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  19. Electric Field Effects in RUS Measurements

    SciTech Connect

    Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  20. Electric field effects in RUS measurements.

    PubMed

    Darling, Timothy W; Allured, Bradley; Tencate, James A; Carpenter, Michael A

    2010-02-01

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material--a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the "statistical residual" strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods. PMID:19850314

  1. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  2. Performance optimization in electric field gradient focusing.

    PubMed

    Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L

    2009-01-01

    Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL). PMID:19081099

  3. DC Electric Fields at the Magnetopause

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2014-12-01

    In order to understand the transfer of energy, momentum and mass through the magnetopause one needs to know several plasma and field parameters including the DC electric field which is known to be challenging to measure in tenuous plasma regions, e.g. in the inner side of the magnetopause where the density drops below 1/cc. However, each of the Cluster spacecraft carries five different experiments that can provide information about DC electric fields, i.e. double probe antenna (EFW) and electron drift meter (EDI) as well as electron and ion spectrometers (PEACE, CIS-HIA, CIS-CODIF). Each technique is very different and has its own strengths and limitations. Therefore it is important to compare all available measurements before making a judgement on DC electric field variation at the magnetopause; note that only very rarely all five measurements are available at the same time. Although the full-resolution observations in the Cluster archive are calibrated, they can still contain various errors. However, when two experiments show the same field, it is quite likely that this is the right field because the different measurements are based on so complimentary techniques and the field varies so much when the spacecraft moves from the magnetosheath through the magnetopause into the magnetosphere, or vice versa. In this presentation we present several cases of the magnetopause crossings and how the different measurements agree and disagree around the magnetopause region.

  4. Tuning Bimolecular Chemical Reactions by Electric Fields.

    PubMed

    Tscherbul, Timur V; Krems, Roman V

    2015-07-10

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF+H→Li+HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150  kV/cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering. PMID:26207466

  5. Tuning Bimolecular Chemical Reactions by Electric Fields

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Krems, Roman V.

    2015-07-01

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF +H →Li +HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150 kV /cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering.

  6. Models of the earth's electric field

    NASA Technical Reports Server (NTRS)

    Stern, D.

    1974-01-01

    Detailed models of the electric field of the magnetosphere are derived in several stages. For all, the conductivity along field lines is assumed to be high enough to ensure the vanishing of E B everywhere except in the ionosphere. At first the rotation of the earth is ignored completely and a simple model is constructed which fits certain observed properties. Next, the rotation of the earth is taken into account, but the field is assumed to be that of a magnetic dipole rotating around its symmetry axis. This allows the concept of the electric potential to be retained, which permits the derivation of interesting properties including the use of a conjugate potential which paces the drift of charged particles in the field. Finally, the general case involving asymmetrical rotation is briefly discussed.

  7. Large-scale electric fields in post-flare loops

    NASA Technical Reports Server (NTRS)

    Hinata, Satoshi

    1987-01-01

    As the electrical conductivity along the magnetic field in the solar atmosphere is large, parallel electric fields have been neglected in most investigations. The importance of such fields is demonstrated for post-flare loops, and a model for them is introduced which takes into account the effect of parallel electric fields. The electric field calculated from the model is consistent with the electric field observed by Foukal et al. (1983).

  8. Electric field mediated colloidal assembly and control

    NASA Astrophysics Data System (ADS)

    Juarez, Jaime Javier

    2011-12-01

    This dissertation presents video microscopy measurements and computer simulations of colloidal particle interactions in inhomogeneous, high-frequency AC electric fields. The interactions of particles with each other and inhomogeneous electric fields are quantified as a function of concentration, field amplitude, and frequency. Visual state diagrams show that these interactions in concentrated systems produce quasi-two dimensional microstructures including confined hard disk fluids, oriented dipolar chains, and oriented hexagonal close packed crystals. The interaction of a particle interacting with an electric field is directly measured with analyses of a single diffusing colloid within electric fields in the absence of many body effects. Concentrated systems are characterized in terms of density profiles across the electrode gap and angular pair distribution functions. An inverse Monte Carlo analysis extracted the induced dipole-induced dipole interaction from concentrated measurements. A single adjustable parameter consistently modified the induced dipole-field potential and the induced dipole-induced dipole potential to account for modification of the local electric field as the result of the local particle concentration, frequency and configuration. Confocal laser scanning microscopy (CLSM) perform sensitive measurements of internal three dimensional structure of crystals assembled in an interfacial quadrupole electrode device. Radial distributions as functions of elevation are used to characterize the equilibrium structure. A single adjustable parameter modified known potentials to match Monte Carlo simulations with experiment. The local density from experiment and simulation matched the expected density calculated from a balance of osmotic pressure and dielectrophoretic compression. Simulations qualitatively matched experimental observations of microstructure as a function of field amplitude. Programmable assembly for colloidal crystals is implemented in the

  9. Adaptation and generalization in acceleration dependent force fields

    PubMed Central

    Hwang, Eun Jung; Smith, Maurice A.; Shadmehr, Reza

    2005-01-01

    Any passive rigid inertial object that we hold in our hand, e.g., a tennis racquet, imposes a field of forces on the arm that depends on limb position, velocity, and acceleration. A fundamental characteristic of this field is that the forces due to acceleration and velocity are linearly separable in the intrinsic coordinates of the limb. In order to learn such dynamics with a collection of basis elements, a control system would generalize correctly and therefore perform optimally if the basis elements that were sensitive to limb velocity were not sensitive to acceleration, and vice versa. However, in the mammalian nervous system proprioceptive sensors like muscle spindles encode a nonlinear combination of all components of limb state, with sensitivity to velocity dominating sensitivity to acceleration. Therefore, limb state in the space of proprioception is not linearly separable despite the fact that this separation is a desirable property of control systems that form models of inertial objects. In building internal models of limb dynamics, does the brain use a representation that is optimal for control of inertial objects, or a representation that is closely tied to how peripheral sensors measure limb state? Here we show that in humans, patterns of generalization of reaching movements in acceleration dependent fields are strongly inconsistent with basis elements that are optimized for control of inertial objects. Unlike a robot controller that models the dynamics of the natural world and represents velocity and acceleration independently, internal models of dynamics that people learn appear to be rooted in the properties of proprioception, nonlinearly responding to the pattern of muscle activation and representing velocity more strongly than acceleration. PMID:16292640

  10. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    PubMed

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters. PMID:23278009

  11. Electric field measurement in microwave discharge ion thruster with electro-optic probe

    SciTech Connect

    Ise, Toshiyuki; Tsukizaki, Ryudo; Koizumi, Hiroyuki; Togo, Hiroyoshi; Kuninaka, Hitoshi

    2012-12-15

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  12. Health of workers exposed to electric fields.

    PubMed Central

    Broadbent, D E; Broadbent, M H; Male, J C; Jones, M R

    1985-01-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields. PMID:3970875

  13. Nonthermal processing by radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  14. PHASE EQUILIBRIA MODIFICATION BY ELECTRIC FIELDS

    EPA Science Inventory

    The primary focus of this program is to obtain a fundamental understanding of the effects of electric fields on polar and nonpolar mixtures in gas and liquid phases, with the ultimate goal of using this understanding in devising novel means to dramatically improve existing enviro...

  15. Field quality study in Nb(3)Sn accelerator magnets

    SciTech Connect

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; DiMarco, J.; Kashikhin, V.S.; Lamm, M.; Novitski, I.; Schlabach, P.; Velev, G.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-05-01

    Four nearly identical Nb{sub 3}Sn dipole models of the same design were built and tested at Fermilab. It provided a unique opportunity of systematic study the field quality effects in Nb{sub 3}Sn accelerator magnets. The results of these studies are reported in the paper.

  16. Survey of high field superconducting material for accelerator magnets

    SciTech Connect

    Scahlan, R.; Greene, A.F.; Suenaga, M.

    1986-05-01

    The high field superconductors which could be used in accelerator dipole magnets are surveyed, ranking these candidates with respect to ease of fabrication and cost as well as superconducting properties. Emphasis is on Nb/sub 3/Sn and NbTi. 27 refs., 2 figs. (LEW)

  17. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    SciTech Connect

    Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; /Rutherford /Huddersfield U. /Brookhaven /Daresbury /Cockcroft Inst. Accel. Sci. Tech. /TRIUMF /British Columbia U., Vancouver, Dept. Phys. Astron. /University Coll. London /Manchester U. /Brunel U. /ASP, Melbourne

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a 'scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10?mm in radius over an electron momentum range of 12-18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  18. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

    NASA Astrophysics Data System (ADS)

    Machida, S.; Barlow, R.; Berg, J. S.; Bliss, N.; Buckley, R. K.; Clarke, J. A.; Craddock, M. K.; D'Arcy, R.; Edgecock, R.; Garland, J. M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S. F.; Hock, K. M.; Holder, D. J.; Ibison, M. G.; Jackson, F.; Jamison, S. P.; Johnstone, C.; Jones, J. K.; Jones, L. B.; Kalinin, A.; Keil, E.; Kelliher, D. J.; Kirkman, I. W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P. A.; McKenzie, J. W.; Méot, F.; Middleman, K. J.; Moss, A.; Muratori, B. D.; Orrett, J.; Owen, H. L.; Pasternak, J.; Peach, K. J.; Poole, M. W.; Rao, Y.-N.; Saveliev, Y.; Scott, D. J.; Sheehy, S. L.; Shepherd, B. J. A.; Smith, R.; Smith, S. L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P. H.; Wolski, A.; Yokoi, T.

    2012-03-01

    In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a `scaling' principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10mm in radius over an electron momentum range of 12-18MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

  19. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2003-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away

  20. Swarm Equatorial Electric Field Inversion Chain

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Vigneron, Pierre; Sirol, Olivier; Hulot, Gauthier

    2014-05-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles are then modeled using a first principles approach with empirical climatological inputs specifying the state of the ionosphere, in order to recover the EEF. We will present preliminary estimates of the EEF using the first Swarm geomagnetic field measurements, and compare them with independently measured electric fields from the JULIA ground-based radar in Peru.

  1. Field-aligned currents and ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.

    1977-01-01

    It is shown that the observed distribution of the ionospheric electric field can be deduced from an equation combining Ohm's law with the current continuity equation by using the 'observed' distribution of field-aligned currents as the boundary condition for two models of the ionosphere. The first model has one conductive annular ring representing the quiet-time auroral precipitation belt; the second has two conductive annular rings that simulate the discrete and diffuse auroral regions. An analysis is performed to determine how well the electric-field distribution can be reproduced. The results indicate that the first model reproduces the Sq(p)-type distribution, the second model reproduces reasonably well a substorm-type potential and ionospheric current patterns together with the Harang discontinuity, and that the distribution of field-aligned currents is the same for both models.

  2. Observations of large transient magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Heppner, J. P.

    1977-01-01

    Transient electric field events were observed with the long, double probe instrumentation carried by the IMP-6 satellite. Nine, clearly defined, exceptionally large amplitude events are presented here. The events are observed in the midnight sector at geocentric distances 3.5 to .5.5 R sub e at middle latitudes within a magnetic L-shell range of 4.8 to 7.5. They usually have a total duration of one to several minutes, with peak power spectra amplitudes occurring at a frequency of about 0.3 Hz. The events occur under magnetically disturbed conditions, and in most cases they can be associated with negative dH/dt excursions at magnetic observatories located near the foot of the magnetic field line intersecting IMP-6. The magnetospheric motions calculated for these electric fields indicated a quasi-stochastical diffusive process rather than the general inward magnetospheric collapsing motion expected during the expansive phases of auroral substorm activity.

  3. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  4. Swarm equatorial electric field chain: First results

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Chulliat, A.; Vigneron, P.; Sirol, O.; Hulot, G.

    2015-02-01

    The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an official Level-2 Swarm product. Here we present first results of EEF estimates from nearly a year of Swarm data. We find excellent agreement with independent measurements from the ground-based coherent scatter radar at Jicamarca, Peru, as well as horizontal field measurements from the West African Magnetometer Network magnetic observatory chain. We also calculate longitudinal gradients of EEF measurements made by the A and C lower satellite pair and find gradients up to about 0.05 mV/m/deg with significant longitudinal variability.

  5. Particle acceleration in helical magnetic fields in the corona

    NASA Astrophysics Data System (ADS)

    Gordovskyy, Mykola; Browning, Philippa; Bareford, Michael; Pinto, Rui; Kontar, Eduard; Bian, Nicolas

    2014-05-01

    Twisted magnetic fields should be ubiquitous in the solar corona. Emerging twisted ropes as well as complex photospheric motions provide continuous influx of the magnetic helicity. Twisted coronal fields, in turn, contain excess magnetic energy, which can be released, causing solar flares and other explosive phenomena. It has been shown recently, that reconnection in helical magnetic structures results in particle acceleration distributed within large volume, including the lower corona and chromosphere. Hence, the magnetic reconnection and particle acceleration scenario involving magnetic helicity can be a viable alternative to the standard flare model, where particles are accelerated in a small volume located in the upper corona. We discuss our recent results on the energy release and particle acceleration during magnetic reconnection in twisted coronal loops. Evolution of various helical structures is described in terms of resistive MHD, including heat conduction and radiation. We consider the effects of field topology and photospheric motions on the energy accumulation and release. In particular, we focus on scenarios with continuous helicity injection, leading to recurrent explosive events. Using the obtained MHD models, ion and electron acceleration is investigated, taking into account Coulomb collisions. We derive time-dependent energy spectra and spatial distribution for these species, and calculate resulting non-thermal radiation intensities. Based on the developed numerical models, we investigate observational implications of particle acceleration in helical magnetic structures. Thus, we compare temporal variations of thermal and non-thermal emission in different configurations. Furthermore, we consider spatial distributions of the thermal EUV and X-ray emission and non-thermal X-ray emission and compare them with observational data.

  6. A dynamic model of thundercloud electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.

    1983-01-01

    A description is given of the first results obtained with a new type of dynamic electrical model of a thundercloud that allows the charge rearrangement produced in arc breakdown, as well as the conduction and displacement currents, to be calculated with realistic generator configurations. The model demonstrates the great complexity of behavior of thunderclouds owing to the interaction of the nonlinear breakdown mechanisms, the energy stored in the electric field, and a conductivity that varies with altitude. It is also seen that dynamic charge distributions and electric fields are quite different from static distributions. It is noted that these differences affect the initial conditions before and after lightning strokes. The conduction current density to the ionosphere is very much larger in the dynamic cases than in static simulations. Such basic properties of thunderclouds as the production of cloud-to-ground strokes are seen as compatible only with a very limited range of thundercloud models. Another finding is that coronal and convection currents cause the electric fields at the surface to be much smaller than they would be in their absence.

  7. Electric field distribution characteristics of photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Zou, Sheng-Wu; Zhang, Tong-Yi

    2012-10-01

    Photoexcitation of biased semiconductor photoconductive antennas by femtosecond pulses is the most common and convenient technique for generating strong terahertz (THz) pulses. In this paper, we use the three-dimensional (3D) finite-difference-time-domain (FDTD) to analyze electric field distribution of THz pulses in the near-field from a photoconductive antenna. The simulation is based on solving Maxwell's equations and the carrier rate equations simultaneously on realistic dipole antenna structures. The 3D FDTD simulation gives detailed features of THz electric field distribution in and out of the antenna. It is found that the difference of near-field distribution between the substrate and free space is considerably large. The fields of the alternating-current dipole exhibit an unsymmetrical distribution and a large deviation from those calculated using the simple Hertzian dipole theory. The magnitude of THz field in and out of the substrate attenuates rapidly while it holds the line in the gap center. The high-frequency components of THz radiation emission come only from the dipole antenna, while the low-frequency components are from both the center electrodes and coplanar stripline waveguide. This work can be used to optimize the design of antenna geometry and raise the radiation field power.

  8. Electro Acceleration in a Geomagnetic Field Line Resonance

    SciTech Connect

    Peter Damiano and J.R. Johnson

    2012-08-17

    A hybrid MHD kinetic electron model in dipolar coordinates is used to sim- ulate the upward current region of a geomagnetic Field Line Resonance (FLR) system for a realistic ambient electron temperatures of a keV. It is found that mirror force e ects result in potential drops su cient to accelerate electrons to energies in excess of a keV in support of eld aligned currents on the or- der of 0.5 µA/m2. The wave energy dissipated in this acceleration would com- pletely damp an undriven FLR with an equatorial width of 0.5 RE within two resonance cycles.

  9. Simulation of the flow field of a ram accelerator

    NASA Astrophysics Data System (ADS)

    Soetrisno, Moeljo; Imlay, Scott T.

    1991-06-01

    An effort is made to achieve a more complete numerical model than heretofore available for analysis and performance prediction regarding ram-accelerator projectiles, using the finite-rate chemistry code HANA. Results are presented from such analyses of a ram accelerator projectile operating in both the thermally-choked mode and the transdetonative mode. The flow field about the projectile, the complex oblique shock system, and the flow properties in the combusting region are detailed. The code uses a novel diagonal implicit solution algorithm which eliminates the expense of inverting the large block matrices arising in chemically reacting flows.

  10. Acceleration of neutral atoms in strong short-pulse laser fields.

    PubMed

    Eichmann, U; Nubbemeyer, T; Rottke, H; Sandner, W

    2009-10-29

    A charged particle exposed to an oscillating electric field experiences a force proportional to the cycle-averaged intensity gradient. This so-called ponderomotive force plays a major part in a variety of physical situations such as Paul traps for charged particles, electron diffraction in strong (standing) laser fields (the Kapitza-Dirac effect) and laser-based particle acceleration. Comparably weak forces on neutral atoms in inhomogeneous light fields may arise from the dynamical polarization of an atom; these are physically similar to the cycle-averaged forces. Here we observe previously unconsidered extremely strong kinematic forces on neutral atoms in short-pulse laser fields. We identify the ponderomotive force on electrons as the driving mechanism, leading to ultrastrong acceleration of neutral atoms with a magnitude as high as approximately 10(14) times the Earth's gravitational acceleration, g. To our knowledge, this is by far the highest observed acceleration on neutral atoms in external fields and may lead to new applications in both fundamental and applied physics. PMID:19865167

  11. Experimental studies of plasma wake-field acceleration and focusing

    SciTech Connect

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Gai, W.; Konecny, R.; Mtingwa, S.; Norem, J.; Rosing, M.; Schoessow, P.; Simpson, J.

    1989-07-18

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs.

  12. Particle acceleration and magnetic field generation in SNR shocks

    NASA Astrophysics Data System (ADS)

    Suslov, M.; Diamond, P. H.; Malkov, M. A.

    2006-04-01

    We discuss the diffusive acceleration mechanism in SNR shocks in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We analyze some problems of this scenario and suggest a different mechanism, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.

  13. High-field plasma acceleration in a high-ionization-potential gas

    NASA Astrophysics Data System (ADS)

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-06-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

  14. High-field plasma acceleration in a high-ionization-potential gas

    PubMed Central

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m−1, over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  15. High-field plasma acceleration in a high-ionization-potential gas.

    PubMed

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clausse, B; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V

    2016-01-01

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources. PMID:27312720

  16. High-field plasma acceleration in a high-ionization-potential gas

    DOE PAGESBeta

    Corde, S.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Clausse, B.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; et al

    2016-06-17

    Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m-1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less

  17. Optimizing direct intense-field laser acceleration of ions

    SciTech Connect

    Harman, Zoltan; Salamin, Yousef I.; Galow, Benjamin J.; Keitel, Christoph H.

    2011-11-15

    The dynamics of ion acceleration in tightly focused laser beams is investigated in relativistic simulations. Studies are performed to find the optimal parameters which maximize the energy gain, beam quality, and flux. The exit ionic kinetic energy and its uncertainty are improved and the number of accelerated particles is increased by orders of magnitude over our earlier results, especially when working with a longer laser wavelength. Laser beams of powers of 0.1-10 petawatts and focused to subwavelength spot radii are shown to directly accelerate protons and bare nuclei of helium, carbon, and oxygen from a few to several hundred MeV/nucleon. Variation of the volume of the initial ionic ensemble, as well as the introduction of a pulse shape on the laser fields, have been investigated and are shown to influence the exit particle kinetic energies only slightly.

