Science.gov

Sample records for accelerating lorentz force

  1. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  2. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2004-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.

  3. Lorentz-Dirac force from QED for linear acceleration

    SciTech Connect

    Higuchi, Atsushi; Martin, Giles D.R.

    2004-10-15

    We investigate the motion of a wave packet of a charged scalar particle linearly accelerated by a static potential in quantum electrodynamics. We calculate the expectation value of the position of the charged particle after the acceleration to first order in the fine structure constant in the ({Dirac_h}/2{pi}){yields}0 limit. We find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics. We also point out that the one-loop correction to the potential may contribute to the position change in this limit.

  4. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  5. Simulation of plasma flows in self-field Lorentz force accelerators

    NASA Astrophysics Data System (ADS)

    Sankaran, Kameshwaran

    2005-07-01

    A characteristics-based scheme for the solution of ideal MHD equations was developed, and its ability to capture time-dependent discontinuities monotonically, as well as maintain force-free equilibrium, was demonstrated. Detailed models of classical transport, real equations of state, multi-level ionization models, anomalous transport, and multi-temperature effects for argon and lithium plasmas were implemented in this code. The entire set of equations was solved on non-orthogonal meshes, using parallel computers, to provide realistic description of flowfields in various thruster configurations. The calculated flowfield in gas-fed magnetoplasmadynamic thrusters (MPDT), such as the full-scale benchmark thruster (FSBT), compared favorably with measurements. These simulations provided insight into some aspects of FSBT operation, such as the weak role of the anode geometry in affecting the coefficient of thrust, the predominantly electromagnetic nature of the thrust at nominal operating conditions, and the importance of the near-cathode region in energy dissipation. Furthermore, the simulated structure of the flow embodied a number of photographically-recorded features of the FSBT discharge. Based on the confidence gained from its success with gas-fed MPDT flows, this code was then used to study a promising high-power spacecraft thruster, the lithium Lorentz force accelerator (LiLFA), in order to uncover its interior plasma properties and to obtain insight into underlying physical processes that had been poorly understood. The simulated flowfields of density, velocity, ionization, and anomalous resistivity were shown to change qualitatively with the total current. The simulations show the presence of a velocity reducing shock at low current, which disappeared as the current was increased above the value corresponding to nominal operation. The breakdown and scaling of the various components of thrust and power were revealed. The line on which the magnetic pressure

  6. Lorentz force velocimetry.

    PubMed

    Thess, A; Votyakov, E V; Kolesnikov, Y

    2006-04-28

    We describe a noncontact technique for velocity measurement in electrically conducting fluids. The technique, which we term Lorentz force velocimetry (LFV), is based on exposing the fluid to a magnetic field and measuring the drag force acting upon the magnetic field lines. Two series of measurements are reported, one in which the force is determined through the angular velocity of a rotary magnet system and one in which the force on a fixed magnet system is measured directly. Both experiments confirm that the measured signal is a linear function of the flow velocity. We then derive the scaling law that relates the force on a localized distribution of magnetized material to the velocity of an electrically conducting fluid. This law shows that LFV, if properly designed, has a wide range of potential applications in metallurgy, semiconductor crystal growth, and glass manufacturing. PMID:16712237

  7. Lorentz Abraham Force and Power Equations

    NASA Astrophysics Data System (ADS)

    Yaghjian, Arthur D.

    Toward the end of the nineteenth century Lorentz modeled the electron (“vibrating charged particle,” as he called it) by a spherical shell of uniform surface charge density and set about the difficult task of deriving the equation of motion of this electron model by determining, from Maxwell's equations and the Lorentz force law, the retarded self electromagnetic force that the fields of the accelerating charge distribution exert upon the charge itself [1]. (This initial work of Lorentz in 1892 on a moving charged sphere appeared five years before J.J. Thomson's “discovery” of the electron. It is summarized in English by J.Z. Buchwald [2, app. 7].) With the help of Abraham,1 a highly successful theory of the moving electron model was completed by the early 1900's [3, 4]. Before Einstein's papers [5, 6] on special relativity appeared in 1905, they had derived the following force equation of motion

  8. Torsional Oscillations with Lorentz Force

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    We have built a device that uses the Lorentz force on a current-carrying wire situated in a magnetic field, F = I L x B, in order to demonstrate a slowly varying alternating current by means of an optical lever. The apparatus consists of a horseshoe magnet, a length of thin enamel-coated wire (ours was 0.3 mm thick), a signal generator, a…

  9. Investigation of a Lorentz force biomagnetometer.

    PubMed

    Towe, B C

    1997-06-01

    This work evaluates an approach to the noninvasive measurement of small ionic current flows by a technique of Lorentz force magnetometry. An instrument was constructed that is basically a very sensitive force-balance that can measure Lorentz forces experienced by ionic currents flowing in small objects when exposed to strong oscillating magnetic fields. For objects that can fit on a microscope slide, the system is sensitive to ion current dipole moments as low as 180 pA-m. Images were made of ionic currents flowing in thin profiles by a process of scanning a localized magnetic field over the object, measuring generated Lorentz forces, and using a computer to reconstruct images. It can be shown that this method of Lorentz magnetometry has an immunity to ambient magnetic noise and has system characteristics that might suggest its possible use in biomagnetometry of small thin specimens.

  10. Low-temperature M =3 flow deceleration by Lorentz force

    NASA Astrophysics Data System (ADS)

    Nishihara, Munetake; Rich, J. William; Lempert, Walter R.; Adamovich, Igor V.; Gogineni, Sivaram

    2006-08-01

    This paper presents results of cold magnetohydrodynamic (MHD) flow deceleration experiments using repetitively pulsed, short pulse duration, high voltage discharge to produce ionization in M =3 nitrogen and air flows in the presence of transverse direct current electric field and transverse magnetic field. MHD effect on the flow is detected from the flow static pressure measurements. Retarding Lorentz force applied to the flow produces a static pressure increase of up to 17%-20%, while accelerating force of the same magnitude results in static pressure increase of up to 5%-7%. The measured static pressure changes are compared with modeling calculations using quasi-one-dimensional MHD flow equations. Comparison of the experimental results with the modeling calculations shows that the retarding Lorentz force increases the static pressure rise produced by Joule heating of the flow, while the accelerating Lorentz force reduces the pressure rise. The effect is produced for two possible combinations of the magnetic field and transverse current directions producing the same Lorentz force direction (both for accelerating and retarding force). This demonstrates that the observed static pressure change is indeed due to the MHD interaction, and not due to Joule heating of the flow in the crossed discharge. No discharge polarity effect on the static pressure was detected in the absence of the magnetic field. The fraction of the discharge input power going into Joule heat in nitrogen and dry air, inferred from the present experiments, is low, α =0.1, primarily because energy remains frozen in the vibrational energy mode of nitrogen. This result provides first direct evidence of cold supersonic flow deceleration by Lorentz force.

  11. Low-temperature M=3 flow deceleration by Lorentz force

    SciTech Connect

    Nishihara, Munetake; Rich, J. William; Lempert, Walter R.; Adamovich, Igor V.; Gogineni, Sivaram

    2006-08-15

    This paper presents results of cold magnetohydrodynamic (MHD) flow deceleration experiments using repetitively pulsed, short pulse duration, high voltage discharge to produce ionization in M=3 nitrogen and air flows in the presence of transverse direct current electric field and transverse magnetic field. MHD effect on the flow is detected from the flow static pressure measurements. Retarding Lorentz force applied to the flow produces a static pressure increase of up to 17%-20%, while accelerating force of the same magnitude results in static pressure increase of up to 5%-7%. The measured static pressure changes are compared with modeling calculations using quasi-one-dimensional MHD flow equations. Comparison of the experimental results with the modeling calculations shows that the retarding Lorentz force increases the static pressure rise produced by Joule heating of the flow, while the accelerating Lorentz force reduces the pressure rise. The effect is produced for two possible combinations of the magnetic field and transverse current directions producing the same Lorentz force direction (both for accelerating and retarding force). This demonstrates that the observed static pressure change is indeed due to the MHD interaction, and not due to Joule heating of the flow in the crossed discharge. No discharge polarity effect on the static pressure was detected in the absence of the magnetic field. The fraction of the discharge input power going into Joule heat in nitrogen and dry air, inferred from the present experiments, is low, {alpha}=0.1, primarily because energy remains frozen in the vibrational energy mode of nitrogen. This result provides first direct evidence of cold supersonic flow deceleration by Lorentz force.

  12. Average Lorentz self-force from electric field lines

    NASA Astrophysics Data System (ADS)

    Aashish, Sandeep; Haque, Asrarul

    2015-09-01

    We generalize the derivation of electromagnetic fields of a charged particle moving with a constant acceleration Singal (2011 Am. J. Phys. 79 1036) to a variable acceleration (piecewise constants) over a small finite time interval using Coulomb's law, relativistic transformations of electromagnetic fields and Thomson's construction Thomson (1904 Electricity and Matter (New York: Charles Scribners) ch 3). We derive the average Lorentz self-force for a charged particle in arbitrary non-relativistic motion via averaging the fields at retarded time.

  13. Theory of the Lorentz force flowmeter

    NASA Astrophysics Data System (ADS)

    Thess, André; Votyakov, Evgeny; Knaepen, Bernard; Zikanov, Oleg

    2007-08-01

    A Lorentz force flowmeter is a device for the contactless measurement of flow rates in electrically conducting fluids. It is based on the measurement of a force on a magnet system that acts upon the flow. We formulate the theory of the Lorentz force flowmeter which connects the measured force to the unknown flow rate. We first apply the theory to three specific cases, namely (i) pipe flow exposed to a longitudinal magnetic field, (ii) pipe flow under the influence of a transverse magnetic field and (iii) interaction of a localized distribution of magnetic material with a uniformly moving sheet of metal. These examples provide the key scaling laws of the method and illustrate how the force depends on the shape of the velocity profile and the presence of turbulent fluctuations in the flow. Moreover, we formulate the general kinematic theory which holds for arbitrary distributions of magnetic material or electric currents and for any velocity distribution and which provides a rational framework for the prediction of the sensitivity of Lorentz force flowmeters in laboratory experiments and in industrial practice.

  14. Lorentz force magnetometer using a micromechanical oscillator

    NASA Astrophysics Data System (ADS)

    Li, M.; Ng, E. J.; Hong, V. A.; Ahn, C. H.; Yang, Y.; Kenny, T. W.; Horsley, D. A.

    2013-10-01

    This paper presents a Lorentz force magnetometer employing a micromechanical oscillator. The oscillator, actuated by both electrostatic force and Lorentz force, is based on a 370 μm by 230 μm silicon micromechanical resonator with quality factor (Q) of 13 000. This field-sensitive micromechanical oscillator eliminates the need for an external electronic oscillator and improves magnetometer's stability over temperature. The resonator uses no magnetic materials and is encapsulated using an epitaxial polysilicon layer in a process that is fully compatible with complementary metal-oxide-semiconductor manufacturing. The sensor has a magnetic field resolution of 128 nT/rt-Hz with 2.1 mA bias current.

  15. Mechanical model of the Lorentz force and Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Dmitriyev, Valery

    2008-09-01

    The centripetal and Coriolis accelerations experienced by a cart traveling over a rotating turntable are usually calculated proceeding from the known kinematics of the problem. Respective forces can be regarded as due to the entrainment of the cart in the moving solid environs. We extend the approach to the general case of a particle entrained in the flow of the surrounding medium. The expression for the driving force on the particle obtained from the kinematics of the entrainment prescribed appears to be isomorphic to the Lorentz and Coulomb force on a positive electric charge. The inverse direction of the electromagnetic force on a negative charge implies that a growing applied flow induces the upstream motion of the particle. A possible microscopic mechanism for it may be the Magnus force dynamics of a kink in a vortex tangle. The loop on a straight vortex filament can be taken as a model of the electron, the loop with a cavitation models the positron. The Lorentz force is concerned with the Coriolis acceleration. The Coulomb interaction is due to the centripetal or centrifugal force that arises in the turbophoresis of the kink in the perturbation field generated in the medium by the center of pressure.

  16. Direct Lorentz force compensation flowmeter for electrolytes

    NASA Astrophysics Data System (ADS)

    Vasilyan, S.; Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known "electromagnetic force" compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 106 S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  17. Direct Lorentz force compensation flowmeter for electrolytes

    SciTech Connect

    Vasilyan, S. Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known “electromagnetic force” compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20 S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 10{sup 6 }S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1 S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  18. Lorentz Force Based Satellite Attitude Control

    NASA Astrophysics Data System (ADS)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  19. LORENTZ SELF-FORCE OF AN ELLIPSE CURRENT LOOP MODEL

    SciTech Connect

    Olmedo, Oscar; Zhang Jie; Kunkel, Valbona

    2013-07-10

    In this work, the Lorentz self-force of an ellipse current loop model is derived. We are motivated by the fact that it has been reported in the literature that coronal mass ejection morphology can resemble an ellipse in the field of view of coronagraph images. Deriving the Lorentz self-force using an ellipse geometry has the advantage of being able to be solved analytically, as opposed to other more complex geometries. The derived ellipse model is compared with the local curvature approximation, where the Lorentz self-force at the ellipse major/minor axis is compared with the Lorentz self-force of a torus with curvature equal to the local curvature at the ellipses major/minor axis. It is found that the local curvature approximation is valid for moderate values of eccentricity.

  20. The competition between Lorentz and Coriolis forces in planetary dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista M.; Sheyko, Andrey; King, Eric M.; Aurnou, Jonathan M.

    2015-12-01

    Fluid motions within planetary cores generate magnetic fields through dynamo action. These core processes are driven by thermo-compositional convection subject to the competing influences of rotation, which tends to organize the flow into axial columns, and the Lorentz force, which tends to inhibit the relative movement of the magnetic field and the fluid. It is often argued that these forces are predominant and approximately equal in planetary cores; we test this hypothesis using a suite of numerical geodynamo models to calculate the Lorentz to Coriolis force ratio directly. Our results show that this ratio can be estimated by ( Λ i is the traditionally defined Elsasser number for imposed magnetic fields and Rm is the system-scale ratio of magnetic induction to magnetic diffusion). Best estimates of core flow speeds and magnetic field strengths predict the geodynamo to be in magnetostrophic balance where the Lorentz and Coriolis forces are comparable. The Lorentz force may also be significant, i.e., within an order of magnitude of the Coriolis force, in the Jovian interior. In contrast, the Lorentz force is likely to be relatively weak in the cores of Saturn, Uranus, Neptune, Ganymede, and Mercury.

  1. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  2. A theoretical model for the Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Moreau, René; Tao, Zhen; Wang, Xiaodong

    2016-07-01

    In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).

  3. Fermi acceleration in the randomized driven Lorentz gas and the Fermi-Ulam model.

    PubMed

    Karlis, A K; Papachristou, P K; Diakonos, F K; Constantoudis, V; Schmelcher, P

    2007-07-01

    Fermi acceleration of an ensemble of noninteracting particles evolving in a stochastic two-moving wall variant of the Fermi-Ulam model (FUM) and the phase randomized harmonically driven periodic Lorentz gas is investigated. As shown in [A. K. Karlis, P. K. Papachristou, F. K. Diakonos, V. Constantoudis, and P. Schmelcher, Phys. Rev. Lett. 97, 194102 (2006)], the static wall approximation, which ignores scatterer displacement upon collision, leads to a substantial underestimation of the mean energy gain per collision. In this paper, we clarify the mechanism leading to the increased acceleration. Furthermore, the recently introduced hopping wall approximation is generalized for application in the randomized driven Lorentz gas. Utilizing the hopping approximation the asymptotic probability distribution function of the particle velocity is derived. Moreover, it is shown that, for harmonic driving, scatterer displacement upon collision increases the acceleration in both the driven Lorentz gas and the FUM by the same amount. On the other hand, the investigation of a randomized FUM, comprising one fixed and one moving wall driven by a sawtooth force function, reveals that the presence of a particular asymmetry of the driving function leads to an increase of acceleration that is different from that gained when symmetrical force functions are considered, for all finite number of collisions. This fact helps open up the prospect of designing accelerator devices by combining driving laws with specific symmetries to acquire a desired acceleration behavior for the ensemble of particles.

  4. Active Control of Transition Using the Lorentz Force

    NASA Technical Reports Server (NTRS)

    Nosenchuck, Daniel; Brown, Garry

    2007-01-01

    A new concept and technique has been developed to directly control boundary-layer transition and turbulence. Near-wall vertical motions are directly suppressed through the application of Lorentz force. Current (j) and magnetic (b) fields are applied parallel to the boundary and normal to each other to produce a Lorentz force (j x B) normal to the boundary. This approach is called magnetic turbulence control (MTC). Experiments have been performed on flat-plate transitional and turbulent boundary layers in water seeded with a weak electrolyte.

  5. Towards metering tap water by Lorentz force velocimetry

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Ebert, Reschad; Weidner, Markus; Rivero, Michel; Halbedel, Bernd; Resagk, Christian; Fröhlich, Thomas

    2015-11-01

    In this paper, we present enhanced flow rate measurement by applying the contactless Lorentz Force Velocimetry (LFV) technique. Particularly, we show that the LFV is a feasible technique for metering the flow rate of salt water in a rectangular channel. The measurements of the Lorentz forces as a function of the flow rate are presented for different electrical conductivities of the salt water. The smallest value of conductivity is achieved at 0.06 S·m-1, which corresponds to the typical value of tap water. In comparison with previous results, the performance of LFV is improved by approximately 2 orders of magnitude by means of a high-precision differential force measurement setup. Furthermore, the sensitivity curve and the calibration factor of the flowmeter are provided based on extensive measurements for the flow velocities ranging from 0.2 to 2.5 m·s-1 and conductivities ranging from 0.06 to 10 S·m-1.

  6. Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities

    NASA Astrophysics Data System (ADS)

    Corno, Jacopo; de Falco, Carlo; De Gersem, Herbert; Schöps, Sebastian

    2016-04-01

    Cavities in linear accelerators suffer from eigenfrequency shifts due to mechanical deformation caused by the electromagnetic radiation pressure, a phenomenon known as Lorentz detuning. Estimating the frequency shift up to the needed accuracy by means of standard Finite Element Methods, is a complex task due to the non exact representation of the geometry and due to the necessity for mesh refinement when using low order basis functions. In this paper, we use Isogeometric Analysis for discretizing both mechanical deformations and electromagnetic fields in a coupled multiphysics simulation approach. The combined high-order approximation of both leads to high accuracies at a substantially lower computational cost.

  7. Parameterization of the Lorentz to Coriolis Force Ratio in Planetary Dynamos

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Sheyko, A. A.; King, E. M.; Aurnou, J. M.

    2015-12-01

    The Lorentz to Coriolis force ratio is an important parameter for the dynamics of planetary cores: it is expected that dynamos with dominant Coriolis forces will be driven by fundamentally different archetypes of fluid motions than those with co-dominant Lorentz forces. Using a suite of geodynamo simulations, we have tested several parameterizations of the Lorentz to Coriolis force ratio against direct calculations and developed a scaling estimate to predict this ratio for planetary cores. Our results suggest that the Earth's core is likely to be in magnetostrophic balance where the Lorentz and Coriolis forces are comparable. The Lorentz force may also be significant in Jupiter's core, where it is predicted to be approximately a factor of ten less than the Coriolis force. Magnetic fields become increasingly sub-dominant for the other planets: the Coriolis force is predicted to exceed the Lorentz force by at least two orders of magnitude within the cores of Saturn, Uranus/Neptune, Ganymede, and Mercury.

  8. Amplitude modulated Lorentz force MEMS magnetometer with picotesla sensitivity

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Ramezany, Alireza; Mahdavi, Mohammad; Pourkamali, Siavash

    2016-10-01

    This paper demonstrates ultra-high sensitivities for a Lorentz force resonant MEMS magnetometer enabled by internal-thermal piezoresistive vibration amplification. A detailed model of the magneto-thermo-electro-mechanical internal amplification is described and is in good agreement with the experimental results. Internal amplification factors up to ~1620 times have been demonstrated by artificially boosting the effective quality factor of the resonator from 680 to 1.14  ×  106 by tuning the bias current. The increase in the resonator bias current in addition to the improvement in the quality factor of the device led to a sensitivity enhancement by ~2400 times. For a bias current of 7.245 mA, where the effective quality factor of the device and consequently the sensitivity is maximum (2.107 mV nT-1), the noise floor is measured to be as low as 2.8 pT (√Hz)-1. This is by far the most sensitive Lorentz force MEMS magnetometer demonstrated to date.

  9. Lorentz force velocimetry based on time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Viré, Axelle; Knaepen, Bernard; Thess, André

    2010-12-01

    Lorentz force velocimetry (LFV) is a contactless technique for the measurement of liquid metal flowrates. It consists of measuring the force acting upon a magnetic system and arising from the interaction between an external magnetic field and the flow of an electrically conducting fluid. In this study, a new design is proposed so as to make the measurement independent of the fluid's electrical conductivity. It is made of one or two coils placed around a circular pipe. The forces produced on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated with a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the coil radii, coil separation, and sign of the coil-carrying currents is systematically assessed. The study is entirely numerical and uses a second-order finite volume method. Two sets of simulations are performed. First, the equations of motion are solved without accounting for the effect of the magnetic field on the flow (kinematic simulations). Second, the Lorentz force is explicitly added to the momentum balance (dynamic simulations), and the influence of the external magnetic field on the flow is then quantified.

  10. Relationship between the Einstein-Laub electromagnetic force and the Lorentz force on free charge

    NASA Astrophysics Data System (ADS)

    Webb, Kevin J.

    2016-08-01

    An electromagnetic force density expression that is consistent with a development attributed to Einstein and Laub appears to be able to describe optical force experiments done to date with homogenized media. However, a major question that has persisted for about one century relates to the apparent discrepancy with the usual interpretation of the force description due to Lorentz in magnetized media. Specifically, it had appeared that the Einstein and Laub force density incorporated only the free-space permeability in relation to the force on the electric current density. It is shown here that the Einstein and Laub force density is consistent with the Lorentz picture in the static limit. This resolves a key impediment in establishing a unified force density description for electromagnetic waves interacting with matter.

  11. Force-rebalanced Lorentz force magnetometer based on a micromachined oscillator

    NASA Astrophysics Data System (ADS)

    Sonmezoglu, S.; Li, M.; Horsley, D. A.

    2015-03-01

    This paper presents a 3-axis Lorentz force magnetometer based on an encapsulated micromechanical silicon resonator having three orthogonal vibration modes, each measuring one vector component of the external magnetic field. One mode, with natural frequency (fn) of 46.973 kHz and quality factor (Q) of 14 918, is operated as a closed-loop electrostatically excited oscillator to provide a frequency reference for 3-axis sensing and Lorentz force generation. Current, modulated at the reference frequency, is injected into the resonator, producing Lorentz force that is centered at the reference frequency. Lorentz force in the first axis is nulled by the oscillator loop, resulting in force-rebalanced operation. The bandwidth and scale-factor of this force-rebalanced axis are independent of resonator Q, improving the sensor's temperature coefficient from 20 841 ppm/ °C to 424 ppm/ °C. The frequencies of the other two modes are closely spaced to the first mode's reference frequency and are demonstrated to track this frequency over temperature within 1 ppm/K. Field measurements in these two axes are conducted open-loop and off-resonance, ensuring that the scale-factor is independent of Q to first order and producing a measurement bandwidth of over 40 Hz.

  12. A novel reciprocating micropump based on Lorentz force

    NASA Astrophysics Data System (ADS)

    Salari, Alinaghi; Hakimsima, Abbas; Shafii, Mohammad Behshad

    2015-03-01

    Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber diaphragm. Two miniature permanent magnets capable of providing magnetic field of 0.09 T at the center of the diaphragm were mounted on each side of the chamber. Square wave electric current with low-frequencies was generated using a function generator. Cylindrical copper microwires (250 μm diameter and 5 mm length) were attached side-by-side on top surface of the diaphragm. Thin loosely attached wires were used as connectors to energize the electrodes. Due to large displacement length of the diaphragm (~3 mm) a high efficiency (~90%) ball valve (2 mm diameter stainless steel ball in a tapered tubing structure) was used in the pump outlet. The micropump exhibits a flow rate as high as 490 μl/s and pressure up to 1.5 kPa showing that the pump is categorized among high-flow-rate mechanical micropumps.

  13. Lorentz forces on the dust in Jupiter's ring

    NASA Astrophysics Data System (ADS)

    Consolmagno, G. J.

    1983-07-01

    The paths of dust particles in the Jovian ring are investigated using a numerical integration program, including the acceleration due to gravity and the Lorentz and drag accelerations arising from the motions of the charged dust through the Jovian plasma. It is determined that the orbit of a 2.5 micron radius spherical dust particle with a density of 2 g/cu cm -10V will become significantly perturbed. The ring will tend to warp northwards near 130-160 deg longitude, with the maximum excursion of the Jupiter ring grains equalling about 0.1 deg (consistent with a distance of 220 km above the equatorial plane). It is found that either the particles are larger or the voltages on them less than what has been determined by previous investigators, while the plasma near the ring may be considerably cooler than was estimated. Calculations show that particles of 0.3 micron with -10 V potentials are spread from 1.68-1.98 of the radius of Jupiter and inclined up to 7 deg out of the equatorial plane. The paths of these particles do not follow Keplerian orbits, and the particle positions are not symmetric about the equatorial plane. Particles of 0.4 micron radius have less asymmetric orbits than 0.3 micron particles, while particles less than 0.2 micron are perturbed into Jupiter cloudtops within a few tens of hours.

  14. Lorentz forces on the dust in Jupiter's ring

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.

    1983-01-01

    The paths of dust particles in the Jovian ring are investigated using a numerical integration program, including the acceleration due to gravity and the Lorentz and drag accelerations arising from the motions of the charged dust through the Jovian plasma. It is determined that the orbit of a 2.5 micron radius spherical dust particle with a density of 2 g/cu cm -10V will become significantly perturbed. The ring will tend to warp northwards near 130-160 deg longitude, with the maximum excursion of the Jupiter ring grains equalling about 0.1 deg (consistent with a distance of 220 km above the equatorial plane). It is found that either the particles are larger or the voltages on them less than what has been determined by previous investigators, while the plasma near the ring may be considerably cooler than was estimated. Calculations show that particles of 0.3 micron with -10 V potentials are spread from 1.68-1.98 of the radius of Jupiter and inclined up to 7 deg out of the equatorial plane. The paths of these particles do not follow Keplerian orbits, and the particle positions are not symmetric about the equatorial plane. Particles of 0.4 micron radius have less asymmetric orbits than 0.3 micron particles, while particles less than 0.2 micron are perturbed into Jupiter cloudtops within a few tens of hours.

  15. Optimal impedance on transmission of Lorentz force EMATs

    NASA Astrophysics Data System (ADS)

    Isla, Julio; Seher, Matthias; Challis, Richard; Cegla, Frederic

    2016-02-01

    Electromagnetic-acoustic transducers (EMATs) are attractive for non-destructive inspections because direct contact with the specimen under test is not required. This advantage comes at a high cost in sensitivity and therefore it is important to optimise every aspect of an EMAT. The signal strength produced by EMATs is in part determined by the coil impedance regardless of the transduction mechanism (e.g. Lorentz force, magnetostriction, etc.). There is very little literature on how to select the coil impedance that maximises the wave intensity; this paper addresses that gap. A transformer circuit is used to model the interaction between the EMAT coil and the eddy currents that are generated beneath the coil in the conducting specimen. Expressions for the coil impedances that satisfy the maximum efficiency and maximum power transfer conditions on transmission are presented. To support this analysis, a tunable coil that consists of stacked identical thin layers independently accessed is used so that the coil inductance can be modified while leaving the radiation pattern of the EMAT unaffected.

  16. A Simple Demonstration of Lorentz Force in Electrically-Conductive Fluid

    NASA Astrophysics Data System (ADS)

    Ribeiro, A.; Aurnou, J.

    2013-12-01

    Flows driven by electromagnetic Lorentz forces are ubiquitous in the universe. Lorentz forces are essential, for example, in the dynamics of planetary cores and astrophysical plasmas. In an electrically-conducting fluid, this force is defined as the vector cross product of the magnetic field with the electric current density. We have built an easily-replicated desktop device to demonstrate the effects of Lorentz forces in a copper sulfate solution. The electric current is controlled by a DC power supply, and the magnetic field is imposed using neodymium magnets. By varying the electric current, it is possible to tune the Lorentz forces and, thus, the resulting drive motions in the copper sulfate solution. Experiments will be carried out onsite, along with real time measurements of electric potential, magnetic field strength and local flow velocities.

  17. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  18. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  19. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  20. Self-force on an accelerated particle

    NASA Astrophysics Data System (ADS)

    Linz, Thomas M.; Friedman, John L.; Wiseman, Alan G.

    2014-07-01

    We calculate the singular field of an accelerated point particle (scalar charge, electric charge or small gravitating mass) moving on an accelerated (nongeodesic) trajectory in a generic background spacetime. Using a mode-sum regularization scheme, we obtain explicit expressions for the self-force regularization parameters. We use a Lorentz gauge for the electromangetic and gravitational cases. This work extends the work of Barack and Ori [1] who demonstrated that the regularization parameters for a point particle in geodesic motion in a Schwarzschild spacetime can be described solely by the leading and subleading terms in the mode-sum (commonly known as the A and B terms) and that all terms of higher order in ℓ vanish upon summation (later they showed the same behavior for geodesic motion in Kerr [2], [3]). We demonstrate that these properties are universal to point particles moving through any smooth spacetime along arbitrary (accelerated) trajectories. Our renormalization scheme is based on, but not identical to, the Quinn-Wald axioms. As we develop our approach, we review and extend work showing that that different definitions of the singular field used in the literature are equivalent to our approach. Because our approach does not assume geodesic motion of the perturbing particle, we are able use our mode-sum formalism to explicitly recover a well-known result: The self-force on static scalar charges near a Schwarzschild black hole vanishes.

  1. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.

    PubMed

    Mansuripur, Masud

    2012-05-11

    The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics.

  2. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.

    PubMed

    Mansuripur, Masud

    2012-05-11

    The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally treated by expressing the corresponding polarization and magnetization distributions in terms of bound-charge and bound-current densities, which are subsequently added to free-charge and free-current densities, respectively. In this way, Maxwell's macroscopic equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a precise expression of the electromagnetic force density on material bodies at all points in space and time. This Letter presents incontrovertible theoretical evidence of the incompatibility of the Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must be abandoned in favor of a more general expression of the electromagnetic force density, such as the one discovered by Einstein and Laub in 1908. Not only is the Einstein-Laub formula consistent with special relativity, it also solves the long-standing problem of "hidden momentum" in classical electrodynamics. PMID:23003039

  3. Imaging of shear waves induced by Lorentz force in soft tissues.

    PubMed

    Grasland-Mongrain, P; Souchon, R; Cartellier, F; Zorgani, A; Chapelon, J Y; Lafon, C; Catheline, S

    2014-07-18

    This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.

  4. Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, P.; Souchon, R.; Cartellier, F.; Zorgani, A.; Chapelon, J. Y.; Lafon, C.; Catheline, S.

    2014-07-01

    This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.

  5. Lorentz force sigmometry: a novel technique for measuring the electrical conductivity of solid and liquid metals

    NASA Astrophysics Data System (ADS)

    Alkhalil, Shatha; Kolesnikov, Yurii; Thess, André

    2015-11-01

    In this paper, a novel method to measure the electrical conductivity of solid and molten metals is described. We term the method ‘Lorentz force sigmometry’, where the term ‘sigmometry’ refers to the letter sigma σ, often used to denote the electrical conductivity. The Lorentz force sigmometry method is based on the phenomenon of eddy currents generation in a moving conductor exposed to a magnetic field. Based on Ampere’s law, the eddy currents in turn generate a secondary magnetic field; as a result, the Lorentz force acts to brake the conductor. Owing to Newton’s third law, a measurable force, which is equal to the Lorentz force and is directly proportional to the electrical conductivity of the conductive fluid or solid, acts on the magnet. We present the results of the measurements performed on solids along with the initial measurements on fluids with a eutectic alloy composition of Ga67In20.5Sn12.5; detailed measurements on molten metals are still in progress and will be published in the future. We conducted a series of experiments and measured the properties of known electrical conductive metals, including aluminum and copper, to compute the calibration factor of the device, and then used the same calibration factor to estimate the unknown electrical conductivity of a brass bar. The predicted electrical conductivity of the brass bar was compared with the conductivity measured with a commercial device called ‘SigmaTest’ the observed error was less than 0.5%.

  6. Optimal magnet configurations for Lorentz force velocimetry in low conductivity fluids

    NASA Astrophysics Data System (ADS)

    Alferenok, A.; Pothérat, A.; Luedtke, U.

    2013-06-01

    We show that the performances of flowmeters based on the measurement of Lorentz force in duct flows can be sufficiently optimized to be applied to fluids of low electrical conductivity. The main technological challenge is to design a system with permanent magnets generating a strong enough field for the Lorentz force generated when a fluid of low conductivity passes through it to be reliably measured. To achieve this, we optimize the design of a magnet system based on Halbach arrays placed on either side of the duct. In the process, we show that the fluid flow can be approximated as a moving solid bar with practically no impact on the optimization result and devise a rather general iterative optimization procedure, which incurs drastically less computational cost than a direct procedure of equivalent precision. We show that both the Lorentz force and the efficiency of the system (defined as the ratio of the Lorentz force to the weight of the system) can be increased several fold by using Halbach arrays made of three, five, seven or nine magnets on either side of the duct but that this improvement comes at a cost in terms of the precision required to position the system.

