Science.gov

Sample records for accelerating incompressible flow

  1. A GPU-accelerated flow solver for incompressible two-phase fluid flows

    NASA Astrophysics Data System (ADS)

    Codyer, Stephen; Raessi, Mehdi; Khanna, Gaurav

    2011-11-01

    We present a numerical solver for incompressible, immiscible, two-phase fluid flows that is accelerated by using Graphics Processing Units (GPUs). The Navier-Stokes equations are solved by the projection method, which involves solving a pressure Poisson problem at each time step. A second-order discretization of the Poisson problem leads to a sparse matrix with five and seven diagonals for two- and three-dimensional simulations, respectively. Running a serial linear algebra solver on a single CPU can take 50-99.9% of the total simulation time to solve the above system for pressure. To remove this bottleneck, we utilized the large parallelization capabilities of GPUs; we developed a linear algebra solver based on the conjugate gradient iterative method (CGIM) by using CUDA 4.0 libraries and compared its performance with CUSP, an open-source, GPU library for linear algebra. Compared to running the CGIM solver on a single CPU core, for a 2D case, our GPU solver yields speedups of up to 88x in solver time and 81x overall time on a single GPU card. In 3D cases, the speedups are up to 81x (solver) and 15x (overall). Speedup is faster at higher grid resolutions and our GPU solver outperforms CUSP. Current work examines the acceleration versus a parallel CGIM CPU solver.

  2. Incompressible Flows Free Surfaces

    1992-02-01

    NASA-VOF3D is a three-dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slipmore » wall, continuative, periodic, and specified pressure outflow boundary.« less

  3. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  4. Computational Challenges of Viscous Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin; Kim, Chang Sung

    2004-01-01

    Over the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of the computational fluid dynamics (CFD) discipline. Although incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to the rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low-speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient CFD took become increasingly important in fluid engineering for incompressible and low-speed flow. This paper reviews some of the successes made possible by advances in computational technologies during the same period, and discusses some of the current challenges faced in computing incompressible flows.

  5. Successes and Challenges of Incompressible Flow Simulation

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2003-01-01

    During the past thirty years, numerical methods and simulation tools for incompressible flows have been advanced as a subset of CFD discipline. Even though incompressible flows are encountered in many areas of engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to rather stringent requirements for predicting aerodynamic performance characteristics of flight vehicles, while flow devices involving low speed or incompressible flow could be reasonably well designed without resorting to accurate numerical simulations. As flow devices are required to be more sophisticated and highly efficient, CFD tools become indispensable in fluid engineering for incompressible and low speed flow. This paper is intended to review some of the successes made possible by advances in computational technologies during the same period, and discuss some of the current challenges.

  6. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach

    SciTech Connect

    Cicogna, G.; Pegoraro, F.

    2015-02-15

    We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.

  7. Equilibria with incompressible flows from symmetry analysis

    SciTech Connect

    Kuiroukidis, Ap E-mail: gthroum@cc.uoi.gr; Throumoulopoulos, G. N. E-mail: gthroum@cc.uoi.gr

    2015-08-15

    We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.

  8. Triangular spectral elements for incompressible fluid flow

    NASA Technical Reports Server (NTRS)

    Mavriplis, C.; Vanrosendale, John

    1993-01-01

    We discuss the use of triangular elements in the spectral element method for direct simulation of incompressible flow. Triangles provide much greater geometric flexibility than quadrilateral elements and are better conditioned and more accurate when small angles arise. We employ a family of tensor product algorithms for triangles, allowing triangular elements to be handled with comparable arithmetic complexity to quadrilateral elements. The triangular discretizations are applied and validated on the Poisson equation. These discretizations are then applied to the incompressible Navier-Stokes equations and a laminar channel flow solution is given. These new triangular spectral elements can be combined with standard quadrilateral elements, yielding a general and flexible high order method for complex geometries in two dimensions.

  9. High-End Computing for Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, Cetin

    2001-01-01

    The objective of the First MIT Conference on Computational Fluid and Solid Mechanics (June 12-14, 2001) is to bring together industry and academia (and government) to nurture the next generation in computational mechanics. The objective of the current talk, 'High-End Computing for Incompressible Flows', is to discuss some of the current issues in large scale computing for mission-oriented tasks.

  10. Incompressible viscous flow in tubes with occlusions

    NASA Astrophysics Data System (ADS)

    Huang, Huaxiong

    Viscous, incompressible flow in tubes with partial occlusion is investigated using numerical and experimental procedures. The study is related to the problem of atherosclerosis, one of the most common diseases of the circulatory system. One of the computational difficulties in solving the incompressible Navier-Stokes equations is the lack of pressure or vorticity boundary conditions. A finite difference approach, referred to as the interior constraint (IC) method, is proposed to resolve this difficulty. As a general numerical method, it is formulated for both the stream function-vorticity and primitive (physical) variable formulations. The procedure is explained using a one dimensional model with extensive numerical tests presented for two dimensional cases, including flow in a driven cavity and flow over a backward facing step. Results are obtained with second-order accuracy. Next, the IC method is applied to flow in a tube with an occlusion, which is used as the model for blood flow in stenosed arteries in the study of the pathology of atherosclerosis. Numerical results are obtained for both steady and pulsatile flows. Results are compared with those of SIMPLE, one of the commercially available numerical algorithms. The pulsatile flow study revealed several interesting new features. It suggested that the high shear stress is not likely to initiate atherosclerosis lesions. The recirculation region, which is a prominent feature of the unsteady flow, is more likely to cause the initiation and development of the disease. Experimental measurements for steady flow complement the numerical study and show qualitative agreement.

  11. Multigrid Approach to Incompressible Viscous Cavity Flows

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1996-01-01

    Two-dimensional incompressible viscous driven-cavity flows are computed for Reynolds numbers on the range 100-20,000 using a loosely coupled, implicit, second-order centrally-different scheme. Mesh sequencing and three-level V-cycle multigrid error smoothing are incorporated into the symmetric Gauss-Seidel time-integration algorithm. Parametrics on the numerical parameters are performed, achieving reductions in solution times by more than 60 percent with the full multigrid approach. Details of the circulation patterns are investigated in cavities of 2-to-1, 1-to-1, and 1-to-2 depth to width ratios.

  12. Efficient solution of turbulent incompressible separated flows

    NASA Astrophysics Data System (ADS)

    Michelassi, Vittorio; Martelli, Francesco

    A computational method for incompressible separated flows based on two-dimensional approximate factorization is presented. Turbulence effects are accounted for by low-Reynolds number forms of the k-epsilon model. Mass conservation is enforced by the artificial compressibility method. Decoupling and coupling of the equations of motions with the turbulence model equations are investigated. Testing of the coupled solver showed no improvement in convergence or accuracy in comparison to the classical decoupled approach. The solver was then applied to several large-recirculation flows using a modified version of the low-Reynolds-number form of the k-epsilon model proposed by Chien and a two-layer version of the k-epsilon model introduced by Rodi. Both versions gave fast convergence rates and good agreement with experiments.

  13. Pseudo-compressibility methods for the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Arnone, A.

    1993-01-01

    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.

  14. Supercomputing Aspects for Simulating Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kris, Cetin C.

    2000-01-01

    The primary objective of this research is to support the design of liquid rocket systems for the Advanced Space Transportation System. Since the space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and reliability of the engine components is an important task. One of the major problems in the liquid rocket engine is to understand fluid dynamics of fuel and oxidizer flows from the fuel tank to plume. Understanding the flow through the entire turbo-pump geometry through numerical simulation will be of significant value toward design. One of the milestones of this effort is to develop, apply and demonstrate the capability and accuracy of 3D CFD methods as efficient design analysis tools on high performance computer platforms. The development of the Message Passage Interface (MPI) and Multi Level Parallel (MLP) versions of the INS3D code is currently underway. The serial version of INS3D code is a multidimensional incompressible Navier-Stokes solver based on overset grid technology, INS3D-MPI is based on the explicit massage-passing interface across processors and is primarily suited for distributed memory systems. INS3D-MLP is based on multi-level parallel method and is suitable for distributed-shared memory systems. For the entire turbo-pump simulations, moving boundary capability and efficient time-accurate integration methods are built in the flow solver, To handle the geometric complexity and moving boundary problems, an overset grid scheme is incorporated with the solver so that new connectivity data will be obtained at each time step. The Chimera overlapped grid scheme allows subdomains move relative to each other, and provides a great flexibility when the boundary movement creates large displacements. Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier

  15. Efficient solutions of two-dimensional incompressible steady viscous flows

    NASA Technical Reports Server (NTRS)

    Morrison, J. H.; Napolitano, M.

    1986-01-01

    A simple, efficient, and robust numerical technique is provided for solving two dimensional incompressible steady viscous flows at moderate to high Reynolds numbers. The proposed approach employs an incremental multigrid method and an extrapolation procedure based on minimum residual concepts to accelerate the convergence rate of a robust block-line-Gauss-Seidel solver for the vorticity-stream function Navier-Stokes equations. Results are presented for the driven cavity flow problem using uniform and nonuniform grids and for the flow past a backward facing step in a channel. For this second problem, mesh refinement and Richardson extrapolation are used to obtain useful benchmark solutions in the full range of Reynolds numbers at which steady laminar flow is established.

  16. AN IMMERSED BOUNDARY METHOD FOR COMPLEX INCOMPRESSIBLE FLOWS

    EPA Science Inventory

    An immersed boundary method for time-dependant, three- dimensional, incompressible flows is presented in this paper. The incompressible Navier-Stokes equations are discretized using a low-diffusion flux splitting method for the inviscid fluxes and a second order central differenc...

  17. Statistical theory of turbulent incompressible multimaterial flow

    SciTech Connect

    Kashiwa, B.

    1987-10-01

    Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.

  18. Calculation of incompressible fluid flow through cambered blades

    NASA Technical Reports Server (NTRS)

    Hsu, C. C.

    1970-01-01

    Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.

  19. A monolithic mass tracking formulation for bubbles in incompressible flow

    SciTech Connect

    Aanjaneya, Mridul Patkar, Saket Fedkiw, Ronald

    2013-08-15

    We devise a novel method for treating bubbles in incompressible flow that relies on the conservative advection of bubble mass and an associated equation of state in order to determine pressure boundary conditions inside each bubble. We show that executing this algorithm in a traditional manner leads to stability issues similar to those seen for partitioned methods for solid–fluid coupling. Therefore, we reformulate the problem monolithically. This is accomplished by first proposing a new fully monolithic approach to coupling incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions, and then subsequently making a number of simplifying assumptions on the air flow removing not only the nonlinearities but also the spatial variations of both the density and the pressure. The resulting algorithm is quite robust, has been shown to converge to known solutions for test problems, and has been shown to be quite effective on more realistic problems including those with multiple bubbles, merging and pinching, etc. Notably, this approach departs from a standard two-phase incompressible flow model where the air flow preserves its volume despite potentially large forces and pressure differentials in the surrounding incompressible fluid that should change its volume. Our bubbles readily change volume according to an isothermal equation of state.

  20. Turning waves and breakdown for incompressible flows

    PubMed Central

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; López-Fernández, María

    2011-01-01

    We consider the evolution of an interface generated between two immiscible, incompressible, and irrotational fluids. Specifically we study the Muskat and water wave problems. We show that starting with a family of initial data given by (α,f0(α)), the interface reaches a regime in finite time in which is no longer a graph. Therefore there exists a time t∗ where the solution of the free boundary problem parameterized as (α,f(α,t)) blows up: ‖∂αf‖L∞(t∗) = ∞. In particular, for the Muskat problem, this result allows us to reach an unstable regime, for which the Rayleigh–Taylor condition changes sign and the solution breaks down.

  1. Numerical studies of incompressible viscous flow in a driven cavity

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A series of project papers is presented in computational fluid dynamics. The work was performed during the 1973-74 academic year at Old Dominion University. Each paper briefly examines a numerical method(s) that can be applied to the Navier-Stokes equations governing incompressible flow in a driven cavity. Solutions obtained with a cubic spline procedure are also included.

  2. Lattice Boltzmann model for incompressible flows through porous media.

    PubMed

    Guo, Zhaoli; Zhao, T S

    2002-09-01

    In this paper a lattice Boltzmann model is proposed for isothermal incompressible flow in porous media. The key point is to include the porosity into the equilibrium distribution, and add a force term to the evolution equation to account for the linear and nonlinear drag forces of the medium (the Darcy's term and the Forcheimer's term). Through the Chapman-Enskog procedure, the generalized Navier-Stokes equations for incompressible flow in porous media are derived from the present lattice Boltzmann model. The generalized two-dimensional Poiseuille flow, Couette flow, and lid-driven cavity flow are simulated using the present model. It is found the numerical results agree well with the analytical and/or the finite-difference solutions.

  3. Receptivity of a TVD Scheme in Incompressible Flow Analysis

    NASA Astrophysics Data System (ADS)

    Shin, Byeong Rog

    A TVD upwind scheme originally designed for compressible flow is applied to the SMAC finite-difference method for incompressible flow analysis. The receptivity and validity of this application are investigated by an evaluation of the accuracy, stability and convergence rate for the SMAC method combined with the TVD scheme. Using this method, three-dimensional developing entry flows through a square-curved duct are calculated and compared with available experimental data as well as some computational results obtained by QUICKs and third-order upwind schemes. Such comparisons show that the numerical method applying the TVD scheme has the highest computational efficiency without a sharp loss of accuracy, resulting in confidence in the application this scheme to incompressible flow computations.

  4. Stability of axisymmetric swirl flows of viscous incompressible fluid

    NASA Astrophysics Data System (ADS)

    Aktershev, S. P.; Kuibin, P. A.

    2013-09-01

    A new method of solution to the problem of stability of the swirl flow of viscous incompressible fluid is developed. The method based on expansion of the required function into power series of radial coordinate allows an avoidance of difficulties related to numerical integration of the system of differential equations with a singular point. Stability of the Poiseuille flow in a rotating pipe is considered as an example.

  5. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  6. Local mesh refinement for incompressible fluid flow with free surfaces

    SciTech Connect

    Terasaka, H.; Kajiwara, H.; Ogura, K.

    1995-09-01

    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  7. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    The overall objective of this study is to contribute to the optimized design of fan bypass systems in advanced turbofan engines. Increasing the engine bypass ratios have provided a major boost in engine performance improvement over the last fifty years. An engine with high bypass ratio (11-16:1) such as the Advanced Ducted Propulsion (ADP) is being developed and is expected to provide an additional 25% improvement in overall efficiency over the early turbofans. Such significant improvements in overall efficiency would reduce the cost per seat mile, which is a major government and Industry challenge for the 21th century. The research is part of the Advanced Subsonic Technology (AST) program that involves a NASA, U.S. Industry and FAA partnership with the goal of a safe and highly productive global air transportation system. The immediate objective of the study is to perform numerical simulation of duct-strut interactions to elucidate the loss mechanisms associated with this configuration that is typical of advanced turbofan engines such as ADP. However, at present experimental data for a duct-strut configuration are not available. Thus, as a first step a wing-body junction flow would be studied and is the specific objective of the present study. At the outset it is to be recognized that while duct-strut interaction flow is similar to that of wing-body junction flows, there are some differences owing to the presence of a wall at both ends of the strut. Likewise, some differences are due to the sheared inflow (as opposed to a uniform inflow) velocity profile. It is however expected that some features of a wing-body junction flow would persist. Next, some of the salient aspects of the complex flow near a wing-body junction, as revealed by various studies reported in the literature will be reviewed. One of the principle characteristics of the juncture flow, is the presence of the mean flow components in a plane perpendicular to the direction of the oncoming free

  8. Incompressible Turbulent Wing-Body Junction Flow

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    The overall objective of this study is to contribute to the optimized design of fan bypass systems in advanced turbofan engines. Increasing the engine bypass ratios have provided a major boost in engine performance improvement over the last fifty years. An engine with high bypass ratio (11-16:1) such as the Advanced Ducted Propulsion (ADP) is being developed and is expected to provide an additional 25% improvement in overall efficiency over the early turbofans. Such significant improvements in overall efficiency would reduce the cost per seat mile, which is a major government and Industry challenge for the 21th century. The research is part of the Advanced Subsonic Technology (AST) program that involves a NASA, U.S. Industry and FAA partnership with the goal of a safe and highly productive global air transportation system. The immediate objective of the study is to perform numerical simulation of duct-strut interactions to elucidate the loss mechanisms associated with this configuration that is typical of advanced turbofan engines such as ADP. However, at present experimental data for a duct-strut configuration are not available. Thus, as a first step a wing-body junction flow would be studied and is the specific objective of the present study. At the outset it is to be recognized that while duct-strut interaction flow is similar to that of wing-body junction flows, there are some differences owing to the presence of a wall at both ends of the strut. Likewise, some differences are due to the sheared inflow (as opposed to a uniform inflow) velocity profile. It is however expected that some features of a wing-body junction flow would persist. Next, some of the salient aspects of the complex flow near a wing-body junction, as revealed by various studies reported in the literature will be reviewed. One of the principle characteristics of the juncture flow, is the presence of the mean flow components in a plane perpendicular to the direction of the oncoming free

  9. Consistent lattice Boltzmann methods for incompressible axisymmetric flows.

    PubMed

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei

    2016-08-01

    In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified. PMID:27627407

  10. Consistent lattice Boltzmann methods for incompressible axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei

    2016-08-01

    In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified.

  11. Mathematical aspects of finite element methods for incompressible viscous flows

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  12. Incompressible viscous flow simulations of the NFAC wind tunnel

    NASA Technical Reports Server (NTRS)

    Champney, Joelle Milene

    1986-01-01

    The capabilities of an existing 3-D incompressible Navier-Stokes flow solver, INS3D, are extended and improved to solve turbulent flows through the incorporation of zero- and two-equation turbulence models. The two-equation model equations are solved in their high Reynolds number form and utilize wall functions in the treatment of solid wall boundary conditions. The implicit approximate factorization scheme is modified to improve the stability of the two-equation solver. Applications to the 3-D viscous flow inside the 80 by 120 feet open return wind tunnel of the National Full Scale Aerodynamics Complex (NFAC) are discussed and described.

  13. Dominated splitting and zero volume for incompressible three flows

    NASA Astrophysics Data System (ADS)

    Araujo, Vitor; Bessa, Mário

    2008-07-01

    We prove that there exists an open and dense subset of the incompressible 3-flows of class C2 such that, if a flow in this set has a positive volume regular invariant subset with dominated splitting for the linear Poincaré flow, then it must be an Anosov flow. With this result we are able to extend the dichotomies of Bochi-Mañé (see Bessa 2007 Ergod. Theory Dyn. Syst. 27 1445-72, Bochi 2002 Ergod. Theory Dyn. Syst. 22 1667-96, Mañé 1996 Int. Conf. on Dynamical Systems (Montevideo, Uruguay, 1995) (Harlow: Longman) pp 110-9) and of Newhouse (see Newhouse 1977 Am. J. Math. 99 1061-87, Bessa and Duarte 2007 Dyn. Syst. Int. J. submitted Preprint 0709.0700) for flows with singularities. That is, we obtain for a residual subset of the C1 incompressible flows on 3-manifolds that: (i) either all Lyapunov exponents are zero or the flow is Anosov and (ii) either the flow is Anosov or else the elliptic periodic points are dense in the manifold.

  14. Weighted-mean scheme for solving incompressible viscous flow

    NASA Technical Reports Server (NTRS)

    Huynh, Q. Q.

    1981-01-01

    The problem of how a boundary layer responds to the motion of a convexed vortex on a porous wall was investigated. The wall velocity is approximately given by Darcy's law. The vorticity-stream function approach was adopted for solving Navier-Stokes equations of two dimensional incompressible viscous flows. The weighted-mean scheme was used for constructing finite difference approximations of spatial derivatives. Several test problems were solved and numerical results demonstrate clearly the accuracy, stability, and efficiency of the scheme. The weighted mean scheme then can be applied to the vortical flow problem.

  15. Analysis of Laminar Incompressible Flow on Semiporous Channels

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L

    1956-01-01

    Perturbation solutions for laminar incompressible flow in semiporous and fully porous channels are compared. The perturbation parameter measures the amount of suction or blowing at the porous wall. The velocity profile and the wall friction parameter are more affected by suction or blowing for the semiporous channel than for the fully porous channel. For blowing through the wall, the pressure decreases in channel direction for both channels; with sufficiently high suction rates, the analysis showed that the pressure rises in flow direction for the fully porous channel.

  16. Numerical Simulation of Incompressible Flows with Moving Interfaces

    NASA Astrophysics Data System (ADS)

    Medale, Marc; Jaeger, Marc

    1997-03-01

    A numerical model has been developed for the 2D simulation of free surface flows or, more generally speaking, moving interface ones. The bulk fluids on both sides of the interface are taken into account in simulating the incompressible laminar flow state. In the case of heat transfer the whole system, i.e. walls as well as possible obstacles, is considered. This model is based on finite element analysis with an Eulerian approach and an unstructured fixed mesh. A special technique to localize the interface allows its temporal evolution through this mesh. Several numerical examples are presented to demonstrate the capabilities of the model.

  17. STREMR: Numerical model for depth-averaged incompressible flow

    NASA Astrophysics Data System (ADS)

    Roberts, Bernard

    1993-09-01

    The STREMR computer code is a two-dimensional model for depth-averaged incompressible flow. It accommodates irregular boundaries and nonuniform bathymetry, and it includes empirical corrections for turbulence and secondary flow. Although STREMR uses a rigid-lid surface approximation, the resulting pressure is equivalent to the displacement of a free surface. Thus, the code can be used to model free-surface flow wherever the local Froude number is 0.5 or less. STREMR uses a finite-volume scheme to discretize and solve the governing equations for primary flow, secondary flow, and turbulence energy and dissipation rate. The turbulence equations are taken from the standard k-Epsilon turbulence model, and the equation for secondary flow is developed herein. Appendices to this report summarize the principal equations, as well as the procedures used for their discrete solution.

  18. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  19. Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2001-01-01

    This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.

  20. Rayleigh-Taylor modes in constant-density incompressible fluids accelerated by radiation pressure. [astrophysical models

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.

    1977-01-01

    The paper examines the behavior of linear perturbations in an incompressible fluid undergoing acceleration by radiation pressure, with reference to processes occurring in quasars, supernovae, and planetary nebulae. It is shown that, contrary to prior expectation, fluids accelerated by radiation pressure, are not always unstable to Rayleigh-Taylor modes. Some are, in fact, unstable, but the nature of the instability is qualitatively different.

  1. A multilevel approximate projections for incompressible flow calculations

    SciTech Connect

    Howell, L.H.

    1994-12-31

    An adaptive-mesh projection algorithm for unsteady, variable-density, incompressible flow at high Reynolds number has been developed in the Applied Mathematics Group at LLNL. A grid-based refinement scheme combines the theoretical efficiencies of adaptive methods with the computational advantages of uniform grids, while a second-order Godunov method provides a robust and accurate treatment of advection in the presence of discontinuities without excessive dissipation. This paper focuses on the work of the present author concerning the approximate projection itself, which involves the numerical inversion of the operator {del} {center_dot} (1/{rho}){del} on various subsets of the adaptive grid hierarchy.

  2. New discretization and solution techniques for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.

    1983-01-01

    Several topics arising in the finite element solution of the incompressible Navier-Stokes equations are considered. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. The role of artificial viscosity in viscous flow calculations is studied, emphasizing work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some modifications are mentioned.

  3. New discretization and solution techniques for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.

    1983-01-01

    This paper considers several topics arising in the finite element solution of the incompressible Navier-Stokes equations. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. Following this, the role of artificial viscosity in viscous flow calculations is studied, emphasizing recent work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some recent modifications are mentioned.

  4. Flow Solver for Incompressible 2-D Drive Cavity

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2008-01-01

    This software solves the Navier-Stokes equations for the incompressible driven cavity flow problem. The code uses second-order finite differencing on a staggered grid using the Chorin projection method. The resulting intermediate Poisson equation is efficiently solved using the fast Fourier transform. Time stepping is done using fourth-order Runge-Kutta for stability at high Reynolds numbers. Features include check-pointing, periodic field snapshots, ongoing reporting of kinetic energy and changes between time steps, time histories at selected points, and optional streakline generation.

  5. Filter-matrix lattice Boltzmann model for incompressible thermal flows.

    PubMed

    Zhuo, Congshan; Zhong, Chengwen; Cao, Jun

    2012-04-01

    In this study, a new filter-matrix lattice Boltzmann (FMLB) model is proposed and extended to include incompressible thermal flows. A new equilibrium solution is found in the improved FMLB model, which is derived from the Hermite expansion. As a result, the velocity-dependent pressure is removed, which is an inherent defect of Somers's FMLB model. In addition, the improved model is extended to include incompressible thermal flows by introducing a class of temperature-distribution function for evaluating the temperature field. Two different temperature-distribution functions are discussed. The improved FMLB model and the temperature-evaluation equation are combined into one coupled model. Numerical simulations are performed on the two-dimensional (2D) lid-driven square cavity flow and the 2D natural convection flow in a square cavity using the improved FMLB model and the two coupled models, respectively. The numerical results of the 2D lid-driven square cavity flow show that the improved FMLB model is superior to the lattice Bhatnagar-Gross-Krook (LBGK) model in terms of both accuracy and stability. When compared with the multi-relaxation-time (MRT) model, the similar accuracy and slightly enhanced stability can be obtained by the improved model. The advantage of the improved model is that it no longer relies on difficult selection of the free parameters requested by the MRT model; in addition, the force term is already included in the collision operator of the improved model. In the case of 2D natural convection flow, the numerical results of the two present models are almost the same, and both exhibit good agreement with the benchmark solution.

  6. Filter-matrix lattice Boltzmann model for incompressible thermal flows

    NASA Astrophysics Data System (ADS)

    Zhuo, Congshan; Zhong, Chengwen; Cao, Jun

    2012-04-01

    In this study, a new filter-matrix lattice Boltzmann (FMLB) model is proposed and extended to include incompressible thermal flows. A new equilibrium solution is found in the improved FMLB model, which is derived from the Hermite expansion. As a result, the velocity-dependent pressure is removed, which is an inherent defect of Somers's FMLB model. In addition, the improved model is extended to include incompressible thermal flows by introducing a class of temperature-distribution function for evaluating the temperature field. Two different temperature-distribution functions are discussed. The improved FMLB model and the temperature-evaluation equation are combined into one coupled model. Numerical simulations are performed on the two-dimensional (2D) lid-driven square cavity flow and the 2D natural convection flow in a square cavity using the improved FMLB model and the two coupled models, respectively. The numerical results of the 2D lid-driven square cavity flow show that the improved FMLB model is superior to the lattice Bhatnagar-Gross-Krook (LBGK) model in terms of both accuracy and stability. When compared with the multi-relaxation-time (MRT) model, the similar accuracy and slightly enhanced stability can be obtained by the improved model. The advantage of the improved model is that it no longer relies on difficult selection of the free parameters requested by the MRT model; in addition, the force term is already included in the collision operator of the improved model. In the case of 2D natural convection flow, the numerical results of the two present models are almost the same, and both exhibit good agreement with the benchmark solution.

  7. Feedback control of singular systems with applications to incompressible flows

    NASA Astrophysics Data System (ADS)

    Gandikota, Ramakrishna V.

    2000-10-01

    Singular systems of differential equations, also referred to as differential algebraic equation (DAE) systems, arise as models in a variety of engineering applications. In chemical engineering, they typically arise under the quasi-steady state assumptions of phase, reaction or thermal equilibrium in the modeling of processes with fast mass transfer, reaction or heat transfer. They also arise in incompressible fluid flow systems. The control of singular systems has attracted considerable attention in the last two decades. The majority of the developed methods are on the state feedback control of linear and nonlinear singular systems in continuous-time, and they rely on the derivation of standard state space realizations (i.e. ODE descriptions) that can be used as the basis for the controller design. This thesis addresses (i) the derivation of state space realizations for the output feedback control of linear singular systems in continuous time, (ii) the derivation of state space realizations of singular systems of difference equations, which can be used for the state feedback control of nonlinear discrete time singular systems, (iii) a parallel analysis of the continuous in space and discretized in space incompressible Navier Stokes equations, with emphasis on the derivation of standard PDE and ODE descriptions respectively, and (iv) a case study on the numerical simulation and feedback control of the flow pattern in a lid-driven cavity. The performance of the developed controllers is illustrated via numerical simulation studies.

  8. Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.

    1990-01-01

    A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.

  9. Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Rausch, Russ D.; Bonhaus, Daryl L.

    1997-01-01

    An implicit code for computing inviscid and viscous incompressible flows on unstructured grids is described. The foundation of the code is a backward Euler time discretization for which the linear system is approximately solved at each time step with either a point implicit method or a preconditioned Generalized Minimal Residual (GMRES) technique. For the GMRES calculations, several techniques are investigated for forming the matrix-vector product. Convergence acceleration is achieved through a multigrid scheme that uses non-nested coarse grids that are generated using a technique described in the present paper. Convergence characteristics are investigated and results are compared with an exact solution for the inviscid flow over a four-element airfoil. Viscous results, which are compared with experimental data, include the turbulent flow over a NACA 4412 airfoil, a three-element airfoil for which Mach number effects are investigated, and three-dimensional flow over a wing with a partial-span flap.

  10. Incompressible SPH scour model for movable bed dam break flows

    NASA Astrophysics Data System (ADS)

    Ran, Qihua; Tong, Jian; Shao, Songdong; Fu, Xudong; Xu, Yueping

    2015-08-01

    In this study an incompressible smoothed particle hydrodynamics (ISPH) approach coupled with the sediment erosion model is developed to investigate the sediment bed scour and grain movement under the dam break flows. Two-phase formulations are used in the ISPH numerical algorithms to examine the free surface and bed evolution profiles, in which the entrained sediments are treated as a different fluid component as compared with the water. The sediment bed erosion model is based on the concept of pick-up flow velocity and the sediment is initiated when the local flow velocity exceeds a critical value. The proposed model is used to reproduce the sediment erosion and follow-on entrainment process under an instantaneous dam break flow and the results are compared with those from the weakly compressible moving particle semi-implicit (WCMPS) method as well as the experimental data. It has been demonstrated that the two-phase ISPH model performed well with the experimental data. The study shows that the ISPH modelling approach can accurately predict the dynamic sediment scouring process without the need to use empirical sediment transport formulas.

  11. A multilevel adaptive projection method for unsteady incompressible flow

    NASA Technical Reports Server (NTRS)

    Howell, Louis H.

    1993-01-01

    There are two main requirements for practical simulation of unsteady flow at high Reynolds number: the algorithm must accurately propagate discontinuous flow fields without excessive artificial viscosity, and it must have some adaptive capability to concentrate computational effort where it is most needed. We satisfy the first of these requirements with a second-order Godunov method similar to those used for high-speed flows with shocks, and the second with a grid-based refinement scheme which avoids some of the drawbacks associated with unstructured meshes. These two features of our algorithm place certain constraints on the projection method used to enforce incompressibility. Velocities are cell-based, leading to a Laplacian stencil for the projection which decouples adjacent grid points. We discuss features of the multigrid and multilevel iteration schemes required for solution of the resulting decoupled problem. Variable-density flows require use of a modified projection operator--we have found a multigrid method for this modified projection that successfully handles density jumps of thousands to one. Numerical results are shown for the 2D adaptive and 3D variable-density algorithms.

  12. Lattice Boltzmann modeling of three-phase incompressible flows

    NASA Astrophysics Data System (ADS)

    Liang, H.; Shi, B. C.; Chai, Z. H.

    2016-01-01

    In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems.

  13. Lattice Boltzmann modeling of three-phase incompressible flows.

    PubMed

    Liang, H; Shi, B C; Chai, Z H

    2016-01-01

    In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems.

  14. An upwind nodal integral method for incompressible fluid flow

    SciTech Connect

    Esser, P.D. ); Witt, R.J. )

    1993-05-01

    An upwind nodal solution method is developed for the steady, two-dimensional flow of an incompressible fluid. The formulation is based on the nodal integral method, which uses transverse integrations, analytical solutions of the one-dimensional averaged equations, and node-averaged uniqueness constraints to derive the discretized nodal equations. The derivation introduces an exponential upwind bias by retaining the streamwise convection term in the homogeneous part of the transverse-integrated convection-diffusion equation. The method is adapted to the stream function-vorticity form of the Navier-Stokes equations, which are solved over a nonstaggered nodal mesh. A special nodal scheme is used for the Poisson stream function equation to properly account for the exponentially varying vorticity source. Rigorous expressions for the velocity components and the no-slip vorticity boundary condition are derived from the stream function formulation. The method is validated with several benchmark problems. An idealized purely convective flow of a scalar step function indicates that the nodal approximation errors are primarily dispersive, not dissipative, in nature. Results for idealized and actual recirculating driven-cavity flows reveal a significant reduction in false diffusion compared with conventional finite difference techniques.

  15. Consistent and conservative framework for incompressible multiphase flow simulations

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Desjardins, Olivier

    2015-11-01

    We present a computational methodology for convection that handles discontinuities with second order accuracy and maintains conservation to machine precision. We use this method in the context of an incompressible gas-liquid flow to transport the phase interface, momentum, and scalars. Using the same methodology for all the variables ensures discretely consistent transport, which is necessary for robust and accurate simulations of turbulent atomizing flows with high-density ratios. The method achieves conservative transport by computing consistent fluxes on a refined mesh, which ensures all conserved quantities are fluxed with the same discretization. Additionally, the method seamlessly couples semi-Lagrangian fluxes used near the interface with finite difference fluxes used away from the interface. The semi-Lagrangian fluxes are three-dimensional, un-split, and conservatively handle discontinuities. Careful construction of the fluxes ensures they are divergence-free and no gaps or overlaps form between neighbors. We have tested and used the scheme for many cases and demonstrate a simulation of an atomizing liquid jet.

  16. Mixing of spherical bubbles with time-dependent radius in incompressible flows.

    PubMed

    Pérez-Muñuzuri, Vicente; Garaboa-Paz, Daniel

    2016-02-01

    The motion of contracting and expanding bubbles in an incompressible chaotic flow is analyzed in terms of the finite-time Lyapunov exponents. The viscous forces acting on the bubble surface depend not only on the relative acceleration but also on the time dependence of the bubble volume, which is modeled by the Rayleigh-Plesset equation. The effect of bubble coalescence on the coherent structures that develop in the flow is studied using a simplified bubble merger model. Contraction and expansion of the bubbles is favored in the vicinity of the coherent structures. Time evolution of coalescence bubbles follows a Lévy distribution with an exponent that depends on the initial distance between bubbles. Mixing patterns were found to depend heavily on merging and on the time-dependent volume of the bubbles.

  17. A massively parallel fractional step solver for incompressible flows

    SciTech Connect

    Houzeaux, G. Vazquez, M. Aubry, R. Cela, J.M.

    2009-09-20

    This paper presents a parallel implementation of fractional solvers for the incompressible Navier-Stokes equations using an algebraic approach. Under this framework, predictor-corrector and incremental projection schemes are seen as sub-classes of the same class, making apparent its differences and similarities. An additional advantage of this approach is to set a common basis for a parallelization strategy, which can be extended to other split techniques or to compressible flows. The predictor-corrector scheme consists in solving the momentum equation and a modified 'continuity' equation (namely a simple iteration for the pressure Schur complement) consecutively in order to converge to the monolithic solution, thus avoiding fractional errors. On the other hand, the incremental projection scheme solves only one iteration of the predictor-corrector per time step and adds a correction equation to fulfill the mass conservation. As shown in the paper, these two schemes are very well suited for massively parallel implementation. In fact, when compared with monolithic schemes, simpler solvers and preconditioners can be used to solve the non-symmetric momentum equations (GMRES, Bi-CGSTAB) and to solve the symmetric continuity equation (CG, Deflated CG). This gives good speedup properties of the algorithm. The implementation of the mesh partitioning technique is presented, as well as the parallel performances and speedups for thousands of processors.

  18. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-08-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  19. An efficient algorithm for incompressible N-phase flows

    SciTech Connect

    Dong, S.

    2014-11-01

    We present an efficient algorithm within the phase field framework for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids, with possibly very different physical properties such as densities, viscosities, and pairwise surface tensions. The algorithm employs a physical formulation for the N-phase system that honors the conservations of mass and momentum and the second law of thermodynamics. We present a method for uniquely determining the mixing energy density coefficients involved in the N-phase model based on the pairwise surface tensions among the N fluids. Our numerical algorithm has several attractive properties that make it computationally very efficient: (i) it has completely de-coupled the computations for different flow variables, and has also completely de-coupled the computations for the (N−1) phase field functions; (ii) the algorithm only requires the solution of linear algebraic systems after discretization, and no nonlinear algebraic solve is needed; (iii) for each flow variable the linear algebraic system involves only constant and time-independent coefficient matrices, which can be pre-computed during pre-processing, despite the variable density and variable viscosity of the N-phase mixture; (iv) within a time step the semi-discretized system involves only individual de-coupled Helmholtz-type (including Poisson) equations, despite the strongly-coupled phase–field system of fourth spatial order at the continuum level; (v) the algorithm is suitable for large density contrasts and large viscosity contrasts among the N fluids. Extensive numerical experiments have been presented for several problems involving multiple fluid phases, large density contrasts and large viscosity contrasts. In particular, we compare our simulations with the de Gennes theory, and demonstrate that our method produces physically accurate results for multiple fluid phases. We also demonstrate the significant and sometimes dramatic effects of the

  20. A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems

    NASA Astrophysics Data System (ADS)

    Geissert, Matthias; Hieber, Matthias; Nguyen, Thieu Huy

    2016-06-01

    This article develops a general approach to time periodic incompressible fluid flow problems and semilinear evolution equations. It yields, on the one hand, a unified approach to various classical problems in incompressible fluid flow and, on the other hand, gives new results for periodic solutions to the Navier-Stokes-Oseen flow, the Navier-Stokes flow past rotating obstacles, and, in the geophysical setting, for Ornstein-Uhlenbeck and various diffusion equations with rough coefficients. The method is based on a combination of interpolation and topological arguments, as well as on the smoothing properties of the linearized equation.

  1. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES

    PubMed Central

    Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.

    2010-01-01

    A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919

  2. On the method of pseudo compressibility for numerically solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Kwak, D.

    1984-01-01

    Pseudo compressibility is used for numerically solving incompressible flows to achieve computational efficiency. The use of pseudo compressibility results in a system of hyperbolic-type equations of motion that introduce waves of finite speed. The interactions of the wave propagation and the vorticity spreading are analyzed. A criterion governing the dependence of the pseudo compressiblity on the Reynolds number and the characteristic length of the flow geometry is obtained that allows for a proper convergence. It is demonstrated that the solution does tend to the incompressible limit. External and internal viscous flow test problems are presented to verify the theory.

  3. Front Speed Enhancement by Incompressible Flows in Three or Higher Dimensions

    NASA Astrophysics Data System (ADS)

    El Smaily, Mohammad; Kirsch, Stéphane

    2014-07-01

    We study, in dimensions N ≥ 3, the family of first integrals of an incompressible flow: these are functions whose level surfaces are tangential to the streamlines of the advective incompressible field. One main motivation for this study comes from earlier results proving that the existence of nontrivial first integrals of an incompressible flow q is the main key that leads to a "linear speed up" by a large advection of pulsating traveling fronts solving a reaction-advection-diffusion equation in a periodic heterogeneous framework. The family of first integrals is not well understood in dimensions N ≥ 3 due to the randomness of the trajectories of q and this is in contrast with the case N = 2. By looking at the domain of propagation as a union of different components produced by the advective field, we provide more information about first integrals and we give a class of incompressible flows which exhibit "ergodic components" of positive Lebesgue measure (and hence are not shear flows) and which, under certain sharp geometric conditions, speed up the KPP fronts linearly with respect to the large amplitude. In the proofs, we establish a link between incompressibility, ergodicity, first integrals and the dimension to give a sharp condition about the asymptotic behavior of the minimal KPP speed in terms of the configuration of ergodic components.

  4. Multi-material incompressible flow simulation using the moment-of-fluid method

    SciTech Connect

    Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V

    2009-01-01

    The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.

  5. A comparison of two incompressible Navier-Stokes algorithms for unsteady internal flow

    NASA Technical Reports Server (NTRS)

    Wiltberger, N. Lyn; Rogers, Stuart E.; Kwak, Dochan

    1993-01-01

    A comparative study of two different incompressible Navier-Stokes algorithms for solving an unsteady, incompressible, internal flow problem is performed. The first algorithm uses an artificial compressibility method coupled with upwind differencing and a line relaxation scheme. The second algorithm uses a fractional step method with a staggered grid, finite volume approach. Unsteady, viscous, incompressible, internal flow through a channel with a constriction is computed using the first algorithm. A grid resolution study and parameter studies on the artificial compressibility coefficient and the maximum allowable residual of the continuity equation are performed. The periodicity of the solution is examined and several periodic data sets are generated using the first algorithm. These computational results are compared with previously published results computed using the second algorithm and experimental data.

  6. Projection methods for incompressible flow problems with WENO finite difference schemes

    NASA Astrophysics Data System (ADS)

    de Frutos, Javier; John, Volker; Novo, Julia

    2016-03-01

    Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations [20]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.