  18. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  19. Interaction of Electric Fields with Vascular Cells

    NASA Astrophysics Data System (ADS)

    Taghian, Toloo; Sheikh, Abdul; Narmoneva, Daria; Kogan, Andrei

    2012-04-01

    Electrical stimulation has been shown to be effective in improving healing rate of the non-healing or slow-healing wounds, a significant high-cost clinical issue. In order to optimize this process, identifying the mechanisms underlying the interaction of vascular cells with electric field (EF) is of interest. We have developed a 3D model of the cultured cells to simulate EF distribution in the cell membrane. The electrical stimulation of cells has been performed using our novel device that generates EF without any contact between electrodes and cells. The results indicate that cells respond to EF by releasing a specific growth factor (PlGF) which is important for blood vessel growth during wound healing.

  20. Numerical simulation of electric field assisted sintering

    NASA Astrophysics Data System (ADS)

    McWilliams, Brandon A.

    A fully coupled thermal-electric-sintering finite element model was developed and implemented to explore electric field assisted sintering techniques (FAST). FAST is a single step processing operation for producing bulk materials from powders, in which the powder is heated by the application of electric current under pressure. This process differs from other powder processing techniques such as hot isostatic pressing (HIP) and traditional press and sinter operations where the powder or compact is heated externally, in that the powder is heated directly as a result of internal Joule heating (for conductive powders) and/or by direct conduction from the die and punches. The overall result is much more efficient heating which allows heating rates of >1000°C/min to be achieved which is desirable for sintering bulk nanocrystalline and other novel high performance materials. Previous modeling efforts on FAST have only considered the thermal-electric aspect of the problem and have neglected densification. In addition to the introduction of a sintering model, a detailed thermal-electric study of process parameters was carried out in order to identify key system variables and quantify their effect on the overall system response and subsequent thermal history of a consolidated sample. This analysis was compared to empirical data from a parallel experimental study and shown to satisfactorily predict the observed trends. This model was then integrated with a phenomenologically based sintering model to capture the densification of the sample. This fully coupled model was used to predict densification kinetics under FAST like conditions and examine the evolution of material properties as the sample transitions from a loose powder to a fully dense compact and the resulting effect on the electrical and thermal fields within the compact. This model was also used to explore the effect of non-uniform thermal, electrical, stress and density fields on the final geometry and local

  1. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  2. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Fazakerley, A. N.; Walsh, A. P.; Watt, C. E.; Garza, K.; Owen, C. J.; Constantinescu, D. O.; Dandouras, I. S.; Fornacon, K.; Lucek, E. A.; Marklund, G. T.; Sadeghi, S. S.; Khotyaintsev, Y. V.; Masson, A.; Doss, N.

    2013-12-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.

  3. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Fazakerley, A. N.; Walsh, A. P.; Watt, C. E. J.; Garza, K. J.; Owen, C. J.; Constantinescu, D.; Dandouras, I.; FornaçOn, K.-H.; Lucek, E.; Marklund, G. T.; Sadeghi, S. S.; Khotyaintsev, Y.; Masson, A.; Doss, N.

    2012-12-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modeling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.

  4. The spherical probe Electric Field and Wave Experiment for the Cluster mission

    NASA Technical Reports Server (NTRS)

    Gustafsson, G.; Bostroem, R.; Holback, B.; Holmgren, G.; Stasiewicz, K.; Aggson, T.; Pfaff, R.; Block, L. P.; Faelthammar, C.-G.; Lindqvist, P.-A.

    1993-01-01

    The Electric Field and Wave experiment (EFW) on Cluster, which is designed to measure the electric field and density fluctuations with sampling rates, on some occasions, up to 36,000 samples/s in two channels, is decribed. Langmuir sweeps can also be made to determine the electron density and temperature. Among the more interesting objectives of the experiment is to study nonlinear processes that result in acceleration of plasma. Large scale phenomena where all four spacecraft are needed are also studied.

  5. Two-Channel Rectangular Dielectric Wake Field Accelerator Structure Experiment

    SciTech Connect

    Sotnikov, G. V.; Marshall, T. C.; Shchelkunov, S. V.; Didenko, A.; Hirshfield, J. L.

    2009-01-22

    A design is presented for a two-channel 30-GHz rectangular dielectric wake field accelerator structure being built for experimental tests at Argonne National Laboratory (ANL). This structure allows for a transformer ratio T much greater than two, and permits continuous coupling of energy from drive bunches to accelerated bunches. It consists of three planar slabs of cordierite ceramic ({epsilon} = 4.7) supported within a rectangular copper block, forming a drive channel 12 mmx6 mm, and an accelerator channel 2 mmx6 mm. When driven by a 50 nC, 14 MeV single bunch available at ANL, theory predicts an acceleration field of 6 MeV/m, and T = 12.6. Inherent transverse wake forces introduce deflections and some distortion of bunch profiles during transit through the structure that are estimated to be tolerable. Additionally, a cylindrical two-channel DWFA is introduced which shares many advantages of the rectangular structure including high T, and the added virtue of axisymmetry that eliminates lowest-order transverse deflecting forces.

  6. Io-related Jovian auroral arcs: Modeling parallel electric fields

    NASA Astrophysics Data System (ADS)

    Su, Yi-Jiun; Ergun, Robert E.; Bagenal, Fran; Delamere, Peter A.

    2003-02-01

    Recent observations of auroral arcs on Jupiter suggest that electrons are being accelerated downstream from Io's magnetic footprint, creating detectable emissions. The downstream electron acceleration is investigated using one-dimensional spatial, two-dimensional velocity static Vlasov solutions under the constraint of quasi-neutrality and an applied potential drop. The code determines self-consistent charged particle distributions and potential structure along a magnetic field flux tube in the upward (with respect to Jupiter) current region of Io's wake. The boundaries of the flux tube are the Io torus on one end and Jupiter's ionosphere on the other. The results indicate that localized electric potential drops tend to form at 1.5-2.5 RJ Jovicentric distance. A sufficiently high secondary electron density causes an auroral cavity to be produced similar to that on Earth. Interestingly, the model results suggest that the proton and the hot electron population in the Io torus control the electron current densities between the Io torus and Jupiter and thus may control the energy flux and the brightness of the aurora downstream from Io's magnetic footprint. The parallel electric fields also are expected to create an unstable horseshoe electron distribution inside the auroral cavity, which may lead to the shell electron cyclotron maser instability. Results from our model suggest that in spite of the differing boundary conditions and the large centrifugal potentials at Jupiter, the auroral cavity formation may be similar to that of the Earth and that parallel electric fields may be the source mechanism of Io-controlled decametric radio emissions.

  7. Electric field quench, equilibration, and universal behavior

    NASA Astrophysics Data System (ADS)

    Amiri-Sharifi, S.; Ali-Akbari, M.; Sepangi, H. R.

    2015-06-01

    We study electric field quench in N =2 strongly coupled gauge theory, using the AdS/CFT correspondence. To do so, we consider the aforementioned system which is subjected to a time-dependent electric field indicating an out of equilibrium system. Defining the equilibration time teq , at which the system relaxes to its final equilibrium state after injecting the energy, we find that the rescaled equilibration time k-1teq decreases as the transition time k increases. Therefore, we expect that for sufficiently large transition time, k →∞, the relaxation of the system to its final equilibrium can be an adiabatic process. On the other hand, we observe a universal behavior for the fast quenches, k ≪1 , meaning that the rescaled equilibration time does not depend on the final value of the time-dependent electric field. Our calculations generalized to systems in various dimensions also confirm the universalization process which seems to be a typical feature of all strongly coupled gauge theories that admit a gravitational dual.

  8. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  9. Spin generation by strong inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Finkler, Ilya; Engel, Hans-Andreas; Rashba, Emmanuel; Halperin, Bertrand

    2007-03-01

    Motivated by recent experiments [1], we propose a model with extrinsic spin-orbit interaction, where an inhomogeneous electric field E in the x-y plane can give rise, through nonlinear effects, to a spin polarization with non-zero sz, away from the sample boundaries. The field E induces a spin current js^z= z x(αjc+βE), where jc=σE is the charge current, and the two terms represent,respectively, the skew scattering and side-jump contributions. [2]. The coefficients α and β are assumed to be E- independent, but conductivity σ is field dependent. We find the spin density sz by solving the equation for spin diffusion and relaxation with a source term ∇.js^z. For sufficiently low fields, jc is linear in E, and the source term vanishes, implying that sz=0 away from the edges. However, for large fields, σ varies with E. Solving the diffusion equation in a T-shaped geometry, where the electric current propagates along the main channel, we find spin accumulation near the entrance of the side channel, similar to experimental findings [1]. Also, we present a toy model where spin accumulation away from the boundary results from a nonlinear and anisotropic conductivity. [1] V. Sih, et al, Phys. Rev. Lett. 97, 096605 (2006). [2] H.-A. Engel, B.I. Halperin, E.I.Rashba, Phys. Rev. Lett. 95, 166605 (2005).

  10. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  11. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  12. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  13. A Digital Self Excited Loop for Accelerating Cavity Field Control

    SciTech Connect

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  14. Electrons under the dominant action of shock-electric fields

    NASA Astrophysics Data System (ADS)

    Fahr, Hans J.; Verscharen, Daniel

    2016-03-01

    We consider a fast magnetosonic multifluid shock as a representation of the solar-wind termination shock. We assume the action of the transition happens in a three-step process: In the first step, the upstream supersonic solar-wind plasma is subject to a strong electric field that flashes up on a small distance scale Δz ≃ U1/ Ωe (first part of the transition layer), where Ωe is the electron gyro-frequency and U1 is the upstream speed. This electric field both decelerates the supersonic ion flow and accelerates the electrons up to high velocities. In this part of the transition region, the electric forces connected with the deceleration of the ion flow strongly dominate over the Lorentz forces. We, therefore, call this part the demagnetization region. In the second phase, Lorentz forces due to convected magnetic fields compete with the electric field, and the highly anisotropic and energetic electron distribution function is converted into a shell distribution with energetic shell electrons storing about 3/4 of the upstream ion kinetic energy. In the third phase, the plasma particles thermalize due to the relaxation of free energy by plasma instabilities. The first part of the transition region opens up a new thermodynamic degree of freedom never before taken into account for the electrons, since the electrons are usually considered to be enslaved to follow the behavior of the protons in all velocity moments like density, bulk velocity, and temperature. We show that electrons may be the downstream plasma fluid that dominates the downstream plasma pressure.

  15. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    NASA Astrophysics Data System (ADS)

    Timoshkin, I. V.; MacGregor, S. J.; Fouracre, R. A.; Crichton, B. H.; Anderson, J. G.

    2006-02-01

    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  16. Electron distribution functions in electric field environments

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.

    1991-01-01

    The amount of current carried by an electric discharge in its early stages of growth is strongly dependent on its geometrical shape. Discharges with a large number of branches, each funnelling current to a common stem, tend to carry more current than those with fewer branches. The fractal character of typical discharges was simulated using stochastic models based on solutions of the Laplace equation. Extension of these models requires the use of electron distribution functions to describe the behavior of electrons in the undisturbed medium ahead of the discharge. These electrons, interacting with the electric field, determine the propagation of branches in the discharge and the way in which further branching occurs. The first phase in the extension of the referenced models , the calculation of simple electron distribution functions in an air/electric field medium, is discussed. Two techniques are investigated: (1) the solution of the Boltzmann equation in homogeneous, steady state environments, and (2) the use of Monte Carlo simulations. Distribution functions calculated from both techniques are illustrated. Advantages and disadvantages of each technique are discussed.

  17. A statistical study of high-altitude electric fields measured on the Viking satellite

    SciTech Connect

    Lindqvist, P.A.; Marklund, G.T. )

    1990-05-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for.

  18. Carbon nanotube bundles under electric field perturbations

    NASA Astrophysics Data System (ADS)

    Hammes, I.; Latgé, A.

    2012-03-01

    Here we address the important role played by electric fields applied in carbon nanotube bundles in providing convenient scenarios for their use in electronic devices. We show that a gap modulation may be derived depending on the bundle configuration and the details of the applied field configuration. The system is described by a tight binding Hamiltonian and the Green function formalism is used to calculate the local density of states. Small bundles were used to validate our model on the basis of ab initio calculations. Further analysis shows that the number of tubes, geometrical configuration details and field intensities may be controlled to tune the electronic structure close to the Fermi energy, envisaging atomic-scale devices.

  19. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  20. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity

    PubMed Central

    Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  1. Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity.

    PubMed

    Clayton, C E; Adli, E; Allen, J; An, W; Clarke, C I; Corde, S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Litos, M; Lu, W; Marsh, K A; Mori, W B; Vafaei-Najafabadi, N; Xu, X; Yakimenko, V

    2016-01-01

    The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569

  2. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  3. Electron transport in argon in crossed electric and magnetic fields

    PubMed

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field. PMID:11088933

  4. A class of effective field theory models of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Bloomfield, Jolyon K.; Flanagan, Éanna É.

    2012-10-01

    We explore a class of effective field theory models of cosmic acceleration involving a metric and a single scalar field. These models can be obtained by starting with a set of ultralight pseudo-Nambu-Goldstone bosons whose couplings to matter satisfy the weak equivalence principle, assuming that one boson is lighter than all the others, and integrating out the heavier fields. The result is a quintessence model with matter coupling, together with a series of correction terms in the action in a covariant derivative expansion, with specific scalings for the coefficients. After eliminating higher derivative terms and exploiting the field redefinition freedom, we show that the resulting theory contains nine independent free functions of the scalar field when truncated at four derivatives. This is in contrast to the four free functions found in similar theories of single-field inflation, where matter is not present. We discuss several different representations of the theory that can be obtained using the field redefinition freedom. For perturbations to the quintessence field today on subhorizon lengthscales larger than the Compton wavelength of the heavy fields, the theory is weakly coupled and natural in the sense of t'Hooft. The theory admits a regime where the perturbations become modestly nonlinear, but very strong nonlinearities lie outside its domain of validity.

  5. Some experimental observations on circulating currents in a crossed field plasma accelerator

    NASA Technical Reports Server (NTRS)

    Jedlicka, J.; Haacker, J.

    1971-01-01

    Experiments on a thermally ionized argon plasma suggest that applying a Lorentz force by means of orthogonal electric and magnetic fields to an electrically conducting fluid flow imposes necessary but not sufficient conditions for acceleration. There are, in fact, many combinations of current and magnetic field which cause decelerations of the fluid. The deceleration arises from a retarding force which may be larger than the applied Lorentz force. The retarding force causing the deceleration is a consequence of currents circulating completely within the fluid. These currents arise from differences in velocity between the central and wall regions of the duct which interact with the imposed magnetic field to produce differences in induced voltages. The observed physical effects of the circulating currents cause a loss in velocity in the central region of the duct, an increase in thermal energy in the sidewall region, and little change in thermal energy near the electrode wall region. For similar velocity profiles, the adverse effects appear to be related to the product of electrical conductivity and velocity, and performance as an accelerator appears to be controlled by the Hoffman loading parameter (i.e., the ratio of the applied to the induced currents).

  6. Charging and the cross-field discharge during electron accelerator operation on a rocket

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Monson, Steven J.

    1988-01-01

    Preliminary results are presented from experiments to study the neutralization processes around an electron beam emitting rocket. The rocket, SCEX II, was flown on January 31, 1987 from Alaska, with a payload consisting of two independent electron accelerators and two arms with conducting elements to act as Langmuir probes and to measure floating potentials. It was expected that electrons in the strong electric fields around the charged rocket would gain sufficient energy to ionize neutrals, producing ions which would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. The measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket.

  7. Estimation of Reconnection Electric Field in the 2003 October 29 X10 Flare

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.; Yang, Ya-Hui; Krucker, S.; Hsieh, M.

    2011-05-01

    The electric field in the reconnecting current sheet is estimated from the change rate of photospheric magnetic flux in the newly brightened areas of TRACE UV ribbons. The X10 flare on 2003 October 29 is selected due to its distinct two-phase HXR footpoint motion, two arcade systems with different magnetic shear, and the high-cadence and complete coverage of TRACE 1600 Å, MDI magnetogram, and RHESSI HXR observations. Besides the strengths of reconnection electric field in different flare phases, we particularly pay attention to the temporal correlation between the reconnection electric field and the corresponding characteristics at the conjugate HXR footpoints (such as the HXR emissions, HXR power-law spectral indexes, and the photospheric magnetic field strengths). We found that in the early impulsive phase, the reconnection electric field peaks just before the HXR emission peaks and the energy spectrum hardens. The result could be consistent with the scenario that more particles are accelerated to higher energies by larger reconnection electric field and then precipitate into lower chromosphere to produce stronger HXR emissions. Moreover, such particle acceleration mechanism plays most significant role in the impulsive phase of this X10 flare. In addition, our results provide the evidence that the highly-sheared magnetic field lines are mapped to the magnetic reconnection diffusion region to produce large reconnection electric field.

  8. Consolidation of Partially Stabilized ZrO2 in the Presence of a Noncontacting Electric Field

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; van Benthem, Klaus

    2015-05-01

    Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C , an electric field strength of 500 V /cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.

  9. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M. C.; Pfaff, R.

    1991-01-01

    The quasi-dc electric fields measured in the CRIT I ionospheric release experiment are studied. In the experiment, two identical barium shaped charges were fired toward a main payload, and three-dimensional measurements of the electric field inside the streams were made. The relevance of proposed mechanisms for electron heating in the critical ionization velocity (CIV) mechanism is addressed. It is concluded that both the 'homogeneous' and the 'ionizing front' models probably are valid, but in different parts of the streams. It is also possible that electrons are directly accelerated by a magnetic field-aligned component of the electric field. The coupling between the ambient ionosphere and the ionized barium stream is more complicated that is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes.

  10. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  11. Electric field-free gas breakdown in explosively driven generators

    SciTech Connect

    Shkuratov, Sergey I.; Baird, Jason; Talantsev, Evgueni F.; Altgilbers, Larry L.

    2010-07-15

    All known types of gas discharges require an electric field to initiate them. We are reporting on a unique type of gas breakdown in explosively driven generators that does not require an electric field.

  12. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H.

    1973-01-01

    Simple electric field measuring system is mounted on small rocket and consists of two voltage probes, one extending from nose and other on tail fin. Electric field through which rocket passes is determined by potential difference between probes.

  13. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  14. Laser ablation and target acceleration under the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Nagatomo, H.; Matsuo, K.; Breil, J.; Nicolai, P.; Feugeas, J.-L.; Asahina, T.; Sunahara, A.; Johzaki, T.; Fujioka, S.; Sano, T.; Mima, K.

    2015-11-01

    Various discussion and experiments have been made about the laser plasma phenomena under the strong magnetic field recently. One of the advantage is guiding electron beam for heating core plasma in last phase of Fast Ignition scheme. However, the implosion dynamics in FI is influenced by the magnetic field due to the anisotropic of electron heat conduction. Some simple experiments where target is accelerated by laser driven ablation under the strong magnetic field were conducted to benchmark the simulation code. Related to the experiment, we focus on the early stage of the acceleration in this study. 2-D radiative MHD code (PINOCO-MHD) is used for the simulation. In the simulation magnetic field transport, diffusion and Braginskii coefficient for electron heat conduction are taken account. In preliminary simulation result suggests that the magnetic pressure may have an influence on the target surface and/or ablated plasma at very early phase. The effect of the magnetic pressure is very sensitive to the vacuum, initial and boundary conditions, and they should be treated carefully. These numerical conditions will be discussed as well. This study was partially supported by JSPS KAKENHI Grant No. 26400532.