  7. Modeling laser wakefield accelerators in a Lorentz boosted frame

    SciTech Connect

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

    2010-06-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  8. Modeling laser wakefield accelerators in a Lorentz boosted frame

    SciTech Connect

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  9. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  10. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  11. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  12. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    PubMed Central

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-01-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries. PMID:26330327

  13. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-09-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  14. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.

    PubMed

    Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T

    2015-01-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries. PMID:26330327

  15. Frequency spectra of magnetostrictive and Lorentz forces generated in ferromagnetic materials by a CW excited EMAT

    NASA Astrophysics Data System (ADS)

    Rouge, C.; Lhémery, A.; Aristégui, C.

    2014-04-01

    Magnetostriction arises in ferromagnetic materials subjected to magnetization, e.g., when an EMAT (Electro-Magnetic Acoustic Transducer) is used to generate ultrasonic waves. In such a case, the magnetostriction force must be taken into account as a transduction process that adds up to the Lorentz force. When the static magnetic field is high compared to the dynamic field, both forces are driven by the excitation frequency. For lower static relative values of the magnetic fields, the Lorentz force comprises both the excitation frequency and its first harmonic. In this work, a model is derived to predict the frequency content of the magnetostrictive force that comprises several harmonics. The discrete frequency spectrum strongly depends on both the static field and the relative amplitude of the dynamic field. The only material input data needed to predict it is the curve of macroscopic magnetostrictive strain that can be measured in the direction of an imposed magnetic field. Then, the various frequency-dependent distributions of Lorentz and magnetostriction body forces can be transformed into equivalent surface stresses. Examples of computation are given for different static and dynamic magnetic fields to study their influence on the frequency content of waves generated in ferromagnetic materials.

  16. Velocity and flow rate measurement of liquid metal by contactless electromagnetic Lorentz force technique

    NASA Astrophysics Data System (ADS)

    Dubovikova, N.; Karcher, C.; Kolesnikov, Y.

    2016-07-01

    Providing flow analysis in case of aggressive and hot liquids is a complicated task, especially when liquid's composition and, hence, its physical properties, are unknown. Contactless techniques are the most promising methods for liquid metal flow rate control and some of these methods are based on electromagnetic induction of breaking force acting on an electrically conductive fluid which is moving through a magnetic field. One of the techniques is time-of-flight Lorentz force velocimetry (LFV). By using the method one can estimate volumetric flow rate without knowing of electrical conductivity, magnitude of magnetic field or characteristic dimension. The most important and crucial challenge within the technique is detection of small fluctuations of Lorentz force value. In this article we will focus on application and investigation of time-of-flight LFV.

  17. Performance enhancement of a Lorentz force velocimeter using a buoyancy-compensated magnet system

    NASA Astrophysics Data System (ADS)

    Ebert, R.; Leineweber, J.; Resagk, C.

    2015-07-01

    Lorentz force velocimetry (LFV) is a highly feasible method for measuring flow rate in a pipe or a duct. This method has been established for liquid metal flows but also for electrolytes such as saltwater. A decrease in electrical conductivity of the medium causes a decrease of the Lorentz force which needs to be resolved, affecting the accuracy of the measurement. We use an electrical force compensation (EFC) balance for the determination of the tiny force signals in a test channel filled with electrolyte solution. It is used in a 90°-rotated orientation with a magnet system hanging vertically on its load bar. The thin coupling elements of its parallel guiding system limit the mass of the magnets to 1 kg. To overcome this restriction, which limits the magnetic flux density and hence the Lorentz forces, a weight force compensation mechanism is developed. Therefore, different methods such as air bearing are conceivable, but for the elimination of additional horizontal force components which would disturb the force signal, only compensation by lift force provided by buoyancy is reasonable. We present a swimming body setup that will allow larger magnet systems than before, because a large amount of the weight force will be compensated by this lift force. Thus the implementation of this concept has to be made with respect to hydrodynamical and mechanical stability. This is necessary to avoid overturning of the swimming body setup and to prevent inelastic deformation. Additionally, the issue will be presented and discussed whether thermal convection around the lifting body diminishes the signal-to-noise ratio (SNR) significantly or not.

  18. Local Lorentz force flowmeter at a continuous caster model using a new generation multicomponent force and torque sensor

    NASA Astrophysics Data System (ADS)

    Hernández, Daniel; Schleichert, Jan; Karcher, Christian; Fröhlich, Thomas; Wondrak, Thomas; Timmel, Klaus

    2016-06-01

    Lorentz force velocimetry is a non-invasive velocity measurement technique for electrical conductive liquids like molten steel. In this technique, the metal flow interacts with a static magnetic field generating eddy currents which, in turn, produce flow-braking Lorentz forces within the fluid. These forces are proportional to the electrical conductivity and to the velocity of the melt. Due to Newton’s third law, a counter force of the same magnitude acts on the source of the applied static magnetic field which is in our case a permanent magnet. In this paper we will present a new multicomponent sensor for the local Lorentz force flowmeter (L2F2) which is able to measure simultaneously all three components of the force as well as all three components of the torque. Therefore, this new sensor is capable of accessing all three velocity components at the same time in the region near the wall. In order to demonstrate the potential of this new sensor, it is used to identify the 3-dimensional velocity field near the wide face of the mold of a continuous caster model available at the Helmholtz-Zentrum Dresden-Rossendorf. As model melt, the eutectic alloy GaInSn is used.

  19. Active control and synchronization chaotic satellite via the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Abdel-Aziz, Yehia

    2016-07-01

    The use of geomagnetic Lorentz force is considered in this paper for the purpose of satellite attitude control. A satellite with an electrostatic charge will interact with the Earth's magnetic field and experience the Lorentz force. An analytical attitude control and synchronization two identical chaotic satellite systems with different initial condition Master/ Slave are proposed to allows a charged satellite remains near the desired attitude. Asymptotic stability for the closed-loop system are investigated by means of Lyapunov stability theorem. The control feasibility depend on the charge requirement. Given a significantly and sufficiently accurate insertion, a charged satellite could maintains the desired attitude orientation without propellant. Simulations is performed to prove the efficacy of the proposed method.

  20. Relativistic version of the Feynman–Dyson–Hughes derivation of the Lorentz force law and Maxwell's homogeneous equations

    NASA Astrophysics Data System (ADS)

    Essén, Hanno; Nordmark, Arne B.

    2016-09-01

    The canonical Poisson bracket algebra of four-dimensional relativistic mechanics is used to derive the equation of motion for a charged particle, with the Lorentz force, and the homogeneous Maxwell equations.

  1. Relativistic version of the Feynman-Dyson-Hughes derivation of the Lorentz force law and Maxwell's homogeneous equations

    NASA Astrophysics Data System (ADS)

    Essén, Hanno; Nordmark, Arne B.

    2016-09-01

    The canonical Poisson bracket algebra of four-dimensional relativistic mechanics is used to derive the equation of motion for a charged particle, with the Lorentz force, and the homogeneous Maxwell equations.

  2. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms.

    PubMed

    Bouchard, Hugo; Bielajew, Alex

    2015-07-01

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano's theorem. Additionally, Lewis' approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano's and Lewis' approaches are stated in this new equation. Fano's theorem is found not to apply in the presence of electromagnetic fields. Lewis' theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.

  3. THE RELATIONSHIP BETWEEN THE SUDDEN CHANGE OF THE LORENTZ FORCE AND THE MAGNITUDE OF ASSOCIATED FLARES

    SciTech Connect

    Wang Shuo; Liu Chang; Wang Haimin

    2012-09-20

    The rapid and irreversible change of photospheric magnetic fields associated with flares has been confirmed by many recent studies. These studies showed that the photospheric magnetic fields respond to coronal field restructuring and turn to a more horizontal state near the magnetic polarity inversion line (PIL) after eruptions. Recent theoretical work has shown that the change in the Lorentz force associated with a magnetic eruption will lead to such a field configuration at the photosphere. The Helioseismic Magnetic Imager has been providing unprecedented full-disk vector magnetograms covering the rising phase of the solar cycle 24. In this study, we analyze 18 flares in four active regions, with GOES X-ray class ranging from C4.7 to X5.4. We find that there are permanent and rapid changes of magnetic field around the flaring PIL, the most notable of which is the increase of the transverse magnetic field. The changes of fields integrated over the area and the derived change of Lorentz force both show a strong correlation with flare magnitude. It is the first time that such magnetic field changes have been observed even for C-class flares. Furthermore, for seven events with associated coronal mass ejections (CMEs), we use an estimate of the impulse provided by the Lorentz force, plus the observed CME velocity, to estimate the CME mass. We find that if the timescale of the back reaction is short, i.e., in the order of 10 s, the derived values of CME mass ({approx}10{sup 15} g) generally agree with those reported in literature.

  4. Cooling of a micro-mechanical resonator by the back-action of Lorentz force

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Dan; Semba, K.; Yamaguchi, H.

    2008-04-01

    Using a semi-classical approach, we describe an on-chip cooling protocol for a micro-mechanical resonator by employing a superconducting flux qubit. A Lorentz force, generated by the passive back-action of the resonator's displacement, can cool down the thermal motion of the mechanical resonator by applying an appropriate microwave drive to the qubit. We show that this on-chip cooling protocol, with well-controlled cooling power and a tunable response time of passive back-action, can be highly efficient. With feasible experimental parameters, the effective mode temperature of a resonator could be cooled down by several orders of magnitude.

  5. Experimental Demonstration of Synthetic Lorentz Force on Cold Atoms by Using Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Ban, Ticijana; Santic, Neven; Dubcek, Tena; Aumiler, Damir; Buljan, Hrvoje

    2015-05-01

    The quest for synthetic magnetism in quantum degenerate atomic gases is motivated by producing controllable quantum emulators, which could mimic complex quantum systems such as interacting electrons in magnetic fields. Experiments on synthetic magnetic fields for neutral atoms have enabled realization of the Hall effect, Harper and Haldane Hamiltonians, and other intriguing topological effects. Here we present the first demonstration of a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, in cold atomic gases captured in a Magneto-Optical Trap (MOT). Synthetic Lorentz force on cold atomic cloud is measured by recording the cloud trajectory. The observed force is perpendicular to the cloud velocity, and it is zero for the atomic cloud at rest. The proposed concept is straightforward to implement in a large volume and different geometries, it is applicable for a broad range of velocities, and it can be realized for different atomic species. The experiment is based on the theoretical proposal introduced in. This work was supported by the UKF Grant No. 5/13 and Croatian MZOS.

  6. Characterization and Comparison of Control Units for Piezo Actuators to be used for Lorentz Force Compensation inth ILC

    SciTech Connect

    Bhattacharyya, Sampriti; Pilipenko, Roman; /Fermilab

    2010-01-01

    Superconducting accelerators, such as the International Linear Collider (ILC), rely on very high Q accelerating cavities to achieve high electric fields at low RF power. Such cavities have very narrow resonances: a few kHz with a 1.3GHz resonance frequency for the ILC. Several mechanical factors cause tune shifts much larger than this: pressure variations in the liquid helium bath; microphonics from pumps and other mechanical devices; and for a pulsed machine such as the ILC, Lorentz force detuning (pressure from the contained RF field). Simple passive stiffening is limited by many manufacturing and material considerations. Therefore, active tuning using piezo actuators is needed. Here we study a supply for their operation. Since commercial power amplifiers are expensive, we analyzed the characteristics of four power amplifiers: (iPZD) built by Istituto Nazionale di Fisica Nucleare (Sezione di Pisa); and a DC-DC converter power supply built in Fermilab (Piezo Master); and two commercial amplifiers, Piezosystem jena and Piezomechanik. This paper presents an analysis and characterization of these amplifiers to understand the cost benefit and reliability when using in a large scale, pulsed beam accelerator like the ILC.

  7. Self-similar Expansion of Solar Coronal Mass Ejections: Implications for Lorentz Self-force Driving

    NASA Astrophysics Data System (ADS)

    Subramanian, Prasad; Arunbabu, K. P.; Vourlidas, Angelos; Mauriya, Adwiteey

    2014-08-01

    We examine the propagation of several coronal mass ejections (CMEs) with well-observed flux rope signatures in the field of view of the SECCHI coronagraphs on board the STEREO satellites using the graduated cylindrical shell fitting method of Thernisien et al. We find that the manner in which they propagate is approximately self-similar; i.e., the ratio (κ) of the flux rope minor radius to its major radius remains approximately constant with time. We use this observation of self-similarity to draw conclusions regarding the local pitch angle (γ) of the flux rope magnetic field and the misalignment angle (χ) between the current density J and the magnetic field B. Our results suggest that the magnetic field and current configurations inside flux ropes deviate substantially from a force-free state in typical coronagraph fields of view, validating the idea of CMEs being driven by Lorentz self-forces.

  8. Self-similar expansion of solar coronal mass ejections: Implications for Lorentz self-force driving

    SciTech Connect

    Subramanian, Prasad; Arunbabu, K. P.; Mauriya, Adwiteey; Vourlidas, Angelos

    2014-08-01

    We examine the propagation of several coronal mass ejections (CMEs) with well-observed flux rope signatures in the field of view of the SECCHI coronagraphs on board the STEREO satellites using the graduated cylindrical shell fitting method of Thernisien et al. We find that the manner in which they propagate is approximately self-similar; i.e., the ratio (κ) of the flux rope minor radius to its major radius remains approximately constant with time. We use this observation of self-similarity to draw conclusions regarding the local pitch angle (γ) of the flux rope magnetic field and the misalignment angle (χ) between the current density J and the magnetic field B. Our results suggest that the magnetic field and current configurations inside flux ropes deviate substantially from a force-free state in typical coronagraph fields of view, validating the idea of CMEs being driven by Lorentz self-forces.

  9. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation

    NASA Astrophysics Data System (ADS)

    Piccione, Paolo; Portaluri, Alessandro

    We obtain a bifurcation result for solutions of the Lorentz equation in a semi-Riemannian manifold; such solutions are critical points of a certain strongly indefinite functionals defined in terms of the semi-Riemannian metric and the electromagnetic field. The flow of the Jacobi equation along each solution preserves the so-called electromagnetic symplectic form, and the corresponding curve in the symplectic group determines an integer valued homology class called the Maslov index of the solution. We study electromagnetic conjugate instants with symplectic techniques, and we prove at first, an analogous of the semi-Riemannian Morse Index Theorem (see (Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, USA, 1963)). By using this result, together with recent results on the bifurcation for critical points of strongly indefinite functionals (see (J. Funct. Anal. 162(1) (1999) 52)), we are able to prove that each non-degenerate and non-null electromagnetic conjugate instant along a given solution of the semi-Riemannian Lorentz force equation is a bifurcation point.

  10. Hidden momentum in a hydrogen atom and the Lorentz-force law

    NASA Astrophysics Data System (ADS)

    Filho, J. S. Oliveira; Saldanha, Pablo L.

    2015-11-01

    By using perturbation theory, we show that a hydrogen atom with magnetic moment due to the orbital angular momentum of the electron has so-called hidden momentum in the presence of an external electric field. This means that the atomic electronic cloud has a nonzero linear momentum in its center-of-mass rest frame due to a relativistic effect. This is completely analogous to the hidden momentum that a classical current loop has in the presence of an external electric field. We discuss how this effect is essential for the validity of the Lorentz-force law in quantum systems. We also connect our results to the long-standing Abraham-Minkowski debate about the momentum of light in material media.

  11. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Fu, Lin; Geng, Jianzhao; Zhang, Xiuchang; Zhang, Heng; Dong, Qihuan; Li, Chao; Li, Jing; Coombs, T. A.

    2016-05-01

    Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  12. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  13. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  14. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  15. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  16. Maxwell's macroscopic equations, the energy-momentum postulates, and the Lorentz law of force.

    PubMed

    Mansuripur, Masud; Zakharian, Armis R

    2009-02-01

    We argue that the classical theory of electromagnetism is based on Maxwell's macroscopic equations, an energy postulate, a momentum postulate, and a generalized form of the Lorentz law of force. These seven postulates constitute the foundation of a complete and consistent theory, thus eliminating the need for actual (i.e., physical) models of polarization P and magnetization M , these being the distinguishing features of Maxwell's macroscopic equations. In the proposed formulation, P(r,t) and M(r,t) are arbitrary functions of space and time, their physical properties being embedded in the seven postulates of the theory. The postulates are self-consistent, comply with the requirements of the special theory of relativity, and satisfy the laws of conservation of energy, linear momentum, and angular momentum. One advantage of the proposed formulation is that it sidesteps the long-standing Abraham-Minkowski controversy surrounding the electromagnetic momentum inside a material medium by simply "assigning" the Abraham momentum density E(r,t)xH(r,t)/c2 to the electromagnetic field. This well-defined momentum is thus taken to be universal as it does not depend on whether the field is propagating or evanescent, and whether or not the host medium is homogeneous, transparent, isotropic, dispersive, magnetic, linear, etc. In other words, the local and instantaneous momentum density is uniquely and unambiguously specified at each and every point of the material system in terms of the E and H fields residing at that point. Any variation with time of the total electromagnetic momentum of a closed system results in a force exerted on the material media within the system in accordance with the generalized Lorentz law. PMID:19391864

  17. Maxwell's macroscopic equations, the energy-momentum postulates, and the Lorentz law of force.

    PubMed

    Mansuripur, Masud; Zakharian, Armis R

    2009-02-01

    We argue that the classical theory of electromagnetism is based on Maxwell's macroscopic equations, an energy postulate, a momentum postulate, and a generalized form of the Lorentz law of force. These seven postulates constitute the foundation of a complete and consistent theory, thus eliminating the need for actual (i.e., physical) models of polarization P and magnetization M , these being the distinguishing features of Maxwell's macroscopic equations. In the proposed formulation, P(r,t) and M(r,t) are arbitrary functions of space and time, their physical properties being embedded in the seven postulates of the theory. The postulates are self-consistent, comply with the requirements of the special theory of relativity, and satisfy the laws of conservation of energy, linear momentum, and angular momentum. One advantage of the proposed formulation is that it sidesteps the long-standing Abraham-Minkowski controversy surrounding the electromagnetic momentum inside a material medium by simply "assigning" the Abraham momentum density E(r,t)xH(r,t)/c2 to the electromagnetic field. This well-defined momentum is thus taken to be universal as it does not depend on whether the field is propagating or evanescent, and whether or not the host medium is homogeneous, transparent, isotropic, dispersive, magnetic, linear, etc. In other words, the local and instantaneous momentum density is uniquely and unambiguously specified at each and every point of the material system in terms of the E and H fields residing at that point. Any variation with time of the total electromagnetic momentum of a closed system results in a force exerted on the material media within the system in accordance with the generalized Lorentz law.

  18. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  19. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  20. Anomalous pinch of turbulent plasmas driven by the magnetic-drift-induced Lorentz force through the Stokes-Einstein relation

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    2016-07-01

    It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.

  1. An Exciting Experiment for Pre-Engineering and Introductory Physics Students: Creating a DC Motor Using the Lorentz Force

    ERIC Educational Resources Information Center

    Abdul-Razzaq, Wathiq N.; Boehm, Manfred H.; Bushey, Ryan K.

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism…

  2. Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame

    SciTech Connect

    Vay, J.-L.; Geddes, C. G. R.; Cormier-Michel, E.; Grote, D. P.

    2010-09-21

    Laser driven plasma accelerators promise much shorter particle accelerators but their development requires detailed simulations that challenge or exceed current capabilities. We report the first direct simulations of stages up to 1 TeV from simulations using a Lorentz boosted calculation frame resulting in a million times speedup, thanks to a frame boost as high as gamma = 1300. Effects of the hyperbolic rotation in Minkowski space resulting from the frame boost on the laser propagation in the plasma is shown to be key in the mitigation of a numerical instability that was limiting previous attempts.

  3. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  4. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  5. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  6. Molecular dynamics simulation of Lorentz force microscopy in magnetic nano-disks

    NASA Astrophysics Data System (ADS)

    Dias, R. A.; Mello, E. P.; Coura, P. Z.; Leonel, S. A.; Maciel, I. O.; Toscano, D.; Rocha, J. C. S.; Costa, B. V.

    2013-04-01

    In this paper, we present a molecular dynamics simulation to model the Lorentz force microscopy experiment. Experimentally, this technique consists in the scattering of electrons by magnetic structures in surfaces and gases. Here, we will explore the behavior of electrons colliding with nano-magnetic disks. The computational molecular dynamics experiment allows us to follow the trajectory of individual electrons all along the experiment. In order to compare our results with the experimental one reported in literature, we model the experimental electron detectors in a simplified way: a photo-sensitive screen is simulated in such way that it counts the number of electrons that collide at a certain position. The information is organized to give in grey scale the image information about the magnetic properties of the structure in the target. Computationally, the sensor is modeled as a square matrix in which we count how many electrons collide at each specific point after being scattered by the magnetic structure. We have used several configurations of the magnetic nano-disks to understand the behavior of the scattered electrons, changing the orientation direction of the magnetic moments in the nano-disk in several ways. Our results match very well with the experiments, showing that this simulation can become a powerful technique to help to interpret experimental results.

  7. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application

    PubMed Central

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-01-01

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T−1), which is very effective as compared to other previously reported works for a single device. PMID:27589747

  8. SENSITIVITY OF HELIOSEISMIC TRAVEL TIMES TO THE IMPOSITION OF A LORENTZ FORCE LIMITER IN COMPUTATIONAL HELIOSEISMOLOGY

    SciTech Connect

    Moradi, Hamed; Cally, Paul S.

    2014-02-20

    The rapid exponential increase in the Alfvén wave speed with height above the solar surface presents a serious challenge to physical modeling of the effects of magnetic fields on solar oscillations, as it introduces a significant Courant-Friedrichs-Lewy time-step constraint for explicit numerical codes. A common approach adopted in computational helioseismology, where long simulations in excess of 10 hr (hundreds of wave periods) are often required, is to cap the Alfvén wave speed by artificially modifying the momentum equation when the ratio between the Lorentz and hydrodynamic forces becomes too large. However, recent studies have demonstrated that the Alfvén wave speed plays a critical role in the MHD mode conversion process, particularly in determining the reflection height of the upwardly propagating helioseismic fast wave. Using numerical simulations of helioseismic wave propagation in constant inclined (relative to the vertical) magnetic fields we demonstrate that the imposition of such artificial limiters significantly affects time-distance travel times unless the Alfvén wave-speed cap is chosen comfortably in excess of the horizontal phase speeds under investigation.

  9. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    PubMed

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-01-01

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device. PMID:27589747

  10. Mechanical characterization and modelling of Lorentz force based MEMS magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Gkotsis, P.; Lara-Castro, M.; López-Huerta, F.; Herrera-May, A. L.; Raskin, J.-P.

    2015-10-01

    In this work we present experimental results from dynamic and static tests on miniature magnetic field sensors which are based on Micro Electro Mechanical Systems (MEMS) technologies. These MEMS magnetometers were fabricated on SOI wafers using Si bulk micromachining techniques and they operate at the first resonant frequency under the action of the Lorentz force which arises when a current flows through them in the presence of an external magnetic field. Sensing is based on piezoresistive principles and high sensitivity is expected from devices that show high total quality factors Qtot. We investigate here the energy loss mechanisms and the temperature rise due to Joule heating effects in the resonators of the magnetometers by performing tests both in air and under vacuum conditions. Testing was performed using laser Doppler Vibrometry and white light interferometry. At each pressure different driving currents have been applied and Qtot was extracted. It is found that Qtot varies with pressure between two limiting values: a low one in air which was between 17 and 500 for the tested devices and a high one in vacuum which in the case of one of our devices was equal to 2800. The amplitude of the applied current is also affecting the Q value at a certain pressure due to the rise of thermal stress in the resonating structures. The sensitivity of the sensors in air was experimentally measured using a Helmholtz coil and an oscilloscope and values between 72 mV T-1 and 513 mV T-1 were obtained from the tested devices. We further attempt to estimate the temperature rise in the devices due to Joule heating effects by combining the topography scans which were experimentally obtained with results from thermomechanical analysis of the sensors using Finite Element Modelling.

  11. Evidence that filament fracture occurs in an ITER toroidal field conductor after cyclic Lorentz force loading in SULTAN

    NASA Astrophysics Data System (ADS)

    Sanabria, Carlos; Lee, Peter J.; Starch, William; Pong, Ian; Vostner, Alexander; Jewell, Matthew C.; Devred, Arnaud; Larbalestier, David C.

    2012-07-01

    We analyzed the ITER TFEU5 cable-in-conduit conductor (CICC) after the full SULTAN conductor qualification test in order to explore whether Lorentz force induced strand movement inside the CICC produces any fracture of the brittle Nb3Sn filaments. Metallographic image analysis was used to quantify the change in void fraction of each sub-cable (petal); strands move in the direction of the Lorentz force, increasing the void space on the low force side of the CICC and producing a densification on the high force side. Adjacent strand counting shows that local increases in void space result in lower local strand-strand support. Extensive metallographic sampling unambiguously confirms that Nb3Sn filament fracture occurred in the TFEU5 CICC, but the filament fracture was highly localized to strand sections with high local curvature (likely produced during cabling, where strands are pivoted around each other). More than 95% of the straighter strand sections were free of filament cracks, while less than 60% of the bent strand sections were crack free. The high concentration of filament fractures on the tensile side of the strand-strand pivot points indicates that these pivot points are responsible for the vast majority of filament fracture. Much lower crack densities were observed in CICC sections extracted from a lower, gradient-field region of the SULTAN-tested cable. We conclude that localized filament fracture is induced by high Lorentz forces during SULTAN testing of this prototype toroidal field CICC and that the strand sections with the most damage are located at the petal corners of the high field zone.

  12. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force.

    PubMed

    Antunes, A; Glover, P M; Li, Y; Mian, O S; Day, B L

    2012-07-21

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.

  13. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force

    NASA Astrophysics Data System (ADS)

    Antunes, A.; Glover, P. M.; Li, Y.; Mian, O. S.; Day, B. L.

    2012-07-01

    Large static magnetic fields may be employed in magnetic resonance imaging (MRI). At high magnetic field strengths (usually from about 3 T and above) it is possible for humans to perceive a number of effects. One such effect is mild vertigo. Recently, Roberts et al (2011 Current Biology 21 1635-40) proposed a Lorentz-force mechanism resulting from the ionic currents occurring naturally in the endolymph of the vestibular system. In the present work a more detailed calculation of the forces and resulting pressures in the vestibular system is carried out using a numerical model. Firstly, realistic 3D finite element conductivity and fluid maps of the utricle and a single semi-circular canal containing the current sources (dark cells) and sinks (hair cells) of the utricle and ampulla were constructed. Secondly, the electrical current densities in the fluid are calculated. Thirdly, the developed Lorentz force is used directly in the Navier-Stokes equation and the trans-cupular pressure is computed. Since the driving force field is relatively large in comparison with the advective acceleration, we demonstrate that it is possible to perform an approximation in the Navier-Stokes equations that reduces the problem to solving a simpler Poisson equation. This simplification allows rapid and easy calculation for many different directions of applied magnetic field. At 7 T a maximum cupula pressure difference of 1.6 mPa was calculated for the combined ampullar (0.7 µA) and utricular (3.31 µA) distributed current sources, assuming a hair-cell resting current of 100 pA per unit. These pressure values are up to an order of magnitude lower than those proposed by Roberts et al using a simplistic model and calculation, and are in good agreement with the estimated pressure values for nystagmus velocities in caloric experiments. This modeling work supports the hypothesis that the Lorentz force mechanism is a significant contributor to the perception of magnetic field induced vertigo.

  14. Energy conservation equation for a radiating pointlike charge in the context of the Abraham-Lorentz versus the Abraham-Becker radiation-reaction force

    NASA Astrophysics Data System (ADS)

    Bellotti, U.; Bornatici, M.

    1997-12-01

    With reference to a radiating pointlike charge, the energy conservation equation comprising the effect of the Abraham-Lorentz radiation-reaction force is contrasted with the incorrect energy conservation equation obtained by Hartemann and Luhmann [Phys. Rev. Lett. 74, 1107 (1995)] on considering instead the Abraham-Becker force that accounts only for a part of the instantaneous radiation-reaction force.

  15. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.

    PubMed

    Lim, Tau Meng; Zhang, Dongsheng

    2006-05-01

    A Lorentz force-type self-bearing motor was developed to provide delivery of both motoring torque and levitation force for an alternative axial flow blood pump design with an enclosed impeller. The axial flow pumps currently available introduce electromagnetic coupling from the motor's stator to the impeller by means of permanent magnets (PMs) embedded in the tips of the pump's blades. This design has distinct disadvantages, for example, pumping efficiency and electromagnetic coupling transmission are compromised by the constrained or poor geometry of the blades and limited pole width of the PMs, respectively. In this research, a Lorentz force-type self-bearing motor was developed. It is composed of (i) an eight-pole PM hollow-cylindrical rotor assembly supposedly to house and enclose the impeller of an axial flow blood pump, and (ii) a six-pole stator with two sets of copper wire and different winding configurations to provide the motoring torque and levitating force for the rotor assembly. MATLAB's xPC Target interface hardware was used as the rapid prototyping tool for the development of the controller for the self-bearing motor. Experimental results on a free/simply supported rotor assembly validated the design feasibility and control algorithm effectiveness in providing both the motoring torque and levitation force for the rotor. When levitated, a maximum orbital displacement of 0.3 mm corresponding to 1050 rpm of the rotor was measured by two eddy current probes placed in the orthogonal direction. This design has the advantage of eliminating the trade-off between motoring torques, levitating force, and pumping efficiency of previous studies. It also indicated the benefits of enclosed-impeller design as having good dynamic response, linearity, and better reliability. The nonmechanical contact feature between rotating and stationary parts will further reduce hemolysis and thromboembolitic tendencies in a typical blood pump application. PMID:16683951

  16. Comments on initial conditions for the Abraham-Lorentz(-Dirac) equation

    NASA Astrophysics Data System (ADS)

    Birnholtz, Ofek

    2015-01-01

    An accelerating electric charge coupled to its own electromagnetic field both emits radiation and experiences the radiation's reaction as a (self-)force. Considering the system from an Effective Field Theory perspective, and using the physical initial conditions of no incoming radiation can help resolve many of the problems associated with the often considered "notorious" Abraham-Lorentz/Abraham-Lorentz-Dirac equations.

  17. The two-phase flow at gas-evolving electrodes: Bubble-driven and Lorentz-force-driven convection

    NASA Astrophysics Data System (ADS)

    Weier, T.; Landgraf, S.

    2013-03-01

    We observe electrolysis with gas evolution, a phenomenon occurring in a number of industrial scale electrochemical processes. Here, water electrolysis takes place in a small undivided electrolysis cell consisting of vertical electrodes embedded in a larger glass vessel which contains a dilute NaOH solution. Fluid flow velocities are measured by particle image velocimetry with fluorescent tracers, while size distribution and velocities of the bubbles are determined from bubble shadow images obtained with a high speed camera. Coalescence phenomena are observed in the flow and explain the relatively wide distribution of bubble sizes. Depending on the gap width and the current density, bubbles ascending near the electrodes form two discernible bubble curtains (low average void fraction, wide gaps) or a flow profile more akin to a channel flow (high average void fraction, small gaps). If the flow consists of separate bubble curtains, instabilities develop not unlike to those of a single phase wall jet. Finally, the influence of different wall parallel Lorentz force configurations on the velocity distribution in the cell is investigated. These Lorentz forces are generated by permanent magnets mounted behind the electrodes. Depending on gap width, current density, and magnet configuration, liquid phase velocities can be increased by several times compared to the baseline case.

  18. Cosmic Ray Acceleration in Force Free Fields

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling; Li, Hui; Kronberg, Philipp

    2002-11-01

    Galactic, extragalactic, and cluster magnetic fields are in apparent pressure equilibrium with the in-fall pressure of matter from the external medium, IGM, onto the Galaxies and clusters, and from the voids onto the galaxy sheets, (walls), implying fields of 5 , 0.5, & 20 μG respectively. Equipartition or minimum energy, implies β_CR=n_CRm_pc^2/(B^2/8π)˜= 1. The total energy in field and CRs is then ˜= 10^55 ergs Galactic and ˜= 4 ot 10^60 ergs per galaxy in the IGM and less within clusters, e.g., radio lobes, synchrotron "glow" in the IGM (Kronberg), and the UHECRs spectrum, Γ =-2.6. CRs escape from the Galaxy to the IGM, τ˜=10^7y, and similarly from the walls to the voids, ˜=10^8y, less than the GZK cut-off time provided B_galaxy>B_IGM>B_voids. The free energy of black hole formation, The Los Alamos model, is just sufficient. The lack of shocks at the boundaries of over pressured radio lobes and the need for high acceleration efficiency suggests eE_allel˜= eη_reconJ_allel, acceleration by reconnection of these force-free fields.

  19. Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame

    SciTech Connect

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2011-07-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference has been shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups required mitigation of a high-frequency instability that otherwise limits effectiveness. In this paper, methods are presented which mitigated the observed instability, including an electromagnetic solver with tunable coefficients, its extension to accommodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is observed that choosing the frame of the wake as the frame of reference allows for higher levels of filtering or damping than is possible in other frames for the same accuracy. Detailed testing also revealed the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion. A combination of the techniques presented in this paper prove to be very efficient at controlling the instability, allowing for efficient direct modeling of 10 GeV class laser plasma accelerator stages. The methods developed in this paper may have broader application, to other Lorentz-boosted simulations and Particle-In-Cell simulations in general.

  20. THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES

    SciTech Connect

    Petrie, G. J. D.