  7. An Improved Lattice Kinetic Scheme for Incompressible Viscous Fluid Flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Inamuro, Takaji

    2014-01-01

    The lattice Boltzmann method (LBM) is an explicit numerical scheme for the incompressible Navier-Stokes equations (INSE) without integrating the Poisson equation for the pressure. In spite of its merit, the LBM has some drawbacks in accuracy. First, we review drawbacks for three numerical methods based on the LBM. The three methods are the LBM with the Bhatnagar-Gross-Krook model (LBGK), the lattice kinetic scheme (LKS) and the link-wise artificial compressibility method (LWACM). Second, in order to remedy the drawbacks, we propose an improved LKS. The present method incorporates (i) the scheme used in the LWACM for determining the kinematic viscosity, (ii) an iterative calculation of the pressure and (iii) a semi-implicit algorithm, while preserving the simplicity of the algorithm of the original LKS. Finally, in simulations of test problems, we find that the improved LKS eliminates the drawbacks and gives more accurate and stable results than LBGK, LKS and LWACM.

  8. A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Pan, Xiaomin; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    A novel immersed boundary (IB) method based on an implicit direct forcing (IDF) scheme is developed for incompressible viscous flows. The key idea for the present IDF method is to use a block LU decomposition technique in momentum equations with Taylor series expansion to construct the implicit IB forcing in a recurrence form, which imposes more accurate no-slip boundary conditions on the IB surface. To accelerate the IB forcing convergence during the iterative procedure, a pre-conditioner matrix is introduced in the recurrence formulation of the IB forcing. A Jacobi-type parameter is determined in the pre-conditioner matrix by minimizing the Frobenius norm of the matrix function representing the difference between the IB forcing solution matrix and the pre-conditioner matrix. In addition, the pre-conditioning parameter is restricted due to the numerical stability in the recurrence formulation. Consequently, the present pre-conditioned IDF (PIDF) enables accurate calculation of the IB forcing within a few iterations. We perform numerical simulations of two-dimensional flows around a circular cylinder and three-dimensional flows around a sphere for low and moderate Reynolds numbers. The result shows that PIDF yields a better imposition of no-slip boundary conditions on the IB surfaces for low Reynolds number with a fairly larger time step than IB methods with different direct forcing schemes due to the implicit treatment of the diffusion term for determining the IB forcing. Finally, we demonstrate the robustness of the present PIDF scheme by numerical simulations of flow around a circular array of cylinders, flows around a falling sphere, and two sedimenting spheres in gravity.

  9. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  10. Stability Analysis of Large-Scale Incompressible Flow Calculations on Massively Parallel Computers

    SciTech Connect

    LEHOUCQ,RICHARD B.; ROMERO,LOUIS; SALINGER,ANDREW G.

    1999-10-25

    A set of linear and nonlinear stability analysis tools have been developed to analyze steady state incompressible flows in 3D geometries. The algorithms have been implemented to be scalable to hundreds of parallel processors. The linear stability of steady state flows are determined by calculating the rightmost eigenvalues of the associated generalize eigenvalue problem. Nonlinear stability is studied by bifurcation analysis techniques. The boundaries between desirable and undesirable operating conditions are determined for buoyant flow in the rotating disk CVD reactor.

  11. Progress in incompressible Navier-Stokes computations for propulsion flows and its dual-use applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1995-01-01

    Development of an incompressible Navier-Stokes solution procedure was performed for the analysis of a liquid rocket engine pump components and for the mechanical heart assist devices. The solution procedure for the propulsion systems is applicable to incompressible Navier-Stokes flows in a steadily rotating frame of reference for any general complex configurations. The computer codes were tested on different complex configurations such as liquid rocket engine inducer and impellers. As a spin-off technology from the turbopump component simulations, the flow analysis for an axial heart pump was conducted. The baseline Left Ventricular Assist Device (LVAD) design was improved by adding an inducer geometry by adapting from the liquid rocket engine pump. The time-accurate mode of the incompressible Navier-Stokes code was validated with flapping foil experiment by using different domain decomposition methods. In the flapping foil experiment, two upstream NACA 0025 foils perform high-frequency synchronized motion and generate unsteady flow conditions for a downstream larger stationary foil. Fairly good agreement was obtained between unsteady experimental data and numerical results from two different moving boundary procedures. Incompressible Navier-Stokes code (INS3D) has been extended for heat transfer applications. The temperature equation was written for both forced and natural convection phenomena. Flow in a square duct case was used for the validation of the code in both natural and forced convection.

  12. The standard upwind compact difference schemes for incompressible flow simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ping

    2016-10-01

    Compact difference schemes have been used extensively for solving the incompressible Navier-Stokes equations. However, the earlier formulations of the schemes are of central type (called central compact schemes, CCS), which are dispersive and susceptible to numerical instability. To enhance stability of CCS, the optimal upwind compact schemes (OUCS) are developed recently by adding high order dissipative terms to CCS. In this paper, it is found that OUCS are essentially not of the upwind type because they do not use upwind-biased but central type of stencils. Furthermore, OUCS are not the most optimal since orders of accuracy of OUCS are at least one order lower than the maximum achievable orders. New upwind compact schemes (called standard upwind compact schemes, SUCS) are developed in this paper. In contrast to OUCS, SUCS are constructed based completely on upwind-biased stencils and hence can gain adequate numerical dissipation with no need for introducing optimization calculations. Furthermore, SUCS can achieve the maximum achievable orders of accuracy and hence be more compact than OUCS. More importantly, SUCS have prominent advantages on combining the stable and high resolution properties which are demonstrated from the global spectral analyses and typical numerical experiments.

  13. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  14. On a modification of GLS stabilized FEM for solving incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Burda, P.; Novotný, J.; Ístek, J.

    2006-07-01

    We deal with 2D flows of incompressible viscous fluids with high Reynolds numbers. Galerkin Least Squares technique of stabilization of the finite element method is studied and its modification is described. We present a number of numerical results obtained by the developed method, showing its contribution to solving flows with high Reynolds numbers. Several recommendations and remarks are included. We are interested in positive as well as negative aspects of stabilization, which cannot be divorced.

  15. Incompressible two-phase flows with an inextensible Newtonian fluid interface

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2016-10-01

    We introduce a diffuse interface approximation for an incompressible two-phase flow problem with an inextensible Newtonian fluid interface. This approach allows to model lipid membranes as viscous fluids. In the present setting the membranes are assumed to be stationary. We validate the model and the numerical approach, which is based on a stream function formulation for the surface flow problem, an operator splitting approach and a semi-implicit adaptive finite element discretization, against observed flow patterns in vesicles, which are adhered to a solid surface and are subjected to shear flow. The influence of the Gaussian curvature on the surface flow pattern is discussed.

  16. Direct pore-level modeling of incompressible fluid flow in porous media

    SciTech Connect

    Ovaysi, Saeed; Piri, Mohammad

    2010-09-20

    We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier-Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid-solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 {mu}m resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.

  17. Simulation of large incompressible flows by the finite element method

    NASA Astrophysics Data System (ADS)

    Bercovier, M.; Engelman, M.

    Super computers together with low cost 32 bit machines with graphics render more actual the challenge of designing a general purpose Fluid Dynamic code. Such an approach was the key to the introduction of computational structural mechanics into the design cycle. There FEM codes have replaced experiments and are evaluation tools at every stage. Except for a very limited domain (low Reynolds numbers for instance) this "black box" concept cannot be aplied in fluid mechanics. Nevertheless the success of the modular approach of FIDAP, the addition of new models and the extension of its pre and post-processing capabilities bring a new bridge between the fluid mechanics engineer and the design floor shop. It is now the task of the scientific community to design acceptable models in domains like turbulent flows,multiphase flows slightly compressible flows and so on. At the same time faster and robust algorithms for highly non linear problems must be devised.

  18. Distribution of incompressible flow within interdigitated channels and porous electrodes

    NASA Astrophysics Data System (ADS)

    Kee, Robert J.; Zhu, Huayang

    2015-12-01

    This paper develops a general model with which to evaluate flow uniformity and pressure drop within interdigitated-channel structures, especially in the context of redox flow batteries. The governing equations are cast in dimensionless variables, leading to a set of characteristic dimensionless parameter groups. The systems of governing equations are solved computationally, with the results presented graphically. Because the results are general, the underlying model itself is not needed to apply the quantitative design guidelines. However, the paper presents and discusses all the information required to recreate the model as needed.

  19. Explicit formulations of gas-kinetic flux solver for simulation of incompressible and compressible viscous flows

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Shu, C.; Teo, C. J.; Wang, Y.; Yang, L. M.

    2015-11-01

    In this paper, a gas-kinetic flux solver (GKFS) is presented for the simulation of incompressible and compressible viscous flows. In this solver, the finite volume method is applied to discretize the Navier-Stokes equations. The inviscid and viscous fluxes at the interface are obtained simultaneously via the gas-kinetic scheme, which locally reconstruct the solution for the continuous Boltzmann equation. Different from the conventional gas-kinetic BGK scheme [1], a simple way is presented in this work to evaluate the non-equilibrium distribution function, which is calculated by the difference of equilibrium distribution functions at the cell interface and its surrounding points. As a consequence, explicit formulations for computing the conservative flow variables and fluxes are simply derived. In particular, three specific schemes are proposed and validated via several incompressible and compressible test examples. Numerical results show that all three schemes can provide accurate numerical results for incompressible flows. On the other hand, Scheme III is much more stable and consistent in simulation of compressible flows.

  20. 2D Mixed Convection Thermal Incompressible Viscous Flows

    NASA Astrophysics Data System (ADS)

    Bermudez, Blanca; Nicolas, Alfredo

    2005-11-01

    Mixed convection thermal incomprressible viscous fluid flows in rectangular cavities are presented. These kind of flows may be governed by the time-dependent Boussinesq approximation in terms of the stream function-vorticity variables formulation. The results are obtained with a simple numerical scheme based mainly on a fixed point iterative process applied to the non-linear system of elliptic equations that is obtained after a second order time discretization. Numerical experiments are reported for the problem of a cavity with fluid boundary motion on the top. Some results correspond to validation examples and others, to the best of our knowledge, correspond to new results. To show that the new results are correct, a mesh size and time independence studies are carried out, and the acceptable errors are measured point-wise. For the optimal mesh size and time step the final times when the steady state is reached, as solution from the unsteady problem, are reported; it should be seen that they are larger than the ones for natural convection which, physically speaking, show the agreement that mixed convection flows are more active than those of natural convection due to the fluid boundary motion on the top of the cavity. The flow parameters are: the Reynolds number, the Grashof number and the aspect ratio.

  1. Multiple-relaxation-time lattice Boltzmann modeling of incompressible flows in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2015-07-01

    In this paper, a two-dimensional eight-velocity multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy model. In the model, the porosity is included into the pressure-based equilibrium moments, and the linear and nonlinear drag forces of the porous matrix are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. Through the Chapman-Enskog analysis, the incompressible generalized Navier-Stokes equations can be recovered. Numerical simulations of several typical porous flows are carried out to validate the present MRT-LB model. It is found that the present numerical results agree well with the analytical solutions and/or other numerical results reported in the literature.

  2. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark

    1998-01-01

    A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.

  3. Velocity-vorticity formulation of three-dimensional, steady, viscous, incompressible flows

    SciTech Connect

    Meir, A.J.

    1994-12-31

    In this work we discuss some aspects of the velocity-vorticity formulation of three-dimensional, steady, viscous, incompressible flows. We describe reasonable boundary conditions that should be imposed on the vorticity and a compatibility condition that the vorticity must satisfy. This formulation may give rise to efficient numerical algorithms for approximating solutions of the Stokes problem, which in turn yields an iterative method for approximating solutions of the Navier-Stokes equations.

  4. A p-version finite element method for steady incompressible fluid flow and convective heat transfer

    NASA Technical Reports Server (NTRS)

    Winterscheidt, Daniel L.

    1993-01-01

    A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.

  5. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  6. Conditions at the downstream boundary for simulations of viscous incompressible flow

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    The proper specification of boundary conditions at artificial boundaries for the simulation of time-dependent fluid flows has long been a matter of controversy. A general theory of asymptotic boundary conditions for dissipative waves is applied to the design of simple, accurate conditions at downstream boundary for incompressible flows. For Reynolds numbers far enough below the critical value for linear stability, a scaling is introduced which greatly simplifies the construction of the asymptotic conditions. Numerical experiments with the nonlinear dynamics of vortical disturbances to plane Poiseuille flow are presented which illustrate the accuracy of our approach. The consequences of directly applying the scalings to the equations are also considered.

  7. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  8. A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries

    NASA Astrophysics Data System (ADS)

    Sanmiguel-Rojas, Enrique; Ortega-Casanova, Joaquin; del Pino, Carlos; Fernandez-Feria, Ramon

    2004-11-01

    A method for generating a non-uniform cartesian grid for irregular two-dimensional (2D) geometries such that all the boundary points are regular mesh points is given. The resulting non-uniform grid is used to discretize the Navier-Stokes equations for 2D incompressible viscous flows using finite difference approximations. To that end, finite-difference approximations of the derivatives on a non-uniform mesh are given. We test the method with two different examples: the shallow water flow on a lake with irregular contour, and the pressure driven flow through an irregular array of circular cylinders.

  9. A multiple-scale turbulence model for incompressible flow

    NASA Technical Reports Server (NTRS)

    Duncan, B. S.; Liou, W. W.; Shih, T. H.

    1993-01-01

    A multiple-scale eddy viscosity model is described in this paper. This model splits the energy spectrum into a high wave number regime and a low wave number regime. Dividing the energy spectrum into multiple regimes simplistically emulates the cascade of energy through the turbulence spectrum. The constraints on the model coefficients are determined by examining decaying turbulence and homogeneous turbulence. A direct link between the partitioned energies and the energy transfer process is established through the coefficients. This new model has been calibrated and tested for boundary-free turbulent shear flows. Calculations of mean and turbulent properties show good agreement with experimental data for two mixing layers, a plane jet and a round jet.

  10. High-order ALE schemes for incompressible capillary flows

    NASA Astrophysics Data System (ADS)

    Montefuscolo, Felipe; Sousa, Fabricio S.; Buscaglia, Gustavo C.

    2014-12-01

    The spatial discretization of problems with moving boundaries is considered, incorporating the temporal evolution of not just the mechanical variables, but also of the nodal positions of the moving mesh. The outcome is a system of Differential-Algebraic Equations (DAE) of index 2 or, in the case of inertialess flow, just 1. From the DAE formulation it its possible to define strategies to build schemes of arbitrary accuracy. We introduce here several schemes of order 2 and 3 that avoid the solution of a nonlinear system involving simultaneously the mechanical variables and the geometrical ones. This class of schemes has been the one adopted by the majority of practitioners of Computational Fluid Dynamics up to now. The proposed schemes indeed achieve the design accuracy, and further show stability restrictions that are not significantly more severe than those of popular first order schemes. The numerical experimentation is performed on capillary problems, discretized by both div-stable (P2/P1, P1+/P1) and equal-order (P1/P1, stabilized) finite elements, and incorporating surface tension and triple (contact) line effects.

  11. Notes on Newton-Krylov based Incompressible Flow Projection Solver

    SciTech Connect

    Robert Nourgaliev; Mark Christon; J. Bakosi

    2012-09-01

    The purpose of the present document is to formulate Jacobian-free Newton-Krylov algorithm for approximate projection method used in Hydra-TH code. Hydra-TH is developed by Los Alamos National Laboratory (LANL) under the auspices of the Consortium for Advanced Simulation of Light-Water Reactors (CASL) for thermal-hydraulics applications ranging from grid-to-rod fretting (GTRF) to multiphase flow subcooled boiling. Currently, Hydra-TH is based on the semi-implicit projection method, which provides an excellent platform for simulation of transient single-phase thermalhydraulics problems. This algorithm however is not efficient when applied for very slow or steady-state problems, as well as for highly nonlinear multiphase problems relevant to nuclear reactor thermalhydraulics with boiling and condensation. These applications require fully-implicit tightly-coupling algorithms. The major technical contribution of the present report is the formulation of fully-implicit projection algorithm which will fulfill this purpose. This includes the definition of non-linear residuals used for GMRES-based linear iterations, as well as physics-based preconditioning techniques.

  12. Study of spatial growth of disturbances in an Incompressible Double Shear Layer flow configuration

    NASA Astrophysics Data System (ADS)

    Natarajan, Hareshram; Jacobs, Gustaaf

    2014-11-01

    The spatial growth of disturbance within the linear instability regime in an incompressible 2D double shear layer flow configuration is studied by performing a Direct Numerical Simulation. The motivation of this study is to characterize the effect of the presence of an additional shear layer on the spatial growth of a shear layer instability. Initially, a DNS of an incompressible single shear layer is performed and the spatial growth rate of various disturbance frequency modes are validated with Linear Stability Analysis. The addtional shear layer is found to impact the spatial growth rates of the different disturbances and the frequency of the mode with the maximum growth rate is found to be shifted.

  13. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    NASA Astrophysics Data System (ADS)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  14. Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows

    SciTech Connect

    Fu, S.C.; So, R.M.C.; Leung, W.W.F.

    2010-08-20

    With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncertainty as generating a new dimension and the solution as dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial chaos system, and the coefficients in this representation are determined through a Galerkin approach. This approach provides an accurate representation even when only a small number of terms are used in the spectral expansion; consequently, saving in computational resource can be realized compared to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltzmann method (FDLBM) that provides a convenient algorithm for setting the boundary condition allows the flow of Newtonian and non-Newtonian fluids, with and without external body forces to be simulated with ease. Also, the inherent compressibility effect in the conventional lattice Boltzmann method, which might produce significant errors in some incompressible flow simulations, is eliminated. As such, the FDLBM together with an efficient UQ method can be used to treat incompressible flows with built in uncertainty, such as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic numerical solver for steady incompressible viscous flows by combining the FDLBM with a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden expansion flows are carried out.

  15. Flow-Induced Vibration of Flexible Hydrofoils in Incompressible, Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Young, Yin Lu

    2014-11-01

    Flexible lifting bodies can be used to enhance the energy-efficiency and maneuverability of propulsion devices compared to their rigid counterparts. To take advantage of advances in materials and active/passive control techniques, an improved understanding of the fluid-structure interaction physics is needed. This numerical study focuses on flexible hydrofoil in incompressible, turbulent flows. The spanwise bending and twisting of a rectangular, cantilevered hydrofoil was modeled as 2DOF equations of motion coupled with the unsteady RANS equation. The results, which have been validated with experimental measurements, showed that the natural frequencies are lower in water compared to those in air due to the added mass effect, and the natural frequencies vary slightly with speed and angle of attack due to hydrodynamic bend-twist coupling and viscous effects. Lock-in of the vortex shedding frequencies with the natural frequencies was observed, along with modification of the wake patterns due to hydrodynamic bend-twist coupling. The hydrodynamic damping was found to be much greater than structural damping, and depends on the relative velocity, angle of attack, as well as structural stiffness and density, and can lead to destabilizing condition of structure in particular cases.

  16. Numerical investigations of solving unsteady, incompressible, viscous fluid flow by finite element method

    NASA Astrophysics Data System (ADS)

    Hatanaka, K.; Hayashi, M.; Kawahara, M.

    A novel FEM scheme that is based on the fractional-step method for solving time-dependent, incompressible viscous flow is presented and employed in the solution of a free-surface flow. The equations are given in indicial notation, as well as in the summation convention for repeated indices. The numerical results obtained exhibit good stability without the specification of Neumann conditions, and are compared in tabular form with the solutions given by Laitone's (1960) approximation. The method is also applicable to problems with artificial, open boundaries.

  17. Theoretical investigation of maintaining the boundary layer of revolution laminar using suction slits in incompressible flow

    NASA Technical Reports Server (NTRS)

    Thiede, P.

    1978-01-01

    The transition of the laminar boundary layer into the turbulent state, which results in an increased drag, can be avoided by sucking of the boundary layer particles near the wall. The technically-interesting case of sucking the particles using individual slits is investigated for bodies of revolution in incompressible flow. The results of the variational calculations show that there is an optimum suction height, where the slot separations are maximum. Combined with favorable shaping of the body, it is possible to keep the boundary layer over bodies of revolution laminar at high Reynolds numbers using relatively few suction slits and small amounts of suction flow.

  18. A pressure based method for the solution of viscous incompressible turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Hobson, Garth Victor; Lakshminarayana, B.

    1991-01-01

    A new technique was developed for the solution of the incompressible Navier-Stokes equations. The numerical technique, derived from a pressure substitution method (PSM), overcomes many of the deficiencies of the pressure correction method. This technique allows for the direct solution of the actual pressure in the form of a Poisson equation which is derived from the pressure weighted substitution of the full momentum equations into the continuity equation. Two dimensional internal flows are computed with this method. The prediction of cascade performance is presented. The extention of the pressure correction method for the solution of three dimensional flows is also presented.

  19. Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves.

    PubMed

    Tuerke, F; Sciamarella, D; Pastur, L R; Lusseyran, F; Artana, G

    2015-01-01

    We present an alternative perspective on nonharmonic mode coexistence, commonly found in the shear layer spectrum of open-cavity flows. Modes obtained by a local linear stability analysis of perturbations to a two-dimensional, incompressible, and inviscid sheared flow over a cavity of finite length and depth were conditioned by a so-called coincidence condition first proposed by Kulikowskii [J. Appl. Math. Mech. 30, 180 (1966)] which takes into account instability wave reflection within the cavity. The analysis yields a set of discrete, nonharmonic frequencies, which compare well with experimental results [Phys. Fluids 20, 114101 (2008); Exp. Fluids 50, 905 (2010)].

  20. A Quantitative Comparison of Leading-edge Vortices in Incompressible and Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2002-01-01

    When requiring quantitative data on delta-wing vortices for design purposes, low-speed results have often been extrapolated to configurations intended for supersonic operation. This practice stems from a lack of database owing to difficulties that plague measurement techniques in high-speed flows. In the present paper an attempt is made to examine this practice by comparing quantitative data on the nearwake properties of such vortices in incompressible and supersonic flows. The incompressible flow data are obtained in experiments conducted in a low-speed wind tunnel. Detailed flow-field properties, including vorticity and turbulence characteristics, obtained by hot-wire and pressure probe surveys are documented. These data are compared, wherever possible, with available data from a past work for a Mach 2.49 flow for the same wing geometry and angles-of-attack. The results indicate that quantitative similarities exist in the distributions of total pressure and swirl velocity. However, the streamwise velocity of the core exhibits different trends. The axial flow characteristics of the vortices in the two regimes are examined, and a candidate theory is discussed.

  1. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  2. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.

    PubMed

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-04-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position.

  3. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  4. A fast lattice Green's function method for solving viscous incompressible flows on unbounded domains

    NASA Astrophysics Data System (ADS)

    Liska, Sebastian; Colonius, Tim

    2016-07-01

    A computationally efficient method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. The method formally discretizes the incompressible Navier-Stokes equations on an unbounded staggered Cartesian grid. Operations are limited to a finite computational domain through a lattice Green's function technique. This technique obtains solutions to inhomogeneous difference equations through the discrete convolution of source terms with the fundamental solutions of the discrete operators. The differential algebraic equations describing the temporal evolution of the discrete momentum equation and incompressibility constraint are numerically solved by combining an integrating factor technique for the viscous term and a half-explicit Runge-Kutta scheme for the convective term. A projection method that exploits the mimetic and commutativity properties of the discrete operators is used to efficiently solve the system of equations that arises in each stage of the time integration scheme. Linear complexity, fast computation rates, and parallel scalability are achieved using recently developed fast multipole methods for difference equations. The accuracy and physical fidelity of solutions are verified through numerical simulations of vortex rings.

  5. Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes

    NASA Astrophysics Data System (ADS)

    Nomeritae; Daly, Edoardo; Grimaldi, Stefania; Bui, Ha Hong

    2016-11-01

    Several numerical schemes are available to simulate fluid flow with Smoothed Particles Hydrodynamics (SPH). Although commonly experiencing pressure fluctuations, schemes allowing for small changes in fluid density, referred to as weakly compressible (WCSPH and δ-SPH), are often used because of their faster computational time when compared to implicit incompressible schemes (IISPH). Explicit numerical schemes for incompressible fluid flow (EISPH), although more computationally efficient than IISPH, have not been largely used in the literature. To explore advantages and disadvantages of EISPH, this study compared an EISPH scheme with WCSPH and δ-SPH. The three schemes were compared for the case of still water and a wave generated by a dam-break. EISPH and δ-SPH were also compared for the case of a dam-break wave colliding with a vertical wall and a dam-break wave flowing over a wet bed. The three schemes performed similarly in reproducing theoretical and experimental results. EISPH led to results overall similar to WCSPH and δ-SPH, but with smoother pressure dynamics and faster computational times. EISPH presented some errors in the imposition of incompressibility, with the divergence of velocity being different from zero in parts of the fluid flow, especially near the surface. These errors in the divergence of velocity were comparable to the values of velocity divergence obtained with δ-SPH. In an attempt to reduce the velocity divergence in EISPH, an iterative procedure was implemented to calculate the pressure (iterative-EISPH). Although no real improvement was achieved in terms of velocity divergence, the pressure thus calculated was smoother and in some cases was closer to measured experimental values.

  6. Towards a segregated time spectral solution method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Sabine, Baumbach

    2016-06-01

    Considering the growth of interest in understanding flow phenomena in rotational machines, computational fluid dynamics (CFD) is a powerful tool to reach this goal. Especially unsteady simulations are becoming a focus of interest. Nevertheless, unsteady simulations require huge computational times and ressources, thus it is necessary to investigate other methods to find more appropriate approaches to model time-periodic cases. For time-periodic flows the time spectral method (TSM) presents an interesting alternative to the regular time marching solvers. The TSM is well-known for computation of compressible time-periodic flows, but applications to incompressible cases are limited. This paper presents an extension of the TSM to incompressible flows. While there have been previous implementations using pressure correction method with an explicit treatment of time coupling, here an implicit treatment is chosen. To increase efficiency and employ a more robust coupling of the individual time instances the momentum equations are solved in block-coupled fashion. The pressure correction term is solved segregatedly. To consider cases with dynamic mesh motion an arbitrary lagrange Euler (ALE) formulation is also used in the solver. The efficiency of the method is demonstrated using a basic 2D aerodynamic test case and the results are compared to traditional time-stepping approaches.

  7. Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel; Villone, Barbara

    2014-09-01

    Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century - besides Hankel, foremost by George Stokes and Maurice Lévy - and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.

  8. Wave Number Selection for Incompressible Parallel Jet Flows Periodic in Space

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1997-01-01

    The temporal instability of a spatially periodic parallel flow of an incompressible inviscid fluid for various jet velocity profiles is studied numerically using Floquet Analysis. The transition matrix at the end of a period is evaluated by direct numerical integration. For verification, a method based on approximating a continuous function by a series of step functions was used. Unstable solutions were found only over a limited range of wave numbers and have a band type structure. The results obtained are analogous to the behavior observed in systems exhibiting complexity at the edge of order and chaos.

  9. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows

    NASA Astrophysics Data System (ADS)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin

    2016-08-01

    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  10. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  11. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  12. Numerical studies of incompressible flow around delta and double-delta wings

    NASA Technical Reports Server (NTRS)

    Krause, E.; Liu, C. H.

    1989-01-01

    The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.

  13. Viscid-inviscid interaction associated with incompressible flow past wedges at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Warpinski, N. R.; Chow, W. L.

    1977-01-01

    An analytical method is suggested for the study of the viscid inviscid interaction associated with incompressible flow past wedges with arbitrary angles. It is shown that the determination of the nearly constant pressure (base pressure) prevailing within the near wake is really the heart of the problem, and the pressure can only be established from these interactive considerations. The basic free streamline flow field is established through two discrete parameters which adequately describe the inviscid flow around the body and the wake. The viscous flow processes such as the boundary layer buildup, turbulent jet mixing, and recompression are individually analyzed and attached to the inviscid flow in the sense of the boundary layer concept. The interaction between the viscous and inviscid streams is properly displayed by the fact that the aforementioned discrete parameters needed for the inviscid flow are determined by the viscous flow condition at the point of reattachment. It is found that the reattachment point behaves as a saddle point singularity for the system of equations describing the recompressive viscous flow processes, and this behavior is exploited for the establishment of the overall flow field. Detailed results such as the base pressure, pressure distributions on the wedge, and the geometry of the wake are determined as functions of the wedge angle.

  14. Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2014-06-01

    In this paper the problem of transient gravitational wave propagation in a viscous incompressible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing equations of the problem are solved by the smoothed particle hydrodynamics method (SPH). In order to impose the incompressibility constraint on the fluid motion, the so-called projection method is applied in which the discrete SPH equations are integrated in time by using a fractional-step technique. Numerical performance of the proposed model has been assessed by comparing its results with experimental data and with results obtained by a standard (weakly compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem is simulated, in order to investigate the formation and propagation of a wave generated by a sudden collapse of a water column initially contained in a rectangular tank, as well as the impact of such a wave on a rigid vertical wall. The results of simulations show the evolution of the free surface of water, the variation of velocity and pressure fields in the fluid, and the time history of pressures exerted by an impacting wave on a wall.

  15. Gradient-augmented hybrid interface capturing method for incompressible two-phase flow

    NASA Astrophysics Data System (ADS)

    Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu

    2016-06-01

    Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).

  16. Large-scale computation of incompressible viscous flow by least-squares finite element method

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000.

  17. Efficient simulation of incompressible viscous flow over single and multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. L.; Kwak, Dochan

    1992-01-01

    Incompressible viscous turbulent flows over single- and multiple-element airfoils are numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm uses the method of pseudocompressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation scheme to study high-lift take-off and landing configurations and to compute lift and drag at various angles of attack up to stall. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil. The approach used for multiple-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface-pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.

  18. Efficient simulation of incompressible viscous flow over multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

    1993-01-01

    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.

  19. Efficient simulation of incompressible viscous flow over multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

    1992-01-01

    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration.

  20. Identification of whistling ability of a single hole orifice from an incompressible flow simulation

    SciTech Connect

    Lacombe, Romain; Moussou, Pierre

    2012-07-01

    Pure tone noise from orifices in pipe result from vortex shedding with lock-in. Acoustic amplification at the orifice is coupled to resonant condition to create self-sustained oscillations. One key feature of this phenomenon is hence the ability of an orifice to amplify acoustic waves in a given range of frequencies. Here a numerical investigation of the linear response of an orifice is undertaken, with the support of experimental data for validation. The study deals with a sharp edge orifice. Its diameter equals to 0.015 m and its thickness to 0.005 m. The pipe diameter is 0.030 m. An air flow with a Mach number 0.026 and a Reynolds number 18000 in the main pipe is present. At such a low Mach number; the fluid behavior can reasonably be described as locally incompressible. The incompressible Unsteady Reynolds Averaged Navier-Stokes (URANS) equations are solved with the help of a finite volume fluid mechanics software. The orifice is submitted to an average flow velocity, with superimposed small harmonic perturbations. The harmonic response of the orifice is the difference between the upstream and downstream pressures, and a straightforward calculation brings out the acoustic impedance of the orifice. Comparison with experiments shows that the main physical features of the whistling phenomenon are reasonably reproduced. (authors)

  1. An adaptive level set approach for incompressible two-phase flows

    SciTech Connect

    Sussman, M.; Almgren, A.S.; Bell, J.B.

    1997-04-01

    In Sussman, Smereka and Osher, a numerical method using the level set approach was formulated for solving incompressible two-phase flow with surface tension. In the level set approach, the interface is represented as the zero level set of a smooth function; this has the effect of replacing the advection of density, which has steep gradients at the interface, with the advection of the level set function, which is smooth. In addition, the interface can merge or break up with no special treatment. The authors maintain the level set function as the signed distance from the interface in order to robustly compute flows with high density ratios and stiff surface tension effects. In this work, they couple the level set scheme to an adaptive projection method for the incompressible Navier-Stokes equations, in order to achieve higher resolution of the interface with a minimum of additional expense. They present two-dimensional axisymmetric and fully three-dimensional results of air bubble and water drop computations.

  2. Flow and Drag Formulas for Simple Quadrics. [pressure drag and flow equations for an ellipsoid in incompressible fluids

    NASA Technical Reports Server (NTRS)

    Zahm, A. F.

    1979-01-01

    The pressure distribution and resistance found by theory and experiment for simple quadrics fixed in an infinite uniform stream of practically incompressible fluid are calculated. The experimental values pertain to air and some liquids, especially water; the theoretical refer sometimes to perfect, again to viscid fluids. Formulas for the velocity at all points of the flow field are given. Pressure and pressure drag are discussed for a sphere, a round cylinder, the elliptic cylinder, the prolate and oblate spheroid, and the circular disk. The velocity and pressure in an oblique flow are examined.

  3. Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions

    NASA Astrophysics Data System (ADS)

    Gelfgat, Alexander Yu.

    2016-08-01

    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin-Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.

  4. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-03-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  5. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  6. Instability of plane-parallel flow of incompressible liquid over a saturated porous medium

    NASA Astrophysics Data System (ADS)

    Lyubimova, T. P.; Lyubimov, D. V.; Baydina, D. T.; Kolchanova, E. A.; Tsiberkin, K. B.

    2016-07-01

    The linear stability of plane-parallel flow of an incompressible viscous fluid over a saturated porous layer is studied to model the instability of water flow in a river over aquatic plants. The saturated porous layer is bounded from below by a rigid plate and the pure fluid layer has a free, undeformable upper boundary. A small inclination of the layers is imposed to simulate the riverbed slope. The layers are inclined at a small angle to the horizon. The problem is studied within two models: the Brinkman model with the boundary conditions by Ochoa-Tapia and Whitaker at the interface, and the Darcy-Forchheimer model with the conditions by Beavers and Joseph. The neutral curves and critical Reynolds numbers are calculated for various porous layer permeabilities and relative thicknesses of the porous layer. The results obtained within the two models are compared and analyzed.

  7. Parallel solution of high-order numerical schemes for solving incompressible flows

    NASA Technical Reports Server (NTRS)

    Milner, Edward J.; Lin, Avi; Liou, May-Fun; Blech, Richard A.

    1993-01-01

    A new parallel numerical scheme for solving incompressible steady-state flows is presented. The algorithm uses a finite-difference approach to solving the Navier-Stokes equations. The algorithms are scalable and expandable. They may be used with only two processors or with as many processors as are available. The code is general and expandable. Any size grid may be used. Four processors of the NASA LeRC Hypercluster were used to solve for steady-state flow in a driven square cavity. The Hypercluster was configured in a distributed-memory, hypercube-like architecture. By using a 50-by-50 finite-difference solution grid, an efficiency of 74 percent (a speedup of 2.96) was obtained.

  8. Instability of plane-parallel flow of incompressible liquid over a saturated porous medium.

    PubMed

    Lyubimova, T P; Lyubimov, D V; Baydina, D T; Kolchanova, E A; Tsiberkin, K B

    2016-07-01

    The linear stability of plane-parallel flow of an incompressible viscous fluid over a saturated porous layer is studied to model the instability of water flow in a river over aquatic plants. The saturated porous layer is bounded from below by a rigid plate and the pure fluid layer has a free, undeformable upper boundary. A small inclination of the layers is imposed to simulate the riverbed slope. The layers are inclined at a small angle to the horizon. The problem is studied within two models: the Brinkman model with the boundary conditions by Ochoa-Tapia and Whitaker at the interface, and the Darcy-Forchheimer model with the conditions by Beavers and Joseph. The neutral curves and critical Reynolds numbers are calculated for various porous layer permeabilities and relative thicknesses of the porous layer. The results obtained within the two models are compared and analyzed. PMID:27575214

  9. Instability of plane-parallel flow of incompressible liquid over a saturated porous medium.

    PubMed

    Lyubimova, T P; Lyubimov, D V; Baydina, D T; Kolchanova, E A; Tsiberkin, K B

    2016-07-01

    The linear stability of plane-parallel flow of an incompressible viscous fluid over a saturated porous layer is studied to model the instability of water flow in a river over aquatic plants. The saturated porous layer is bounded from below by a rigid plate and the pure fluid layer has a free, undeformable upper boundary. A small inclination of the layers is imposed to simulate the riverbed slope. The layers are inclined at a small angle to the horizon. The problem is studied within two models: the Brinkman model with the boundary conditions by Ochoa-Tapia and Whitaker at the interface, and the Darcy-Forchheimer model with the conditions by Beavers and Joseph. The neutral curves and critical Reynolds numbers are calculated for various porous layer permeabilities and relative thicknesses of the porous layer. The results obtained within the two models are compared and analyzed.

  10. A High Order Discontinuous Galerkin Method for 2D Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Liu, Jia-Guo; Shu, Chi-Wang

    1999-01-01

    In this paper we introduce a high order discontinuous Galerkin method for two dimensional incompressible flow in vorticity streamfunction formulation. The momentum equation is treated explicitly, utilizing the efficiency of the discontinuous Galerkin method The streamfunction is obtained by a standard Poisson solver using continuous finite elements. There is a natural matching between these two finite element spaces, since the normal component of the velocity field is continuous across element boundaries. This allows for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no numerical dissipation and total enstrophy stability The method is suitable for inviscid or high Reynolds number flows. Optimal error estimates are proven and verified by numerical experiments.

  11. A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries

    SciTech Connect

    Toreja, A J; Uddin, R

    2002-10-21

    A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.

  12. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  13. Newton-Krylov-Schwarz methods for aerodynamics problems : compressible and incompressible flows on unstructured grids.

    SciTech Connect

    Kaushik, D. K.; Keyes, D. E.; Smith, B. F.

    1999-02-24

    We review and extend to the compressible regime an earlier parallelization of an implicit incompressible unstructured Euler code [9], and solve for flow over an M6 wing in subsonic, transonic, and supersonic regimes. While the parallelization philosophy of the compressible case is identical to the incompressible, we focus here on the nonlinear and linear convergence rates, which vary in different physical regimes, and on comparing the performance of currently important computational platforms. Multiple-scale problems should be marched out at desired accuracy limits, and not held hostage to often more stringent explicit stability limits. In the context of inviscid aerodynamics, this means evolving transient computations on the scale of the convective transit time, rather than the acoustic transit time, or solving steady-state problems with local CFL numbers approaching infinity. Whether time-accurate or steady, we employ Newton's method on each (pseudo-) timestep. The coupling of analysis with design in aerodynamic practice is another motivation for implicitness. Design processes that make use of sensitivity derivatives and the Hessian matrix require operations with the Jacobian matrix of the state constraints (i.e., of the governing PDE system); if the Jacobian is available for design, it may be employed with advantage in a nonlinearly implicit analysis, as well.

  14. Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Huang, H. B.; Teo, C. J.

    2015-01-01

    A multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this paper for incompressible multiphase flows with low- and large-density-ratios. In the solver, the flow variables at cell centers are given from the solution of macroscopic governing differential equations (Navier-Stokes equations recovered by multiphase lattice Boltzmann (LB) model) by the finite volume method. At each cell interface, the viscous and inviscid fluxes are evaluated simultaneously by local reconstruction of solution for the standard lattice Boltzmann equation (LBE). The forcing terms in the governing equations are directly treated by the finite volume discretization. The phase interfaces are captured by solving the phase-field Cahn-Hilliard equation with a fifth order upwind scheme. Unlike the conventional multiphase LB models, which restrict their applications on uniform grids with fixed time step, the MLBFS has the capability and advantage to simulate multiphase flows on non-uniform grids. The proposed solver is validated by several benchmark problems, such as two-phase co-current flow, Taylor-Couette flow in an annulus, Rayleigh-Taylor instability, and droplet splashing on a thin film at density ratio of 1000 with Reynolds numbers ranging from 20 to 1000. Numerical results show the reliability of the proposed solver for multiphase flows with high density ratio and high Reynolds number.

  15. A new approach to wall modeling in LES of incompressible flow via function enrichment

    NASA Astrophysics Data System (ADS)

    Krank, Benjamin; Wall, Wolfgang A.

    2016-07-01

    A novel approach to wall modeling for the incompressible Navier-Stokes equations including flows of moderate and large Reynolds numbers is presented. The basic idea is that a problem-tailored function space allows prediction of turbulent boundary layer gradients with very coarse meshes. The proposed function space consists of a standard polynomial function space plus an enrichment, which is constructed using Spalding's law-of-the-wall. The enrichment function is not enforced but "allowed" in a consistent way and the overall methodology is much more general and also enables other enrichment functions. The proposed method is closely related to detached-eddy simulation as near-wall turbulence is modeled statistically and large eddies are resolved in the bulk flow. Interpreted in terms of a three-scale separation within the variational multiscale method, the standard scale resolves large eddies and the enrichment scale represents boundary layer turbulence in an averaged sense. The potential of the scheme is shown applying it to turbulent channel flow of friction Reynolds numbers from Reτ = 590 and up to 5,000, flow over periodic constrictions at the Reynolds numbers ReH = 10 , 595 and 19,000 as well as backward-facing step flow at Reh = 5 , 000, all with extremely coarse meshes. Excellent agreement with experimental and DNS data is observed with the first grid point located at up to y1+ = 500 and especially under adverse pressure gradients as well as in separated flows.