  15. Electric field effect in "metallic" polymers

    NASA Astrophysics Data System (ADS)

    Hsu, Fang-Chi

    The charge transport properties of the "metallic" polymer, poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (PEDOT:PSS), with a conductivity around 30 S/cm are studied in this thesis. The PEDOT:PSS is incorporated into a field effect transistor (FET) structure as an active component. Considering the screening effect of metals, it is unexpected to observe a dramatic conductance change in PEDOT:PSS under the application of a gate electric field. The conventional FET model is used to further investigate this phenomenon. Though the current-voltage (I-V) characteristics of PEDOT:PSS devices are similar to the conventional field effect transistors (FETs), the extracted field effect mobility (mu FET) from I-V curves is two orders of magnitude larger than that estimated from the conductivity. Further investigating the I-V curves, a hysteresis behavior is observed and varies with drain voltage sweeping rate. This hysteresis phenomenon suggests ion motion is involved in the PEDOT:PSS conductance suppression. Since the structure of the metallic polymers is viewed as metallic ordered regions embedded in poorly conducting disordered media, charge carriers conduct electricity by hopping over or resonant tunneling through the localized states in the disordered regions. Therefore, several experiments are performed to understand the origin of the electric field penetration inside the metallic polymer. Using the transient current measurements, the relationship between inserted ion charges and PEDOT:PSS conductance variation is examined. Around 2% replacement of hole charges on the PEDOT:PSS backbone with inserted ionic charges enables the modulation of the conductance of PEDOT:PSS by three orders of magnitude. This small fraction of charge compensation of counterions by inserted ion charges suggests a percolation phenomenon for PEDOT:PSS conduction suppression. The role of inserted ions is further investigated by measurements of the temperature dependence of

  16. Electrostatic air filters generated by electric fields

    SciTech Connect

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-27

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity.

  17. Perturbative renormalization of the electric field correlator

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Laine, M.

    2016-04-01

    The momentum diffusion coefficient of a heavy quark in a hot QCD plasma can be extracted as a transport coefficient related to the correlator of two colour-electric fields dressing a Polyakov loop. We determine the perturbative renormalization factor for a particular lattice discretization of this correlator within Wilson's SU(3) gauge theory, finding a ∼ 12% NLO correction for values of the bare coupling used in the current generation of simulations. The impact of this result on existing lattice determinations is commented upon, and a possibility for non-perturbative renormalization through the gradient flow is pointed out.

  18. Impact of electric fields on honey bees

    SciTech Connect

    Bindokas, V.P.

    1985-01-01

    Biological effects in honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) were confirmed using controlled dosimetry and treatment reversal to replicate findings within the same season. Hives in the same environment but shielded from E field are normal, suggesting effects are caused by interaction of E field with the hive. Bees flying through the ambient E field are not demonstrably affected. Different thresholds and severity of effects were found in colonies exposed to 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m at incremental distances from the line. Most colonies exposed at 7 kV/m failed in 8 weeks and failed to overwinter at greater than or equal to4.1 kV/m. Data suggest the limit of a biological effects corridor lies between 15 and 27 m (4.1 and 1.8 kV/m) beyond the outer phase of the transmission line. Mechanisms to explain colony disturbance fall into two categories, direct perception of enhanced in-hive E fields, and perception of shock from induced currents. The same effects induced in colonies with total-hive E-field exposure can be reproduced with shock or E-field exposure of worker bees in extended hive entranceways (= porches). Full-scale experiments demonstrate bee exposure to E fields including 100 kV/m under moisture-free conditions within a non-conductive porch causes no detectable effect on colony behavior. Exposure of bees on a conductive (e.g. wet) substrate produces been disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. Thresholds for effects caused by step-potential-induced currents are: 275-350 nA - disturbance of single bees; 600 nA - onset of abnormal propolization; and 900 nA - sting.

  19. Phosphate vibrations probe local electric fields and hydration in biomolecules

    PubMed Central

    Levinson, Nicholas M.; Bolte, Erin E.; Miller, Carrie S.

    2011-01-01

    The role of electric fields in important biological processes like binding and catalysis has been studied almost exclusively by computational methods. Experimental measurements of the local electric field in macromolecules are possible using suitably calibrated vibrational probes. Here we demonstrate that the vibrational transitions of phosphate groups are highly sensitive to an electric field and quantify that sensitivity, allowing local electric field measurements to be made in phosphate-containing biological systems without chemical modification. PMID:21809829

  20. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  1. Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements.

    PubMed

    Chérigier-Kovacic, L; Ström, P; Lejeune, A; Doveil, F

    2015-06-01

    Electric field induced Lyman-α emission is a new way of measuring weak electric fields in vacuum and in a plasma. It is based on the emission of Lyman-α radiation (121.6 nm) by a low-energy metastable H atom beam due to Stark-quenching of the 2s level induced by the field. In this paper, we describe the technique in detail. Test measurements have been performed in vacuum between two plates polarized at a controlled voltage. The intensity of emitted radiation, proportional to the square of the field modulus, has been recorded by a lock-in technique, which gives an excellent signal to noise ratio. These measurements provide an in situ calibration that can be used to obtain the absolute value of the electric field. A diagnostic of this type can help to address a long standing challenge in plasma physics, namely, the problem of measuring electric fields without disturbing the equilibrium of the system that is being studied. PMID:26133836

  2. Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements

    SciTech Connect

    Chérigier-Kovacic, L. Doveil, F.; Ström, P.; Lejeune, A.

    2015-06-15

    Electric field induced Lyman-α emission is a new way of measuring weak electric fields in vacuum and in a plasma. It is based on the emission of Lyman-α radiation (121.6 nm) by a low-energy metastable H atom beam due to Stark-quenching of the 2s level induced by the field. In this paper, we describe the technique in detail. Test measurements have been performed in vacuum between two plates polarized at a controlled voltage. The intensity of emitted radiation, proportional to the square of the field modulus, has been recorded by a lock-in technique, which gives an excellent signal to noise ratio. These measurements provide an in situ calibration that can be used to obtain the absolute value of the electric field. A diagnostic of this type can help to address a long standing challenge in plasma physics, namely, the problem of measuring electric fields without disturbing the equilibrium of the system that is being studied.

  3. Brownian dipole rotator in alternating electric field.

    PubMed

    Rozenbaum, V M; Vovchenko, O Ye; Korochkova, T Ye

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters. PMID:18643221

  4. Brownian dipole rotator in alternating electric field

    NASA Astrophysics Data System (ADS)

    Rozenbaum, V. M.; Vovchenko, O. Ye.; Korochkova, T. Ye.

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters.

  5. Electric field effects on droplet burning

    NASA Astrophysics Data System (ADS)

    Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe

    2015-11-01

    The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.

  6. Electric field control of Skyrmions in magnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  7. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  8. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  9. Enhanced fog collection with electric fields

    NASA Astrophysics Data System (ADS)

    Damak, Maher; Mahmoudi, Seyed Reza; Varanasi, Kripa

    2015-11-01

    Fog harvesting is a promising source of fresh water in remote areas. However, the efficiency of current collectors, consisting in fine meshes standing perpendicularly to the wind, is dramatically low. Fog-laden flows generally have low Stokes numbers, which leads to the deviation of fog droplets in the vicinity of the mesh wires. Here, we propose to overcome this aerodynamic limitation using a combination of electric fields and specific collecting surfaces. We show that our system largely increases the fog collection efficiency. We study the trajectories of individual particles and use the results to derive a model to predict the collection efficiency of the system. We finally identify and quantify the mechanisms that can limit the collection of fog particles. The understanding of these mechanisms leads us to construct a design chart that can be used to determine the optimal design parameters that should be used in fog collection applications as a function of the field conditions.

  10. Fusion of bacterial spheroplasts by electric fields.

    PubMed

    Ruthe, H J; Adler, J

    1985-09-25

    Spheroplasts of Escherichia coli or Salmonella typhimurium were found to fuse in an electric field. We employed the fusion method developed by Zimmermann and Scheurich (1981): Close membrane contact between cells is established by dielectrophoresis (formation of chains of cells by an a.c. field), then membrane fusion is induced by the application of short pulses of direct current. Under optimum conditions the fusion yield was routinely 90%. Fusable spheroplasts were obtained by first growing filamentous bacteria in the presence of cephalexin, then converting these to spheroplasts by the use of lysozyme. The fusion products were viable and regenerated to the regular bacterial form. Fusion of genetically different spheroplasts resulted in strains of bacteria possessing a combination of genetic markers. Fusion could not be achieved with spheroplasts obtained by growing the cells in the presence of penicillin or by using lysozyme on bacteria of usual size. PMID:3899175

  11. DH(*) in chiral smectics under electric field.

    PubMed

    Meyer, C; Rabette, C; Gisse, P; Antonova, K; Dozov, I

    2016-07-01

    The behavior of double helices (DH(*) formed in the temperature interval N(*) -SmA(*) in compounds of non-chiral liquid crystals doped with chiral molecules was investigated. Two different systems presenting left-handed and right-handed chirality were studied. A statistics of the handedness of the DH(*) revealed a correlation with the mixture chirality, as predicted theoretically in C. Meyer, Yu. A. Nastishin, M. Kleman, Phys. Rev. E 82, 031704 (2010). By applying a gradually increasing AC electric field, one can observe the shrinking of the cylinder circumscribing the DH(*) . This shrink is accompanied by a reduction of the DH(*) 's pitch. This effect was similar to the one produced by the decrease of temperature in the absence of the field. PMID:27465656

  12. Assembly of LIGA using Electric Fields

    SciTech Connect

    FEDDEMA, JOHN T.; WARNE, LARRY K.; JOHNSON, WILLIAM A.; OGDEN, ALLISON J.; ARMOUR, DAVID L.

    2002-04-01

    The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

  13. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    SciTech Connect

    Datta, T.; Yin Ming; Vargas, Jose

    2004-02-04

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kaehler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  14. Statistical model for field emitter activation on metallic surfaces used in high-gradient accelerating structures

    NASA Astrophysics Data System (ADS)

    Lagotzky, S.; Müller, G.

    2016-01-01

    Both super- and normal-conducting high-gradient linear accelerators are limited by enhanced field emission (EFE) in the accelerating structures, e.g. due to power loss or ignition of discharges. We discuss the dependence of the number density of typical emitters, i.e. particulates and surface defects, on the electric field level at which they are activated for naturally oxidized metallic surfaces. This activation is explained by the transition of a metal-insulator interface into geometric features that enhance the EFE process. A statistical model is successfully compared to systematic studies of niobium and copper relevant for recent and future linear accelerators. Our results show that the achievable surface quality of Nb might be sufficient for the suppression of EFE in the superconducting accelerating structures for the actual European XFEL but not for the planned International Linear Collider. Moreover, some effort will be required to reduce EFE and thus the breakdown rate of the normal conducting Cu structures for the Compact Linear Collider.

  15. Gravity- and strain-induced electric fields outside metal surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Opat, G. I.

    1992-05-01

    The gravity-induced electric field outside a metal object supported against gravity is predominantly due to its differential compression which arises in supporting its own weight. This Dessler-Michel-Rorschach-Trammell (DMRT) field, as it has come to be known, is expected to be proportional to the strain derivative of the work function of the surface. We report the results of an experiment designed to produce this effect with mechanically applied strain rather than with gravity. In essence, we have measured the strain-induced contact-potential variation between a metal surface of known strain gradient and an unstrained capacitive probe. We describe useful solutions to the problems faced in such an experiment, which were not adequately addressed by earlier workers. A knowledge of the DMRT field is of considerable importance to experiments designed to compare the gravitational acceleration of charged particles and antiparticles inside a metallic shield. Past experiments with electrons yielded results contrary to the then-expected DMRT field. We review and partially extend the theoretical background by drawing on later results based on the jellium model of metal surfaces. Our results for Cu and Au surfaces are consistent with jellium-based calculations which imply a DMRT field that is about an order of magnitude smaller and of opposite sign to the early estimates.

  16. Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields

    SciTech Connect

    William Detmold; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-03-01

    Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. We devise combinations of baryon two-point functions in external electric fields to isolate both observables. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how magnetic moments and electric polarizabilities can be determined from lattice QCD simulations in background electric fields. We obtain results for both the neutron and proton. Our study is currently limited to electrically neutral sea quarks.

  17. Reverse plasma motion driven by moderately screened rotating electric field in an electrodeless plasma thruster

    NASA Astrophysics Data System (ADS)

    Ohnishi, Naofumi; Nomura, Ryosuke; Nakamura, Takahiro; Nishida, Hiroyuki

    2016-01-01

    A reversely-induced azimuthal current has been found in two-dimensional particle simulations with moderately screened rotating electric field (REF) though an ideally penetrating REF drives a “positive” azimuthal current following rotating E × B drifts. This brings us an alternative acceleration concept, called a negative-moving response (NMR) acceleration, of the helicon plasma under practical conditions using a converging magnetic field because the internal electric potential, formed by the plasma response against the external field, drives the “negative” azimuthal current. Under realistic experimental conditions, e.g., a magnetic field of 0.2 T, AC frequency of <100 MHz, and AC voltage of <1000 V, the resultant thrust can be estimated at an observable level of >0.1 mN with the NMR acceleration. Moreover, the reverse REF is more favorable to the NMR acceleration than the conventional forward one because the reverse field produces a Lissajous acceleration in the converging magnetic field.

  18. Low-Field Accelerator Structure Couplers and Design Techniques

    SciTech Connect

    Nantista, C

    2004-07-29

    Recent experience with X-band accelerator structure development has shown the rf input coupler to be the region most prone to rf breakdown and degradation, effectively limiting the operating gradient. A major factor in this appears to be high magnetic fields at the sharp edges of the coupling irises. As a first response to this problem, couplers with rounded and thickened iris horns have been employed and successfully tested at high power. To further reduce fields for higher power flow, conceptually new coupler designs have been developed, in which power is coupled through the broadwall of the feed waveguide, rather than through terminating irises. A 'mode launcher' coupler, which launches the TM{sub 01} mode in circular waveguide before coupling through a matching cell into the main structure, has been tested with great success. With peak surface fields below those in the body of the structure, this coupler represented a break-through in the NLC structure program. The design of this coupler and of variations which use beamline space more efficiently are described here. The latter include a coupler in which power passes directly through an iris in the broad wall of the rectangular waveguide into a matching cell, also successfully implemented, and a variation which makes the waveguide itself an accelerating cell. The authors also discuss in some detail a couple of techniques for matching such couplers to travelling-wave structures using a field solver. The first exploits the cell number independence of a travelling-wave match, and the second optimizes using the fields of an internally driven structure.

  19. Emitting waves from heterogeneity by a rotating electric field.

    PubMed

    Zhao, Ye-Hua; Lou, Qin; Chen, Jiang-Xing; Sun, Wei-Gang; Ma, Jun; Ying, He-Ping

    2013-09-01

    In a generic model of excitable media, we simulate wave emission from a heterogeneity (WEH) induced by an electric field. Based on the WEH effect, a rotating electric field is proposed to terminate existed spatiotemporal turbulence. Compared with the effects resulted by a periodic pulsed electric field, the rotating electric field displays several improvements, such as lower required intensity, emitting waves on smaller obstacles, and shorter suppression time. Furthermore, due to rotation of the electric field, it can automatically source waves from the boundary of an obstacle with small curvature. PMID:24089977

  20. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  1. Self-consistent formation of parallel electric fields in the auroral zone

    NASA Technical Reports Server (NTRS)

    Schriver, David; Ashour-Abdalla, Maha

    1993-01-01

    This paper presents results from a fully self-consistent kinetic particle simulation of the time-dependent formation of large scale parallel electric fields in the auroral zone. The results show that magnetic mirroring of the hot plasma that streams earthward from the magnetotail leads to a charge separation potential drop of many kilovolts, over an altitude range of a few thousand kilometers. Once the potential drop is formed, it remains relatively static and is maintained in time by the constant input of hot plasma from the tail; the parallel electric field accelerates ions away from Earth and ionospheric electrons towards the Earth. At altitudes above where the ions are mirror reflected and accelerated by the parallel electric field, low frequency waves are generated, possibly due to an ion/ion two-stream interaction.

  2. What Are Electric and Magnetic Fields? (EMF)

    MedlinePlus

    ... Puzzles Riddles Songs Activities Be a Scientist Coloring Science ... Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators Use of electric power is something ...

  3. Saturation of the Electric Field Transmitted to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  4. Nonlinear response of electric fields at a neutral point

    NASA Astrophysics Data System (ADS)

    Berkovsky, Mikhail; Dufty, James W.; Calisti, Annette; Stamm, Roland; Talin, Bernard

    1995-05-01

    The complex dynamics of electric fields at a neutral point in a plasma is studied via a model of noninteracting ``quasiparticles.'' The simplicity of the model allows the reduction of the many-body problem to an effective single-particle analysis-all properties of interest can be reduced to quadratures. Still, the final calculations to extract a quantitative or even qualitative understanding of the field dynamics can be difficult. Attention here is focused on the dynamics of the conditional electric field: the field value at time t for a given initial value of the field. In addition to the relevant linear response function (electric field time correlation function), this property provides the complete nonlinear response of the electric field to arbitrary initial field perturbations. The static properties (distribution of electric fields and field time derivatives) and the electric field time correlation function have been known for some time for this model. We compare these results and the present result for the conditional electric field with molecular dynamics simulations including interactions. The comparisons suggest that the model provides a quantitative representation of electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are compared also with those obtained by modeling the electric field as a stochastic variable obeying a kangaroo process. The latter can be constructed to yield both the exact stationary distribution and the exact electric field time correlation function. However, we find that the conditional field is never well approximated by this process. An alternative representation of the joint distribution for electric fields, consistent with the exact stationary distribution, field correlation function, and conditional electric field, is suggested.

  5. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  6. Aircraft measurement of electric field - Self-calibration

    NASA Technical Reports Server (NTRS)

    Winn, W. P.

    1993-01-01

    Aircraft measurement of electric fields is difficult as the electrically conducting surface of the aircraft distorts the electric field. Calibration requires determining the relations between the undistorted electric field in the absence of the vehicle and the signals from electric field meters that sense the local distorted fields in their immediate vicinity. This paper describes a generalization of a calibration method which uses pitch and roll maneuvers. The technique determines both the calibration coefficients and the direction of the electric vector. The calibration of individual electric field meters and the elimination of the aircraft's self-charge are described. Linear combinations of field mill signals are examined and absolute calibration and error analysis are discussed. The calibration method was applied to data obtained during a flight near thunderstorms.

  7. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  8. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  9. Liquid methanol under a static electric field

    NASA Astrophysics Data System (ADS)

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-01

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm-1) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  10. Empirical models of high latitude electric fields

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.

    1976-01-01

    Model cross sections of the high latitude dawn-dusk electric field based on OGO-6 data are presented for the signature profiles, most frequently encountered for both + and -Y orientations of the interplanetary magnetic field. Line integrals give a total potential of 76 keV in each case. To illustrate extremes, examples of model cross-sections with total potentials of 23 keV and 140 keV are also given. Model convection patterns are also presented utilizing OGO-6 data on boundary locations at other magnetic local times. When this information is combined with characteristic field geometries in the region of the Harang discontinuity, and is supplemented by data from Ba+ cloud motions in the polar cap, it becomes possible to construct realistic convection patterns on the nightside which deviate from the usual sun-aligned patterns. The observational models presented are of limited applicability as a consequence of the variability of observed distributions. These limitations are emphasized with particular attention given to several types of recurrent deviations which have not previously been discussed.

  11. Liquid methanol under a static electric field

    SciTech Connect

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  12. Manipulation of nano-entities in suspension by electric fields

    NASA Astrophysics Data System (ADS)

    Fan, Donglei

    Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to

  13. Wake-field studies on photonic band gap accelerator cavities

    NASA Astrophysics Data System (ADS)

    Li, Derun; Kroll, N.; Smith, D. R.; Schultz, S.

    1997-03-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode.

  14. Kinetic Alfven Wave Electron Acceleration on Auroral Field Lines

    NASA Technical Reports Server (NTRS)

    Kletzing, Craig A.