    2012-11-01

    We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

  1. In-flight and collisional dissipation as a mechanism to suppress Fermi acceleration in a breathing Lorentz gas.

    PubMed

    Oliveira, Diego F M; Leonel, Edson D

    2012-06-01

    Some dynamical properties for a time dependent Lorentz gas considering both the dissipative and non dissipative dynamics are studied. The model is described by using a four-dimensional nonlinear mapping. For the conservative dynamics, scaling laws are obtained for the behavior of the average velocity for an ensemble of non interacting particles and the unlimited energy growth is confirmed. For the dissipative case, four different kinds of damping forces are considered namely: (i) restitution coefficient which makes the particle experiences a loss of energy upon collisions; and in-flight dissipation given by (ii) F=-ηV(2); (iii) F=-ηV(μ) with μ≠1 and μ≠2 and; (iv) F=-ηV, where η is the dissipation parameter. Extensive numerical simulations were made and our results confirm that the unlimited energy growth, observed for the conservative dynamics, is suppressed for the dissipative case. The behaviour of the average velocity is described using scaling arguments and classes of universalities are defined.

  2. Prediction of Spacecraft Vibration using Acceleration and Force Envelopes

    NASA Technical Reports Server (NTRS)

    Gordon, Scott; Kaufman, Daniel; Kern, Dennis; Scharton, Terry

    2009-01-01

    The base forces in the GLAST X- and Z-axis sine vibration tests were similar to those derived using generic inputs (from users guide and handbook), but the base forces in the sine test were generally greater than the flight data. Basedrive analyses using envelopes of flight acceleration data provided more accurate predictions of the base force than generic inputs, and as expected, using envelopes of both the flight acceleration and force provided even more accurate predictions The GLAST spacecraft interface accelerations and forces measured during the MECO transient were relatively low in the 60 to 150 Hz regime. One may expect the flight forces measured at the base of various spacecraft to be more dependent on the mass, frequencies, etc. of the spacecraft than are the corresponding interface acceleration data, which may depend more on the launch vehicle configuration.

  3. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    SciTech Connect

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikic, Zoran

    2012-12-10

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  4. A needle-free technique for interstitial fluid sample acquisition using a lorentz-force actuated jet injector.

    PubMed

    Chang, Jean H; Hogan, N Catherine; Hunter, Ian W

    2015-08-10

    We present a novel method of quickly acquiring dermal interstitial fluid (ISF) samples using a Lorentz-force actuated needle-free jet injector. The feasibility of the method is first demonstrated on post-mortem porcine tissue. The jet injector is used to first inject a small volume of physiological saline to breach the skin, and the back-drivability of the actuator is utilized to create negative pressure in the ampoule and collect ISF. The effect of the injection and extraction parameters on sample dilution and extracted volumes is investigated. A simple finite element model is developed to demonstrate why this acquisition method results in faster extractions than conventional sampling methods. Using this method, we are able to collect a sample that contains up to 3.5% ISF in 3.1s from post-mortem skin. The trends revealed from experimentation on post-mortem skin are then used to identify the parameters for a live animal study. The feasibility of the acquisition process is successfully demonstrated using live rats; the process is revealed to extract samples that have been diluted by a factor of 111-125.

  5. Friction forces on atoms after acceleration

    SciTech Connect

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.

  6. Friction forces on atoms after acceleration

    DOE PAGES

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.« less

  7. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  8. Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings.

    PubMed

    Shimachi, Shigeyuki; Kameyama, Fumie; Hakozaki, Yoshihide; Fujiwara, Yasunori

    2005-01-01

    For delicate operations conducted using surgical robot systems, surgeons need to receive information regarding the contact forces on the tips of surgical instruments. For the detection of this contact force, one of the authors previously proposed a new method, called the overcoat method, in which the instrument is supported by sensors positioned on the overcoat pipe. This method requires cancellation of the acceleration forces of the instrument/holder attached to the overcoat sensor. In the present report, the authors attempt to use acceleration sensors to obtain the acceleration forces of the instrument/holder. The new cancellation method provides a force-detection accuracy of approximately 0.05-0.1 N for a dynamic response range of up to approximately 20 Hz, compared to approximately 1 Hz, which was achieved by using acceleration forces based on the theoretical robot motion.

  9. Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang; Zhang, Hua

    2014-10-01

    A Lorentz spacecraft is an electrostatically charged space vehicle that could actively modulate its surface charge to generate Lorentz force as it moves through the planetary magnetic field. The induced Lorentz force provides propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft hovering that the chaser thrusts continuously to create an equilibrium state at the desired position relative to the target. Due to the fact that the direction of Lorentz force is determined by the local magnetic field and the velocity of the spacecraft with respect to the local magnetic field, which does not necessarily coincide with that of the required control acceleration for hovering, thus, in most cases, the Lorentz force works as a means of auxiliary propulsion to reduce the expenditure of fuel onboard. And that is why it is called Lorentz-augmented hovering. A dynamical model for Lorentz-augmented hovering around elliptic orbits is developed based upon the assumption that the Earth's magnetic field could be modeled as a tilted dipole that corotates with Earth. Fuel-optimal open-loop control laws are then derived based on the proposed dynamical model, presenting the optimal trajectories of the required specific charge of Lorentz spacecraft and the thruster-generated control acceleration. Considering the external disturbances that may drift the desired hovering position, a closed-loop integral sliding mode controller is also designed to guarantee the tracking of optimal control trajectories, ensuring the robustness of the system against perturbations. Numerical simulations are presented to analyze the characteristics of Lorentz-augmented hovering around eccentric orbits and the results substantiate the validity of the proposed open-loop and closed-loop control methods.

  10. Force and acceleration corridors from lateral head impact.

    PubMed

    Yoganandan, Narayan; Zhang, Jiangyue; Pintar, Frank

    2004-12-01

    This study was conducted to provide force and acceleration corridors at different velocities describing the dynamic biomechanics of the lateral region of the human head. Temporo-parietal impact tests were conducted using specimens from ten unembalmed post-mortem human subjects. The specimens were isolated at the occipital condyle level, and pre-test x-ray and computed tomography images were obtained. They were prepared with multiple triaxial accelerometers and subjected to increasing velocities (up to 7.7 m/s) using free-fall techniques by impacting onto a force plate from which forces were recorded. A 40-durometer padding (50-mm thickness) material covering the force plate served as the impacting boundary condition. Computed tomography images obtained following the final impact test were used to identify pathology. Four specimens sustained skull fractures. Peak force, displacement, acceleration, energy, and head injury criterion variables were used to describe the dynamic biomechanics. Force and acceleration responses obtained from this experimental study along with other data will be of value in validating finite element models. The study underscored the need to enhance the sample size to derive probability-based human tolerance to side impacts.

  11. Transfer function between tibial acceleration and ground reaction force.

    PubMed

    Lafortune, M A; Lake, M J; Hennig, E

    1995-01-01

    The purpose of the present study was to capture the relationship between ground reaction force (GRF) and tibial axial acceleration. Tibia acceleration and GRF were simultaneously recorded from five subjects during running. The acceleration of the bone was measured with a transducer mounted onto an intracortical pin. The signals were analyzed in the frequency domain to characterize the relationship between GRF and tibial acceleration. The results confirmed that for each subject this relationship could be represented by a frequency transfer function. The existence of a more general relationship for all five subjects was also confirmed by the results. The transfer functions provided information about transient shock transmissibility for the entire impact phase of running.

  12. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions)

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.

    2011-11-15

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  13. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions).

    PubMed

    Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S

    2011-11-01

    When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.

  14. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  15. The effects of acceleration forces on night vision.

    PubMed

    Tipton, D A; Marko, A R; Ratino, D A

    1984-03-01

    The effects of Gy and Gz acceleration forces on cone-type mesopic vision threshold values are examined. An experiment has been conducted on the Dynamic Environment Simulator, a three-axis human centrifuge, to reproduce an acceleration environment in a simulated night-flight combat situation. Acceleration environments studied were levels of +1 Gz, + 1Gy, +1.4 Gz, +2 Gz, +3 Gz, and +2 Gy in combination with +1 Gz. A visual task was performed which determined 20/50 visual acuity illumination threshold values. Physiological parameters recorded were arterial oxygen saturation (SaO2) by ear oximetry, heart rate, and visual acuity threshold values. There were 10 male subjects, all members of the United States Air Force. Their ages ranged from 25-39 years (mean +/- S.D., 29.1 +/- 4.3). Results were zero means obtained by self-pairing with +1 Gz controls. Analysis was done by self-pairing, two-tailed t test. Results showed no significant shift in luminance threshold values at +1 Gy or +1.4 Gz, and significant increases in luminance thresholds at the 0.01 level for +2 Gz, +3 Gz, and +2 Gy in combination with +1 Gz.

  16. Introductory labs on the vector nature of force and acceleration

    NASA Astrophysics Data System (ADS)

    Kanim, Stephen E.; Subero, Keron

    2010-05-01

    We discuss the use of long-exposure digital photography in introductory mechanics laboratories. Students at New Mexico State University use inexpensive digital cameras to record the motion of objects with attached blinking light emitting diodes. These photographs are used to make inferences about the velocity and acceleration of the moving object. We use the analysis of these photographs to promote student understanding of the vector nature of kinematics quantities. In subsequent laboratories we build on this understanding to help students relate the acceleration vector for a moving object to the net force vector for that object. We give details about the equipment we use and describe the sequence of activities that we have developed for a two-dimensional motion laboratory and for a laboratory on Newton's second law. Finally we present some pre- and post-test data on questions related to the concepts underlying these laboratories.

  17. Non-uniform drag force on the Fermi accelerator model

    NASA Astrophysics Data System (ADS)

    Tavares, Danila F.; Leonel, Edson D.; Costa Filho, R. N.

    2012-11-01

    Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F∝-vγ. The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton’s second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for γ=1; (ii) exponential for γ=2; and (iii) second-degree polynomial type for γ=1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.

  18. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz boosted simulations

    SciTech Connect

    Vay, J. -L.; Geddes, C. G. R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Cormier-Michel, E.; Grote, D. P.

    2011-12-13

    We study modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)] that allows direct and efficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasmaaccelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5, and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV, and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. In addition, obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular, particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  19. Magnetic field contribution to the Lorentz model.

    PubMed

    Oughstun, Kurt E; Albanese, Richard A

    2006-07-01

    The classical Lorentz model of dielectric dispersion is based on the microscopic Lorentz force relation and Newton's second law of motion for an ensemble of harmonically bound electrons. The magnetic field contribution in the Lorentz force relation is neglected because it is typically small in comparison with the electric field contribution. Inclusion of this term leads to a microscopic polarization density that contains both perpendicular and parallel components relative to the plane wave propagation vector. The modified parallel and perpendicular polarizabilities are both nonlinear in the local electric field strength.

  20. Correlation between ground reaction force and tibial acceleration in vertical jumping.

    PubMed

    Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P

    2007-08-01

    Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.

  1. A solution for transverse load degradation in ITER Nb3Sn CICCs: verification of cabling effect on Lorentz force response

    NASA Astrophysics Data System (ADS)

    Nijhuis, A.

    2008-05-01

    We present the latest results of the novel model for transverse electromagnetic load optimization (TEMLOP) especially developed for the ITER type of cable-in-conduit conductors (CICCs). The Nb3Sn CICCs for the International Thermonuclear Experimental Reactor (ITER) showed a substantial degradation in their performance correlated with increasing electromagnetic load. Not only do the differences in the thermal contraction of the composite materials affect the critical current (Ic) and temperature margin, but electromagnetic forces cause a significant transverse strand contact and bending strain in the Nb3Sn layers, resulting in localized filament cracking and permanent degradation. The most essential feature of the a priori TEMLOP predictions presented in May 2006 is that the severe degradation in CICCs can be improved greatly and straightforwardly by increasing the pitch length in subsequent cabling stages and by reducing the void fraction. These corrective measures give more support to the strands, sufficiently reduce the strain, and therefore avoid filament damage at the strand crossover points in the cables. It was the first time that an increase of the cable twist pitches has been proposed and no experimental evidence was available at that time. A full-size European prototype TF conductor sample (TFPRO-2), manufactured in autumn 2006, was adapted according to this new insight and tested in April 2007 in SULTAN for experimental validation of the predictions. The results were outstanding: for the first time an Nb3Sn CICC conductor achieved the performance that can be expected based on the single-strand properties, with high n value and no sign of degradation. As input, besides the cable properties, the model directly uses the measured data from single strands under uni-axial stress and strain, periodic bending and contact loads. The recent test results of the ITER OST strands used for the manufacture of the TFPRO-2 obtained with the TARSIS set-up are presented

  2. Magnetic Field, Density Current, and Lorentz Force Full Vector Maps of the NOAA 10808 Double Sunspot: Evidence of Strong Horizontal Current Flows in the Penumbra

    NASA Astrophysics Data System (ADS)

    Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.

    2011-04-01

    The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I λ 6301.5 and Fe I λ 6302.5 is appropriate for this purpose. We treat the example case of the δ-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I λ 6301.5) that is not a normal Zeeman triplet line (like Fe I λ 6302.5).

  3. Estimating dynamic external hand forces during manual materials handling based on ground reaction forces and body segment accelerations.

    PubMed

    Faber, Gert S; Chang, Chien-Chi; Kingma, Idsart; Dennerlein, Jack T

    2013-10-18

    Direct measurement of hand forces during assessment of manual materials handling is infeasible in most field studies and some laboratory studies (e.g., during patient handling). Therefore, this study proposed and evaluated the performance of a novel hand force estimation method based on ground reaction forces (GRFs) and body segment accelerations. Ten male subjects performed a manual lifting/carrying task while an optoelectronic motion tracking system measured 3D full body kinematics, a force plate measured 3D GRFs and an instrumented box measured 3D hand forces. The estimated 3D hand forces were calculated by taking the measured GRF vector and subtracting the force vectors due to weight and acceleration of all body segments. Root-mean-square difference (RMSD) between estimated and measured hand forces ranged from 11 to 27N. When ignoring the segment accelerations (just subtracting body weight from the GRFs), the hand force estimation errors were much higher, with RMSDs ranging from 21 to 101N. Future studies should verify the performance of the proposed hand force estimation method when using an ambulatory field measurement system.

  4. Lorentz Contraction and Current-Carrying Wires

    ERIC Educational Resources Information Center

    van Kampen, Paul

    2008-01-01

    The force between two parallel current-carrying wires is investigated in the rest frames of the ions and the electrons. A straightforward Lorentz transformation shows that what appears as a purely magnetostatic force in the ion frame appears as a combined magnetostatic and electrostatic force in the electron frame. The derivation makes use of a…

  5. Local Lorentz transformations and Thomas effect in general relativity

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2016-06-01

    The tetrad method is used for an introduction of local Lorentz frames and a detailed analysis of local Lorentz transformations. A formulation of equations of motion in local Lorentz frames is based on the Pomeransky-Khriplovich gravitoelectromagnetic fields. These fields are calculated in the most important special cases and their local Lorentz transformations are determined. The local Lorentz transformations and the Pomeransky-Khriplovich gravitoelectromagnetic fields are applied for a rigorous derivation of a general equation for the Thomas effect in Riemannian spacetimes and for a consideration of Einstein's equivalence principle and the Mathisson force.

  6. Using Hand Grip Force as a Correlate of Longitudinal Acceleration Comfort for Rapid Transit Trains.

    PubMed

    Guo, Beiyuan; Gan, Weide; Fang, Weining

    2015-07-02

    Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train. The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In the paper, a motion simulation system was set up and a two-stage experiment was designed to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the experiment show that the incremental grip force was linearly correlated with the longitudinal acceleration value, while the incremental grip force had no correlation with the direction of the longitudinal acceleration vector. The results also show that the effects of incremental grip force and acceleration duration on the longitudinal comfort of rapid transit trains were significant. Based on multiple regression analysis, a step function model was established to predict the longitudinal comfort of rapid transit trains using the incremental grip force and the acceleration duration. The feasibility and practicably of the model was verified by a field test. Furthermore, a comparative analysis shows that the motion simulation system and the grip force based model were valid to support the laboratory studies on the longitudinal comfort of rapid transit trains.

  7. Using Hand Grip Force as a Correlate of Longitudinal Acceleration Comfort for Rapid Transit Trains

    PubMed Central

    Guo, Beiyuan; Gan, Weide; Fang, Weining

    2015-01-01

    Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train. The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In the paper, a motion simulation system was set up and a two-stage experiment was designed to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the experiment show that the incremental grip force was linearly correlated with the longitudinal acceleration value, while the incremental grip force had no correlation with the direction of the longitudinal acceleration vector. The results also show that the effects of incremental grip force and acceleration duration on the longitudinal comfort of rapid transit trains were significant. Based on multiple regression analysis, a step function model was established to predict the longitudinal comfort of rapid transit trains using the incremental grip force and the acceleration duration. The feasibility and practicably of the model was verified by a field test. Furthermore, a comparative analysis shows that the motion simulation system and the grip force based model were valid to support the laboratory studies on the longitudinal comfort of rapid transit trains. PMID:26147730

  8. Learning scheme to predict atomic forces and accelerate materials simulations

    NASA Astrophysics Data System (ADS)

    Botu, V.; Ramprasad, R.

    2015-09-01

    The behavior of an atom in a molecule, liquid, or solid is governed by the force it experiences. If the dependence of this vectorial force on the atomic chemical environment can be learned efficiently with high fidelity from benchmark reference results—using "big-data" techniques, i.e., without resorting to actual functional forms—then this capability can be harnessed to enormously speed up in silico materials simulations. The present contribution provides several examples of how such a force field for Al can be used to go far beyond the length-scale and time-scale regimes presently accessible using quantum-mechanical methods. It is argued that pathways are available to systematically and continuously improve the predictive capability of such a learned force field in an adaptive manner, and that this concept can be generalized to include multiple elements.

  9. Angular and Linear Accelerations of a Rolling Cylinder Acted by an External Force

    ERIC Educational Resources Information Center

    Oliveira, V.

    2011-01-01

    The dynamics of a cylinder rolling on a horizontal plane acted on by an external force applied at an arbitrary angle is studied with emphasis on the directions of the acceleration of the centre-of-mass and the angular acceleration of the body. If rolling occurs without slipping, there is a relationship between the directions of these…

  10. Using Accelerator Pedal Force to Increase Seat Belt Use of Service Vehicle Drivers

    ERIC Educational Resources Information Center

    Van Houten, Ron; Hilton, Bryan; Schulman, Richard; Reagan, Ian

    2011-01-01

    This study evaluated a device that applied a sustained increase in accelerator pedal back force whenever drivers exceeded a preset speed criterion without buckling their seat belts. This force was removed once the belt was fastened. Participants were 6 commercial drivers who operated carpet-cleaning vans. During baseline, no contingency was in…

  11. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle.

    PubMed

    McCarthy, John P; Wood, David S; Bolding, Mark S; Roy, Jane L P; Hunter, Gary R

    2012-09-01

    The purpose of this study was to determine where stretch-shortening cycle (SSC) potentiation of force, power, velocity, and acceleration occurs across the concentric phase of ballistic leg presses. Second, we examined the influence of late eccentric phase force and length of the amortization phase on potentiated concentric phase performance variables. Twenty-one male runners (age: 31.9 ± 4.7 years) performed SSC and concentric-only (CO) ballistic leg press throws. Potentiations of concentric actions were calculated as the difference between SSC and CO contractions. An analysis splitting the concentric range of motion (ROM) into 6 equal time intervals determined force and acceleration were potentiated (p < 0.05) only during the first one-sixth time interval of concentric motion, whereas velocity and power were potentiated (p < 0.05) at all time intervals over the entire concentric motion with the exception of power over the last one-sixth time interval. A more precise analysis examining 20-millisecond time intervals across the first 200 milliseconds of concentric motion determined force was potentiated only over the first 140 milliseconds and acceleration only over the first 160 milliseconds. Eccentric force measured during the last 100 milliseconds of eccentric motion was related to potentiated force during the initial 200 milliseconds of concentric motion (r = 0.44, p < 0.05) and potentiated mean power across the full concentric ROM (r = 0.62, p < 0.01). Results indicate that in contrast to power and velocity, potentiation of force and acceleration occurs only early during the concentric phase of SSC ballistic leg presses. Correlational findings imply late eccentric phase force is important for generating force and power during the concentric phase of the SSC and thus training focusing on enhancing late phase eccentric force appears important for developing explosive force and power during SSC movements. PMID:22692115

  12. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle.

    PubMed

    McCarthy, John P; Wood, David S; Bolding, Mark S; Roy, Jane L P; Hunter, Gary R

    2012-09-01

    The purpose of this study was to determine where stretch-shortening cycle (SSC) potentiation of force, power, velocity, and acceleration occurs across the concentric phase of ballistic leg presses. Second, we examined the influence of late eccentric phase force and length of the amortization phase on potentiated concentric phase performance variables. Twenty-one male runners (age: 31.9 ± 4.7 years) performed SSC and concentric-only (CO) ballistic leg press throws. Potentiations of concentric actions were calculated as the difference between SSC and CO contractions. An analysis splitting the concentric range of motion (ROM) into 6 equal time intervals determined force and acceleration were potentiated (p < 0.05) only during the first one-sixth time interval of concentric motion, whereas velocity and power were potentiated (p < 0.05) at all time intervals over the entire concentric motion with the exception of power over the last one-sixth time interval. A more precise analysis examining 20-millisecond time intervals across the first 200 milliseconds of concentric motion determined force was potentiated only over the first 140 milliseconds and acceleration only over the first 160 milliseconds. Eccentric force measured during the last 100 milliseconds of eccentric motion was related to potentiated force during the initial 200 milliseconds of concentric motion (r = 0.44, p < 0.05) and potentiated mean power across the full concentric ROM (r = 0.62, p < 0.01). Results indicate that in contrast to power and velocity, potentiation of force and acceleration occurs only early during the concentric phase of SSC ballistic leg presses. Correlational findings imply late eccentric phase force is important for generating force and power during the concentric phase of the SSC and thus training focusing on enhancing late phase eccentric force appears important for developing explosive force and power during SSC movements.

  13. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    SciTech Connect

    Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

    2010-05-17

    Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

  14. Coherence between magnetoencephalography and hand-action-related acceleration, force, pressure, and electromyogram.

    PubMed

    Piitulainen, Harri; Bourguignon, Mathieu; De Tiège, Xavier; Hari, Riitta; Jousmäki, Veikko

    2013-05-15

    Hand velocity and acceleration are coherent with magnetoencephalographic (MEG) signals recorded from the contralateral primary sensorimotor (SM1) cortex. To learn more of this interaction, we compared the coupling of MEG signals with four hand-action-related peripheral signals: acceleration, pressure, force, and electromyogram (EMG). Fifteen subjects performed self-paced repetitive hand-action tasks for 3.5min at a rate of about 3Hz. Either acceleration, pressure or force signal was acquired with MEG and EMG signals during (1) flexions-extensions of right-hand fingers, with thumb touching the other fingers (acceleration; free), (2) dynamic index-thumb pinches against an elastic rubber ball attached to a pressure sensor (pressure and acceleration; squeeze), and (3) brief fixed-finger-position index-thumb pinches against a rigid load cell (force; fixed-pinch). Significant coherence occurred between MEG and all the four peripheral measures at the fundamental frequency of the hand action (F0) and its first harmonic (F1). In all tasks, the cortical sources contributing to the cross-correlograms were located at the contralateral hand SM1 cortex, with average inter-source distance (mean±SEM) of 9.5±0.3mm. The coherence was stronger with respect to pressure (0.40±0.03 in squeeze) and force (0.38±0.04 in fixed-pinch) than acceleration (0.24±0.03 in free) and EMG (0.25±0.02 in free, and 0.29±0.04 in fixed-pinch). The results imply that the SM1 cortex is strongly coherent at F0 and F1 with hand-action-related pressure and force, in addition to the previously demonstrated EMG, velocity, and acceleration. All these measures, especially force and pressure, are potential tools for functional mapping of the SM1 cortex.

  15. Lorentz-violating gravitoelectromagnetism

    SciTech Connect

    Bailey, Quentin G.

    2010-09-15

    The well-known analogy between a special limit of general relativity and electromagnetism is explored in the context of the Lorentz-violating standard-model extension. An analogy is developed for the minimal standard-model extension that connects a limit of the CPT-even component of the electromagnetic sector to the gravitational sector. We show that components of the post-Newtonian metric can be directly obtained from solutions to the electromagnetic sector. The method is illustrated with specific examples including static and rotating sources. Some unconventional effects that arise for Lorentz-violating electrostatics and magnetostatics have an analog in Lorentz-violating post-Newtonian gravity. In particular, we show that even for static sources, gravitomagnetic fields arise in the presence of Lorentz violation.

  16. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance.

    PubMed

    Sell, Timothy C; Akins, Jonathan S; Opp, Alexis R; Lephart, Scott M

    2014-02-01

    Proximal anterior tibia shear force is a direct loading mechanism of the anterior cruciate ligament (ACL) and is a contributor to ACL strain during injury. Measurement of this force during competition may provide insight into risk factors for ACL injury. Accelerometers may be capable of measuring tibial acceleration during competition. The purpose of this study was to examine the relationship between acceleration measured by a tibia-mounted accelerometer and proximal anterior tibia shear force as measured through inverse dynamics and peak posterior ground reaction forces during two leg stop-jump tasks. Nineteen healthy male subjects performed stop-jump tasks across increasing jump distances. Correlation coefficients were calculated to determine if a relationship exists between accelerometer data and proximal anterior tibia shear force and peak posterior ground reaction force. An analysis of variance was performed to compare these variables across jump distance. Significant correlations were observed between accelerometer data and peak posterior ground reaction force, but none between accelerometer data and proximal anterior tibia shear force. All variables except peak proximal anterior tibia shear force increased significantly as jump distance increased. Overall, results of this study provide initial, positive support for the use of accelerometers as a useful tool for future injury prevention research.

  17. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance.

    PubMed

    Sell, Timothy C; Akins, Jonathan S; Opp, Alexis R; Lephart, Scott M

    2014-02-01

    Proximal anterior tibia shear force is a direct loading mechanism of the anterior cruciate ligament (ACL) and is a contributor to ACL strain during injury. Measurement of this force during competition may provide insight into risk factors for ACL injury. Accelerometers may be capable of measuring tibial acceleration during competition. The purpose of this study was to examine the relationship between acceleration measured by a tibia-mounted accelerometer and proximal anterior tibia shear force as measured through inverse dynamics and peak posterior ground reaction forces during two leg stop-jump tasks. Nineteen healthy male subjects performed stop-jump tasks across increasing jump distances. Correlation coefficients were calculated to determine if a relationship exists between accelerometer data and proximal anterior tibia shear force and peak posterior ground reaction force. An analysis of variance was performed to compare these variables across jump distance. Significant correlations were observed between accelerometer data and peak posterior ground reaction force, but none between accelerometer data and proximal anterior tibia shear force. All variables except peak proximal anterior tibia shear force increased significantly as jump distance increased. Overall, results of this study provide initial, positive support for the use of accelerometers as a useful tool for future injury prevention research. PMID:23878269

  18. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  19. Relativistic Dynamics of a Charged Sphere. Updating the Lorentz-Abraham Model.

    NASA Astrophysics Data System (ADS)

    Yaghjian, Arthur D.

    "This is a remarkable book. […] A fresh and novel approach to old problems and to their solution." Fritz Rohrlich, Emeritus Professor of Physics, Syracuse University This book takes a fresh, systematic approach to determining the equation of motion for the classical model of the electron introduced by Lorentz more than 100 years ago. The original derivations of Lorentz, Abraham, Poincaré and Schott are modified and generalized for the charged insulator model of the electron to obtain an equation of motion consistent with causal solutions to the Maxwell-Lorentz equations and the equations of special relativity. The solutions to the resulting equation of motion are free of pre-acceleration and runaway behavior. Binding forces and a total stress momentum energy tensor are derived for the charged insulator model. General expressions for synchrotron radiation emerge in a form convenient for determining the motion of the electron. Appendices provide simplified derivations of the self-force and power at arbitrary velocity. In this Second Edition, the method used for eliminating the noncausal pre-acceleration from the equation of motion has been generalized to eliminate pre-deceleration as well. The generalized method is applied to obtain the causal solution to the equation of motion of a charge accelerating in a uniform electric field for a finite time interval. Alternative derivations of the Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation of motion are also given, along with Spohn’s elegant solution of this approximate equation for a charge moving in a uniform magnetic field. The book is a valuable resource for students and researchers in physics, engineering and the history of science.

  20. The effect of helmet liner density upon acceleration and local contact forces during bicycle helmet impacts

    NASA Astrophysics Data System (ADS)

    Smith, Terrance Alan

    In order to address the need to monitor local contact forces during head impacts, a custom transducer was designed to monitor local force distribution patterns on an ISO size E magnesium headform concurrently with linear acceleration measures from an accelerometer located at the center of gravity of the headform. The response characteristics of the transducer were found to be predictable and acceptable given the limitations of high speed data collection in a confined environment. During bicycle helmet testing, the output from the transducer was also found to be sensitive to ventilation openings and ventilation channels located on the underside of the helmet liner. The effect of helmet liner density upon local contact forces and headform acceleration was evaluated using an identical bicycle helmet model fabricated in four different helmet liner densities. The study found that peak headform acceleration and peak local contact sensor force values were significantly lower for the low density helmet liners when compared to the highest density of helmet liners during low to moderate energy impacts. During the high energy impact tests against the hemispherical anvil, the lower density helmets bottomed out, resulting in high local contact forces and high peak headform acceleration values relative to the higher density helmets. These results suggest that a tradeoff does exist in terms of the protection offered by low density helmets at low to moderate energy impacts compared to the performance of higher density helmets during the higher energy impacts. The study also found that a poor correlation exists between peak headform acceleration and local contact force suggesting that future head protection standards should include evaluation of the load distribution characteristics of the helmet.

  1. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase.

    PubMed

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L L; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E

    2015-06-27

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s-1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s-1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.

  2. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase

    PubMed Central

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L.L.; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E.

    2015-01-01

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration. PMID:26240657

  3. Force-Time Characteristics and Running Velocity of Male Sprinters During the Acceleration Phase of Sprinting.

    ERIC Educational Resources Information Center

    Mero, Antti

    1988-01-01

    Investigation of the force-time characteristics of eight male sprinters during the acceleration phase of the sprint start suggested that the braking and propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start. (Author/CB)

  4. Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics

    NASA Astrophysics Data System (ADS)

    RÈ©bilas, Krzysztof

    2010-03-01

    Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.

  5. Comparison of impact forces, accelerations and ankle range of motion in surfing-related landing tasks.

    PubMed

    Lundgren, Lina E; Tran, Tai T; Nimphius, Sophia; Raymond, Ellen; Secomb, Josh L; Farley, Oliver R L; Newton, Robert U; Sheppard, Jeremy M

    2016-01-01

    This study aimed to describe the impact forces, accelerations and ankle range of motion in five different landing tasks that are used in training and testing for competitive surfing athletes, to assist coaches in the prescription of landing task progression and monitoring training load. Eleven competitive surfing athletes aged 24 ± 7 years participated, and inertial motion sensors were fixed to the anterior aspect of the feet, mid-tibial shafts, sacrum and eighth thoracic vertebrae on these athletes. Three tasks were performed landing on force plates and two tasks in a modified gymnastics set-up used for land-based aerial training. Peak landing force, resultant peak acceleration and front and rear side ankle dorsiflexion ranges of motion during landing were determined. The peak acceleration was approximately 50% higher when performing aerial training using a mini-trampoline and landing on a soft-density foam board, compared to a similar landing off a 50 cm box. Furthermore, the ankle ranges of motion during the gymnastic type landings were significantly lower than the other landing types (P ≤ 0.05 and P ≤ 0.001), for front and rear sides, respectively. Conclusively, increased task complexity and specificity of the sport increased the tibial peak acceleration, indicating greater training load. PMID:26383823

  6. Comparison of impact forces, accelerations and ankle range of motion in surfing-related landing tasks.

    PubMed

    Lundgren, Lina E; Tran, Tai T; Nimphius, Sophia; Raymond, Ellen; Secomb, Josh L; Farley, Oliver R L; Newton, Robert U; Sheppard, Jeremy M

    2016-01-01

    This study aimed to describe the impact forces, accelerations and ankle range of motion in five different landing tasks that are used in training and testing for competitive surfing athletes, to assist coaches in the prescription of landing task progression and monitoring training load. Eleven competitive surfing athletes aged 24 ± 7 years participated, and inertial motion sensors were fixed to the anterior aspect of the feet, mid-tibial shafts, sacrum and eighth thoracic vertebrae on these athletes. Three tasks were performed landing on force plates and two tasks in a modified gymnastics set-up used for land-based aerial training. Peak landing force, resultant peak acceleration and front and rear side ankle dorsiflexion ranges of motion during landing were determined. The peak acceleration was approximately 50% higher when performing aerial training using a mini-trampoline and landing on a soft-density foam board, compared to a similar landing off a 50 cm box. Furthermore, the ankle ranges of motion during the gymnastic type landings were significantly lower than the other landing types (P ≤ 0.05 and P ≤ 0.001), for front and rear sides, respectively. Conclusively, increased task complexity and specificity of the sport increased the tibial peak acceleration, indicating greater training load.

  7. Modified Einstein and Finsler like theories on tangent Lorentz bundles

    NASA Astrophysics Data System (ADS)

    Stavrinos, Panayiotis; Vacaru, Olivia; Vacaru, Sergiu I.