  16. Acceleration of passive tracers in compressible turbulent flow.

    PubMed

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Xiao, Zuoli; He, X T; Chen, Shiyi

    2013-02-01

    In compressible turbulence at high Reynolds and Mach numbers, shocklets emerge as a new type of flow structure in addition to intense vortices as in incompressible turbulence. Using numerical simulation of compressible homogeneous isotropic turbulence, we conduct a Lagrangian study to explore the effects of shocklets on the dynamics of passive tracers. We show that shocklets cause very strong intermittency and short correlation time of tracer acceleration. The probability density function of acceleration magnitude exhibits a -2.5 power-law scaling in the high compression region. Through a heuristic model, we demonstrate that this scaling is directly related to the statistical behavior of strong negative velocity divergence, i.e., the local compression. Tracers experience intense acceleration near shocklets, and most of them are decelerated, usually with large curvatures in their trajectories.

  17. A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow

    SciTech Connect

    Stevens, D.E.; Bretherton, S.

    1996-12-01

    This paper presents a new forward-in-time advection method for nearly incompressible flow, MU, and its application to an adaptive multilevel flow solver for atmospheric flows. MU is a modification of Leonard et al.`s UTOPIA scheme. MU, like UTOPIA, is based on third-order accurate semi-Lagrangian multidimensional upwinding for constant velocity flows. for varying velocity fields, MU is a second-order conservative method. MU has greater stability and accuracy than UTOPIA and naturally decomposes into a monotone low-order method and a higher-order accurate correction for use with flux limiting. Its stability and accuracy make it a computationally efficient alternative to current finite-difference advection methods. We present a fully second-order accurate flow solver for the anelastic equations, a prototypical low Mach number flow. The flow solver is based on MU which is used for both momentum and scalar transport equations. This flow solver can also be implemented with any forward-in-time advection scheme. The multilevel flow solver conserves discrete global integrals of advected quantities and includes adaptive mesh refinements. Its second-order accuracy is verified using a nonlinear energy conservation integral for the anelastic equations. For a typical geophysical problem in which the flow is most rapidly varying in a small part of the domain, the multilevel flow solver achieves global accuracy comparable to uniform-resolution simulation for 10% of the computational cost. 36 refs., 10 figs.

  18. Improved flux calculations for viscous incompressible flow by the variable penalty method

    NASA Astrophysics Data System (ADS)

    Kheshgi, H.; Luskin, M.

    The Navier-Stokes system for viscous, incompressible flow is considered, taking into account a replacement of the continuity equation by the perturbed continuity equation. The introduction of the approximation allows the pressure variable to be eliminated to obtain the system of equations for the approximate velocity. The penalty approximation is often applied to numerical discretizations since it provides a reduction in the size and band-width of the system of equations. Attention is given to error estimates, and to two numerical experiments which illustrate the error estimates considered. It is found that the variable penalty method provides an accurate solution for a much wider range of epsilon than the classical penalty method.

  19. MHD Couette flow of viscous incompressible fluid with Hall current and suction

    NASA Astrophysics Data System (ADS)

    Parvin, Afroja; Dola, Tanni Alam; Alam, Md. Mahmud

    2016-07-01

    An electrically conducting viscous incompressible fluid bounded by two parallel non-conducting plates has been investigated in the presence of Hall current. The fluid motion is uniform at the upper plate and the uniform magnetic field is applied perpendicular to the plate. The lower plate is stationary while upper plate moves with a constant velocity. The governing equations have been non-dimensionalzed by using usual transformations. The obtained governing non-linear coupled partial differential equations have been solved by using implicit finite difference technique. The numerical solutions are obtained for momentum and energy equations. The influence of various interesting parameters on the flow has been analyzed and discussed through graph in details. The values of Nusselt number and Skin-Friction for different physical parameters are also elucidated in the form of graph.

  20. Heat transfer in unsteady MHD Couette flow of an electrically conducting, viscous, incompressible rarefied gas

    NASA Astrophysics Data System (ADS)

    Agrawal, H. L.; Nath, R.; Singh, R. P.

    1987-01-01

    An analytical study is performed to examine the heat transfer characteristics on the flow of a viscous, incompressible rarefied gas in a parallel plate channel under the action of transverse magnetic field when (1) suction velocity normal to the plate is constant, (2) the second plate oscillates in time about a constant nonzero mean, (3) fluid is subjected to a constant heat source of absorption type. Approximate solutions for velocity, temperature, phase, and amplitude of skin-friction and rate of heat transfer are evaluated. Mean temperature profiles, phase and amplitude of rate of heat transfer at both plates are discussed graphically followed by a quantitative discussion. Mean rate of heat transfer is tabulated.

  1. Lower bounds on the mix norm of passive scalars advected by incompressible enstrophy-constrained flows

    NASA Astrophysics Data System (ADS)

    Iyer, Gautam; Kiselev, Alexander; Xu, Xiaoqian

    2014-05-01

    Consider a diffusion-free passive scalar θ being mixed by an incompressible flow u on the torus { T}^d . Our aim is to study how well this scalar can be mixed under an enstrophy constraint on the advecting velocity field. Our main result shows that the mix-norm ({\\Vert}{\\theta(t)}{\\Vert}_{H^{-1}}) is bounded below by an exponential function of time. The exponential decay rate we obtain is not universal and depends on the size of the support of the initial data. We also perform numerical simulations and confirm that the numerically observed decay rate scales similarly to the rigorous lower bound, at least for a significant initial period of time. The main idea behind our proof is to use the recent work of Crippa and De Lellis (2008 J. Reine Angew. Math. 616 15-46) making progress towards the resolution of Bressan's rearrangement cost conjecture.

  2. Shear banding analysis of plastic models formulated for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Lemiale, V.; Mühlhaus, H.-B.; Moresi, L.; Stafford, J.

    2008-12-01

    We investigate shear band orientations for a simple plastic formulation in the context of incompressible viscous flow. This type of material modelling has been introduced in literature to enable the numerical simulation of the deformation and failure of the lithosphere coupled with the mantle convection. In the present article, we develop a linear stability analysis to determine the admissible shear band orientations at the onset of bifurcation. We find that the so-called Roscoe angle and Coulomb angle are both admissible solutions. We present numerical simulations under plane strain conditions using the hybrid particle-in-cell finite element code Underworld. The results both in compressional and extensional stress conditions show that the variation of the numerical shear bands angle with respect to the internal friction angle follows closely the evolution of the Coulomb angle.

  3. Multiscale numerical methods for passive advection-diffusion in incompressible turbulent flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Yoonsang; Engquist, Bjorn

    2016-07-01

    We propose a seamless multiscale method which approximates the macroscopic behavior of the passive advection-diffusion equations with steady incompressible velocity fields with multi-spatial scales. The method uses decompositions of the velocity fields in the Fourier space, which are similar to the decomposition in large eddy simulations. It also uses a hierarchy of local domains with different resolutions as in multigrid methods. The effective diffusivity from finer scale is used for the next coarser level computation and this process is repeated up to the coarsest scale of interest. The grids are only in local domains whose sizes decrease depending on the resolution level so that the overall computational complexity increases linearly as the number of different resolution grids increases. The method captures interactions between finer and coarser scales but has to sacrifice some of interactions between different scales. The proposed method is numerically tested with 2D examples including a successful approximation to a continuous spectrum flow.

  4. Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method

    NASA Technical Reports Server (NTRS)

    Loulou, Patrick; Moser, Robert D.; Mansour, Nagi N.; Cantwell, Brian J.

    1997-01-01

    A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.

  5. On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.

    1991-01-01

    Downstream boundary conditions equivalent to the homogeneous form of the natural boundary conditions associated with the velocity-pressure formulation of the Navier-Stokes equations are derived for the vorticity-stream function formulation of two-dimensional incompressible flows. Of particular interest are the zero normal and shear stress conditions at a downstream boundary.

  6. A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows

    NASA Astrophysics Data System (ADS)

    Crivellini, Andrea; D'Alessandro, Valerio; Bassi, Francesco

    2013-05-01

    In this paper the artificial compressibility flux Discontinuous Galerkin (DG) method for the solution of the incompressible Navier-Stokes equations has been extended to deal with the Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the Spalart-Allmaras (SA) turbulence model. DG implementations of the RANS and SA equations for compressible flows have already been reported in the literature, including the description of limiting or stabilization techniques adopted in order to prevent the turbulent viscosity ν˜ from becoming negative. In this paper we introduce an SA model implementation that deals with negative ν˜ values by modifying the source and diffusion terms in the SA model equation only when the working variable or one of the model closure functions become negative. This results in an efficient high-order implementation where either stabilization terms or even additional equations are avoided. We remark that the proposed implementation is not DG specific and it is well suited for any numerical discretization of the RANS-SA governing equations. The reliability, robustness and accuracy of the proposed implementation have been assessed by computing several high Reynolds number turbulent test cases: the flow over a flat plate (Re=107), the flow past a backward-facing step (Re=37400) and the flow around a NACA 0012 airfoil at different angles of attack (α=0°, 10°, 15°) and Reynolds numbers (Re=2.88×106,6×106).

  7. A spectral-element discontinuous Galerkin lattice Boltzmann method for incompressible flows.

    SciTech Connect

    Min, M.; Lee, T.; Mathematics and Computer Science; City Univ. of New York

    2011-01-01

    We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving nearly incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discontinuous Galerkin discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on Gauss-Lobatto-Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge-Kutta method. We present a consistent treatment for imposing boundary conditions with a numerical flux in the discontinuous Galerkin approach. We show convergence studies for Couette flows and demonstrate two benchmark cases with lid-driven cavity flows for Re = 400-5000 and flows around an impulsively started cylinder for Re = 550-9500. Computational results are compared with those of other theoretical and computational work that used a multigrid method, a vortex method, and a spectral element model.

  8. An extended pressure finite element space for two-phase incompressible flows with surface tension

    NASA Astrophysics Data System (ADS)

    Groß, Sven; Reusken, Arnold

    2007-05-01

    We consider a standard model for incompressible two-phase flows in which a localized force at the interface describes the effect of surface tension. If a level set (or VOF) method is applied then the interface, which is implicitly given by the zero level of the level set function, is in general not aligned with the triangulation that is used in the discretization of the flow problem. This non-alignment causes severe difficulties w.r.t. the discretization of the localized surface tension force and the discretization of the flow variables. In cases with large surface tension forces the pressure has a large jump across the interface. In standard finite element spaces, due to the non-alignment, the functions are continuous across the interface and thus not appropriate for the approximation of the discontinuous pressure. In many simulations these effects cause large oscillations of the velocity close to the interface, so-called spurious velocities. In this paper, for a simplified model problem, we give an analysis that explains why known (standard) methods for discretization of the localized force term and for discretization of the pressure variable often yield large spurious velocities. In the paper [S. Groß, A. Reusken, Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, Preprint 262, IGPM, RWTH Aachen, SIAM J. Numer. Anal. (accepted for publication)], we introduce a new and accurate method for approximation of the surface tension force. In the present paper, we use the extended finite element space (XFEM), presented in [N. Moes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng. 46 (1999) 131-150; T. Belytschko, N. Moes, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements, Int. J. Numer. Meth. Eng. 50 (2001) 993-1013], for the discretization of the pressure. We show that the size of spurious velocities is reduced substantially, provided we

  9. Laminar and turbulent incompressible fluid flow analysis with heat transfer by the finite element method

    SciTech Connect

    Cochran, R.J.

    1992-01-01

    A study of the finite element method applied to two-dimensional incompressible fluid flow analysis with heat transfer is performed using a mixed Galerkin finite element method with the primitive variable form of the model equations. Four biquadratic, quadrilateral elements are compared in this study--the serendipity biquadratic element with bilinear continuous pressure interpolation (Q2(8)-Q1) and the Lagrangian biquadratic element with bilinear continuous pressure interpolation (Q2-Q1) of the Taylor-Hood form. A modified form of the Q2-Q1 element is also studied. The pressure interpolation is augmented by a discontinuous constant shape function for pressure (Q2-Q1+). The discontinuous pressure element formulation makes use of biquadratic shape functions and a discontinuous linear interpolation of the pressure (Q2-P1(3)). Laminar flow solutions, with heat transfer, are compared to analytical and computational benchmarks for flat channel, backward-facing step and buoyancy driven flow in a square cavity. It is shown that the discontinuous pressure elements provide superior solution characteristics over the continuous pressure elements. Highly accurate heat transfer solutions are obtained and the Q2-P1(3) element is chosen for extension to turbulent flow simulations. Turbulent flow solutions are presented for both low turbulence Reynolds number and high Reynolds number formulations of two-equation turbulence models. The following three forms of the length scale transport equation are studied; the turbulence energy dissipation rate ([var epsilon]), the turbulence frequency ([omega]) and the turbulence time scale (tau). It is shown that the low turbulence Reynolds number model consisting of the K - [tau] transport equations, coupled with the damping functions of Shih and Hsu, provides an optimal combination of numerical stability and solution accuracy for the flat channel flow.

  10. Interchange Method in Incompressible Magnetized Couette Flow: Structural and Magnetorotational Instabilities

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Contopoulos, John; Kazanas, Demosthenes

    1996-05-01

    In view of its importance to astrophysical problems involving magnetized accretion disks and outflows in stars, we analyze the stability of incompressible, magnetized Couette flow to axisymmetric perturbations. We use an energy variational principle, the so-called interchange or Chandrasekhar's method, to derive the relevant stability criteria. This method is equivalent to the free-energy formalism that we have recently introduced to describe hydrodynamical instabilities in rotating, self-gravitating systems. In its implementation, all the applicable conservation laws are explicitly taken into account during the variations of the free-energy function. Thus we show that a purely toroidal magnetic field Bφ, which does not harm the conservation of circulation by imposing the additional conservation of azimuthal magnetic flux, leads to structural stability in Couette flow: the stability properties of the unmagnetized flow are recovered in the limit Bφ→0. In contrast, an axial-field component BZ, however small, destroys the conservation laws of circulation and azimuthal magnetic flux by imposing isorotation and conservation of the axial current along field lines. This radical change leads to a different stability criterion that implies structural instability, i.e., the stability properties of the flow with BZ ≡ 0 are not recovered in the limit BZ→0 irrespective of the presence of rotation and/or a toroidal-field component. We discuss the relevance of our results for magnetized accretion flows and for outflows around stars and compact objects in active galactic nuclei. We also provide an application to thin accretion disks in Keplerian rotation.

  11. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Chieh

    The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.

  12. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP)

    NASA Astrophysics Data System (ADS)

    Sohn, Jeong L.

    1988-08-01

    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  13. Wave propagation in inhomogeneous media as turbulent mixing in six-dimensional incompressible flow

    NASA Astrophysics Data System (ADS)

    Kalda, Jaan; Kree, Mihkel

    2015-11-01

    Using the approximation of geometrical optics, light propagation in media with fluctuating coefficient of refraction can be described as Hamiltonian dynamics of wave vectors in 6-dimensional phase space where the spatial coordinates are complemented by the respective wave vector components. Hence, according to the Liouville's theorem, the dynamics of the wave front can be described as mixing in an incompressible 6D velocity field. As the wave energy is transferred along the ray trajectories, the energy density fluctuations follow the dilution of the wave front. We use the theory of turbulent mixing to show that the intensity-distribution of speckles (regions of high energy density) follows a power law, and to derive the scaling exponents. If the velocity field were isotropic, these exponents would be determined by the dimensionality of the flow. However, there is a strong anisotropy of the field due to the asymmetry between the spatial and wave vector coordinates. Also, the effective dimensionality of the flow is reduced by one due to the energy (wave frequency) conservation law: any ray trajectory is bound to a five-dimensional manifold within the 6D phase space. Implications of the anisotropy, and of the effective reduction of the dimensionality are studied numerically The research was supported by the European Union Regional Development Fund (Centre of Excellence TK124: ``Centre for Nonlinear Studies'').

  14. Detached Eddy Simulations of Incompressible Turbulent Flows Using the Finite Element Method

    SciTech Connect

    Laskowski, G M

    2001-08-01

    An explicit Galerkin finite-element formulation of the Spalart-Allmaras (SA) 1 - equation turbulent transport model was implemented into the incompressible flow module of a parallel, multi-domain, Galerkin finite-element, multi-physics code, using both a RANS formulation and a DES formulation. DES is a new technique for simulating/modeling turbulence using a hybrid RANSkES formulation. The turbulent viscosity is constructed from an intermediate viscosity obtained from the transport equation which is spatially discretized using Q1 elements and integrated in time via forward Euler time integration. Three simulations of plane channel flow on a RANS-type grid, using different turbulence models, were conducted in order to validate the implementation of the SA model: SA-RANS, SA-DES and Smagorinksy (without wall correction). Very good agreement was observed between the SA-RANS results and theory, namely the Log Law of the Wall (LLW), especially in the viscous sublayer region and, to a lesser extent, in the log-layer region. The results obtained using the SA-DES model did not agree as well with the LLW, and it is believed that this poor agreement can be attributed to using a DES model on a RANS grid, namely using an incorrect length-scale. It was observed that near the wall, the SA-DES model acted as an RANS model, and away from the wall it acted as an LES model.

  15. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    SciTech Connect

    Xia, Yidong; Wang, Chuanjin; Luo, Hong; Christon, Mark; Bakosi, Jozsef

    2015-12-15

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in the simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, we have attempted some form of solution verification to identify sensitivities in the solution methods, and to suggest best practices when using the Hydra-TH code.

  16. Parallel finite element simulations of incompressible viscous fluid flow by domain decomposition with Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Rivera, Christian A.; Heniche, Mourad; Glowinski, Roland; Tanguy, Philippe A.

    2010-07-01

    A parallel approach to solve three-dimensional viscous incompressible fluid flow problems using discontinuous pressure finite elements and a Lagrange multiplier technique is presented. The strategy is based on non-overlapping domain decomposition methods, and Lagrange multipliers are used to enforce continuity at the boundaries between subdomains. The novelty of the work is the coupled approach for solving the velocity-pressure-Lagrange multiplier algebraic system of the discrete Navier-Stokes equations by a distributed memory parallel ILU (0) preconditioned Krylov method. A penalty function on the interface constraints equations is introduced to avoid the failure of the ILU factorization algorithm. To ensure portability of the code, a message based memory distributed model with MPI is employed. The method has been tested over different benchmark cases such as the lid-driven cavity and pipe flow with unstructured tetrahedral grids. It is found that the partition algorithm and the order of the physical variables are central to parallelization performance. A speed-up in the range of 5-13 is obtained with 16 processors. Finally, the algorithm is tested over an industrial case using up to 128 processors. In considering the literature, the obtained speed-ups on distributed and shared memory computers are found very competitive.

  17. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    DOE PAGES

    Xia, Yidong; Wang, Chuanjin; Luo, Hong; Christon, Mark; Bakosi, Jozsef

    2015-12-15

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, we have attempted some form of solution verification to identify sensitivities in the solution methods, and to suggest best practices when using the Hydra-TH code.« less

  18. Modelling uncertainty in incompressible flow simulation using Galerkin based generalized ANOVA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Chowdhury, Rajib

    2016-11-01

    This paper presents a new algorithm, referred to here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA) for modelling input uncertainties and its propagation in incompressible fluid flow. The proposed approach utilizes ANOVA to represent the unknown stochastic response. Further, the unknown component functions of ANOVA are represented using the generalized polynomial chaos expansion (PCE). The resulting functional form obtained by coupling the ANOVA and PCE is substituted into the stochastic Navier-Stokes equation (NSE) and Galerkin projection is employed to decompose it into a set of coupled deterministic 'Navier-Stokes alike' equations. Temporal discretization of the set of coupled deterministic equations is performed by employing Adams-Bashforth scheme for convective term and Crank-Nicolson scheme for diffusion term. Spatial discretization is performed by employing finite difference scheme. Implementation of the proposed approach has been illustrated by two examples. In the first example, a stochastic ordinary differential equation has been considered. This example illustrates the performance of proposed approach with change in nature of random variable. Furthermore, convergence characteristics of GG-ANOVA has also been demonstrated. The second example investigates flow through a micro channel. Two case studies, namely the stochastic Kelvin-Helmholtz instability and stochastic vortex dipole, have been investigated. For all the problems results obtained using GG-ANOVA are in excellent agreement with benchmark solutions.

  19. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    SciTech Connect

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  20. Numerical solution of the Navier-Stokes equations for high Reynolds number incompressible turbulent flow. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, D. S.

    1980-01-01

    The full Navier-Stokes equations for incompressible turbulent flow must be solved to accurately represent all flow phenomena which occur in a high Reynolds number incompressible flow. A two layer algebraic eddy viscosity turbulence model is used to represent the Reynolds stress in the primitive variable formulation. The development of the boundary-fitted coordinate systems makes the numerical solution of these equations feasible for arbitrarily shaped bodies. The nondimensional time averaged Navier-Stokes equations, including the turbulence mode, are represented by finite difference approximations in the transformed plane. The resulting coupled system of nonlinear algebraic equations is solved using a point successive over relaxation iteration. The test case considered was a NACA 64A010 airfoil section at an angle of attack of two degrees and a Reynolds number of 2,000,000.

  1. Unsteady three-dimensional incompressible flow interaction in multiple-blade-row turbomachinery

    NASA Astrophysics Data System (ADS)

    Busby, Judy Ann

    Marine propulsors operate in an inherently unsteady flowfield. To design a propulsor that meets the conditions imposed by hydrodynamic and hydroacoustic requirements, knowledge of component interactions and unsteady flow patterns throughout the propulsor is essential. At the present time, the effect of the unsteady flow on the performance of the propulsor is not thoroughly understood. The goal of this work is to use computational fluid dynamics (CFD) coupled with measurements and analytic methods to provide some insight into the physics associated with unsteady propulsor flows. The unsteady, incompressible Reynolds-Averaged Navier Stokes (RANS) code developed at Mississippi State University has been extended for use in analyzing the unsteady flow interaction between blade rows in relative motion. The approach used to model the dynamic interface between the blade rows is the localized grid distortion technique of Janus. The spatial and temporal discretizations result in third order spatial accuracy and second order (implicit) temporal accuracy. To validate the dynamic grid capabilities, computed results for the unsteady flow around a two-dimensional hydrofoil undergoing a high, reduced-frequency gust loading are compared with measured data. The unsteady gusts are generated by a pair of oscillating foils (flappers) upstream of the hydrofoil. A dynamic grid is used around the oscillating foils. The results from a parametric study indicate that 500 time steps per flapper period with three subiterations at each time step are sufficient to capture the time-accurate behavior of both the inviscid and viscous flow fields. The algorithm is then used to compute the unsteady flow through a three-dimensional, high Reynolds number pump consisting of 13 stator blades and 7 rotor blades. A detailed analysis of the primary, secondary and unsteady flow effects is presented along with an investigation of the effects of sub-iterations on the time-accuracy on the solution. The unsteady

  2. A stable partitioned FSI algorithm for incompressible flow and deforming beams

    NASA Astrophysics Data System (ADS)

    Li, L.; Henshaw, W. D.; Banks, J. W.; Schwendeman, D. W.; Main, A.

    2016-05-01

    An added-mass partitioned (AMP) algorithm is described for solving fluid-structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier-Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler-Bernoulli beam model, and these equations are solved in a Lagrangian frame using two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet-Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one

  3. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  4. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  5. A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media

    SciTech Connect

    Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.

    2008-04-01

    In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.

  6. Thermodynamically Consistent Physical Formulation and an Efficient Numerical Algorithm for Incompressible N-Phase Flows

    NASA Astrophysics Data System (ADS)

    Dong, Suchuan

    2015-11-01

    This talk focuses on simulating the motion of a mixture of N (N>=2) immiscible incompressible fluids with given densities, dynamic viscosities and pairwise surface tensions. We present an N-phase formulation within the phase field framework that is thermodynamically consistent, in the sense that the formulation satisfies the conservations of mass/momentum, the second law of thermodynamics and Galilean invariance. We also present an efficient algorithm for numerically simulating the N-phase system. The algorithm has overcome the issues caused by the variable coefficient matrices associated with the variable mixture density/viscosity and the couplings among the (N-1) phase field variables and the flow variables. We compare simulation results with the Langmuir-de Gennes theory to demonstrate that the presented method produces physically accurate results for multiple fluid phases. Numerical experiments will be presented for several problems involving multiple fluid phases, large density contrasts and large viscosity contrasts to demonstrate the capabilities of the method for studying the interactions among multiple types of fluid interfaces. Support from NSF and ONR is gratefully acknowledged.

  7. A velocity-correction projection method based immersed boundary method for incompressible flows

    NASA Astrophysics Data System (ADS)

    Cai, Shanggui

    2014-11-01

    In the present work we propose a novel direct forcing immersed boundary method based on the velocity-correction projection method of [J.L. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41 (1)(2003) 112]. The principal idea of immersed boundary method is to correct the velocity in the vicinity of the immersed object by using an artificial force to mimic the presence of the physical boundaries. Therefore, velocity-correction projection method is preferred to its pressure-correction counterpart in the present work. Since the velocity-correct projection method is considered as a dual class of pressure-correction method, the proposed method here can also be interpreted in the way that first the pressure is predicted by treating the viscous term explicitly without the consideration of the immersed boundary, and the solenoidal velocity is used to determine the volume force on the Lagrangian points, then the non-slip boundary condition is enforced by correcting the velocity with the implicit viscous term. To demonstrate the efficiency and accuracy of the proposed method, several numerical simulations are performed and compared with the results in the literature. China Scholarship Council.

  8. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH)

    NASA Astrophysics Data System (ADS)

    Lind, S. J.; Stansby, P. K.; Rogers, B. D.

    2016-03-01

    A new two-phase incompressible-compressible Smoothed Particle Hydrodynamics (SPH) method has been developed where the interface is discontinuous in density. This is applied to water-air problems with a large density difference. The incompressible phase requires surface pressure from the compressible phase and the compressible phase requires surface velocity from the incompressible phase. Compressible SPH is used for the air phase (with the isothermal stiffened ideal gas equation of state for low Mach numbers) and divergence-free (projection based) incompressible SPH is used for the water phase, with the addition of Fickian shifting to produce sufficiently homogeneous particle distributions to enable stable, accurate, converged solutions without noise in the pressure field. Shifting is a purely numerical particle regularisation device. The interface remains a true material discontinuity at a high density ratio with continuous pressure and velocity at the interface. This approach with the physics of compressibility and incompressibility represented is novel within SPH and is validated against semi-analytical results for a two-phase elongating and oscillating water drop, analytical results for low amplitude inviscid standing waves, the Kelvin-Helmholtz instability, and a dam break problem with high interface distortion and impact on a vertical wall where experimental and other numerical results are available.

  9. Film Flow Dominated Simultaneous Flow of Two Viscous Incompressible Fluids Through a Porous Medium

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Erpelding, Marion; Tallakstad, Ken; Flekkøy, Eirik; Hansen, Alex; Måløy, Knut Jørgen

    2014-11-01

    We present an experimental study of two-phase flow in a quasi-two-dimensional porous medium. The two phases, a water-glycerol solution and a commercial food grade rapeseed/canola oil, having an oil to water-glycerol viscosity ratio of 1.3, are injected simultaneously into a Hele-Shaw cell with a mono-layer of randomly distributed glass beads. The two liquids are injected into the model from alternating point inlets. Initially, the porous model is filled with the water-glycerol solution. We observe that after an initial transient state, an overall static cluster configuration is obtained. While the oil is found to create a connected system spanning cluster, a large part of the water-glycerol clusters left behind the initial invasion front is observed to remain immobile throughout the rest of the experiment. This could suggest that the water-glycerol flow-dynamics is largely dominated by film flow. The flow pathways are thus given through the dynamics of the initial invasion. This behavior is quite different from that observed in systems with large viscosity differences between the two fluids, and where compressibility plays an important part of the process.

  10. A general panel method for the analysis and design of arbitrary configurations in incompressible flows. [boundary value problem

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.

    1980-01-01

    A method for solving the linear integral equations of incompressible potential flow in three dimensions is presented. Both analysis (Neumann) and design (Dirichlet) boundary conditions are treated in a unified approach to the general flow problem. The method is an influence coefficient scheme which employs source and doublet panels as boundary surfaces. Curved panels possessing singularity strengths, which vary as polynomials are used, and all influence coefficients are derived in closed form. These and other features combine to produce an efficient scheme which is not only versatile but eminently suited to the practical realities of a user-oriented environment. A wide variety of numerical results demonstrating the method is presented.

  11. A survey of grid-free methods for the simulation of 3-D incompressible flows in bounded domains

    SciTech Connect

    Gharakhani, A.

    1997-09-01

    The state-of-the-art in Lagrangian methods for the grid-free simulation of three-dimensional, incompressible, high Reynolds number, internal and/or external flows is surveyed. Specifically, vortex and velicity (or impulse) element methods are introduced. The relative merits of various available techniques and the outstanding challenges in simulating the processes of convection and diffusion, as well as in satisfying the wall boundary conditions are discussed individually. Issues regarding the stretch and solenoidality of vorticity are also discussed. A potentially successful algorithm for simulating the flow around a parachute is proposed as well.

  12. Incompressible laminar flow through hollow fibers: a general study by means of a two-scale approach

    NASA Astrophysics Data System (ADS)

    Borsi, Iacopo; Farina, Angiolo; Fasano, Antonio

    2011-08-01

    We study the laminar flow of an incompressible Newtonian fluid in a hollow fiber, whose walls are porous. We write the Navier-Stokes equations for the flow in the inner channel and Darcy's law for the flow in the fiber, coupling them by means of the Beavers-Joseph condition which accounts for the (possible) slip at the membrane surface. Then, we introduce a small parameter {\\varepsilon ≪ 1} (the ratio between the radius and the length of the fiber) and expand all relevant quantities in powers of ɛ. Averaging over the fiber cross section, we find the velocity profiles for the longitudinal flow and for the cross-flow, and eventually, we determine the explicit expression of the permeability of the system. This work is also preliminary to the study of more complex systems comprising a large number of identical fibers (e.g., ultrafiltration modules and dialysis).

  13. Comparative Analysis of Natural Convection Flows Simulated by both the Conservation and Incompressible Forms of the Navier-Stokes Equations in a Differentially-Heated Square Cavity

    SciTech Connect

    Richard C. Martineau; Ray A. Berry; Aurélia Esteve; Kurt D. Hamman; Dana A. Knoll; Ryosuke Park; William Taitano

    2009-01-01

    This report illustrates a comparative study to analyze the physical differences between numerical simulations obtained with both the conservation and incompressible forms of the Navier-Stokes equations for natural convection flows in simple geometries. The purpose of this study is to quantify how the incompressible flow assumption (which is based upon constant density advection, divergence-free flow, and the Boussinesq gravitational body force approximation) differs from the conservation form (which only assumes that the fluid is a continuum) when solving flows driven by gravity acting upon density variations resulting from local temperature gradients. Driving this study is the common use of the incompressible flow assumption in fluid flow simulations for nuclear power applications in natural convection flows subjected to a high heat flux (large temperature differences). A series of simulations were conducted on two-dimensional, differentially-heated rectangular geometries and modeled with both hydrodynamic formulations. From these simulations, the selected characterization parameters of maximum Nusselt number, average Nusselt number, and normalized pressure reduction were calculated. Comparisons of these parameters were made with available benchmark solutions for air with the ideal gas assumption at both low and high heat fluxes. Additionally, we generated body force, velocity, and divergence of velocity distributions to provide a basis for further analysis. The simulations and analysis were then extended to include helium at the Very High Temperature gas-cooled Reactor (VHTR) normal operating conditions. Our results show that the consequences of incorporating the incompressible flow assumption in high heat flux situations may lead to unrepresentative results. The results question the use of the incompressible flow assumption for simulating fluid flow in an operating nuclear reactor, where large temperature variations are present. The results show that the use of

  14. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.

    PubMed

    Ohkitani, Koji

    2015-09-01

    We consider incompressible Euler flows in terms of the stream function in two dimensions and the vector potential in three dimensions. We pay special attention to the case with singular distributions of the vorticity, e.g., point vortices in two dimensions. An explicit equation governing the velocity potentials is derived in two steps. (i) Starting from the equation for the stream function [Ohkitani, Nonlinearity 21, T255 (2009)NONLE50951-771510.1088/0951-7715/21/12/T02], which is valid for smooth flows as well, we derive an equation for the complex velocity potential. (ii) Taking a real part of this equation, we find a dynamical equation for the velocity potential, which may be regarded as a refinement of Bernoulli theorem. In three-dimensional incompressible flows, we first derive dynamical equations for the vector potentials which are valid for smooth fields and then recast them in hypercomplex form. The equation for the velocity potential is identified as its real part and is valid, for example, flows with vortex layers. As an application, the Kelvin-Helmholtz problem has been worked out on the basis the current formalism. A connection to the Navier-Stokes regularity problem is addressed as a physical application of the equations for the vector potentials for smooth fields.

  15. Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Glowinski, R.; Čanić, S.

    2016-01-01

    This computational study shows, for the first time, a clear transition to two-dimensional Hopf bifurcation for laminar incompressible flows in symmetric plane expansion channels. Due to the well-known extreme sensitivity of this study on computational mesh, the critical Reynolds numbers for both the known symmetry-breaking (pitchfork) bifurcation and Hopf bifurcation were investigated for several layers of mesh refinement. It is found that under-refined meshes lead to an overestimation of the critical Reynolds number for the symmetry breaking and an underestimation of the critical Reynolds number for the Hopf bifurcation.

  16. A Priori Estimates for Free Boundary Problem of Incompressible Inviscid Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Hao, Chengchun; Luo, Tao

    2014-06-01

    In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid magnetohydrodynamics equations in all physical spatial dimensions n = 2 and 3 by adopting a geometrical point of view used in Christodoulou and Lindblad (Commun Pure Appl Math 53:1536-1602, 2000), and estimating quantities such as the second fundamental form and the velocity of the free surface. We identify the well-posedness condition that the outer normal derivative of the total pressure including the fluid and magnetic pressures is negative on the free boundary, which is similar to the physical condition (Taylor sign condition) for the incompressible Euler equations of fluids.

  17. On an Inviscid Model for Incompressible Two-Phase Flows with Nonlocal Interaction

    NASA Astrophysics Data System (ADS)

    Gal, Ciprian G.

    2016-03-01

    We consider a diffuse interface model which describes the motion of an ideal incompressible mixture of two immiscible fluids with nonlocal interaction in two-dimensional bounded domains. This model consists of the Euler equation coupled with a convective nonlocal Cahn-Hilliard equation. We establish the existence of globally defined weak solutions as well as well-posedness results for strong/classical solutions.

  18. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows.

    PubMed

    Yang, L M; Shu, C; Wang, Y

    2016-03-01

    In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme. PMID:27078488

  19. Multigrid solution of incompressible turbulent flows by using two-equation turbulence models

    SciTech Connect

    Zheng, X.; Liu, C.; Sung, C.H.

    1996-12-31

    Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.

  20. On the Global Regularity of the Two-Dimensional Density Patch for Inhomogeneous Incompressible Viscous Flow

    NASA Astrophysics Data System (ADS)

    Liao, Xian; Zhang, Ping

    2016-06-01

    Regarding P.-L. Lions' open question in Oxford Lecture Series in Mathematics and its Applications, Vol. 3 (1996) concerning the propagation of regularity for the density patch, we establish the global existence of solutions to the two-dimensional inhomogeneous incompressible Navier-Stokes system with initial density given by {(1 - η){1}_{{Ω}0} + {1}_{{Ω}0c}} for some small enough constant {η} and some {W^{k+2,p}} domain {Ω0}, with initial vorticity belonging to {L1 \\cap Lp} and with appropriate tangential regularities. Furthermore, we prove that the regularity of the domain {Ω_0} is preserved by time evolution.

  1. Numerical solution of steady-state buoyancy-driven flow of an incompressible fluid with temperature dependent viscosity

    SciTech Connect

    Abrous, A.; Emery, A.F.

    1995-12-31

    The steady-state, buoyancy-driven flow of an incompressible fluid with temperature dependent viscosity within a square enclosure is solved numerically and the results are presented. The benchmark problem`s geometrical and mathematical descriptions adopted herein are those specified by the AdHoc Committee of Computational Heat Transfer which is compiling different solutions for this benchmark problem in heat transfer analysis. The objective is to compare solutions computed with several different algorithmic approaches for a problem having a large variation in fluid viscosity, characteristic of modeling turbulent flows with eddy diffusivity concepts. The results of the present analysis are submitted as a contribution to this comparison exercise that has for objective the assessment of the numerical accuracy of modeling the diffusion terms in the conservation equations with variable property.

  2. A numerical study of the laminar incompressible flow over a 6:1 prolate spheroid at 10 deg incidence

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Moshe; Wolfshtein, Micha; Israeli, Moshe

    1992-07-01

    The steady incompressible laminar flowfield over a 6:1 prolate spheroid at 10 deg incidence and a Reynolds number of 1.6 x 10 exp 6 is investigated numerically by solving a reduced set of the Navier-Stokes equations. The present study moves one step beyond the boundary-layer approximation by relaxing the requirement of an imposed pressure field to permit the calculation of both attached and longitudinal vortical flowfields. The results shed light on the flow properties over slender bodies at intermediate incidence. The longitudinal vortex is found to be weak relative to vortex-dominated flows. Nevertheless, it has pronounced effects on the flow near the surface and on global features of the flowfield. A displacement velocity which describes the effect of the vortical flow on the outer inviscid flow is defined. The line on the spheroid where the displacement velocity vanishes closely follows the projection of the vortex centerline on the surface of the spheroid. It is demonstrated numerically that the convergence of the skin friction lines is not a unique criterion for identifying a vortex flow.

  3. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.

    2016-03-01

    In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014), 10.1016/j.jcp.2014.06.033]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.

  4. An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.

    2014-07-01

    Stable partitioned algorithms for fluid-structure interaction (FSI) problems are developed and analyzed in this two-part paper. Part I describes an algorithm for incompressible flow coupled with compressible elastic solids, while Part II discusses an algorithm for incompressible flow coupled with structural shells. Importantly, these new added-mass partitioned (AMP) schemes are stable and retain full accuracy with no sub-iterations per time step, even in the presence of strong added-mass effects (e.g. for light solids). The numerical approach described here for bulk compressible solids extends the scheme of Banks et al. [1,2] for inviscid compressible flow, and uses Robin (mixed) boundary conditions with the fluid and solid solvers at the interface. The basic AMP Robin conditions, involving a linear combination of velocity and stress, are determined from the outgoing solid characteristic relation normal to the fluid-solid interface combined with the matching conditions on the velocity and traction. Two alternative forms of the AMP conditions are then derived depending on whether the fluid equations are advanced with a fractional-step method or not. The stability and accuracy of the AMP algorithm is evaluated for linearized FSI model problems; the full nonlinear case being left for future consideration. A normal mode analysis is performed to show that the new AMP algorithm is stable for any ratio of the solid and fluid densities, including the case of very light solids when added-mass effects are large. In contrast, it is shown that a traditional partitioned algorithm involving a Dirichlet-Neumann coupling for the same FSI problem is formally unconditionally unstable for any ratio of densities. Exact traveling wave solutions are derived for the FSI model problems, and these solutions are used to verify the stability and accuracy of the corresponding numerical results obtained from the AMP algorithm for the cases of light, medium and heavy solids.

  5. Treelike networks accelerating capillary flow

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006), 10.1103/PhysRevE.73.066302; J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007), 10.1103/PhysRevE.75.056301]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  6. The construction and use of divergence free vector expansions for incompressible fluid flow calculations

    NASA Technical Reports Server (NTRS)

    Mhuiris, N. M. G.

    1986-01-01

    For incompressible fluids the law of mass conservation reduces to a constraint on the velocity vector, namely that it be divergence free. This constraint has long been a source of great difficulty to the numericist seeking to discretize the Navier-Stokes and Euler equations. A spectral method is discussed which overcomes this difficulty. Its efficacy is demonstrated on some simple problems. The velocity is approximated by a finite sum of divergence free vectors, each of which satisfies the same boundary conditions as the velocity. Projecting the governing equation onto the space of inviscid vector fields eliminates the pressure term and produces a set of ordinary differential equations that must be solved for the coefficents in the velocity. The pressure can then be recovered if it is needed.

  7. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    PubMed Central

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  8. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    PubMed

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  9. Three-Dimensional Incompressible Navier-Stokes Flow Computations about Complete Configurations Using a Multiblock Unstructured Grid Approach

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.

    2000-01-01

    A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.

  10. A hybrid reconstructed discontinuous Galerkin and continuous Galerkin finite element method for incompressible flows on unstructured grids

    NASA Astrophysics Data System (ADS)

    Pandare, Aditya K.; Luo, Hong

    2016-10-01

    A hybrid reconstructed discontinuous Galerkin and continuous Galerkin method based on an incremental pressure projection formulation, termed rDG (PnPm) + CG (Pn) in this paper, is developed for solving the unsteady incompressible Navier-Stokes equations on unstructured grids. In this method, a reconstructed discontinuous Galerkin method (rDG (PnPm)) is used to discretize the velocity and a standard continuous Galerkin method (CG (Pn)) is used to approximate the pressure. The rDG (PnPm) + CG (Pn) method is designed to increase the accuracy of the hybrid DG (Pn) + CG (Pn) method and yet still satisfy Ladyženskaja-Babuška-Brezzi (LBB) condition, thus avoiding the pressure checkerboard instability. An upwind method is used to discretize the nonlinear convective fluxes in the momentum equations in order to suppress spurious oscillations in the velocity field. A number of incompressible flow problems for a variety of flow conditions are computed to numerically assess the spatial order of convergence of the rDG (PnPm) + CG (Pn) method. The numerical experiments indicate that both rDG (P0P1) + CG (P1) and rDG (P1P2) + CG (P1) methods can attain the designed 2nd order and 3rd order accuracy in space for the velocity respectively. Moreover, the 3rd order rDG (P1P2) + CG (P1) method significantly outperforms its 2nd order rDG (P0P1) + CG (P1) and rDG (P1P1) + CG (P1) counterparts: being able to not only increase the accuracy of the velocity by one order but also improve the accuracy of the pressure.