    2001-01-01

    Major results of the S3-3 Langmuir sweep study are published. Studies show statistics and average density and temperature variation on auroral field lines up to 8000 km altitude. Alfven wave papers were published. Our model of Alfven wave propagation on auroral field lines was successfully extended to handle varying density and magnetic field for the inertial mode. The study showed that Alfven wave can create time-dispersed electron signatures. A study was undertaken to extend Langmuir sweep I-V curves to handle the case of an kappa electron distribution as well as Maxwellian. The manuscript is in preparation. Participated in International Space Science Institute study of Alfvenic structures which resulted in a group review paper. The proposed work was to develop an extended model of Alfven wave propagation along auroral field lines to study electron acceleration. As part of this work, a major task was to characterize density and temperature along auroral field lines by using spacecraft Langmuir sweep data. The work that was completed under this funding was successful at both tasks. Three papers have been published as part of this work and a fourth manuscript is in preparation.

  15. Electropumping of water with rotating electric fields

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2013-04-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  16. Nonminimal black holes with regular electric field

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2015-05-01

    We discuss the problem of identification of coupling constants, which describe interactions between photons and spacetime curvature, using exact regular solutions to the extended equations of the nonminimal Einstein-Maxwell theory. We argue the idea that three nonminimal coupling constants in this theory can be reduced to the single guiding parameter, which plays the role of nonminimal radius. We base our consideration on two examples of exact solutions obtained earlier in our works: the first of them describes a nonminimal spherically symmetric object (star or black hole) with regular radial electric field; the second example represents a nonminimal Dirac-type object (monopole or black hole) with regular metric. We demonstrate that one of the inflexion points of the regular metric function identifies a specific nonminimal radius, thus marking the domain of dominance of nonminimal interactions.

  17. Electrical integrity of oxides in a radiation field

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  18. Comparison of the macroscopic properties of field-accelerated electrons in dry air and in pure oxygen

    NASA Astrophysics Data System (ADS)

    Fournier, G.; Bonnet, J.; Pigache, D.

    1980-06-01

    The numerical solution of the Boltzmann equation for an ionized gas yields the macroscopic properties of electrons accelerated by an electric field in dry air and in pure oxygen. For the purpose of ozone generation, the stronger the field, the better the efficiency of oxygen dissociation. In air, the oxygen dissociation is found to be much less easy than that at the same amount of pure oxygen.

  19. Three-dimensional electric field visualization utilizing electric-field-induced second-harmonic generation in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, I.-Hsiu; Chu, Shi-Wei; Bresson, Francois; Tien, Ming-Chun; Shi, Jin-Wei; Sun, Chi-Kuang

    2003-08-01

    An electric-field-induced second-harmonic-generation signal in a nematic liquid crystal is used to map the electric field in an integrated-circuit-like sample. Since the electric-field-induced second-harmonic-generation signal intensity exhibits a strong dependence on the polarization of the incident laser beam, both the amplitude and the orientation of the electric field vectors can be measured. Combined with scanning second-harmonic-generation microscopy, three-dimensional electric field distribution can be easily visualized with high spatial resolution of the order of 1 μm.

  20. Electrodynamics of hyperbolically accelerated charges V. The field of a charge in the Rindler space and the Milne space

    NASA Astrophysics Data System (ADS)

    Eriksen, E.; Grøn, Ø.

    2004-09-01

    We describe the electromagnetic field of a uniformly accelerated charge in its co-moving Rindler frame. It is shown that the electrical field lines coincide with the trajectories of photons. The self force of a charged particle at rest in Rindler space, and the increase of its weight due to its charge, is calculated. The general case of an accelerated charge in Rindler space is also considered. It is shown that the electrical field inside a uniformly charged spherical shell can be used as a measure of it 4-acceleration. A result that has earlier been deduced in a different way by Fugmann and Kretzschmar is confirmed, namely that the intensity of radiation from a point charge instantaneously at rest in an accelerated frame is proportional to the square of the relative acceleration of the charge and the observer. In particular it is shown that a freely falling charge in Rindler space radiates in accordance with Larmor's formula. In this case the radiation energy is taken from the Schott energy. The energy of the electromagnetic field is analysed from the point of view of the Hirayama-separation, which generalizes the Teitelboim-separation to non-inertial frames, of the field in a bound part and an unbound part. A detailed account, with reference to the Rindler frame, of the field energy and particle energy is given for the case of a charge entering and leaving a region with hyperbolic motion. We also consider the electromagnetic field of a uniformly accelerated charge with reference to the Milne frame, which covers a different part of spacetime than the Rindler frame. The radiating part of the electromagnetic field is found in the Milne sector of spacetime.

  1. Photoinduced Charge Transport in a BHJ Solar Cell Controlled by an External Electric Field

    PubMed Central

    Li, Yongqing; Feng, Yanting; Sun, Mengtao

    2015-01-01

    This study investigated theoretical photoinduced charge transport in a bulk heterojunction (BHJ) solar cell controlled by an external electric field. Our method for visualizing charge difference density identified the excited state properties of photoinduced charge transfer, and the charge transfer excited states were distinguished from local excited states during electronic transitions. Furthermore, the calculated rates for the charge transfer revealed that the charge transfer was strongly influenced by the external electric field. The external electric field accelerated the rate of charge transfer by up to one order when charge recombination was significantly restrained. Our research demonstrated that photoinduced charge transport controlled by an external electric field in a BHJ solar cell is efficient, and the exciton dissociation is not the limiting factor in organic solar cells.Our research should aid in the rational design of a novel conjugated system of organic solar cells. PMID:26353997

  2. On the magnetic mirroring as the basic cause of parallel electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, W.

    1976-01-01

    Among the different proposed mechanisms for generating parallel electric fields, magnetic mirroring of charged particles seems to be the most plausible. In the present paper, it is suggested that magnetic mirroring is the basic cause of parallel electric fields in the magnetosphere and that the magnetic mirroring effect may be able to form the basis of an auroral theory that can remove a major portion of the ambiguity of observations. In the model proposed, the parallel electric field is due to a magnetic confinement of a negatively charged hot collision-free plasma. A transfer of electron gyroenergy into wave energy tends to weaken this confinement; if this energy transfer becomes too strong, the parallel potential gradient will break down. Hence, from this model, in contrast to certain other models of parallel electric fields, only a small fraction of the total auroral particle energy may be expected to be transformed into electromagnetic wave energy during the acceleration process.

  3. The evolution of the electric field at a nonstationary perpendicular shock

    SciTech Connect

    Yang, Z. W.; Lu, Q. M.; Wang, S.

    2009-12-15

    Particle-in-cell simulations evidenced that supercritical, quasiperpendicular shocks are nonstationary and may suffer a self-reformation on the ion gyroscale. In this brief communication, we investigate the evolution of the electric field at a nonstationary, supercritial perpendicular shock. The contributions of the ion Lorentz, Hall, and electron pressure terms to the electric field are analyzed. During the evolution of the perpendicular shock, a new ramp may be formed in front of the old ramp, and its amplitude becomes larger and larger. At last, the new ramp exceeds the old one, and such a nonstationary process can be formed periodically. When the new ramp begins to be formed in front of the old ramp, the Hall term becomes more and more important. The electric field E{sub x} is dominated by the Hall term when the new ramp exceeds the old one. The significance of the evolution of the electric field on shock acceleration is also discussed.

  4. Difficulties in Learning the Concept of Electric Field.

    ERIC Educational Resources Information Center

    Furio, C.; Guisasola, J.

    1998-01-01

    Analyzes students' main difficulties in learning the concept of electric field. Briefly describes the main conceptual profiles within which electric interactions can be interpreted and concludes that most students have difficulty using the idea of electric field. Contains 28 references. (DDR)

  5. Review Of Fiber-Optic Electric-Field Sensors

    NASA Technical Reports Server (NTRS)

    De Paula, Ramon P.; Jarzynski, Jacek

    1989-01-01

    Tutorial paper reviews state of art in fiber-optic sensors of alternating electric fields. Because such sensors are made entirely of dielectric materials, they are relatively transparent to incident electric fields; they do not distort fields significantly. Paper presents equations that express relationships among stress, strain, and electric field in piezoactive plastic and equations for phase shift in terms of photoelastic coefficients and strains in optical fiber.

  6. Electric field directed nucleic acid hybridization on microchips.

    PubMed Central

    Edman, C F; Raymond, D E; Wu, D J; Tu, E; Sosnowski, R G; Butler, W F; Nerenberg, M; Heller, M J

    1997-01-01

    Selection and adjustment of proper physical parameters enables rapid DNA transport, site selective concentration, and accelerated hybridization reactions to be carried out on active microelectronic arrays. These physical parameters include DC current, voltage, solution conductivity and buffer species. Generally, at any given current and voltage level, the transport or mobility of DNA is inversely proportional to electrolyte or buffer conductivity. However, only a subset of buffer species produce both rapid transport, site specific concentration and accelerated hybridization. These buffers include zwitterionic and low conductivity species such as: d- and l-histidine; 1- and 3-methylhistidines; carnosine; imidazole; pyridine; and collidine. In contrast, buffers such as glycine, beta-alanine and gamma-amino-butyric acid (GABA) produce rapid transport and site selective concentration but do not facilitate hybridization. Our results suggest that the ability of these buffers (histidine, etc.) to facilitate hybridization appears linked to their ability to provide electric field concentration of DNA; to buffer acidic conditions present at the anode; and in this process acquire a net positive charge which then shields or diminishes repulsion between the DNA strands, thus promoting hybridization. PMID:9396795

  7. High-Field, {mu}J-Class THz Pulses from a Laser Wakefield Accelerator

    SciTech Connect

    Matlis, N. H.; Tilborg, J. van; Geddes, C. G. R.; Toth, Cs.; Schroeder, C. B.; Plateau, G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    We present observation and characterization of microjoule-MV/cm-level THz pulses from a laser wakefield accelerator. THz emitted as coherent transition radiation from the plasma-vacuum boundary is collected and refocused by off-axis parabolas to a test stand where a suite of diagnostics is performed, including energy measurement by a Golay cell and electro-optic sampling of the spatio-temporal electric field using a probe pulse split from the main laser. Frequency Domain Holography is also implemented for the first time to capture spatio-temporal field distributions in a single shot. The four techniques strongly corroborate detection of THz pulses of {approx}0.4 ps duration, with peak fields of several hundred kV/cm and energies of 5-10 {mu}J. The advantages and disadvantages of each technique are discussed.

  8. Acceleration of electrons in the near field of lower hybrid frequency grills

    SciTech Connect

    Goniche, M.; Mailloux, J.; Demers, Y.; Jacquet, P.; Bibet, P.; Froissard, P.; Rey, G.; Surle, F.; Tareb, M.; Guilhem, D.; Harris, J.H.

    1996-09-01

    On Tore Supra, during lower hybrid (LH) current drive experiments, localized heat flux deposition is observed on plasma facing components such as the guard limiters of the LH grills or any object which is magnetically connected to the LH launching waveguides : modular low-field side limiters, ion cyclotron heating antennas, inner first wall. Similar observations have been made on the divertor plates and limiters of TdeV. In particular, by alternating the rf powers of the 2 grills of Tore Supra, it was shown that the heat flux on the tiles of the guard limiters is related to the local electric field but not with the convective power. We present here a model of acceleration of electrons in the near field of LH antennas. Results of this model are compared to experimental results.

  9. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  10. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  11. Role of random electric fields in relaxors

    PubMed Central

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  12. Biological effects of electric fields: an overview

    SciTech Connect

    Anderson, L.E.; Phillips, R.D.

    1983-11-01

    An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.

  13. Electric field directed assembly of high-density microbead arrays†

    PubMed Central

    Barbee, Kristopher D.; Hsiao, Alexander P.; Heller, Michael J.; Huang, Xiaohua

    2010-01-01

    We report a method for rapid, electric field directed assembly of high-density protein-conjugated microbead arrays. Photolithography is used to fabricate an array of micron to sub-micron-scale wells in an epoxy-based photoresist on a silicon wafer coated with a thin gold film, which serves as the primary electrode. A thin gasket is used to form a microfluidic chamber between the wafer and a glass coverslip coated with indium-tin oxide, which serves as the counter electrode. Streptavidin-conjugated microbeads suspended in a low conductance buffer are introduced into the chamber and directed into the wells via electrophoresis by applying a series of low voltage electrical pulses across the electrodes. Hundreds of millions of microbeads can be permanently assembled on these arrays in as little as 30 seconds and the process can be monitored in real time using epifluorescence microscopy. The binding of the microbeads to the gold film is robust and occurs through electrochemically induced gold-protein interactions, which allows excess beads to be washed away or recycled. The well and bead sizes are chosen such that only one bead can be captured in each well. Filling efficiencies greater than 99.9% have been demonstrated across wafer-scale arrays with densities as high as 69 million beads per cm2. Potential applications for this technology include the assembly of DNA arrays for high-throughput genome sequencing and antibody arrays for proteomic studies. Following array assembly, this device may also be used to enhance the concentration-dependent processes of various assays through the accelerated transport of molecules using electric fields. PMID:19865735

  14. Silica microwire-based interferometric electric field sensor.

    PubMed

    Han, Chunyang; Lv, Fangxing; Sun, Chen; Ding, Hui

    2015-08-15

    Silica microwire, as an optical waveguide whose diameter is close to or smaller than the wavelength of the guided light, is of great interest because it exhibits a number of excellent properties such as tight confinement, large evanescent fields, and great configurability. Here, we report a silica microwire-based compact photonic sensor for real-time detection of high electric field. This device contains an interferometer with propylene carbonate cladding. Based on the Kerr electro-optic effect of propylene carbonate, the applied intensive transient electric field can change the refractive index of propylene carbonate, which shifts the interferometric fringe. Therefore, the electric field could be demodulated by monitoring the fringe shift. The sensor was successfully used to detect alternating electric field with frequency of 50 Hz and impulse electric field with duration time of 200 μs. This work lays a foundation for future applications in electric field sensing. PMID:26274634

  15. The Influence of Electric Field and Confinement on Cell Motility

    PubMed Central

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C.

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D. PMID:23555674

  16. Evolution of auroral acceleration region field-aligned current systems, plasma, and potentials observed by Cluster during substorms

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.

    2015-12-01

    The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key

  17. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  18. A new probe for measuring small electric fields in plasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1991-01-01

    A dipolar double probe has been developed for in situ measurements of small electric fields in laboratory plasmas. The probe measures dc to ac electric fields (f values between 0 and 20 MHz) with high sensitivity (Emin about 10 microV/cm) and responds to both space charge electric fields and inductive electric fields. Using voltage-to-frequency conversion, the probe signal is obtained free of errors and loading effects by a transmission line. Various examples of useful applications for the new probe are presented, such as measurements of dc ambipolar fields, ac space-charge fields of ion acoustic waves, ac inductive fields of whistler waves, and mixed inductive and space-charge electric fields in current-carrying magnetoplasmas.

  19. Production of plasma with variable, radial electric fields

    NASA Technical Reports Server (NTRS)

    Kustom, B.; Merlino, R. L.; Dangelo, N.

    1984-01-01

    A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the potentials of two independent, coaxial discharge plasmas, the authors produced plasmas with a radial electric field E sub r less than approximately 5 V/cm.

  20. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    NASA Astrophysics Data System (ADS)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  1. Computation of induced electric field for the sacral nerve activation

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Hattori, Junya; Laakso, Ilkka; Takagi, Airi; Shimada, Takuo

    2013-11-01

    The induced electric field/current in the sacral nerve by stimulation devices for the treatment of bladder overactivity is investigated. Implanted and transcutaneous electrode configurations are considered. The electric field induced in the sacral nerve by the implanted electrode is largely affected by its surrounding tissues, which is attributable to the variation in the input impedance of the electrode. In contrast, the electric field induced by the transcutaneous electrode is affected by the tissue conductivity and anatomical composition of the body. In addition, the electric field induced in the subcutaneous fat in close proximity of the electrode is comparable with the estimated threshold electric field for pain. These computational findings explain the clinically observed weakness and side effect of each configuration. For the transcutaneous stimulator, we suggest that the electrode contact area be increased to reduce the induced electric field in the subcutaneous fat.

  2. Flow-driven cell migration under external electric fields

    PubMed Central

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  3. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  4. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  5. Electric field induced bacterial flocculation of enteroaggregative Escherichia coli 042

    NASA Astrophysics Data System (ADS)

    Kumar, Aloke; Mortensen, Ninell P.; Mukherjee, Partha P.; Retterer, Scott T.; Doktycz, Mitchel J.

    2011-06-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogenous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  6. Electric field induced bacterial flocculation of Enteroaggregative Escherichia coli 042

    SciTech Connect

    Kumar, Aloke; Mortensen, Ninell P; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogeneous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  7. Electric field breakdown in single molecule junctions.

    PubMed

    Li, Haixing; Su, Timothy A; Zhang, Vivian; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2015-04-22

    Here we study the stability and rupture of molecular junctions under high voltage bias at the single molecule/single bond level using the scanning tunneling microscope-based break-junction technique. We synthesize carbon-, silicon-, and germanium-based molecular wires terminated by aurophilic linker groups and study how the molecular backbone and linker group affect the probability of voltage-induced junction rupture. First, we find that junctions formed with covalent S-Au bonds are robust under high voltage and their rupture does not demonstrate bias dependence within our bias range. In contrast, junctions formed through donor-acceptor bonds rupture more frequently, and their rupture probability demonstrates a strong bias dependence. Moreover, we find that the junction rupture probability increases significantly above ∼1 V in junctions formed from methylthiol-terminated disilanes and digermanes, indicating a voltage-induced rupture of individual Si-Si and Ge-Ge bonds. Finally, we compare the rupture probabilities of the thiol-terminated silane derivatives containing Si-Si, Si-C, and Si-O bonds and find that Si-C backbones have higher probabilities of sustaining the highest voltage. These results establish a new method for studying electric field breakdown phenomena at the single molecule level. PMID:25675085

  8. Crystalline electric fields in mixed valent systems

    SciTech Connect

    Shapiro, S.M.

    1980-01-01

    The inelastic neutron studies of rare-earth-based mixed valent systems have all shown remarkably similar results: a broad quasielastic line with half width on the order of 10 MeV. This width exhibits a strong temperature dependence in those systems which undergo a valence transition and is only weakly temperature dependent in those systems which show no transition. A surprising result was the absence of crystalline electric field (CEF) excitations. Recent measurements on the alloy Ce/sub .9-x/La/sub x/Th/sub .1/ have revealed the existence of CEF excitations. For x = 0, the valence transition is strongly first order and occurs near T/sub 0/ approx. 150 K. The inelastic spectra exhibit the typical broad quasielastic scattering. As x increases, T/sub 0/ decreases due to internal pressure effects, and a well-defined, but broad, excitation appears near E = 15 MeV. This is interpreted as a CEF excitation between the GAMMA/sub 7/ and GAMMA/sub 8/ levels of the Ce/sup 3/+ ion. For x = 0.40, the valence transition is almost completely suppressed and the excitation becomes even sharper.

  9. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  10. High electric field measurement using slab-coupled optical sensors.

    PubMed

    Stan, Nikola; Seng, Frederick; Shumway, LeGrand; King, Rex; Selfridge, Richard; Schultz, Stephen

    2016-01-20

    A fiber-optic electric field sensor was developed to measure electric field up to 18 MV/m. The sensor uses resonant coupling between an optical fiber and a nonlinear electro-optical crystal. The sensing system uses high dielectric strength materials to eliminate dielectric breakdown. A postprocessing nonlinear calibration method is developed that maps voltage change to wavelength shift and then converts the wavelength shift to electric field using the transmission spectrum. The nonlinear calibration method is compared against the linear method with electric field pulses having magnitudes from 1.5 to 18 MV/m. PMID:26835936

  11. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  12. Electric Field Enhanced Diffusion of Salicylic Acid through Polyacrylamide Hydrogels

    NASA Astrophysics Data System (ADS)

    Niamlang, Sumonman; Sirivat, Anuvat

    2008-03-01

    The release mechanisms and the diffusion coefficients of salicylic acid -loaded polyacrylamide hydrogels were investigated experimentally by using a modified Franz-diffusion cell at 37 ^oC to determine the effects of crosslinking ratio and electric field strength. A significant amount of salicylic acid is released within 48 hours from the hydrogels of various crosslinking ratios, with and without electric field. The release characteristic follows the Q vs. t^1/2 linear relationship. Diffusion coefficient initially increases with increasing electric field strength and reaches the maximum value at electric field strength of 0.1 V; beyond that it decreases with electric field strength and becomes saturated at electric field strength of 5 V. The diffusion coefficient increases at low electric field strength (less 0.1 V) as a result of the electrophoresis of the salicylic acid, the expansion of pore size, and the induced pathway in pigskin. For electric field strength higher than 0.1 V, the decrease in the diffusion coefficient is due to the reduction of the polyacrylamide pore size. The diffusion coefficient obeys the scaling behavior D/Do=(drug size/pore size)^m, with the scaling exponent m equal to 0.93 and 0.42 at electric fields of 0 and 0.1 V, respectively.