    2014-10-01

    In this paper, we study modifications of general relativity, GR, with nonlinear dispersion relations which can be geometrized on tangent Lorentz bundles. Such modified gravity theories, MGTs, can be modeled by gravitational Lagrange density functionals f(R, T, F) with generalized/modified scalar curvature R, trace of matter field tensors T and modified Finsler like generating function F. In particular, there are defined extensions of GR with extra dimensional "velocity/momentum" coordinates. For four-dimensional models, we prove that it is possible to decouple and integrate in very general forms the gravitational fields for f(R, T, F)-modified gravity using nonholonomic 2 + 2 splitting and nonholonomic Finsler like variables F. We study the modified motion and Newtonian limits of massive test particles on nonlinear geodesics approximated with effective extra forces orthogonal to the four-velocity. We compute the constraints on the magnitude of extra-accelerations and analyze perihelion effects and possible cosmological implications of such theories. We also derive the extended Raychaudhuri equation in the framework of a tangent Lorentz bundle. Finally, we speculate on effective modeling of modified theories by generic off-diagonal configurations in Einstein and/or MGTs and Finsler gravity. We provide some examples for modified stationary (black) ellipsoid configurations and locally anisotropic solitonic backgrounds.

  8. The influence of acceleration forces on dendritic growth and grain structure

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.; Parr, R. A.

    1982-01-01

    The results of experiments on the tin-15 wt pct lead system are presented, showing the effects on microstructure of solidification in the presence of acceleration forces from 0.0001 to 5 g for three cooling rates. An increase in the acceleration level is shown to drive fluid flow and cause dendrite remelting, fragmentation, and macrosegregation. The cooling rate impacts the final structure through its control of dendrite arm spacings and permeability to fluid flow. At the low (0.0001 g) acceleration, dendrite arm spacings deviated from the predicted relationship to cooling rate. An explanation for this anomaly is given which considers the temperature and concentration gradients in the low-gravity environment.

  9. Enhanced Downward Acceleration of a Bouncing Droplet Due to the Lubrication Force

    NASA Astrophysics Data System (ADS)

    Chappell, David; Cessna, Matthew; Nadim, Ali

    2015-11-01

    We explore the dynamics of moderately viscous (50-100 cSt) silicone oil drops bouncing on a vertically vibrated oil bath. When the driving acceleration of the bath is larger than a threshold value, drops can bounce indefinitely due to the presence of a thin air layer separating the drop from the bath. We present experimental evidence that the drop can temporarily ``stick'' to the oil bath during the rebound process causing it to be pulled downward briefly with the downward-accelerating bath. Thus, for a small time interval during each bounce, the drop's downward acceleration can exceed that of gravitational free-fall. A simple model incorporating the lubrication force between the drop and the bath, allowing for the deformation of the latter, is developed and found to match the observed dynamics closely.

  10. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units.

    PubMed

    Lindert, Steffen; Bucher, Denis; Eastman, Peter; Pande, Vijay; McCammon, J Andrew

    2013-11-12

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling.

  11. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    SciTech Connect

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-15

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common 'bead-on-the-wire' approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their 'falling' on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  12. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    NASA Astrophysics Data System (ADS)

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-01

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common “bead-on-the-wire” approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their “falling” on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  13. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, Carl; Esarey, Eric; Benedetti, Carlo; Leemans, Wim

    2013-08-06

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high energy physics applications.

  14. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Leemans, W. P.

    2013-08-15

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications.

  15. The effects of height and distance on the force production and acceleration in martial arts strikes.

    PubMed

    Bolander, Richard P; Neto, Osmar Pinto; Bir, Cynthia A

    2009-11-01

    Almost all cultures have roots in some sort of self defence system and yet there is relatively little research in this area, outside of a sports related environment. This project investigated different applications of strikes from Kung Fu practitioners that have not been addressed before in the literature. Punch and palm strikes were directly compared from different heights and distances, with the use of a load cell, accelerometers, and high speed video. The data indicated that the arm accelerations of both strikes were similar, although the force and resulting acceleration of the target were significantly greater for the palm strikes. Additionally, the relative height at which the strike was delivered was also investigated. The overall conclusion is that the palm strike is a more effective strike for transferring force to an object. It can also be concluded that an attack to the chest would be ideal for maximizing impact force and moving an opponent off balance. Key PointsIt has been determined that the palm strike is more effective than the punch for developing force and for transferring momentum, most likely the result of a reduced number of rigid links and joints.A strike at head level is less effective than a strike at chest level for developing force and transferring momentum.Distance plays an effect on the overall force and momentum changes, and most likely is dependent on the velocity of the limb and alignment of the bones prior to impact.The teaching of self defence for novices and law enforcement would benefit from including the palm strike as a high priority technique.

  16. The Effects of Height and Distance on the Force Production and Acceleration in Martial Arts Strikes

    PubMed Central

    Bolander, Richard P.; Neto, Osmar Pinto; Bir, Cynthia A.

    2009-01-01

    Almost all cultures have roots in some sort of self defence system and yet there is relatively little research in this area, outside of a sports related environment. This project investigated different applications of strikes from Kung Fu practitioners that have not been addressed before in the literature. Punch and palm strikes were directly compared from different heights and distances, with the use of a load cell, accelerometers, and high speed video. The data indicated that the arm accelerations of both strikes were similar, although the force and resulting acceleration of the target were significantly greater for the palm strikes. Additionally, the relative height at which the strike was delivered was also investigated. The overall conclusion is that the palm strike is a more effective strike for transferring force to an object. It can also be concluded that an attack to the chest would be ideal for maximizing impact force and moving an opponent off balance. Key Points It has been determined that the palm strike is more effective than the punch for developing force and for transferring momentum, most likely the result of a reduced number of rigid links and joints. A strike at head level is less effective than a strike at chest level for developing force and transferring momentum. Distance plays an effect on the overall force and momentum changes, and most likely is dependent on the velocity of the limb and alignment of the bones prior to impact. The teaching of self defence for novices and law enforcement would benefit from including the palm strike as a high priority technique. PMID:24474886

  17. The effects of height and distance on the force production and acceleration in martial arts strikes.

    PubMed

    Bolander, Richard P; Neto, Osmar Pinto; Bir, Cynthia A

    2009-11-01

    Almost all cultures have roots in some sort of self defence system and yet there is relatively little research in this area, outside of a sports related environment. This project investigated different applications of strikes from Kung Fu practitioners that have not been addressed before in the literature. Punch and palm strikes were directly compared from different heights and distances, with the use of a load cell, accelerometers, and high speed video. The data indicated that the arm accelerations of both strikes were similar, although the force and resulting acceleration of the target were significantly greater for the palm strikes. Additionally, the relative height at which the strike was delivered was also investigated. The overall conclusion is that the palm strike is a more effective strike for transferring force to an object. It can also be concluded that an attack to the chest would be ideal for maximizing impact force and moving an opponent off balance. Key PointsIt has been determined that the palm strike is more effective than the punch for developing force and for transferring momentum, most likely the result of a reduced number of rigid links and joints.A strike at head level is less effective than a strike at chest level for developing force and transferring momentum.Distance plays an effect on the overall force and momentum changes, and most likely is dependent on the velocity of the limb and alignment of the bones prior to impact.The teaching of self defence for novices and law enforcement would benefit from including the palm strike as a high priority technique. PMID:24474886

  18. Lorentz violation naturalness revisited

    NASA Astrophysics Data System (ADS)

    Belenchia, Alessio; Gambassi, Andrea; Liberati, Stefano

    2016-06-01

    We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.

  19. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production

    PubMed Central

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability. PMID:26733889

  20. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production.

    PubMed

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability.

  1. Force reconstruction using the sum of weighted accelerations technique -- Max-Flat procedure

    SciTech Connect

    Carne, T.G.; Mayes, R.L.; Bateman, V.I.

    1993-12-31

    Force reconstruction is a procedure in which the externally applied force is inferred from measured structural response rather than directly measured. In a recently developed technique, the response acceleration time-histories are multiplied by scalar weights and summed to produce the reconstructed force. This reconstruction is called the Sum of Weighted Accelerations Technique (SWAT). One step in the application of this technique is the calculation of the appropriate scalar weights. In this paper a new method of estimating the weights, using measured frequency response function data, is developed and contrasted with the traditional SWAT method of inverting the mode-shape matrix. The technique uses frequency response function data, but is not based on deconvolution. An application that will be discussed as part of this paper is the impact into a rigid barrier of a weapon system with an energy-absorbing nose. The nose had been designed to absorb the energy of impact and to mitigate the shock to the interior components.

  2. Acceleration forces at eye level experienced with rotation on the horizontal bar.

    PubMed

    Beck, G R; Rabinovitch, P; Brown, A C

    1979-06-01

    Negative acceleration forces (-Gz) experienced at eye level have been associated with preretinal hemorrhage and headache. These signs and symptoms were found in individuals who experienced negative (toward the head) force while rotating on a horizontal bar or hanging from a trapeze. Lightweight accelerometers were used to measure -Gz experienced at eye level in children and adult gymnasts performing a single-knee backswing on a horizontal bar. Rate of onset of -Gz, peak -Gz, time experiencing -Gz, area of curve (G.second), and mean force (area/time) were calculated. There was no significant difference between the children and the adult gymnasts in any of the above parameters. The best gymnast had a maximum rate of onset of 38.15 G/s and the maximum negative force experienced was 5.52 G. The maximum rate of onset for a child was 41.56 G/s and the maximum negative force experienced was 5.73 G. Compared with -Gz tolerance curves generated on a centrifuge the best gymnast would have become symptomatic while performing this maneuver in 6 s. The best child would have become symptomatic in 25 s. These tolerance limits can be easily exceeded by gymnasts and by the monkey-bar enthusiast. PMID:468634

  3. Hiding Lorentz invariance violation with MOND

    SciTech Connect

    Sanders, R. H.

    2011-10-15

    Horava-Lifshitz gravity is an attempt to construct a renormalizable theory of gravity by breaking the Lorentz invariance of the gravitational action at high energies. The underlying principle is that Lorentz invariance is an approximate symmetry and its violation by gravitational phenomena is somehow hidden to present limits of observational precision. Here I point out that a simple modification of the low-energy limit of Horava-Lifshitz gravity in its nonprojectable form can effectively camouflage the presence of a preferred frame in regions where the Newtonian gravitational field gradient is higher than cH{sub 0}; this modification results in the phenomenology of modified Newtonian dynamics (MOND) at lower accelerations. As a relativistic theory of MOND, this modified Horava-Lifshitz theory presents several advantages over its predecessors.

  4. Lorentz violation and {alpha} decay

    SciTech Connect

    Altschul, Brett

    2009-01-01

    Relating the effective Lorentz violation coefficients for composite particles to the coefficients for their constituent fields is a challenging problem. We calculate the Lorentz violation coefficients relevant to the dynamics of an {alpha} particle in terms of proton and neutron coefficients. The {alpha}-particle coefficients would lead to anisotropies in the {alpha} decays of nuclei, and because the decay process involves quantum tunneling, the effects of any Lorentz violations could be exponentially enhanced.

  5. HOT ELECTROMAGNETIC OUTFLOWS. I. ACCELERATION AND SPECTRA

    SciTech Connect

    Russo, Matthew; Thompson, Christopher

    2013-04-20

    The theory of cold, relativistic, magnetohydrodynamic outflows is generalized by the inclusion of an intense radiation source. In some contexts, such as the breakout of a gamma-ray burst (GRB) jet from a star, the outflow is heated to a high temperature at a large optical depth. Eventually it becomes transparent and is pushed to a higher Lorentz factor by a combination of the Lorentz force and radiation pressure. We obtain its profile, both inside and outside the fast magnetosonic critical point, when the poloidal magnetic field is radial and monopolar. Most of the energy flux is carried by the radiation field and the toroidal magnetic field that is wound up close to the rapidly rotating engine. Although the entrained matter carries little energy, it couples the radiation field to the magnetic field. Then the fast critical point is pulled inward from infinity and, above a critical radiation intensity, the outflow is accelerated mainly by radiation pressure. We identify a distinct observational signature of this hybrid outflow: a hardening of the radiation spectrum above the peak of the seed photon distribution, driven by bulk Compton scattering. The non-thermal spectrum-obtained by a Monte Carlo method-is most extended when the Lorentz force dominates the acceleration, and the seed photon beam is wider than the Lorentz cone of the MHD fluid. This effect is a generic feature of hot, magnetized outflows interacting with slower relativistic material. It may explain why some GRB spectra appear to peak at photon energies above the original Amati et al. scaling. A companion paper addresses the case of jet breakout, where diverging magnetic flux surfaces yield strong MHD acceleration over a wider range of Lorentz factor.

  6. Development of Velocity Guidance Assistance System by Haptic Accelerator Pedal Reaction Force Control

    NASA Astrophysics Data System (ADS)

    Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).

  7. The influence of the hand's acceleration and the relative contribution of drag and lift forces in front crawl swimming.

    PubMed

    Gourgoulis, Vassilios; Boli, Alexia; Aggeloussis, Nikolaos; Antoniou, Panagiotis; Toubekis, Argyris; Mavromatis, Georgios

    2015-01-01

    The aim of this study was to assess the effect of the hand's acceleration on the propulsive forces and the relative contribution of the drag and lift on their resultant force in the separate phases of the front crawl underwater arm stroke. Ten female swimmers swam one trial of all-out 25-m front crawl. The underwater motion of each swimmer's right hand was recorded using four camcorders and four periscope systems. Anatomical landmarks were digitised, and the propulsive forces generated by the swimmer's hand were estimated from the kinematic data in conjunction with hydrodynamic coefficients. When the hand's acceleration was taken into account, the magnitude of the propulsive forces was greater, with the exception of the mean drag force during the final part of the underwater arm stroke. The mean drag force was greater than the mean lift force in the middle part, while the mean lift force was greater than the mean drag force in the final part of the underwater arm stroke. Thus, swimmers should accelerate their hands from the beginning of their backward motion, press the water with large pitch angles during the middle part and sweep with small pitch angles during the final part of their underwater arm stroke.

  8. The Role of Magnetic Forces in Biology and Medicine

    PubMed Central

    Roth, Bradley J

    2011-01-01

    The Lorentz force (the force acting on currents in a magnetic field) plays an increasingly larger role in techniques to image current and conductivity. This review will summarize several applications involving the Lorentz force, including 1) magneto-acoustic imaging of current, 2) “Hall effect” imaging, 3) ultrasonically-induced Lorentz force imaging of conductivity, 4) magneto-acoustic tomography with magnetic induction, and 5) Lorentz force imaging of action currents using magnetic resonance imaging. PMID:21321309

  9. Search for anisotropic Lorentz invariance violation with γ -rays

    NASA Astrophysics Data System (ADS)

    Kislat, Fabian; Krawczynski, Henric

    2015-08-01

    While Lorentz invariance, the fundamental symmetry of Einstein's theory of general relativity, has been tested to a great level of detail, grand unified theories that combine gravity with the other three fundamental forces may result in a violation of Lorentz symmetry at the Planck scale. These energies are unattainable experimentally. However, minute deviations from Lorentz invariance may still be present at much lower energies. These deviations can accumulate over large distances, making astrophysical measurements the most sensitive tests of Lorentz symmetry. One effect of Lorentz invariance violation is an energy-dependent photon dispersion of the vacuum resulting in differences of the light travel time from distant objects. The Standard Model Extension (SME) is an effective theory to describe the low-energy behavior of a more fundamental grand unified theory, including Lorentz- and C P T -violating terms. In the SME the Lorentz-violating operators can in part be classified by their mass dimension d , with the lowest order being d =5 . However, measurements of photon polarization have constrained operators with d =5 setting lower limits on the energy at which they become dominant well beyond the Planck scale. On the other hand, these operators also violate C P T , and thus d =6 could be the leading order. In this paper we present constraints on all 25 real coefficients describing anisotropic nonbirefringent Lorentz invariance violation at mass dimension d =6 in the SME. We used Fermi-LAT observations of 25 active galactic nuclei to constrain photon dispersion and combined our results with previously published limits in order to simultaneously constrain all 25 coefficients. This represents the first set of constraints on these coefficients of mass dimension d =6 , whereas previous measurements were only able to constrain linear combinations of all 25 coefficients.

  10. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  11. Orthodontic force accelerates dentine mineralization during tooth development in juvenile rats.

    PubMed

    Kong, Xiangwei; Cao, Meng; Ye, Ruidong; Ding, Yin

    2010-08-01

    Malocclusion, the improper positioning of the teeth and jaws, is among the most important global oral health burdens. People with malocclusion may require orthodontic treatment to correct the problem. Orthodontic treatment is a way of straightening or moving teeth, to improve the appearance of the teeth and how they work. It is generally best carried out in children aged 9 to 12 years, whose teeth are mainly young permanent teeth with incomplete root formation. However, the relationship between orthodontic force and tooth development has not been fully understood. In this study, we sought to investigate the effects of orthodontic force on dentine formation and mineralization during the development of young permanent teeth. Standardized orthodontic tooth movement was performed with the orthodontic appliance in five-week-old rats. To obtain longitudinal assessment of dentine formation, tetracycline was administered on the operation day and 1, 3, 7, 14 or 21 days afterward. We found that the distance between two tetracycline stripes, which indicates the amount of dentine formation during orthodontic treatment, increased with time. Importantly, no significant difference was detected in dentine formation between treated and control rats. In contrast, immunohistochemical analysis showed that the expression of dentin sialoprotein, a marker of odontoblast differentiation and mineral apposition, was significantly elevated in crown and root dentine after orthodontic treatment. In conclusion, orthodontic treatment does not affect the dentine formation of young permanent teeth, but it promotes the activation of odontoblasts and accelerates the dentine mineralization. These results suggest the safety of early orthodontic treatment.

  12. Stern-Gerlach surfing in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Flood, Stephen P.; Burton, David A.

    2015-09-01

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that 'surf' along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  13. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration.

    PubMed

    Hunter, Joseph P; Marshall, Robert N; McNair, Peter J

    2005-02-01

    The literature contains some hypotheses regarding the most favorable ground reaction force (GRF) for sprint running and how it might be achieved. This study tested the relevance of these hypotheses to the acceleration phase of a sprint, using GRF impulse as the GRF variable of interest. Thirty-six athletes performed maximal-effort sprints from which video and GRF data were collected at the 16-m mark. Associations between GRF impulse (expressed relative to body mass) and various kinematic measures were explored with simple and multiple linear regressions and paired t-tests. The regression results showed that relative propulsive impulse accounted for 57% of variance in sprint velocity. Relative braking impulse accounted for only 7% of variance in sprint velocity. In addition, the faster athletes tended to produce only moderate magnitudes of relative vertical impulse. Paired t-tests revealed that lower magnitudes of relative braking impulse were associated with a smaller touchdown distance (p < 0.01) and a more active touchdown (p < 0.001). Also, greater magnitudes of relative propulsive impulse were associated with a high mean hip extension velocity of the stance limb (p < 0.05). In conclusion, it is likely that high magnitudes of propulsion are required to achieve high acceleration. Although there was a weak trend for faster athletes to produce lower magnitudes of braking, the possibility of braking having some advantages could not be ruled out. Further research is required to see if braking, propulsive, and vertical impulses can be modified with specific training. This will also provide insight into how a change in one GRF component might affect the others.

  14. Electromagnetohydrodynamic Modeling of Lorentz Effect Imaging

    PubMed Central

    Pourtaheri, Navid; Truong, Trong-Kha; Henriquez, Craig S.

    2013-01-01

    Lorentz Effect Imaging (LEI) is an MRI technique that has been proposed for direct imaging of neuronal activity. While promising results have been obtained in phantoms and in the human median nerve in vivo, its contrast mechanism is still not fully understood. In this paper, computational model simulations were used to investigate how electromagnetohydrodynamics (EMHD) may explain the LEI contrast. Three computational models of an electrolyte-filled phantom subject to an applied current dipole, synchronized to oscillating magnetic field gradients of an LEI protocol, were developed to determine the velocity and displacement of water molecules as well as the resulting signal loss in an MR image. The simulated images were compared to images from previous LEI phantom experiments with identical properties for different stimulus current amplitudes and polarities. The first model, which evaluated ion trajectories based on Stokes flow using different mobility values, did not generate an appreciable signal loss due to an insufficient number of water molecules associated with the ion hydration shells. The second model, which computed particle drift based on the Lorentz force of charged particles in free space, was able to approximate the magnitude, but not the distribution of signal loss observed in the experimental images. The third model, which computed EMHD based on the Lorentz force and Navier-Stokes equations for flow of a conducting fluid, provided results consistent with both the magnitude and distribution of signal loss seen in the LEI experiments. Our EMHD model further yields information on electrical potential, velocity, displacement, and pressure, which are not readily available in an experiment, thereby providing a robust means to study and optimize LEI for imaging neuronal activity in the human cortex. PMID:24056273

  15. Systematic Study of Student Understanding of the Relationships between the Directions of Force, Velocity, and Acceleration in One Dimension

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.

    2011-01-01

    We developed an instrument to systematically investigate student conceptual understanding of the relationships between the directions of net force, velocity, and acceleration in one dimension and report on data collected on the final version of the instrument from over 650 students. Unlike previous work, we simultaneously studied all six possible…

  16. Molecular Force Field Development for Aqueous Electrolytes: 1. Incorporating Appropriate Experimental Data and the Inadequacy of Simple Electrolyte Force Fields Based on Lennard-Jones and Point Charge Interactions with Lorentz-Berthelot Rules.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2013-11-12

    It is known that none of the available simple molecular interaction models of aqueous electrolytes based on SPC/E water and their associated force fields are able to reproduce the concentration dependence of important thermodynamic properties of even the simplest electrolyte, NaCl, at ambient conditions over the entire experimentally accessible concentration range [ Mouc̆ka , F. ; Nezbeda , I. ; Smith , W. R. J. Chem. Phys. 2013 , 138 , 154102 ]. This paper explores the possibility of improving their performance by incorporating concentration-dependent experimental data for the total ionic chemical potential and the density into the fitting procedure, in addition to experimental values of solubility and solid chemical potential. We describe a general parameter estimation methodology for a studied class of models that incorporates the aforementioned experimental data. When the entire concentration range is considered, although the resulting force field is a slight improvement over others currently available in the literature, overall quantitative agreement with the experimental data over this range remains unsatisfactory. This indicates an inherent limitation of such simple molecular interaction models and strongly suggests that more complex mathematical forms of such models are required to quantitatively predict the properties of aqueous electrolyte solutions when the entire concentration range is of interest. Our parameter estimation methodology is also applicable to such cases. PMID:26583422

  17. Molecular Force Field Development for Aqueous Electrolytes: 1. Incorporating Appropriate Experimental Data and the Inadequacy of Simple Electrolyte Force Fields Based on Lennard-Jones and Point Charge Interactions with Lorentz-Berthelot Rules.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2013-11-12

    It is known that none of the available simple molecular interaction models of aqueous electrolytes based on SPC/E water and their associated force fields are able to reproduce the concentration dependence of important thermodynamic properties of even the simplest electrolyte, NaCl, at ambient conditions over the entire experimentally accessible concentration range [ Mouc̆ka , F. ; Nezbeda , I. ; Smith , W. R. J. Chem. Phys. 2013 , 138 , 154102 ]. This paper explores the possibility of improving their performance by incorporating concentration-dependent experimental data for the total ionic chemical potential and the density into the fitting procedure, in addition to experimental values of solubility and solid chemical potential. We describe a general parameter estimation methodology for a studied class of models that incorporates the aforementioned experimental data. When the entire concentration range is considered, although the resulting force field is a slight improvement over others currently available in the literature, overall quantitative agreement with the experimental data over this range remains unsatisfactory. This indicates an inherent limitation of such simple molecular interaction models and strongly suggests that more complex mathematical forms of such models are required to quantitatively predict the properties of aqueous electrolyte solutions when the entire concentration range is of interest. Our parameter estimation methodology is also applicable to such cases.

  18. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  19. Cosmological constraints on Lorentz violating dark energy

    SciTech Connect

    Audren, B.; Lesgourgues, J.; Sibiryakov, S. E-mail: Diego.Blas@cern.ch E-mail: Sergey.Sibiryakov@cern.ch

    2013-08-01

    The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ΘCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from ΛCDM. The differences appear at the level of perturbations. We show that in ΘCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code class. We then use the parameter inference code Monte Python to confront ΘCDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from ΛCDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level of 1.8%.

  20. Fresnel formulas as Lorentz transformations

    PubMed

    Monzon; Sanchez-Soto

    2000-08-01

    From a matrix formulation of the boundary conditions we obtain the fundamental invariant for an interface and a remarkably simple factorization of the interface matrix, which enables us to express the Fresnel coefficients in a new and compact form. This factorization allows us to recast the action of an interface between transparent media as a hyperbolic rotation. By exploiting the local isomorphism between SL(2, C) and the (3 + 1)-dimensional restricted Lorentz group SO(3, 1), we construct the equivalent Lorentz transformation that describes any interface. PMID:10935876

  1. Use of a Force Sensor in Archimedes' Principle Experiment, Determination of Buoyant Force and Acceleration Due To Gravity

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2013-04-01

    In introductory physics, students verify Archimedes' principle by immersing an object in water in a container, with a side-spout to collect the displaced water, resulting in a large uncertainty, due to surface tension. A modified procedure was introduced, in which a plastic bucket is suspended from a force sensor, and an object hangs underneath the bucket. The object is immersed in water in a glass beaker (without any side spout), and the weight loss is measured with a computer-controlled force sensor. Instead of collecting the water displaced by the object, tap water was added to the bucket to compensate for the weight loss, and the Archimedes' principle was verified within less than a percent. With this apparatus, buoyant force was easily studied as a function of volume of displaced water; as well as a function of density of saline solution. By graphing buoyant force as a function of volume (or density of liquid), value of g was obtained from slope. Apparatus and sources of error will be discussed.

  2. Tests of Lorentz invariance using hydrogen molecules

    SciTech Connect

    Mueller, Holger; Herrmann, Sven; Saenz, Alejandro; Peters, Achim; Laemmerzahl, Claus

    2004-10-01

    We discuss the consequences of Lorentz violation (as expressed within the Lorentz-violating extension of the standard model) for the hydrogen molecule, which represents a generic model of a molecular binding. Lorentz-violating shifts of electronic, vibrational and rotational energy levels, and of the internuclear distance are calculated. This offers the possibility of obtaining improved bounds on Lorentz invariance by experiments using molecules.

  3. Reflection theorem for Lorentz-Minkowski spaces

    NASA Astrophysics Data System (ADS)

    Lee, Nam-Hoon

    2016-07-01

    We generalize the reflection theorem of the Lorentz-Minkowski plane to that of the Lorentz-Minkowski spaces of higher dimensions. As a result, we show that an isometry of the Lorentz-Minkowski spacetime is a composition of at most 5 reflections.

  4. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  5. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  6. Inertia Coupling Analysis of a Self-Decoupled Wheel Force Transducer under Multi-Axis Acceleration Fields

    PubMed Central

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  7. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  8. Transmission of Real World Force Sensation by Micro/Macro Bilateral Control Based on Acceleration Control with Standardization Matrix

    NASA Astrophysics Data System (ADS)

    Shimono, Tomoyuki; Katsura, Seiichiro; Susa, Shigeru; Takei, Takayoshi; Ohnishi, Kouhei

    This paper proposes novel micro/macro bilateral control based on acceleration control with standardization matrix. In bilateral control, force control and position control should be realized simultaneously. However, they are not able to be realized in one real axis at the same time. Thus, force control and position control are realized in virtual mode space in this paper. Then, the proposed standardization matrix is able to harmonize the standard of macro master system with the standard of micro slave system in the virtual mode space. With the proposed method, the transmission of force sensation from the real micro environment is realized. The experimental results are shown to verify the viability of the proposed method.

  9. Radiation Pressure Forces, the Anomalous Acceleration, and Center of Mass Motion for the TOPEX/POSEIDON Spacecraft

    NASA Technical Reports Server (NTRS)

    Kubitschek, Daniel G.; Born, George H.

    2000-01-01

    Shortly after launch of the TOPEX/POSEIDON (T/P) spacecraft (s/c), the Precision Orbit Determination (POD) Team at NASA's Goddard Space Flight Center (GSFC) and the Center for Space Research at the University of Texas, discovered residual along-track accelerations, which were unexpected. Here, we describe the analysis of radiation pressure forces acting on the T/P s/c for the purpose of understanding and providing an explanation for the anomalous accelerations. The radiation forces acting on the T/P solar army, which experiences warping due to temperature gradients between the front and back surfaces, are analyzed and the resulting along-track accelerations are determined. Characteristics similar to those of the anomalous acceleration are seen. This analysis led to the development of a new radiation form model, which includes solar array warping and a solar array deployment deflection of as large as 2 deg. As a result of this new model estimates of the empirical along-track acceleration are reduced in magnitude when compared to the GSFC tuned macromodel and are less dependent upon beta(prime), the location of the Sun relative to the orbit plane. If these results we believed to reflect the actual orientation of the T/P solar array then motion of the solar array must influence the location of the s/c center of mass. Preliminary estimates indicate that the center of mass can vary by as much as 3 cm in the radial component of the s/c's position due to rotation of the deflected, warped solar array panel .The altimeter measurements rely upon accurate knowledge of the center of mass location relative to the s/c frame of reference. Any radial motion of the center of mass directly affects the altimeter measurements.

  10. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  11. Subnanometer atomic force microscopy of peptide–mineral interactions links clustering and competition to acceleration and catastrophe

    PubMed Central

    Friddle, R. W.; Weaver, M. L.; Qiu, S. R.; Wierzbicki, A.; Casey, W. H.; De Yoreo, J. J.

    2010-01-01

    In vitro observations have revealed major effects on the structure, growth, and composition of biomineral phases, including stabilization of amorphous precursors, acceleration and inhibition of kinetics, and alteration of impurity signatures. However, deciphering the mechanistic sources of these effects has been problematic due to a lack of tools to resolve molecular structures on mineral surfaces during growth. Here we report atomic force microscopy investigations using a system designed to maximize resolution while minimizing contact force. By imaging the growth of calcium-oxalate monohydrate under the influence of aspartic-rich peptides at single-molecule resolution, we reveal how the unique interactions of polypeptides with mineral surfaces lead to acceleration, inhibition, and switching of growth between two distinct states. Interaction with the positively charged face of calcium-oxalate monohydrate leads to formation of a peptide film, but the slow adsorption kinetics and gradual relaxation to a well-bound state result in time-dependent effects. These include a positive feedback between peptide adsorption and step inhibition described by a mathematical catastrophe that results in growth hysteresis, characterized by rapid switching from fast to near-zero growth rates for very small reductions in supersaturation. Interactions with the negatively charged face result in formation of peptide clusters that impede step advancement. The result is a competition between accelerated solute attachment and inhibition due to blocking of the steps by the clusters. The findings have implications for control of pathological mineralization and suggest artificial strategies for directing crystallization. PMID:20018743

  12. Diffusion in the Lorentz Gas

    NASA Astrophysics Data System (ADS)

    Carl, P. Dettmann

    2014-10-01

    The Lorentz gas, a point particle making mirror-like reflections from an extended collection of scatterers, has been a useful model of deterministic diffusion and related statistical properties for over a century. This survey summarises recent results, including periodic and aperiodic models, finite and infinite horizon, external fields, smooth or polygonal obstacles, and in the Boltzmann—Grad limit. New results are given for several moving particles and for obstacles with flat points. Finally, a variety of applications are presented.

  13. The influences of impact interface, muscle activity, and knee angle on impact forces and tibial and femoral accelerations occurring after external impacts.

    PubMed

    Potthast, Wolfgang; Brüggemann, Gert-Peter; Lundberg, Arne; Arndt, Anton

    2010-02-01

    The purpose of this study was to quantify relative contributions of impact interface, muscle activity, and knee angle to the magnitudes of tibial and femoral accelerations occurring after external impacts. Impacts were initiated with a pneumatically driven impacter under the heels of four volunteers. Impact forces were quantified with a force sensor. Segmental accelerations were measured with bone mounted accelerometers. Experimental interventions were hard and soft shock interfaces, different knee angles (0 degrees, 20 degrees, 40 degrees knee flexion), and muscular preactivation (0%, 30%, 60% of maximal voluntary contraction) of gastrocnemii, hamstrings, and quadriceps. Greater knee flexion led to lower impact forces and higher tibial accelerations. Increased muscular activation led to higher forces and lower tibial accelerations. The softer of the two shock interfaces under study reduced both parameters. The effects on accelerations and forces through the activation and knee angle changes were greater than the effect of interface variations. The hardness of the two shock interfaces explained less than 10% of the variance of accelerations and impact forces, whereas knee angle changes explained 25-29%, and preactivation changes explained 35-48% of the variances. It can be concluded that muscle force and knee joint angle have greater effects in comparison with interface hardness on the severity of shocks on the lower leg.

  14. Constraints on the Bulk Lorentz Factors of GRB X-Ray Flares

    NASA Astrophysics Data System (ADS)

    Yi, Shuang-Xi; Wu, Xue-Feng; Wang, Fa-Yin; Dai, Zi-Gao

    2015-07-01

    X-ray flares were discovered in the afterglow phase of gamma-ray bursts (GRBs) by the Swift satellite a decade ago and are known as a canonical component in GRB X-ray afterglows. In this paper, we constrain the Lorentz factors of GRB X-ray flares using two different methods. For the first method, we estimate the lower limit on the bulk Lorentz factor with the flare duration and jet break time. In the second method, the upper limit on the Lorentz factor is derived by assuming that the X-ray flare jet has undergone saturated acceleration. We also re-estimate the initial Lorentz factor with GRB afterglow onsets, and find the coefficient of the theoretical Lorentz factor is 1.67 rather than the commonly used 2 for the interstellar medium (ISM) and 1.44 for the wind case. We find that the correlation between the limited Lorentz factor and the isotropic radiation energy of X-ray flares in the ISM case is more consistent with that of prompt emission than the wind case in a statistical sense. For a comparison, the lower limit on the Lorentz factor is statistically larger than the extrapolation from prompt bursts in the wind case. Our results indicate that X-ray flares and prompt bursts are produced by the same physical mechanism.