  11. An Improved Momentum-Exchanged Immersed Boundary-Based Lattice Boltzmann Method for Incompressible Viscous Thermal Flows

    NASA Astrophysics Data System (ADS)

    Chen, Mufeng; Niu, Xiaodong

    2016-06-01

    An improved momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for incompressible viscous thermal flows is presented here. MEIB-LBM was first proposed by Niu et al, which has been shown later that the non-slip boundary condition is not satisfied. Wang. et al. and Hu. et al overcome this drawback by iterative method. But it needs to give an appropriate relaxation parameter. In this work, we come back to the intrinsic feature of LBM, which uses the density distribution function as a dependent variable to evolve the flow field, and uses the density distribution function correction at the neighboring Euler mesh points to satisfy the non-slip boundary condition on the immersed boundary. The same idea can also be applied to the thermal flows with fluid-structure interference. The merits of present improvements for the original MEIB-LBM are that the intrinsic feature of LBM is kept and the flow penetration across the immersed boundaries is avoided. To validate the present method, examples, including forced convection over a stationary heated circular cylinder for heat flux condition, and natural convection with a suspended circle particle in viscous fluid, are simulated. The streamlines, isothermal contours, the drag coefficients and Nusselt numbers are calculated and compared to the benchmark results to demonstrate the effective of the present method.

  12. Approximate factorization for incompressible flow. Ph.D. Thesis; [Navier-Stokes equation

    NASA Technical Reports Server (NTRS)

    Bernard, R. S.

    1981-01-01

    For computational solution of the incompressible Navier-Stokes equations, the approximate factorization (AF) algorithm is used to solve the vectorized momentum equation in delta form based on the pressure calculated in the previous time step. The newly calculated velocities are substituted into the pressure equation (obtained from a linear combination of the continuity and momentum equation), which is then solved by means of line SOR. Computational results are presented for the NACA 66 sub 3 018 airfoil at Reynolds numbers of 1000 and 40,000 and attack angles of 0 and 6 degrees. Comparison with wind tunnel data for Re = 40,000 indicates good qualitative agreement between measured and calculated pressure distributions. Quantitative agreement is only fair, however, with the calculations somewhat displaced from the measurements. Furthermore, the computed velocity profiles are unrealistically thick around the airfoil, due to the excessive amount of artificial viscosity needed for stability. Based on the performance of the algorithm with regard to stability, it is concluded that AF/SOR is suitable for calculations at Reynolds numbers less than 10,000. Speedwise, the method is faster than point SOR by at least a factor of two.

  13. Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows

    NASA Astrophysics Data System (ADS)

    Dobson, Matthew

    2014-11-01

    This work presents a generalization of the Kraynik-Reinelt (KR) boundary conditions for nonequilibrium molecular dynamics simulations. In the simulation of steady, homogeneous flows with periodic boundary conditions, the simulation box deforms with the flow, and it is possible for image particles to become arbitrarily close, causing a breakdown in the simulation. The KR boundary conditions avoid this problem for planar elongational flow and general planar mixed flow [T. A. Hunt, S. Bernardi, and B. D. Todd, J. Chem. Phys. 133, 154116 (2010)] through careful choice of the initial simulation box and by periodically remapping the simulation box in a way that conserves image locations. In this work, the ideas are extended to a large class of three-dimensional flows by using multiple remappings for the simulation box. The simulation box geometry is no longer time-periodic (which was shown to be impossible for uniaxial and biaxial stretching flows in the original work by Kraynik and Reinelt [Int. J. Multiphase Flow 18, 1045 (1992)]. The presented algorithm applies to all flows with nondefective flow matrices, and in particular, to uniaxial and biaxial flows.

  14. Development of generalized pressure velocity coupling scheme for the analysis of compressible and incompressible combusting flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Wu, S. T.

    1992-01-01

    The objective of this investigation has been to develop an algorithm (or algorithms) for the improvement of the accuracy and efficiency of the computer fluid dynamics (CFD) models to study the fundamental physics of combustion chamber flows, which are necessary ultimately for the design of propulsion systems such as SSME and STME. During this three year study (May 19, 1978 - May 18, 1992), a unique algorithm was developed for all speed flows. This newly developed algorithm basically consists of two pressure-based algorithms (i.e. PISOC and MFICE). This PISOC is a non-iterative scheme and the FICE is an iterative scheme where PISOC has the characteristic advantages on low and high speed flows and the modified FICE has shown its efficiency and accuracy to compute the flows in the transonic region. A new algorithm is born from a combination of these two algorithms. This newly developed algorithm has general application in both time-accurate and steady state flows, and also was tested extensively for various flow conditions, such as turbulent flows, chemically reacting flows, and multiphase flows.

  15. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  16. On the nonlinear stability of the unsteady, viscous flow of an incompressible fluid in a curved pipe

    NASA Technical Reports Server (NTRS)

    Shortis, Trudi A.; Hall, Philip

    1995-01-01

    The stability of the flow of an incompressible, viscous fluid through a pipe of circular cross-section curved about a central axis is investigated in a weakly nonlinear regime. A sinusoidal pressure gradient with zero mean is imposed, acting along the pipe. A WKBJ perturbation solution is constructed, taking into account the need for an inner solution in the vicinity of the outer bend, which is obtained by identifying the saddle point of the Taylor number in the complex plane of the cross-sectional angle co-ordinate. The equation governing the nonlinear evolution of the leading order vortex amplitude is thus determined. The stability analysis of this flow to periodic disturbances leads to a partial differential system dependent on three variables, and since the differential operators in this system are periodic in time, Floquet theory may be applied to reduce this system to a coupled infinite system of ordinary differential equations, together with homogeneous uncoupled boundary conditions. The eigenvalues of this system are calculated numerically to predict a critical Taylor number consistent with the analysis of Papageorgiou. A discussion of how nonlinear effects alter the linear stability analysis is also given, and the nature of the instability determined.

  17. A method to calculate finite-time Lyapunov exponents for inertial particles in incompressible flows

    NASA Astrophysics Data System (ADS)

    Garaboa-Paz, D.; Pérez-Muñuzuri, V.

    2015-10-01

    The present study aims to improve the calculus of finite-time Lyapunov exponents (FTLEs) applied to describe the transport of inertial particles in a fluid flow. To this aim, the deformation tensor is modified to take into account that the stretching rate between particles separated by a certain distance is influenced by the initial velocity of the particles. Thus, the inertial FTLEs (iFTLEs) are defined in terms of the maximum stretching between infinitesimally close trajectories that have different initial velocities. The advantages of this improvement, if compared to the standard method (Shadden et al., 2005), are discussed for the double-gyre flow and the meandering jet flow. The new method allows one to identify the initial velocity that inertial particles must have in order to maximize their dispersion.

  18. On the far-field stream function condition for two-dimensional incompressible flows

    NASA Technical Reports Server (NTRS)

    Sa, Jong-Youb; Chang, Keun-Shik

    1990-01-01

    The present demonstration of the usefulness of the integral series expansion of the stream function as a far-field computational boundary condition shows the method to require only a 10-percent/time-step increase in computational effort over alternative boundary conditions, in the case of implementation of unsteady problems using a direct elliptic solver. So long as the vorticity was encompassed within the computational domain, the method proved sufficiently accurate to yield virtually identical results for two widely different domains. While the integral-series condition yielded the best results for periodic flow, the Neumann condition gave comparable accuracy with less computation time for the steady-flow case despite its inability to treat periodic flow with vortex shedding.

  19. A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Shao, J. Y.; Wu, J.; Niu, X. D.

    2015-06-01

    In this work a mass-conserved diffuse interface method is proposed for simulating incompressible flows of binary fluids with large density ratio. In the method, a mass correction term is introduced into the Cahn-Hilliard equation to compensate the mass losses or offset the mass increases caused by the numerical and modeling diffusion. Since the mass losses or increases are through the phase interfaces and at each time step, their values are very small, to keep mass conservation, mass sources or sinks are introduced and uniformly distributed in the volume of diffuse layer. With the uniform distribution, the mass correction term representing mass sources or sinks is derived analytically by applying mass conservation principle. By including the mass correction, the modified Cahn-Hilliard equation is solved by the fifth-order upwind scheme to capture the phase field of the bindery fluids. The flow field is simulated by the newly-developed multiphase lattice Boltzmann flux solver [20]. The proposed approach is validated by simulating the Laplace law, the merging of two bubbles, Rayleigh-Taylor instability and bubble rising under gravity with density ratio of 1000 and viscosity ratio of 100. Numerical results of interface shapes and flow properties agree well with both analytical solutions and benchmark data in the literature. Numerical results also show that the mass is well-conserved in all cases considered. In addition, it is demonstrated that the mass correction term at each time step is in the order of 10-4 ∼10-5, which is a small number compared with the magnitude of order parameter.

  20. On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method

    NASA Astrophysics Data System (ADS)

    Lalanne, Benjamin; Villegas, Lucia Rueda; Tanguy, Sébastien; Risso, Frédéric

    2015-11-01

    In this paper, we present a detailed analysis of the computation of the viscous terms for the simulation of incompressible two-phase flows in the framework of Level Set/Ghost Fluid Method when viscosity is discontinuous across the interface. Two pioneering papers on the topic, Kang et al. [10] and Sussman et al. [26], proposed two different approaches to deal with viscous terms. However, a definitive assessment of their respective efficiency is currently not available. In this paper, we demonstrate from theoretical arguments and confirm from numerical simulations that these two approaches are equivalent from a continuous point of view and we compare their accuracies in relevant test-cases. We also propose a new intermediate method which uses the properties of the two previous methods. This new method enables a simple implementation for an implicit temporal discretization of the viscous terms. In addition, the efficiency of the Delta Function method [24] is also assessed and compared to the three previous ones, which allow us to propose a general overview of the accuracy of all available methods. The selected test-cases involve configurations wherein viscosity plays a major role and for which either theoretical results or experimental data are available as reference solutions: simulations of spherical rising bubbles, shape-oscillating bubbles and deformed rising bubbles at low Reynolds numbers.

  1. A coupled Immersed Boundary-Lattice Boltzmann method for incompressible flows through moving porous media

    NASA Astrophysics Data System (ADS)

    Pepona, Marianna; Favier, Julien

    2016-09-01

    In this work, we propose a numerical framework to simulate fluid flows in interaction with moving porous media of complex geometry. It is based on the Lattice Boltzmann method including porous effects via a Brinkman-Forchheimer-Darcy force model coupled to the Immersed Boundary method to handle complex geometries and moving structures. The coupling algorithm is described in detail and it is validated on well-established literature test cases for both stationary and moving porous configurations. The proposed method is easy to implement and efficient in terms of CPU cost and memory management compared to alternative methods which can be used to deal with moving immersed porous media, e.g. re-meshing at each time step or use of a moving/chimera mesh. An overall good agreement was obtained with reference results, opening the way to the numerical simulation of moving porous media for flow control applications.

  2. A second-order pressure-correction method for viscous incompressible flow

    NASA Astrophysics Data System (ADS)

    Vankan, J.

    An ADI scheme with pressure correction which is second order consistent in space and time is presented. It is shown that the pressure correction method in a system of constrained ordinary differential equations under reasonably weak assumptions leads to a solution with 0 (Delta t sq) accuracy. It is proved that in a linearized simplified case pressure correction does not affect the unconditional stability of the underlying scheme. Application to flow in a glass furnace is illustrated.

  3. Incompressible Navier-Stokes Solvers in Primative Variables and their Applications to Steady and Unsteady Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Rogers, Stuart E.

    2002-01-01

    This paper reviews recent progress made in incompressible Navier-Stokes simulation procedures and their application to problems of engineering interest. Discussions are focused on the methods designed for complex geometry applications in three dimensions, and thus are limited to primitive variable formulation. A summary of efforts in flow solver development is given followed by numerical studies of a few example problems of current interest. Both steady and unsteady solution algorithms and their salient features are discussed. Solvers discussed here are based on a structured-grid approach using either a finite -difference or a finite-volume frame work. As a grand-challenge application of these solvers, an unsteady turbopump flow simulation procedure has been developed which utilizes high performance computing platforms. In the paper, the progress toward the complete simulation capability of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of two parallel computing algorithms that have been implemented in the INS3D code. The relative motion of the grid systems for the rotorstator interaction was obtained using overact grid techniques. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on SCSI Origin 3000 systems at NASA Ames Research Center. The same procedure has been extended to the development of NASA-DeBakey Ventricular Assist Device (VAD) that is based on an axial blood pump. Computational, and clinical analysis of this device are presented.

  4. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

    SciTech Connect

    McHugh, P.R.

    1995-10-01

    Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

  5. Boundary Asymptotic Analysis for an Incompressible Viscous Flow: Navier Wall Laws

    SciTech Connect

    El Jarroudi, M.; Brillard, A.

    2008-06-15

    We consider a new way of establishing Navier wall laws. Considering a bounded domain {omega} of R{sup N}, N=2,3, surrounded by a thin layer {sigma}{sub {epsilon}}, along a part {gamma}{sub 2} of its boundary {partial_derivative}{omega}, we consider a Navier-Stokes flow in {omega} union {partial_derivative}{omega} union {sigma}{sub {epsilon}} with Reynolds' number of order 1/{epsilon} in {sigma}{sub {epsilon}}. Using {gamma}-convergence arguments, we describe the asymptotic behaviour of the solution of this problem and get a general Navier law involving a matrix of Borel measures having the same support contained in the interface {gamma}{sub 2}. We then consider two special cases where we characterize this matrix of measures. As a further application, we consider an optimal control problem within this context.

  6. The momentum transfer of incompressible turbulent separated flow due to cavities with steps

    NASA Technical Reports Server (NTRS)

    White, R. E.; Norton, D. J.

    1977-01-01

    An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.

  7. Incompressible Viscous Fluid Dynamics

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore » which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  8. Hot-wire calibration in a nonisothermal incompressible pressure variant flow

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Eaton, Frank D.; Bishop, Kenneth P.; McCrae, Kimberley A.

    1999-08-01

    The calibration procedure for a hot-wire anemometer system operating in a non-isothermal pressure-variant flow field is presented. Sensing of atmospheric velocity and temperature fluctuations from an altitude-variant platform using hot- wire anemometry equipment operating in both constant- temperature and constant-current modes requires calibration for velocity, temperature, and atmospheric pressure variations. Calibration tests to provide the range of velocity, temperature and pressure variations anticipated during Air Force Research Lab, Directed Energy Directorate- sponsored kite/tethered-balloon experiments were conducted and the result of these tests presented. The calibration tests were performed by placing the kite/tethered-balloon sensor package on a vehicle and driving from Kirtland AFB, NM to the top of Sandia Crest, a 10678 ft mountain range to the east of Albuquerque, NM. By varying the velocity of the van and conducting the test at different times of the day, variations in velocity, temperature and pressure within the range of those encountered during the kite/tethered-balloon experiments were obtained. The method of collapsing the calibration data is presented. Problems associated with collecting hot-wire anemometry data in a non-laboratory environment are discussed. Example data sets of temperature and velocity collected during the kite/tethered-balloon experiments are presented.

  9. A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

    SciTech Connect

    Baer, T.A.; Cairncross, R.A.; Rao, R.R.; Sackinger, P.A.; Schunk, P.R.

    1999-01-29

    To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

  10. A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio

    NASA Astrophysics Data System (ADS)

    Yan, Y. Y.; Zu, Y. Q.

    2007-11-01

    This paper reports a new numerical scheme of the lattice Boltzmann method for calculating liquid droplet behaviour on particle wetting surfaces typically for the system of liquid-gas of a large density ratio. The method combines the existing models of Inamuro et al. [T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628-644] and Briant et al. [A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid-gas system, Philos. Trans. Roy. Soc. London A 360 (2002) 485-495; A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid-gas systems. Phys. Rev. E 69 (2004) 031602; A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603] and has developed novel treatment for partial wetting boundaries which involve droplets spreading on a hydrophobic surface combined with the surface of relative low contact angles and strips of relative high contact angles. The interaction between the fluid-fluid interface and the partial wetting wall has been typically considered. Applying the current method, the dynamics of liquid drops on uniform and heterogeneous wetting walls are simulated numerically. The results of the simulation agree well with those of theoretical prediction and show that the present LBM can be used as a reliable way to study fluidic control on heterogeneous surfaces and other wetting related subjects.

  11. Mass transfer effects on an unsteady MHD free convective flow of an incompressible viscous dissipative fluid past an infinite vertical porous plate

    NASA Astrophysics Data System (ADS)

    Prabhakar Reddy, B.

    2016-02-01

    In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.

  12. Adaptive particle-based pore-level modeling of incompressible fluid flow in porous media: a direct and parallel approach

    NASA Astrophysics Data System (ADS)

    Ovaysi, S.; Piri, M.

    2009-12-01

    We present a three-dimensional fully dynamic parallel particle-based model for direct pore-level simulation of incompressible viscous fluid flow in disordered porous media. The model was developed from scratch and is capable of simulating flow directly in three-dimensional high-resolution microtomography images of naturally occurring or man-made porous systems. It reads the images as input where the position of the solid walls are given. The entire medium, i.e., solid and fluid, is then discretized using particles. The model is based on Moving Particle Semi-implicit (MPS) technique. We modify this technique in order to improve its stability. The model handles highly irregular fluid-solid boundaries effectively. It takes into account viscous pressure drop in addition to the gravity forces. It conserves mass and can automatically detect any false connectivity with fluid particles in the neighboring pores and throats. It includes a sophisticated algorithm to automatically split and merge particles to maintain hydraulic connectivity of extremely narrow conduits. Furthermore, it uses novel methods to handle particle inconsistencies and open boundaries. To handle the computational load, we present a fully parallel version of the model that runs on distributed memory computer clusters and exhibits excellent scalability. The model is used to simulate unsteady-state flow problems under different conditions starting from straight noncircular capillary tubes with different cross-sectional shapes, i.e., circular/elliptical, square/rectangular and triangular cross-sections. We compare the predicted dimensionless hydraulic conductances with the data available in the literature and observe an excellent agreement. We then test the scalability of our parallel model with two samples of an artificial sandstone, samples A and B, with different volumes and different distributions (non-uniform and uniform) of solid particles among the processors. An excellent linear scalability is

  13. Flowfield-Dependent Variation (FDV) method for compressible, incompressible, viscous, and inviscid flow interactions with FDV adaptive mesh refinements and parallel processing

    NASA Astrophysics Data System (ADS)

    Heard, Gary Wayne

    A new approach to solution-adaptive grid refinement using the finite element method and Flowfield-Dependent Variation (FDV) theory applied to the Navier-Stokes system of equations is discussed. Flowfield-Dependent Variation (FDV) parameters are introduced into a modified Taylor series expansion of the conservation variables, with the Navier-Stokes system of equations substituted into the Taylor series. The FDV parameters are calculated from the current Fowfield conditions, and automatically adjust the resulting equations from elliptic to parabolic to hyperbolic in type to assure solution accuracy in evolving fluid flowfields that may consist of interactions between regions of compressible and incompressible flow, viscous and inviscid flow, and turbulent and laminar flow. The system of equations is solved using an element-by-element iterative GMRES solver with the elements grouped together to allow the element operations to be performed in parallel. The FDV parameters play many roles in the numerical scheme. One of these roles is to control formations of shock wave discontinuities in high speeds and pressure oscillations in low speeds. To demonstrate these abilities, various example problems are shown, including supersonic flows over a flat plate and a compression corner, and flows involving triple shock waves generated on fin geometries for high speed compressible flows. Furthermore, analysis of low speed incompressible flows is presented in the form of flow in a lid-driven cavity at various Reynolds numbers. Another role of the FDV parameters is their use as error indicators for a solution-adaptive mesh. The finite element grid is refined as dictated by the magnitude of the FDV parameters. Examples of adaptive grids generated using the FDV parameters as error indicators are presented for supersonic flow over flat plate/compression ramp combinations in both two and three dimensions. Grids refined using the FDV parameters as error indicators are comparable to ones

  14. Centrifugal acceleration modes for incompressible fluid in the leakage annulus between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1991-01-01

    An algorithm is developed for calculating complex eigenvalues and eigenvectors associated with the fluid resonances and is used to analyze the perturbed flow in the leakage path between a shrouded-pump impeller and its housing. The eigenvalues obtained are consistent with the forced-response curves. First- and second-natural-frequency eigensolutions are presented for mode shapes corresponding to lateral excitations, and first-natural-frequency eigensolutions are presented for mode shapes corresponding to axial excitation.

  15. RETRACTION: Unsteady flow and heat transfer of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in a porous medium

    NASA Astrophysics Data System (ADS)

    Attia, H. A.

    2007-04-01

    It has come to the attention of the Institute of Physics that this article should not have been submitted for publication owing to its plagiarism of an earlier paper (Hossain A, Hossain M A and Wilson M 2001 Unsteady flow of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in presence of transverse magnetic field and heat transfer Int. J. Therm. Sci. 40 11-20). Therefore this article has been retracted by the Institute of Physics and by the author, Hazem Ali Attia.

  16. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  17. Nonlinear Krylov acceleration of reacting flow codes

    SciTech Connect

    Kumar, S.; Rawat, R.; Smith, P.; Pernice, M.

    1996-12-31

    We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.

  18. Feedback in Flow for Accelerated Reaction Development.

    PubMed

    Reizman, Brandon J; Jensen, Klavs F

    2016-09-20

    The pharmaceutical industry is investing in continuous flow and high-throughput experimentation as tools for rapid process development accelerated scale-up. Coupled with automation, these technologies offer the potential for comprehensive reaction characterization and optimization, but with the cost of conducting exhaustive multifactor screens. Automated feedback in flow offers researchers an alternative strategy for efficient characterization of reactions based on the use of continuous technology to control chemical reaction conditions and optimize in lieu of screening. Optimization with feedback allows experiments to be conducted where the most information can be gained from the chemistry, enabling product yields to be maximized and kinetic models to be generated while the total number of experiments is minimized. This Account opens by reviewing select examples of feedback optimization in flow and applications to chemical research. Systems in the literature are classified into (i) deterministic "black box" optimization systems that do not model the reaction system and are therefore limited in the utility of results for scale-up, (ii) deterministic model-based optimization systems from which reaction kinetics and/or mechanisms can be automatically evaluated, and (iii) stochastic systems. Though diverse in application, flow feedback systems have predominantly focused upon the optimization of continuous variables, i.e., variables such as time, temperature, and concentration that can be ramped from one experiment to the next. Unfortunately, this implies that the screening of discrete variables such as catalyst, ligand, or solvent generally does not factor into automated flow optimization, resulting in incomplete process knowledge. Herein, we present a system and strategy developed for optimizing discrete and continuous variables of a chemical reaction simultaneously. The approach couples automated feedback with high-throughput reaction screening in droplet flow

  19. Feedback in Flow for Accelerated Reaction Development.

    PubMed

    Reizman, Brandon J; Jensen, Klavs F

    2016-09-20

    The pharmaceutical industry is investing in continuous flow and high-throughput experimentation as tools for rapid process development accelerated scale-up. Coupled with automation, these technologies offer the potential for comprehensive reaction characterization and optimization, but with the cost of conducting exhaustive multifactor screens. Automated feedback in flow offers researchers an alternative strategy for efficient characterization of reactions based on the use of continuous technology to control chemical reaction conditions and optimize in lieu of screening. Optimization with feedback allows experiments to be conducted where the most information can be gained from the chemistry, enabling product yields to be maximized and kinetic models to be generated while the total number of experiments is minimized. This Account opens by reviewing select examples of feedback optimization in flow and applications to chemical research. Systems in the literature are classified into (i) deterministic "black box" optimization systems that do not model the reaction system and are therefore limited in the utility of results for scale-up, (ii) deterministic model-based optimization systems from which reaction kinetics and/or mechanisms can be automatically evaluated, and (iii) stochastic systems. Though diverse in application, flow feedback systems have predominantly focused upon the optimization of continuous variables, i.e., variables such as time, temperature, and concentration that can be ramped from one experiment to the next. Unfortunately, this implies that the screening of discrete variables such as catalyst, ligand, or solvent generally does not factor into automated flow optimization, resulting in incomplete process knowledge. Herein, we present a system and strategy developed for optimizing discrete and continuous variables of a chemical reaction simultaneously. The approach couples automated feedback with high-throughput reaction screening in droplet flow

  20. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  1. A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility

    NASA Astrophysics Data System (ADS)

    Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta

    2015-05-01

    We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective non-local Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.

  2. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    SciTech Connect

    Williams, P.T.

    1993-09-01

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  3. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies

    NASA Astrophysics Data System (ADS)

    Bolis, A.; Cantwell, C. D.; Moxey, D.; Serson, D.; Sherwin, S. J.

    2016-09-01

    A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-spectral/hp element discretisation of domains characterised by geometric homogeneity in one or more directions. The performance of the approach is mathematically modelled in terms of operation count and communication costs for identifying the most efficient parameter choices. The model is calibrated to target a specific hardware platform after which it is shown to accurately predict the performance in the hybrid regime. The method is applied to modelling turbulent flow using the incompressible Navier-Stokes equations in an axisymmetric pipe and square channel. The hybrid method extends the practical limitations of the discretisation, allowing greater parallelism and reduced wall times. Performance is shown to continue to scale when both parallelisation strategies are used.

  4. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  5. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  6. EXAMINATION OF THE PCICE METHOD IN THE NEARLY INCOMPRESSIBLE, AS WELL AS STRICTLY INCOMPRESSIBLE, LIMITS

    SciTech Connect

    Ray A. Berry; Richard C. Martineau

    2007-04-01

    The conservative-form, pressure-based PCICE numerical method (Martineau and Berry, 2004) (Berry, 2006), recently developed for computing transient fluid flows of all speeds from very low to very high (with strong shocks), is simplified and generalized. Though the method automatically treats a continuous transition of compressibility, three distinct, limiting compressibility regimes are formally defined for purposes of discussion and comparison with traditional methods – the strictly incompressible limit, the nearly incompressible limit, and the f ully compressible limit. The PCICE method’s behavior is examined in each limiting regime. In the strictly incompressible limit the PCICE algorithm reduces to the traditional MAC-type method with velocity divergence driving the pressure Poisson equation. In the nearly incompressible limit the PCICE algorithm is found to reduce to a generalization of traditional incompressible methods, i.e. to one in which not only the velocity divergence effect, but also the density gradient effect is included as a driving function in the pressure Poisson equation. This nearly incompressible regime has received little attention, and it appears that in the past, strictly incompressible methods may have been conveniently applied to flows in this regime at the expense of ignoring a potentially important coupling mechanism. This could be significant in many important flows; for example, in natural convection flows resulting from high heat flux. In the f ully compressible limit or regime, the algorithm is found to reduce to an expression equivalent to density-based methods for high-speed flow.

  7. Velocity acceleration as a determinant of flow-mediated dilation.

    PubMed

    Stoner, Lee; McCully, Kevin K

    2012-04-01

    Shear stress is the established stimulus for flow-mediated dilation (FMD). In vivo, shear stress is typically estimated using mean blood velocity. However, mean blood velocity may not adequately characterize the shear stimulus. Pulsatile flow results in large shear gradients (velocity acceleration) at the onset of flow. The purpose of this study was to determine the importance of velocity acceleration to FMD. We define FMD as the brachial artery shear rate-diameter slope. Fourteen physically active, young (26 ± 5 years), male subjects were tested. Progressive forearm heating and handgrip exercise elicited steady-state increases in shear rate. FMD was measured prior to and following induced increases in velocity acceleration. Velocity acceleration was increased by inflating a tourniquet around the forearm to 40 mm Hg. Hierarchical linear modeling was used to estimate change in diameter with repeated measures of shear stress nested within each subject. Averaged across conditions, the 40 mm Hg cuff resulted in a 14% increase in velocity acceleration (p = 0.001). FMD was attenuated by 11.0% (p = 0.015) for the acceleration vs. control condition. However, after specifying velocity acceleration as a covariate, FMD was no longer significantly (p = 0.619) different between acceleration and control conditions. This finding suggests that mean blood velocity alone may not adequately characterize the shear stimulus.

  8. A Fully Conservative and Entropy Preserving Cut-Cell Method for Incompressible Viscous Flows on Staggered Cartesian Grids

    NASA Astrophysics Data System (ADS)

    Le Chenadec, Vincent; Bay, Yong Yi

    2015-11-01

    The treatment of complex geometries in Computational Fluid Dynamics applications is a challenging endeavor, which immersed boundary and cut-cell techniques can significantly simplify by alleviating the meshing process required by body-fitted meshes. These methods also introduce new challenges, in that the formulation of accurate and well-posed discrete operators is not trivial. A cut-cell method for the solution of the incompressible Navier-Stokes equation is proposed for staggered Cartesian grids. In both scalar and vector cases, the emphasis is set on the structure of the discrete operators, designed to mimic the properties of the continuous ones while retaining a nearest-neighbor stencil. For convective transport, different forms are proposed (divergence, advective and skew-symmetric), and shown to be equivalent when the discrete continuity equation is satisfied. This ensures mass, momentum and kinetic energy conservation. For diffusive transport, conservative and symmetric operators are proposed for both Dirichlet and Neumann boundary conditions. Symmetry ensures the existence of a sink term (viscous dissipation) in the discrete kinetic energy budget, which is beneficial for stability. The accuracy of method is finally assessed in standard test cases.

  9. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    NASA Astrophysics Data System (ADS)

    Meng, Xuhui; Guo, Zhaoli

    2015-10-01

    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  10. Onset of turbulence in accelerated high-Reynolds-number flow.

    PubMed

    Zhou, Ye; Robey, Harry F; Buckingham, Alfred C

    2003-05-01

    A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types

  11. Accelerated Transonic Flow past a curvature discontinuity

    NASA Astrophysics Data System (ADS)

    de Cointet, Thomas; Ruban, Anatoly

    2014-11-01

    The aim of this talk is to investigate High Reynolds number Transonic flow past a discontinuity in body curvature. Starting with the inviscid flow outside the boundary layer, our analysis will focus on the flow in a vicinity of the point of discontinuity, where a solution of the Euler equations will be sought in self-similar form. This reduces the Euler equations to an ordinary differential equation. The analysis of this equation shows that the pressure gradient on the airfoil surface develops a strong singularity, which is proportional to (x0 - x) - 1 / 3 as the discontinuity point x0 is approached. We then study the response of the boundary layer to this extremely favourable pressure gradient. We show that the boundary layer splits into two parts, the main body of the boundary layer that becomes inviscid on approach to the singularity, and a thin viscous sublayer situated near the wall. The analysis of the behaviour of the solution in the viscous sublayer shows that Prandtl's hierarchical concept breaks down in a small region surrounding the singular point, where the viscous-inviscid interaction model should be used. In the final part of this talk we present a full formulation of the viscous-inviscid interaction problem and discuss numerical results.

  12. Existence of a Weak Solution to a Nonlinear Fluid-Structure Interaction Problem Modeling the Flow of an Incompressible, Viscous Fluid in a Cylinder with Deformable Walls

    NASA Astrophysics Data System (ADS)

    Muha, Boris; Canić, Suncica

    2013-03-01

    We study a nonlinear, unsteady, moving boundary, fluid-structure interaction (FSI) problem arising in modeling blood flow through elastic and viscoelastic arteries. The fluid flow, which is driven by the time-dependent pressure data, is governed by two-dimensional incompressible Navier-Stokes equations, while the elastodynamics of the cylindrical wall is modeled by the one-dimensional cylindrical Koiter shell model. Two cases are considered: the linearly viscoelastic and the linearly elastic Koiter shell. The fluid and structure are fully coupled (two-way coupling) via the kinematic and dynamic lateral boundary conditions describing continuity of velocity (the no-slip condition), and the balance of contact forces at the fluid-structure interface. We prove the existence of weak solutions to the two FSI problems (the viscoelastic and the elastic case) as long as the cylinder radius is greater than zero. The proof is based on a novel semi-discrete, operator splitting numerical scheme, known as the kinematically coupled scheme, introduced in Guidoboni et al. (J Comput Phys 228(18):6916-6937, 2009) to numerically solve the underlying FSI problems. The backbone of the kinematically coupled scheme is the well-known Marchuk-Yanenko scheme, also known as the Lie splitting scheme. We effectively prove convergence of that numerical scheme to a solution of the corresponding FSI problem.

  13. Breakup of Droplets in an Accelerating Gas Flow

    NASA Technical Reports Server (NTRS)

    Dickerson, R. A.; Coultas, T. A.

    1966-01-01

    A study of droplet breakup phenomena by an accelerating gas flow is described. The phenomena are similar to what propellant droplets experience when exposed to accelerating combustion gas flow in a rocket engine combustion zone. Groups of several dozen droplets in the 100-10 750-micron-diameter range were injected into a flowing inert gas in a transparent rectangular nozzle. Motion photography of the behavior of the droplets at various locations in the accelerating gas flow has supplied quantitative and qualitative data on the breakup phenomena which occur under conditions similar to those found in large rocket engine combustors. A blowgun injection device, used to inject very small amounts of liquid at velocities of several hundred feet per second into a moving gas stream, is described. The injection device was used to inject small amounts of liquid RP-1 and water into the gas stream at a velocity essentially equal to the gas velocity where the group of droplets was allowed to stabilize its formation in a constant area section before entering the convergent section of the transparent nozzle. Favorable comparison with the work of previous investigators who have used nonaccelerating gas flow is found with the data obtained from this study with accelerating gas flow. The criterion for the conditions of minimum severity required to produce shear-type droplet breakup in an accelerating gas flow is found to agree well with the criterion previously established at Rocketdyne for breakup in nonaccelerating flow. An extension of the theory of capillary surface wave effects during droplet breakup is also presented. Capillary surface waves propagating in the surface of the droplet, according to classical hydrodynamical laws, are considered. The waves propagate tangentially over the surface of the droplet from the forward stagnation point to the major diameter. Consideration of the effects of relative gas velocity on the amplitude growth of these waves allows conclusions to be

  14. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOEpatents

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  15. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  16. First-order particle acceleration in magnetically driven flows

    DOE PAGES

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  17. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  18. Global in Time Analysis and Sensitivity Analysis for the Reduced NS-α Model of Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Rebholz, Leo; Zerfas, Camille; Zhao, Kun

    2016-09-01

    We provide a detailed global in time analysis, and sensitivity analysis and testing, for the recently proposed (by the authors) reduced NS-α model. We extend the known analysis of the model to the global in time case by proving it is globally well-posed, and also prove some new results for its long time treatment of energy. We also derive PDE system that describes the sensitivity of the model with respect to the filtering radius parameter, and prove it is well-posed. An efficient numerical scheme for the sensitivity system is then proposed and analyzed, and proven to be stable and optimally accurate. Finally, two physically meaningful test problems are simulated: channel flow past a cylinder (including lift and drag calculations) and turbulent channel flow with {Re_{τ}=590} . The numerical results reveal that sensitivity is created near boundaries, and thus this is where the choice of the filtering radius is most critical.

  19. A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows

    NASA Astrophysics Data System (ADS)

    Tyliszczak, Artur

    2014-11-01

    The paper presents a novel, efficient and accurate algorithm for laminar and turbulent flow simulations. The spatial discretisation is performed with help of the compact difference schemes (up to 10th order) for collocated and half-staggered grid arrangements. The time integration is performed by a predictor-corrector approach combined with the projection method for pressure-velocity coupling. At this stage a low order discretisation is introduced which considerably decreases the computational costs. It is demonstrated that such approach does not deteriorate the solution accuracy significantly. Following Boersma B.J. [13] the interpolation formulas developed for staggered uniform meshes are used also in the computations with a non-uniform strongly varying nodes distribution. In the proposed formulation of the projection method such interpolation is performed twice. It is shown that it acts implicitly as a high-order low pass filter and therefore the resulting algorithm is very robust. Its accuracy is first demonstrated based on simple 2D and 3D problems: an inviscid vortex advection, a decay of Taylor-Green vortices, a modified lid-driven cavity flow and a dipole-wall interaction. In periodic flow problems (the first two cases) the solution accuracy exhibits the 10th order behaviour, in the latter cases the 3rd and the 4th order is obtained. Robustness of the proposed method in the computations of turbulent flows is demonstrated for two classical cases: a periodic channel with Reτ=395 and Reτ=590 and a round jet with Re=21 000. The solutions are obtained without any turbulence model and also without any explicit techniques aiming to stabilise the solution. The results are in a very good agreement with literature DNS and LES data, both the mean and r.m.s. values are predicted correctly.

  20. Second-Law Analysis of the Peristaltic Flow of an Incompressible Viscous Fluid in a Curved Channel

    NASA Astrophysics Data System (ADS)

    Narla, V. K.; Prasad, K. M.; Ramana Murthy, J. V.

    2016-03-01

    The present investigation extends a consideration of peristaltic flow in curved channels through the second-law analysis. The lubrication approximation is employed to linearize the momentum, energy, and entropy generation rate equations. The stream function and temperature distribution are used to calculate the entropy generation number and the Bejan number. It is shown that the entropy generation rate in a peristaltic pump increases with the occlusion parameter. The entropy generation increases at the upper wall and decreases near the lower wall of the peristaltic channel as the curvature parameter increases. A curved surface acts as a strong source of entropy generation.

  1. Lagrangian and Eulerian Acceleration Statistics in Turbulent Stratified Shear Flows

    NASA Astrophysics Data System (ADS)

    Jacobitz, Frank; Schneider, Kai; Farge, Marie

    2014-11-01

    The Lagrangian and Eulerian acceleration statistics in homogeneous turbulence with shear and stratification are studied using direct numerical simulations. The Richardson number is varied from Ri = 0 , corresponding to unstratified shear flow, to Ri = 1 , corresponding to strongly stratified shear flow. In addition, the scale dependence of the acceleration statistics is studied using a wavelet-based approach. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar influence on the Richardson number and extreme values for Eulerian acceleration are stronger than those observed for the Lagrangian acceleration. Similarly, the Eulerian time-rate of change of fluctuating density is observed to have larger extreme values than that of the Lagrangian time-rate of change. Hence, the time-rate of change of fluctuating density obtained at a fixed location by an Eulerian observer is mainly due to advection of fluctuating density through this location, while the time-rate of change of fluctuating density following a fluid particle is substantially smaller, and due to production and dissipation of fluctuating density.

  2. Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration.

    PubMed

    Chaturani, P; Palanisamy, V

    1990-01-01

    A mathematical model has been proposed to study the pulsatile flow of a power-law fluid through rigid circular tubes under the influence of a periodic body acceleration. Numerical solutions have been obtained by using finite difference method. The accuracy of the numerical procedure has been checked by comparing the obtained numerical results with other numerical and analytical solutions. It is found that the agreement between them is quite good. Interaction of non-Newtonian nature of fluid with the body acceleration has been investigated by using the physiological data for two particular cases (coronary and femoral arteries). The axial velocity, fluid acceleration, wall shear stress and instantaneous volume flow rate have been computed and their variations with different parameters have been analyzed. The following important observations have been made: (i) The velocity and acceleration profiles can have more than one maxima, this is in contrast with usual parabolic profiles where they have only one maximum at the axis. As n increases, the maxima shift towards the axis; (ii) For the flow with no body acceleration, the amplitude of both, wall shear and flow rate, increases with n, whereas for the flow with body acceleration, the amplitude of wall shear (flow rate) increases (decreases) as n increases; (iii) In the absence of body acceleration, pseudoplastic (dilatant) fluids, with low frequency pulsations, have higher (lower) value of maximum flow rate Qmax than Newtonian fluids, whereas for high frequencies, opposite behavior has been observed; for flow with body acceleration pulsations gives higher (lower) value of Qmax for pseudoplastic (dilatant) fluids than Newtonian fluids.

  3. The influence of free-stream turbulence on separation of turbulent boundary layers in incompressible, two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith; Barnett, R. Joel; Fisher, Carl E.; Koukousakis, Costas E.

    1986-01-01

    Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location.

  4. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet

  5. NACHOS2. Incompressible Viscous Fluid Dynamics

    SciTech Connect

    Gartling, D.K.

    1992-02-21

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems in which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.