  13. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  14. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  15. Power signatures of electric field and thermal switching regimes in memristive SET transitions

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick R.; Hughart, David; Lohn, Andrew J.; Gao, Xujiao; Mamaluy, Denis; Marinella, Matthew J.

    2016-06-01

    We present a study of the ‘snap-back’ regime of resistive switching hysteresis in bipolar TaO x memristors, identifying power signatures in the electronic transport. Using a simple model based on the thermal and electric field acceleration of ionic mobilities, we provide evidence that the ‘snap-back’ transition represents a crossover from a coupled thermal and electric-field regime to a primarily thermal regime, and is dictated by the reconnection of a ruptured conducting filament. We discuss how these power signatures can be used to limit filament radius growth, which is important for operational properties such as power, speed, and retention.

  16. A Method of Slowing and Cooling Molecules and Neutral Atoms Using Time Varying Electric Field Gradients

    NASA Astrophysics Data System (ADS)

    Gould, Harvey; Maddi, Jason; Dinneen, Timothy

    2000-06-01

    Time-invariant electric field gradients have long been used to deflect beams of molecules and neutral atoms. However, time-varying electric field gradients can also be used to accelerate, slow [1,2], cool [2], or bunch these same beams. The possible applications include slowing and cooling thermal beams of molecules and atoms, launching cold atoms from a trap into a fountain, beam transport, and measuring atomic dipole polarizabilities. [1] H.L. Bethlem, G. Berden, and G Meijer, Phys. Rev. Lett. 83, 1588 (1999). [2] J. A. Maddi, T.P. Dinneen, and H. Gould, Phys. Rev. A60, 3882 (1999).

  17. Estimation of the Reconnection Electric Field in the 2003 October 29 X10 Flare

    NASA Astrophysics Data System (ADS)

    Yang, Ya-Hui; Cheng, C. Z.; Krucker, Säm; Hsieh, Min-Shiu

    2011-05-01

    The electric field in the reconnecting current sheet of the 2003 October 29 X10 flare is estimated to be a few kV m-1 in this study, based on the rate of change in the photospheric magnetic flux in the newly brightened areas of Transition Region and Coronal Explorer (TRACE) UV ribbons. For comparison, the motion speed of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) footpoints and the photospheric magnetic field strength are also used for the electric field calculation. This X10 flare event is selected due to its distinct two-phase HXR kernel motion, two arcade systems with different magnetic shear, and the high cadence and complete coverage of the TRACE 1600 Å Michelson Doppler Imager (MDI) magnetogram and RHESSI HXR observations. We pay particular attention to the electric field characteristics in different flare phases, as well as the temporal correlation with the HXR emission and its power-law spectral index and the photospheric magnetic field strength. We found that in the early impulsive phase, the reconnection electric field peaks just before the HXR emission peaks and the energy spectrum hardens. The result is consistent with the scenario that more particles are accelerated to higher energies by larger reconnection electric fields and then precipitate into the lower chromosphere to produce stronger HXR emissions. Such a particle acceleration mechanism plays its most significant role in the impulsive phase of this flare. In addition, our results provide evidence that the highly sheared magnetic field lines are mapped to the magnetic reconnection diffusion region to produce a large reconnection electric field.

  18. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  19. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    NASA Astrophysics Data System (ADS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-05-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  20. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    SciTech Connect

    Walsh, D. A. Snedden, E. W.; Jamison, S. P.

    2015-05-04

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  1. Global electric field determination in the Earth's outer magnetosphere using energetic charged particles

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Sheldon, R.; Hamilton, D.

    1995-01-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental measurement (for zeroth order MHD equilibrium) has been made infrequently and with poor spatial coverage - the global electric field. This oversight is due in part to the neglect of theorists. However, there is renewed interest in the convection electric field because it is now realized to be central to many magnetospheric processes, including the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere ionosphere coupling, ring current and radiation belt transport, substorm injections, and several acceleration mechanisms. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models) and we are left with an overly simplistic theoretical field, the Volland-Stern electric field model. Single point measurements of the plasmapause were used to infer the appropriate amplitudes of this model, parameterized by K(sub p). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 20 years. The analysis of current data sets requires a great deal more accuracy than can be provided by the Volland-Stern model. The variability of electric field shielding has not been properly addressed although effects of penetrating magnetospheric electric fields has been seen in mid-and low-latitude ionospheric data sets. The growing interest in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus we proposed and developed algorithms for extracting electric fields from particle data taken in the Earth's magnetosphere. As a test of the effectiveness of these new techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit from 1984 to 1989.

  2. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  3. Nanoscale Electric Field Sensor-Development and Testing

    NASA Astrophysics Data System (ADS)

    Brame, Jon; Woods, Nathan

    2008-10-01

    The goal of this project is to test a carbon nanotube based electric field sensing device. The device consists of a miniature gold needle suspended on a mat of carbon nanotubes over a trench on a Si/Si02 substrate. Field tests were made by recording the electric field inside dust devils in a Nevada desert, and those electric fields were simulated in a lab environment. Further tests to determine the device sensitivity were performed by manually manipulating the gold needle with an Atomic Force Microscope (AFM) tip. We report on fabrication techniques, field and lab test results and AFM testing results.

  4. Inner Magnetospheric Electric Fields Derived from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.

    2007-01-01

    The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.

  5. Simultaneous electric-field measurements on nearby balloons.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  6. Middle atmospheric electric fields over thunderstorms

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1992-01-01

    This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.

  7. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  8. Electric and magnetic fields measured during a sudden impulse

    NASA Technical Reports Server (NTRS)

    Schutz, S.; Adams, G. J.; Mozer, F. S.

    1974-01-01

    The electric field in the ionosphere and the magnetic field at the earth's surface in the mid-latitude region were both measured during a sudden impulse. Ionospheric conductivities deduced from this data were consistent with expectations, thus suggesting that the fluctuations in the magnetic field at the earth's surface were caused by overhead ionospheric currents that were driven by an electric field associated with the sudden impulse.

  9. Exposure assessment for power frequency electric and magnetic fields.

    PubMed

    Bracken, T D

    1993-04-01

    Over the past decade considerable data have been collected on electric and magnetic fields in occupational environments. These data have taken the form of area measurements, source characterizations, and personal exposure measurements. Occupational EMF levels are highly variable in space and time. Exposures associated with these fields exhibit similar large variations during a day, between days, and between individuals within a group. The distribution of exposure measures is skewed over several decades with only a few values occurring at the maximum field levels. The skewness of exposure measures implies that large sample sizes may be required for assessments and that multiple statistical descriptors are preferred to describe individual and group exposures. Except for the relatively few occupational settings where high voltage sources are prevalent, electric fields encountered in the workplace are probably similar to residential exposures. Consequently, high electric field exposures are essentially limited to utility environments and occupations. Within the electric utility industry, it is definitely possible to identify occupations with high electric field exposures relative to those of office workers or other groups. The highly exposed utility occupations are linemen, substation operators, and utility electricians. The distribution of electric field exposures in the utility worker population is very skewed even within a given occupation. As with electric fields, magnetic fields in the workplace appear to be comparable with residential levels, unless a clearly defined high-current source is present. Since high-current sources are more prevalent than high-voltage sources, environments with relatively high magnetic field exposures encompass a more diverse set of occupations than do those with high electric fields. Within the electric utility industry, it is possible to identify occupational environments with high magnetic field exposure relative to the office

  10. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  11. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H. (Inventor)

    1973-01-01

    An apparatus for measuring the electric field in the atmosphere which includes a pair of sensors carried on a rocket for sensing the voltages in the atmosphere being measured is described. One of the sensors is an elongated probe with a fine point which causes a corona current to be produced as it passes through the electric field. An electric circuit is coupled between the probe and the other sensor and includes a high ohm resistor which linearizes the relationship between the corona current and the electric field being measured. A relaxation oscillator and transmitter are provided for generating and transmitting an electric signal having a frequency corresponding to the magnitude of the electric field.

  12. Disrupting long-range polar order with an electric field

    NASA Astrophysics Data System (ADS)

    Guo, Hanzheng; Liu, Xiaoming; Xue, Fei; Chen, Long-Qing; Hong, Wei; Tan, Xiaoli

    2016-05-01

    Electric fields are known to favor long-range polar order through the aligning of electric dipoles in relation to Coulomb's force. Therefore, it would be surprising to observe a disordered polar state induced from an ordered state by electric fields. Here we show such an unusual phenomenon in a polycrystalline oxide where electric fields induce a ferroelectric-to-relaxor phase transition. The nonergodic relaxor phase with disordered dipoles appears as an intermediate state under electric fields during polarization reversal of the ferroelectric phase. Using the phenomenological theory, the underlying mechanism for this unexpected behavior can be attributed to the slow kinetics of the ferroelectric-to-relaxor phase transition, as well as its competition against domain switching during electric reversal. The demonstrated material could also serve as a model system to study the transient stages in first-order phase transitions; the slow kinetics does not require the use of sophisticated ultrafast tools.

  13. Electrical Field Effects in Phthalocyanine Film Growth by Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Zhu, Shen; Frazier, Donald O.; Penn, Benjamin; Abdeldayem, Hossin; Hicks, Roslin; Sarkisov, Sergey

    1999-01-01

    Phthalocyanine, an organic material, is a very good candidate for non-linear optical application, such as high-speed switching and optical storage devices. Phthalocyanine films have been synthesized by vapor deposition on quartz substrates. Some substrates were coated with a very thin gold film for introducing electrical field. These films have been characterized by surface morphology, material structure, chemical and thermal stability, non-linear optical parameters, and electrical behaviors. The films have excellent chemical and optical stability. However, the surface of these films grown without electrical field shows flower-like morphology. When films are deposited under an electrical field ( an aligned structure is revealed on the surface. A comparison of the optical and electrical properties and the growth mechanism for these films grown with and without an electrical field will be discussed.

  14. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  15. Effects of Radial Electric Fields on ICRF Waves

    SciTech Connect

    C.K. Phillips; J.C. Hosea; M. Ono; J.R. Wilson

    2001-06-18

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model.

  16. High School Students' Representations and Understandings of Electric Fields

    ERIC Educational Resources Information Center

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  17. 15 Years of R&D on High Field Accelerator Magnets at FNAL

    SciTech Connect

    Barzi, Emanuela; Zlobin, Alexander V.

    2015-12-10

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  18. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGESBeta

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  19. Electric and Magnetic Field Detection in Elasmobranch Fishes

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    1982-11-01

    Sharks, skates, and rays receive electrical information about the positions of their prey, the drift of ocean currents, and their magnetic compass headings. At sea, dogfish and blue sharks were observed to execute apparent feeding responses to dipole electric fields designed to mimic prey. In training experiments, stingrays showed the ability to orient relative to uniform electric fields similar to those produced by ocean currents. Voltage gradients of only 5 nanovolts per centimeter would elicit either behavior.

  20. Electrostatic-elastoplastic simulations of copper surface under high electric fields

    NASA Astrophysics Data System (ADS)

    Zadin, V.; Pohjonen, A.; Aabloo, A.; Nordlund, K.; Djurabekova, F.

    2014-10-01

    Maximizing the performance of modern linear accelerators working with high gradient electromagnetic fields depends to a large extent on ability to control breakdown rates near metal surfaces in the accelerating structures. Nanoscale voids, presumably forming in the surface layers of metals during the technological processing, can be responsible for the onset of the growth of a surface protrusion. We use finite element simulations to study the evolution of annealed copper, single crystal copper and stainless steel surfaces that contain a void under high electric fields. We use a fully coupled electrostatic-elastoplastic model in the steady state. Gradually increasing the value of an external electric field, we analyze the relationship of surface failure and depth of the void for the chosen materials with different elastoplastic properties. According to our results, the stainless steel and single crystal copper surfaces demonstrate the formation of well-defined protrusions, when the external electric field reaches a certain critical value. Among the three materials, annealed copper surface starts yielding at the lowest electric fields due to the lowest Young's modulus and yield stress. However, it produces the smallest protrusions due to a significant strain hardening characteristic for this material.

  1. Bound states of neutral particles in external electric fields

    NASA Astrophysics Data System (ADS)

    Lin, Qiong-Gui

    2000-02-01

    Neutral fermions of spin 12 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. The Dirac-Pauli equation for such a fermion coupled to a spherically symmetric or central electric field can be reduced to two simultaneous ordinary differential equations by separation of variables in spherical coordinates. For a wide variety of central electric fields, bound-state solutions of critical energy values can be found analytically. The degeneracy of these energy levels turns out to be numerably infinite. This reveals the possibility of condensing infinitely many fermions into a single energy level. For radially constant and radially linear electric fields, the system of ordinary differential equations can be completely solved, and all bound-state solutions are obtained in closed forms. The radially constant field supports scattering solutions as well. For radially linear fields, more energy levels (in addition to the critical one) are infinitely degenerate. The simultaneous presence of central magnetic and electric fields is discussed.

  2. Pulsed electromagnetic field may accelerate in vitro endochondral ossification.

    PubMed

    Wang, Jue; Tang, Na; Xiao, Qiang; Zhang, Li; Li, Yu; Li, Juan; Wang, Jun; Zhao, Zhihe; Tan, Lijun

    2015-01-01

    Recapitulation of embryonic endochondral bone formation is a promising alternative approach to bone tissue engineering. However, the time-consuming process is one of the reasons the approach is unpractical. Here, we aimed at accelerating the in vitro endochondral ossification process of tissue engineering by using a pulsed electromagnetic field (PEMF). The rat bone marrow-derived stem cells were chondrogenic or hypertrophic differentiated in a three-dimensional pellet culture system, and treated with different intensities of PEMF (1, 2, and 5 mT with modulation frequency 750 Hz, carrier frequency 75 Hz and a duty ratio of 0.8, 3 h/day for 4 weeks). The effects of PEMF on hypertrophy and endochondral ossification were assessed by safranin O staining, immunohistochemistry, and quantitative real-time polymerase chain reaction. The results suggest that PEMF at 1, 2, and 5 mT may inhibit the maintenance of the cartilaginous phenotype and increase cartilage-specific extracellular matrix degradation in the late stage of chondrogenic differentiation. In addition, among the three different intensities, only PEMF at 1 mT directed the differentiation of chondrogenic-induced stem cell pellets to the hypertrophic stage and promoted osteogenic differentiation. Our findings provide the feasibility to optimize the process of in vitro endochondral ossification with PEMF stimulation. PMID:25358461

  3. Electric Field Distribution of Cadmium Zinc Telluride (CZT)

    SciTech Connect

    Yang,G.; Bolotnikov, A.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; James, R.B.

    2009-08-02

    Cadmium Zinc Telluride (CZT) is attracting increasing interest with its promise as a room-temperature nuclear-radiation-detector material. The distribution of the electric field in CZT detectors substantially affects their detection performance. At Brookhaven National Laboratory (BNL), we employed a synchrotron X-Ray mapping technique and a Pockels-effect measurement system to investigate this distribution in different detectors. Here, we report our latest experimental results with three detectors of different width/height ratios. A decrease in this ratio aggravates the non-uniform distribution of electric field, and focuses it on the central volume. Raising the bias voltage effectively can minimize such non-uniformity of the electric field distribution. The position of the maximum electric field is independent of the bias voltage; the difference between its maximum- and minimum-intensity of electric field increases with the applied bias voltage.

  4. Satellite measurements of high latitude convection electric fields.

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.; Gurnett, D. A.

    1972-01-01

    This paper reviews the first results of satellite experiments to measure magnetospheric convection electric fields using the double-probe technique. The earliest successful measurements were made with the low-altitude (680-2530 km) polar orbiting Injun-5 spacecraft. The Injun-5 results are compared with the initial findings of the electric field experiment on the polar orbiting OGO-6 satellite. Electric field measurements from the OGO-6 satellite have substantiated many of the initial Injun-5 observations with improved accuracy and sensitivity. The OGO-6 detector revealed the persistent occurrence of anti-sunward convection across the polar cap region at velocities not generally detectable with the Injun-5 experiment. The OGO-6 observations also provided information indicating that the location of the electric field reversal shifts equatorward during periods of increased magnetic activity. The implications of the electric field measurements for magnetospheric and auroral structure are summarized, and a list of specific recommendations for improving future experiments is presented.

  5. Lower Atmospheric Electric Field due to Cloud Charge Distribution

    NASA Astrophysics Data System (ADS)

    Paul, Suman; Haldar, Dilip kumar; Sundar De, Syam; Ghosh, Abhijit; Hazra, Pranab; Bandyopadhyay, Bijoy

    2016-07-01

    The distributions of electric charge in the electrified clouds introduce important effects in the ionosphere and into the region between the ionosphere and the Earth. The electrical properties of the medium are changed greatly between thundercloud altitudes and the magnetosphere. A model for the penetration of DC thundercloud electric field between the Earth's upper and lower atmosphere has been presented here. The model deals with the electromagnetic responses of the atmosphere simulated through Maxwell's equations together with a time-varying source charge distribution. The modified ellipsoidal-Gaussian profile has been taken for the charge distribution of the electrified cloud. The conductivity profile of the medium is taken to be isotropic below 70 km height and anisotropic above 70 km. The Earth's surface is considered to be perfectly conducting. A general form of equation representing the thundercloud electric field component is deduced. In spite of assumptions for axial symmetry of thundercloud charge distribution considered in the model, the results are obtained giving the electric field variation in the upper atmosphere. The vertical component of the electric field would relate the global electric circuit while the radial component showed the electrical coupling between the lower atmosphere and the ionized Earth's environment. The variations of the values of field components for different heights as well as Maxwell's current have been evaluated. Coupling between the troposphere and the ionosphere is critically dependent on the height variations of electrical conductivity. Field-aligned electron density irregularities in the ionosphere may be investigated through the present analyses.

  6. The Effects of an Induced Electric Dipole Moment due to Earth's Electric Field on the Artificial Satellites Orbit

    NASA Astrophysics Data System (ADS)

    Heilmann, Armando; Ferreira, Luiz Danilo Damasceno; Dartora, Cesar Augusto

    2012-04-01

    The orbits of artificial satellites are very sensitive to a large number of disturbances, whose effects add to the main force exerted by Earth's gravitational field. The most important perturbations, caused by solar radiation pressure, the Moon and the Sun gravitational fields, have been extensively discussed in the literature, and must be taken into account in order to correct the orbital motion, to prevent collisions between satellites in close orbits. In this paper we consider an additional source of acceleration arising from an electric dipole moment induced by the high altitude Earth electric field in a metallic satellite of spherical shape. The order of magnitude of such effect is estimated to be in the range of 10 - 23m/s2. It is emphasized that the electric dipole moment effect(EDME) is dependent on the satellite shape and geometry and proportional to E_0 v/r^4. The Earth electric field E 0 is largely influenced by atmospheric electromagnetic phenomena, such as whistler waves and thunderstorms.

  7. Assessment of inductive electric fields contribution to the overall particle energization in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Ilie, R.; Liemohn, M. W.; Daldorff, L. K. S.