  15. CONSTRAINTS ON THE BULK LORENTZ FACTORS OF GRB X-RAY FLARES

    SciTech Connect

    Yi, Shuang-Xi; Wang, Fa-Yin; Dai, Zi-Gao; Wu, Xue-Feng

    2015-07-01

    X-ray flares were discovered in the afterglow phase of gamma-ray bursts (GRBs) by the Swift satellite a decade ago and are known as a canonical component in GRB X-ray afterglows. In this paper, we constrain the Lorentz factors of GRB X-ray flares using two different methods. For the first method, we estimate the lower limit on the bulk Lorentz factor with the flare duration and jet break time. In the second method, the upper limit on the Lorentz factor is derived by assuming that the X-ray flare jet has undergone saturated acceleration. We also re-estimate the initial Lorentz factor with GRB afterglow onsets, and find the coefficient of the theoretical Lorentz factor is 1.67 rather than the commonly used 2 for the interstellar medium (ISM) and 1.44 for the wind case. We find that the correlation between the limited Lorentz factor and the isotropic radiation energy of X-ray flares in the ISM case is more consistent with that of prompt emission than the wind case in a statistical sense. For a comparison, the lower limit on the Lorentz factor is statistically larger than the extrapolation from prompt bursts in the wind case. Our results indicate that X-ray flares and prompt bursts are produced by the same physical mechanism.

  16. An investigation into the acceleration response of a damaged beam-type structure to a moving force

    NASA Astrophysics Data System (ADS)

    González, A.; Hester, D.

    2013-06-01

    In recent years there have been a growing number of publications on procedures for damage detection in beams from analysing their dynamic response to the passage of a moving force. Most of this research demonstrates their effectiveness by showing that a singularity that did not appear in the healthy structure is present in the response of the damaged structure. This paper elucidates from first principles how the acceleration response can be assumed to consist of 'static' and 'dynamic' components, and where the beam has experienced a localised loss in stiffness, an additional 'damage' component. The combination of these components establishes how the damage singularity will appear in the total response. For a given damage severity, the amplitude of the 'damage' component will depend on how close the damage location is to the sensor, and its frequency content will increase with higher velocities of the moving force. The latter has implications for damage detection because if the frequency content of the 'damage' component includes bridge and/or vehicle frequencies, it becomes more difficult to identify damage. The paper illustrates how a thorough understanding of the relationship between the 'static' and 'damage' components contributes to establish if damage has occurred and to provide an estimation of its location and severity. The findings are corroborated using accelerations from a planar finite element simulation model where the effects of force velocity and bridge span are examined.

  17. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    PubMed

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD

  18. Displacement of plasma protein and conduction velocity in rats under action of acceleration forces and hypokinesia

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Edelwejn, Z.; Wojtkowiak, M.

    1980-01-01

    The permeability of capillary vessels was investigated in order to determine if acceleration alone or following prolonged hypokinesia would induce changes in the vascular wall leading to the penetration by l-albumins and/or proteins with larger molecules. In rats undergoing action of +5 Gz accelerations, no increase in vascular permeability, as tested with the use of (Cr-5k)-globulin, was demostrated. In rats immobilized for 4 weeks before centrifugation, rather weak migration of (Cr-51)-globulin from the vessels was observed. Immobilization resulted also in lowering of conduction velocity in the sciatic nerve.

  19. Technically natural dark energy from Lorentz breaking

    SciTech Connect

    Blas, D.

    2011-07-01

    We construct a model of dark energy with a technically natural small contribution to cosmic acceleration, i.e. this contribution does not receive corrections from other scales in the theory. The proposed acceleration mechanism appears generically in the low-energy limit of gravity theories with violation of Lorentz invariance that contain a derivatively coupled scalar field Θ. The latter may be the Goldstone field of a broken global symmetry. The model, that we call ΘCDM, is a valid effective field theory up to a high cutoff just a few orders of magnitude below the Planck scale. Furthermore, it can be ultraviolet-completed in the context of Hořava gravity. We discuss the observational predictions of the model. Even in the absence of a cosmological constant term, the expansion history of the Universe is essentially indistinguishable from that of ΛCDM. The difference between the two theories appears at the level of cosmological perturbations. We find that in ΘCDM the matter power spectrum is enhanced at subhorizon scales compared to ΛCDM. This property can be used to discriminate the model from ΛCDM with current cosmological data.

  20. Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics.

    PubMed

    Iakovou, Georgios; Hayward, Steven; Laycock, Stephen D

    2015-09-01

    Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates.

  1. Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics.

    PubMed

    Iakovou, Georgios; Hayward, Steven; Laycock, Stephen D

    2015-09-01

    Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loop should run at rates of 500Hz to 1kHz. We present an adaptive force calculation approach that can be executed in parallel on a wide range of Graphics Processing Units (GPUs) for interactive haptics-assisted docking with wider applicability to molecular simulations. Prior to the interactive session either a regular grid or an octree is selected according to the available GPU memory to determine the set of interatomic interactions within a cutoff distance. The total force is then calculated from this set. The approach can achieve force updates in less than 2ms for molecular structures comprising hundreds of thousands of atoms each, with performance improvements of up to 90 times the speed of current CPU-based force calculation approaches used in interactive docking. Furthermore, it overcomes several computational limitations of previous approaches such as pre-computed force grids, and could potentially be used to model receptor flexibility at haptic refresh rates. PMID:26186491

  2. Jetting mechanisms of particles under shock wave acceleration: the role of force chains

    NASA Astrophysics Data System (ADS)

    Xue, Kun

    The particle jetting phenomenon is widely observed in many problems associated with blast/shock dispersal of granular materials, although its origin is still unidentified. We carried out discrete element simulations of the shock dispersal of two-dimensional particle rings in order to extract the particle-scale evolution of the shocked rings in terms of the velocity profile and the force-chain networks. Initially the force chains distribute uniformly along the circumference, but after several dozens of microseconds, they disseminate into a handful of blobs which mainly consist of long linear or branched chains align with the radial direction. These blobs are separated by zones featuring relatively sparse force chains which take forms of short chains or small compact polygons. The radial-like force chains in blobs serves as the channels transferring the momentum from the inner layers to outer layers, resulting in fast moving blocks without appreciable velocity differences. By contrast, the shock energy in the zones with short force chains is largely dissipated among the particle collision. Thus particles in these zones lag behind those bound by strong force chains. The resultant heterogeneous velocity profile acts as the precursor of the ensuing particle jetting.

  3. Progress towards the development of transient ram accelerator simulation as part of the U.S. Air Force Armament Directorate Research Program

    NASA Astrophysics Data System (ADS)

    Sinha, N.; York, B. J.; Dash, S. M.; Drabczuk, R.; Rolader, G. E.

    1992-07-01

    This paper describes the development of an advanced CFD simulation capability in support of the U.S. Air Force Armament Directorate's ram accelerator research initiative. The state-of-the-art CRAFT computer code has been specialized for high fidelity, transient ram accelerator simulations via inclusion of generalized dynamic gridding, solution adaptive grid clustering, high pressure thermochemistry, etc. Selected ram accelerator simulations are presented which serve to exhibit the CRAFT code's capabilities and identify some of the principal research/design issues.

  4. Ponderomotive force on solitary structures created during radiation pressure acceleration of thin foils

    NASA Astrophysics Data System (ADS)

    Tripathi, Vipin K.; Sharma, Anamika

    2013-05-01

    We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, ϕ=-ϕp=-(mc2/e)(γ -1), where γ =(1+|a|2)1/2, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is taken to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with ϕ =-ϕp.

  5. Effects of weighted sled towing on ground reaction force during the acceleration phase of sprint running.

    PubMed

    Kawamori, Naoki; Newton, Robert; Nosaka, Ken

    2014-01-01

    Athletes use weighted sled towing to improve sprint ability, but little is known about its biomechanics. The purpose of this study was to investigate the effect of weighted sled towing with two different loads on ground reaction force. Ten physically active men (mean ± SD: age 27.9 ± 1.9 years; stature 1.76 ± 0.06 m; body mass 80.2 ± 9.6 kg) performed 5 m sprints under three conditions; (a) unresisted, (b) towing a sled weighing 10% of body mass (10% condition) and (c) towing a sled weighing 30% of body mass (30% condition). Ground reaction force data during the second ground contact after the start were recorded and compared across the three conditions. No significant differences between the unresisted and 10% conditions were evident, whereas the 30% condition resulted in significantly greater values for the net horizontal and propulsive impulses (P < 0.05) compared with the unresisted condition due to longer contact time and more horizontal direction of force application to the ground. It is concluded that towing a sled weighing 30% of body mass requires more horizontal force application and increases the demand for horizontal impulse production. In contrast, the use of 10% body mass has minimal impact on ground reaction force.

  6. Lorentz violation and Faddeev-Popov ghosts

    SciTech Connect

    Altschul, B.

    2006-02-15

    We consider how Lorentz-violating interactions in the Faddeev-Popov ghost sector will affect scalar QED. The behavior depends sensitively on whether the gauge symmetry is spontaneously broken. If the symmetry is not broken, Lorentz violations in the ghost sector are unphysical, but if there is spontaneous breaking, radiative corrections will induce Lorentz-violating and gauge-dependent terms in other sectors of the theory.

  7. Effects of repeated exposure to acceleration forces (+Gz) and anti-G manoeuvres on cardiac dimensions and performance

    PubMed Central

    Carter, Dan; Prokupetz, Alex; Harpaz, David; Barenboim, Erez

    2010-01-01

    Exposure to acceleration forces (+Gz) and anti-G protective manoeuvres causes changes in cardiac preload and afterload. These changes can result in cardiac hypertrophy or enlargement. Previous studies regarding the effect of acceleration in high-G aviators (HGAs) are few and inconclusive. An echocardiographic study was initiated to determine whether there are structural or functional cardiac differences between HGAs and low-G aviators (LGAs). The present study was a cross-sectional study in which echocardiographic parameters in HGAs were compared with those in LGAs. Both retrospective and prospective data were collected. Fifty aviators were included in each group. The aviators who participated in the present study were randomly chosen from a cohort with similar demographic characteristics and flying hours. No major differences were found in cardiac dimensions and function between HGAs and LGAs. The authors speculate that the reason why no major differences were found was due to the short period of total exposure to very high +Gz forces and anti-G measures. PMID:20664767

  8. Lorentz transformation of blackbody radiation.

    PubMed

    Ford, G W; O'Connell, R F

    2013-10-01

    We present a simple calculation of the Lorentz transformation of the spectral distribution of blackbody radiation at temperature T. Here we emphasize that T is the temperature in the blackbody rest frame and does not change. We thus avoid the confused and confusing question of how temperature transforms. We show by explicit calculation that at zero temperature the spectral distribution is invariant. At finite temperature we find the well-known result familiar in discussions of the 2.7 K cosmic radiation. PMID:24229306

  9. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    SciTech Connect

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  10. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGES

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  11. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  12. Effects of radiation reaction in relativistic laser acceleration

    SciTech Connect

    Hadad, Y.; Labun, L.; Rafelski, J.; Elkina, N.; Klier, C.; Ruhl, H.

    2010-11-01

    The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.

  13. Hall MHD Equilibrium of Accelerated Compact Toroids

    NASA Astrophysics Data System (ADS)

    Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.

    2007-11-01

    We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.

  14. Improving DWF Simulations: Force Gradient Integrator and the Mobius Accelerated DWF Solver

    NASA Astrophysics Data System (ADS)

    Yin, H.; Mawhinney, R.

    We have implemented a variant of the force gradient integrator proposed by Kennedy et.al. and are using it in our production 2+1 flavor DWF simulations with pion masses of 180 MeV in (4.5fm)3 volumes. We find modest speed-ups (\\sim 20%) from using the force gradient integrator, compared to our previously used Omelyan integrator. On other ensembles, primarily finite temperature 2+1 flavor DWF QCD, we have extensively tuned the Hasenbusch preconditioning masses and achieved speed-ups of 2-3x. Here we have also switched to the force gradient integrator, but this change has not had any impact on the speed. We also report on an improved solver for DWF, which uses M\\"obius fermions, with a smaller fifth dimension than the original DWF fermions, as an intermediate step in the generation of solutions of the Dirac equation. This approach cuts the number of effective Dirac applications by approximately a factor of 2 when the conjugate gradient iteration count is large.

  15. CPT violation implies violation of Lorentz invariance.

    PubMed

    Greenberg, O W

    2002-12-01

    A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal. PMID:12484997

  16. Lorentz, Hendrik Antoon (1853-1928)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Arnhem, Netherlands, became professor of mathematical physics at Leiden University. Nobel prizewinner 1902, jointly with PIETER ZEEMAN, for his mathematical theory of the electron demonstrating the effect of a strong magnetic field on wavelength of the light produced by an atom (this was before the discovery of the electron). Lorentz's name is commemorated in the FitzGerald-Lorentz contra...

  17. Neutrinos as Probes of Lorentz Invariance

    DOE PAGES

    Díaz, Jorge S.

    2014-01-01

    Neutrinos can be used to search for deviations from exact Lorentz invariance. The worldwide experimental program in neutrino physics makes these particles a remarkable tool to search for a variety of signals that could reveal minute relativity violations. This paper reviews the generic experimental signatures of the breakdown of Lorentz symmetry in the neutrino sector.

  18. CPT violation implies violation of Lorentz invariance.

    PubMed

    Greenberg, O W

    2002-12-01

    A interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.

  19. Relaxing Lorentz invariance in general perturbative anomalies

    SciTech Connect

    Salvio, A.

    2008-10-15

    We analyze the role of Lorentz symmetry in the perturbative nongravitational anomalies for a single family of fermions. The theory is assumed to be translational-invariant, power-counting renormalizable and based on a local action, but is allowed to have general Lorentz violating operators. We study the conservation of global and gauge currents associated with general internal symmetry groups and find, by using a perturbative approach, that Lorentz symmetry does not participate in the clash of symmetries that leads to the anomalies. We first analyze the triangle graphs and prove that there are regulators for which the anomalous part of the Ward identities exactly reproduces the Lorentz-invariant case. Then we show, by means of a regulator independent argument, that the anomaly cancellation conditions derived in Lorentz-invariant theories remain necessary ingredients for anomaly freedom.

  20. Mechanical Forces Accelerate Collagen Digestion by Bacterial Collagenase in Lung Tissue Strips

    PubMed Central

    Yi, Eunice; Sato, Susumu; Takahashi, Ayuko; Parameswaran, Harikrishnan; Blute, Todd A.; Bartolák-Suki, Erzsébet; Suki, Béla

    2016-01-01

    Most tissues in the body are under mechanical tension, and while enzymes mediate many cellular and extracellular processes, the effects of mechanical forces on enzyme reactions in the native extracellular matrix (ECM) are not fully understood. We hypothesized that physiological levels of mechanical forces are capable of modifying the activity of collagenase, a key remodeling enzyme of the ECM. To test this, lung tissue Young's modulus and a nonlinearity index characterizing the shape of the stress-strain curve were measured in the presence of bacterial collagenase under static uniaxial strain of 0, 20, 40, and 80%, as well as during cyclic mechanical loading with strain amplitudes of ±10 or ±20% superimposed on 40% static strain, and frequencies of 0.1 or 1 Hz. Confocal and electron microscopy was used to determine and quantify changes in ECM structure. Generally, mechanical loading increased the effects of enzyme activity characterized by an irreversible decline in stiffness and tissue deterioration seen on both confocal and electron microscopic images. However, a static strain of 20% provided protection against digestion compared to both higher and lower strains. The decline in stiffness during digestion positively correlated with the increase in equivalent alveolar diameters and negatively correlated with the nonlinearity index. These results suggest that the decline in stiffness results from rupture of collagen followed by load transfer and subsequent rupture of alveolar walls. This study may provide new understanding of the role of collagen degradation in general tissue remodeling and disease progression. PMID:27462275

  1. Cosmology of a universe with spontaneously broken Lorentz symmetry

    NASA Astrophysics Data System (ADS)

    Ferreira, P. G.; Gripaios, B. M.; Saffari, R.; Zlosnik, T. G.

    2007-02-01

    A self-consistent effective field theory of modified gravity has recently been proposed with spontaneous breaking of local Lorentz invariance. The symmetry is broken by a vector field with the wrong-sign mass term and it has been shown to have additional graviton modes and modified dispersion relations. In this paper we study the evolution of a homogeneous and isotropic universe in the presence of such a vector field with a minimum lying along the timelike direction. A plethora of different regimes is identified, such as accelerated expansion, loitering, collapse, and tracking.

  2. f(T) gravity and local Lorentz invariance

    SciTech Connect

    Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.

    2011-03-15

    We show that in theories of generalized teleparallel gravity, whose Lagrangians are algebraic functions of the usual teleparallel Lagrangian, the action and the field equations are not invariant under local Lorentz transformations. We also argue that these theories appear to have extra degrees of freedom with respect to general relativity. The usual teleparallel Lagrangian, which has been extensively studied and leads to a theory dynamically equivalent to general relativity, is an exception. Both of these facts appear to have been overlooked in the recent literature on f(T) gravity, but are crucial for assessing the viability of these theories as alternative explanations for the acceleration of the Universe.

  3. Cosmology of a universe with spontaneously broken Lorentz symmetry

    SciTech Connect

    Ferreira, P. G.; Gripaios, B. M.; Zlosnik, T. G.; Saffari, R.

    2007-02-15

    A self-consistent effective field theory of modified gravity has recently been proposed with spontaneous breaking of local Lorentz invariance. The symmetry is broken by a vector field with the wrong-sign mass term and it has been shown to have additional graviton modes and modified dispersion relations. In this paper we study the evolution of a homogeneous and isotropic universe in the presence of such a vector field with a minimum lying along the timelike direction. A plethora of different regimes is identified, such as accelerated expansion, loitering, collapse, and tracking.

  4. Pacific trade winds accelerated by aerosol forcing over the past two decades

    NASA Astrophysics Data System (ADS)

    Takahashi, Chiharu; Watanabe, Masahiro

    2016-08-01

    The Pacific trade winds, coupled with the zonal sea surface temperature gradient in the equatorial Pacific Ocean, control regional sea levels, and therefore their trend is a great concern in the Pacific Rim. Over the past two decades, easterly winds have been accelerated in association with eastern tropical Pacific cooling. They may represent natural interdecadal variability in the Pacific and possibly explain the recent global warming hiatus. However, the intensification of the winds has been the strongest ever observed in the past century, the reason for which is still unclear. Here we show, using multiple climate simulations for 1921-2014 by a global climate model, that approximately one-third of the trade-wind intensification for 1991-2010 can be attributed to changes in sulfate aerosols. The multidecadal sea surface temperature anomaly induced mostly by volcanic aerosols dominates in the western North Pacific, and its sign changed rapidly from negative to positive in the 1990s, coherently with Atlantic multidecadal variability. The western North Pacific warming resulted in intensification of trade winds to the west of the dateline. These trends have not contributed much to the global warming hiatus, but have greatly impacted rainfall over the western Pacific islands.

  5. Lorentz violation and perpetual motion

    NASA Astrophysics Data System (ADS)

    Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.

    2007-05-01

    We show that any Lorentz-violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole perpetuum mobile, but argue that these can be neglected if the black hole mass is sufficiently large.

  6. Lorentz violation and perpetual motion

    SciTech Connect

    Eling, Christopher; Foster, Brendan Z.; Jacobson, Ted; Wall, Aron C.

    2007-05-15

    We show that any Lorentz-violating theory with two or more propagation speeds is in conflict with the generalized second law of black hole thermodynamics. We do this by identifying a classical energy-extraction method, analogous to the Penrose process, which would decrease the black hole entropy. Although the usual definitions of black hole entropy are ambiguous in this context, we require only very mild assumptions about its dependence on the mass. This extends the result found by Dubovsky and Sibiryakov, which uses the Hawking effect and applies only if the fields with different propagation speeds interact just through gravity. We also point out instabilities that could interfere with their black hole perpetuum mobile, but argue that these can be neglected if the black hole mass is sufficiently large.

  7. Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity

    ERIC Educational Resources Information Center

    Franklin, Jerrold

    2010-01-01

    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…

  8. Economic innovation and efficiency gains as the driving force for accelerating carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2012-12-01

    It is normally assumed that gains in energy efficiency are one of the best routes that society has available to it for stabilizing future carbon dioxide emissions. For a given degree of economic productivity less energy is consumed and a smaller quantity of fossil fuels is required. While certainly this observation is true in the instant, it ignores feedbacks in the economic system such that efficiency gains ultimately lead to greater energy consumption: taken as a global whole, they permit civilization to accelerate its expansion into the energy reserves that sustain it. Here this argument is formalized from a general thermodynamic perspective. The core result is that there exists a fixed, time-independent link between a very general representation of global inflation-adjusted economic wealth (units currency) and civilization's total capacity to consume power (units energy per time). Based on 40 years of available statistics covering more than a tripling of global GDP and a doubling of wealth, this constant has a value of 7.1 +/- 0.01 Watts per one thousand 2005 US dollars. Essentially, wealth is power. Civilization grows by dissipating power in order to sustain all its current activities and to incorporate more raw material into its existing structure. Growth of its structure is related to economic production, so more energy efficient economic production facilitates growth. Growth is into the reserves that sustain civilization, in which case there is a positive feedback in the economic system whereby energy efficiency gains ultimately "backfire" if their intended purpose is to reduce energy consumption and carbon dioxide emissions. The analogy that can be made is to a growing child: a healthy child who efficiently incorporates food into her structure grows quickly and is able to consume more in following years. Economically, an argument is made that, for a range of reasons, there are good reasons to refer to efficiency gains as economic "innovation", both for

  9. Abraham-Lorentz versus Landau-Lifshitz

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.; Proctor, Thomas C.; Schroeter, Darrell F.

    2010-04-01

    The classical Abraham-Lorentz formula for the radiation reaction on a point charge suffers from two notorious defects: runaways and preacceleration. Recently, several authors have advocated as an alternative the Landau-Lifshitz formula, which has neither fault. The latter formula is often presented as an approximation to Abraham-Lorentz, raising the delicate question of how an approximation can be considered more accurate than the original. For a spherical shell of finite size, the equation for the radiation reaction is noncontroversial. We begin there, obtain the Abraham-Lorentz and Landau-Lifshitz expressions as limiting cases, and undertake some numerical studies to determine which is superior.

  10. k-essence explains a Lorentz violation experiment

    SciTech Connect

    Li Miao; Pang Yi; Wang Yi

    2009-06-15

    Recently, a state of the art experiment shows evidence for Lorentz violation in the gravitational sector. To explain this experiment, we investigate a spontaneous Lorentz violation scenario with a generalized scalar field. We find that when the scalar field is nonminimally coupled to gravity, the Lorentz violation induces a deformation in the Newtonian potential along the direction of Lorentz violation.

  11. Lorentz invariance in chiral kinetic theory.

    PubMed

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A; Yee, Ho-Ung; Yin, Yi

    2014-10-31

    We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-1/2 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle. PMID:25396362

  12. Three-dimensional Lorentz-violating action

    NASA Astrophysics Data System (ADS)

    Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.

    2014-03-01

    We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.

  13. On Lorentz invariants in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  14. Supersymmetry and Lorentz Violation in 5D

    SciTech Connect

    Garcia-Aguilar, J. D.; Perez-Lorenzana, A.; Pedraza-Ortega, O.

    2011-10-14

    We present a study for a Supersymmetric field theory with Lorentz-Violation terms in 5D. We perform the analysis in the context of the Berger-Kostelecky model (BK), adding one compactified dimension that explicitly breaks the Lorentz invariance. We introduce terms that encode this breaking, and find non trivial restrictions over boundary conditions of fields that one needs to close the supersymmetric algebra.

  15. Lorentz Transformation from Symmetry of Reference Principle

    SciTech Connect

    Petre, M.; Dima, M.; Dima, A.; Petre, C.; Precup, I.

    2010-01-21

    The Lorentz Transformation is traditionally derived requiring the Principle of Relativity and light-speed universality. While the latter can be relaxed, the Principle of Relativity is seen as core to the transformation. The present letter relaxes both statements to the weaker, Symmetry of Reference Principle. Thus the resulting Lorentz transformation and its consequences (time dilatation, length contraction) are, in turn, effects of how we manage space and time.

  16. Lorentz covariance of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Speziale, Simone

    2011-05-01

    The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleuler formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are precisely in K on the boundary. This clarifies how the SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a tidy Lorentz-covariant formalism for loop gravity.

  17. Test of Lorentz symmetry with trapped ions

    NASA Astrophysics Data System (ADS)

    Pruttivarasin, Thaned

    2016-05-01

    The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).

  18. Cosmological dynamics with propagating Lorentz connection modes of spin zero

    SciTech Connect

    Chen, Hsin; Ho, Fei-Hung; Nester, James M.; Wang, Chih-Hung; Yo, Hwei-Jang E-mail: 93242010@cc.ncu.edu.tw E-mail: chwang@phy.ncu.edu.tw

    2009-10-01

    The Poincaré gauge theory of gravity has a Lorentz connection with both torsion and curvature. For this theory two good propagating connection modes, carrying spin-0{sup +} and spin-0{sup −}, have been found. The possible effects of the spin-0{sup +} mode in cosmology were investigated in a previous work by our group; there it was found that the 0{sup +} mode could account for the presently accelerating universe. Here, we extend the analysis to also include the spin-0{sup −} mode. The resulting cosmological model has three degrees of freedom. We present both the Lagrangian and Hamiltonian form of the dynamic equations for this model, find the late-time normal modes, and present some numerical evolution cases. In the late time asymptotic regime the two dynamic modes decouple, and the acceleration of the Universe oscillates due to the spin-0{sup +} mode.

  19. Acceleration and deceleration of coronal mass ejections during propagation and interaction

    NASA Astrophysics Data System (ADS)

    Shen, Fang; Wu, S. T.; Feng, Xueshang; Wu, Chin-Chun

    2012-11-01

    A major challenge to the space weather forecasting community is accurate prediction of Coronal Mass Ejections (CMEs) induced Shock Arrival Time (SAT) at Earth's environment. In order to improve the current accuracy, one of the steps is to understand the physical processes of the acceleration and deceleration of a CME's propagation in the heliosphere. We employ our previous study of a three-dimensional (3D) magnetohydrodynamic (MHD) simulation for the evolution of two interacting CMEs in a realistic ambient solar wind during the period 28-31 March 2001 event to illustrate these acceleration and deceleration processes. The forces which caused the acceleration and deceleration are analyzed in detail. The forces which caused the acceleration are the magnetic pressure term of Lorentz force and pressure gradient. On the other hand, the forces which caused the deceleration are aerodynamic drag, the Sun's gravity and the tension of magnetic field. In addition the momentum exchange between the solar wind and the moving CMEs can cause acceleration and deceleration of the CME which are now analyzed. In this specific CME event 28-31 March 2001 we have analyzed those forces which cause acceleration and deceleration of CME with and without interaction with another CME. It shows that there are significant momentum changes between these two interacting CMEs to cause the acceleration and deceleration.

  20. Black Hole Thermodynamics and Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Wall, Aron C.

    2010-08-01

    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

  1. Theoretical Studies of Lorentz and CPT Symmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    2005-01-01

    The fundamental symmetries studied here are Lorentz and CPT invariance, which form a cornerstone of the relativistic quantum theories used in modern descriptions of nature. The results obtained during the reporting period focus on the idea, originally suggested by the P.I. and his group in the late 1980s, that observable CPT and Lorentz violation in nature might emerge from the qualitatively new physics expected to hold at the Planck scale. What follows is a summary of results obtained during the period of this grant.

  2. Aberration corrected Lorentz scanning transmission electron microscopy.

    PubMed

    McVitie, S; McGrouther, D; McFadzean, S; MacLaren, D A; O'Shea, K J; Benitez, M J

    2015-05-01

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale.

  3. Imperfect fluids, Lorentz violations, and Finsler cosmology

    SciTech Connect

    Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.

    2010-09-15

    We construct a cosmological toy model based on a Finslerian structure of space-time. In particular, we are interested in a specific Finslerian Lorentz violating theory based on a curved version of Cohen and Glashow's very special relativity. The osculation of a Finslerian manifold to a Riemannian manifold leads to the limit of relativistic cosmology, for a specified observer. A modified flat Friedmann-Robertson-Walker cosmology is produced. The analogue of a zero energy particle unfolds some special properties of the dynamics. The kinematical equations of motion are affected by local anisotropies. Seeds of Lorentz violations may trigger density inhomogeneities to the cosmological fluid.

  4. Tests of Lorentz Symmetry with Penning Traps and Antihydrogen

    SciTech Connect

    Russell, Neil

    2005-10-26

    Possibilities for testing Lorentz symmetry using precision experiments with antiprotons in Penning traps and with antihydrogen spectroscopy are reviewed. Estimates of bounds on relevant coefficients for Lorentz violation in the Standard-Model Extension (SME) are considered.

  5. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. I. STATISTICS AND CORONAL MASS EJECTION SOURCE REGION CHARACTERISTICS

    SciTech Connect

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Muhr, N.; Kienreich, I.; Utz, D.

    2011-09-10

    We use high time cadence images acquired by the STEREO EUVI and COR instruments to study the evolution of coronal mass ejections (CMEs) from their initiation through impulsive acceleration to the propagation phase. For a set of 95 CMEs we derived detailed height, velocity, and acceleration profiles and statistically analyzed characteristic CME parameters: peak acceleration, peak velocity, acceleration duration, initiation height, height at peak velocity, height at peak acceleration, and size of the CME source region. The CME peak accelerations we derived range from 20 to 6800 m s{sup -2} and are inversely correlated with the acceleration duration and the height at peak acceleration. Seventy-four percent of the events reach their peak acceleration at heights below 0.5 R{sub sun}. CMEs that originate from compact sources low in the corona are more impulsive and reach higher peak accelerations at smaller heights. These findings can be explained by the Lorentz force, which drives the CME accelerations and decreases with height and CME size.

  6. Piezoelectric Tuner Compensation of Lorentz Detuning in Superconducting Cavities

    SciTech Connect

    Jean Delayen; G. Davis

    2003-09-01

    Pulsed operation of superconducting cavities can induce large variations of the resonant frequency through excitation of the mechanical modes by the radiation pressure. The phase and amplitude control system must be able to accommodate this frequency variation; this can be accomplished by increasing the capability of the rf power source. Alternatively, a piezo electric tuner can be activated at the same repetition rate as the rf to counteract the effect of the radiation pressure. We have demonstrated such a system on the prototype medium beta SNS cryomodule with a reduction of the dynamic Lorentz detuning during the rf pulse by a factor of 3. Piezo electric tuners can also be used to reduce the level of microphonics in low-current cw accelerators. We have measured the amplitude and phase of the transfer function of the piezo control system (from input voltage to cavity frequency) up to several kHz.

  7. The Lorentz Theory of Electrons and Einstein's Theory of Relativity

    ERIC Educational Resources Information Center

    Goldberg, Stanley

    1969-01-01

    Traces the development of Lorentz's theory of electrons as applied to the problem of the electrodynamics of moving bodies. Presents evidence that the principle of relativity did not play an important role in Lorentz's theory, and that though Lorentz eventually acknowledged Einstein's work, he was unwilling to completely embrace the Einstein…

  8. Lorentz-covariant dissipative Lagrangian systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A. N.

    1985-01-01

    The concept of dissipative Hamiltonian system is converted to Lorentz-covariant form, with evolution generated jointly by two scalar functionals, the Lagrangian action and the global entropy. A bracket formulation yields the local covariant laws of energy-momentum conservation and of entropy production. The formalism is illustrated by a derivation of the covariant Landau kinetic equation.

  9. Another route to the Lorentz transformations

    NASA Astrophysics Data System (ADS)

    Bessonov, E. G.

    2016-05-01

    This paper uses the Galilean relativity principle and the dependence of the rate of a clock on its velocity to derive the Lorentz transformations (LTs). Analyzing different ways of deriving the LTs provides different perspectives on them and their implications, as well as making them more accessible to a wide range of readers with an interest in relativistic physics.

  10. Some experimental observations on circulating currents in a crossed field plasma accelerator

    NASA Technical Reports Server (NTRS)

    Jedlicka, J.; Haacker, J.

    1971-01-01

    Experiments on a thermally ionized argon plasma suggest that applying a Lorentz force by means of orthogonal electric and magnetic fields to an electrically conducting fluid flow imposes necessary but not sufficient conditions for acceleration. There are, in fact, many combinations of current and magnetic field which cause decelerations of the fluid. The deceleration arises from a retarding force which may be larger than the applied Lorentz force. The retarding force causing the deceleration is a consequence of currents circulating completely within the fluid. These currents arise from differences in velocity between the central and wall regions of the duct which interact with the imposed magnetic field to produce differences in induced voltages. The observed physical effects of the circulating currents cause a loss in velocity in the central region of the duct, an increase in thermal energy in the sidewall region, and little change in thermal energy near the electrode wall region. For similar velocity profiles, the adverse effects appear to be related to the product of electrical conductivity and velocity, and performance as an accelerator appears to be controlled by the Hoffman loading parameter (i.e., the ratio of the applied to the induced currents).

  11. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  12. SCREAMm - modified code SCREAM to sumulate the acceleration of a pulsed beam through the superconducting linac

    SciTech Connect

    Eidelman, Yu.; Nagaitsev, S.; Solyak, N.; /Fermilab

    2011-07-01

    The code SCREAM - SuperConducting RElativistic particle Accelerator siMulation - was significantly modified and improved. Some misprints in the formulae used have been fixed and a more realistic expression for the vector-sum introduced. The realistic model of Lorentz-force detuning (LFD) is developed and will be implemented to the code. A friendly GUI allows various parameters of the simulated problem to be changed easily and quickly. Effective control of various output data is provided. A change of various parameters during the simulation process is controlled by plotting the corresponding graphs 'on the fly'. A large collection of various graphs can be used to illustrate the results.