  6. Incompressible limit of solutions of multidimensional steady compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang G.; Huang, Feimin; Wang, Tian-Yi; Xiang, Wei

    2016-06-01

    A compactness framework is formulated for the incompressible limit of approximate solutions with weak uniform bounds with respect to the adiabatic exponent for the steady Euler equations for compressible fluids in any dimension. One of our main observations is that the compactness can be achieved by using only natural weak estimates for the mass conservation and the vorticity. Another observation is that the incompressibility of the limit for the homentropic Euler flow is directly from the continuity equation, while the incompressibility of the limit for the full Euler flow is from a combination of all the Euler equations. As direct applications of the compactness framework, we establish two incompressible limit theorems for multidimensional steady Euler flows through infinitely long nozzles, which lead to two new existence theorems for the corresponding problems for multidimensional steady incompressible Euler equations.

  7. The effect of flow acceleration on the cyclic variation of blood echogenicity under pulsatile flow.

    PubMed

    Huang, Chih-Chung; Liao, Chen-Chih; Lee, Po-Yang; Shih, Cho-Chiang

    2013-04-01

    It has been shown that the echogenicity of blood varies during a flow cycle under pulsatile flow both in vitro and in vivo. In general, the echogenicity of flowing whole blood increases during the early systole phase and then reduces to a minimum at late diastole. While it has been postulated that this cyclic variation is associated with the dynamics of erythrocyte aggregation, the mechanisms underlying this increasing echogenicity with flow velocity remain uncertain. The effect of flow acceleration has also been proposed as an explanation for this phenomenon, but no specific experiments have been conducted to test this hypothesis. In addition, the influence of ultrasonic attenuation on the cyclic variation of echogenicity requires clarification. In the present study, a Couette flow system was designed to simulate blood flowing with different acceleration patterns, and the flow velocity, attenuation, and backscattering coefficient were measured synchronously from 20%- and 40%-hematocrit porcine whole blood and erythrocyte suspensions using 35-MHz ultrasound transducers. The results showed ultrasonic attenuation exerted only minor effects on the echogenicity of blood under pulsatile flow conditions. Cyclic variations of echogenicity were clearly observed for whole blood with a hematocrit of 40%, but no variations were apparent for erythrocyte suspensions. The echogenicity did not appear to be enhanced when instantaneous acceleration was applied to flowing blood in any case. These findings show that flow acceleration does not promote erythrocyte aggregation, even when a higher peak velocity is applied to the blood. Comparison of the results obtained with different accelerations revealed that the cyclic variation in echogenicity observed during pulsatile blood flow may be jointly attributable to the effect of shear rate and the distribution of erythrocyte on aggregation.

  8. Computational Study of Flow Establishment in a Ram Accelerator

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Radhakrishnan, K.; Rabinowitz, M. J.

    1995-01-01

    The temporal evolution of the combustion process established during projectile transition from the launch tube into the ram accelerator section containing an explosive hydrogen-oxygen-argon gas mixture is studied. The Navier-Stokes equations for chemically reacting flow are solved in a fully coupled manner, using an implicit, time accurate algorithm. The solution procedure is based on a spatially second order total variation diminishing scheme and a temporally second order, variable-step, backward differentiation formula method. The hydrogen-oxygen chemistry is modeled with a 9-species, 19-step mechanism. The accuracy of the solution method is first demonstrated by several benchmark calculations. Numerical simulations of two ram accelerator configurations are then presented. In particular, the temporal developments of shock-induced combustion and thrust forces are followed. Positive thrust is established in both cases; however, in one of the ram accelerator configurations studied, combustion in the boundary layer enhances its separation, ultimately resulting in unstart.

  9. Numerical simulations of the superdetonative ram accelerator combusting flow field

    NASA Technical Reports Server (NTRS)

    Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.

    1993-01-01

    The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.

  10. Convergence acceleration of viscous and inviscid hypersonic flow calculations

    NASA Technical Reports Server (NTRS)

    Cheer, A.; Hafez, M.; Cheung, S.; Flores, J.

    1989-01-01

    The convergence of inviscid and viscous hypersonic flow calculations using a two-dimensional flux-splitting code is accelerated by applying a Richardson-type overrelaxation method. Successful results are presented for various cases; and a 50 percent savings in computer time is usually achieved. An analytical formula for the overrelaxation factor is derived, and the performance of this scheme is confirmed numerically. Moreover, application of this overrelaxation scheme produces a favorable preconditioning for Wynn's epsilon-algorithm. Both techniques have been extended to viscous three-dimensional flows and applied to accelerate the convergence of the compressible Navier-Stokes code. A savings of 40 percent in computer time is achieved in this case.

  11. Start-up vortex flow past an accelerated flat plate

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Nitsche, Monika

    2015-03-01

    Viscous flow past a finite flat plate accelerating in the direction normal to itself is studied numerically. The plate moves with nondimensional speed tp, where p = 0, 1/2, 1, 2. The work focuses on resolving the flow at early to moderately large times and determining the dependence on the acceleration parameter p. Three stages in the vortex evolution are identified and quantified. The first stage, referred to as the Rayleigh stage [Luchini and Tognaccini, "The start-up vortex issuing from a semi-infinite flat plate," J. Fluid Mech. 455, 175-193 (2002)], consists of a vortical boundary layer of roughly uniform thickness surrounding the plate and its tip, without any separating streamlines. This stage is present only for p > 0, for a time-interval that scales like p3, as p → 0. The second stage is one of self-similar growth. The vortex trajectory and circulation satisfy inviscid scaling laws, the boundary layer thickness satisfies viscous laws. The self-similar trajectory starts immediately after the Rayleigh stage ends and lasts until the plate has moved a distance d = 0.5 to 1 times its length. Finally, in the third stage, the image vorticity due to the finite plate length becomes relevant and the flow departs from self-similar growth. The onset of an instability in the outer spiral vortex turns is also observed, however, at least for the zero-thickness plate considered here, it is shown to be easily triggered numerically by underresolution. The present numerical results are compared with experimental results of Pullin and Perry ["Some flow visualization experiments on the starting vortex," J. Fluid Mech. 97, 239-255 (1980)], and numerical results of Koumoutsakos and Shiels ["Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate," J. Fluid Mech. 328, 177-227 (1996)].

  12. Heavy Gas Dispersion Incompressible Flow

    1992-02-03

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX. The DEC VAX11 version contains an auxiliary program, POLYREAD, which reads the polyplot file created by FEM3.« less

  13. Heavy Gas Dispersion Incompressible Flow

    1992-01-27

    FEM3 is a numerical model developed primarily to simulate heavy gas dispersion in the atmosphere, such as the gravitational spread and vapor dispersion that result from an accidental spill of liquefied natural gas (LNG). FEM3 solves both two and three-dimensional problems and, in addition to the generalized anelastic formulation, includes options to use either the Boussinesq approximation or an isothermal assumption, when appropriate. The FEM3 model is composed of three parts: a preprocessor PREFEM3, themore » main code FEM3, and two postprocessors TESSERA and THPLOTX.« less

  14. Scaling the Incompressible Richtmyer-Meshkov Instability

    SciTech Connect

    Cotrell, D; Cook, A

    2007-01-09

    We derive a scaling relation for Richtmyer-Meshkov instability of incompressible fluids. The relation is tested using both numerical simulations and experimental data. We obtain collapse of growth rates for a wide range of initial conditions by using vorticity and velocity scales associated with the interfacial perturbations and the acceleration impulse. A curve fit to the collapsed growth rates yields a fairly universal model for the mixing layer thickness versus time.

  15. Molecular confinement accelerates deformation of entangled polymers during squeeze flow.

    PubMed

    Rowland, Harry D; King, William P; Pethica, John B; Cross, Graham L W

    2008-10-31

    The squeezing of polymers in narrow gaps is important for the dynamics of nanostructure fabrication by nanoimprint embossing and the operation of polymer boundary lubricants. We measured stress versus strain behavior while squeezing entangled polystyrene films to large strains. In confined conditions where films were prepared to a thickness less than the size of the bulk macromolecule, resistance to deformation was markedly reduced for both solid-glass forging and liquid-melt molding. For melt flow, we further observed a complete inversion of conventional polymer viscosity scaling with molecular weight. Our results show that squeeze flow is accelerated at small scales by an unexpected influence of film thickness in polymer materials. PMID:18832609

  16. GPU Accelerated Numerical Simulation of Viscous Flow Down a Slope

    NASA Astrophysics Data System (ADS)

    Gygax, Remo; Räss, Ludovic; Omlin, Samuel; Podladchikov, Yuri; Jaboyedoff, Michel

    2014-05-01

    Numerical simulations are an effective tool in natural risk analysis. They are useful to determine the propagation and the runout distance of gravity driven movements such as debris flows or landslides. To evaluate these processes an approach on analogue laboratory experiments and a GPU accelerated numerical simulation of the flow of a viscous liquid down an inclined slope is considered. The physical processes underlying large gravity driven flows share certain aspects with the propagation of debris mass in a rockslide and the spreading of water waves. Several studies have shown that the numerical implementation of the physical processes of viscous flow produce a good fit with the observation of experiments in laboratory in both a quantitative and a qualitative way. When considering a process that is this far explored we can concentrate on its numerical transcription and the application of the code in a GPU accelerated environment to obtain a 3D simulation. The objective of providing a numerical solution in high resolution by NVIDIA-CUDA GPU parallel processing is to increase the speed of the simulation and the accuracy on the prediction. The main goal is to write an easily adaptable and as short as possible code on the widely used platform MATLAB, which will be translated to C-CUDA to achieve higher resolution and processing speed while running on a NVIDIA graphics card cluster. The numerical model, based on the finite difference scheme, is compared to analogue laboratory experiments. This way our numerical model parameters are adjusted to reproduce the effective movements observed by high-speed camera acquisitions during the laboratory experiments.

  17. Collisions of Small Drops in a Turbulent Flow. Part II: Effects of Flow Accelerations.

    NASA Astrophysics Data System (ADS)

    Pinsky, M. B.; Khain, A. P.

    2004-08-01

    The effects of Lagrangian acceleration on collision efficiency and collision kernels of small cloud droplets in a turbulent flow are investigated using the results of the recent laboratory experiments by La Porta et al., conducted under high Reλ flow of pronounced intermittency. The effect of Lagrangian accelerations on drop collisions has been found to be significant, namely, for drop pairs, containing a drop collector exceeding 10 μm in radius, collision efficiency, and collision kernels increase by up to 25% and 40%, respectively, at dissipation rates of 200 cm2 s-3 typical of weak cumulus clouds. In well-developed deep cumulus clouds, the increase attains the factor of 2.5 and 5, respectively, at typical dissipation rates of 1000 cm2 s-3. The effect of Lagrangian accelerations is mainly caused by the increase in the collision efficiency that is highly sensitive even to weak variations of interdrop relative velocity. The increase in the swept volume is responsible only for a fraction of the overall increase in the collision kernel.The effect of intermittency of a turbulent flow manifests itself in two aspects: (i) an increase in variance of Lagrangian accelerations with an increase in Reλ, and (ii) the formation of a specific shape of the probability distribution function (PDF) characterized by a sharp maximum and elongated tail. The increase in variance of Lagrangian accelerations leads to an increase in the collision rate between droplets. The effect of the PDF shape on the collision rate is studied by comparing the magnitudes of collision efficiencies (and kernels) obtained in case of the non-Gaussian PDF with those obtained using the Gaussian PDF of the same acceleration variation. The utilization of the Gaussian PDF leads to a slight (about 10% 15%) overestimation of the values of the collision efficiency and collision kernel. Thus, the effect of intermittency on drop collisions related to high values of PDF flatness has been found to be insignificant

  18. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  19. Effect of the Acceleration of Elongated Bodies of Revolution Upon the Resistance in a Compressible Flow

    NASA Technical Reports Server (NTRS)

    Frankl, F. I.

    1949-01-01

    The problem of the motion of an elongated body of revolution in an incompressible fluid may, as is known, be solved approximately with the aid of the distribution of sources along the axis of the body. In determining the velocity field, the question of whether the body moves uniformly or with an acceleration is no factor in the problem. The presence of acceleration must be taken into account in determining the pressures acting on the body. The resistance of the body arising from the accelerated motion may be computed either directly on the basis of these pressures or with the aid of the so-called associated masses (inertia coefficients). A different condition holds in the case of the motion of bodies in a compressible gas. In this case the finite velocity of sound must be taken into account.

  20. Taylor Instability of Incompressible Liquids

    DOE R&D Accomplishments Database

    Fermi, E.; von Neumann, J.

    1955-11-01

    A discussion is presented in simplified form of the problem of the growth of an initial ripple on the surface of an incompressible liquid in the presence of an acceleration, g, directed from the outside into the liquid. The model is that of a heavy liquid occupying at t = 0 the half space above the plane z = 0, and a rectangular wave profile is assumed. The theory is found to represent correctly one feature of experimental results, namely the fact that the half wave of the heavy liquid into the vacuum becomes rapidly narrower while the half wave pushing into the heavy liquid becomes more and more blunt. The theory fails to account for the experimental results according to which the front of the wave pushing into the heavy liquid moves with constant velocity. The case of instability at the boundary of 2 fluids of different densities is also explored. Similar results are obtained except that the acceleration of the heavy liquid into the light liquid is reduced.

  1. Unsteady magnetohydrodynamic flow of a micropolar fluid due to constant accelerated disk with no slip conditions in a porous medium

    NASA Astrophysics Data System (ADS)

    Shahzad, F.; Hayat, T.

    2012-05-01

    The unsteady MHD flow of an incompressible micropolar fluid have been considered. The fluid is filling the semi-infinite space z>0 which is in contact with an infinite porous rotating disk at z = 0. The common angular velocity of the disk and fluid at infinity is Ω. The fluid is electrically conducting in presence of an applied constant magnetic field B0. Initially the disk and the fluid are rotating about the z/-axis and at time t = 0, suddenly the disk starts rotating about the z-axis and moving with uniform acceleration, while the fluid at infinity continue to rotate about z/-axis with same angular velocity Ω. The axes of rotation of both the disk and that of the fluid at infinity are assumed to be in the plane x = 0, and distance between axes is l. The governing problem is solved numerically using Newton's method. Numerical results explaining the effects of various parameters associated with the flow are discussed graphically.

  2. Interfacial gauge methods for incompressible fluid dynamics.

    PubMed

    Saye, Robert

    2016-06-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  3. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  4. Effect of Hall Current and Chemical Reaction on MHD Flow Along an Accelerated Porous Flat Plate with Internal Heat Absorption/Generation

    NASA Astrophysics Data System (ADS)

    Kar, M.; Sahoo, S. N.; Dash, G. C.

    2014-05-01

    The effect of the Hall current on unsteady free convection of an electrically conducting incompressible viscous fluid past an accelerated vertical porous plate with internal heat absorption/generation in the presence of various species (H2, CO2, H2O, and NH3) undergoing a first-order chemical reaction in a uniform transverse magnetic field is studied. The role of pertinent parameters characterizing the flow field is discussed. The governing equations are solved using the Hhn(x) functions. It is revealed that heat generation coupled with injection results in a backflow rise. A linearly varying velocity of the plate causes a sudden rise or fall of the velocity in the vicinity of the plate, whereas an asymptotically varying velocity leads to a uniform fall. The presence of chemical reaction increases the secondary velocity by 40%.

  5. Analysis of blood flow through a model of the human arterial system under periodic body acceleration.

    PubMed

    Sud, V K; Sekhon, G S

    1986-01-01

    The human system may be subjected to a body acceleration deliberated for example by making subjects lie down on vibrating tables or more frequently unintentionally, for example during travel in water and land or in air and space. The present study is concerned with the effects of externally imposed body accelerations on blood flow in a branched system of arteries. A finite-element model of flow in the arterial system subject to periodic body accelerations is presented. Computational results on the flow rates through selected arteries and the corresponding inlet and outlet pressures under different conditions (magnitude, frequency and direction) of applied acceleration are presented.

  6. Radioactive microsphere study of cerebral blood flow under acceleration. Technical report

    SciTech Connect

    Greenlees, K.J.; Yoder, J.E.; Toth, D.M.; Oloff, C.M.; Karl, A.

    1980-11-01

    A study using radioactive microspheres for the investigation of cerebral blood flow during acceleration is described. Details of a technique for the blunt dissection of cerebral tissues are included. Results of flow studies at 3 and 5 G sub z acceleration stress indicate there is no selective regional preservation of cerebral tissue. (Author)

  7. Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1984-01-01

    Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.

  8. Polytropic dark matter flows illuminate dark energy and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Spyrou, N. K.

    2015-04-01

    Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the

  9. An Experimental Investigation of Incompressible Richtmyer-Meshkov Instability

    NASA Technical Reports Server (NTRS)

    Jacobs, J. W.; Niederhaus, C. E.

    2002-01-01

    Richtmyer-Meshkov (RM) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and eventually become a turbulent flow. It is closely related to Rayleigh-Taylor instability, which is the instability of a planar interface undergoing constant acceleration, such as caused by the suspension of a heavy fluid over a lighter one in the earth's gravitational field. Like the well-known Kelvin-Helmholtz instability, RM instability is a fundamental hydrodynamic instability which exhibits many of the nonlinear complexities that transform simple initial conditions into a complex turbulent flow. Furthermore, the simplicity of RM instability (in that it requires very few defining parameters), and the fact that it can be generated in a closed container, makes it an excellent test bed to study nonlinear stability theory as well as turbulent transport in a heterogeneous system. However, the fact that RM instability involves fluids of unequal densities which experience negligible gravitational force, except during the impulsive acceleration, requires RM instability experiments to be carried out under conditions of microgravity. This experimental study investigates the instability of an interface between incompressible, miscible liquids with an initial sinusoidal perturbation. The impulsive acceleration is generated by bouncing a rectangular tank containing two different density liquids off a retractable vertical spring. The initial perturbation is produced prior to release by oscillating the tank in the horizontal direction to produce a standing wave. The instability evolves in microgravity as the tank travels up and then down the vertical rails of a drop tower until hitting a shock absorber at the bottom. Planar Laser Induced Fluorescence (PLIF) is employed to visualize the flow. PLIF images are captured by a video camera that travels

  10. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  11. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.

    PubMed

    Hunana, P; Zank, G P; Shaikh, D

    2006-08-01

    A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is developed for the flows where the usual incompressible description is not satisfactory and a full compressible treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only weakly, a new description, referred to as "nearly incompressible hydrodynamics," is obtained. The nearly incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density, pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show that the inclusion of large-scale inhomogeneities (in this case time-independent and radially symmetric background solar wind) modifies the leading-order incompressible description of solar wind flow. We find, for example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be described to leading order as a passive scalar. Locally (for small lengthscales), this system of equations converges to the usual incompressible equations and we therefore use the term "locally incompressible" to describe the equations. This term should be distinguished from the term "nearly incompressible," which is reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations scale with the square of Mach number. Inhomogeneous nearly

  12. Theoretical treatment of fluid flow for accelerating bodies

    NASA Astrophysics Data System (ADS)

    Gledhill, Irvy M. A.; Roohani, Hamed; Forsberg, Karl; Eliasson, Peter; Skews, Beric W.; Nordström, Jan

    2016-10-01

    Most computational fluid dynamics simulations are, at present, performed in a body-fixed frame, for aeronautical purposes. With the advent of sharp manoeuvre, which may lead to transient effects originating in the acceleration of the centre of mass, there is a need to have a consistent formulation of the Navier-Stokes equations in an arbitrarily moving frame. These expressions should be in a form that allows terms to be transformed between non-inertial and inertial frames and includes gravity, viscous terms, and linear and angular acceleration. Since no effects of body acceleration appear in the inertial frame Navier-Stokes equations themselves, but only in their boundary conditions, it is useful to investigate acceleration source terms in the non-inertial frame. In this paper, a derivation of the energy equation is provided in addition to the continuity and momentum equations previously published. Relevant dimensionless constants are derived which can be used to obtain an indication of the relative significance of acceleration effects. The necessity for using computational fluid dynamics to capture nonlinear effects remains, and various implementation schemes for accelerating bodies are discussed. This theoretical treatment is intended to provide a foundation for interpretation of aerodynamic effects observed in manoeuvre, particularly for accelerating missiles.

  13. Theoretical treatment of fluid flow for accelerating bodies

    NASA Astrophysics Data System (ADS)

    Gledhill, Irvy M. A.; Roohani, Hamed; Forsberg, Karl; Eliasson, Peter; Skews, Beric W.; Nordström, Jan

    2016-03-01

    Most computational fluid dynamics simulations are, at present, performed in a body-fixed frame, for aeronautical purposes. With the advent of sharp manoeuvre, which may lead to transient effects originating in the acceleration of the centre of mass, there is a need to have a consistent formulation of the Navier-Stokes equations in an arbitrarily moving frame. These expressions should be in a form that allows terms to be transformed between non-inertial and inertial frames and includes gravity, viscous terms, and linear and angular acceleration. Since no effects of body acceleration appear in the inertial frame Navier-Stokes equations themselves, but only in their boundary conditions, it is useful to investigate acceleration source terms in the non-inertial frame. In this paper, a derivation of the energy equation is provided in addition to the continuity and momentum equations previously published. Relevant dimensionless constants are derived which can be used to obtain an indication of the relative significance of acceleration effects. The necessity for using computational fluid dynamics to capture nonlinear effects remains, and various implementation schemes for accelerating bodies are discussed. This theoretical treatment is intended to provide a foundation for interpretation of aerodynamic effects observed in manoeuvre, particularly for accelerating missiles.

  14. Volume conservation issues in incompressible smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nair, Prapanch; Tomar, Gaurav

    2015-09-01

    A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates.

  15. Optimal time step for incompressible SPH

    NASA Astrophysics Data System (ADS)

    Violeau, Damien; Leroy, Agnès

    2015-05-01

    A classical incompressible algorithm for Smoothed Particle Hydrodynamics (ISPH) is analyzed in terms of critical time step for numerical stability. For this purpose, a theoretical linear stability analysis is conducted for unbounded homogeneous flows, leading to an analytical formula for the maximum CFL (Courant-Friedrichs-Lewy) number as a function of the Fourier number. This gives the maximum time step as a function of the fluid viscosity, the flow velocity scale and the SPH discretization size (kernel standard deviation). Importantly, the maximum CFL number at large Reynolds number appears twice smaller than with the traditional Weakly Compressible (WCSPH) approach. As a consequence, the optimal time step for ISPH is only five times larger than with WCSPH. The theory agrees very well with numerical data for two usual kernels in a 2-D periodic flow. On the other hand, numerical experiments in a plane Poiseuille flow show that the theory overestimates the maximum allowed time step for small Reynolds numbers.

  16. Estimation of pressure gradients in pulsatile flow from magnetic resonance acceleration measurements.

    PubMed

    Tasu, J P; Mousseaux, E; Delouche, A; Oddou, C; Jolivet, O; Bittoun, J

    2000-07-01

    A method for estimating pressure gradients from MR images is demonstrated. Making the usual assumption that the flowing medium is a Newtonian fluid, and with appropriate boundary conditions, the inertial forces (or acceleration components of the flow) are proportional to the pressure gradients. The technique shown here is based on an evaluation of the inertial forces from Fourier acceleration encoding. This method provides a direct measurement of the total acceleration defined as the sum of the velocity derivative vs. time and the convective acceleration. The technique was experimentally validated by comparing MR and manometer pressure gradient measurements obtained in a pulsatile flow phantom. The results indicate that the MR determination of pressure gradients from an acceleration measurement is feasible with a good correlation with the true measurements (r = 0.97). The feasibility of the method is demonstrated in the aorta of a normal volunteer. Magn Reson Med 44:66-72, 2000. PMID:10893523

  17. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  18. Design and operation of a laminar-flow electrostatic-quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-06-20

    This report deals with the design principles involved in the design of a laminar-flow electrostatic-quadrupole-focused acceleration column. In particular, attention will be paid to making the parameters suitable for incorporation into a DC MEQALAC design.

  19. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  20. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Salvadore, Francesco; Bernardini, Matteo; Botti, Michela

    2013-02-01

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier-Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  1. GPU accelerated flow solver for direct numerical simulation of turbulent flows

    SciTech Connect

    Salvadore, Francesco; Botti, Michela

    2013-02-15

    Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.

  2. Analysis of complex cardiovascular flow with three-component acceleration-encoded MRI.

    PubMed

    Barker, Alex J; Staehle, Felix; Bock, Jelena; Jung, Bernd A; Markl, Michael

    2012-01-01

    Functional information regarding cardiac performance, pressure gradients, and local flow derangement are available from blood acceleration fields. Thus, this study examines a 2D and 3D phase contrast sequence optimized to efficiently encode three-directional, time-resolved acceleration in vitro and in vivo. Stenosis phantom acceleration measurements were compared to acceleration derived from standard velocity encoded phase contrast-magnetic resonance imaging (i.e., "velocity-derived acceleration"). For in vivo analysis, three-directional 2D acceleration maps were compared to velocity-derived acceleration using regions proximal and distal to the aortic valve in six healthy volunteers at 1.5 and 3.0 T (voxel size = 1.4 × 2.1 × 8 mm, temporal resolution = 16-20 ms). In addition, a 4D acceleration sequence was evaluated for feasibility in a healthy volunteer and postrepair biscuspid aortic valve patient with an ascending aortic aneurysm. The phantom magnetic resonance acceleration measurements were more accurate (nonturbulent root mean square error = 2.2 vs. 5.1 m/s(2) for phase contrast-magnetic resonance imaging) and 10 times less noisy (nonturbulent σ = 0.9 vs. 13.6 m/s(2) for phase contrast-magnetic resonance imaging) than velocity-derived acceleration. Acceleration mapping of the left ventricular outflow tract and aortic arch exhibited signal voids colocated with complex flow events such as vortex formation and high order motion. 4D acceleration data, visualized in combination with the velocity data, may provide new insight into complex flow phenomena.

  3. Two-stage acceleration of interstellar ions driven by high-energy lepton plasma flows

    NASA Astrophysics Data System (ADS)

    Cui, YunQian; Sheng, ZhengMing; Lu, QuanMing; Li, YuTong; Zhang, Jie

    2015-10-01

    We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage process. In the first stage, protons are significantly accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200 MeV under the simulation parameters. The presented scenario of ion acceleration may be relevant to cosmic-ray generation in some astrophysical environments.

  4. Effect of Body Acceleration on Pulsatile Flow of Micropolar Fluid through an Irregular Arterial Stenosis

    NASA Astrophysics Data System (ADS)

    Abdullah, Ilyani; Amin, Norsarahaida

    2008-01-01

    The present study deals with the effect of body acceleration together with surface irregularities on blood flow in artery. Prolonged exposure to high level unintended acceleration may cause serious health problems in the cardiovascular system. The situations like riding in vehicles, flying in airplanes and fast body movements during sport activities can lead to the impairment of certain physiological functions. A micropolar model of blood flow through an irregular arterial stenosis is considered. The governing equations involving unsteady nonlinear two-dimensional partial differential equations are solved employing finite difference scheme. Computational results on the velocity profiles and the flow characteristics are presented.

  5. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  6. Orbiter Aerodynamic Acceleration Flight Measurements in the Rarefied-Flow Transition Regime

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Wilmoth, Richard G.; LeBeau, Gerald J.

    1996-01-01

    Acceleration data taken from the Orbital Acceleration Research Experiment (OARE) during reentry on STS-62 have been analyzed using calibration factors taken on orbit. This is the first Orbiter mission which collected OARE data during the Orbiter reentry phase. The data examined include the flight regime from orbital altitudes down to about 90 km which covers the free-molecule-flow regime and the upper altitude fringes of the rarefied-flow transition into the hypersonic continuum. Ancillary flight data on Orbiter position, orientation, velocity, and rotation rates have been used in models to transform the measured accelerations to the Orbiter center-of-gravity, from which aerodynamic accelerations along the Orbiter body axes have been calculated. Residual offsets introduced in the measurements by unmodeled Orbiter forces are identified and discussed. Direct comparisons are made between the OARE flight data and an independent micro-gravity accelerometer experiment, the High Resolution Accelerometer Package (HiRAP), which also obtained flight data on reentry during the mission down to about 95 km. The resulting OARE aerodynamic acceleration measurements along the Orbiter's body axis, aid the normal to axial acceleration ratio in the free-molecule-flow and transition-flow regimes are presented and compared with numerical simulations from three direct simulation Monte Carlo codes.

  7. EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES

    SciTech Connect

    Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R.; Shelyag, S.

    2013-05-01

    Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.

  8. A validation study of openfoam for hybrid rans-les simulation of incompressible flow over a backward facing step and delta wing

    NASA Astrophysics Data System (ADS)

    Choudhury, Visrant

    The primary objective of this study is to validate and/or identify issues for available numerical methods and turbulence models in OpenFOAM 2.0.0. Such a study will provide a guideline for users, will aid acceptance of OpenFOAM as one of the research solvers at institutions and also guide future multidisciplinary research using OpenFOAM. In addition, a problem of aerospace interest such as the flow features and vortex breakdown around a VFE-II model is obtained for SA, SST RANS and SA-DDES models and compared with DLR experiment. The available numerical methods such as time schemes, convection schemes, P-V couplings and turbulence models are tested as available for a fundamental case of a backward facing step for RANS and Hybrid RANS-LES prediction of fully turbulent flow at a Reynolds number of 32000 and the OpenFOAM predictions are validated against experimental data by Driver et.al and compared with Fluent predictions.

  9. Capillary and acceleration wave breakup of liquid jets in axial-flow airstreams

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1981-01-01

    Empirical correlations of reciprocal mean drop diameter with airstream momentum were derived from capillary and acceleration wave breakup of liquid jets atomized by cross stream injection into axial flow airstreams. A scanning radiometer was used to obtain data over an airstream momentum range of 3.7 to 25.7 g/sq cm sec. Transition from capillary to acceleration wave breakup was obtained at a critical Weber-Reynolds number of 1,000,000.

  10. Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2016-04-01

    Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.

  11. Quasi-steady accelerator operation on the ZAP flow Z-pinch

    NASA Astrophysics Data System (ADS)

    Hughes, M. C.; Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Ross, M. P.

    2014-12-01

    The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerator's neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.

  12. Study of Spray Disintegration in Accelerating Flow Fields

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  13. Use of software tools for calculating flow accelerated corrosion of nuclear power plant equipment and pipelines

    NASA Astrophysics Data System (ADS)

    Naftal', M. M.; Baranenko, V. I.; Gulina, O. M.

    2014-06-01

    The results obtained from calculations of flow accelerated corrosion of equipment and pipelines operating at nuclear power plants constructed on the basis of PWR, VVER, and RBMK reactors carried out using the EKI-02 and EKI-03 software tools are presented. It is shown that the calculation error does not exceed its value indicated in the qualification certificates for these software tools. It is pointed out that calculations aimed at predicting the service life of pipelines and efficient surveillance of flow accelerated corrosion wear are hardly possible without using the above-mentioned software tools.

  14. A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law

    SciTech Connect

    Guo, Z.; Lin, P.; Lowengrub, J.S.

    2014-11-01

    In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy law (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.

  15. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  16. An Exact Solution to the Draining Reservoir Problem of the Incompressible and Non-Viscous Liquid

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2009-01-01

    The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's…

  17. Acceleration of plasma flows in the closed magnetic fields: Simulation and analysis

    SciTech Connect

    Mahajan, Swadesh M.; Shatashvili, Nana L.; Mikeladze, Solomon V.; Sigua, Ketevan I.

    2006-06-15

    Within the framework of a two-fluid description, possible pathways for the generation of fast flows (dynamical as well as steady) in the closed magnetic fields are established. It is shown that a primary plasma flow (locally sub-Alfvenic) is accelerated while interacting with ambient arcade-like closed field structures. The time scale for creating reasonably fast flows (> or approx. 100 km/s) is dictated by the initial ion skin depth, while the amplification of the flow depends on local plasma {beta}. It is shown that distances over which the flows become 'fast' are {approx}0.01R{sub 0} from the interaction surface (R{sub 0} being a characteristic length of the system); later, the fast flow localizes (with dimensions < or approx. 0.05R{sub 0}) in the upper central region of the original arcade. For fixed initial temperature, the final speed (> or approx. 500 km/s) of the accelerated flow and the modification of the field structure are independent of the time duration (lifetime) of the initial flow. In the presence of dissipation, these flows are likely to play a fundamental role in the heating of the finely structured stellar atmospheres; their relevance to the solar wind is also obvious.

  18. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    SciTech Connect

    D. SIEBE; K. PASAMEHMETOGLU

    2000-11-01

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  19. Plasma flow and fast particles in a hypervelocity accelerator - A color presentation. [micrometeoroid simulation

    NASA Technical Reports Server (NTRS)

    Igenbergs, E. B.; Cour-Palais, B.; Fisher, E.; Stehle, O.

    1975-01-01

    A new concept for particle acceleration for micrometeoroid simulation was developed at NASA Marshall Space Flight Center, using a high-density self-luminescent fast plasma flow to accelerate glass beads (with a diameter up to 1.0 mm) to velocities between 15-20 km/sec. After a short introduction to the operation of the hypervelocity range, the eight-converter-camera unit used for the photographs of the plasma flow and the accelerated particles is described. These photographs are obtained with an eight-segment reflecting pyramidal beam splitter. Wratten filters were mounted between the beam splitter and the converter tubes of the cameras. The photographs, which were recorded on black and white film, were used to make the matrices for the dye-color process, which produced the prints shown.

  20. Quasi-steady accelerator operation on the ZAP flow Z-pinch

    SciTech Connect

    Hughes, M. C. Shumlak, U. Golingo, R. P. Nelson, B. A. Ross, M. P.

    2014-12-15

    The ZaP Flow Z-Pinch Experiment utilizes sheared flows to stabilize an otherwise unstable equilibrium. The sheared flows are maintained by streaming high velocity plasma parallel to the pinch. Previous operations of the machine show depletion of the accelerator’s neutral gas supply late in the pulse leading to pinch instability. The current distribution in the accelerator exhibits characteristic modes during this operation, which is corroborated by interferometric signals. The decrease in density precipitates a loss of plasma quiescence in the pinch, which occurs on a timescale related to the flow velocity from the plasma source. To abate the depletion, the geometry of the accelerator is altered to increase the neutral gas supply. The design creates a standing deflagration front in the accelerator that persists for the pulse duration. The new operating mode is characterized by the same diagnostics as the previous mode. The lessons learned in the accelerator operations have been applied to the design of a new experiment, ZaP-HD. This work was supported by grants from the Department of Energy and the National Nuclear Security Administration.

  1. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  2. Assessment of respiratory flow and efforts using upper-body acceleration.

    PubMed

    Dehkordi, Parastoo; Tavakolian, Kouhyar; Marzencki, Marcin; Kaminska, Marta; Kaminska, Bozena

    2014-08-01

    In this paper, an innovative method for estimating the respiratory flow and efforts is proposed and evaluated in various postures and flow rates. Three micro electro-mechanical system accelerometers were mounted on the suprasternal notch, thorax and abdomen of subjects in supine, prone and lateral positions to record the upper airway acceleration and the movements of the chest and abdomen wall. The respiratory flow and efforts were estimated from the recorded acceleration signals by applying machine learning methods. To assess the agreement of the estimated signals with the well-established measurement methods, standard error of measurement (SEM) was calculated and ρ=1-SEM was estimated for every condition. A significant agreement between the estimated and reference signals was found (ρ=0.83, 0.82 and 0.89 for the estimated flow, thorax and abdomen efforts respectively). Additionally, the agreement of the estimated and reference flows was assessed by calculating the ratio of time at the tidal peak inspiration flow to the inspiration time (tPTIF/tI) and the ratio of time at the tidal peak expiration flow to the expiration time (tPTEF/tE). Overall mean and standard deviation of absolute value of differences between tPTIF/tI and tPTEF/tE ratios calculated for every breathing cycle of reference and estimated flow were 0.0035 (0.06) and 0.051 (0.032), respectively. The presented results demonstrate the feasibility of using the upper-body acceleration as a simple solution for long-term monitoring of respiratory features.

  3. Assessment of respiratory flow and efforts using upper-body acceleration.

    PubMed

    Dehkordi, Parastoo; Tavakolian, Kouhyar; Marzencki, Marcin; Kaminska, Marta; Kaminska, Bozena

    2014-08-01

    In this paper, an innovative method for estimating the respiratory flow and efforts is proposed and evaluated in various postures and flow rates. Three micro electro-mechanical system accelerometers were mounted on the suprasternal notch, thorax and abdomen of subjects in supine, prone and lateral positions to record the upper airway acceleration and the movements of the chest and abdomen wall. The respiratory flow and efforts were estimated from the recorded acceleration signals by applying machine learning methods. To assess the agreement of the estimated signals with the well-established measurement methods, standard error of measurement (SEM) was calculated and ρ=1-SEM was estimated for every condition. A significant agreement between the estimated and reference signals was found (ρ=0.83, 0.82 and 0.89 for the estimated flow, thorax and abdomen efforts respectively). Additionally, the agreement of the estimated and reference flows was assessed by calculating the ratio of time at the tidal peak inspiration flow to the inspiration time (tPTIF/tI) and the ratio of time at the tidal peak expiration flow to the expiration time (tPTEF/tE). Overall mean and standard deviation of absolute value of differences between tPTIF/tI and tPTEF/tE ratios calculated for every breathing cycle of reference and estimated flow were 0.0035 (0.06) and 0.051 (0.032), respectively. The presented results demonstrate the feasibility of using the upper-body acceleration as a simple solution for long-term monitoring of respiratory features. PMID:24951964

  4. Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Bruckner, A. P.; Mattick, A. T.; Knowlen, C.

    1992-01-01

    New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report.

  5. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  6. THE BERNOULLI EQUATION AND COMPRESSIBLE FLOW THEORIES

    EPA Science Inventory

    The incompressible Bernoulli equation is an analytical relationship between pressure, kinetic energy, and potential energy. As perhaps the simplest and most useful statement for describing laminar flow, it buttresses numerous incompressible flow models that have been developed ...

  7. TEMPEST/N33.5. Computational Fluid Dynamics Package For Incompressible, 3D, Time Dependent Pro

    SciTech Connect

    Trent, Dr.D.S.; Eyler, Dr.L.L.

    1991-04-01

    TEMPESTN33.5 provides numerical solutions to general incompressible flow problems with coupled heat transfer in fluids and solids. Turbulence is created with a k-e model and gas, liquid or solid constituents may be included with the bulk flow. Problems may be modeled in Cartesian or cylindrical coordinates. Limitations include incompressible flow, Boussinesq approximation, and passive constituents. No direct steady state solution is available; steady state is obtained as the limit of a transient.

  8. Parallel heat flux and flow acceleration in open field line plasmas with magnetic trapping

    SciTech Connect

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Chris

    2014-10-15

    The magnetic field strength modulation in a tokamak scrape-off layer (SOL) provides both flux expansion next to the divertor plates and magnetic trapping in a large portion of the SOL. Previously, we have focused on a flux expander with long mean-free-path, motivated by the high temperature and low density edge anticipated for an absorbing boundary enabled by liquid lithium surfaces. Here, the effects of magnetic trapping and a marginal collisionality on parallel heat flux and parallel flow acceleration are examined. The various transport mechanisms are captured by kinetic simulations in a simple but representative mirror-expander geometry. The observed parallel flow acceleration is interpreted and elucidated with a modified Chew-Goldberger-Low model that retains temperature anisotropy and finite collisionality.

  9. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

    NASA Astrophysics Data System (ADS)

    Yin, Shuo; Meyer, Morten; Li, Wenya; Liao, Hanlin; Lupoi, Rocco

    2016-06-01

    Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique `low-temperature' coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

  10. Effect of beta adrenoceptors and thyroid hormones on velocity and acceleration of peripheral arterial flow in hyperthyroidism.

    PubMed

    Chemla, D; Levenson, J; Valensi, P; LeCarpentier, Y; Pourny, J C; Pithois-Merli, I; Simon, A

    1990-02-15

    Brachial artery flow patterns were studied in 10 hyperthyroid and 10 normal subjects. Mean blood velocity and flow were evaluated by pulsed Doppler, and peak systolic acceleration was calculated by computer-assisted digitization of the instantaneous velocity curve. Compared to control subjects, hyperthyroid patients had higher velocity and flow (p less than 0.01, p less than 0.02) and higher peak systolic acceleration (p less than 0.01). In hyperthyroid patients, measurements were repeated after (1) mechanical exclusion of the hand from brachial circulation, (2) short-term beta-blocker treatment and (3) inducement of the euthyroid state. Exclusion of the hand reduced velocity and flow (p less than 0.001) but did not change peak systolic acceleration. Beta blockade induced disparate changes of velocity and flow but reduced peak systolic acceleration (p less than 0.05). In the euthyroid state, decreased blood velocity (p less than 0.01), flow (p less than 0.02) and acceleration (p less than 0.02) were observed. A hyperkinetic arterial circulation consisting of an increase in both velocity and acceleration is thus observable in hyperthyroidism. Hand exclusion showed that velocity seems to be influenced by peripheral factors while beta blockade suggests that acceleration is dependent of beta 1 adrenoceptors. Comparison between euthyroidism and hyperthyroidism indicates that both mean blood velocity and peak systolic acceleration are influenced by thyroid hormones. PMID:1968312

  11. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  12. Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, J.; Niederhaus, C.