    2015-12-01

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. These energetic particles are injected from the magnetotail into the inner magnetosphere through two primary mechanisms. One transport method is the potential-driven convection during periods of southward IMF, which allows part of the dawn-to-dusk solar wind electric field to effectively map down to the polar ionosphere. The second transport process, substorm activity, involves a sudden reconfiguration of the magnetic field and the creation of transient induced electric fields. However, it is not possible to distinguish the two terms by only measuring the electric field, which is typically just the potential field. Assessing the relative contribution of potential versus inductive electric fields at the energization of the hot ion population in the inner magnetosphere is only possible by thorough examination of the time varying magnetic field and current systems using global modeling of the entire system. We calculate the induced electric field via a 3D integration over the entire magnetosphere domain. This full volume integration approach removes the need to trace independent field lines and lifts the assumption that the magnetic field lines can be treated as frozen in a stationary ionosphere. We quantify the relative contributions of potential and inductive electric fields at driving plasma sheet ions into the inner magnetosphere during disturbed conditions. The consequence of these injections on the distortion of the near-Earth magnetic field and current systems have been rarely separated in order to determine their relative effectiveness from a global perspective.

  8. Electric field-mediated processing of polymer blend solutions

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  9. Novel electric field effects on Landau levels in graphene.

    PubMed

    Lukose, Vinu; Shankar, R; Baskaran, G

    2007-03-16

    A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted. Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our theoretical results, strikingly different from the standard 2D electron gas, are explained using a "Lorentz boost," and as an "instability of a relativistic quantum field vacuum." It is a remarkable case of emergent relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental consequence. PMID:17501075

  10. Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.

  11. A dipole probe for electric field measurements in the LVPD

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Awasthi, L. M.; Ravi, G.; Kumar, Sunil; Mattoo, S. K.

    2016-01-01

    This paper describes the design, construction, and calibration of an electric dipole probe and demonstrates its capability by presenting results on the measurement of electric field excited by a ring electrode in the Large Volume Plasma Device (LVPD). It measures the electric field in vacuum and plasma conditions in a frequency range lying between 1-10 \\text{MHz} . The results show that it measures electric field ≥slant 2 mV cm-1 for frequency ≤slant 10 \\text{MHz} . The developed dipole probe works on the principle of amplitude modulation. The probe signal is transmitted through a carrier of 418 MHz, a much higher frequency than the available sources of noise present in the surrounding environment. The amplitude modulation concept of signal transmission is used to make the measurement; it is qualitatively better and less corrupted as it is not affected by the errors introduced by ac pickups. The probe is capable of measuring a variety of electric fields, namely (1) space charge field, (2) time varying field, (3) inductive field and (4) a mixed field containing both space charge and inductive fields. This makes it a useful tool for measuring electric fields in laboratory plasma devices.

  12. Target normal sheath acceleration sheath fields for arbitrary electron energy distribution

    SciTech Connect

    Schmitz, Holger

    2012-08-15

    Relativistic electrons, generated by ultraintense laser pulses, travel through the target and form a space charge sheath at the rear surface which can be used to accelerate ions to high energies. If the laser pulse duration is comparable or shorter than the time needed for the electrons to travel through the target, the electrons will not have the chance to form an equilibrium distribution but must be described by a non-equilibrium distribution. We present a kinetic theory of the rear sheath for arbitrary electron distribution function f(E), where E is the electron energy, and evaluate it for different shapes of f(E). We find that the far field is mainly determined by the high energy tail of the distribution, a steep decay of f(E) for high energies results in a small electric field and vice versa. The model is extended to account for electrons escaping the sheath region thereby allowing a finite potential drop over the sheath. The consequences of the model for the acceleration of ions are discussed.

  13. Electric-field-induced rotation of Brownian metal nanowires.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2013-09-01

    We describe the physical mechanism responsible for the rotation of Brownian metal nanowires suspended in an electrolyte exposed to a rotating electric field. The electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole and to the induced-charge electro-osmotic flow around the particle. Experiments demonstrate that the primary driving mechanism is the former of these two. Our analysis contrasts with previous work describing the electrical manipulation of metallic particles with electric fields, which neglected the electrical double layer. Theoretical values for the rotation speed are calculated and good agreement with experiments is found. PMID:24125362

  14. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    PubMed Central

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nVcm–1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  15. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  16. FAST MAGNETIC RECONNECTION AND PARTICLE ACCELERATION IN RELATIVISTIC LOW-DENSITY ELECTRON-POSITRON PLASMAS WITHOUT GUIDE FIELD

    SciTech Connect

    Bessho, Naoki; Bhattacharjee, A.

    2012-05-10

    Magnetic reconnection and particle acceleration in relativistic Harris sheets in low-density electron-positron plasmas with no guide field have been studied by means of two-dimensional particle-in-cell simulations. Reconnection rates are of the order of one when the background density in a Harris sheet is of the order of 1% of the density in the current sheet, which is consistent with previous results in the non-relativistic regime. It has been demonstrated that the increase of the Lorentz factors of accelerated particles significantly enhances the collisionless resistivity needed to sustain a large reconnection electric field. It is shown analytically and numerically that the energy spectrum of accelerated particles near the X-line is the product of a power law and an exponential function of energy, {gamma}{sup -1/4}exp (- a{gamma}{sup 1/2}), where {gamma} is the Lorentz factor and a is a constant. However, in the low-density regime, while the most energetic particles are produced near X-lines, many more particles are energized within magnetic islands. Particles are energized in contracting islands by multiple reflection, but the mechanism is different from Fermi acceleration in magnetic islands for magnetized particles in the presence of a guide field. In magnetic islands, strong core fields are generated and plasma beta values are reduced. As a consequence, the fire-hose instability condition is not satisfied in most of the island region, and island contraction and particle acceleration can continue. In island coalescence, reconnection between two islands can accelerate some particles, however, many particles are decelerated and cooled, which is contrary to what has been discussed in the literature on particle acceleration due to reconnection in non-relativistic hydrogen plasmas.

  17. Beyond Orientation: The Impact of Electric Fields on Block Copolymers

    SciTech Connect

    Liedel, Clemens; Boker, A.; Pester, Christian; Ruppel, Markus A; Urban, Volker S

    2012-01-01

    Since the first report on electric field-induced alignment of block copolymers (BCPs) in 1991, electric fields have been shown not only to direct the orientation of BCP nanostructures in bulk, solution, and thin films, but also to reversibly induce order-order transitions, affect the order-disorder transition temperature, and control morphologies' dimensions with nanometer precision. Theoretical and experimental results of the past years in this very interesting field of research are summarized and future perspectives are outlined.

  18. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  19. Electric Field-Mediated Processing of Polymers. Appendix 1

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Bowlin, G. L.; Haas, T. W.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. We suggest that a broad range of properties can be achieved using a relatively small number of polymers, with electric fields providing the ability to tailor properties via the control of shape, morphology, and orientation. Specific attention is given to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options.

  20. dc electric field meter with fiber-optic readout

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Kirkham, Harold; Eng, Bjorn T.

    1986-01-01

    The design of a dc electric field meter capable of measuring the magnitude and direction of the electric field at an arbitrary location above the ground plane is described. The meter is based on measuring induced charge on a split cylindrical electrode pair which is rotated around its axis of symmetry. Data readout is by fiber-optic cable using pulse frequency encoding. The sensing head is electrically isolated. Initial results are reported from a series of tests at General Electric's High Voltage Transmission Research Facility, Pittsfield, MA. The electric field was measured in a large test cage and under a dc test line. Measurement of field magnitude and direction around a human subject standing under the conductor was demonstrated.

  1. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    PubMed Central

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  2. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    PubMed

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  3. Variation of The Magnetotail Electric Fields During Magnetospheric Substorms

    NASA Astrophysics Data System (ADS)

    Pudovkin, M.; Zaitseva, S.; Nakamura, R.

    The behaviour of the midtail electric fields during two magnetospheric substorms on November, 22, 1995, is investigated. The magnetospheric electric field is supposed to consist of two components: a potential electric field penetrating into the magneto- sphere from the solar wind, and an inductive electric field associated with variation of the geomagnetic field. The first component is supposed to be proportional (with some time delay) to the Y -component of the solar wind electric field, and the second one is estimated from the time derivative of the tail lobe magnetic flux. The latter is obtained by converting total pressure to lobe magnetic field by assuming pressure balance be- tween lobe and plasma sheet (Nakamura et al., 1999). The Y -component of the total electric field is calculated from GEOTAIL spacecraft data as Ey = -[v × B]y. Analysis of experimental data shows that the inductive electric field (Ec) is "switched on" in the magnetotail practically simultaneously with the intensification of the IMF southern component. At the preliminary phase of the substorm, the Ec field within the plasmasheet is directed from dusk to dawn compensating the potential field Ep, so that the total field Ey is rather small there (Semenov and Sergeev, 1981). With the beginning of the active phase, the Ec changes its sign, and adding to the Ep, provides a rapid increase of the dawn­dusk Ey field. As the intensity of Ep during the active phase of the substorm is less than the intensity of the induced field, Ey is determined during this period by the latter mainly and does not correlate with the Esw field. However, the intensity of the potential electric field at this time may be obtained from the data on the velocity of the auroral arc motion (Pudovkin et al., 1992). So, judging by the dynamics of aurorae at the Poker Flat (Alaska) station, Ep field in the inner magnetosphere (X -10 RE) amounts the value of 0.7 mV/m, and it varies in proportion to Esw with the time delay of

  4. External electric field effects on state energy and photoexcitation dynamics of diphenylpolyenes.

    PubMed

    Nakabayashi, Takakazu; Wahadoszamen, Md; Ohta, Nobuhiro

    2005-05-18

    External electric field effects on state energy and photoexcitation dynamics have been examined for para-substituted and unsubstituted all-trans-diphenylpolyenes doped in a film, based on the steady-state and picosecond time-resolved measurements of the field effects on absorption and fluorescence. The substitution dependence of the electroabsorption spectra shows that the dipole moment of the substituted stilbene in the Franck-Condon excited state becomes larger with increasing difference between the Hammet constants of the substituents. Fluorescence quantum yields of 4-(dimethylamino)-4'-nitrostilbene and 4-(dimethylamino)-4'-nitrodiphenylbutadiene are markedly reduced by an electric field, suggesting that the rates of the intramolecular charge transfer (CT) from the fluorescent state to the nonradiative CT state are accelerated by an external electric field. The magnitude of the field-induced decrease in fluorescence lifetime has been evaluated. The isomerization of the unsubstituted all-trans-diphenylpolyenes to the cis forms is shown to be a significant nonradiative pathway even in a film. Field-induced quenching of their fluorescence as well as field-induced decrease in fluorescence lifetime suggests that the trans to cis photoisomerization is enhanced by an electric field. PMID:15884948

  5. Effects of an electric field on interaction of aromatic systems.

    PubMed

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc. PMID:26696236

  6. The hydrogen atom in plasmas with an external electric field

    SciTech Connect

    Bahar, M. K.; Soylu, A.

    2014-09-15

    We numerically solve the Schrödinger equation, using a more general exponential cosine screened Coulomb (MGECSC) potential with an electric field, in order to investigate the screening and weak external electric field effects on the hydrogen atom in plasmas. The MGECSC potential is examined for four different cases, corresponding to different screening parameters of the potential and the external electric field. The influences of the different screening parameters and the weak external electric field on the energy eigenvalues are determined by solving the corresponding equations using the asymptotic iteration method (AIM). It is found that the corresponding energy values shift when a weak external electric field is applied to the hydrogen atom in a plasma. This study shows that a more general exponential cosine screened Coulomb potential allows the influence of an applied, weak, external electric field on the hydrogen atom to be investigated in detail, for both Debye and quantum plasmas simultaneously. This suggests that such a potential would be useful in modeling similar effects in other applications of plasma physics, and that AIM is an appropriate method for solving the Schrödinger equation, the solution of which becomes more complex due to the use of the MGECSC potential with an applied external electric field.

  7. Enhancement of antibacterial properties of Ag nanorods by electric field

    NASA Astrophysics Data System (ADS)

    Akhavan, Omid; Ghaderi, Elham

    2009-01-01

    The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20-60 nm and a length of 260-550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm-1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10-2 to 10.5×10-2 min-1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.

  8. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  9. Microwave measurements of azimuthal asymmetries in accelerating fields of disk-loaded waveguides

    SciTech Connect

    Loew, G.A.; Deruyter, H.; Defa, W.

    1983-03-01

    This paper presents microwave measurements of azimuthal asymmetries in the accelerating fields of the SLAC disk-loaded waveguide. These field asymmetries lead to rf phase-dependent beam steering which can be detrimental to operation of linear accelerators in general and of the SLAC Linear Collider in particular.

  10. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger, Charles T. Jr.; Gould, Harvey

    2007-06-15

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |m{sub F}| and, along with the low ({approx_equal}3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  11. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  12. Optical Remote Sensing of Electric Fields Above Thunderstorms

    NASA Astrophysics Data System (ADS)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  13. Magnetic Insulation for Electrostatic Accelerators

    SciTech Connect

    Grisham, L. R.

    2011-09-26

    The voltage gradient which can be sustained between electrodes without electrical breakdowns is usually one of the most important parameters in determining the performance which can be obtained in an electrostatic accelerator. We have recently proposed a technique which might permit reliable operation of electrostatic accelerators at higher electric field gradients, perhaps also with less time required for the conditioning process in such accelerators. The idea is to run an electric current through each accelerator stage so as to produce a magnetic field which envelopes each electrode and its electrically conducting support structures. Having the magnetic field everywhere parallel to the conducting surfaces in the accelerator should impede the emission of electrons, and inhibit their ability to acquire energy from the electric field, thus reducing the chance that local electron emission will initiate an arc. A relatively simple experiment to assess this technique is being planned. If successful, this technique might eventually find applicability in electrostatic accelerators for fusion and other applications.

  14. Electromechanical analysis of tapered piezoelectric bimorph at high electric field

    NASA Astrophysics Data System (ADS)

    Chattaraj, Nilanjan; Ganguli, Ranjan

    2015-04-01

    Piezoelectric bimorph laminar actuator of tapered width exhibits better performance for out-of-plane deflection compared to the rectangular surface area, while consuming equal surface area. This paper contains electromechanical analysis and modeling of a tapered width piezoelectric bimorph laminar actuator at high electric field in static state. The analysis is based on the second order constitutive equations of piezoelectric material, assuming small strain and large electric field to capture its behavior at high electric field. Analytical expressions are developed for block force, output strain energy, output energy density, input electrical energy, capacitance and energy efficiency at high electric field. The analytical expressions show that for fixed length, thickness, and surface area of the actuator, how the block force and output strain energy gets improved in a tapered surface actuator compared to a rectangular surface. Constant thickness, constant length and constant surface area of the actuator ensure constant mass, and constant electrical capacitance. We consider high electric field in both series and parallel electrical connection for the analysis. Part of the analytical results is validated with the experimental results, which are reported in earlier literature.

  15. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    NASA Astrophysics Data System (ADS)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The

  16. Spiral waves in oscillatory media with an applied electric field

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Ott, Edward; Guzdar, Parvez N.

    1999-02-01

    Spiral waves in oscillatory reaction-diffusion systems under the influence of a uniform, time-independent electric field are modeled by the complex Ginzburg-Landau equation extended to include a convective term with complex coefficient. Results for the spiral drift, deformation, and frequency shift due to the electric field are obtained. The coefficient of the additional convective term is derived from the original reaction-diffusion system. The equation provides a good qualitative model of experimentally seen distortion of spiral waves in the presence of an applied electric field.

  17. Membrane tubulation from giant lipid vesicles in alternating electric fields.

    PubMed

    Antonova, K; Vitkova, V; Meyer, C

    2016-01-01

    We report on the formation of tubular membrane protrusions from giant unilamellar vesicles in alternating electric fields. The construction of the experimental chamber permitted the application of external AC fields with strength of dozens of V/mm and kHz frequency during relatively long time periods (several minutes). Besides the vesicle electrodeformation from quasispherical to prolate ellipsoidal shape, the formation of long tubular membrane protrusions with length of up to several vesicle diameters, arising from the vesicular surface in the field direction, was registered and analyzed. The threshold electric field at which the electro-induced protrusions appeared was lower than the field strengths inducing membrane electroporation. PMID:26871107

  18. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  19. Global electric field determination in the Earth's outer magnetosphere using charged particles

    NASA Technical Reports Server (NTRS)

    Eastman, T.; Sheldon, R.; Hamilton, D.; Mcilwain, C.

    1992-01-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental (for a zeroeth order magnetohydrodynamic (MHD) equilibrium) measurement was made infrequently and with poor spatial coverage: the global electric field. This oversight is in part due to the difficulty of measuring a plasma electric field, and in part due to the difficulty of measuring a plasma electric field, and in part due to the neglect of theorists. However, there is renewed interest in the convection electric field, since it has been realized that it is vital for understanding many aspects of the magnetosphere: the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere-ionosphere coupling, ring current and radiation belt transport, substorm injections, acceleration mechanisms, etc. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models), and we are left with an overly simplistic theoretical field, the Volland-Stern electric field mode. Again, single point measurements of the plasma pause were used to infer the appropriate amplitudes of the model, parameterized by Kp (Maynard & Chen, JGR 1975). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 15 years. However, the data sets being taken today require a great deal more accuracy than can be provided by the Volland-Stern model. Nor has the variability of the electric field shielding been properly addressed, although effects of penetrating magnetospheric electric fields has been seen in mid- and low-latitude ionospheric data sets. The growing interests in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus, we proposed and developed algorithms for extracting electric fields from particle data

  20. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon

    NASA Astrophysics Data System (ADS)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong

    2015-04-01

    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  1. Increase of the electric field in head-on collisions between negative and positive streamers

    NASA Astrophysics Data System (ADS)

    Ihaddadene, Mohand A.; Celestin, Sebastien

    2015-07-01

    Head-on collisions between negative and positive streamer discharges have recently been suggested to be responsible for the production of high electric fields leading to X-rays emissions. Using a plasma fluid approach, we model head-on collisions between negative and positive streamers. We observe the occurrence of a very strong electric field at the location of the streamer collision. However, the enhancement of the field produces a strong increase in the electron density, which leads to a collapse of the field over only a few picoseconds. Using a Monte Carlo model, we have verified that this process is therefore not responsible for the acceleration of a significant number of electrons to energy >1 keV. We conclude that no significant X-ray emission could be produced by the head-on encounter of nonthermal streamer discharges. Moreover, we quantify the optical emissions produced in the streamer collision.

  2. Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times

    NASA Technical Reports Server (NTRS)

    Cattell, C. A.; Mozer, F. S.

    1982-01-01

    An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.

  3. System tests with electric thruster beam and accelerator directly powered from laboratory solar arrays

    NASA Technical Reports Server (NTRS)

    Stover, J. B.

    1976-01-01

    Laboratory high voltage solar arrays were operated directly connected to power the beam and accelerator loads of an 8-centimeter ion thruster. The beam array comprised conventional 2 by 2 centimeter solar cells; the accelerator array comprised multiple junction edge-illuminated solar cells. Conventional laboratory power supplies powered the thruster's other loads. Tests were made to evaluate thruster performance and to investigate possible electrical interactions between the solar arrays and the thruster. Thruster performance was the same as with conventional laboratory beam and accelerator power supplies. Most of the thruster beam short circuits that occurred during solar array operation were cleared spontaneously without automatic or manual intervention. No spontaneous clearing occurred during conventional power supply operation.

  4. Leukemia following occupational exposure to 60-Hz electric and magnetic fields among Ontario electric utility workers.

    PubMed

    Miller, A B; To, T; Agnew, D A; Wall, C; Green, L M

    1996-07-15

    In a nested case-control study of 1,484 cancer cases and 2,179 matched controls from a cohort of 31,543 Ontario Hydro male employees, the authors evaluated associations of cancer risk with electric field exposure and reevaluated the previously reported findings for magnetic fields. Pensioners were followed from January 1, 1970, and active workers (including those who left the corporation) from January 1, 1973, with both groups followed through December 31, 1988. Exposures to electric and magnetic fields and to potential occupational confounders were estimated through job exposure matrices. Odds ratios were elevated for hematopoietic malignancies with cumulative electric field exposure. After adjustment, the odds ratio for leukemia in the upper tertile was 4.45 (95% confidence interval (CI) 1.01-19.7). Odds ratios were also elevated for acute nonlymphoid leukemia, acute myeloid leukemia, and chronic lymphoid leukemia. For cumulative magnetic field exposure, there were similar elevations that fell with adjustment. Evaluation of the combined effect of electric and magnetic fields for leukemia showed significant elevations of risk for high exposure to both, with a dose-response relation for increasing exposure to electric fields and an inconsistent effect for magnetic fields. There was some evidence of a nonsignificant association for brain cancer and benign brain tumors with magnetic fields. For lung cancer, the odds ratio for high exposure to electric and magnetic fields was 1.84 (95% CI 0.69-4.94). PMID:8678046

  5. State-Space Based Approach to Particle Creation in Spatially Uniform Electric Fields

    NASA Astrophysics Data System (ADS)

    Dolby, Carl E.; Gull, Stephen F.