  13. Cavity control system advanced modeling and simulations for TESLA linear accelerator and free electron laser

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Simrock, Stefan

    2004-07-01

    The cavity control system for the TESLA -- TeV-Energy Superconducting Linear Accelerator project is initially introduced. The elementary analysis of the cavity resonator on RF (radio frequency) level and low level frequency with signal and power considerations is presented. For the field vector detection the digital signal processing is proposed. The electromechanical model concerning Lorentz force detuning is applied for analyzing the basic features of the system performance. For multiple cavities driven by one klystron the field vector sum control is considered. Simulink model implementation is developed to explore the feedback and feed-forward system operation and some experimental results for signals and power considerations are presented.

  14. Reconsidering a Scientific Revolution: The Case of Einstein versus Lorentz

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    The relationship between Albert Einstein's special theory of relativity and Hendrik A. Lorentz's ether theory is best understood in terms of competing interpretations of Lorentz invariance. In the 1890s, Lorentz proved and exploited the Lorentz invariance of Maxwell's equations, the laws governing electromagnetic fields in the ether, with what he called the theorem of corresponding states. To account for the negative results of attempts to detect the earth's motion through the ether, Lorentz, in effect, had to assume that the laws governing the matter interacting with the fields are Lorentz invariant as well. This additional assumption can be seen as a generalization of the well-known contraction hypothesis. In Lorentz's theory, it remained an unexplained coincidence that both the laws governing fields and the laws governing matter should be Lorentz invariant. In special relativity, by contrast, the Lorentz invariance of all physical laws directly reflects the Minkowski space-time structure posited by the theory. One can use this observation to produce a common-cause argument to show that the relativistic interpretation of Lorentz invariance is preferable to Lorentz's interpretation.

  15. Laboratory bounds on electron Lorentz violation

    SciTech Connect

    Altschul, Brett

    2010-07-01

    Violations of Lorentz boost symmetry in the electron and photon sectors can be constrained by studying several different high-energy phenomenon. Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. Laboratory bounds can be based on observations of synchrotron radiation, as well as the observed absences of vacuum Cerenkov radiation (e{sup {+-}{yields}e{+-}+{gamma}}) and photon decay ({gamma}{yields}e{sup +}+e{sup -}). Using measurements of synchrotron energy losses at LEP and the survival of TeV photons, we place new bounds on the three electron Lorentz-violation coefficients c{sub (TJ)}, at the 3x10{sup -13} to 6x10{sup -15} levels.

  16. Limits on Lorentz Invariance Violation from VERITAS Using the Crab Pulsar Profile

    NASA Astrophysics Data System (ADS)

    Finley, John P.; VERITAS Collaboration

    2013-06-01

    Quantum gravity (QG) theories over the past fifty years have sought to understand the relationship between the four fundamental forces of nature. A major feature of the theoretical ideas is that the energy dependence of the interactions possibly unify at the Planck scale of ~10^19 GeV. A potential consequence of the unification of gravity and the other three forces would be a breaking of Lorentz symmetry. Using time of flight (ToF) measurements gamma-ray telescopes have been able to put constraints on the energy scale of Lorentz Invariance Violation (LIV). The Crab Pulsar, the only pulsar detected at very high energies (VHE, E>100GeV), presents a unique opportunity to put new constraints on LIV. We present the results of observations of the Crab Pulsar with VERITAS and describe the statistical methods used to measure LIV effects in the Crab Pulsar.

  17. Lorentz and CPT tests involving antiprotons

    NASA Astrophysics Data System (ADS)

    Lehnert, Ralf

    2005-10-01

    Perhaps the largest gap in our understanding of nature at the smallest scales is a consistent quantum theory underlying the Standard Model and General Relativity. Substantial theoretical research has been performed in this context, but observational efforts are hampered by the expected Planck suppression of deviations from conventional physics. However, a variety of candidate models predict minute violations of both Lorentz and CPT invariance. Such effects open a promising avenue for experimental research in this field because these symmetries are amenable to Planck-precision tests. The low-energy signatures of Lorentz and CPT breaking are described by an effective field theory called the Standard-Model Extension (SME). In addition to the body of established physics (i.e., the Standard Model and General Relativity), this framework incorporates all Lorentz- and CPT-violating corrections compatible with key principles of physics. To date, the SME has provided the basis for the analysis of numerous tests of Lorentz and CPT symmetry involving protons, neutrons, electrons, muons, and photons. Discovery potential exists in neutrino physics. A particularly promising class of Planck-scale tests involve matter-antimatter comparisons at low temperatures. SME predictions for transition frequencies in such systems include both matter-antimatter differences and sidereal variations. For example, in hydrogen-antihydrogen spectroscopy, leading-order effects in a 1S-2S transition as well as in a 1S Zeeman transition could exist that can be employed to obtain clean constraints. Similarly, tight bounds can be obtained from Penning-trap experiments involving antiprotons.

  18. The Lorentz anomaly via operator product expansion

    SciTech Connect

    Fredenhagen, Stefan; Hoppe, Jens Hynek, Mariusz

    2015-10-15

    The emergence of a critical dimension is one of the most striking features of string theory. One way to obtain it is by demanding closure of the Lorentz algebra in the light-cone gauge quantisation, as discovered for bosonic strings more than forty years ago. We give a detailed derivation of this classical result based on the operator product expansion on the Lorentzian world-sheet.

  19. Lorentz and CPT tests involving antiprotons

    SciTech Connect

    Lehnert, Ralf

    2005-10-19

    Perhaps the largest gap in our understanding of nature at the smallest scales is a consistent quantum theory underlying the Standard Model and General Relativity. Substantial theoretical research has been performed in this context, but observational efforts are hampered by the expected Planck suppression of deviations from conventional physics. However, a variety of candidate models predict minute violations of both Lorentz and CPT invariance. Such effects open a promising avenue for experimental research in this field because these symmetries are amenable to Planck-precision tests.The low-energy signatures of Lorentz and CPT breaking are described by an effective field theory called the Standard-Model Extension (SME). In addition to the body of established physics (i.e., the Standard Model and General Relativity), this framework incorporates all Lorentz- and CPT-violating corrections compatible with key principles of physics. To date, the SME has provided the basis for the analysis of numerous tests of Lorentz and CPT symmetry involving protons, neutrons, electrons, muons, and photons. Discovery potential exists in neutrino physics.A particularly promising class of Planck-scale tests involve matter-antimatter comparisons at low temperatures. SME predictions for transition frequencies in such systems include both matter-antimatter differences and sidereal variations. For example, in hydrogen-antihydrogen spectroscopy, leading-order effects in a 1S-2S transition as well as in a 1S Zeeman transition could exist that can be employed to obtain clean constraints. Similarly, tight bounds can be obtained from Penning-trap experiments involving antiprotons.

  20. Neutrino velocity and local Lorentz invariance

    NASA Astrophysics Data System (ADS)

    Cardone, Fabio; Mignani, Roberto; Petrucci, Andrea

    2015-09-01

    We discuss the possible violation of local Lorentz invariance (LLI) arising from a faster-than-light neutrino speed. A toy calculation of the LLI violation parameter δ, based on the (disclaimed) OPERA data, suggests that the values of δ are determined by the interaction involved, and not by the energy range. This hypothesis is further corroborated by the analysis of the more recent results of the BOREXINO, LVD and ICARUS experiments.

  1. Resistive diffusion of force-free magnetic fields in a passive medium. III - Acceleration of flare particles

    NASA Technical Reports Server (NTRS)

    Low, B. C.

    1974-01-01

    A one-dimensional model is considered in which an increasingly large electric field is induced by a rapidly evolving magnetic field. In the case of solar flares, energies are estimated to which protons and electrons may be directly accelerated by such an induced electric field.

  2. Maxwell-Faraday Stresses in Electromagnetic Fields and the Self-Force on a Uniformly Accelerating Point Charge

    ERIC Educational Resources Information Center

    Rowland, D. R.

    2007-01-01

    The physical analysis of a uniformly accelerating point charge provides a rich problem to explore in advanced courses in electrodynamics and relativity since it brings together fundamental concepts in relation to electromagnetic radiation, Einstein's equivalence principle and the inertial mass of field energy in ways that reveal subtleties in each…

  3. Supra-bubble regime for laser acceleration of coldelectron beams in tenuous plasma

    SciTech Connect

    Geyko, V. I.; Dodin, I. Y.; Fisch, N. J.; Fraiman, G. M.

    2009-01-18

    Relativistic electrons can be accelerated by an ultraintense laser pulse in the "supra-bubble" regime, that is, in the blow-out regime ahead of the plasma bubble (as opposed to the conventional method, when particles remain inside the bubble). The acceleration is caused by the ponderomotive force of the pulse, via the so-called snow-plow mechanism. The maximum energy gain, Δγ ~ γg a, is attained when the particle Lorentz factor γ is initially about γg/a, where γg is the pulse group speed Lorentz factor, and a is the laser parameter, proportional to the laser field amplitude. The scheme operates at a ≤ γg, yielding Δγ of up to that via wakefield acceleration for the same plasma and laser parameters, Δγ ~ γ2g. The interaction length is shorter than that for the wake field mechanism but grows with the particle energy, hindering acceleration in multiple stages.

  4. A microwave inverse Cherenkov accelerator (MICA)

    NASA Astrophysics Data System (ADS)

    Zhang, T. B.; Marshall, T. C.

    1996-02-01

    By "inverting" the stimulated Cherenkov effect to stimulated Cherenkov absorption, it is possible to build an electron accelerator device driven by high power microwaves that propagate in a slow-wave TM mode (axial E-field). In this paper, we have solved for the wave dispersion in the structure, found the field distributions, and then used the Lorentz force equations to obtain the motion of a group of electrons distributed in radius and velocity. We find the radial forces are focusing. Electrons in a well-defined filament ( r < 0.5 mm) remain collimated and do not strike the dielectric. By using the 15 MW of rf power available at 2.865 GHz, we can accelerate an electron beam (˜6 MeV, few ps pulses) to energy ˜16 MeV. This results in a relatively compact structure that has the advantage of a smooth-bore design and no need of magnetic focusing. The techniques for improving the dielectric breakdown the surface should permit axial fields in the range of 100-200 kV/cm.

  5. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  6. Accelerated greenhouse gases versus slow insolation forcing induced climate changes in southern South America since the Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Berman, Ana Laura; Silvestri, Gabriel E.; Rojas, Maisa; Tonello, Marcela S.

    2016-03-01

    This paper is a pioneering analysis of past climates in southern South America combining multiproxy reconstructions and the state-of-the-art CMIP5/PMIP3 paleoclimatic models to investigate the time evolution of regional climatic conditions from the Mid-Holocene (MH) to the present. This analysis allows a comparison between the impact of the long term climate variations associated with insolation changes and the more recent effects of anthropogenic forcing on the region. The PMIP3 multimodel experiments suggest that changes in precipitation over almost all southern South America between MH and pre-industrial (PI) times due to insolation variations are significantly larger than those between PI and the present, which are due to changes in greenhouse gas concentrations. Anthropogenic forcing has been particularly intense over western Patagonia inducing reduction of precipitation in summer, autumn and winter as a consequence of progressively weaker westerly winds over the region, which have moved further poleward, between ca. 35-55°S and have become stronger south of about 50°S. Orbital variations between the MH to the PI period increased insolation over southern South America during summer and autumn inducing warmer conditions in the PI, accentuated by the effect of anthropogenic forcing during the last century. On the other hand, changes in orbital parameters from the MH to the PI period reduced insolation during winter and spring inducing colder conditions, which have been reversed by the anthropogenic forcing.

  7. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    PubMed

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  8. Causal sets and conservation laws in tests of Lorentz symmetry

    SciTech Connect

    Mattingly, David

    2008-06-15

    Many of the most important astrophysical tests of Lorentz symmetry also assume that energy momentum of the observed particles is exactly conserved. In the causal set approach to quantum gravity a particular kind of Lorentz symmetry holds but energy-momentum conservation may be violated. We show that incorrectly assuming exact conservation can give rise to a spurious signal of Lorentz symmetry violation for a causal set. However, the size of this spurious signal is much smaller than can be currently detected and hence astrophysical Lorentz symmetry tests as currently performed are safe from causal set induced violations of energy-momentum conservation.

  9. Electrodynamic force law controversy.

    PubMed

    Graneau, P; Graneau, N

    2001-05-01

    Cavalleri et al. [Phys. Rev. E 52, 2505 (1998); Eur. J. Phys. 17, 205 (1996)] have attempted to resolve the electrodynamic force law controversy. This attempt to prove the validity of either the Ampère or Lorentz force law by theory and experiment has revealed only that the two are equivalent when predicting the force on part of a circuit due to the current in the complete circuit. However, in our analysis of internal stresses, only Ampère's force law agrees with experiment. PMID:11415053

  10. Superdiffusion in the Periodic Lorentz Gas

    NASA Astrophysics Data System (ADS)

    Marklof, Jens; Tóth, Bálint

    2016-11-01

    We prove a superdiffusive central limit theorem for the displacement of a test particle in the periodic Lorentz gas in the limit of large times t and low scatterer densities (Boltzmann-Grad limit). The normalization factor is {√{t log t}}, where t is measured in units of the mean collision time. This result holds in any dimension and for a general class of finite-range scattering potentials. We also establish the corresponding invariance principle, i.e., the weak convergence of the particle dynamics to Brownian motion.

  11. Extending the Lorentz transformation by characteristic coordinates

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    The problem considered is that of rectilinear motion with variable velocity. The paper gives, by an elementary construction, a system of coordinates which is conformal in a restricted region near the axis of the motion. In such coordinates the velocity of light remains invariant even for observers moving with variable velocity. By a particular choice of the scale relation the restricted conformal transformations can be made to reduce to the Lorentz transformation everywhere in the case of constant velocity and locally in the case of variable velocity.

  12. Lorentz Nonreciprocal Model for Hybrid Magnetoplasmonics

    NASA Astrophysics Data System (ADS)

    Floess, Dominik; Weiss, Thomas; Tikhodeev, Sergei; Giessen, Harald

    2016-08-01

    Using localized surface plasmons, the magneto-optical response of dielectric thin films can be resonantly amplified and spectrally tailored. While the experimental realization and numerical simulation of such systems received considerable attention, so far, there is no analytical theoretical description. Here, we present a simple, intrinsically Lorentz nonreciprocal coupled oscillator model that reveals the underlying physics inside such systems and yields analytical expressions for the resonantly enhanced magneto-optical response. The predictions of the model are in good agreement with rigorous numerical solutions of Maxwell's equations for typical sample geometries. Our ansatz is transferable to other complex and hybrid nanooptical systems and will significantly facilitate device design.

  13. Lorentz invariance with an invariant energy scale.

    PubMed

    Magueijo, João; Smolin, Lee

    2002-05-13

    We propose a modification of special relativity in which a physical energy, which may be the Planck energy, joins the speed of light as an invariant, in spite of a complete relativity of inertial frames and agreement with Einstein's theory at low energies. This is accomplished by a nonlinear modification of the action of the Lorentz group on momentum space, generated by adding a dilatation to each boost in such a way that the Planck energy remains invariant. The associated algebra has unmodified structure constants. We also discuss the resulting modifications of field theory and suggest a modification of the equivalence principle which determines how the new theory is embedded in general relativity.

  14. Variation of bulk Lorentz factor in AGN jets due to Compton rocket in a complex photon field

    NASA Astrophysics Data System (ADS)

    Vuillaume, T.; Henri, G.; Petrucci, P.-O.

    2015-09-01

    Radio-loud active galactic nuclei are among the most powerful objects in the universe. In these objects, most of the emission comes from relativistic jets getting their power from the accretion of matter ontosupermassive black holes. However, despite the number of studies, a jet's acceleration to relativistic speeds is still poorly understood. It is widely known that jets contain relativistic particles that emit radiation through several physical processes, one of them being the inverse Compton scattering of photons coming from external sources. In the case of a plasma composed of electrons and positrons continuously heated by the turbulence, inverse Compton scattering can lead to relativistic bulk motions through the Compton rocket effect. We investigate this process and compute the resulting bulk Lorentz factor in the complex photon field of an AGN composed of several external photon sources. We consider various sources:the accretion disk, the dusty torus, and the broad line region. We take their geometry and anisotropy carefully into account in order to numerically compute the bulk Lorentz factor of the jet at every altitude. The study, made for a broad range of parameters, shows interesting and unexpected behaviors of the bulk Lorentz factor, exhibiting acceleration and deceleration zones in the jet. We investigate the patterns of the bulk Lorentz factor along the jet depending on the source sizes and on the observation angle and we finally show that these patterns can induce variability in the AGN emission with timescales going from hours to months.

  15. Vacuum electron acceleration by using two variable frequency laser pulses

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2013-12-15

    A method is proposed for producing a relativistic electron bunch in vacuum via direct acceleration by using two frequency-chirped laser pulses. We consider the linearly polarized frequency-chiped Hermit-Gaussian 0, 0 mode lasers with linear chirp in which the local frequency varies linearly in time and space. Electron motion is investigated through a numerical simulation using a three-dimensional particle trajectory code in which the relativistic Newton's equations of motion with corresponding Lorentz force are solved. Two oblique laser pulses with proper chirp parameters and propagation angles are used for the electron acceleration along the z-axis. In this way, an electron initially at rest located at the origin could achieve high energy, γ=319 with the scattering angle of 1.02{sup ∘} with respect to the z-axis. Moreover, the acceleration of an electron in different initial positions on each coordinate axis is investigated. It was found that this mechanism has the capability of producing high energy electron microbunches with low scattering angles. The energy gain of an electron initially located at some regions on each axis could be greatly enhanced compared to the single pulse acceleration. Furthermore, the scattering angle will be lowered compared to the acceleration by using laser pulses propagating along the z-axis.

  16. The Fate of Lorentz Frame in the Vicinity of Black Hole Singularity

    NASA Astrophysics Data System (ADS)

    Moore, Douglas G.; Satheeshkumar, V. H.

    2013-07-01

    General Relativity (GR) is known to break down at singularities. However, it is expected that quantum corrections become important when the curvature is of the order of Planck scale avoiding the singularity. By calculating the effect of tidal forces on a freely falling inertial frame, and assuming the least possible size of the frame to be of the Planck length, we show that the Lorentz frames cease to exist at a finite distance from the singularity. Within that characteristic radius, one cannot apply GR nor Quantum Field Theory (QFT) as we know them today. Additionally, we consider other quantum length scales and impose limits on the distances from the singularity at which those theories can conceivably be applied within a Lorentz frame.

  17. The Fate of Lorentz Frame in the Vicinity of Black Hole Singularity

    NASA Astrophysics Data System (ADS)

    Moore, Douglas G.; Satheeshkumar, V. H.

    2013-10-01

    General Relativity (GR) is known to break down at singularities. However, it is expected that quantum corrections become important when the curvature is of the order of Planck scale avoiding the singularity. By calculating the effect of tidal forces on a freely falling inertial frame, and assuming the least possible size of the frame to be of the Planck length, we show that the Lorentz frames cease to exist at a finite distance from the singularity. Within that characteristic radius, one cannot apply GR nor Quantum Field Theory (QFT) as we know them today. Additionally, we consider other quantum length scales and impose limits on the distances from the singularity at which those theories can conceivably be applied within a Lorentz frame.

  18. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.

    PubMed

    Hedrick, Tyson L; Usherwood, James R; Biewener, Andrew A

    2004-04-01

    We used a combination of high-speed 3-D kinematics and three-axis accelerometer recordings obtained from cockatiels flying in a low-turbulence wind tunnel to characterize the instantaneous accelerations and, by extension, the net aerodynamic forces produced throughout the wingbeat cycle across a broad range of flight speeds (1-13 m s(-1)). Our goals were to investigate the variation in instantaneous aerodynamic force production during the wingbeat cycle of birds flying across a range of steady speeds, testing two predictions regarding aerodynamic force generation in upstroke and the commonly held assumption that all of the kinetic energy imparted to the wings of a bird in flapping flight is recovered as useful aerodynamic work. We found that cockatiels produce only a limited amount of lift during upstroke (14% of downstroke lift) at slower flight speeds (1-3 m s(-1)). Upstroke lift at intermediate flight speeds (7-11 m s(-1)) was moderate, averaging 39% of downstroke lift. Instantaneous aerodynamic forces were greatest near mid-downstroke. At the end of each half-stroke, during wing turnaround, aerodynamic forces were minimal, but inertial forces created by wing motion were large. However, we found that the inertial power requirements of downstroke (minimum of 0.29+/-0.10 W at 7 m s(-1) and maximum of 0.56+/-0.13 W at 1 m s(-1)) were consistent with the assumption that nearly all wing kinetic energy in downstroke was applied to the production of aerodynamic forces and therefore should not be added separately to the overall power cost of flight. The inertial power requirements of upstroke (minimum of 0.16+/-0.04 W at 7 m s(-1) and maximum of 0.35+/-0.11 W at 1 m s(-1)) cannot be recovered in a similar manner, but their magnitude was such that the power requirements for the upstroke musculature (minimum of 54+/-13 W kg(-1) at 7 m s(-1) and maximum of 122+/-35 W at 1 m s(-1)) fall within the established range for cockatiel flight muscle (<185 W kg(-1)).

  19. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.

    PubMed

    Hedrick, Tyson L; Usherwood, James R; Biewener, Andrew A

    2004-04-01

    We used a combination of high-speed 3-D kinematics and three-axis accelerometer recordings obtained from cockatiels flying in a low-turbulence wind tunnel to characterize the instantaneous accelerations and, by extension, the net aerodynamic forces produced throughout the wingbeat cycle across a broad range of flight speeds (1-13 m s(-1)). Our goals were to investigate the variation in instantaneous aerodynamic force production during the wingbeat cycle of birds flying across a range of steady speeds, testing two predictions regarding aerodynamic force generation in upstroke and the commonly held assumption that all of the kinetic energy imparted to the wings of a bird in flapping flight is recovered as useful aerodynamic work. We found that cockatiels produce only a limited amount of lift during upstroke (14% of downstroke lift) at slower flight speeds (1-3 m s(-1)). Upstroke lift at intermediate flight speeds (7-11 m s(-1)) was moderate, averaging 39% of downstroke lift. Instantaneous aerodynamic forces were greatest near mid-downstroke. At the end of each half-stroke, during wing turnaround, aerodynamic forces were minimal, but inertial forces created by wing motion were large. However, we found that the inertial power requirements of downstroke (minimum of 0.29+/-0.10 W at 7 m s(-1) and maximum of 0.56+/-0.13 W at 1 m s(-1)) were consistent with the assumption that nearly all wing kinetic energy in downstroke was applied to the production of aerodynamic forces and therefore should not be added separately to the overall power cost of flight. The inertial power requirements of upstroke (minimum of 0.16+/-0.04 W at 7 m s(-1) and maximum of 0.35+/-0.11 W at 1 m s(-1)) cannot be recovered in a similar manner, but their magnitude was such that the power requirements for the upstroke musculature (minimum of 54+/-13 W kg(-1) at 7 m s(-1) and maximum of 122+/-35 W at 1 m s(-1)) fall within the established range for cockatiel flight muscle (<185 W kg(-1)). PMID:15073202

  20. Lorentz invariant dark-spinor and inflation

    SciTech Connect

    Basak, Abhishek; Bhatt, Jitesh R. E-mail: jeet@prl.res.in

    2011-06-01

    We investigate the possibility of the inflation driven by a Lorentz invariant non-standard spinor field. As these spinors are having dominant interaction via gravitational field only, they are considered as Dark Spinors. We study how these dark-spinors can drive the inflation and investigate the cosmological (scalar) perturbations generated by them. Though the dark-spinors obey a Klein-Gordon like equation, the underlying theory of the cosmological perturbations is far more complex than the theories which are using a canonical scalar field. For example the sound speed of the perturbations is not a constant but varies with time. We find that in order to explain the observed value of the spectral-index n{sub s} one must have upper bound on the values of the background NSS-field. The tensor to scalar ratio remains as small as that in the case of canonical scalar field driven inflation because the correction to tensor spectrum due to NSS is required to be very small. In addition we discuss the relationship of results with previous results obtained by using the Lorentz invariance violating theories.

  1. Lorentz and CPT Tests with Spin-Polarized Solids

    SciTech Connect

    Bluhm, Robert; Kostelecky, V. Alan

    2000-02-14

    Experiments using macroscopic samples of spin-polarized matter offer exceptional sensitivity to Lorentz and CPT violation in the electron sector. Data from existing experiments with a spin-polarized torsion pendulum provide sensitivity in this sector rivaling that of all other existing experiments and could reveal spontaneous violation of Lorentz symmetry at the Planck scale. (c) 2000 The American Physical Society.

  2. On the self-force in Bopp-Podolsky electrodynamics

    NASA Astrophysics Data System (ADS)

    Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.

    2015-10-01

    In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.

  3. Effective theory approach to the spontaneous breakdown of Lorentz invariance

    NASA Astrophysics Data System (ADS)

    Armendariz-Picon, Cristian; Diez-Tejedor, Alberto; Penco, Riccardo

    2010-10-01

    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.

  4. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    SciTech Connect

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

  5. Analysis of the linearity of half periods of the Lorentz pendulum

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, T.; Ochoa, R.

    2005-05-01

    We analyze the motion of the Lorentz pendulum, a simple pendulum whose length is changed at a constant rate k. We show both analytically and numerically that the half period Tn, the time between half oscillations as measured from midpoint to midpoint, increases linearly with the oscillation number n such that Tn+1-Tn≈kπ2/2g, where g is the acceleration due to gravity. A video camera is used to record the motion of the oscillating bob of the pendulum and verify the linearity of Tn with oscillation number. The theory and the experiment are suitable for an advanced undergraduate laboratory.

  6. Lorentz drift compensation in high harmonic generation in the soft and hard X-ray regions of the spectrum.

    PubMed

    Galloway, Benjamin R; Popmintchev, Dimitar; Pisanty, Emilio; Hickstein, Daniel D; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2016-09-19

    We present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 1015 W/cm2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling which acts in addition to the dominant high harmonic flux scaling of λ-(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV. PMID:27661918

  7. Symmetry of the Lorentz boost: the relativity of colocality and Lorentz time contraction

    NASA Astrophysics Data System (ADS)

    Sharp, Jonathan C.

    2016-09-01

    Since the Lorentz boost is symmetric under exchange of x and ct, special relativistic phenomena will also manifest this symmetry. Firstly, simultaneity becomes paired with ‘colocality’ (‘at the same place’), and the ‘Relativity of Colocality’ becomes the dual to the well-known ‘Relativity of Simultaneity’. Further, Lorentz time contraction arises from reversal of the observation conditions pertaining to time dilation, expressible figuratively as ‘Moving clocks run slow, but moving time runs fast’. Symmetry also dictates that the most fundamental observational modes are: (1) the simultaneous observation of length, a process involving both the relativity of simultaneity and length contraction; and (2) the colocal measurement of duration, involving both the relativity of colocality and time contraction. Only the first of these modes is well known. The adoption of this symmetrical lexicon provides a necessary logical basis for interpretational studies of observation and measurement in special relativity.

  8. On asymptotic flatness and Lorentz charges

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Dehouck, François; Virmani, Amitabh

    2011-07-01

    In this paper we establish two results concerning four-dimensional asymptotically flat spacetimes at spatial infinity. First, we show that the six conserved Lorentz charges are encoded in two unique, distinct, but mutually dual symmetric divergence-free tensors that we construct from the equations of motion. Second, we show that the integrability of Einstein's equations in the asymptotic expansion is sufficient to establish the equivalence between counter-term charges defined from the variational principle and charges defined by Ashtekar and Hansen. These results clarify earlier constructions of conserved charges in the hyperboloid representation of spatial infinity. In showing this, the parity condition on the mass aspect is not needed. Along the way in establishing these results, we prove two lemmas on tensor fields on three-dimensional de Sitter spacetime stated by Ashtekar-Hansen and Beig-Schmidt and state and prove three additional lemmas. A la mémoire de notre ami et professeur Laurent Houart.

  9. Testing Lorentz symmetry with planetary orbital dynamics

    NASA Astrophysics Data System (ADS)

    Hees, A.; Bailey, Q. G.; Le Poncin-Lafitte, C.; Bourgoin, A.; Rivoldini, A.; Lamine, B.; Meynadier, F.; Guerlin, C.; Wolf, P.

    2015-09-01

    Planetary ephemerides are a very powerful tool to constrain deviations from the theory of general relativity (GR) using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.

  10. A Lorentz gauge theory of gravity

    NASA Astrophysics Data System (ADS)

    Borzou, Ahmad

    2016-01-01

    We present a Lorentz gauge theory of gravity in which the metric is not dynamical. Spherically symmetric weak field solutions are studied. We show that this solution contains the Schwarzschild spacetime at least to the first order of perturbation. Next, we present a special case of the theory where the Schwarzschild metric is an exact solution. It is also shown that the de Sitter space is an exact vacuum solution of this special case and as a result the theory is able to explain the expansion of the universe with no need for dark energy. Within this special case, quantization of the theory is also studied, the basic Feynman diagrams are derived and the renormalizability of the theory is studied using the power-counting method. We show that under a certain condition the theory is power-counting renormalizable.

  11. Living with ghosts in Lorentz invariant theories

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander E-mail: vilenkin@cosmos.phy.tufts.edu

    2013-01-01

    We argue that theories with ghosts may have a long lived vacuum state even if all interactions are Lorentz preserving. In space-time dimension D = 2, we consider the tree level decay rate of the vacuum into ghosts and ordinary particles mediated by non-derivative interactions, showing that this is finite and logarithmically growing in time. For D > 2, the decay rate is divergent unless we assume that the interaction between ordinary matter and the ghost sector is soft in the UV, so that it can be described in terms of non-local form factors rather than point-like vertices. We provide an example of a nonlocal gravitational-strength interaction between the two sectors, which appears to satisfy all observational constraints.

  12. Lorentz invariance violation and generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Tawfik, Abdel Nasser; Magdy, H.; Ali, A. Farag

    2016-01-01

    There are several theoretical indications that the quantum gravity approaches may have predictions for a minimal measurable length, and a maximal observable momentum and throughout a generalization for Heisenberg uncertainty principle. The generalized uncertainty principle (GUP) is based on a momentum-dependent modification in the standard dispersion relation which is conjectured to violate the principle of Lorentz invariance. From the resulting Hamiltonian, the velocity and time of flight of relativistic distant particles at Planck energy can be derived. A first comparison is made with recent observations for Hubble parameter in redshift-dependence in early-type galaxies. We find that LIV has two types of contributions to the time of flight delay Δ t comparable with that observations. Although the wrong OPERA measurement on faster-than-light muon neutrino anomaly, Δ t, and the relative change in the speed of muon neutrino Δ v in dependence on redshift z turn to be wrong, we utilize its main features to estimate Δ v. Accordingly, the results could not be interpreted as LIV. A third comparison is made with the ultra high-energy cosmic rays (UHECR). It is found that an essential ingredient of the approach combining string theory, loop quantum gravity, black hole physics and doubly spacial relativity and the one assuming a perturbative departure from exact Lorentz invariance. Fixing the sensitivity factor and its energy dependence are essential inputs for a reliable confronting of our calculations to UHECR. The sensitivity factor is related to the special time of flight delay and the time structure of the signal. Furthermore, the upper and lower bounds to the parameter, a that characterizes the generalized uncertainly principle, have to be fixed in related physical systems such as the gamma rays bursts.

  13. Graphical Representations for the Successive Lorentz Transformations. Application: Lorentz Contraction and Its Dependence on Thomas Rotation

    NASA Astrophysics Data System (ADS)

    Chamseddine, Riad

    2016-04-01

    A new vectorial representation for the successive Lorentz transformations (SLT) has recently been proved very convenient to achieve a straightforward treatment of the Thomas rotation effect. Such a representation rests on equivalent forms for the pure Lorentz transformation (PLT) and SLT whose physical meaning escaped us. The present paper fills this gap in by showing that those equivalent forms could represent appropriate world lines, lines and planes of simultaneity. Those geometric elements are particularly convenient to build up two new graphical representations for the SLT: the first rests on that equivalent form for the SLT, while the second takes the SLT as a PLT preceded or followed by a Thomas rotation and uses the equivalent form for the PLT. As an application, the SLT Lorentz contraction (SLTLC) formulas are derived for the first time. The dependence of the SLTLC on the Thomas rotation is put in evidence. The SLTLC along directions transverse and parallel to the composite velocity is studied. Original SLT Minkowski diagrams are given for the first time.

  14. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  15. An implicit δf particle-in-cell method with sub-cycling and orbit averaging for Lorentz ions

    NASA Astrophysics Data System (ADS)

    Sturdevant, Benjamin J.; Parker, Scott E.; Chen, Yang; Hause, Benjamin B.