    2000-01-01

    Richtmyer-Meshkov (R-M) instability occurs when two different density fluids are impulsively accelerated in the direction normal to their nearly planar interface. The instability causes small perturbations on the interface to grow and possibly become turbulent given the proper initial conditions. R-M instability is similar to the Rayleigh-Taylor (R-T) instability, which is generated when the two fluids undergo a constant acceleration. R-M instability is a fundamental fluid instability that is important to fields ranging from astrophysics to high-speed combustion. For example, R-M instability is currently the limiting factor in achieving a net positive yield with inertial confinement fusion. The experiments described here utilize a novel technique that circumvents many of the experimental difficulties previously limiting the study of the R-M instability. A Plexiglas tank contains two unequal density liquids and is gently oscillated horizontally to produce a controlled initial fluid interface shape. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the main motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off of a movable spring, imparting an impulsive acceleration in the upward direction. As the sled travels up and down the rails, the spring retracts out of the way, allowing the instability to evolve in free-fall until impacting a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, which uses an Argon ion laser to illuminate the flow and a CCD camera, mounted to the sled, to capture images of the interface. This experimental study investigates the instability of an interface between incompressible, miscible liquids

  13. Low-altitude electron acceleration due to multiple flow bursts in the magnetotail

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Karlsson, T.; Hamrin, M.; Nilsson, H.; Marghitu, O.; Amm, O.; Bunescu, C.; Constantinescu, V.; Frey, H. U.; Keiling, A.; Semeter, J.; Sorbalo, E.; Vogt, J.; Forsyth, C.; Kubyshkina, M. V.

    2014-02-01

    At 10:00 UT on 25 February 2008, Cluster 1 spacecraft crossed the near-midnight auroral zone, at about 2 RE altitude, while two of the Time History of Events and Macroscale Interactions During Substorms (THEMIS) spacecraft, THD and THE, observed multiple flow bursts on the near-conjugate plasma sheet field lines. The flow shear pattern at THEMIS was consistent with the vortical motion at duskside of a localized flow channel. Coinciding in time with the flow bursts, Cluster 1 observed bursts of counterstreaming electrons with mostly low energies (≤441 eV), accompanied by short time scale (<5 s) magnetic field disturbances embedded in flow-associated field-aligned current systems. This conjugate event not only confirms the idea that the plasma sheet flows are the driver of the kinetic Alfvén waves accelerating the low-energy electrons but is a unique observation of disturbances in the high-altitude auroral region relevant to the multiple plasma sheet flows.

  14. An analysis of spatially varying turbulent Prandtl number in a flow with local acceleration and deceleration

    NASA Astrophysics Data System (ADS)

    Jung, Eunbum; Lee, Wook; Kang, Seongwon; Iaccarino, Gianluca

    2015-11-01

    The turbulent Prandtl number (Prt) is an important parameter in turbulent flows used in many engineering models for heat transfer. In the present study, spatial variation of Prt in a wall-bounded turbulent flow is investigated using DNS. We derived a form of Prt applicable to a general flow configuration, using the least-square method in a manner consistent with the turbulent viscosity model in LES. For a flow subject to local acceleration and deceleration induced by the wall geometry, we performed a parametric study for the Reynolds number, Prandtl number and a geometric factor using DNS. A comparison of the data from DNS and RANS with a constant Prt indicates the potential of improved RANS predictions using the present variable Prt subject to the local flow field. Also, it is observed that the local pressure gradient has an important effect on the Prt field. From the flow statistics, a few flow variables showing higher correlations with Prt are identified. An elementary model for Prt is devised, and used for RANS prediction producing a more accurate prediction of the heat transfer rate. Corresponding author

  15. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    USGS Publications Warehouse

    Su, G.W.; Nimmo, J.R.; Dragila, M.I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low-angled isolated fractures compared to high-angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  16. Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Puma, S. C.; Hargens, A. R.; Murthy, G.; Warkander, D.; Lundgren, C. E.

    1997-01-01

    Cerebral blood flow (CBF) velocity and cranial fluid volume, which is defined as the total volume of intra- and extracranial fluid, were measured using transcranial Doppler ultrasonography and rheoencephalography, respectively, in humans during graded increase of +Gz acceleration (onset rate: 0.1 G/s) without straining maneuvers. Gz acceleration was terminated when subjects' vision decreased to an angle of less than or equal to 60 degrees, which was defined as the physiological end point. In five subjects, mean CBF velocity decreased 48% from a baseline value of 59.4 +/- 11.2 cm/s to 31.0 +/- 5.6 cm/s (p<0.01) with initial loss of peripheral vision at 5.7 +/- 0.9 Gz. On the other hand, systolic CBF velocity did not change significantly during increasing +Gz acceleration. Cranial impedance, which is proportional to loss of cranial fluid volume, increased by 2.0 +/- 0.8% above the baseline value at the physiological end point (p<0.05). Both the decrease of CBF velocity and the increase of cranial impedance correlated significantly with Gz. These results suggest that +Gz acceleration without straining maneuvers decreases CBF velocity to half normal and probably causes a caudal fluid shift from both intra- and extracranial tissues.

  17. Effect of driver over-acceleration on traffic breakdown in three-phase cellular automaton traffic flow models

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Schreckenberg, Michael

    2013-09-01

    Based on simulations with cellular automaton (CA) traffic flow models, a generic physical feature of the three-phase models studied in the paper is disclosed. The generic feature is a discontinuous character of driver over-acceleration caused by a combination of two qualitatively different mechanisms of over-acceleration: (i) Over-acceleration through lane changing to a faster lane, (ii) over-acceleration occurring in car-following without lane changing. Based on this generic feature a new three-phase CA traffic flow model is developed. This CA model explains the set of the fundamental empirical features of traffic breakdown in real heterogeneous traffic flow consisting of passenger vehicles and trucks. The model simulates also quantitative traffic pattern characteristics as measured in real heterogeneous flow.

  18. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  19. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  20. A two-fluid model for particle acceleration and dynamics in black-hole accretion flows

    NASA Astrophysics Data System (ADS)

    Lee, Jason P.

    Hot, tenuous Advection-Dominated Accretion Flows (ADAFs) are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disk. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, due to the pressure of the relativistic particles, has not been previously considered, as this effect can have a significant influence on the disk structure. We reexamine the problem by creating a new two-fluid model that includes the dynamical effect of the relativistic particle pressure, as well as the background (thermal) gas pressure. The new model is analogous to the incorporation of the cosmic-ray pressure in the two-fluid model of cosmic-ray-modified supernova shock waves. We derive a new set of shock jump conditions and obtain dynamical solutions that describe the structure of the disk, the discontinuous shock, and the outflow. From this, we show that smooth (shock-free) global flows are impossible when relativistic particle diffusion is included in the dynamical model.

  1. 2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.

    2015-09-01

    The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.

  2. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer

    SciTech Connect

    Budzinski, J.M.; Benjamin, R.F. ); Jacobs, J.W. )

    1994-11-01

    Previous observations of three flow patterns generated by shock acceleration of a thin perturbed, fluid layer are now correlated with asymmetries in the initial conditions. Using a different diagnostic (planar laser Rayleigh scattering) than the previous experiments, upstream mushrooms, downstream mushrooms, and sinuous patterns are still observed. For each experiment the initial perturbation amplitude on one side of the layer can either be larger, smaller, or the same as the amplitude on the other side, as observed with two images per experiment, and these differences lead to the formation of the different patterns.

  3. Gravitational tides on Jupiter. 3: Atmospheric response and mean flow acceleration

    NASA Astrophysics Data System (ADS)

    Ioannou, P. J.; Lindzen, R. S.

    1994-04-01

    The gravitational tidal response at the visible cloud level of Jupiter is obtained as a function of static stability in the planetary interior. It is suggested that confirmation of the presence of static stability in the planetary interior could be achieved by observing tidal fields at cloud level. We also calculate the mean flow acceleration induced by tidal fields and suggest that, if the interior is even marginally statically stable, the tides may provide the momentum source maintaining the alternating zonal jets observed at the cloud level of the planet.

  4. Mesoscale density variability in the mesosphere and thermosphere: Effects of vertical flow accelerations

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.

  5. Characteristics of high gradient insulators for accelerator and high power flow applications

    SciTech Connect

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented.

  6. Self-similarity in incompressible Navier-Stokes equations.

    PubMed

    Ercan, Ali; Kavvas, M Levent

    2015-12-01

    The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space. PMID:26723165

  7. Fluid mechanics of dynamic stall. I - Unsteady flow concepts

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.

  8. Spectral element methods for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Patera, Anthony T.

    1989-01-01

    Spectral element methods are high-order weighted-residual techniques for partial differential equations that combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The theoretical foundations and numerical implementation of spectral element methods for the incompressible Navier-Stokes equations are presented, considering the construction and analysis of optimal-order spectral element discretizations for elliptic and saddle (Stokes) problems, as well as the efficient solution of the resulting discrete equations by rapidly convergent tensor-product-based iterative procedures. Several examples of spectral element simulation of moderate Reynolds number unsteady flow in complex geometry are presented.

  9. Accelerating groundwater flow simulation in MODFLOW using JASMIN-based parallel computing.

    PubMed

    Cheng, Tangpei; Mo, Zeyao; Shao, Jingli

    2014-01-01

    To accelerate the groundwater flow simulation process, this paper reports our work on developing an efficient parallel simulator through rebuilding the well-known software MODFLOW on JASMIN (J Adaptive Structured Meshes applications Infrastructure). The rebuilding process is achieved by designing patch-based data structure and parallel algorithms as well as adding slight modifications to the compute flow and subroutines in MODFLOW. Both the memory requirements and computing efforts are distributed among all processors; and to reduce communication cost, data transfers are batched and conveniently handled by adding ghost nodes to each patch. To further improve performance, constant-head/inactive cells are tagged and neglected during the linear solving process and an efficient load balancing strategy is presented. The accuracy and efficiency are demonstrated through modeling three scenarios: The first application is a field flow problem located at Yanming Lake in China to help design reasonable quantity of groundwater exploitation. Desirable numerical accuracy and significant performance enhancement are obtained. Typically, the tagged program with load balancing strategy running on 40 cores is six times faster than the fastest MICCG-based MODFLOW program. The second test is simulating flow in a highly heterogeneous aquifer. The AMG-based JASMIN program running on 40 cores is nine times faster than the GMG-based MODFLOW program. The third test is a simplified transient flow problem with the order of tens of millions of cells to examine the scalability. Compared to 32 cores, parallel efficiency of 77 and 68% are obtained on 512 and 1024 cores, respectively, which indicates impressive scalability.

  10. Flow Distribution in Hydraulic Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, S. N.

    1983-01-01

    General Flow Distribution Program analyzes pressure drops and flow distribution in closed and open hydraulic systems. Analyzes system on basis of incompressible flow though system may contain either compressible or incompressible fluid. Program solves fixed or variable flow problems for series, parallel, or series/parallel systems.

  11. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  12. Hall Effects on Mhd Flow Past an Accelerated Plate with Heat Transfer

    NASA Astrophysics Data System (ADS)

    Sundarnath, J. K.; Muthucumarswamy, R.

    2015-02-01

    Hall current and rotation on an MHD flow past an accelerated horizontal plate relative to a rotating fluid, in the presence of heat transfer has been analyzed. The effects of the Hall parameter, Hartmann number, rotation parameter (non-dimensional angular velocity), Grashof's number and Prandtl number on axial and transverse velocity profiles are presented graphically. It is found that with the increase in the Hartmann number, the axial and transverse velocity components increase in a direction opposite to that of obtained by increasing the Hall parameter and rotation parameter. Also, when Ω=M2m /(1 + m2 ) , it is observed that the transverse velocity component vanishes and axial velocity attains a maximum value.

  13. Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere

    NASA Technical Reports Server (NTRS)

    Dunkerton, Timothy J.

    1990-01-01

    The quasi-biennial oscillation (QBO) in the equatorial lower stratosphere appears to be influenced by the seasonal cycle, as phase transitions at 50 mb occur primarily in the northern spring/summer season (April-August). Descent of east wind regimes varies widely from one QBO cycle to another. Most of this variation occurs because easterly shears slow down or 'stall' in their descent sometime between July and February. Minimum mean flow accelerations at 50 mb occur in the northern winter season, slightly before the annual minimum in equatorial tropopause temperature. Although a weak effect of the semiannual oscillation can be detected near 10 mb, the seasonal effect over most of the QBO region is annual. The seasonal cycle apparently modulates the onset of QBO phases, and slightly enhances the ability to predict the QBO, but is of insufficient strength or consistency to exactly synchronize the quasi-biennial oscillation with the seasonal cycle.

  14. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    SciTech Connect

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H.

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  15. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  16. Interfacial coupling between immiscible polymers: Flow accelerates reaction and improves adhesion

    NASA Astrophysics Data System (ADS)

    Song, Jie

    As the workhorses of the plastics industry, polyolefins are consumed in the largest volume of all types of polymers. Despite their wide use, polyolefins suffer from poor adhesion and compatibility with other polar polymers due to their intrinsic low polarity and lack of functional groups. The first goal of this study is to enhance interfacial adhesion between polyolefins with other polymers through coupling reaction of functional polymers. We have used functional polyethylenes with maleic anhydride, hydroxyl, primary and secondary amino groups grafted through reactive extrusion. Functional polyolefins dramatically improved the performance of polyolefins, including adhesion, compatibility, hardness and scratch resistance, and greatly expand their applications. The second goal is to understand the factors affecting adhesion. We systematically investigated two categories of parameters. One is molecular: the type and incorporation level of functional groups. The other is processing condition: die design in extruders, reaction time and temperature. The interfacial adhesion was measured with the asymmetric dual cantilever beam test and T-peel test. The extent of reaction was quantified through measuring anchored copolymers via X-ray photoelectron spectroscopy. A quantitative correlation between adhesion and coupling reaction was developed. A coextruded bilayer system with coupling reaction at interfaces was created to clarify processing effects on the kinetics of coupling reactions. For the reaction between maleic anhydride modified polyethylene and nylon 6, the reaction rate during coextrusion through a fishtail die with compressive/extensional flow was strikingly almost two orders of magnitude larger than that through a constant thickness die without compressive flow. The latter reaction rate was close to that of quiescent lamination. We attribute the reaction acceleration through the fishtail die to the large deformation rate under the compressive/extensional flow

  17. Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun

    NASA Astrophysics Data System (ADS)

    Henkes, C.; Olivier, H.

    2014-04-01

    The quality of thermal sprayed coatings depends on many factors which have been investigated and are still in scientific focus. Mostly, the coating material is inserted into the spray device as solid powder. The particle condition during the spray process has a strong effect on coating quality. In some cases, higher particle impact energy leads to improved coating quality. Therefore, a computer-controlled detonation gun based spraying device has been designed and tested to obtain particle velocities over 1200 m/s. The device is able to be operated in two modes based on different flow-physical principles. In one mode, the device functions like a conventional detonation gun in which the powder is accelerated in a blast wave. In the other mode, an extension with a nozzle transforms the detonation gun process into an intermittent shock tunnel process in which the particles are accelerated in a high enthalpy nozzle flow with high reservoir conditions. Presented are experimental results of the operation with nozzle in which the device generates very high particle velocities up to a frequency of 5 Hz. A variable particle injection system allows injection of the powder at any point along the nozzle axis to control particle temperature and velocity. A hydrogen/oxygen mixture is used in the experiments. Operation performance and nozzle outflow are characterized by time resolved pressure measurements. The particle conditions inside the nozzle and in the nozzle exit plane are calculated with a quasi-one-dimensional WENO-code of high order. For the experiments, particle velocity is obtained by particle image velocimetry, and particle concentration is qualitatively determined by a laser extinction method. The powders used are WC-Co(88/12), NiCr(80/20), Al2O3, and Cu. Different substrate/powder combinations for varying particle injection positions have been investigated by light microscopy and measurements of microhardness.

  18. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  19. Computation of flow pressure fields from magnetic resonance velocity mapping.

    PubMed

    Yang, G Z; Kilner, P J; Wood, N B; Underwood, S R; Firmin, D N

    1996-10-01

    Magnetic resonance phase velocity mapping has unrivalled capacities for acquiring in vivo multi-directional blood flow information. In this study, the authors set out to derive both spatial and temporal components of acceleration, and hence differences of pressure in a flow field using cine magnetic resonance velocity data. An efficient numerical algorithm based on the Navier-Stokes equations for incompressible Newtonian fluid was used. The computational approach was validated with in vitro flow phantoms. This work aims to contribute to a better understanding of cardiovascular dynamics and to serve as a basis for investigating pulsatile pressure/flow relationships associated with normal and impaired cardiovascular function. PMID:8892202

  20. Cardiac deformation recovery via incompressible transformation decomposition

    NASA Astrophysics Data System (ADS)

    Skrinjar, Oskar; Bistoque, Arnaud

    2005-04-01

    This paper presents a method for automated deformation recovery of the left and right ventricular wall from a time sequence of anatomical images of the heart. The deformation is recovered within the heart wall, i.e. it is not limited only to the epicardium and endocardium. Most of the suggested methods either ignore or approximately model incompressibility of the heart wall. This physical property of the cardiac muscle is mathematically guaranteed to be satisfied by the proposed method. A scheme for decomposition of a complex incompressible geometric transformation into simpler components and its application to cardiac deformation recovery is presented. A general case as well as an application specific solution is discussed. Furthermore, the manipulation of the constructed incompressible transformations, including the computation of the inverse transformation, is computationally inexpensive. The presented method is mathematically guaranteed to generate incompressible transformations which are experimentally shown to be a very good approximation of actual cardiac deformations. The transformation representation has a relatively small number of parameters which leads to a fast deformation recovery. The approach was tested on six sequences of two-dimensional short-axis cardiac MR images. The cardiac deformation was recovered with an average error of 1.1 pixel. The method is directly extendable to three dimensions and to the entire heart.

  1. The Hamiltonian description of incompressible fluid ellipsoids

    SciTech Connect

    Morrison, P.J. Lebovitz, Norman R.; Biello, Joseph A.

    2009-08-15

    We construct the noncanonical Poisson bracket associated with the phase space of first order moments of the velocity field and quadratic moments of the density of a fluid with a free-boundary, constrained by the condition of incompressibility. Two methods are used to obtain the bracket, both based on Dirac's procedure for incorporating constraints. First, the Poisson bracket of moments of the unconstrained Euler equations is used to construct a Dirac bracket, with Casimir invariants corresponding to volume preservation and incompressibility. Second, the Dirac procedure is applied directly to the continuum, noncanonical Poisson bracket that describes the compressible Euler equations, and the moment reduction is applied to this bracket. When the Hamiltonian can be expressed exactly in terms of these moments, a closure is achieved and the resulting finite-dimensional Hamiltonian system provides exact solutions of Euler's equations. This is shown to be the case for the classical, incompressible Riemann ellipsoids, which have velocities that vary linearly with position and have constant density within an ellipsoidal boundary. The incompressible, noncanonical Poisson bracket differs from its counterpart for the compressible case in that it is not of Lie-Poisson form.

  2. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC.

  3. Accelerating the Gauss-Seidel Power Flow Solver on a High Performance Reconfigurable Computer

    SciTech Connect

    Byun, Jong-Ho; Ravindran, Arun; Mukherjee, Arindam; Joshi, Bharat; Chassin, David P.

    2009-09-01

    The computationally intensive power flow problem determines the voltage magnitude and phase angle at each bus in a power system for hundreds of thousands of buses under balanced three-phase steady-state conditions. We report an FPGA acceleration of the Gauss-Seidel based power flow solver employed in the transmission module of the GridLAB-D power distribution simulator and analysis tool. The prototype hardware is implemented on an SGI Altix-RASC system equipped with a Xilinx Virtex II 6000 FPGA. Due to capacity limitations of the FPGA, only the bus voltage calculations of the power network are implemented on hardware while the branch current calculations are implemented in software. For a 200,000 bus system, the bus voltage calculation on the FPGA achieves a 48x speed-up with PQ buses and a 62 times for PV over an equivalent sequential software implementation. The average overall speed up of the FPGA-CPU implementation with 100 iterations of the Gauss-Seidel power solver is 2.6x over a software implementation, with the branch calculations on the CPU accounting for 85% of the total execution time. The FPGA-CPU implementation also shows linear scaling with increase in the size of the input power network.

  4. Accelerated Molecular Dynamics Simulation of Hypersonic Flow Features in Dilute Gases

    NASA Astrophysics Data System (ADS)

    Schwartzentruber, Thomas; Valentini, Paolo

    2009-11-01

    Accurate simulation of high-altitude hypersonic flows requires advanced physical models capable of predicting the transfer of energy between translational, rotational, vibrational, and chemical modes of a gas in strong thermochemical non-equilibrium. A combined Event-Driven / Time-Driven (ED/TD) Molecular Dynamics (MD) algorithm is presented that greatly accelerates the MD simulation of dilute gases. The goal of this research is to utilize advances in computational chemistry to study thermochemical non-equilibrium processes in hypersonic flows. The ED/TD MD method identifies impending collisions (including multi-body collisions) and advances molecules directly to their next interaction, however, then integrates each interaction accurately using an arbitrary interatomic potential via conventional MD with small timesteps. First, the ED/TD MD algorithm and efficiency will be detailed. Next, ED/TD MD simulations of normal shock waves in dilute argon will be validated with experiment and direct simulation Monte Carlo simulations employing the variable-hard-sphere collision model. Profiling of the code reveals that the relative computational time required for the MD integration of collisions is extremely low and the potential for incorporating advanced classical and first-principles interatomic potentials within the ED/TD MD method will be discussed.

  5. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC. PMID:24009129

  6. Linear analysis of incompressible Rayleigh-Taylor instability in solids.

    PubMed

    Piriz, A R; Cela, J J López; Tahir, N A

    2009-10-01

    The study of the linear stage of the incompressible Rayleigh-Taylor instability in elastic-plastic solids is performed by considering thick plates under a constant acceleration that is also uniform except for a small sinusoidal ripple in the horizontal plane. The analysis is carried out by using an analytical model based on the Newton second law and it is complemented with extensive two-dimensional numerical simulations. The conditions for marginal stability that determine the instability threshold are derived. Besides, the boundary for the transition from the elastic to the plastic regime is obtained and it is demonstrated that such a transition is not a sufficient condition for instability. The model yields complete analytical solutions for the perturbation amplitude evolution and reveals the main physical process that governs the instability. The theory is in general agreement with the numerical simulations and provides useful quantitative results. Implications for high-energy-density-physics experiments are also discussed.

  7. Linear analysis of incompressible Rayleigh-Taylor instability in solids

    SciTech Connect

    Piriz, A. R.; Lopez Cela, J. J.; Tahir, N. A.

    2009-10-15

    The study of the linear stage of the incompressible Rayleigh-Taylor instability in elastic-plastic solids is performed by considering thick plates under a constant acceleration that is also uniform except for a small sinusoidal ripple in the horizontal plane. The analysis is carried out by using an analytical model based on the Newton second law and it is complemented with extensive two-dimensional numerical simulations. The conditions for marginal stability that determine the instability threshold are derived. Besides, the boundary for the transition from the elastic to the plastic regime is obtained and it is demonstrated that such a transition is not a sufficient condition for instability. The model yields complete analytical solutions for the perturbation amplitude evolution and reveals the main physical process that governs the instability. The theory is in general agreement with the numerical simulations and provides useful quantitative results. Implications for high-energy-density-physics experiments are also discussed.

  8. Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines

    NASA Astrophysics Data System (ADS)

    Faug, Thierry

    2015-12-01

    In the present paper, flows of granular materials impacting wall-like obstacles down inclines are described by depth-averaged analytic solutions. Particular attention is paid to extending the existing depth-averaged equations initially developed for frictionless and incompressible fluids down a horizontal plane. The effects of the gravitational acceleration along the slope, and of the retarding acceleration caused by friction as well, are systematically taken into account. The analytic solutions are then used to revisit existing data on rigid walls impacted by granular flows. This approach allows establishing a complete phase diagram for granular flow-wall interaction.

  9. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    SciTech Connect

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimes fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)

  10. Method for (236)U Determination in Seawater Using Flow Injection Extraction Chromatography and Accelerator Mass Spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Steier, Peter; Nielsen, Sven; Golser, Robin

    2015-07-21

    An automated analytical method implemented in a flow injection (FI) system was developed for rapid determination of (236)U in 10 L seawater samples. (238)U was used as a chemical yield tracer for the whole procedure, in which extraction chromatography (UTEVA) was exploited to purify uranium, after an effective iron hydroxide coprecipitation. Accelerator mass spectrometry (AMS) was applied for quantifying the (236)U/(238)U ratio, and inductively coupled plasma mass spectrometry (ICPMS) was used to determine the absolute concentration of (238)U; thus, the concentration of (236)U can be calculated. The key experimental parameters affecting the analytical effectiveness were investigated and optimized in order to achieve high chemical yields and simple and rapid analysis as well as low procedure background. Besides, the operational conditions for the target preparation prior to the AMS measurement were optimized, on the basis of studying the coprecipitation behavior of uranium with iron hydroxide. The analytical results indicate that the developed method is simple and robust, providing satisfactory chemical yields (80-100%) and high analysis speed (4 h/sample), which could be an appealing alternative to conventional manual methods for (236)U determination in its tracer application. PMID:26105019

  11. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  12. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    SciTech Connect

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrode surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.

  13. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel

    SciTech Connect

    Johansen, Craig T.; Ciccarelli, Gaby

    2009-02-15

    The effect of blockage ratio on the early phase of the flame acceleration process was investigated in an obstructed square cross-section channel. Flame acceleration was promoted by an array of top-and bottom-surface mounted obstacles that were distributed along the entire channel length at an equal spacing corresponding to one channel height. It was determined that flame acceleration is more pronounced for higher blockage obstacles during the initial stage of flame acceleration up to a flame velocity below the speed of sound of the reactants. The progression of the flame shape and flame area was determined by constructing a series of three-dimensional flame surface models using synchronized orthogonal schlieren images. A novel schlieren based photographic technique was used to visualize the unburned gas flow field ahead of the flame front. A small amount of helium gas is injected into the channel before ignition, and the evolution of the helium diluted unburned gas pocket is tracked simultaneously with the flame front. Using this technique the formation of a vortex downstream of each obstacle was observed. The size of the vortex increases with time until it reaches the channel wall and completely spans the distance between adjacent obstacles. A shear layer develops separating the core flow from the recirculation zone between the obstacles. The evolution of oscillations in centerline flame velocity is discussed in the context of the development of these flow structures in the unburned gas. (author)

  14. Interface waves in almost incompressible elastic materials

    NASA Astrophysics Data System (ADS)

    Virta, Kristoffer; Kreiss, Gunilla

    2015-12-01

    We study the problem of two elastic half-planes in contact and the Stoneley interface wave that may exist at the interface between two different elastic materials, emphasis being put on the case when the half-planes are almost incompressible. We show that numerical simulations involving interface waves require an unexpectedly high number of grid points per wavelength as the materials become more incompressible. Let λ, μ, ρ and λ‧, μ‧, ρ‧ be the Lamé parameters and densities of the first and second half-plane, respectively. A theoretical study shows that if K is a real constant, λ‧ = Kλ, μ‧ = Kμ, ρ‧ = Kρ and μ → 0, then for an accurate solution the required number of grid points per wavelength scales as (μ / λ) - 1 / p, where p is the order of accuracy of the numerical method. This requirement becomes very restrictive close to the incompressible limit μ ≪ λ, especially for lower order methods i.e., a small p. The theoretical findings are supported by numerical experiments that illustrate the demanding resolution requirement as well as the superiority of higher order methods. The scaling is also seen to hold for a more general choice of Lamé parameters. Numerical experiments when one of the half-planes is a vacuum are also presented, where the higher resolution requirement is illustrated in a numerical solution of Lamb's problem.

  15. Coupled energetic models for incompressible nematic elastomers

    NASA Astrophysics Data System (ADS)

    Rubiano, Andrea C.

    We investigate, through methods in the Calculus of Variations, mathematical energetic models for incompressible nematic elastomers. These models are based on the coupling between the neo-classical energy density, developed by Bladon, Warner and Terentjev as an extension of the rubber elasticity theory, with the classical energy density from the Landau-de Gennes theory for uniaxial nematic liquid crystals. A unit-length molecular director of the nematic elastomer and an incompressible deformation are the unknown functions, minimizers of the coupled energy. In contrast to previous mathematical work in this field, the molecular director is not assumed to be constant throughout the domain. After establishing a suitable generalized energetic model for working in Sobolev spaces, we prove lower semi-continuity of the energy. Considering generalized shear deformations motivated by physical experiments on thin film domains, we show the existence of minimizers, and keeping the restriction of incompressibility on the deformation and unit length of the director, we derive weak Euler Lagrange equations satisfied by the minimizers. Additionally, we consider the reduction of the model to a 2-dimensional one and deduce existence results for non-convex energy densities involving terms related to the constraint of volume's preservation . In this case we also find weak Euler-Lagrange equations and prove a partial regularity result.

  16. On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow.

    PubMed

    Parmar, M; Haselbacher, A; Balachandar, S

    2008-06-28

    The unsteady inviscid force on cylinders and spheres in subcritical compressible flow is investigated. In the limit of incompressible flow, the unsteady inviscid force on a cylinder or sphere is the so-called added-mass force that is proportional to the product of the mass displaced by the body and the instantaneous acceleration. In compressible flow, the finite acoustic propagation speed means that the unsteady inviscid force arising from an instantaneously applied constant acceleration develops gradually and reaches steady values only for non-dimensional times c(infinity)t/R approximately >10, where c(infinity) is the freestream speed of sound and R is the radius of the cylinder or sphere. In this limit, an effective added-mass coefficient may be defined. The main conclusion of our study is that the freestream Mach number has a pronounced effect on both the peak value of the unsteady force and the effective added-mass coefficient. At a freestream Mach number of 0.5, the effective added-mass coefficient is about twice as large as the incompressible value for the sphere. Coupled with an impulsive acceleration, the unsteady inviscid force in compressible flow can be more than four times larger than that predicted from incompressible theory. Furthermore, the effect of the ratio of specific heats on the unsteady force becomes more pronounced as the Mach number increases. PMID:18348968

  17. Magnetogasdynamic compression of a coaxial plasma accelerator flow for micrometeoroid simulation.

    NASA Technical Reports Server (NTRS)

    Igenbergs, E. B.; Shriver, E. L.

    1973-01-01

    A new configuration of a coaxial plasma accelerator with self-energized magnetic compressor coil attached is described. It is shown that the circuit may be treated theoretically by analyzing an equivalent circuit mesh. The results obtained from the theoretical analysis are shown to compare favorably with the results measured experimentally. Using this accelerator configuration, glass beads of 125-micron diameter were accelerated to velocities as high as 11 km/sec, while 700-micron-diam glass beads were accelerated to velocities as high as 5 km/sec. The velocities are within the hypervelocity regime of meteroids.

  18. Magnetogasdynamic compression of a coaxial plasma accelerator flow for micrometeoroid simulation

    NASA Technical Reports Server (NTRS)

    Igenbergs, E. B.; Shriver, E. L.

    1974-01-01

    A new configuration of a coaxial plasma accelerator with self-energized magnetic compressor coil attached is described. It is shown that the circuit may be treated theoretically by analyzing an equivalent circuit mesh. The results obtained from the theoretical analysis compare favorably with the results measured experimentally. Using this accelerator configuration, glass beads of 125 micron diameter were accelerated to velocities as high as 11 kilometers per second, while 700 micron diameter glass beads were accelerated to velocities as high as 5 kilometers per second. The velocities are within the hypervelocity regime of meteoroids.

  19. Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: Inertial waves

    SciTech Connect

    Nurijanyan, S.; Vegt, J.J.W. van der; Bokhove, O.

    2013-05-15

    A discontinuous Galerkin finite element method (DGFEM) has been developed and tested for the linear, three-dimensional, rotating incompressible Euler equations. These equations admit complicated wave solutions, which poses numerical challenges. These challenges concern: (i) discretisation of a divergence-free velocity field; (ii) discretisation of geostrophic boundary conditions combined with no-normal flow at solid walls; (iii) discretisation of the conserved, Hamiltonian dynamics of the inertial-waves; and, (iv) large-scale computational demands owing to the three-dimensional nature of inertial-wave dynamics and possibly its narrow zones of chaotic attraction. These issues have been resolved, for example: (i) by employing Dirac’s method of constrained Hamiltonian dynamics to our DGFEM for linear, compressible flows, thus enforcing the incompressibility constraints; (ii) by enforcing no-normal flow at solid walls in a weak form and geostrophic tangential flow along the wall; and, (iii) by applying a symplectic time discretisation. We compared our simulations with exact solutions of three-dimensional incompressible flows, in (non) rotating periodic and partly periodic cuboids (Poincaré waves). Additional verifications concerned semi-analytical eigenmode solutions in rotating cuboids with solid walls. Finally, a simulation in a tilted rotating tank, yielding more complicated wave dynamics, demonstrates the potential of our new method.

  20. Vulcanian eruptions: experimental insights into leading shock waves, initial acceleration, and flow evolution

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Chojnicki, K. N.; Phillips, J. C.

    2008-12-01

    Vulcanian eruptions are frequent, small-scale, short-lived explosions that occur as a result of rapid decompression of a volcanic conduit. Results of two relevant experimental studies are presented here. The first examines the initial burst phase and leading shock waves via 1-D shock-tube experiments in which mixtures of air and spherical particles are rapidly decompressed into a low-pressure environment via diaphragm rupture. Maximum gas-particle mixture velocities decrease with increasing particle diameter for a given initial pressure ratio across the diaphragm. Experiments with particles produce weaker and more slowly propagating shocks relative to experiments with air alone. Comparison of experimental data to theoretical and computational solutions leads to two key results: 1) the effective interphase drag coefficient during high- acceleration stages of an eruption is less than values previously used in multiphase models of explosive eruptions; therefore a new formulation is prescribed; and 2) leading shock waves are formed by the gas phase alone, not the solid-gas mixture, with shock wave characteristics reflecting losses due to drag between air and particles; therefore shock wave calculations should consider these losses rather than treat the system as a perfectly-coupled pseudogas. The second set of experiments examines the subsequent propagation of the pyroclastic jet or plume by injecting discrete pulses of pressurized (negatively or positively) buoyant fluids into fresh water. Dimensional analysis, based on two source parameters, total injected momentum and total injected buoyancy, identifies a universal scaling relationship for the initial propagation of short-duration impulsive flows; the non- dimensional, time-varying velocity varies as the square root of the time-varying, non-dimensional ratio of source parameters. The relationship successfully describes the experimental trends over a wide range of initial conditions as well as flow propagation of

  1. Simulation of plasma flows in self-field Lorentz force accelerators

    NASA Astrophysics Data System (ADS)

    Sankaran, Kameshwaran

    2005-07-01

    A characteristics-based scheme for the solution of ideal MHD equations was developed, and its ability to capture time-dependent discontinuities monotonically, as well as maintain force-free equilibrium, was demonstrated. Detailed models of classical transport, real equations of state, multi-level ionization models, anomalous transport, and multi-temperature effects for argon and lithium plasmas were implemented in this code. The entire set of equations was solved on non-orthogonal meshes, using parallel computers, to provide realistic description of flowfields in various thruster configurations. The calculated flowfield in gas-fed magnetoplasmadynamic thrusters (MPDT), such as the full-scale benchmark thruster (FSBT), compared favorably with measurements. These simulations provided insight into some aspects of FSBT operation, such as the weak role of the anode geometry in affecting the coefficient of thrust, the predominantly electromagnetic nature of the thrust at nominal operating conditions, and the importance of the near-cathode region in energy dissipation. Furthermore, the simulated structure of the flow embodied a number of photographically-recorded features of the FSBT discharge. Based on the confidence gained from its success with gas-fed MPDT flows, this code was then used to study a promising high-power spacecraft thruster, the lithium Lorentz force accelerator (LiLFA), in order to uncover its interior plasma properties and to obtain insight into underlying physical processes that had been poorly understood. The simulated flowfields of density, velocity, ionization, and anomalous resistivity were shown to change qualitatively with the total current. The simulations show the presence of a velocity reducing shock at low current, which disappeared as the current was increased above the value corresponding to nominal operation. The breakdown and scaling of the various components of thrust and power were revealed. The line on which the magnetic pressure

  2. Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    NASA Astrophysics Data System (ADS)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-01-01

    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the methane mechanism, RKC-GPU performed more than 65 and 11 times faster, for problem sizes consisting of 131,072 ODEs and larger, than the single- and six-core RKC-CPU versions, and up to 57 times faster than the six-core CPU-based implicit VODE algorithm on 65,536 ODEs. In the presence of more severe stiffness, such as ethylene oxidation (111 species and 1566 irreversible reactions), RKC-GPU performed more than 17 times faster than RKC-CPU on six cores for 32,768 ODEs and larger, and at best 4.5 times faster than VODE on six CPU cores for 65,536 ODEs. With a larger time step size, RKC-GPU performed at best 2.5 times slower than six-core VODE for 8192 ODEs and larger. Therefore, the need for developing new strategies for integrating stiff chemistry on GPUs was discussed.

  3. Least-squares solution of incompressible Navier-Stokes equations with the p-version of finite elements

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Sonnad, Vijay

    1991-01-01

    A p-version of the least squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady state incompressible viscous flow problems. The resulting system of symmetric and positive definite linear equations can be solved satisfactorily with the conjugate gradient method. In conjunction with the use of rapid operator application which avoids the formation of either element of global matrices, it is possible to achieve a highly compact and efficient solution scheme for the incompressible Navier-Stokes equations. Numerical results are presented for two-dimensional flow over a backward facing step. The effectiveness of simple outflow boundary conditions is also demonstrated.

  4. On the local acceleration and flow trajectory of jet flows from circular and semi-circular pipes via 3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Liberzon, Alex; Chamorro, Leonardo P.

    2015-11-01

    The distinctive differences between two jet flows that share the same hydraulic diameter dh = 0.01 m and Re ~ 6000, but different (nozzle) shape are explored via 3D Particle Tracking Velocimetry using OpenPTV (http://www.openptv.net). The two jets are formed from circular and semicircular pipes and released in a quiescent water tank of 40 dh height, 40 dh wide, and 200 dh long. The recirculating system is seeded with 100 μm particles, where flow measurements are performed in the intermediate flow field (14.5 < x /dh <18.5) at 550Hz for a total of ~ 30,000 frames. Analysis is focused on the spatial distribution of the local flow acceleration and curvature of the Lagrangian trajectories. The velocity and acceleration of particles are estimated by low-pass filtering their position with a moving cubic spline fitting, while the curvature is obtained from the Frenet-Serret equations. Probability density functions (p.d.f.) of these quantities are obtained at various sub-volumes containing a given streamwise velocity range, and compared between the two cases to evaluate the memory effects in the intermediate flow field.

  5. Acceleration of energetic charged particles: Shocks, reconnection or turbulence?

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.

    2012-05-01

    Acceleration of energetic charged charged particles, most-often with power-law energy spectra occurs everywhere is space where particle-particle collision mean free paths are significantly larger than their gyro-radii. Shocks, reconnection events and turbulence have variously been proposed as acceleration mechanisms, and each must currently be considered a viable mechanism. Shocks have the advantage that they produce naturally power-law spectra in the observed range which are not very sensitive to the parameters. They are usually also fast accelerators. I first discuss the constraints which observations place on the acceleration mechanisms and show that there are both temporal and spatial constraints. Stochastic acceleration tends to be slow, so the rate of acceleration is important. In the inner heliosphere, this rate must exceed the rate of adiabatic cooling ~ 2Vw/r, where Vw is the radial solar-wind velocity. Acceleration of anomalous cosmic rays (ACR) in the heliosheath must occur on a time scale of on year to avoid producing too many multiply charged ACR. It is shown that here, stochastic acceleration has difficulties in the inner heliosheath. Reconnection events are essentially incompressible, so the divergence of the flow velocity is nearly zero, and the Parker equation would give little acceleration. Acceleration at reconnection therefore must go beyond the Parker equation - either by invoking large pitch-angle anisotropies or by extending the equation to higher order in the flow speed relative to the particle speed. An approach to using an extension of Parker's equation is discussed. Diffusive shock acceleration at the heliospheric termination shock is also discussed. It is suggested that inclusion of upstream turbulence and shock geometry provides reasonable solutions to the perceived problems with this mechanism. Finally, observation evidence is presented which suggests, strongly, that the acceleration of the ACR occurs in the inner heliosphere, not far

  6. The calculation of incompressible separated turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Kogan, A.; Migemi, S.

    1990-02-01

    The algebraic turbulent model of Baldwin-Lomax was incorporated into the incompressible Navier-Stokes code FIDAP. This model has been extensively tested in the past in finite difference codes. We believe that the incorporation of the model into the finite element code also has resulted in a practical method to compute a variety of separated turbulent two-dimensional flows. Firstly, the model is used to compute the attached flow about an airfoil. Next, the application of the model to separated flows is presented, by computing the flows at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, steady stall and C(sub L MAX). As a difficult test of the model, we compute the laminar separation bubble development directly, using the full Navier-Stokes finite elements code. As far as we know, this approach has not been reported previously. The importance of using an appropriate upwinding is discussed. When possible, comparison of computed results with experiments is presented and the agreement is good.