    2002-05-01

    Our formalism, described recently in (C. E. Dolby and S. F. Gull, Ann. Phys.293 (2001), 189-214.) is applied to the study of particle creation in spatially uniform electric fields, concentrating on the cases of a time-invariant electric field and a so-called adiabatic electric field. Several problems are resolved by incorporating the Bogoliubov coefficient approach and the tunnelling approach into a single consistent, gauge invariant formulation. The value of a time-dependent particle interpretation is demonstrated by presenting a coherent account of the time-development of the particle creation process, in which the particles are created with small momentum (in the frame of the electric field) and are then accelerated by the electric field to make up the bulge of created particles predicted by asymptotic calculations [2, 3]. An initial state comprising one particle is also considered, and its evolution is described as being the sum of two contributions: the sea of current produced by the evolved vacuum and the extra current arising from the initial particle state.

  6. A MEMS based Field Emission Electrical Propulsion System with Integrated Charge Neutralizer for Nano and Pico Spacecrafts

    NASA Astrophysics Data System (ADS)

    Flaron, R. A. W.; Hales, J. H.

    2004-10-01

    As spacecrafts becomes increasingly smaller miniaturization of propulsion systems is necessary. Here we present a novel concept for a Field Emission Electrical Propulsion (FEEP) system fabricated on a silicon wafer substrate using Micro Electro Mechanical System (MEMS) technologies. The use of silicon wafers and MEMS technologies allows for the fabrication of devices with feature sizes in the micrometer range. The device consists of a liquid metal source, a capillary and an acceleration grid. The electrical field causes the liquid metal to form a Taylor cone at the end of the capillary. When the electrical field is sufficiently strong, field evaporation occurs and metal ions are emitted from the apex of the cone and accelerated towards the grid. As positive ions are emitted the space craft builds up negative charge. In order to cancel out the negative charge we have incorporated an electron emitter in the design.

  7. ENHANCEMENT OF METHANE CONVERSION USING ELECTRIC FIELDS

    SciTech Connect

    Richard G. Mallinson; Lance L. Lobban

    2000-05-01

    This report summarizes the conditions and results of this multifaceted program. Detailed experimental descriptions and results and discussion can be found in the publications cited in the Appendix. The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as synthesis gas or direct conversion to methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric discharge-enhanced catalysis for carrying out these conversions. With the electric discharge-enhanced conversion, the operating temperatures are expected to be far below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity. In the case of low temperature discharges, the conversion is carried out at ambient temperature, trading high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures remove thermodynamic constraints on the product distribution due to the non-equilibrium nature of the low temperature plasma. This also removes the requirements of large thermal masses that need very large-scale operation to maximize efficiency that is the characteristic of current technologies, including high temperature plasma processes. This potentially allows much smaller scale processes to be efficient. Additionally, a gas conversion process that is electrically driven provides an internal use for excess power generated by proposed Fischer Tropsch gas-to-liquids processes and can increase their internal thermal efficiency and reduce capital costs. This project has studied three primary types of low temperature plasma reactor and operating conditions. The organization of this program is shown schematically in the report. Typical small scale laboratory reactor

  8. Electric field effect in ultrathin zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Xing; Liu, Yun-Xiao; Tian, Hua; Xu, Jun-Wei; Feng, Lin

    2015-07-01

    The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum (VBM) and conduction band minimum (CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204201 and 11147142) and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021010-1).

  9. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGESBeta

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  10. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    SciTech Connect

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheld LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.

  11. Insurance for electric and magnetic field litigation: Are you covered

    SciTech Connect

    Anderson, E.R.; Stewart, C.A. III

    1993-04-01

    Electrical power generating companies, power transmission companies and large generators and users of electrical power recently felt the sting of a second shock. The first shock came when lawsuits were first filed against companies in the electrical power industry claiming real or imagined damages from electrical and magnetic fields ([open quotes]EMFs[close quotes]). The new and second shock is potentially more devastating because it comes from the [open quotes]safe hands[close quotes] of the insurance industry. Standard-form comprehensive general liability ([open quotes]CGL[close quotes]) insurance policies purchased by nearly every company in the electrical power industry for generations are supposed to cover EMF bodily injury and property damage claims. Not so, say the lawyers for the most prominent insurance company selling insurance coverage to electric utilities, Associated Electric Gas Insurance Services, Ltd. ([open quotes]AEGIS[close quotes]).

  12. HADRON ACCELERATORS: Study on CYCIAE-100 radiation field and residual radioactivity

    NASA Astrophysics Data System (ADS)

    Bi, Yuan-Jie; Zhang, Tian-Jue; Jia, Xian-Lu; Zhou, Zheng-He; Wang, Feng; Wei, Su-Min; Zhong, Jun-Qing; Tang, Chuan-Xiang

    2009-06-01

    The accelerators should be properly designed to make the radiation field produced by beam loss satisfy the dose limits. The radiation field for high intensity H- cyclotron includes prompt radiation and residual radiation field. The induced radioactivity in accelerator components is the dominant source of occupational radiation exposure if the accelerator is well shielded. The source of radiation is the beam loss when cyclotron is operating. In this paper, the radiation field for CYCIAE-100 is calculated using Monte Carlo method and the radioactive contamination near stripping foil is studied. A method to reduce the dose equivalent rate of maintenance staff is also given.

  13. Drop oscillation and mass transfer in alternating electric fields

    SciTech Connect

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  14. Evaluation of electrical fields inside a biological structure.

    PubMed Central

    Drago, G. P.; Ridella, S.

    1982-01-01

    A digital computer simulation has been carried out of exposure of a cell, modelled as a multilayered spherical structure, to an alternating electrical field. Electrical quantities of possible biological interest can be evaluated everywhere inside the cell. A strong frequency selective behaviour in the range 0-10 MHz has been obtained. PMID:6279135

  15. Injun 5 observations of magnetospheric electric fields and plasma convection

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1971-01-01

    Recent measurements of magnetospheric electric fields with the satellite Injun 5 have provided a comprehensive global survey of plasma convection at low altitudes in the magnetosphere. A persistent feature of these electric field observations is the occurrence of an abrupt reversal in the convection electric field at auroral zone latitudes. The plasma convection velocities associated with these reversals are generally directed east-west, away from the sun on the poleward side of the reversal, and toward the sun on the equatorward side of the reversal. Convection velocities over the polar cap region are normally less than those observed near the reversal region. The electric field reversal is observed to be coincident with the trapping boundary for electrons with energies E greater than 45 keV.

  16. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  17. School Facilities and Electric and Magnetic Field Radiation.

    ERIC Educational Resources Information Center

    Carr, Richard L.

    1990-01-01

    The possibility that electric and magnetic field radiation poses a health hazard should be recognized during the planning and designing of a school. A preconstruction assessment of possible exposure should be evaluated before the start of construction. (MLF)

  18. The plasmaspheric electric field as measured by ISEE 1

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Aggson, T. L.; Heppner, J. P.

    1983-01-01

    The electrodynamics of the plasmasphere has been a topic of considerable interest. Models predict a space charge buildup, or Alfven layer, at the inner edge of the ring current which opposes the dawn-dusk convection electric field in the magnetosphere and thus shields the plasmasphere from the convection electric field. The current study has the objective to present data from the ISEE 1 double cylindrical probe instrument. All measurements reported were made in the plasmasphere with electron densities of the order of 30-50 or greater per cu cm. The average electric field pattern for quiet conditions is found to be qualitatively consistent with previous average results from whistler measurements and radar backscattering measurements. The magnitudes and gross patterns are in qualitative agreement with representative ionospheric dynamo models. The basic convective flow vectors from the penetration of the magnetospheric electric field tend to follow contours which are parallel to those of the average plasmapause boundary on the nightside.

  19. The field of an accelerating black hole embedded in a magnetic universe

    NASA Astrophysics Data System (ADS)

    Krori, K. D.; Barua, M.

    1984-09-01

    It is pointed out that the two most important exterior solutions of Einstein's equations are the Schwarzschild and Kerr solutions. The vacuum C-metric discovered by Levi-Civita (1918) provides a third solution. This metric represents a uniformly accelerating object. Farhoosh and Zimmerman suggest that the acceleration of an object is caused by the reaction of the emission of gravitational radiation which it anisotropically emits. An existence of magnetic fields with immersed stellar objects suggests the possibility that an accelerating black hole may also be embedded in a magnetic field. The present investigation is, therefore, concerned with the properties of an accelerating black hole imersed in a magnetic universe.

  20. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  1. Electric field in media with power-law spatial dispersion

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2016-04-01

    In this paper, we consider electric fields in media with power-law spatial dispersion (PLSD). Spatial dispersion means that the absolute permittivity of the media depends on the wave vector. Power-law type of this dispersion is described by derivatives and integrals of non-integer orders. We consider electric fields of point charge and dipole in media with PLSD, infinite charged wire, uniformly charged disk, capacitance of spherical capacitor and multipole expansion for PLSD-media.

  2. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  3. Stress-Wave Probing of Electric Field Distributions in Dielectrics

    NASA Astrophysics Data System (ADS)

    Alquie, C.; Dreyfus, G.; Lewiner, J.

    1981-11-01

    The spatial distribution of the electric field within a dielectric sample is shown to be obtainable unambiguously from the time dependence of the open-circuit voltage or short-circuit current during the propagation of a stress wave across the sample. Experiments in which the pressure wave is generated by the impact of a pulsed laser beam on a metal target bonded to the dielectric plate under investigation have led to the first straightforward visualization of electric field distributions in solid dielectrics.

  4. Large amplitude middle atmospheric electric fields - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Siefring, C. L.; Pfaff, R. F., Jr.

    1983-01-01

    An analysis of the measurements of large apparent dc fields in the middle atmosphere, previously gathered by two sounding rockets, shows these fields to be spurious. In the case of one of the rockets, the evidence presented suggests that the measured electric fields, aligned with the rocket's velocity vector, may be due to a negatively charged wake. A comparison of measurements made by various electric field booms also suggests that the insulating boom coatings in one experiment may have affected the results obtained. It is recommended that insulating coatings should not be used at mesospheric altitudes, because of the detrimental effects that frictional charging may have.

  5. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  6. Migration of amoeba cells in an electric field

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  7. Effect of superheat and electric field on saturated film boiling

    NASA Astrophysics Data System (ADS)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  8. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  9. A novel high-sensitivity electrostatic biased electric field sensor

    NASA Astrophysics Data System (ADS)

    Huang, Jing'ao; Wu, Xiaoming; Wang, Xiaohong; Yan, Xiaojun; Lin, Liwei

    2015-09-01

    In this paper, an electric field sensor (EFS) with high sensitivity is proposed for low-frequency weak-strength ac electric field (E-field) measurements. The EFS is based on a piezoelectric cantilever biased by a strong electrostatic field. The electrostatic bias can enhance the electric field force of a weak ac E-field, thus the cantilever can oscillate in a weak ac E-field and the device sensitivity improves. Theoretical analyses have been established and suggest that a stronger strength of electrostatic field bias would produce a higher sensitivity improvement. In the experiment, a demonstrated sensor consisting of a polyvinylidene fluoride (PVDF) piezoelectric cantilever and a polytetrafluoroethylene (PTFE) electret was built and tested. Instead of extra voltage sources, the PTFE electret was charged to provide the electrostatic field, allowing the EFS a low energy consumption and a simple electric circuit design. The experiment results show good agreement with the simulation. The sensitivity of the cantilever E-field sensor reached 0.84 mV (kV/m)-1 when the surface potential of the electret was  -770 V.

  10. An Investigation of Perpendicular Gradients of Parallel Electric Field Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Ergun, R.; Newman, D. L.; Lapenta, G.

    2014-12-01

    Many observations of particle heating and acceleration throughout the universe have been associated with magnetic reconnection. Generalized Ohm's Law describes how particles move under ideal and non-ideal conditions; however, it is insufficient for describing how the magnetic field itself changes. Initial studies have shown that a curl of a parallel electric field is necessary for reconnection to occur. These analytic studies have demonstrated that perpendicular gradients in the parallel electric field drive a counter-twisting of the magnetic field on either side of the localized parallel electric field. This results in the slippage of magnetic flux tubes and a break down of the 'frozen-in' condition. In this presentation, we analyze results from self-consistent implicit kinetic particle-in-cell simulations. The strongest gradients of parallel electric fields in the simulations are along the separator and not at the X-point. We will present where in the simulation domain the 'frozen-in' condition breaks down and compare it with the location of these gradients, and discuss the implications.

  11. The simulation of TGF origin in lightning leader electric fields by cosmic ray shower electrons

    NASA Astrophysics Data System (ADS)

    Connell, P. H.; Atri, D.

    2015-12-01

    With the TGF simulation package LEPTRACK we can easily create all kinds of electric field geometries and electron flux fields to simulate Relativistic Runaway Electron Avalanches - it is script driven, with the details of high energy scattering physics hidden from the user, and an easily accessible output database for each particle created or scattered. We will show the results of simulating a realistic scenario of TGF origin based on cosmic ray shower electron flux fields in the neighbourhood of electric field geometries expected around lightning leader tips. Electron fluxes are derived from simulations using the CORSIKA cosmic ray simulation package and leader electric field geometry from current models. Presuming a TGF observed at orbital altitudes must come from a lightning leader pointing "upwards", and that cosmic rays enter at angles pointing "downwards" to "horizontal", we will show which combinations allow the electron flux to curve into the compact electric field of the leader and gain sufficient acceleration to create a TGF photon flux observable in orbit.

  12. Ultrafast probing of transient electric fields from optical field ionized plasmas using picosecond electron deflectometry

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec

    2015-11-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) the applications due to the intrinsic short bunch duration and perfect synchronization with optical pump. Electrons with sub-relativistic (~100 keV) energies can be used to probe transient electric field generated in laser plasmas with very high sensitivity. In a proof-of-principle experiment, we measured field evolution from plasma produced by focusing femtosecond laser pulses into a gas jet at intensities up to 1017 W/cm2. Due to the energy spread in laser plasma generated electrons, dipole magnets are used to record a streaked electron image such that the temporal evolution can be mapped in a single shot. This technique allows for probing irreversible processes such as melting of crystalline samples.

  13. Accelerated Schools in Action: Lessons from the Field.

    ERIC Educational Resources Information Center

    Finnan, Christine, Ed.; And Others

    This book provides insights into one of the nation's largest and most comprehensive school-restructuring movements, the Accelerated Schools Project. Since its inception in 1986, the focus of the movement has been on transforming schools with students at risk of dropping out into schools with high expectations of all students. This is accomplished,…

  14. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  15. Electric field and temperature effects in irradiated MOSFETs

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  16. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  17. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  18. Ionisation of a quantum dot by electric fields

    SciTech Connect

    Eminov, P A; Gordeeva, S V

    2012-08-31

    We have derived analytical formulas for differential and total ionisation probabilities of a two-dimensional quantum dot by a constant electric field. In the adiabatic approximation, we have calculated the probability of this process in the field of a plane electromagnetic wave and in a superposition of constant and alternating electric fields. The imaginary-time method is used to obtain the momentum distribution of the ionisation probability of a bound system by an intense field generated by a superposition of parallel constant and alternating electric fields. The total probability of the process per unit time is calculated with exponential accuracy. The dependence of the results obtained on the characteristic parameters of the problem is investigated. (laser applications and other topics in quantum electronics)

  19. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  20. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    NASA Technical Reports Server (NTRS)

    Bleuler, E.; Li, C. H.; Nisbet, J. S.

    1982-01-01

    Currents and electric fields in the ionosphere are calculated using a global model of the electron density including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities are used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents are specified in terms of three indices, and the relationship between these parameters and the auroral electrojets indices is examined along with the polar cap potential and the electric field at lower latitudes. A mathematical model of the currents, electric fields, and energy inputs produced by field aligned currents is developed, which is consistent with and specifiable in terms of measured geophysical indices.

  1. Reversible electric-field control of magnetization at oxide interfaces.

    PubMed

    Cuellar, F A; Liu, Y H; Salafranca, J; Nemes, N; Iborra, E; Sanchez-Santolino, G; Varela, M; Garcia Hernandez, M; Freeland, J W; Zhernenkov, M; Fitzsimmons, M R; Okamoto, S; Pennycook, S J; Bibes, M; Barthélémy, A; te Velthuis, S G E; Sefrioui, Z; Leon, C; Santamaria, J

    2014-01-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field. PMID:24953219

  2. KINETIC ALFVEN TURBULENCE AND PARALLEL ELECTRIC FIELDS IN FLARE LOOPS

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Lu, J. Y.

    2013-04-20

    This study investigates the spectral structure of the kinetic Alfven turbulence in the low-beta plasmas. We consider a strong turbulence resulting from collisions between counterpropagating wavepackets with equal energy. Our results show that (1) the spectra of the magnetic and electric field fluctuations display a transition at the electron inertial length scale, (2) the turbulence cascades mainly toward the magnetic field direction as the cascade scale is smaller than the electron inertial length, and (3) the parallel electric field increases as the turbulent scale decreases. We also show that the parallel electric field in the solar flare loops can be 10{sup 2}-10{sup 4} times the Dreicer field as the turbulence reaches the electron inertial length scale.

  3. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  4. High electric field phenomena in insulation

    NASA Astrophysics Data System (ADS)

    Laghari, J. R.; Sarjeant, W. J.

    1989-01-01

    The present study extends previous work to include electron radiation-induced changes in monoisopropyl biphenyl (MIPB)-impregnated polypropylene film as well as the effects of neutron/gamma radiation on dry polypropylene films. Effects that were quite similar were induced by both electron and neutron radiation on the properties of interest of the polypropylene films. Impregnation of the film with MIPB had a mitigatory effect on the degradation of the properties. This report also contains the results of a simultaneous electrical and thermal aging study of a capacitor-grade polypropylene film. The data obtained in this study was fitted to models that will enable realistic prediction of lifetimes under operating conditions.

  5. Polarization electric field in subalfvenic plasma jet under condition of field- aligned currents generation

    NASA Astrophysics Data System (ADS)

    Sobyanin, D.; Gavrilov, B.; Podgorny, I.

    The subalfvenic magnetized plasma jet propagating across the geomagnetic field generates field-aligned currents in the ionospheric plasma. As a result the transverse polarization electric field Ep =-VxB/c in the jet should be reduced (plasma jet depolarization). These phenomena are investigated in the laboratory experiment. It was revealed that the depolarization is accompanied by the appearing of the electric field E along the plasma velocity vector. The value of E is comparable with theaa transverse electric field. It results in the plasma jet deflection. The possibility of manifestation of these effects in the NORTH STAR Russian-American active rocket experiment is discussed.