    2016-07-01

    A second order implicit δf Lorentz ion hybrid model with sub-cycling and orbit averaging has been developed to study low-frequency, quasi-neutral plasmas. Models using the full Lorentz force equations of motion for ions may be useful for verifying gyrokinetic ion simulation models in applications where higher order terms may be important. In the presence of a strong external magnetic field, previous Lorentz ion models are limited to simulating very short time scales due to the small time step required for resolving the ion gyromotion. Here, we use a simplified model for ion Landau damped ion acoustic waves in a uniform magnetic field as a test bed for developing efficient time stepping methods to be used with the Lorentz ion hybrid model. A detailed linear analysis of the model is derived to validate simulations and to examine the significance of ion Bernstein waves in the Lorentz ion model. Linear analysis of a gyrokinetic ion model is also performed, and excellent agreement with the dispersion results from the Lorentz ion model is demonstrated for the ion acoustic wave. The sub-cycling/orbit averaging algorithm is shown to produce accurate finite-Larmor-radius effects using large macro-time steps sizes, and numerical damping of high frequency fluctuations can be achieved by formulating the field model in terms of the perturbed flux density. Furthermore, a CPU-GPU implementation of the sub-cycling/orbit averaging is presented and is shown to achieve a significant speedup over an equivalent serial code.

  16. Parallel Computation of Intergrated Electronmagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.; Kabel, A.; Lee, L-Q.; Li, Z.; Ng, C-K.; Xiao, L.; Ko, K.

    2008-07-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  17. Parallel Computation of Integrated Electromagnetic, Thermal and Structural Effects for Accelerator Cavities

    SciTech Connect

    Akcelik, V.; Candel, A.E.; Kabel, A.C.; Ko, K.; Lee, L.; Li, Z.; Ng, C.K.; Xiao, L.; /SLAC

    2011-11-02

    The successful operation of accelerator cavities has to satisfy both rf and mechanical requirements. It is highly desirable that electromagnetic, thermal and structural effects such as cavity wall heating and Lorentz force detuning in superconducting rf cavities can be addressed in an integrated analysis. Based on the SLAC parallel finite-element code infrastructure for electromagnetic modeling, a novel multi-physics analysis tool has been developed to include additional thermal and mechanical effects. The parallel computation enables virtual prototyping of accelerator cavities on computers, which would substantially reduce the cost and time of a design cycle. The multi-physics tool is applied to the LCLS rf gun for electromagnetic, thermal and structural analyses.

  18. Neutrinos with Lorentz-violating operators of arbitrary dimension

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Mewes, Matthew

    2012-05-01

    The behavior of fermions in the presence of Lorentz and CPT violation is studied. Allowing for operators of any mass dimension, we classify all Lorentz-violating terms in the quadratic Lagrange density for free fermions. The result is adapted to obtain the effective Hamiltonian describing the propagation and mixing of three flavors of left-handed neutrinos in the presence of Lorentz violation involving operators of arbitrary mass dimension. A characterization of the neutrino coefficients for Lorentz violation is provided via a decomposition using spin-weighted spherical harmonics. The restriction of the general theory to various special cases is discussed, including among others the renormalizable limit, the massless scenario, flavor-blind and oscillation-free models, the diagonalizable case, and several isotropic limits. The formalism is combined with existing data on neutrino oscillations and kinematics to extract a variety of measures of coefficients for Lorentz and CPT violation. For oscillations, we use results from the short-baseline experiments LSND and MiniBooNE to obtain explicit sensitivities to effects from flavor-mixing Lorentz-violating operators up to mass dimension 10, and we present methods to analyze data from long-baseline experiments. For propagation, we use time-of-flight measurements from the supernova SN1987A and from a variety of experiments including MINOS and OPERA to constrain oscillation-free Lorentz-violating operators up to mass dimension 10, and we discuss constraints from threshold effects in meson decays and Čerenkov emission.

  19. Møller scattering and Lorentz-violating Z bosons

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Lehnert, Ralf

    2016-11-01

    Lorentz-symmetry breakdown in weak-interaction physics is studied. In particular, the CPT-even Lorentz-violating contributions to the Z boson in the minimal Standard-Model Extension are considered, and in this context polarized electron-electron scattering is investigated. Corrections to the usual parity-violating asymmetry are determined at tree level. Together with available data, this result can be used to improve existing estimates for the Lorentz-violating kW coefficient by two orders of magnitude. Some implications for past and future experiments are mentioned.

  20. Disentangling forms of Lorentz violation with complementary clock comparison experiments

    SciTech Connect

    Altschul, Brett

    2009-03-15

    Atomic clock comparisons provide some of the most precise tests of Lorentz and CPT symmetries in the laboratory. With data from multiple such experiments using different nuclei, it is possible to constrain new regions of the parameter space for Lorentz violation. Relativistic effects in the nuclei allow us to disentangle forms of Lorentz violation which could not be separately measured in purely nonrelativistic experiments. The disentangled bounds in the neutron sectors are at the 10{sup -28} GeV level, far better than could be obtained with any other current technique.

  1. Combined Search for Lorentz Violation in Short-Range Gravity

    NASA Astrophysics Data System (ADS)

    Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G.; Long, J. C.; Weisman, E.; Xu, Rui; Kostelecký, V. Alan

    2016-08-01

    Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10-9 m2 , improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.

  2. Strong binary pulsar constraints on Lorentz violation in gravity.

    PubMed

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation. PMID:24815632

  3. Combined Search for Lorentz Violation in Short-Range Gravity.

    PubMed

    Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan

    2016-08-12

    Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9}  m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings. PMID:27563946

  4. The metrizability problem for Lorentz-invariant affine connections

    NASA Astrophysics Data System (ADS)

    Urban, Zbyněk; Volná, Jana

    2016-07-01

    The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold ℝ × (ℝ3\\{(0, 0, 0)}) of the Euclidean space ℝ4 coincides with the Levi-Civita connection of some SO(3, 1), respectively (ℝ4 × sSO(3, 1))-invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.

  5. Strong binary pulsar constraints on Lorentz violation in gravity.

    PubMed

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  6. Generalizations of teleparallel gravity and local Lorentz symmetry

    SciTech Connect

    Sotiriou, Thomas P.; Barrow, John D.; Li Baojiu

    2011-05-15

    We analyze the relation between teleparallelism and local Lorentz invariance. We show that generic modifications of the teleparallel equivalent to general relativity will not respect local Lorentz symmetry. We clarify the reasons for this and explain why the situation is different in general relativity. We give a prescription for constructing teleparallel equivalents for known theories. We also explicitly consider a recently proposed class of generalized teleparallel theories, called f(T) theories of gravity, and show why restoring local Lorentz symmetry in such theories cannot lead to sensible dynamics, even if one gives up teleparallelism.

  7. Probes of Lorentz violation in neutrino propagation

    SciTech Connect

    Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Sakharov, Alexander S.

    2008-08-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c=[1{+-}(E/M{sub {nu}}{sub QG1})] or [1{+-}(E/M{sub {nu}}{sub QG2}){sup 2}], using data from supernova explosions and the OPERA long-baseline neutrino experiment. Using the SN1987a neutrino data from the Kamioka II, IMB, and Baksan experiments, we set the limits M{sub {nu}}{sub QG1}>2.7(2.5)x10{sup 10} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>4.6(4.1)x10{sup 4} GeV at the 95% confidence level. A future galactic supernova at a distance of 10 kpc would have sensitivity to M{sub {nu}}{sub QG1}>2(4)x10{sup 11} GeV for subluminal (superluminal) propagation and M{sub {nu}}{sub QG2}>2(4)x10{sup 5} GeV. With the current CERN neutrinos to Gran Sasso extraction spill length of 10.5 {mu}s and with standard clock synchronization techniques, the sensitivity of the OPERA experiment would reach M{sub {nu}}{sub QG1}{approx}7x10{sup 5} GeV (M{sub {nu}}{sub QG2}{approx}8x10{sup 3} GeV) after 5 years of nominal running. If the time structure of the super proton synchrotron radio frequency bunches within the extracted CERN neutrinos to Gran Sasso spills could be exploited, these figures would be significantly improved to M{sub {nu}}{sub QG1}{approx}5x10{sup 7} GeV (M{sub {nu}}{sub QG2}{approx}4x10{sup 4} GeV). These results can be improved further if a similar time resolution can be achieved with neutrino events occurring in the rock upstream of the OPERA detector: we find potential sensitivities to M{sub {nu}}{sub QG1}{approx}4x10{sup 8} GeV and M{sub {nu}}{sub QG2}{approx}7x10{sup 5} GeV.

  8. Remnant group of local Lorentz transformations in f (T ) theories

    NASA Astrophysics Data System (ADS)

    Ferraro, Rafael; Fiorini, Franco

    2015-03-01

    It is shown that the extended teleparallel gravitational theories, known as f (T ) theories, inherit some on shell local Lorentz invariance associated with the tetrad field defining the spacetime structure. We discuss some enlightening examples, such as Minkowski spacetime and cosmological (Friedmann-Robertson-Walker and Bianchi type I) manifolds. In the first case, we show that the absence of gravity reveals itself as an incapability in the selection of a preferred parallelization at a local level, due to the fact that the infinitesimal local Lorentz subgroup acts as a symmetry group of the frame characterizing Minkowski spacetime. Finite transformations are also discussed in these examples and, contrary to the common lore on the subject, we conclude that the set of tetrads responsible for the parallelization of these manifolds is quite vast and that the remnant group of local Lorentz transformations includes one- and two-dimensional Abelian subgroups of the Lorentz group.

  9. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    SciTech Connect

    Heydari-Fard, Malihe

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early time behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.

  10. Larmor and the Prehistory of the Lorentz Transformations

    ERIC Educational Resources Information Center

    Kittel, C.

    1974-01-01

    A historical analysis is given of the development in 1900 of the Lorentz transformation of coordinates and time, and of electric and magnetic field components. The earlier work of Voight is discussed. (RH)

  11. Lorentz-violating spinor electrodynamics and Penning traps

    NASA Astrophysics Data System (ADS)

    Ding, Yunhua; Kostelecký, V. Alan

    2016-09-01

    The prospects are explored for testing Lorentz- and C P T -violating quantum electrodynamics in experiments with Penning traps. We present the Lagrange density of Lorentz-violating spinor electrodynamics with operators of mass dimensions up to 6, and we discuss some of its properties. The theory is used to derive Lorentz- and C P T -violating perturbative shifts of the energy levels of a particle confined to a Penning trap. Observable signals are discussed for trapped electrons, positrons, protons, and antiprotons. Existing experimental measurements on anomaly frequencies are used to extract new or improved bounds on numerous coefficients for Lorentz and C P T violation, using sidereal variations of observables and comparisons between particles and antiparticles.

  12. The Movement of a Nerve in a Magnetic Field: Application to MRI Lorentz Effect Imaging

    PubMed Central

    Roth, Bradley J.; Luterek, Adam; Puwal, Steffan

    2014-01-01

    Direct detection of neural activity with MRI would be a breakthrough innovation in brain imaging. A Lorentz force method has been proposed to image nerve activity using MRI; a force between the action currents and the static MRI magnetic field causes the nerve to move. In the presence of a magnetic field gradient, this will cause the spins to precess at a different frequency, affecting the MRI signal. Previous mathematical modeling suggests that this effect is too small to explain the experimental data, but that model was limited because the action currents were assumed to be independent of position along the nerve, and because the magnetic field was assumed to be perpendicular to the nerve. In this paper, we calculate the nerve displacement analytically without these two assumptions. Using realistic parameter values, the nerve motion is less than 5 nm, which induced a phase shift in the MRI signal of less than 0.02°. Therefore, our results suggest that Lorentz force imaging is beyond the capabilities of current technology. PMID:24728667

  13. Lorentz transformations that entangle spins and entangle momenta

    SciTech Connect

    Jordan, Thomas F.; Shaji, Anil; Sudarshan, E.C.G.

    2007-02-15

    Simple examples are presented of Lorentz transformations that entangle the spins and momenta of two particles with positive mass and spin 1/2. They apply to indistinguishable particles, produce maximal entanglement from finite Lorentz transformations of states for finite momenta, and describe entanglement of spins produced together with entanglement of momenta. From the entanglements considered, no sum of entanglements is found to be unchanged.

  14. Lorentz- and CPT-violating signals in Penning traps

    NASA Astrophysics Data System (ADS)

    Ding, Yunhua; Kostelecký, Alan

    2016-05-01

    CPT and Lorentz symmetries are fundamental properties of the Standard Model. However, violation of these symmetries is possible in an underlying unified theory such as strings. This talk will focus on possible experimental effects for Lorentz and CPT violations. In particular, observable signals in measurements of anomaly and cyclotron frequencies of particles and antiparticles in a Penning trap will be discussed. New constraints from existing data will be presented and prospective sensitivities in future experiments will be outlined.

  15. Limits on neutron Lorentz violation from pulsar timing

    SciTech Connect

    Altschul, Brett

    2007-01-15

    Pulsars are the most accurate naturally occurring clocks, and data about them can be used to set bounds on neutron-sector Lorentz violations. If SO(3) rotation symmetry is completely broken for neutrons, then pulsars' rotation speeds will vary periodically. Pulsar timing data limits the relevant Lorentz-violating coefficients to be smaller than 1.7x10{sup -8} at at least 90% confidence.

  16. ICECUBE NEUTRINOS AND LORENTZ INVARIANCE VIOLATION

    SciTech Connect

    Amelino-Camelia, Giovanni; Guetta, D.; Piran, Tsvi

    2015-06-20

    The IceCube neutrino telescope has found so far no evidence of gamma-ray burst (GRB) neutrinos. We here notice that these results assume the same travel times from source to telescope for neutrinos and photons, an assumption that is challenged by some much-studied pictures of spacetime quantization. We briefly review previous results suggesting that limits on quantum-spacetime effects obtained for photons might not be applicable to neutrinos, and we then observe that the outcome of GRB-neutrino searches could depend strongly on whether one allows for neutrinos to be affected by the minute effects of Lorentz invariance violation (LIV) predicted by some relevant quantum-spacetime models. We discuss some relevant issues using as an illustrative example three neutrinos that were detected by IceCube in good spatial coincidence with GRBs, but hours before the corresponding gamma rays. In general, this could happen if the earlier arrival reflects quantum-spacetime-induced LIV, but, as we stress, some consistency criteria must be enforced in order to properly test such a hypothesis. Our analysis sets the stage for future GRB-neutrino searches that could systematically test the possibility of quantum-spacetime-induced LIV.

  17. Hendrik Antoon Lorentz: his role in physics and society.

    PubMed

    Berends, Frits

    2009-04-22

    Hendrik Antoon Lorentz (1853-1928) was appointed in 1878 to a chair of theoretical physics at the University of Leiden, one of the first of such chairs in the world. A few years later Heike Kamerlingh Onnes became his experimental colleague, after vehement discussions in the faculty. Lorentz strongly supported Kamerlingh Onnes then, and proved subsequently to be an ideal colleague. With Lorentz's electron theory the classical theory of electromagnetism obtained its final form, at the time often called the Maxwell-Lorentz theory. In this theory the Zeeman effect could be explained: the first glimpse of the electron. The Nobel Prize followed in 1902. The Lorentz transformation, established in 1904, preceded the special theory of relativity. Later on, Lorentz played a much admired role in the debate on the new developments in physics, in particular as chairman of a series of Solvay conferences. Gradually his stature outside of physics grew, both nationally as chairman of the Zuiderzee committee and internationally as president of the International Commission on Intellectual Cooperation of the League of Nations. At his funeral the overwhelming tribute was the recognition of his unique greatness. Einstein said about him 'He meant more to me personally than anyone else I have met on my life's journey'. PMID:21825403

  18. Hendrik Antoon Lorentz: his role in physics and society

    NASA Astrophysics Data System (ADS)

    Berends, Frits

    2009-04-01

    Hendrik Antoon Lorentz (1853-1928) was appointed in 1878 to a chair of theoretical physics at the University of Leiden, one of the first of such chairs in the world. A few years later Heike Kamerlingh Onnes became his experimental colleague, after vehement discussions in the faculty. Lorentz strongly supported Kamerlingh Onnes then, and proved subsequently to be an ideal colleague. With Lorentz's electron theory the classical theory of electromagnetism obtained its final form, at the time often called the Maxwell-Lorentz theory. In this theory the Zeeman effect could be explained: the first glimpse of the electron. The Nobel Prize followed in 1902. The Lorentz transformation, established in 1904, preceded the special theory of relativity. Later on, Lorentz played a much admired role in the debate on the new developments in physics, in particular as chairman of a series of Solvay conferences. Gradually his stature outside of physics grew, both nationally as chairman of the Zuiderzee committee and internationally as president of the International Commission on Intellectual Cooperation of the League of Nations. At his funeral the overwhelming tribute was the recognition of his unique greatness. Einstein said about him 'He meant more to me personally than anyone else I have met on my life's journey'.

  19. Cyclic and ekpyrotic universes in modified Finsler osculating gravity on tangent Lorentz bundles

    NASA Astrophysics Data System (ADS)

    Stavrinos, Panayiotis C.; Vacaru, Sergiu I.

    2013-03-01

    We consider models of an accelerating Universe elaborated for Finsler-like gravity theories constructed on tangent bundles to Lorentz manifolds. In the osculating approximation, certain locally anisotropic configurations are similar to those for f(R) gravity. This allows us to generalize a proposal by Nojiri et al (2011 AIP Conf. Proc. 1458 207-21) in order to reconstruct and compare two classes of Einstein-Finsler gravity (EFG) and f(R) gravity theories using modern cosmological data and realistic physical scenarios. We conclude that EFG provides inflation, acceleration and little rip evolution scenarios with realistic alternatives to standard ΛCDM cosmology. The approach is based on a proof that there is a general decoupling property of gravitational field equations in EFG and modified theories which allows us to generate off-diagonal cosmological solutions.

  20. A Common Coil Design for High Field 2-in-1 Accelerator Magnets^*.

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    1997-05-01

    This paper presents a common coil design concept for 2-in-1 superconducting accelerator magnets. It practically eliminates the major problems in the ends of high field magnets built with either high temperature or conventional superconductors. Racetrack coils, consisting of rectangular blocks built with either superconducting cables or tapes, are common to both apertures with each aperture containing one half of each coil. The two apertures are in the same vertical plane in an over-under geometry. A set of common flat coils are placed vertically on left and right side of the two apertures producing field in the opposite directions. The ends are easy to wind with the conductors experiencing little strain. The ends can be fully supported by a simple 2-d geometry to contain the large Lorentz forces. The overall magnet design, construction and tooling are also expected to be simpler than in conventional cosine theta magnets. The block design for high field magnets uses more conductor than the cosine theta design but is preferred for dealing with the large Lorentz forces in the body of the magnet. The concept is also suitable for a variety of other high field superconducting, moderate field superferric, multi-aperture and combined function magnet designs. ^*Work supported by the U.S. Department of Energy.

  1. Hamilton's forces of natural selection after forty years.

    PubMed

    Rose, Michael R; Rauser, Casandra L; Benford, Gregory; Matos, Margarida; Mueller, Laurence D

    2007-06-01

    In 1966, William D. Hamilton published a landmark paper in evolutionary biology: "The Moulding of Senescence by Natural Selection." It is now apparent that this article is as important as his better-known 1964 articles on kin selection. Not only did the 1966 article explain aging, it also supplied the basic scaling forces for natural selection over the entire life history. Like the Lorentz transformations of relativistic physics, Hamilton's Forces of Natural Selection provide an overarching framework for understanding the power of natural selection at early ages, the existence of aging, the timing of aging, the cessation of aging, and the timing of the cessation of aging. His twin Forces show that natural selection shapes survival and fecundity in different ways, so their evolution can be somewhat distinct. Hamilton's Forces also define the context in which genetic variation is shaped. The Forces of Natural Selection are readily manipulable using experimental evolution, allowing the deceleration or acceleration of aging, and the shifting of the transition ages between development, aging, and late life. For these reasons, evolutionary research on the demographic features of life history should be referred to as "Hamiltonian."

  2. Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry.

    PubMed

    Pruttivarasin, T; Ramm, M; Porsev, S G; Tupitsyn, I I; Safronova, M S; Hohensee, M A; Häffner, H

    2015-01-29

    All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropies in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropies in the speed of light. Our result probes Lorentz symmetry violation

  3. Lorentz, the Solvay Councils and the Physics Institute

    NASA Astrophysics Data System (ADS)

    Berends, Frits A.

    2015-09-01

    This paper describes the crucial role which Lorentz played in shaping and continuing the Solvay Councils and the Physics Institute. At the same time it will become clear that Lorentz* intensive involvement in these activities added significantly to his influence on, and recognition in, the international physics community. The first Solvay Council in 1911 was an initiative of the German physical chemist Walther Nernst. It was generously supported by the wealthy industrialist and philantropist Ernest Solvay. About five months before the Council*s start Nernst invited Lorentz to chair the meeting. That was no simple task in view of the fundamental problem of the quanta and the practical problem of communication in different languages. Lorentz*s way of presiding the conference impressed all participants. When, after the meeting, Solvay was willing to support research in the field, it was only natural to ask Lorentz for a plan. Within two months Lorentz provided Solvay with a draft which would serve as an outline for the statutes of an institute. The international Solvay Institute of Physics was founded on 1 May 1912. It would support research proposals in a specified field and would regularly organize Councils. An international scientific committee would decide on grants which could be requested from everywhere. Between the Institute*s beginnings and the outbreak of WWI, 97 requests were considered and 40 proposals - originating from 7 countries - were accepted. A second Council took place in 1913. Lorentz was given the possibility to spend considerable time on chairing the scientific committee when in 1912 his full time professorship in Leiden was changed into a part-time one. During WWI Lorentz maintained contacts with Solvay and with several of his foreign colleagues in the countries at war. He tried to remain objective, impartial and helpful, and did not lose hope that pre-war international scientific relations would eventually be re-established. After the war he

  4. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  5. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  6. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  7. Energy Loss by Radiation in Many-Particle Numerical Simulation With Lorentz-Dirac Equation

    SciTech Connect

    Zacek, Martin

    2006-01-15

    We studied the possibilities for numerical integration of Lorentz-Dirac equation that is the equation describing the motion of a charged point particle when radiation reaction is taken into account. In numerical modelling based on particle models usually the equations of motion without radiation force are used and the corrections for radiation are used consequently, expressed by laws given by averaged particle parameters as the temperature or particle density. If the complete equation of motion concluding the radiation would be used, the corrections for radiation reaction force could be used for every charged particle individually from more fundamental laws. Thus the model could be able to describe more physical phenomena. However from theory of Lorentz-Dirac equation there are known various problems with non-physical solutions and nonuniqueness that are often solved and tested by various methods. One way to eliminate the non-physical solutions is to use integro-differential equation, which is used here. The leap-frog method is used for numerical integrating and accuracy is verified for electron in magnetic field. This approach is proposed to be used for PIC (particle-in-cell) integration method, which is often used as an effective method of simulation in plasma physics for many charged particles interactinge with electromagnetic field.

  8. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  9. Transverse forces on a vortex in lattice models of superfluids

    NASA Astrophysics Data System (ADS)

    Sonin, E. B.

    2013-12-01

    The paper derives the transverse forces (the Magnus and the Lorentz forces) in the lattice models of superfluids in the continuous approximation. The continuous approximation restores translational invariance absent in the original lattice model, but the theory is not Galilean invariant. As a result, calculation of the two transverse forces on the vortex, Magnus force and Lorentz force, requires the analysis of two balances, for the true momentum of particles in the lattice (Magnus force) and for the quasimomentum (Lorentz force) known from the Bloch theory of particles in the periodic potential. While the developed theory yields the same Lorentz force, which was well known before, a new general expression for the Magnus force was obtained. The theory demonstrates how a small Magnus force emerges in the Josephson-junction array if the particle-hole symmetry is broken. The continuous approximation for the Bose-Hubbard model close to the superfluid-insulator transition was developed, which was used for calculation of the Magnus force. The theory shows that there is an area in the phase diagram for the Bose-Hubbard model, where the Magnus force has an inverse sign with respect to that which is expected from the sign of velocity circulation.

  10. Relativity and electromagnetism: The force on a magnetic monopole

    NASA Astrophysics Data System (ADS)

    Rindler, Wolfgang

    1989-11-01

    On the occasion of the 100th anniversary of the first publication, by Oliver Heaviside, of what is now known as the Lorentz force law in electromagnetic theory, the analogous force law for magnetic monopoles is examined. Its relevance and limitations in calculating the force and torque on small current loops are discussed, and both its heuristic and practical uses are demonstrated.

  11. Lorentz beams and symmetry properties in paraxial optics

    NASA Astrophysics Data System (ADS)

    El Gawhary, Omar; Severini, Sergio

    2006-05-01

    A new kind of tridimensional scalar optical beams is introduced. These beams are called Lorentz beams because the form of their transverse pattern in the source plane is the product of two independent Lorentz functions. A closed-form expression of free-space propagation under the paraxial limit is derived. Moreover, as the slowly varying part of these fields fulfils the scalar paraxial wave equation, it follows that there also exist Lorentz-Gauss beams, i.e. beams obtained by multiplying the original Lorentz beam by a Gaussian apodization function. Although the existence of Lorentz-Gauss beams can be shown by using two different and independent ways obtained recently by Kiselev (2004 Opt. Spectrosc. 96 497-81) and Gutierrez-Vega and Bandres (2005 J. Opt. Soc. Am. 22 289-98), here we have followed a third different approach, which makes use of Lie's group theory, and which possesses the merit to put into evidence the symmetries present in paraxial optics.

  12. Electric and magnetic dipoles in the Lorentz and Einstein-Laub formulations of classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2015-01-01

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant

  13. Black hole dynamical evolution in a Lorentz-violating spacetime

    SciTech Connect

    Esposito, S.; Salesi, G.

    2011-04-15

    We consider the black hole dynamical evolution in the framework of a Lorentz-violating spacetime endowed with a Schwarzchild-like momentum-dependent metric. Large deviations from the Hawking-Bekenstein predictions are obtained, depending on the values of the Lorentz-violating parameter {lambda} introduced. A nontrivial evolution comes out, following mainly from the existence of a nonvanishing minimum mass: for large Lorentz violations, most of the black hole evaporation takes place in the initial stage, which is then followed by a stationary stage (whose duration depends on the value of {lambda}) where the mass does not change appreciably. Furthermore, for the final stage of evolution, our model predicts a sweet slow death of the black hole, whose ''slowness'' again depends on {lambda}, in contrast with the violent final explosion predicted by the standard theory.

  14. On the origin of neutrino oscillations through Lorentz violation

    NASA Astrophysics Data System (ADS)

    Leite, Julio

    2015-07-01

    The possibility of generating neutrino masses and oscillations through Lorentz- violating models is investigated. In the first model, an interaction between a fermion doublet and a Lorentz-violating gauge field, which play the role of a regulator field and, eventually, decouples from the fermions, is considered. In this case, by solving the (non-perturbative) Schwinger-Dyson equation, we show how masses and oscillations are generated dynamically. In the second model, fermions with LV kinematics interact via a four-fermion interaction and masses are shown to be generated dynamically when using another non-perturbative method. In both models, the recovery of Lorentz invariance is discussed and it is shown that the only physical observables are the dynamical masses that lead to neutrino oscillations.

  15. Constraints on Lorentz violation from gravitational Čerenkov radiation

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Tasson, Jay D.

    2015-10-01

    Limits on gravitational Čerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Čerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Čerenkov radiation by gravitons.

  16. Lorentz symmetry breaking as a quantum field theory regulator

    SciTech Connect

    Visser, Matt

    2009-07-15

    Perturbative expansions of quantum field theories typically lead to ultraviolet (short-distance) divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. I shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory and discuss its implications. In particular, I shall quantify just 'how much' Lorentz symmetry breaking is required to fully regulate the quantum theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [Phys. Rev. D 79, 084008 (2009)] on 3+1 dimensional quantum gravity.

  17. Tests of Lorentz and CPT symmetry with hadrons and nuclei

    NASA Astrophysics Data System (ADS)

    Noordmans, J. P.; de Vries, J.; Timmermans, R. G. E.

    2016-08-01

    We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark and gluon fields, we construct the effective chiral Lagrangian with hadronic and electromagnetic interactions induced by these operators. We develop the power-counting scheme and discuss loop diagrams and the one-pion-exchange nucleon-nucleon potential. The effective chiral Lagrangian is the basis for calculations of low-energy observables with hadronic degrees of freedom. As examples, we consider clock-comparison experiments with nuclei and spin-precession experiments with nucleons in storage rings. We derive strict limits on the dimension-five tensors that quantify Lorentz and CPT violation.

  18. FULL ELECTROMAGNETIC SIMULATION OF COHERENT SYNCHROTRON RADIATION VIA THE LORENTZ-BOOSTED FRAME APPROACH

    SciTech Connect

    Fawley, William M; Vay, Jean-Luc

    2010-05-21

    Numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. Orders of magnitude speedup has been demonstrated for simulations from first principles of laser-plasma accelerator, free electron laser, and particle beams interacting with electron clouds. Here we address the application of the Lorentz-boosted frame approach to coherent synchrotron radiation (CSR), which can be strongly present in bunch compressor chicanes. CSR is particularly relevant to the next generation of x-ray light sources and is simultaneously difficult to simulate in the lab frame because of the large ratio of scale lengths. It can increase both the incoherent and coherent longitudinal energy spread, effects that often lead to an increase in transverse emittance. We have adapted the WARP code to simulate CSR emission along a simple dipole bend. We present some scaling arguments for the possible computational speed up factor in the boosted frame and initial 3D simulation results.

  19. Global defects in theories with Lorentz symmetry violation

    SciTech Connect

    Lubo, Musongela

    2005-02-15

    We study global topological defects in the Jacobson-Corley model which breaks Lorentz symmetry and involves up to fourth order derivatives. There is a window in the parameter space in which no solution exists. Otherwise, different profiles are allowed for the same values of the parameters. For a scale of Lorentz violation much higher than the scale of gauge symmetry breaking, the energy densities are higher, of the same order or smaller than in the usual case for domain walls, cosmic strings, and hedgehogs, respectively. Possible cosmological implications are suggested.

  20. The 1895 Lorentz transformations: historical issues and present teaching

    NASA Astrophysics Data System (ADS)

    Provost, Jean-Pierre; Bracco, Christian

    2016-07-01

    We present the pedagogical interest for the teaching of special relativity of the 1895 Lorentz transformations, which are a simple modification of the Galilean ones, satisfying the invariance of light velocity at first order in V/c. Since they are also the infinitesimal version of the better known but more complicated 1904 Lorentz ones, they allow us to address the main topics of this teaching (time dilatation, length contraction, relativistic dynamics, invariance of electromagnetism) and to recover standard results through simple integrations or the use of invariants. In addition, they are directly related to important historical issues, including Einstein’s 1911 relativistic approach to gravitation.

  1. Precise positioning and compliance synthesis for automatic assembly using Lorentz levitation

    NASA Astrophysics Data System (ADS)

    Hollis, R. L.; Salcudean, S.

    1992-05-01

    Many manufacturing assembly tasks require fine compliant motion and fast, accurate positioning. Conventional robots perform poorly in these tasks because of their large mass, friction and backlash in gears, cogging in drive motors and other deleterious effects. Even robots equipped with special control systems enabling compliant operation offer only partial solutions. It is difficult or impossible to automate many product assemblies requiring fine, compliant motion. This problem can be greatly alleviated by dividing the manipulation system into coarse and fine domains. In this scenario, a standard industrial robot can serve as a coarse positioner which in turn carries a six degrees of freedom fine motion wrist. Thus the robot can access a workspace measured in meters at low bandwidth and low resolution while the wrist can move over millimeters at high bandwidth and high resolution during the final phase of the assembly operation. Work indicates that fine motion wrists using Lorentz levitation can greatly augment the accuracy and dexterity of robots because they are frictionless, have high bandwidths and have a single back drivable moving part. Also, since there is no contact between the moving and stationary parts, wear and contamination can be eliminated. The use of six Lorentz force actuators in combination with real time position and orientation sensing offers several important advantages over magnetic bearing approaches.

  2. Precise positioning and compliance synthesis for automatic assembly using Lorentz levitation

    NASA Technical Reports Server (NTRS)

    Hollis, R. L.; Salcudean, S.

    1992-01-01

    Many manufacturing assembly tasks require fine compliant motion and fast, accurate positioning. Conventional robots perform poorly in these tasks because of their large mass, friction and backlash in gears, cogging in drive motors and other deleterious effects. Even robots equipped with special control systems enabling compliant operation offer only partial solutions. It is difficult or impossible to automate many product assemblies requiring fine, compliant motion. This problem can be greatly alleviated by dividing the manipulation system into coarse and fine domains. In this scenario, a standard industrial robot can serve as a coarse positioner which in turn carries a six degrees of freedom fine motion wrist. Thus the robot can access a workspace measured in meters at low bandwidth and low resolution while the wrist can move over millimeters at high bandwidth and high resolution during the final phase of the assembly operation. Work indicates that fine motion wrists using Lorentz levitation can greatly augment the accuracy and dexterity of robots because they are frictionless, have high bandwidths and have a single back drivable moving part. Also, since there is no contact between the moving and stationary parts, wear and contamination can be eliminated. The use of six Lorentz force actuators in combination with real time position and orientation sensing offers several important advantages over magnetic bearing approaches.

  3. Lorentz Transformation Derived from First-Order Experiments

    ERIC Educational Resources Information Center

    Pfleiderer, J.

    1969-01-01

    Suggests a first-order experiment that can be used to establish the Lorentz transformation without considering the constancy of light velocity or the full set of Maxwell's equations. Involves the use of a long solenoid to create an electric field in a moving magnetic field. (LC)

  4. Tests of Lorentz and CPT Invariance in Space

    NASA Technical Reports Server (NTRS)

    Mewes, Matthew

    2003-01-01

    I give a brief overview of recent work concerning possible signals of Lorentz violation in sensitive clock-based experiments in space. The systems under consideration include atomic clocks and electromagnetic resonators of the type planned for flight on the International Space Station.