  7. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

    SciTech Connect

    Pesch, L. Vegt, J.J.W. van der

    2008-05-10

    Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The well-defined incompressible limit relies on using pressure primitive or entropy variables. In particular entropy variables can provide numerical methods with attractive properties, e.g. fulfillment of the second law of thermodynamics. We show how a discontinuous Galerkin finite element discretization previously used for compressible flow with an ideal gas equation of state can be extended for general fluids. We also examine which components of the numerical method have to be changed or adapted. Especially, we investigate different possibilities of solving the nonlinear algebraic system with a pseudo-time iteration. Numerical results highlight the applicability of the method for various fluids.

  8. Quantification of hepatic blood flow using a high-resolution phase-contrast MRI sequence with compressed sensing acceleration.

    PubMed

    Dyvorne, Hadrien A; Knight-Greenfield, Ashley; Besa, Cecilia; Cooper, Nancy; Garcia-Flores, Julio; Schiano, Thomas D; Markl, Michael; Taouli, Bachir

    2015-03-01

    OBJECTIVE. The objective of our study was to evaluate the performance of a high-spatial-resolution 2D phase-contrast (PC) MRI technique accelerated with compressed sensing for portal vein (PV) and hepatic artery (HA) flow quantification in comparison with a standard PC MRI sequence. SUBJECTS AND METHODS. In this prospective study, two PC MRI sequences were compared, one with parallel imaging acceleration and low spatial resolution (generalized autocalibrating partial parallel acquisition [GRAPPA]) and one with compressed sensing acceleration and high spatial resolution (sparse). Seventy-six patients were assessed, including 37 patients with cirrhosis. Two observers evaluated PC image quality. Quantitative analyses yielded a mean velocity, flow, and vessel area for the PV and HA and an arterial fraction. The PC techniques were compared using the paired Wilcoxon test and Bland-Altman statistics. The sensitivity of the flow parameters to the severity of cirrhosis was also assessed. RESULTS. Vessel delineation was significantly improved using the PC sparse sequence (p < 0.034). For both in vitro and in vivo measurements, PC sparse yielded lower estimates for vessel area and flow, and larger differences between PC GRAPPA and PC sparse were observed in the HA. PV velocity and flow were significantly lower in patients with cirrhosis on both PC sparse (p < 0.001 and p = 0.042, respectively) and PC GRAPPA (p < 0.001 and p = 0.005, respectively). PV velocity correlated negatively with Child-Pugh class (r = -0.50, p < 0.001), whereas the arterial fraction measured with PC sparse was higher in patients with Child-Pugh class B or C disease than in those with Child-Pugh class A disease, with a trend toward significance (p = 0.055). CONCLUSION. A high-spatial-resolution highly accelerated compressed sensing technique (PC sparse) allows total hepatic blood flow measurements obtained in 1 breath-hold, provides improved delineation of the hepatic vessels compared with a standard PC

  9. INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1987-01-01

    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.

  10. Dynamics of the two-dimensional ideal incompressible fluid and Casimirs

    NASA Astrophysics Data System (ADS)

    Dymnikov, V. P.

    2016-07-01

    Problems are considered in which the role of Casimirs in forming dynamics of the two-dimensional ideal incompressible fluid is basically studied; in particular, the conditions are formulated which arise in the stability problem of two-dimensional flows in the presence of Casimirs. Some general approaches to the construction of difference schemes for solving equations of two-dimensional fluid which possess the given Casimirs are considered.

  11. Numerical solution of the two-dimensional time-dependent incompressible Euler equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Taylor, Lafayette K.

    1994-01-01

    A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.

  12. Design desiderata for a laminar flow quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-01-01

    The Pierce design acceleration column has been widely used to accelerate high current beams. It operates well in the space charge limited condition, and will produce beams with a temperature comparable with that of the source. It is restricted in current density, however, by the Child-Langmuir relation. If the ion source itself is not the limiting constraint, then the achievable current density is limited by the electric field at which sparking occurs. One sees clearly that the achievable current density decreases as one goes to higher voltages. This can be easily overcome by using electrostatic quadrupole focusing in the acceleration column. Now it can be shown that the space charge limited current density in a constant energy quadrupole transport channel is greater than that if one assumes that the electric fields on the quadrupoles can be as high in the ion source extraction electric fields. In practice, this is a conservative assumption. It follows that if the beam can be transported a large distance at the C-L current density limit, it can surely be accelerated as it goes from quadrupole to quadrupole. Hence, the necessity of having a high gradient acceleration column goes away.

  13. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA. PMID:27587174

  14. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    PubMed

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  15. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  16. Signature of recent ice flow acceleration in the radar attenuation and temperature structure of Thwaites Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Schroeder, Dustin; Seroussi, Helene; Chu, Winnie; Young, Duncan

    2016-04-01

    Englacial temperature structure exerts significant control on the rheology and flow of glaciers and ice sheets. It is however logistically prohibitive to directly measure at the glacier-catchment scale. As a result, numerical ice sheet models often make broad assumptions about englacial temperatures based on contemporary ice surface velocities. However, this assumption might break down in regions - like the Amundsen Sea Embayment - that have experienced recent acceleration since temperature and rheology do not respond instantaneously to changes in ice flow regime. To address this challenge, we present a new technique for estimating englacial attenuation rates using bed echoes from radar sounding data. We apply this technique to an airborne survey of Thwaites Glacier and compare the results to temperature and attenuation structures modeled using the numerical Ice Sheet System Model (ISSM) for three surface velocity scenarios. These include contemporary surface velocities, surface velocities from the early 1970s, and ice-sheet balance velocities. We find that the observed attenuation structure is much closer to those modeled with pre-acceleration surface velocities. This suggests that ice sheet models initialized with contemporary surface velocities are likely overestimating the temperature and underestimating the rheology of the fast-flowing trunk and grounding zone of Thwaites Glacier.

  17. A numerical and experimental investigation of the flow acceleration region proximal to an orifice.

    PubMed

    Anayiotos, A S; Perry, G J; Myers, J G; Green, D W; Fan, P H; Nanda, N C

    1995-01-01

    Attempts to quantify valvular regurgitation have recently been focused on the proximal orifice flow field. A complete description of the proximal orifice flow field is provided in this investigation. A steady state in vitro model accessible by both color Doppler ultrasound (CDU) and laser Doppler velocimetry (LDV) was utilized. Velocities for varying flow rates and orifices were calculated by finite element modeling (FEM), by LDV and by CDU. The steady flow model was composed of circular orifices of 3, 5 and 10 mm diameters at flow rates from 0.7 to 10 L/min. Regurgitant flow rates were calculated from the proximal CDU data by two separate methods. The first approach utilized angle corrected velocities while the second approach utilized only velocities which did not require angle correction (centerline velocities). Both methods correlated well with known flow rates (y = 0.97x -0.09, r = 0.98, SEE = 0.45, p < 0.0001; and y = 1.0x + 0.07, r = 0.99, SEE = 0.27, p < 0.0001, respectively) and were superior to results obtained by assuming a hemispherical geometry as is done in the aliasing technique. The methodology provides a complete analysis of the proximal flow field and involves fewer geometric assumptions than the aliasing approach. This may prove to be an advantage when analyzing in vivo flow fields with complex, uncertain geometry. PMID:7571143

  18. Incompressible Polaritons in a Flat Band.

    PubMed

    Biondi, Matteo; van Nieuwenburg, Evert P L; Blatter, Gianni; Huber, Sebastian D; Schmidt, Sebastian

    2015-10-01

    We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ.

  19. Incompressible Polaritons in a Flat Band.

    PubMed

    Biondi, Matteo; van Nieuwenburg, Evert P L; Blatter, Gianni; Huber, Sebastian D; Schmidt, Sebastian

    2015-10-01

    We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ. PMID:26551811

  20. Incompressible magnetohydrodynamic surface waves - Nonlinear aspects

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1987-01-01

    The nonlinear properties of MHD surface waves in the solar atmosphere are investigated analytically, assuming that the fluid is incompressible and that the waves are confined to a single surface, with semiinfinite regions on both sides. The governing equations are derived in detail, and qualitative results are presented in a graph. For propagating waves, second-order terms in the wave amplitude are found to lead to wave steepening at leading or trailing edges, the steepening rate becoming very large as the threshold for the linear Kelvin-Helmholtz instability is approached. Second-order effects on standing waves include crest and trough sharpening (increasing with time), a current independent of distance on the surface but decreasing exponentially with distance from the surface, and pressure-field fluctuations of infinite extent. It is suggested that these effects could account for a large fraction of solar-atmosphere heating.

  1. Incompressible Polaritons in a Flat Band

    NASA Astrophysics Data System (ADS)

    Biondi, Matteo; van Nieuwenburg, Evert P. L.; Blatter, Gianni; Huber, Sebastian D.; Schmidt, Sebastian

    2015-10-01

    We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ.

  2. CUDA Simulation of Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John V.; Shum, Victor; Fu, Terry

    2011-01-01

    We discuss very fast Compute Unified Device Architecture (CUDA) simulations of ideal homogeneous incompressible turbulence based on Fourier models. These models have associated statistical theories that predict that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. Prior numerical simulations have shown that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We review the theoretical basis of this "broken ergodicity" as applied to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence. Our new simulations examine the phenomenon of broken ergodicity through very long time and large grid size runs performed on a state-of-the-art CUDA platform. Results comparing various CUDA hardware configurations and grid sizes are discussed. NS and MHD results are compared.

  3. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  4. Direct differentiation of the quasi-incompressible fluid formulation of fluid-structure interaction using the PFEM

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; Scott, Michael H.

    2016-07-01

    Accurate and efficient response sensitivities for fluid-structure interaction (FSI) simulations are important for assessing the uncertain response of coastal and off-shore structures to hydrodynamic loading. To compute gradients efficiently via the direct differentiation method (DDM) for the fully incompressible fluid formulation, approximations of the sensitivity equations are necessary, leading to inaccuracies of the computed gradients when the geometry of the fluid mesh changes rapidly between successive time steps or the fluid viscosity is nonzero. To maintain accuracy of the sensitivity computations, a quasi-incompressible fluid is assumed for the response analysis of FSI using the particle finite element method and DDM is applied to this formulation, resulting in linearized equations for the response sensitivity that are consistent with those used to compute the response. Both the response and the response sensitivity can be solved using the same unified fractional step method. FSI simulations show that although the response using the quasi-incompressible and incompressible fluid formulations is similar, only the quasi-incompressible approach gives accurate response sensitivity for viscous, turbulent flows regardless of time step size.

  5. Flow and heat transfer behavior in transitional boundary layers with streamwise acceleration

    SciTech Connect

    Keller, F.J.; Wang, T.

    1996-04-01

    The effects of streamwise acceleration on a two-dimensional heated boundary layer undergoing natural laminar-turbulent transition were investigated with detailed measurements of momentum and thermal transport phenomena. Tests were conducted over a heated flat wall with zero pressure-gradient and three levels of streamwise acceleration: K {equivalent_to} ({nu}/{bar U}{sub {infinity}}{sup 2}) (d{bar U}{sub {infinity}}/dx) = 0.07, 0.16, and 0.25 {times} 10{sup {minus}6}. Free-stream turbulence intensities were maintained at approximately 0.5 percent for the baseline case and 0.4 percent for the accelerating cases. A miniature three-wire probe was used to measure mean velocity and temperature profiles, Reynolds stresses, and Reynolds heat fluxes. Transition onset and end were inferred from Stanton numbers and skin-friction coefficients. The results indicate that mild acceleration delays transition onset and increases transition length both in terms of distance, x, and Reynolds number based on x. Transition onset and length are relatively insensitive to acceleration in terms of momentum thickness Reynolds number. This is supported by the boundary layer thickness and integral parameters, which indicate that a favorable pressure gradient suppresses boundary layer growth and development in the transition region. Heat transfer rates and temperature profiles in the late-transition and early-turbulent regions lag behind the development of wall shear stress and velocity profiles. This lag increases as K increases, indicating that the evolution of the heat transport is slower than that of the momentum transport. Comparison of the evolution of rms temperature fluctuations to the evolution of Reynolds normal stresses indicates a similar lag in the rms temperature fluctuations.

  6. Methodology and measures for preventing unacceptable flow-accelerated corrosion thinning of pipelines and equipment of NPP power generating units

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.

    2016-10-01

    Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated

  7. Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1995-01-01

    For a computational flow simulation tool to be useful in a design environment, it must be very robust and efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes are compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi relaxation, Gauss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum residual method preconditioned with each of the three other schemes. The efficiency of the schemes is measured in terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other methods by at least a factor of 2.

  8. Users' Manual for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wilbur

    2005-01-01

    The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.

  9. Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Imai, Yohsuke; Aoki, Takayuki; Takizawa, Kenji

    2008-02-01

    The proposed scheme, which is a conservative form of the interpolated differential operator scheme (IDO-CF), can provide high accurate solutions for both compressible and incompressible fluid equations. Spatial discretizations with fourth-order accuracy are derived from interpolation functions locally constructed by both cell-integrated values and point values. These values are coupled and time-integrated by solving fluid equations in the flux forms for the cell-integrated values and in the derivative forms for the point values. The IDO-CF scheme exactly conserves mass, momentum, and energy, retaining the high resolution more than the non-conservative form of the IDO scheme. A direct numerical simulation of turbulence is carried out with comparable accuracy to that of spectral methods. Benchmark tests of Riemann problems and lid-driven cavity flows show that the IDO-CF scheme is immensely promising in compressible and incompressible fluid dynamics studies.

  10. Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems

    NASA Astrophysics Data System (ADS)

    Serson, D.; Meneghini, J. R.; Sherwin, S. J.

    2016-07-01

    This paper presents methods of including coordinate transformations into the solution of the incompressible Navier-Stokes equations using the velocity-correction scheme, which is commonly used in the numerical solution of unsteady incompressible flows. This is important when the transformation leads to symmetries that allow the use of more efficient numerical techniques, like employing a Fourier expansion to discretize a homogeneous direction. Two different approaches are presented: in the first approach all the influence of the mapping is treated explicitly, while in the second the mapping terms related to convection are treated explicitly, with the pressure and viscous terms treated implicitly. Through numerical results, we demonstrate how these methods maintain the accuracy of the underlying high-order method, and further apply the discretisation strategy to problems where mixed Fourier-spectral/hp element discretisations can be applied, thereby extending the usefulness of this discretisation technique.

  11. The Interplay of Acceleration and Vorticity Fields in the Tip Region of Massively-Separated Flows

    NASA Astrophysics Data System (ADS)

    Rival, David; Kriegseis, Jochen

    2013-11-01

    The influence of seemingly analogous plate kinematics (plunge vs. tow) on instantaneous forces has been investigated. Simultaneous measurements by means of three-dimensional particle tracking velocimetry (3D-PTV) and a six-component force/moment sensor have been performed. Despite identical effective shear-layer velocities and effective angles of attack, the force histories vary between the two cases (plunge and tow). To uncover this discrepancy, a combined analysis of vorticity, Lagrangian (total) fluid acceleration and vortex-force contribution (Lamb vector) has been performed. It is found that leading-edge vortex (LEV) and tip vortex (TV) formation are nearly identical during the acceleration phase for both cases. However, at the end of acceleration the tow LEV rolls off the plate. As such, the development of vortex force also ceases once this roll-off process begins. Also TV strength as well as its relative positioning to the plate surface influences the instantaneous force. Based on a Lamb-vector analysis of the TV, the present work provides insight into the underlying cause-effect relation. Particularly, it is demonstrated that the sensitivity of the resulting vortex-force formation is dependent on the interplay between streamwise vorticity and spanwise (inboard) velocity.

  12. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    PubMed Central

    Trangmar, Steven J.; Chiesa, Scott T.; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K.; Secher, Niels H.

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2. In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2. PMID:26371170

  13. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 .

  14. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . PMID:26371170

  15. A least-squares finite element method for incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan

    1992-01-01

    A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than to a saddle-point problem by the classic mixed method and can thus accommodate equal-order interpolations. This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at Reynolds number up to 900 are presented.

  16. Rayleigh-Benard Simulation using Gas-Kinetic BGK Scheme in the Incompressible Limit

    NASA Technical Reports Server (NTRS)

    Xu, Kun; Lui, Shiu-Hong

    1998-01-01

    In this paper, a gas-kinetic BGK model is constructed for the Rayleigh-Benard thermal convection in the incompressible flow limit, where the flow field and temperature field are described by two coupled BGK models. Since the collision times and pseudo-temperature in the corresponding BGK models can be different, the Prandtl number can be changed to any value instead of a fixed Pr=1 in the original BGK model. The 2D Rayleigh-Benard thermal convection is studied and numerical results are compared with theoretical ones as well as other simulation results.

  17. Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute

    NASA Astrophysics Data System (ADS)

    Sheng, Li-Tsung; Kuo, Chih-Yu; Tai, Yih-Chin; Hsiau, Shu-San

    2011-11-01

    In this study, we detail a method for estimating the flux-averaged solid fraction of a steady granular flows moving down an inclined rectangular chute using velocity measurements from along the perimeter cross section, combined with knowledge of the mass flow rate through the cross section. The chute is 5 cm wide and 150 cm long with an adjustable inclination angle. Four inclination angles, from 27° to 36° at 3° intervals, are tested. This angle range overlaps the internal friction angle of the glass beads, which are 4 mm nominal in diameter. Two slender mirrors are installed at the top and the bottom of the transparent chute to reflect images of the flow down the chute of the two surfaces. This allows photographic recording of the flow with a PIV imaging system and measurement of the flow depth. The mass flow rate can be calibrated simultaneously by collecting the accumulated mass at the chute exit. A linear interpolation scheme is proposed to interpolate the volume flow rate in each section of the chute. Sensitivity analysis suggests that the relative standard deviation of this scheme is about ±6%, i.e., the resultant solid volume fraction is only moderately dependent on the interpolation scheme for the tested cases. This is further confirmed by a direct intercepting method. Compared to the sophisticated magnetic resonance imaging (MRI) or the radioactive positron emission particle tracking (PEPT) methods, the present method is verified as a cost-effective and nonhazardous alternative for ordinary laboratories. Two distinct groups of streamwise dependence of the solid fractions are found. They are separated by the inclination angle of the chute and agreed with the internal friction angle. In the experiments using the two smaller inclination angles, the solid fraction ratios are found to be linear functions of the streamwise distance, while for the two larger inclination angles, the ratios have a nonlinear concave shape. All decrease with growing downstream

  18. Accelerating flow propagator measurements for the investigation of reactive transport in porous media

    NASA Astrophysics Data System (ADS)

    Colbourne, A. A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2016-11-01

    NMR propagator measurements are widely used for identifying the distribution of molecular displacements over a given observation time, characterising a flowing system. However, where high q-space resolution is required, the experiments are time consuming and therefore unsuited to the study of dynamic systems. Here, it is shown that with an appropriately sampled subset of the q-space points in a high-resolution flow propagator measurement, one can quickly and robustly reconstruct the fully sampled propagator through interpolation of the acquired raw data. It was found that exponentially sampling ∼4% of the original data-points allowed a reconstruction with the deviation from the fully sampled propagator below the noise level, in this case reducing the required experimental time from ∼2.8 h to <7 min. As a demonstration, this approach is applied to observe the temporal evolution of the reactive flow of acid through an Estaillades rock core plug. It is shown that 'wormhole' formation in the rock core plug provides a channel for liquid flow such that the remaining pore space is by-passed, thereby causing the flow velocity of the liquid in the remaining part of the plug to become stagnant. The propagator measurements are supported by both 1D profiles and 2D imaging data. Such insights are of importance in understanding well acidisation and CO2 sequestration processes.

  19. Spectrally-resolved forbidden emission lines: new EXES constraints on accelerating flows from cool evolved stars

    NASA Astrophysics Data System (ADS)

    Harper, Graham

    2015-10-01

    Mass loss from cool evolved stars is important for both stellar evolution and galactic chemical evolution, but it still remains poorly understood. Early-M supergiants are important for mass loss studies because they have little dust and molecules in their winds and yet still are able to drive high mass-loss rates like their dusty cousins of later spectral-types. We propose to use SOFIA-EXES to spectrally-resolve with R=50,000 two 25 micron forbidden emission lines from the ground terms of [Fe II] and [S I] in order to trace the wind acceleration and turbulence in the outflows of cool evolved M stars. For early-M supergiants these species will be the dominant ionization stages and trace the outflow mass, and the emission diagnostics can be used to test theoretical models in the crucial wind acceleration region. We also seek to refine the intrinsic wavelength of the [S I] 25.249 micron line so that it can be used as a new astrophysical velocity diagnostic.

  20. Extended neoclassical transport theory for incompressible tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number UpM=[(V∥/vt)+(VEB/vtBp)] of the order of unity for incompressible tokamak plasmas. Here, V∥ is the parallel mass flow, vt is the ion thermal speed, VE is the poloidal E×B drift speed, B is the magnetic field strength, and Bp is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if UpM>1 and S>1. Here, S=[1+cI2Φ''/(Ω0B0)] is the orbit squeezing factor with c the speed of light, I=RBt, R the major radius, Φ the electrostatic potential, B0 the magnetic field strength on the axis, Ω0=eB0/Mc, M the ion mass, e the ion charge, Φ''=d2Φ/dψ2, and ψ the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch-Schlüter transport.

  1. Robust preconditioners for incompressible MHD models

    NASA Astrophysics Data System (ADS)

    Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao

    2016-07-01

    In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.

  2. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  3. Generation of pseudo-waves in the middle atmosphere by flow accelerations due to breaking gravity waves?

    NASA Technical Reports Server (NTRS)

    Jacobson, Raymond A.; Larsen, M. F.

    1993-01-01

    Low frequency, large amplitude waves are often observed at mesospheric heights in radar and lidar wind measurements. A series of individual profiles of 1-hr averages of velocity data that were taken in October 1981 using the MST radar at Poker Flat, Alaska are presented. The vertical wavelength of this wave-like event is about 15 km and has a period close to 10 hours. A clear downward phase propagation can be seen, and so these oscillations are usually, and probably correctly, interpreted as being gravity wave flow perturbations. We investigate an alternative explanation that may also be possible; specifically, we investigate the possibility that the perturbed flow is a pseudo-wave structure produced by mean flow acceleration due to gravity waves propagating upward from below and breaking in the mesosphere. The question is whether effects similar to those that produce the much longer period Quasi-Biennial Oscillation (QBO) in the equatorial stratosphere can produce mesospheric pseudo-waves (MPW) at much shorter periods.

  4. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime. PMID:26633128

  5. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  6. Relationship between European eel Anguilla anguilla infection with non-native parasites and swimming behaviour on encountering accelerating flow.

    PubMed

    Newbold, L R; Hockley, F A; Williams, C F; Cable, J; Reading, A J; Auchterlonie, N; Kemp, P S

    2015-05-01

    The effect of Anguillicola crassus, Pseudodactylogyrus bini and Pseudodactylogyrus anguillae infection on the behaviour of downstream migrating adult European eels Anguilla anguilla as they encountered accelerating water velocity, common at engineered structures where flow is constricted (e.g. weirs and bypass systems), was evaluated in an experimental flume. The probability of reacting to, and rejecting, the velocity gradient was positively related to A. crassus larval, adult and total abundance. High abundance of Pseudodactylogyrus spp. reduced this effect, but A. crassus was the strongest parasitic factor associated with fish behaviour, and abundance was positively related to delay in downstream passage. Delayed downstream migration at hydraulic gradients associated with riverine anthropogenic structures could result in additional energetic expenditure for migrating A. anguilla already challenged by A. crassus infection.

  7. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics.

    PubMed

    Hadjicharalambous, Myrianthi; Lee, Jack; Smith, Nicolas P; Nordsletten, David A

    2014-06-01

    The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce incompressibility and compressibility in models of cardiac mechanics. In this paper we show how both formulations may be equivalently thought of as a weakly penalized system derived from the statically condensed Perturbed Lagrangian formulation, which may be directly discretized maintaining the simplicity of penalty formulations with the convergence characteristics of LM techniques. A modified Shamanskii-Newton-Raphson scheme is introduced to enhance the nonlinear convergence of the weakly penalized system and, exploiting its equivalence, modifications are developed for the penalty form. Focusing on accuracy, we proceed to study the convergence behavior of these approaches using different interpolation schemes for both a simple test problem and more complex models of cardiac mechanics. Our results illustrate the well-known influence of locking phenomena on the penalty approach (particularly for lower order schemes) and its effect on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization of the weakly penalized form produces similar convergence behavior to mixed formulations while avoiding the use of an additional variable. Combining a simple structure which allows the solution of computationally challenging problems with good convergence characteristics, the weakly penalized form provides an accurate and efficient alternative to incompressibility and compressibility in cardiac mechanics.

  8. A displacement-based finite element formulation for incompressible and nearly-incompressible cardiac mechanics

    PubMed Central

    Hadjicharalambous, Myrianthi; Lee, Jack; Smith, Nicolas P.; Nordsletten, David A.

    2014-01-01

    The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce incompressibility and compressibility in models of cardiac mechanics. In this paper we show how both formulations may be equivalently thought of as a weakly penalized system derived from the statically condensed Perturbed Lagrangian formulation, which may be directly discretized maintaining the simplicity of penalty formulations with the convergence characteristics of LM techniques. A modified Shamanskii–Newton–Raphson scheme is introduced to enhance the nonlinear convergence of the weakly penalized system and, exploiting its equivalence, modifications are developed for the penalty form. Focusing on accuracy, we proceed to study the convergence behavior of these approaches using different interpolation schemes for both a simple test problem and more complex models of cardiac mechanics. Our results illustrate the well-known influence of locking phenomena on the penalty approach (particularly for lower order schemes) and its effect on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization of the weakly penalized form produces similar convergence behavior to mixed formulations while avoiding the use of an additional variable. Combining a simple structure which allows the solution of computationally challenging problems with good convergence characteristics, the weakly penalized form provides an accurate and efficient alternative to incompressibility and compressibility in cardiac mechanics. PMID:25187672

  9. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  10. Flow Visualization and Measurements of the Mixing Evolution of a Shock-Accelerated Gas Curtain

    SciTech Connect

    Prestridge, K.; Vorobieff, P.V.; Rightley, P.M.; Benjamin, R.F

    1999-07-19

    We describe a highly-detailed experimental characterization of the impulsively driven Rayleigh-Taylor instability, called the Richtmyer-Meshkov instability. This instability is produced by flowing a diffuse, vertical curtain of heavy gas (SF{sub 6}) into the test section of an air-filled horizontally oriented shock tube. The instability evolves after the passage of a Mach 1.2 shock past the curtain, and the development of the curtain is visualized by seeding the SF{sub 6} with small (d{approximately}0.5 and micro;m) glycol droplets using a modified theatrical fog generator. Because the event lasts only 1 ms and the initial conditions vary from test to test, rapid and complete data acquisition is required in order to characterize the initial and dynamic conditions for each experimental shot. Through the use of a custom-built pulsed Nd: YAG laser, we are able to image the flowfield at seven different times. We acquire a double-pulsed image of the flow with the use of a second pulsed Nd:YAG, which is used to determine the instantaneous velocity field using Particle Image Velocimetry (PIV). During a single experiment, high resolution images of the initial conditions and dynamic conditions are acquired using three CCD cameras. Issues of the fidelity of the flow seeding technique and the reliability of the PIV technique will be addressed. We have successfully provided interesting data through analysis of the images alone, and we are hoping that PIV information will be able to add further physical insight to the evolution of the RM instability and the transition to turbulence.

  11. Aggressive, accelerated subdomain smoothers for Stokes flow with highly heterogeneous viscosity structure

    NASA Astrophysics Data System (ADS)

    Sanan, Patrick; May, Dave; Schenk, Olaf; Rupp, Karl

    2016-04-01

    Scalable solvers for mantle convection and lithospheric dynamics with highly heterogeneous viscosity structure typically require the use of a multigrid method. To leverage new hybrid CPU-accelerator architectures on leadership compute clusters, multigrid hierarchies which can reduce communication and use high available arithmetic intensity are at a premium, motivating more aggressive coarsening schemes and smoothers. We present results of a comparative study of two competitive GPU-enabled subdomain smoothers within an additive Schwarz method. Chebyshev-Jacobi smoothing has been shown to be an effective smoother, and its nature as a low-communication method built from basic linear algebra routines allows its use on a wide range of devices with current libraries. ILU smoothing is also of interest and is known to provide robust smoothing in some cases, but has traditionally been difficult to use in a fine-grained parallel environment. However, a recently-introduced variant by Chow and Patel allows for incomplete factorizations to be computed and applied in these environments, hence allowing us to study them as well. We use and extend the pTatin3D, PETSc, and ViennaCL libraries to integrate promising methods into a realistic application framework.

  12. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    SciTech Connect

    Park, J.J.; Buksa, J.J.

    1994-08-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed.

  13. A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes

    NASA Astrophysics Data System (ADS)

    Ferrer, Esteban; Willden, Richard H. J.

    2012-08-01

    We present the development of a sliding mesh capability for an unsteady high order (order ⩾ 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier-Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular-quadrilateral meshes. A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian-Eulerian form of the incompressible Navier-Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the x-y plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier-Stokes equations on meshes where fixed and rotating elements coexist. In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics. The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier-Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.

  14. First Order Chemical Reaction Effects on Exponentially Accelerated Vertical Plate with Variable Mass Diffusion in the Presence of Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Lakshmi, C. S.

    2015-05-01

    Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.

  15. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    NASA Astrophysics Data System (ADS)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  16. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart

    PubMed Central

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  17. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart.

    PubMed

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered (13)C6-glucose and (13)C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  18. Solutions for incompressible separated boundary layers including viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Carter, J. E.; Wornom, S. F.

    1975-01-01

    Numerical solutions are presented for the laminar and turbulent boundary-layer equations for incompressible flows with separation and reattachment. The separation angularity is avoided by using an inverse technique in which the displacement thickness is prescribed and the pressure is deduced from the resulting solution. The turbulent results appear qualitatively correct despite the use of a two-layer eddy-viscosity model which is generally assumed appropriate only for mild-pressure-gradient flows. A new viscous-inviscid interaction technique is presented in which the inviscid flow is solved inversely by prescribing the pressure from the boundary-layer solution and deducing the new displacement thickness from the solution of a Cauchy integral. Calculations are presented using this interaction procedure for a laminar flow in which separation and reattachment occur on a solid surface.

  19. Source Listings for Computer Code SPIRALI Incompressible, Turbulent Spiral Grooved Cylindrical and Face Seals

    NASA Technical Reports Server (NTRS)

    Walowit, Jed A.; Shapiro, Wibur

    2005-01-01

    This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.

  20. The numerical calculation of the viscous incompressible fluid transfer between contacting surfaces

    NASA Astrophysics Data System (ADS)

    Varepo, L. G.; Panichkin, A. V.; Trapeznikova, O. V.

    2016-04-01

    The movement of the thin layer of the viscous incompressible fluid (VTF) between two cylinders is analysed. The numerical calculations results of VTF transfer from the engaged zone of two cylinders to porous substrates are presented. The VTF (ink) is moved along the rubberized top blanket of the first cylinder. The surface of the second cylinder contacts the substrate with some part of the VTF layer transferred from the first cylinder. The fluid is double bounded by the free surface. Images of cylinders boundary deformation and VTF flow areas are shown.

  1. A deflation based parallel algorithm for spectral element solution of the incompressible Navier-Stokes equations

    SciTech Connect

    Fischer, P.F.

    1996-12-31

    Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.

  2. On the smallest scale for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Henshaw, W. D.; Kreiss, H. O.; Reyna, L. G.

    1988-01-01

    It is proven that for solutions to the two- and three-dimensional incompressible Navier-Stokes equations the minimum scale is inversely proportional to the square root of the Reynolds number based on the kinematic viscosity and the maximum of the velocity gradients. The bounds on the velocity gradients can be obtained for two-dimensional flows, but have to be assumed to be three-dimensional. Numerical results in two dimensions are given which illustrate and substantiate the features of the proof. Implications of the minimum scale result to the decay rate of the energy spectrum are discussed.

  3. On the smallest scale for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Henshaw, W. D.; Reyna, L. G.; Kreiss, H. O.

    1989-01-01

    It is proven that for solutions to the two-and three-dimensional incompressible Navier-Stokes equations, the minimum scale is inversely proportional to the square root of the Reynolds number based on the kinematic viscosity and the maximum of the velocity gradients. The bounds on the velocity gradients can be obtained for two-dimensional flows, but have to be assumed to be three-dimensional. Numerical results in two dimensions are given which illustrate and substantiate the features of the proof. Implications of the minimum scale result to the decay rate of the energy spectrum are discussed.

  4. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries

    NASA Astrophysics Data System (ADS)

    Popinet, Stéphane

    2003-09-01

    An adaptive mesh projection method for the time-dependent incompressible Euler equations is presented. The domain is spatially discretised using quad/octrees and a multilevel Poisson solver is used to obtain the pressure. Complex solid boundaries are represented using a volume-of-fluid approach. Second-order convergence in space and time is demonstrated on regular, statically and dynamically refined grids. The quad/octree discretisation proves to be very flexible and allows accurate and efficient tracking of flow features. The source code of the method implementation is freely available.

  5. Spectral solution of the incompressible Navier-Stokes equations on the connection machine 2. Final report

    SciTech Connect

    Tomboulian, S.; Streett, C.; Macaraeg, M.

    1989-01-01

    The issue of solving the time-dependent incompressible Navier-Stokes equations on the Connection Machine 2 is addressed, for the problem of transition to turbulence of the steady flow in a channel. The spectral algorithm used serially requires O(N(4)) operations when solving the equations on an N x N x N grid; using the massive parallelism of the CM, it becomes an O(N(2)) problem. Preliminary timings of the code, written in LISP, are included and compared with a corresponding code optimized for the Cray-2 for a 128 x 128 x 101 grid.

  6. Flow of multiple charged accelerated metal ions from low-inductance vacuum spark

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. P.; Krasov, V. P.; Paperny, V. L.; Savyelov, A. S.

    2006-12-01

    Results of studies of the short-run beams of multiple charged fast ions that have been found earlier by the authors in a low voltage vacuum spark are presented. The ion emission was due to the formation of micropinches in the cathode plasma jet by the action of the self-magnetic field. A relation between the average velocity of the fast ions and that of the bulk of the ions of the cathode jet was obtained over a wide range of the discharge current amplitudes. The total yield of the multiple charged fast ions per pulse Nf was evaluated from the direct collector measurements with regard to a decrease in ion flow due to several reasons. This value was in satisfactory agreement with evaluation that was obtained from the ballistic pendulum measurements and gave Nf ap 5 × 1013-1014 ions per pulse at the average ion charge state of +9 at the maximum of the discharge current Id = 12 kA. Evaluation of current density for these ions gave jf ap 3 mA cm-2 at a distance of about 1 m from the anode.

  7. Extended neoclassical transport theory for incompressible tokamak plasmas

    SciTech Connect

    Shaing, K.C.

    1997-09-01

    Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number U{sub pM}=[(V{sub {parallel}}/v{sub t})+(V{sub E}B/v{sub t}B{sub p})] of the order of unity for incompressible tokamak plasmas. Here, V{sub {parallel}} is the parallel mass flow, v{sub t} is the ion thermal speed, V{sub E} is the poloidal {bold E{times}B} drift speed, B is the magnetic field strength, and B{sub p} is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if U{sub pM}{gt}1 and S{gt}1. Here, S=[1+cI{sup 2}{Phi}{sup {prime}{prime}}/({Omega}{sub 0}B{sub 0})] is the orbit squeezing factor with c the speed of light, I=RB{sub t}, R the major radius, {Phi} the electrostatic potential, B{sub 0} the magnetic field strength on the axis, {Omega}{sub 0}=eB{sub 0}/Mc, M the ion mass, e the ion charge, {Phi}{sup {prime}{prime}}=d{sup 2}{Phi}/d{psi}{sup 2}, and {psi} the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch{endash}Schl{umlt u}ter transport. {copyright} {ital 1997 American Institute of Physics.}

  8. Lower limb arterial incompressibility and obstruction in rheumatoid arthritis

    PubMed Central

    del Rincon, I; Haas, R; Pogosian, S; Escalante, A

    2005-01-01

    Background: Despite increased cardiovascular morbidity and mortality in rheumatoid arthritis, the peripheral arteries remain understudied. Objective: To examine the lower limb arteries in age and sex matched, non-smoking subjects with and without rheumatoid arthritis. Methods: The ankle-brachial index (ABI) was measured at the posterior tibial and dorsal pedal arteries. Arteries were classified as obstructed with ABI ⩽0.9, normal with ABI >0.9 but ⩽1.3, and incompressible with ABI >1.3. Multinomial logistic regression was used to estimate differences in ABI between patients and controls, adjusting for cardiovascular risk factors, rheumatoid arthritis manifestations, inflammation markers, and glucocorticoid dose. Results: 234 patients with rheumatoid arthritis and 102 controls were studied. Among the rheumatoid patients, 66 of 931 arteries (7%) were incompressible and 30 (3%) were obstructed. Among the controls, three of 408 arteries (0.7%) were incompressible (p = 0.002) and four (1%) were obstructed (p = 0.06). At the person level, one or more abnormal arteries occurred among 45 rheumatoid patients (19%), v five controls (5%, p = 0.001). The greater frequency of arterial incompressibility and obstruction in rheumatoid arthritis was independent of age, sex, and cardiovascular risk factors. Adjustment for inflammation markers, joint damage, rheumatoid factor, and glucocorticoid use reduced rheumatoid arthritis v control differences. Most arterial impairments occurred in rheumatoid patients with 20 or more deformed joints. This subgroup had more incompressible (15%, p⩽0.001) and obstructed arteries (6%, p = 0.005) than the controls, independent of covariates. Conclusions: Peripheral arterial incompressibility and obstruction are increased in rheumatoid arthritis. Their propensity for patients with advanced joint damage suggests shared pathogenic mechanisms. PMID:15271772

  9. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  10. An Edge-Based Method for the Incompressible Navier-Stokes Equations on Polygonal Meshes

    NASA Astrophysics Data System (ADS)

    Wright, Jeffrey A.; Smith, Richard W.

    2001-05-01

    A pressure-based method is presented for discretizing the unsteady incompressible Navier-Stokes equations using hybrid unstructured meshes. The edge-based data structure and assembly procedure adopted lead naturally to a strictly conservative discretization, which is valid for meshes composed of n-sided polygons. Particular attention is given to the construction of a pressure-velocity coupling procedure which is supported by edge data, resulting in a relatively simple numerical method that is consistent with the boundary and initial conditions required by the incompressible Navier-Stokes equations. Edge formulas are presented for assembling the momentum equations, which are based on an upwind-biased linear reconstruction of the velocity field. Similar formulas are presented for assembling the pressure equation. The method is demonstrated to be second-order accurate in space and time for two Navier-Stokes problems admitting an exact solution. Results for several other well-known problems are also presented, including lid-driven cavity flow, impulsively started cylinder flow, and unsteady vortex shedding from a circular cylinder. Although the method is by construction minimalist, it is shown to be accurate and robust for the problems considered.

  11. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    SciTech Connect

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.; Peery, J.S.; Ingber, M.S.

    1995-04-01

    formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. An analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.

  12. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    SciTech Connect

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.; Peery, J.S.; Ingber, M.S.

    1995-03-01

    Velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations are presented. Vorticity is created on boundaries to simultaneously satisfy the tangential and normal components of the velocity boundary condition. The newly created vorticity is specified by a kinematical formulation which is a generalization of Helmholtz decomposition of a vector field. Related forms of the decomposition were developed by Bykhovskiy and Smirnov in 1983, and Wu and Thompson in 1973. Though it has not been generally recognized as such, these formulations resolve the over-specification issues associated with determining a velocity field from velocity boundary conditions and a vorticity field. The generalized decomposition has not been widely used, however, apparently due to a general lack of a useful physical interpretation. An analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition for the normal and tangential velocity boundary conditions is discussed in detail. As an example of the use of this boundary condition, the flow in a lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRE. ALEGRE`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.

  13. Laminar flow in twisted ducts

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.

    1993-11-01

    Fully developed flow of an incompressible Newtonian fluid through a duct in which the orientation of the cross section is twisted about an axis parallel to an imposed pressure gradient is analyzed here with the aid of the penalty/Galerkin/finite element method. When the axis of twist is located within the duct, flow approaches limits at low and high torsion, the spatial frequency τ by which the duct is twisted. For small torsion, flow is nearly rectilinear and solutions approach previous asymptotic results for an elliptical cross section. For large torsion, flow exhibits an internal layer structure: a rotating circular-cylinder core with a nearly parabolic axial velocity profile, an internal layer of thickness τ-1 along the perimeter of the largest circular cylinder that can be inscribed in the duct, and nearly quiescent flow outside of the circular cylinder. The maximum rate of swirl in the core of a square duct is found to be at moderate torsion. The primary effect of inertia is an increase in pressure with distance from the axis, due to centrifugal acceleration. When the duct is offset from the axis of twist, inertia leads to one, two, or three primary vortices without apparent bifurcation of steady states, although stability of steady flows is lost beyond detected Hopf points.

  14. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  15. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  16. Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.

  17. An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids

    NASA Astrophysics Data System (ADS)

    Tofighi, N.; Ozbulut, M.; Rahmat, A.; Feng, J. J.; Yildiz, M.