  6. Electric field by pick-up ions and electrons

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Behar, Etienne; Nilsson, Hans; Holmstrom, Mats

    2016-04-01

    Observations by the Rosetta Plasma Consortium (RPC) showed increasing distortion of the solar wind flow as Rosetta approached the Sun, i.e., as the density of the newly born ions increased. This indicates azimuthal momentum transfer from the solar wind to the newly born ions because they are displaced by the solar wind electric field up to the ion gyroradius this the solar wind velocity, and conservation of the momentum (center of the mass) makes the solar wind to azimuthally shift by "counter action" of these pick-up ion motions. To understand this azimuthal momentum transfer, it is inevitable to model the electric field by the displacement of these pick-up ions and electrons. Although the E×B drift does not make charge separation when the scale size is larger than the ion gyroradius, ions and electrons move in the opposite direction to each other within the short distance up to a gyroradius, and therefore, the charge separation occurs. Thus, the newly-ionized neutrals (ion-electron pairs) create the electric field in the opposite (shielding) direction to the solar wind electric field (like the ionopause of Venus and Mars). However, such a newly induced "shielding" electric field will simultaneously be weakened by the solar wind electrons because the solar wind is also moved by this shielding electric field to reduce it, in the same way as the plasma oscillation (time scale of about 10‑4 s). In other words, the solar wind tries to maintain the solar wind electric field as far as the momentum allows. These two opposite effects must be combined when modelling the azimuthal electric field, and resultant ion/electron motions within a gyroradius, like the case for ROSETTA. Furthermore, the effect of the induced electric field by the pick-up ions and electrons will be different when the newly born ions are created as the result of photo-ionization and of the charge exchange because the electron effect is different between them. In the presentation, we model the

  7. Limiting electric fields of HVDC overhead power lines.

    PubMed

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths. PMID:24573710

  8. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  9. A laser accelerator. [interaction of polarized light beam with electrons in magnetic field

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1979-01-01

    It is shown that a laser can efficiently accelerate charged particles if a magnetic field is introduced to improve the coupling between the particle and the wave. Solving the relativistic equations of motion for an electron in a uniform magnetic field and superposed, circularly polarized electromagnetic wave, it is found that in energy-position phase space an electron traces out a curtate cycloid: it alternately gains and loses energy. If, however, the parameters are chosen so that the electron's oscillations in the two fields are resonant, it will continually accelerate or decelerate depending on its initial position within a wavelength of light. A laboratory accelerator operating under these resonant conditions appears attractive: in a magnetic field of 10,000 gauss, and the fields of a 5 x 10 to the 12th W, 10 micron wavelength laser, an optimally positioned electron would accelerate to 700 MeV in only 10 m.

  10. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  11. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    SciTech Connect

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  12. Using Gravitational Analogies to Introduce Elementary Electrical Field Theory Concepts

    ERIC Educational Resources Information Center

    Saeli, Susan; MacIsaac, Dan

    2007-01-01

    Since electrical field concepts are usually unfamiliar, abstract, and difficult to visualize, conceptual analogies from familiar gravitational phenomena are valuable for teaching. Such analogies emphasize the underlying continuity of field concepts in physics and support the spiral development of student understanding. We find the following four…

  13. Electric Field Driven Self-Assembly of Colloidal Rods

    NASA Astrophysics Data System (ADS)

    Juarez, Jaime; Chaudhary, Kundan; Chen, Qian; Granick, Steve; Lewis, Jennifer

    2012-02-01

    The ability to assemble anisotropic colloidal building blocks into ordered configurations is of both scientific and technological importance. We are studying how electric field-induced interactions guide the self-assembly of these blocks into well aligned microstructures. Specifically, we present observations of the assembly of colloidal silica rods (L/D ˜ 4) within planar electrode cells as a function of different electric field parameters. Results from video microscopy and image analysis demonstrate that aligned microstructures form due to the competition between equilibrium interactions of induced dipoles and non-equilibrium processes (i.e., electro-osmosis). Under the appropriate electric field conditions (˜ kHZ AC fields), aligned colloidal rod fluids form over large areas on the electrode surface. The superposition of a DC electric field to this aligned colloidal rod fluid initiates their condensation into a vertically oriented crystalline phase. Ongoing work is now focused on exploring how temporal changes to electric fields influence colloidal rod dynamics and, hence, the assembly kinetics of aligned colloidal monolayers.

  14. Atmospheric electric field effect in different neutron multiplicities according to Emilio Segre Obervatory one minute data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'eman, Yu.; Pustilnik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    2001-08-01

    On the basis of cosmic ray and atmospherice lectric field one minute data obtained by NM and EFS ofE milio Segre' Observatory (hight 2025 m above s.l., cut-offr igidity for vertical direction 10.8 GV) we determine thea tmospheric electric field effect in CR for total neutroni ntensity and for multiplicities m ≥1, m ≥2, m ≥3, m ≥4,m ≥5, m ≥6, m ≥7, and m ≥8, as well as for m=1, m=2,m =3, m=4, m=5, m=6, and m=7. For comparison ande xcluding primary CR variations we use also data obtainedb y NM of University "Roma Tre" (about sea level, cut-off rigidity 6.7 GV). According to the theoretical calculations of Dorman and Dorman (1995) the electric field effect in the NM counting rate must be caused mainly by catching ofs low negative muons by lead nucleus with escaping fewn eutrons. As it was shown in Dorman et al. (1999), theb iggest electric field effect is expected in the multiplicitym =1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We will control this conclusion ont he basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field._

  15. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  16. Streamer Initiation from Hydrometeors in Weak Thundercloud Electric Fields

    NASA Astrophysics Data System (ADS)

    Sadighi, S.; Liu, N.; Dwyer, J. R.; Rassoul, H. K.

    2011-12-01

    How atmospheric lightning initiates in thunderclouds has been a scientific puzzle for decades. One theory of air electrical breakdown that has been applied to explaining the initiation of lightning discharges is the conventional breakdown theory [e.g., MacGorman and Rust, p. 86, 1998; Rakov and Uman, p. 121, 2003]. A critical component of this theory is to demonstrate that streamers are able to form and propagate in the field with a magnitude similar to the observed thundercloud electric fields. The observed maximum value of this field varies from 0.13-0.3E_k [Stolzenburg et al., 2007], where E_k is the conventional breakdown threshold field. This value fails to provide a sufficient condition for the initiation of electron avalanches and then the electrical breakdown process. To overcome this obstacle, the theory of streamer initiation from thundercloud hydrometeors (water drops, ice crystals, etc.) was brought forward [e.g., Dawson, JGR, 74 (28), 6859, 1969; Griffiths and Latham, Quart. J. Roy. Meteorol. Soc., 100, 163, 1974; Griffiths and Phelps, Quart. J. Roy. Meteorol. Soc., 102, 4019, 1976]. Hydrometeors are abundant in thunderclouds and they can cause significant field enhancement in their vicinity. For this study, the streamer discharge model reported by Liu and Pasko [JGR, 109, A04301, 2004] is utilized and modified to investigate whether streamers can successfully originate from isolated hydrometeors in the thundercloud electric field. The thundercloud hydrometeors are modeled using a neutral plasma column. Our simulation results show successful formation of streamers from model hydrometeors in a uniform applied electric field below the conventional breakdown threshold field. We report detailed modeling results at thundercloud altitude for the applied electric fields close to the observed maximum thundercloud field. It is demonstrated that the dimensions, i.e., length and radius, of the plasma column have a critical effect on the initiation of streamers

  17. Dirac oscillator in perpendicular magnetic and transverse electric fields

    SciTech Connect

    Nath, D.; Roy, P.

    2014-12-15

    We study (2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field B{sub c} such that the spectrum is different in the two regions B>B{sub c} and Belectric field. • Exact solutions are found. • Critical cases have been examined.

  18. Decay of H atoms excited in small electric fields

    NASA Astrophysics Data System (ADS)

    van Zyl, B.; van Zyl, B. K.; Westerveld, W. B.

    1988-06-01

    The way that various H-emission intensities observed during proton auroras are influenced by the motion of fast-emitting H atoms across the earth's magnetic field is investigated. Branching-ratio data calculated by Rouze et al. (1986) for the decay of the 3l excited states of H are extended to higher principal quantum numbers, with particular emphasis on electric fields in the range of 1 or 2 V/cm. The results show that branching ratios depend quite strongly on electric-field magnitude, pointing to the need to exercise caution in measurements of H emissions and in application of the available data to other problems.

  19. On the motion of electrons in the slow electric field fluctuations observed by Viking

    SciTech Connect

    Hultqvist, B. )

    1991-11-01

    Results are presented of calculations of the motion of electrons in slow, large-amplitude fluctuations of the electric field, which have been observed by means of the Swedish satellite Viking. The E component seen by the ionospheric electrons, entering the acceleration region from below, is assumed to vary along the path of the electrons along the magnetic field lines in the way that Viking recorded along its more or less horizontal path through, or above, the acceleration region. Although this is a simplified model, it is expected to illustrate the effect of the E{parallel} fluctuations on the cold electrons, which enter the acceleration region more realistically than in the earlier, highly simplified model used by hultqvist (1988). The results of the calculations show that temporal variations of E{parallel} of the kind observed by Viking easily can bring the electrons to the top of an acceleration region, which extends 1,000-10,000 km along the magnetic field lines, with energies in the range 100 eV to several keV, as have been observed.

  20. Electric field evidence for tailward flow at substorm onset

    NASA Technical Reports Server (NTRS)

    Nishida, A.; Tulunay, Y. K.; Mozer, F. S.; Cattell, C. A.; Hones, E. W., Jr.; Birn, J.

    1983-01-01

    Electric field observations made near the neutral sheet of the magnetotail provide additional support for the view that reconnection occurs in the near-earth region of the tail. Southward turnings of the magnetic field that start at, or shortly after, substorm onsets are accompanied by enhancements in the dawn-to-dusk electric field, resulting in a tailward E x B drift velocity. Both the magnetic and the electric fields in the tailward-flowing plasma are nonuniform and vary with inferred spatial scales of several earth radii in the events examined in this paper. These nonuniformities may be the consequence of the tearing-mode process. The E x B flow was also towards the neutral sheet and away from midnight in the events studied.

  1. Intense ionospheric electric and magnetic field pulses generated by lightning

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Ding, J. G.; Holzworth, R. H.

    1990-01-01

    Electric and magnetic field measurements have been made in the ionosphere over an active thunderstorm and an optical detector onboard the same rocket yielded an excellent time base for the study of waves radiated into space from the discharge. In addition to detection of intense, but generally well understood whistler mode waves, very unusual electric and magnetic field pulses preceded the 1-10 kHz component of the radiated signal. These pulses lasted several ms and had a significant electric field component parallel to the magnetic field. No known propagating wave mode has this polarization nor a signal propagation velocity as high as those measured here. This study investigated and rejected an explanation based on an anomalous skin depth effect. Although only a hypothesis at this time, a more promising explanation involving the generation of the pulse via a nonlinear decay of whistler mode waves in the frequency range 10-80 kHz is being investigated.

  2. Skin rejuvenation with non-invasive pulsed electric fields.

    PubMed

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P; Albadawi, Hassan; Felix Broelsch, G; Watkins, Michael T; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C; Austen, William G; Yarmush, Martin L

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  3. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    PubMed Central

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  4. The electric field and global electrodynamics of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1979-01-01

    The conception of the electrodynamics of the quiet-time magnetosphere obtained during the last four years of magnetospheric study is presented. Current understandings of the open magnetosphere, convective plasma flows in the plasma sheet, the shielding of the inner magnetosphere from the convective magnetospheric electric field, the space charge produced when injected electrons drift towards dawn and injected ions drift towards dusk, the disruption of the flow of the Birkeland current by plasma instabilities and the shielding of the convective electric field by the dayside magnetopause are discussed. Attention is also given to changes of magnetic field line topology magnetic storms and substorms. Unresolved questions and new tools which may play a role in the further understanding of magnetospheric electrodynamics and the role of the magnetospheric electric field are presented.

  5. Strong electric fields from positive lightning strokes in the stratosphere

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; McCarthy, M. P.; Thomas, J. N.; Chin, J.; Chinowsky, T. M.; Taylor, M. J.; Pinto, O.

    2005-02-01

    A balloon payload launched in Brazil has measured vector electric fields from lightning at least an order of magnitude larger than previously reported above 30 km in the stratosphere. During the flight hundreds of lightning events were recorded, including several positive cloud to ground lightning strokes. A two stroke flash, with small (15 kA peak current) and moderate (53 kA) positive strokes at a horizontal range of 34 km, produced field changes over 140 V/m at 34 km altitude. On-board optical lightning detection, recorded with GPS timing, coupled with ground based lightning location gives high time resolution for study of the electric field transient propagation. These measurements imply that lightning electric fields in the mesosphere over large thunderstorms may be much larger than previously measured.

  6. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  7. Evolution of ring current and radiation belt particles under the influence of storm-time electric fields

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Shinbori, A.; Ono, T.; Iizima, M.; Kumamoto, A.

    2007-06-01

    Electric field and potential distributions in the inner magnetosphere during geomagnetic storms have been investigated using the Akebono/EFD data. Using this electric field, we study injection of ring current particles and acceleration of radiation belt electrons by single-particle calculations. During the main phase, the dawn-dusk electric field is intensified especially in a range of 2 < L < 5 with a maximum amplitude of 6 mV/m on the duskside, and a two-cell convection pattern with a potential difference of 180 kV is identified. The convection pattern on the equatorial plane is significantly distorted with a large potential drop of 70 kV on the dawn and dusk sectors, indicating an intrinsic source of large-scale electric field in the inner magnetosphere. The plasma sheet ions are gathered into the dusk to premidnight sector in the inner magnetosphere in the region of enhanced electric field due to the strong E × B drift. The ions are transported into around 4 RE with an acceleration of more than 1 order of magnitude within 40 min, conserving the first adiabatic invariants. Relativistic electrons with initial energy of some hundreds of kiloelectron volts at 5 RE are energized to more than 100 keV for 3 hours. The energy spectrum during the recovery phase of 9 October 1990 geomagnetic storm observed by the CRRES satellite is reproduced without the radial diffusion or nonadiabatic acceleration by plasma waves. It is possible that this acceleration process is the inhomogeneity of the large-scale electric field, which corresponds to the ∇ × E term along orbits of electrons around the Earth.

  8. The effects of acceleration in jets: kinematics of the near field vortices

    NASA Astrophysics Data System (ADS)

    da Silva, Carlos B.; Neto, Pedro; Pereira, José C. F.

    2009-07-01

    Direct and large-eddy simulations (DNS/LES) of accelerating round jets are used to analyze the effects of acceleration on the kinematics of vortex rings in the near field of the jet ( x/ D < 12). The acceleration is obtained by increasing the nozzle jet velocity with time, in a previously established (steady) jet, and ends once the inlet jet velocity is equal to twice its initial value. Several acceleration rates ( α = 0.02-0.6) and Reynolds numbers ( Re D = 500-20000) were simulated. Acceleration maps were used to make a detailed study of the kinematics of vortex rings in accelerating jets. One of the effects of the acceleration is to cause a number of new primary and secondary vortex merging events that are absent from steady jets. As the acceleration rate α increases, both the number of primary merging events between rings and the axial position where these take place decreases. The statistics for the speed of the starting ring that forms at the start of the acceleration phase for each simulation, agree well with the statistics for the “front” speed observed by Zhang and Johari (Phys Fluids 8:2185-2195, 1996). Acceleration maps and flow visualizations show that during the acceleration phase the near field coherent vortices become smaller and are formed at an higher frequency than in the steady jet, and their (mean) shedding frequency increases linearly with the acceleration rate. Finally, it was observed that the acceleration decreases the spreading rate of the jet, in agreement with previous experimental works.

  9. Manipulation of red blood cells with electric field

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  10. Relations between transverse electric fields and field-aligned currents. [in magnetosphere and ionosphere

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.; Carlson, C. W.

    1978-01-01

    A model for the field-aligned propagation of transverse electric fields and associated field-aligned sheet currents is presented which takes into account the wave nature of the process. The model is applied to the separate cases of ionospheric and magnetospheric sources, and the resulting ionospheric electric field to field-aligned sheet current ratios are determined for comparison with experimental observations. It is found that the magnetospheric wave 'conductivity' for shear mode Alfven waves is small with respect to typical values of the height-integrated ionospheric Pedersen conductivity. For plasma convecting across a stationary disturbance a dynamic equilibrium is achieved in which field-aligned currents flow continuously away from the source on convecting field lines. Consistency with typical ionospheric electric fields requires that the field-aligned sheet currents are limited to around 0.1 A/m for ionospheric polarization sources, while magnetospheric sources are easily capable of 1 A/m or more.

  11. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  12. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  13. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  14. On the High- and Low- Altitude Limits of the Auroral Electric Field Region

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Lu, G.; Burch, J. L.; Winningham, J. D.; Frank, L. A.; Craven, J. D.; Peterson, W. K.; Heelis, R. A.

    1993-01-01

    Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both die high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through die auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are approx. 1 kV potentials observed, typically associated with polar cap or 'theta' arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (approx. 2000 km) near the

  15. Water-methanol separation with carbon nanotubes and electric fields

    NASA Astrophysics Data System (ADS)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  16. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    SciTech Connect

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  17. Electric-field induced ferromagnetic phase in paraelectric antiferromagnets

    NASA Astrophysics Data System (ADS)

    Glinchuk, Maya D.; Eliseev, Eugene A.; Gu, Yijia; Chen, Long-Qing; Gopalan, Venkatraman; Morozovska, Anna N.

    2014-01-01

    The phase diagram of a quantum paraelectric antiferromagnet EuTiO3 under an external electric field is calculated using Landau-Ginzburg-Devonshire theory. The application of an electric field E in the absence of strain leads to the appearance of a ferromagnetic (FM) phase due to the magnetoelectric (ME) coupling. At an electric field greater than a critical field, Ecr, the antiferromagnetic (AFM) phase disappears for all considered temperatures, and FM becomes the only stable magnetic phase. The calculated value of the critical field is close to the values reported recently by Ryan et al. [Nat. Commun. 4, 1334 (2013), 10.1038/ncomms2329] for EuTiO3 film under a compressive strain. The FM phase can also be induced by an E-field in other paraelectric antiferromagnetic oxides with a positive AFM-type ME coupling coefficient and a negative FM-type ME coupling coefficient. The results show the possibility of controlling multiferroicity, including the FM and AFM phases, with help of an electric field application.

  18. Laser Assisted Electric Field Monitoring in a Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Broering, Mark; Abney, Josh; Swank, Christopher; Filippone, Brad; Yao, Weijun; Korsch, Wolfgang; SNS-nEDM Collaboration

    2016-03-01

    The neutron EDM collaboration at the Spallation Neutron Source (ORNL) is using ultra-cold neutrons in liquid helium to improve the nEDM limit by two orders of magnitude. These neutrons will be stored in target cells located in a strong, stable electric field. Local radiation will generate charged particles which build up on the target cell walls reducing field strength and stability. The field fluctuations need to be kept below 1%, making it necessary to study this cell charging behavior, determine its effect on the experiment and find ways to mitigate this. A more compact test setup was designed to study this effect using smaller electrodes and cell. Charged particles are generated by ionizing the helium with a 137Cs source and the electric field is monitored via the electro-optic Kerr effect. Linearly polarized light is passed through the helium. The Kerr effect then introduces an ellipticity to the polarization that is proportional to the electric field squared. This allows an effective means of field monitoring. Nitrogen has a much stronger response to electric fields. This makes liquid nitrogen an ideal candidate for first tests. First results on the liquid nitrogen tests will be presented. This research is supported by DOE Grants: DE-FG02-99ER41101, DE-AC05-00OR22725.

  19. Spectral Study of the Equatorial Electric and Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Rothman, R.; Nicolls, M. J.

    2007-05-01

    We report on the spectral analysis of four years of daytime electric and magnetic field data obtained near the magnetic equator. The former were obtained using the JULIA radar system at the Jicamarca Radio Observatory using the so-called 150 km echo, which can be used reliably to determine the zonal electric field component during daytime. The magnetic field data were obtained using magnetometers located at Jicamarca and Piura in Peru. Due to the nighttime data gap, we can study variations with periods longer than two days and shorter than eight hours. Our goal for the longer periods is to study the variability of atmospheric drivers of the equatorial electrojet. This is straightforward for the electric field, but requires subtracting the ring current and other external effects from the magnetic field data. This is done by using the Gonzales/Anderson technique and employing the two magnetic field measurements. The electrojet strength decreased almost linearly over the four-year period as the solar cycle wound down. Spectral analysis reveals a clear semi-annual peak with maxima at the equinoxes and a secondary peak with a period of fourteen days. The latter seems to indicate that the lunar gravitational tide adds constructively to the semi-diurnal solar thermal tide. At higher frequencies the data must be parsed according to magnetic activity and solar wind conditions due to the importance of penetrating electric fields from the solar wind, and will be presented in this format.

  20. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.