    2015-09-01

    A two-dimensional incompressible smoothed particle hydrodynamics scheme is presented for simulation of rigid bodies moving through Newtonian fluids. The scheme relies on combined usage of the rigidity constraints and the viscous penalty method to simulate rigid body motion. Different viscosity ratios and interpolation schemes are tested by simulating a rigid disc descending in quiescent medium. A viscosity ratio of 100 coupled with weighted harmonic averaging scheme has been found to provide satisfactory results. The performance of the resulting scheme is systematically tested for cases with linear motion, rotational motion and their combination. The test cases include sedimentation of a single and a pair of circular discs, sedimentation of an elliptic disc and migration and rotation of a circular disc in linear shear flow. Comparison with previous results at various Reynolds numbers indicates that the proposed method captures the motion of rigid bodies driven by flow or external body forces accurately.

  18. Abdominal 4D Flow MR Imaging in a Breath Hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition

    PubMed Central

    Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir

    2015-01-01

    Purpose To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. Materials and Methods This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30–70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. Results There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: −8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95

  19. Numerical Simulation of Nonlinear Pulsatile Newtonian Blood Flow through a Multiple Stenosed Artery.

    PubMed

    Changdar, Satyasaran; De, Soumen

    2015-01-01

    An appropriate nonlinear blood flow model under the influence of periodic body acceleration through a multiple stenosed artery is investigated with the help of finite difference method. The arterial segment is simulated by a cylindrical tube filled with a viscous incompressible Newtonian fluid described by the Navier-Stokes equation. The nonlinear equation is solved numerically with the proper boundary conditions and pressure gradient that arise from the normal functioning of the heart. Results are discussed in comparison with the existing models. PMID:27347534

  20. Numerical Simulation of Nonlinear Pulsatile Newtonian Blood Flow through a Multiple Stenosed Artery

    PubMed Central

    Changdar, Satyasaran; De, Soumen

    2015-01-01

    An appropriate nonlinear blood flow model under the influence of periodic body acceleration through a multiple stenosed artery is investigated with the help of finite difference method. The arterial segment is simulated by a cylindrical tube filled with a viscous incompressible Newtonian fluid described by the Navier-Stokes equation. The nonlinear equation is solved numerically with the proper boundary conditions and pressure gradient that arise from the normal functioning of the heart. Results are discussed in comparison with the existing models. PMID:27347534

  1. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  2. Incompressible Limit for Compressible Fluids with Stochastic Forcing

    NASA Astrophysics Data System (ADS)

    Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina

    2016-11-01

    We study the asymptotic behavior of the isentropic Navier-Stokes system driven by a multiplicative stochastic forcing in the compressible regime, where the Mach number approaches zero. Our approach is based on the recently developed concept of a weak martingale solution to the primitive system, uniform bounds derived from a stochastic analogue of the modulated energy inequality, and careful analysis of acoustic waves. A stochastic incompressible Navier-Stokes system is identified as the limit problem.

  3. COMPRESSIBLE FLOW, ENTRAINMENT, AND MEGAPLUME

    EPA Science Inventory

    It is generally believed that low Mach number, i.e., low-velocity, flow may be assumed to be incompressible flow. Under steady-state conditions, an exact equation of continuity may then be used to show that such flow is non-divergent. However, a rigorous, compressible fluid-dynam...

  4. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  5. A hybrid particle-mesh method for incompressible active polar viscous gels

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Bourantas, George; Jülicher, Frank; Sbalzarini, Ivo F.

    2015-06-01

    We present a hybrid particle-mesh method for numerically solving the hydrodynamic equations of incompressible active polar viscous gels. These equations model the dynamics of polar active agents, embedded in a viscous medium, in which stresses are induced through constant consumption of energy. The numerical method is based on Lagrangian particles and staggered Cartesian finite-difference meshes. We show that the method is second-order and first-order accurate with respect to grid and time-step sizes, respectively. Using the present method, we simulate the hydrodynamics in rectangular geometries, of a passive liquid crystal, of an active polar film and of active gels with topological defects in polarization. We show the emergence of spontaneous flow due to Fréedericksz transition, and transformation in the nature of topological defects by tuning the activity of the system.

  6. User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics

    SciTech Connect

    McMaster, W H

    1982-05-07

    The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.

  7. Swimming of a deformable slab in a viscous incompressible fluid with inertia.

    PubMed

    Felderhof, B U

    2015-12-01

    The swimming of a deformable planar slab in a viscous incompressible fluid is studied on the basis of the Navier-Stokes equations. A continuum of plane wave displacements, symmetric on both sides of the slab and characterized by a polarization angle, allows optimization of the swimming efficiency with respect to polarization. The mean swimming velocity and mean rate of dissipation are calculated to second order in the amplitude of the stroke. The optimum efficiency depends on the ratio of viscosity and mass density of the fluid. For high viscosity a stroke is found with significantly higher efficiency than Taylor's solution for a waving sheet. For low viscosity the efficiency is optimal for a nearly irrotational flow pattern. PMID:26764811

  8. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Zarifi, Mojdeh; Kvamme, Bjørn

    2016-01-01

    In this paper, a generalization of the Cahn-Hilliard theory of binary liquids is presented for multicomponent incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion-type dynamics is derived on the basis of the Lagrange multiplier formalism. Next, a generalization of the binary Cahn-Hilliard free-energy functional is presented for an arbitrary number of components, offering the utilization of independent pairwise equilibrium interfacial properties. We show that the equilibrium two-component interfaces minimize the functional, and we demonstrate that the energy penalization for multicomponent states increases strictly monotonously as a function of the number of components being present. We validate the model via equilibrium contact angle calculations in ternary and quaternary (four-component) systems. Simulations addressing liquid-flow-assisted spinodal decomposition in these systems are also presented.

  9. Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids.

    PubMed

    Tóth, Gyula I; Zarifi, Mojdeh; Kvamme, Bjørn

    2016-01-01

    In this paper, a generalization of the Cahn-Hilliard theory of binary liquids is presented for multicomponent incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion-type dynamics is derived on the basis of the Lagrange multiplier formalism. Next, a generalization of the binary Cahn-Hilliard free-energy functional is presented for an arbitrary number of components, offering the utilization of independent pairwise equilibrium interfacial properties. We show that the equilibrium two-component interfaces minimize the functional, and we demonstrate that the energy penalization for multicomponent states increases strictly monotonously as a function of the number of components being present. We validate the model via equilibrium contact angle calculations in ternary and quaternary (four-component) systems. Simulations addressing liquid-flow-assisted spinodal decomposition in these systems are also presented. PMID:26871173

  10. Towards A Fast High-Order Method for Unsteady Incompressible Navier-Stokes Equations using FR/CPR

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Liang, Chunlei; Plesniak, Michael

    2014-11-01

    A high-order compact spectral difference method for solving the 2D incompressible Navier-Stokes equations on unstructured grids is currently being developed. This method employs the gGA correction of Huynh, and falls under the class of methods now refered to as Flux Reconstruction/Correction Procedure via Reconstruction. This method and the artificial compressibility method are integrated along with a dual time-integration scheme to model unsteady incompressible viscous flows. A lower-upper symmetric Gauss-Seidel scheme and a backward Euler scheme are used to efficiently march the solution in pseudo time and physical time, respectively. We demonstrate order of accuracy with steady Taylor-Couette flow at Re = 10. We further validate the solver with steady flow past a NACA0012 airfoil at zero angle of attack at Re = 1850 and unsteady flow past a circle at Re = 100. The implicit time-integration scheme for the pseudo time derivative term is proved efficient and effective for the classical artificial compressibility treatment to achieve the divergence-free condition of the continuity equation. We greatly acknowledge financial support from The George Washington University under the Presidential Merit Fellowship.

  11. Bulk-Flow Analysis, part A

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1993-01-01

    The bulk-flow analysis results for this contract are incorporated in the following publications: 'Fluid-Structure Interaction Forces at Pump-Impeller Shroud Surfaces for Axial Vibration Analysis'; 'Centrifugal Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing'; 'Influence of Impeller Shroud Forces on Pump Rotordynamics'; 'Pressure Oscillation in the Leakage Annulus Between a Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure Disturbances'; and 'Compressibility Effects on Rotor Forces in the Leakage Path Between a Shrouded Pump Impeller and Its Housing'. These publications are summarized and included in this final report. Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are reported separately.

  12. WIND: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.

  13. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Blanco, E.; Girone, M.; Inglese, V.; Pezzetti, M.; Piccinelli, F.; Serio, L.

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [http://www.samson.de (2015)] and Sereg-Schlumberger [http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  14. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics.

    PubMed

    Arpaia, P; Blanco, E; Girone, M; Inglese, V; Pezzetti, M; Piccinelli, F; Serio, L

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  15. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics

    SciTech Connect

    Arpaia, P.; Blanco, E.; Inglese, V.; Pezzetti, M.; Serio, L.; Girone, M.; Piccinelli, F.

    2015-07-15

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves—Part 2-1: Flow capacity—sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported.

  16. Proof-of-principle demonstration of a virtual flow meter-based transducer for gaseous helium monitoring in particle accelerator cryogenics.

    PubMed

    Arpaia, P; Blanco, E; Girone, M; Inglese, V; Pezzetti, M; Piccinelli, F; Serio, L

    2015-07-01

    A transducer based on a virtual flow meter is proposed for monitoring helium distribution and consumption in cryogenic systems for particle accelerators. The virtual flow meter allows technical and economical constraints, preventing installation of physical instruments in all the needed measurement points, to be overcome. Virtual flow meter performance for the alternative models of Samson [ http://www.samson.de (2015)] and Sereg-Schlumberger [ http://www.slb.com/ (2015)] is compared with the standard IEC 60534-2-1 [Industrial-process control valves-Part 2-1: Flow capacity-sizing equations for fluid flow under installed conditions (2011), https://webstore.iec.ch/publication/2461], for a large temperature range, for both gaseous and liquid helium phases, and for different pressure drops. Then, the calibration function of the transducer is derived. Finally, the experimental validation for the helium gaseous state on the test station for superconducting magnets in the laboratory SM18 [Pirotte et al., AIP Conf. Proc. 1573, 187 (2014)] at CERN is reported. PMID:26233405

  17. Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Shen, Jie

    2016-03-01

    In this paper we develop a fully adaptive energy stable scheme for Cahn-Hilliard Navier-Stokes system, which is a phase-field model for two-phase incompressible flows, consisting a Cahn-Hilliard-type diffusion equation and a Navier-Stokes equation. This scheme, which is decoupled and unconditionally energy stable based on stabilization, involves adaptive mesh, adaptive time and a nonlinear multigrid finite difference method. Numerical experiments are carried out to validate the scheme for problems with matched density and non-matched density, and also demonstrate that CPU time can be significantly reduced with our adaptive approach.

  18. Determining the alpha dynamo parameter in incompressible homogeneous magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.

    1983-01-01

    Alpha, an important parameter in dynamo theory, is proportional to either the kinetic, current, magnetic, or velocity helicity of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first order smoothed equations that describe the alpha effect. In two cases, when alpha is proportional to either the magnetic helicity or velocity helicity, alpha is determined experimentally from two point measurements of the fluctuating fields in incompressible, homogeneous turbulence having arbitrary symmetry. For the other two possibilities, alpha is determined if the turbulence is isotropic.

  19. Experimental realization of an incompressible Newtonian fluid in two dimensions.

    PubMed

    Qi, Zhiyuan; Park, Cheol Soo; Glaser, Matthew A; Maclennan, Joseph E; Clark, Noel A

    2016-01-01

    The Brownian diffusion of micron-scale inclusions in freely suspended smectic-A liquid crystal films a few nanometers thick and several millimeters in diameter depends strongly on the air surrounding the film. Near atmospheric pressure, the three-dimensionally coupled film-gas system is well described by Hughes-Pailthorpe-White hydrodynamic theory but at lower pressure (p≲70 torr), the diffusion coefficient increases substantially, tending in high vacuum toward the two-dimensional limit where it is determined by film size. In the absence of air, the films are found to be a nearly ideal physical realization of a two-dimensional, incompressible Newtonian fluid.

  20. Quaternions and ideal flows

    NASA Astrophysics Data System (ADS)

    Eshraghi, H.; Gibbon, J. D.

    2008-08-01

    After a review of some of the recent works by Holm and Gibbon on quaternions and their application to Lagrangian flows, particularly the incompressible Euler equations and the equations of ideal MHD, this paper investigates the compressible and relativistic Euler equations using these methods.

  1. Numerical simulation of non-Newtonian free shear flows

    NASA Technical Reports Server (NTRS)

    Homsy, G. M.; Azaiez, J.

    1993-01-01

    Free shear flows, like those of mixing layers, are encountered in aerodynamics, in the atmosphere, and in the ocean as well as in many industrial applications such as flow reactors or combustion chambers. It is, therefore, crucial to understand the mechanisms governing the process of transition to turbulence in order to predict and control the evolution of the flow. Delaying transition to turbulence as far downstream as possible allows a gain in energy expenditure while accelerating the transition can be of interest in processes where high mixing is desired. Various methods, including the use of polymer additives, can be effective in controlling fluid flows. The drag reduction obtained by the addition of small amounts of high polymers has been an active area of research for the last three decades. It is now widely believed that polymer additives can affect the stability of a large variety of flows and that dilute solutions of these polymers have been shown to produce drag reductions of over 80 percent in internal flows and over 60 percent in external flows under a wide range of conditions. The major thrust of this work is to study the effects of polymer additives on the stability of the incompressible mixing layer through large scale numerical simulations. In particular, we focus on the two dimensional flow and examine how the presence of viscoelasticity may affect the typical structures of the flow, namely roll-up and pairing of vortices.

  2. Basal entrainment by Newtonian gravity-driven flows

    NASA Astrophysics Data System (ADS)

    Bates, Belinda M.; Andreini, Nicolas; Ancey, Christophe

    2016-05-01

    Gravity-driven flows can erode the bed along which they descend and increase their mass by a factor of 10 or more. This process is called "basal entrainment." Although documented by field observations and laboratory experiments, it remains poorly understood. This paper examines what happens when a viscous gravity-driven flow generated by releasing a fixed volume of incompressible Newtonian fluid encounters a stationary layer (composed of fluid with the same density and viscosity). Models based on depth-averaged mass and momentum balance equations deal with bed-flow interfaces as shock waves. In contrast, we use an approach involving the long-wave approximation of the Navier-Stokes equations (lubrication theory), and in this context, bed-flow interfaces are acceleration waves that move quickly across thin stationary layers. The incoming flow digs down into the bed, pushing up downstream material, thus advancing the flow front. Extending the method used by Huppert ["The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface," J. Fluid Mech. 121, 43-58 (1982)] for modeling viscous dam-break waves, we end up with a nonlinear diffusion equation for the flow depth, which is solved numerically. Theory is compared with experimental results. Excellent agreement is found in the limit of low Reynolds numbers (i.e., for flow Reynolds numbers lower than 20) for the front position over time and flow depth profile.

  3. Examination of Ion Beam Acceleration in A High Power-Low Pressure and Gas Flow Rates Argon Plasma Created in the MadHeX Helicon Source

    NASA Astrophysics Data System (ADS)

    Sung, Yung-Ta; Devinney, Michael; Scharer, John

    2012-10-01

    The modified MadHeX experimental system consists of a Pyrex tube connected to a stainless steel chamber with an axial magnetic nozzle field, variable up to 1 kG at the source region that has been upgraded to minimize neutral reflux and reduce neutral concentrations in the chamber. A half-turn double-helix antenna is used to excite helicon waves in the source. An ion beam of energy, E = 160 eV at 500 W RF power, has been observed in a low flowing argon plasma formed in the expanding region with a 340 G magnetic field. The role of plasma positive ``self-bias'' and the effects of boundary conditions are discussed. The measured density decrease factor of 18 at 100 W RF power across the expansion region yields a higher ion acceleration and agrees with a conservation-of-flux calculation. The effect of lower flow rates and pressures, higher RF powers and magnetic field strength dependence on the ion beam acceleration, plasma potential, electron density and temperature are further explored. The axial ion velocity distribution function and temperatures at higher powers are observed by argon 668 nm laser induced fluorescence with density measurements by interferometry. The electron energy distribution and its possible non-Maxwellian tail are examined using optical emission spectroscopy (ADAS and Vlcek models).

  4. Applications of a finite-volume algorithm for incompressible MHD problems

    NASA Astrophysics Data System (ADS)

    Vantieghem, S.; Sheyko, A.; Jackson, A.

    2016-02-01

    We present the theory, algorithms and implementation of a parallel finite-volume algorithm for the solution of the incompressible magnetohydrodynamic (MHD) equations using unstructured grids that are applicable for a wide variety of geometries. Our method implements a mixed Adams-Bashforth/Crank-Nicolson scheme for the nonlinear terms in the MHD equations and we prove that it is stable independent of the time step. To ensure that the solenoidal condition is met for the magnetic field, we use a method whereby a pseudo-pressure is introduced into the induction equation; since we are concerned with incompressible flows, the resulting Poisson equation for the pseudo-pressure is solved alongside the equivalent Poisson problem for the velocity field. We validate our code in a variety of geometries including periodic boxes, spheres, spherical shells, spheroids and ellipsoids; for the finite geometries we implement the so-called ferromagnetic or pseudo-vacuum boundary conditions appropriate for a surrounding medium with infinite magnetic permeability. This implies that the magnetic field must be purely perpendicular to the boundary. We present a number of comparisons against previous results and against analytical solutions, which verify the code's accuracy. This documents the code's reliability as a prelude to its use in more difficult problems. We finally present a new simple drifting solution for thermal convection in a spherical shell that successfully sustains a magnetic field of simple geometry. By dint of its rapid stabilization from the given initial conditions, we deem it suitable as a benchmark against which other self-consistent dynamo codes can be tested.

  5. Experiments and simulations on the incompressible, Rayleigh-Taylor instability with small wavelength initial perturbations

    NASA Astrophysics Data System (ADS)

    Roberts, Michael Scott

    The Rayleigh-Taylor instability is a buoyancy driven instability that takes place in a stratified fluid system with a constant acceleration directed from the heavy fluid into the light fluid. In this study, both experimental data and numerical simulations are presented. Experiments are performed primarily using a lithium-tungstate aqueous solution as the heavy liquid, but sometimes a calcium nitrate aqueous solution is used for comparison purposes. Experimental data is obtained for both miscible and immiscible fluid combinations. For the miscible experiments the light liquid is either ethanol or isopropanol, and for the immiscible experiments either silicone oil or trans-anethole is used. The resulting Atwood number is either 0.5 when the lithium-tungstate solution is used or 0.2 when the calcium nitrate solution is used. These fluid combinations are either forced or left unforced. The forced experiments have an initial perturbation imposed by vertically oscillating the liquid containing tank to produce Faraday waves at the interface. The unforced experiments rely on random interfacial fluctuations, due to background noise, to seed the instability. The liquid combination is partially enclosed in a test section that is accelerated downward along a vertical rail system causing the Rayleigh-Taylor instability. Accelerations of approximately 1g (with a weight and pulley system) or 10g (with a linear induction motor system) are experienced by the liquids. The tank is backlit and digitally recorded with high speed video cameras. These experiments are then simulated with the incompressible, Navier-Stokes code Miranda. The main focus of this study is the growth parameter (α) of the mixing region produced by the instability after it has become apparently self-similar and turbulent. The measured growth parameters are compared to determine the effects of miscibility and initial perturbations (of the small wavelength, finite bandwidth type used here). It is found that while

  6. A Theoretical Treatment of the Steady-Flow, Linear, Crossed-Field, Direct-Current Plasma Accelerator for Inviscid, Adiabatic, Isothermal, Constant-Area Flow

    NASA Technical Reports Server (NTRS)

    Wood, George P.; Carter, Arlen F.; Lintz, Hubert K.; Pennington, J. Byron

    1961-01-01

    The theory is developed from the individual equations of motion of the three components of the plasma. The effect of the ion cyclotron angle (omega tau), which is the product of the ion cyclotron frequency and the ion mean free time between collisions with neutral particles and which is proportional to the axial component of the ion slip velocity, on both Joule heating rate and accelerator length is included in the results and is shown to be small only for values of about 10(exp -3) radian or less.

  7. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  8. Simulations of incompressible Navier Stokes equations on curved surfaces using discrete exterior calculus

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil

    2015-11-01

    We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.

  9. High resolution upwind schemes for the three-dimensional incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, Chung-Hao

    1987-01-01

    Based on flux-difference splitting, implicit high resolution schemes are constructed for efficient computations of steady-state solutions to the three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. These schemes use first-order accurate Euler backward-time differencing and second-order central differencing for the viscous shear fluxes. Up to third-order accurate upwind differencing is achieved through a reconstruction of the solution from its cell averages. The reconstruction is accomplished by linear interpolation, where the node stencils are selected such that in regions of smooth solution the flow is highly resolved while spurious oscillations in regions of rapid changes in gradient are still suppressed. Fairly rapid convergence to steady-state solutions is attained with a completely vectorizable hybrid time-marching method. Flows around a sharp-edged delta wing are computed with the maximum accuracy of the upwind-differencing restricted to first-, second-, and third-order, to illustrate the effect of accuracy on the global and on the local vortical flow fields. The results are validated with experimental data.

  10. Optimal momentum interpolation operators for simulations of turbulence with the incompressible collocated mesh scheme

    NASA Astrophysics Data System (ADS)

    Felten, Frederic; Lund, Thomas

    2001-11-01

    The incompressible collocated mesh is often preferred over the staggered mesh scheme for turbulence simulation due to its slightly simpler form in curvilinear coordinates. Many researchers have used an upwind interpolation for the momentum, citing problems with numerical oscillations if centered interpolations are used. Analysis reveals that second order centered interpolations result in a kinetic energy conservation error, which can act as a source for numerical oscillations. Analysis also shows that a simple first order centered interpolation does not produce a kinetic energy conservation error. Various momentum interpolation operators are used in an inviscid simulation of the flow over an airfoil, as well as for simulations of turbulent channel flow. In the case of the airfoil, oscillations are present with the second order centered interpolation, but are absent for both the first order centered and the second order upwind schemes. The dissipative effects of the upwind interpolations degrade the results of the channel flow simulations, while both the first and second order centered interpolations yield good results. This work suggests that numerical oscillations can be controlled with a non-dissipative algorithm through the proper choice of the interpolation scheme.

  11. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  12. The Minkowski dimension of interior singular points in the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Koh, Youngwoo; Yang, Minsuk

    2016-09-01

    We study the possible interior singular points of suitable weak solutions to the three dimensional incompressible Navier-Stokes equations. We present an improved parabolic upper Minkowski dimension of the possible singular set, which is bounded by 95/63. The result also continue to hold for the three dimensional incompressible magnetohydrodynamic equations without any difficulty.

  13. Aerosound from corner flow and flap flow

    NASA Technical Reports Server (NTRS)

    Meecham, W. C.

    1982-01-01

    Noise generation at the edge of a wing flap is analyzed. The phenomenon as a single vortex moving around a corner in an incompressible, potential flow is modelled. Vortex image retarding effects are proposed as an explanation for small Strouhal numbers. The model surface pressures, sound pressures (using Curle's theory), and Mach number dependencies agree with wind tunnel experiments. A double pressure peak is found in the model (credited to image action) which is qualitatively similar to measured sound correlations. Incompressible flow aerosound calculations are discussed. The effects of a series of vortices moving in the same idealized potential flow are also studied. The vortices are assumed to be statistically independent so their intensities can be added. The frequency of appearance of the vortices are determined from measurements. Diffraction effects caused by the presence of the wing near the dipole sound radiators on the flap surfaces are included.

  14. PHYSICS REQUIRES A SIMPLE LOW MACH NUMBER FLOW TO BE COMPRESSIBLE

    EPA Science Inventory

    Radial, laminar, plane, low velocity flow represents the simplest, non-linear fluid dynamics problem. Ostensibly this apparently trivial flow could be solved using the incompressible Navier-Stokes equations, universally believed to be adequate for such problems. Most researchers ...

  15. Exponential integrators for the incompressible Navier-Stokes equations.

    SciTech Connect

    Newman, Christopher K.

    2004-07-01

    We provide an algorithm and analysis of a high order projection scheme for time integration of the incompressible Navier-Stokes equations (NSE). The method is based on a projection onto the subspace of divergence-free (incompressible) functions interleaved with a Krylov-based exponential time integration (KBEI). These time integration methods provide a high order accurate, stable approach with many of the advantages of explicit methods, and can reduce the computational resources over conventional methods. The method is scalable in the sense that the computational costs grow linearly with problem size. Exponential integrators, used typically to solve systems of ODEs, utilize matrix vector products of the exponential of the Jacobian on a vector. For large systems, this product can be approximated efficiently by Krylov subspace methods. However, in contrast to explicit methods, KBEIs are not restricted by the time step. While implicit methods require a solution of a linear system with the Jacobian, KBEIs only require matrix vector products of the Jacobian. Furthermore, these methods are based on linearization, so there is no non-linear system solve at each time step. Differential-algebraic equations (DAEs) are ordinary differential equations (ODEs) subject to algebraic constraints. The discretized NSE constitute a system of DAEs, where the incompressibility condition is the algebraic constraint. Exponential integrators can be extended to DAEs with linear constraints imposed via a projection onto the constraint manifold. This results in a projected ODE that is integrated by a KBEI. In this approach, the Krylov subspace satisfies the constraint, hence the solution at the advanced time step automatically satisfies the constraint as well. For the NSE, the projection onto the constraint is typically achieved by a projection induced by the L{sup 2} inner product. We examine this L{sup 2} projection and an H{sup 1} projection induced by the H{sup 1} semi-inner product. The H

  16. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications

    PubMed Central

    Shih, Roger; Bardin, David; Martz, Thomas D.; Sheeran, Paul S.; Dayton, Paul A.

    2013-01-01

    Ultrasound imaging often calls for the injection of contrast agents, micron-sized bubbles which echo strongly in blood and help distinguish vascularized tissue. Such microbubbles are also being augmented for targeted drug delivery and gene therapy, by the addition of surface receptors and therapeutic payloads. Unfortunately, conventional production methods yield a polydisperse population, whose nonuniform resonance and drug-loading are less than ideal. An alternative technique, microfluidic flow-focusing, is able to produce highly monodisperse microbubbles with stabilizing lipid membranes and drug-carrying oil layers. However, the published 1 kHz production rate for these uniform drug bubbles is very low compared to conventional methods, and must be improved before clinical use can be practical. In this study, flow-focusing production of oil-layered lipid microbubbles was tested up to 300 kHz, with coalescence suppressed by high lipid concentrations or inclusion of Pluronic F68 surfactant in the lipid solution. The transition between geometry-controlled and dripping production regimes was analysed, and production scaling was found to be continuous, with a power trend of exponent ~5/12 similar to literature. Unlike prior studies with this trend, however, scaling curves here were found to be pressure-dependent, particularly at lower pressure-flow equilibria (e.g. <15 psi). Adjustments in oil flow rate were observed to have a similar effect, akin to a pressure change of 1–3 psi. This analysis and characterization of high-speed dual-layer bubble generation will enable more-predictive production control, at rates practical for in vivo or clinical use. PMID:24162868

  17. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    EPA Science Inventory

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  18. Magnetic reconnection in incompressible fluids. [of solar atmosphere and interior

    NASA Technical Reports Server (NTRS)

    Deluca, Edward E.; Craig, Ian J.

    1992-01-01

    The paper investigates the dynamical relaxation of a disturbed X-type magnetic neutral point in a periodic geometry, with an ignorable coordinate, for an incompressible fluid. It is found that the properties of the current sheet cannot be understood in terms of steady state reconnection theory or more recent linear dynamical solutions. Accordingly, a new scaling law for magnetic reconnection is presented, consistent with fast energy dissipation (i.e., the dissipation rate at current maximum is approximately independent of magnetic diffusivity (eta)). The flux annihilation rate, however, scales at eta exp 1/4, faster than the Sweet-Parker rate of sq rt eta but asymptotically much slower than the dissipation rate. These results suggest a flux pile-up regime in which the bulk of the free magnetic energy is released as heat rather than as kinetic energy of mass motion. The implications of our results for reconnection in the solar atmosphere and interior are discussed.

  19. AN INCOMPRESSIBLE ALE METHOD FOR FLUID-STRUCTURE INTERACTION

    SciTech Connect

    Dunn, T A

    2004-12-01

    Multi-disciplinary analysis is becoming more and more important to tackle todays complex engineering problems. Therefore, computational tools must be able to handle the complex multi-physics requirements of these problems. A computer code may need to handle the physics associated with fluid dynamics, structural mechanics, heat transfer, chemistry, electro-magnetics, or a variety of other disciplines--all coupled in a highly non-linear system. The objective of this project was to couple an incompressible fluid dynamics package to a solid mechanics code. The code uses finite-element methods and is useful for three-dimensional transient problems with fluid-structure interaction. The code is designed for efficient performance on large multi-processor machines. An ALE finite element method was developed to investigate fluid-structure interaction. The write-up contains information about the method, the problem formulation, and some results from example test problems.

  20. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Poulipoulis, G.; Throumoulopoulos, G. N.; Konz, C.

    2016-07-01

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  1. A discontinuous Petrov-Galerkin methodology for adaptive solutions to the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Roberts, Nathan V.; Demkowicz, Leszek; Moser, Robert

    2015-11-01

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18,20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates-the inf-sup constants governing the convergence are mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.

  2. A Discontinuous Petrov-Galerkin Methodology for Adaptive Solutions to the Incompressible Navier-Stokes Equations

    SciTech Connect

    Roberts, Nathan V.; Demkowiz, Leszek; Moser, Robert

    2015-11-15

    The discontinuous Petrov-Galerkin methodology with optimal test functions (DPG) of Demkowicz and Gopalakrishnan [18, 20] guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. Whereas Bubnov-Galerkin methods use identical trial and test spaces, Petrov-Galerkin methods allow these function spaces to differ. In DPG, test functions are computed on the fly and are chosen to realize the supremum in the inf-sup condition; the method is equivalent to a minimum residual method. For well-posed problems with sufficiently regular solutions, DPG can be shown to converge at optimal rates—the inf-sup constants governing the convergence are mesh-independent, and of the same order as those governing the continuous problem [48]. DPG also provides an accurate mechanism for measuring the error, and this can be used to drive adaptive mesh refinements. We employ DPG to solve the steady incompressible Navier-Stokes equations in two dimensions, building on previous work on the Stokes equations, and focusing particularly on the usefulness of the approach for automatic adaptivity starting from a coarse mesh. We apply our approach to a manufactured solution due to Kovasznay as well as the lid-driven cavity flow, backward-facing step, and flow past a cylinder problems.

  3. Accelerated Weathering of Waste Glass at 90°C with the Pressurized Unsaturated Flow (PUF) Apparatus: Implications for Predicting Glass Corrosion with a Reactive Transport Model

    SciTech Connect

    Pierce, Eric M.; Bacon, Diana H.

    2009-09-21

    The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.

  4. Unsteady MHD Couette Flows in an Annuli: The Riemann-Sum Approximation Approach

    NASA Astrophysics Data System (ADS)

    Jha, Basant K.; Apere, Clement A.

    2010-12-01

    The unsteady MHD Couette flow of a viscous incompressible electrically conducting fluid between two concentric horizontal cylinders of infinite length have been analysed when the outer cylinder has been set into uniform accelerated motion. A unified closed form expressions are derived corresponding to the cases of the magnetic field fixed relative to the fluid or to the accelerated outer cylinder. The well known Laplace transform technique is applied to solve the time-dependent governing equations, while the method of Riemann-sum approximation is employed to invert the Laplace domain to the time domain in order to obtain the velocity and the skin friction. The variations of the velocity and the skin friction with respect to the Hartmann number and time have been discussed.

  5. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  6. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. Optimized planning of in-service inspections of local flow-accelerated corrosion of pipeline elements used in the secondary coolant circuit of the VVER-440-based units at the Novovoronezh NPP

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Povarov, V. P.; Shipkov, A. A.; Gromov, A. F.; Budanov, V. A.; Golubeva, T. N.

    2015-03-01

    Matters concerned with making efficient use of the information-analytical system on the flow-accelerated corrosion problem in setting up in-service examination of the metal of pipeline elements operating in the secondary coolant circuit of the VVER-440-based power units at the Novovoronezh NPP are considered. The principles used to select samples of pipeline elements in planning ultrasonic thickness measurements for timely revealing metal thinning due to flow-accelerated corrosion along with reducing the total amount of measurements in the condensate-feedwater path are discussed.

  9. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  10. Backwards Two-Particle Dispersion in a Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore

    2014-11-01

    We derive an exact equation governing two-particle backwards mean-squared dispersion for both deterministic and stochastic tracer particles in turbulent flows. For the deterministic trajectories, we probe consequences of our formula for short time and arrive at approximate expressions for the mean squared dispersion which involve second order structure functions of the velocity and acceleration fields. For the stochastic trajectories, we analytically calculate an exact t3 contribution to the squared separation and additionally compute the average dispersion using direct numerical simulation (DNS) results of incompressible homogeneous isotropic turbulence. We find that this exactly calculable term accounts for almost all of the observed behavior. We argue that this contribution also appears to describe the asymptotic Richardson-like behavior for deterministic paths and present DNS results to support this claim. Partially supported by NSF Grant No. CDI-II: CMMI 0941530 at Johns Hopkins University.

  11. Computational fluid dynamics analysis of SSME phase 2 and phase 2+ preburner injector element hydrogen flow paths

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1992-01-01

    Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.

  12. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    SciTech Connect

    Miniati, Francesco

    2015-02-10

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10{sup 15} M {sub ☉} galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s{sup –1} even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ≅ 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys.

  13. OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows

    SciTech Connect

    Xia, Yidong; Lou, Jialin; Luo, Hong; Edwards, Jack; Mueller, Frank

    2015-02-09

    Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementation of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.

  14. OpenACC acceleration of an unstructured CFD solver based on a reconstructed discontinuous Galerkin method for compressible flows

    DOE PAGES

    Xia, Yidong; Lou, Jialin; Luo, Hong; Edwards, Jack; Mueller, Frank

    2015-02-09

    Here, an OpenACC directive-based graphics processing unit (GPU) parallel scheme is presented for solving the compressible Navier–Stokes equations on 3D hybrid unstructured grids with a third-order reconstructed discontinuous Galerkin method. The developed scheme requires the minimum code intrusion and algorithm alteration for upgrading a legacy solver with the GPU computing capability at very little extra effort in programming, which leads to a unified and portable code development strategy. A face coloring algorithm is adopted to eliminate the memory contention because of the threading of internal and boundary face integrals. A number of flow problems are presented to verify the implementationmore » of the developed scheme. Timing measurements were obtained by running the resulting GPU code on one Nvidia Tesla K20c GPU card (Nvidia Corporation, Santa Clara, CA, USA) and compared with those obtained by running the equivalent Message Passing Interface (MPI) parallel CPU code on a compute node (consisting of two AMD Opteron 6128 eight-core CPUs (Advanced Micro Devices, Inc., Sunnyvale, CA, USA)). Speedup factors of up to 24× and 1.6× for the GPU code were achieved with respect to one and 16 CPU cores, respectively. The numerical results indicate that this OpenACC-based parallel scheme is an effective and extensible approach to port unstructured high-order CFD solvers to GPU computing.« less

  15. Velocity relaxation of an ellipsoid immersed in a viscous incompressible fluid

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2013-01-01

    The motion of an ellipsoid in a viscous incompressible fluid, caused by a small time-dependent applied force, is studied on the basis of the linearized Navier-Stokes equations in terms of the frequency-dependence of the friction tensor. The asymptotic behavior of the hydrodynamic force at high frequency contains a term linear in frequency, with an added mass coefficient, and a term proportional to the square root of frequency, with a Basset coefficient. The latter is calculated from an expression derived by Batchelor [An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)]. A simple approximate three-pole expression is proposed for the frequency-dependent admittance for each principal direction, embodying added mass, particle mass, the steady state friction coefficient, and the Basset coefficient. It is suggested that a remaining unknown coefficient in the expression be determined by experiment, computer simulation, or numerical solution of an integral equation derived by Pozrikidis ["A study of linearized oscillatory flow past particles by the boundary-integral method," J. Fluid Mech. 202, 17 (1989), 10.1017/S0022112089001084].

  16. Instantaneous Point Explosion in Incompressible Fluid-like Media

    NASA Astrophysics Data System (ADS)

    Grinfeld, Michael; Segletes, Steven

    The problem of point explosion is one of the most famous and extensively developed in in the sense of corresponding physics, mechanics, and applied mathematics. There are many reasons for that based on its practical importance and theoretical beauty. We refer interested readers to the publications of Sedov, Taylor, Laudau and Lifshitz, and Lavrent'ev and Shabat. In the paper, we discuss this classical program from the standpoint of terminal ballistics and present our novel results relating to the special situation when the media can be treated as an ``effective'' incompressible liquid. Sedov, L.I., Similarity and Dimensional Methods in Mechanics, CRC Press, 1993. Taylor, J., Explosion. II. The Atomic Explosion of 1945. Proc. Roy. Soc. London, A201, ¹ 1065, 1950, p. 175. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Pergamon Press, 1959. Zeldovich Ya. B. and Raizer, Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena,Dover, New York, 2002. Lavrent'ev, M.A. and Shabat, B.V., Hydrodynamic Phenomena and Their Mathematical Models. Hauka, 1973 (in Russian).

  17. A study of local anisotropy in globally isotropic incompressible MHD

    NASA Astrophysics Data System (ADS)

    Milano, L. J.; Dmitruk, P.; Matthaeus, W. H.; Montgomery, D.

    2000-10-01

    It is a well known fact that in presence of a DC applied field, MHD turbulence develops spectral anisotropy from an isotropic initial condition [1]. Typically, the reduced spectrum is steeper in the direction of the magnetic field than it is in any transverse direction. Theoretical insight into the origin of this effect has been derived from simulations in which there is a uniform DC magnetic field, but suggestions of a similar anisotropy is seen in various laboratory devices and also in the solar wind [2,3]. One might expect that a DC field is not essential, and it is the local mean field that is responsible. Here we investigate the occurence of local anisotropy in 3 dimensional MHD, i.e. we search for a local version of the spectral anisotropy effect. We perform 3D MHD pseudo-spectral incompressible relaxation simulations, and compute structure functions accumulated according to whether the separation is parallel to, or transverse to, the local magnetic field. Preliminary results show that correlations decay slower in the locally averaged magnetic field direction. [1] J. Shebalin, W. Matthaeus and D. Montgomery, J. Plasma Phys. 29, 525 (1983) [2] W.H. Matthaeus, M.L. Goldsteon and D.A. Roberts, J. Geophys. Res. 95, 20 673 (1990) [3] J. Armstrong, W. Coles, M. Kojima and B. Rickett, Ap. J. 358, 685 (1990)

  18. High -Pressure Synthesis and Characterization of Incompressible Titanium Pernitride

    NASA Astrophysics Data System (ADS)

    Bhadram, Venkata; Kim, Duck Young; Strobel, Timothy

    We report the discovery of a new transition-metal pernitride, TiN2, which was synthesized by reacting TiN with N2 at 73GPa in a laser-heated diamond anvil cell (DAC). Our in situ pressure dependent x-ray diffraction studies suggest that TiN2 is recoverable at ambient conditions in a crystal structure that contains single bonded nitrogen units (N2 dumbbells) embedded in the metal lattice and exhibits high bulk modulus (in the range 360-385 GPa) which is usually observed in superhard materials. We have performed ab initio calculations to understand the electronic properties and bonding nature in TiN2 and thereby elucidate the origin of incompressible behavior of this material which is rooted in the nearly filled anti-bonding states of the pernitride units. Although, study of transition metal pernitrides has been an active area of research for quite some time, most of the pernitrides synthesized so far are belong to noble metal group. To our knowledge, this is the first experimental report on TiN2 which is the only light metal pernitride exhibiting bonding-mechanical property relation that is usually seen in heavy metal pernitrides. This work was supported by Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science under Award No. DE-SC0001057.

  19. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2016-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  20. Suprathermal Charged Particle Acceleration by Small-scale Flux Ropes.

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.

    2015-12-01

    We consider different limits of our recently developed kinetic transport theory to investigate the potential of super-Alvenic solar wind regions containing several small-scale flux ropes to explain the acceleration of suprathermal ions to power-law spectra as observations show. Particle acceleration is modeled in response to flux-rope activity involving contraction, merging (reconnection), and collisions in the limit where the particle gyoradius is smaller than the characteristic flux-rope scale length. The emphasis is mainly on the statistical variance in the electric fields induced by flux-rope dynamics rather than on the mean electric field induced by multiple flux ropes whose acceleration effects are discussed elsewhere. Our steady-state analytical solutions suggest that particle drift acceleration by flux ropes, irrespective of whether displaying incompressible or compressible behavior, can yield power laws asymptotically at higher energies whereas an exponential spectral rollover results asymptotically when field-aligned guiding center motion acceleration occur by reconnection electric fields from merging flux ropes. This implies that at sufficiently high particle energies, drift acceleration might dominate. We also expect compressive flux ropes to yield harder power-law spectra than incompressible flux ropes. Preliminary results will be discussed to illustrate how particle acceleration might be affected when both diffusive shock and small-scale flux acceleration occur simultaneously at interplanetary shocks.