  5. Impact of Lorentz violation on the Klein tunneling effect

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi

    2016-06-01

    In this paper, we discuss the impact of a tiny Lorentz violating bμ term on the one-dimensional motion of a Dirac particle scattering on a rectangular barrier. We assume the experiment is done in a particular inertial frame, where the components of bμ are assumed constants. The results show that Lorentz violation modification to the transmission rate depends on the nature of bμ. For a purely time-like bμ=(b ,0 → ) , the transmission rate and resonant tunneling frequency are essentially unaltered compared with the Lorentz invariant counterparts, though the dispersion relation is slightly modified. For a space-like or light-like bμ , the incoming electron is polarized, and the Lorentz violation induced resonant frequency shift depends on the polarization. In fact, for certain special cases, like bμ=b (0 ,e→ Z) or bμ=b (1 ,e→ Z) , the absolute frequency difference between different helicity eigenstates with the same resonant number n is 2 b . In addition to being of theoretical interest in the high energy region, its quantum analogue may be experimentally realizable in other areas of physics, like graphene or optical lattices, and may generate some cross interests in both fields.

  6. Lorentz transformations in the presence of a uniform gravitational field.

    NASA Technical Reports Server (NTRS)

    Broucke, R.

    1971-01-01

    This article describes a Lorentz-like transformation between a fixed frame and an inertial frame that is free falling due to the presence of a uniform gravitation field. The application to the clock paradox problem and some connections with similar works are also discussed.

  7. Noncommutative spaces, the quantum of time, and Lorentz symmetry

    SciTech Connect

    Romero, Juan M.; Vergara, J. D.; Santiago, J. A.

    2007-03-15

    We introduce three space-times that are discrete in time and compatible with the Lorentz symmetry. We show that these spaces are not commutative, with commutation relations similar to the relations of the Snyder and Yang spaces. Furthermore, using a reparametrized relativistic particle we obtain a realization of the Snyder type spaces and we construct an action for them.

  8. Horizons and free-path distributions in quasiperiodic Lorentz gases.

    PubMed

    Kraemer, Atahualpa S; Schmiedeberg, Michael; Sanders, David P

    2015-11-01

    We study the structure of quasiperiodic Lorentz gases, i.e., particles bouncing elastically off fixed obstacles arranged in quasiperiodic lattices. By employing a construction to embed such structures into a higher-dimensional periodic hyperlattice, we give a simple and efficient algorithm for numerical simulation of the dynamics of these systems. This same construction shows that quasiperiodic Lorentz gases generically exhibit a regime with infinite horizon, that is, empty channels through which the particles move without colliding, when the obstacles are small enough; in this case, the distribution of free paths is asymptotically a power law with exponent -3, as expected from infinite-horizon periodic Lorentz gases. For the critical radius at which these channels disappear, however, a new regime with locally finite horizon arises, where this distribution has an unexpected exponent of -5, previously observed only in a Lorentz gas formed by superposing three incommensurable periodic lattices in the Boltzmann-Grad limit where the radius of the obstacles tends to zero.

  9. A Useful Device for Illustrating the Lorentz Transformations

    ERIC Educational Resources Information Center

    Cortini, Giulio

    1972-01-01

    A graphical representation is proposed as a teaching device which can be useful in order to obtain a good intuitive grasp of the physical meaning of the Lorentz transformations. The connection between the time dilation and the desynchronization of clocks is particularly discussed. (Author/PR)

  10. CPT and Lorentz Tests in Hydrogen and Antihydrogen

    SciTech Connect

    Bluhm, R.; Kostelecky, V.A.; Russell, N.

    1999-03-01

    Signals for CPT and Lorentz violation at the Planck scale may arise in hydrogen and antihydrogen spectroscopy. We show that certain 1S-2S and hyperfine transitions can exhibit theoretically detectable effects unsuppressed by any power of the fine-structure constant. {copyright} {ital 1999} {ital The American Physical Society}

  11. Antihydrogen for tests of CPT and Lorentz invariance

    SciTech Connect

    Holzscheiter, Michael H.

    1999-01-15

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invarianz. We describe our plans to form a significant number of cold antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen.

  12. Antihydrogen for tests of CPT and Lorentz invariance

    SciTech Connect

    ATHENA collaboration

    1999-01-01

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invarianz. We describe our plans to form a significant number of cold antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen. {copyright} {ital 1999 American Institute of Physics.}

  13. Enhanced CMBR non-Gaussianities from Lorentz violation

    SciTech Connect

    Chialva, Diego

    2012-01-01

    We study the effects of Lorentz symmetry violation on the scalar CMBR bispectrum. We deal with dispersion relations modified by higher derivative terms in a Lorentz breaking effective action and solve the equations via approximation techniques, in particular the WKB method. We quantify the degree of approximation in the computation of the bispectrum and show how the absolute and relative errors can be made small at will, making the results robust. Our results show that there can be enhancements in the bispectrum for specific configurations in momentum space, when the modified dispersion relations violate the adiabatic condition for a short period of time in the early Universe. The kind of configurations that are enhanced and the pattern of oscillations in wavenumbers that generically appear in the bispectrum strictly depend on the form of the modified dispersion relation, and therefore on the pattern of Lorentz violation. These effects are found to be distinct from those that appear when modelling very high-energy (transplanckian) physics via modified boundary conditions (modified vacuum). In fact, under certain conditions, the enhancements can be even stronger, given equal interactions, and possibly open a door to the experimental study of Lorentz violation through these phenomena. After providing the general analysis, we also discuss briefly a specific example based on a healthy modification of the Corley-Jacobson dispersion relation with negative coefficient, and plot the shape of the bispectrum in that case.

  14. Special Relativity in Week One: 3) Introducing the Lorentz Contraction

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    This is the third of four articles on teaching special relativity in the first week of an introductory physics course. With Einstein's second postulate that the speed of light is the same to all observers, we could use the light pulse clock to introduce time dilation. But we had difficulty introducing the Lorentz contraction until we saw the movie…

  15. A More Intuitive Version of the Lorentz Velocity Addition Formula

    ERIC Educational Resources Information Center

    Devlin, John F.

    2009-01-01

    The Lorentz velocity addition formula for one-dimensional motion presents a number of problems for beginning students of special relativity. In this paper we suggest a simple rewrite of the formula that is easier for students to memorize and manipulate, and furthermore is more intuitive in understanding the correction necessary when adding…

  16. Acoustic Tests of Lorentz Symmetry Using Quartz Oscillators

    NASA Astrophysics Data System (ADS)

    Lo, Anthony; Haslinger, Philipp; Mizrachi, Eli; Anderegg, Loïc; Müller, Holger; Hohensee, Michael; Goryachev, Maxim; Tobar, Michael E.

    2016-01-01

    We propose and demonstrate a test of Lorentz symmetry based on new, compact, and reliable quartz oscillator technology. Violations of Lorentz invariance in the matter and photon sector of the standard model extension generate anisotropies in particles' inertial masses and the elastic constants of solids, giving rise to measurable anisotropies in the resonance frequencies of acoustic modes in solids. A first realization of such a "phonon-sector" test of Lorentz symmetry using room-temperature stress-compensated-cut crystals yields 120 h of data at a frequency resolution of 2.4 ×10-15 and a limit of c˜Q n=(-1.8 ±2.2 )×10-14 GeV on the most weakly constrained neutron-sector c coefficient of the standard model extension. Future experiments with cryogenic oscillators promise significant improvements in accuracy, opening up the potential for improved limits on Lorentz violation in the neutron, proton, electron, and photon sector.

  17. Horizons and free-path distributions in quasiperiodic Lorentz gases.

    PubMed

    Kraemer, Atahualpa S; Schmiedeberg, Michael; Sanders, David P

    2015-11-01

    We study the structure of quasiperiodic Lorentz gases, i.e., particles bouncing elastically off fixed obstacles arranged in quasiperiodic lattices. By employing a construction to embed such structures into a higher-dimensional periodic hyperlattice, we give a simple and efficient algorithm for numerical simulation of the dynamics of these systems. This same construction shows that quasiperiodic Lorentz gases generically exhibit a regime with infinite horizon, that is, empty channels through which the particles move without colliding, when the obstacles are small enough; in this case, the distribution of free paths is asymptotically a power law with exponent -3, as expected from infinite-horizon periodic Lorentz gases. For the critical radius at which these channels disappear, however, a new regime with locally finite horizon arises, where this distribution has an unexpected exponent of -5, previously observed only in a Lorentz gas formed by superposing three incommensurable periodic lattices in the Boltzmann-Grad limit where the radius of the obstacles tends to zero. PMID:26651670

  18. Acceleration of type 2 spicules in the solar chromosphere. II. Viscous braking and upper bounds on coronal energy input

    SciTech Connect

    Goodman, Michael L.

    2014-04-20

    A magnetohydrodynamic model is used to determine conditions under which the Lorentz force accelerates plasma to type 2 spicule speeds in the chromosphere. The model generalizes a previous model to include a more realistic pre-spicule state, and the vertical viscous force. Two cases of acceleration under upper chromospheric conditions are considered. The magnetic field strength for these cases is ≤12.5 and 25 G. Plasma is accelerated to terminal vertical speeds of 66 and 78 km s{sup –1} in 100 s, compared with 124 and 397 km s{sup –1} for the case of zero viscosity. The flows are localized within horizontal diameters ∼80 and 50 km. The total thermal energy generated by viscous dissipation is ∼10 times larger than that due to Joule dissipation, but the magnitude of the total cooling due to rarefaction is ≳ this energy. Compressive heating dominates during the early phase of acceleration. The maximum energy injected into the corona by type 2 spicules, defined as the energy flux in the upper chromosphere, may largely balance total coronal energy losses in quiet regions, possibly also in coronal holes, but not in active regions. It is proposed that magnetic flux emergence in intergranular regions drives type 2 spicules.

  19. Direct acceleration of electrons by a circular polarized laser pulse with phase modulation

    SciTech Connect

    Zhu, Lun-Wu; Sheng, Zheng-Mao; Yu, M. Y.

    2013-11-15

    Electron acceleration by transversely echelon phase-modulated (EPM) circularly polarized (CP) intense laser pulse is investigated. Solution of the relativistic electron equations of motion shows that the CP EPM light wave structure can disrupt the harmonic response of a trapped electron not only in the transverse direction but also in the direction of laser propagation. In each laser cycle, there can be a net gain in the electron's transverse momentum, which is promptly converted into the forward direction by the Lorentz force. As a result, the electron can be trapped and accelerated in the favorable phase of the laser for a rather long time. Its momentum gain then accumulates and can eventually reach high levels. It is also found that with the CP EPM laser, the net acceleration of the electron is not sensitive to its initial position and velocity relative to the phase of the laser fields, so that such a laser can also be useful for accelerating thermal electron bunches to high energies.

  20. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  1. Relativistic Chasles' theorem and the conjugacy classes of the inhomogeneous Lorentz group

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2013-02-01

    This work is devoted to the relativistic generalization of Chasles' theorem, namely, to the proof that every proper orthochronous isometry of Minkowski spacetime, which sends some point to its chronological future, is generated through the frame displacement of an observer which moves with constant acceleration and constant angular velocity. The acceleration and angular velocity can be chosen either aligned or perpendicular, and in the latter case the angular velocity can be chosen equal or smaller than the acceleration. We start reviewing the classical Euler's and Chasles' theorems both in the Lie algebra and group versions. We recall the relativistic generalization of Euler's theorem and observe that every (infinitesimal) transformation can be recovered from information of algebraic and geometric type, the former being identified with the conjugacy class and the latter with some additional geometric ingredients (the screw axis in the usual non-relativistic version). Then the proper orthochronous inhomogeneous Lorentz Lie group is studied in detail. We prove its exponentiality and identify a causal semigroup and the corresponding Lie cone. Through the identification of new Ad-invariants we classify the conjugacy classes, and show that those which admit a causal representative have special physical significance. These results imply a classification of the inequivalent Killing vector fields of Minkowski spacetime which we express through simple representatives. Finally, we arrive at the mentioned generalization of Chasles' theorem.

  2. Phenomenologically viable Lorentz-violating quantum gravity.

    PubMed

    Sotiriou, Thomas P; Visser, Matt; Weinfurtner, Silke

    2009-06-26

    Horava's "Lifschitz point gravity" has many desirable features, but in its original incarnation one is forced to accept a nonzero cosmological constant of the wrong sign to be compatible with observation. We develop an extension of Horava's model that abandons "detailed balance" and regains parity invariance, and in 3+1 dimensions exhibit all five marginal (renormalizable) and four relevant (super-renormalizable) operators, as determined by power counting. We also consider the classical limit of this theory, evaluate the Hamiltonian and supermomentum constraints, and extract the classical equations of motion in a form similar to the Arnowitt-Deser-Misner formulation of general relativity. This puts the model in a framework amenable to developing detailed precision tests.

  3. Reduced-order Abraham-Lorentz-Dirac equation and the consistency of classical electromagnetism

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2015-03-01

    It is widely believed that classical electromagnetism is either unphysical or inconsistent, owing to pathological behavior when self-force and radiation reaction are non-negligible. We argue that there is no inconsistency as long as it is recognized that certain types of charge distribution are simply impossible, such as, for example, a point particle with finite charge and finite inertia. This is owing to the fact that negative inertial mass is an unphysical concept in classical physics. It remains useful to obtain an equation of motion for small charged objects that describes their motion to good approximation without requiring knowledge of the charge distribution within the object. We give a simple method to achieve this, leading to a reduced-order form of the Abraham-Lorentz-Dirac equation, essentially as proposed by Eliezer, Landau, and Lifshitz and derived by Ford and O'Connell.

  4. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  5. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    SciTech Connect

    Omelyan, Igor E-mail: omelyan@icmp.lviv.ua; Kovalenko, Andriy

    2013-12-28

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  6. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: Accelerating with advanced extrapolation of effective solvation forces

    NASA Astrophysics Data System (ADS)

    Omelyan, Igor; Kovalenko, Andriy

    2013-12-01

    We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics

  7. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  8. Investigation of Calibrating Force Transducer Using Sinusoidal Force

    SciTech Connect

    Zhang Li; Wang Yu; Zhang Lizhe

    2010-05-28

    Sinusoidal force calibration method was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). A similar dynamic force calibration system is developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electro-dynamic shakers to generate dynamic force in the range from 1 N to 20 kN, and heterodyne laser interferometers are used for acceleration measurement. The force transducer to be calibrated is mounted on the shaker, and a mass block is screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition. The methods of determining Spatial-dependent acceleration on mass block and measuring the end mass of force transducer in dynamic force calibration are discussed in this paper.

  9. Anomalous Cosmic Rays Acceleration By the Termination Shock

    NASA Astrophysics Data System (ADS)

    Qin, G.; Zhang, L.

    2014-12-01

    When crossing the termination shock (TS), Voyager 1 and 2 observed Anomalous Cosmic Rays (ACRs) different as expected by diffusive shock acceleration. In this work, we study the ACRs acceleration by analyzing test particles trajectories fromnumerical solution of Newton-Lorentz equation. As a preliminary work, simple toy models of plasma, magnetic field, and TS are assumed. In addition, our modeling results of ACRs spectra will be compared with Voyager 1 and 2 observations.

  10. The local geometry of compact homogeneous Lorentz spaces

    NASA Astrophysics Data System (ADS)

    Günther, Felix

    2015-03-01

    In 1995, S. Adams and G. Stuck as well as A. Zeghib independently provided a classification of non-compact Lie groups which can act isometrically and locally effectively on compact Lorentzian manifolds. In the case that the corresponding Lie algebra contains a direct summand isomorphic to the two-dimensional special linear algebra or to a twisted Heisenberg algebra, Zeghib also described the geometric structure of the manifolds. Using these results, we investigate the local geometry of compact homogeneous Lorentz spaces whose isometry groups have non-compact connected components. It turns out that they all are reductive. We investigate the isotropy representation and curvatures. In particular, we obtain that any Ricci-flat compact homogeneous Lorentz space is flat or has compact isometry group.

  11. High Energy Astrophysics Tests of Lorentz Invariance Violation

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2004-01-01

    Observations of the multi-TeV spectra of the nearby BL Lac objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker & Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz violation. We will show that such constraints have important implications for some quantum gravity models and large extra dimension models. We will also discuss the potentially important effects of a smaller Lorentz violation which is consistent with these constraints on the propagation and spectra of ultrahigh energy cosmic rays.

  12. High Energy Astrophysics Tests of Lorentz Invariance Violation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    Observations of the multi-TeV spectra of the Mkn 501 and other nearby BL Lac objects exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker and Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz invariance violation. Such constraints have important implications for some quantum gravity and large extra dimension models. A much smaller amount of Lorentz invariance violation has potential implications for understanding the spectra of ultrahigh energy cosmic rays.

  13. Quantum Gravity and Lorentz Invariance Violation in the Standard Model

    SciTech Connect

    Alfaro, Jorge

    2005-06-10

    The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter {alpha} that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be vertical bar {alpha} vertical bar <{approx}10{sup -22}-10{sup -23}.

  14. Equivalent width evaluation methods for Doppler, Lorentz, and Voigt profiles.

    PubMed

    Habib, Abdel Aziz M; Rammah, Yasser S

    2014-01-01

    An accurate technique has been developed to calculate the equivalent width of absorption lines. The calculations have been carried out for the pure Doppler and pure Lorentz limiting forms of the equivalent width. A novel expression for the equivalent width for Lorentz profile is given from direct integration of the line profile. The more general case of a Voigt profile leads to an analytical formula that permits a rapid estimate of the equivalent width for a wide range of maximum optical depths. The reliability of the approach is verified using a numerical application calculating the equivalent width for nickel resonance lines at 232.0 and 352.3 nm from atomic absorption (AA) measurements. The dependence of equivalent width on the number density of absorbing atoms is also provided. The results obtained for the equivalent width for the Voigt profile were compared with the data in the available literature obtained by different approaches. PMID:24480275

  15. Quantum gravity and Lorentz invariance violation in the standard model.

    PubMed

    Alfaro, Jorge

    2005-06-10

    The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter alpha that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be |alpha|< approximately 10(-22)-10(-23).

  16. Extending the Lorentz Transformation to Motion with Variable Velocity

    NASA Technical Reports Server (NTRS)

    Jones, Robert T.

    1959-01-01

    The problem considered is that of rectilinear motion with variable velocity. The paper gives, by an elementary construction, a system of coordinates which is conformal in the vicinity of the axis of motion. By a particular choice of the scale relation, such restricted conformal transformations can be made to reduce to the Lorentz transformation everywhere in the case of uniform velocity and locally in the case of variable velocity.

  17. Shape of solitons in classically forbidden states - 'Lorentz expansion'

    NASA Technical Reports Server (NTRS)

    Guinea, F.; Peierls, R. E.; Schrieffer, R.

    1986-01-01

    The shape of extended objects in classically forbidden regions is shown to undergo expansion analogous to Lorentz contraction of a relativistic body of finite velocities. The problem of two interacting Dirac particles moving in one dimension is solved explicitly and the results are generalized to soliton solutions of field theories. An estimate of the effect on tunneling rates is also given, including solitons in (CH)z.

  18. Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation

    NASA Astrophysics Data System (ADS)

    Cooper, Patrick; Dubovsky, Sergei; Mohsen, Ali

    2014-04-01

    We describe a UV complete asymptotically fragile Lorentz-invariant theory exhibiting superluminal signal propagation. Its low energy effective action contains "wrong" sign higher dimensional operators. Nevertheless, the theory gives rise to an S matrix, which is defined at all energies. As expected for a nonlocal theory, the corresponding scattering amplitudes are not exponentially bounded on the physical sheet, but otherwise are healthy. We study some of the physical consequences of this S matrix.

  19. On multipliers of Fourier series in the Lorentz space

    NASA Astrophysics Data System (ADS)

    Ydyrys, Aizhan Zh.; Tleukhanova, Nazerke T.

    2016-08-01

    We study the multipliers of Fourier series on the Lorentz spaces, in particular, the sufficient conditions for a sequence of complex numbers {λk}k∈Z in order to make it a multiplier of trigonometric Fourier series of space Lp,r [0; 1] in the Lq,r [0; 1]. In the paper there is a new multipliers theorem which is supplement of the well-known theorems, and given a counterexample.

  20. Two field BPS solutions for generalized Lorentz breaking models

    SciTech Connect

    Souza Dutra, A. de; Hott, M.; Barone, F. A.

    2006-10-15

    In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.

  1. Forces, moments, and acceleration acting on a restrained dummy during simulation of three possible accidents involving a wheelchair negotiating a curb: comparison between lap belt and four-point belt.

    PubMed

    Fast, A; Sosner, J; Begeman, P; Thomas, M; Drukman, D

    1997-01-01

    The objective of this study was to determine the effect of two types of restraining belts (lap belt and a four-point belt) on an instrumented dummy during three situations: wheelchair hitting straight into curb (SIC); wheelchair falling straight off a curb (SOC); wheelchair falling diagonally off a curb (DOC). A fully instrumented (50th percentile Hybrid III) dummy was seated in a standard wheelchair and restrained with one of the belts. The wheelchair rolled down a ramp reaching a platform at 2.4 miles per hour (comfortable walking speed). Three types of experiments were performed: SIC, SOC, DOC. Each experiment was repeated at least three times. Forces, moments, and acceleration were monitored and recorded via 48 sensors placed at the head, spine, and limbs. All experiments were videotaped and photographed. The data were averaged and compared with standards that have been previously established in car crash testing and with data recently obtained in a similar study using a nonrestrained dummy. Our results showed that in the SIC experiments, low magnitude forces, moments, and acceleration of no clinical significance were recorded with both types of belts. The wheelchair remained upright and the dummy safely seated. In the SOC experiments, the two belts prevented the dummy's ejection from the chair and, thus, have been effective in lowering the forces, moments, and acceleration and preventing significant injuries to the head and neck regions. In the DOC experiments, the lap belt proved to be somewhat more effective than the four-point belt in lowering the extension forces at the upper neck and the moments at the lower neck below injury levels. It also kept the head injury criteria well below injury level. We postulate that the four-point belt was less effective because of its more extensive body fixation, which leads to concentration of moments and forces at the head and lower neck regions. The results of this study show that restraining systems can enhance the

  2. Forces, moments, and acceleration acting on a restrained dummy during simulation of three possible accidents involving a wheelchair negotiating a curb: comparison between lap belt and four-point belt.

    PubMed

    Fast, A; Sosner, J; Begeman, P; Thomas, M; Drukman, D

    1997-01-01

    The objective of this study was to determine the effect of two types of restraining belts (lap belt and a four-point belt) on an instrumented dummy during three situations: wheelchair hitting straight into curb (SIC); wheelchair falling straight off a curb (SOC); wheelchair falling diagonally off a curb (DOC). A fully instrumented (50th percentile Hybrid III) dummy was seated in a standard wheelchair and restrained with one of the belts. The wheelchair rolled down a ramp reaching a platform at 2.4 miles per hour (comfortable walking speed). Three types of experiments were performed: SIC, SOC, DOC. Each experiment was repeated at least three times. Forces, moments, and acceleration were monitored and recorded via 48 sensors placed at the head, spine, and limbs. All experiments were videotaped and photographed. The data were averaged and compared with standards that have been previously established in car crash testing and with data recently obtained in a similar study using a nonrestrained dummy. Our results showed that in the SIC experiments, low magnitude forces, moments, and acceleration of no clinical significance were recorded with both types of belts. The wheelchair remained upright and the dummy safely seated. In the SOC experiments, the two belts prevented the dummy's ejection from the chair and, thus, have been effective in lowering the forces, moments, and acceleration and preventing significant injuries to the head and neck regions. In the DOC experiments, the lap belt proved to be somewhat more effective than the four-point belt in lowering the extension forces at the upper neck and the moments at the lower neck below injury levels. It also kept the head injury criteria well below injury level. We postulate that the four-point belt was less effective because of its more extensive body fixation, which leads to concentration of moments and forces at the head and lower neck regions. The results of this study show that restraining systems can enhance the

  3. Lorentz-invariant actions for chiral p-forms

    SciTech Connect

    Pasti, P.; Sorokin, D.; Tonin, M.

    1997-05-01

    We demonstrate how a Lorentz-covariant formulation of the chiral p-form model in D=2(p+1) containing infinitely many auxiliary fields is related to a Lorentz-covariant formulation with only one auxiliary scalar field entering a chiral p-form action in a nonpolynomial way. The latter can be regarded as a consistent Lorentz-covariant truncation of the former. We make the Hamiltonian analysis of the model based on the nonpolynomial action and show that the Dirac constraints have a simple form and are all first class. In contrast with the Siegel model the constraints are not the square of second-class constraints. The canonical Hamiltonian is quadratic and determines the energy of a single chiral p-form. In the case of D=2 chiral scalars the constraint can be improved by use of a {open_quotes}twisting{close_quotes} procedure (without the loss of the property to be first class) in such a way that the central charge of the quantum constraint algebra is zero. This points to the possible absence of an anomaly in an appropriate quantum version of the model. {copyright} {ital 1997} {ital The American Physical Society}

  4. Lorentz constraints on massive three-point amplitudes

    NASA Astrophysics Data System (ADS)

    Conde, Eduardo; Marzolla, Andrea

    2016-09-01

    Using the helicity-spinor language we explore the non-perturbative constraints that Lorentz symmetry imposes on three-point amplitudes where the asymptotic states can be massive. As it is well known, in the case of only massless states the three-point amplitude is fixed up to a coupling constant by these constraints plus some physical requirements. We find that a similar statement can be made when some of the particles have mass. We derive the generic functional form of the three-point amplitude by virtue of Lorentz symmetry, which displays several functional structures accompanied by arbitrary constants. These constants can be related to the coupling constants of the theory, but in an unambiguous fashion only in the case of one massive particle. Constraints on these constants are obtained by imposing that in the UV limit the massive amplitude matches the massless one. In particular, there is a certain Lorentz frame, which corresponds to projecting all the massive momenta along the same null momentum, where the three-point massive amplitude is fully fixed, and has a universal form.

  5. Standing Waves in the Lorentz-Covariant World

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Noz, Marilyn E.

    2005-07-01

    When Einstein formulated his special relativity, he developed his dynamics for point particles. Of course, many valiant efforts have been made to extend his relativity to rigid bodies, but this subject is forgotten in history. This is largely because of the emergence of quantum mechanics with wave-particle duality. Instead of Lorentz-boosting rigid bodies, we now boost waves and have to deal with Lorentz transformations of waves. We now have some nderstanding of plane waves or running waves in the covariant picture, but we do not yet have a clear picture of standing waves. In this report, we show that there is one set of standing waves which can be Lorentz-transformed while being consistent with all physical principle of quantum mechanics and relativity. It is possible to construct a representation of the Poincaré group using harmonic oscillator wave functions satisfying space-time boundary conditions. This set of wave functions is capable of explaining the quantum bound state for both slow and fast hadrons. In particular it can explain the quark model for hadrons at rest, and Feynman’s parton model hadrons moving with a speed close to that of light.

  6. A Quantum Simulation on the Emergence of Lorentz Invariance

    NASA Astrophysics Data System (ADS)

    Zueco, David; Quijandría, Fernando; Blas, Diego; Pujòlas, Oriol

    2014-03-01

    Lorentz invariance (LI) is one of the best tested symmetries of Nature. It is natural to think that LI is a fundamental property. However, this does not need to be so. In fact, it could be an emergent symmetry in the low energy world. One motivation on Lorentz-violating theories may come from consistent non-relativistic models of gravity, where LI appears at low energies. The basic approach is by taking two interacting quantum fields. The bare (uncoupled fields) have different light velocities, say v1 and v2. The coupling tends to ``synchronize'' those velocities providing a common light velocity: the LI emergence. So far, only perturbative calculations are available. In this perturbative regime the emergence of LI is too slow. Therefore it is mandatory going beyond perturbative calculations. In this talk I will discuss that such models for emergent Lorentz Invariance can be simulated in an analog quantum simulator. In 1+1 dimensions two transmission lines coupled trough Josephson Junctions do the job. We show that the emergence can be checked by measuring photon correlations. Everything within the state of the art in circuit QED. We show that our proposal can provide a definite answer about the LI emergence hypothesis in the strong coupling regime.

  7. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  9. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  10. Comparison of various approaches to the calculation of optically induced forces

    SciTech Connect

    Torchigin, V.P. Torchigin, A.V.

    2012-09-15

    Various approaches used for the calculation of optically induced forces applied to a transparent optical medium imbedded in a close plane optical resonator are analyzed. The forces are calculated by means of analysis of a change in the eigen frequency and energy stored in the resonator at various positions of the medium. It is shown that results obtained are identical to those calculated by means of approaches based on the Maxwell stress tensor, based on an analysis of a change in the momentum of light. An exception is for results obtained on the base of last versions of the Lorentz density force. - Highlights: Black-Right-Pointing-Pointer There are no Lorentz forces in a homogeneous optical medium. Black-Right-Pointing-Pointer A net force produced by an inhomogeneous electrostriction pressure is equal to zero. Black-Right-Pointing-Pointer Any distributions of the Lorentz force in a homogeneous optical medium are misleading.

  11. Dipole-field sums and Lorentz factors for orthorhombic lattices, and implications for polarizable molecules

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Taylor, P. L.

    1982-01-01

    A method for computing the Lorentz tensor components in single crystals via rapidly convergent sums of Bessels functions is developed using the relationship between dipole-field sums and the tensor components. The Lorentz factors for simple, body-centered, and base-centered orthorhombic lattices are computed using this method, and the derivative Lorentz factors for simple orthorhombic lattices are also determined. Both the Lorentz factors and their derivatives are shown to be very sensitive to a lattice structure. The equivalent of the Clausius-Mossotti relation for general orthorhombic lattices is derived using the Lorentz-factor formalism, and the permanent molecular dipole moment is related to crystal polarization for the case of a ferroelectric of polarizable point dipoles. It is concluded that the polarization enhancement due to self-polarization familiar from classical theory may actually be a reduction in consequences of negative Lorentz factors in one or two lattice directions for noncubic crystals.

  12. Searches for Lorentz and CPT Violation with Fermions in Penning Traps

    NASA Astrophysics Data System (ADS)

    Ding, Yunhua; Kostelecký, V. Alan

    2015-04-01

    A theoretical analysis is performed of the prospects for detecting Lorentz and CPT violation in Penning-trap experiments with trapped particles and antiparticles. Using the general effective field theory called the Standard-Model Extension, we study signals in anomaly and cyclotron frequencies arising from Lorentz- and CPT-violating operators of arbitrary mass dimensions. Constraints on coefficients for Lorentz and CPT violation are extracted from existing data, and sensitivities attainable in forthcoming Penning-trap experiments are discussed.

  13. Hydrogen and antihydrogen spectroscopy for studies of CPT and Lorentz symmetry

    SciTech Connect

    Bluhm, Robert; Kostelecky, V. Alan; Russell, Neil

    1999-01-15

    A theoretical study of possible signals for CPT and Lorentz violation arising in hydrogen and antihydrogen spectroscopy is described. The analysis uses a CPT- and Lorentz-violating extension of quantum electrodynamics, obtained from a general Lorentz-violating extension of the minimal standard model with both CPT-even and CPT-odd terms. Certain 1S-2S transitions and hyperfine Zeeman lines exhibit effects at leading order in small CPT-violating couplings.

  14. Hydrogen and antihydrogen spectroscopy for studies of CPT and Lorentz symmetry

    SciTech Connect

    Bluhm, R.; Kostelecky, V.A.; Russell, N.

    1999-01-01

    A theoretical study of possible signals for CPT and Lorentz violation arising in hydrogen and antihydrogen spectroscopy is described. The analysis uses a CPT- and Lorentz-violating extension of quantum electrodynamics, obtained from a general Lorentz-violating extension of the minimal standard model with both CPT-even and CPT-odd terms. Certain 1S-2S transitions and hyperfine Zeeman lines exhibit effects at leading order in small CPT-violating couplings. {copyright} {ital 1999 American Institute of Physics.}

  15. Scattering and confinement dynamics of Dirac particles in external electrostatic and Lorentz scalar potentials

    NASA Astrophysics Data System (ADS)

    M, Haritha; P, Durganandini

    2015-06-01

    We study the scattering and confinement of Dirac particles in external electrostatic and Lorentz scalar potentials. We use a numerical finite difference time -domain method to solve the equation and obtain the particle dynamics. We find qualitatively different dynamical behavior for electrostatic and Lorentz scalar potentials. Electrostatic potentials lead to Klein tunneling and do not exhibit confinement, while Lorentz scalar potentials inhibit Klein tunneling and exhibit confinement.

  16. Acceleration of Fast CME: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zhang, T. X.; Tan, A.

    2003-12-01

    The analysis of LASCO/SOHO, Skylab and Solar Maximum Mission (SMM) observations show that there are many CMEs initiated with streamer and flux-rope magnetic topology (Dere et al. 1999; St. Cyr et al., 1999; Plunkett et al., 2000). Two types of CMEs have been distinguished with different kinematic characteristics (MacQueen and Fisher, 1983; Andrews and Howard, 2001). These are fast CMEs with high initial speeds (i.e. constant speed) and slow CMEs with low initial speeds but gradual acceleration (i.e. accelerated CMEs). Efforts have been made to probe the underlying physics responsible for these dual characteristics. Low and Zhang (2002) proposed that fast and slow CMEs result from initial topology of the magnetic field characterized by normal and inverse quiescent prominences, respectively. Liu et al. have successfully performed a numerical MHD simulation for this scenario. In this presentation, we explore other possible processes using a 2.5D, time-dependent streamer and flux-rope MHD model (Wu and Guo, 1997) to investigate the dual kinematic properties of the CMEs by specifying the different initiation processes with a particular magnetic topology (i.e. inverse quiescent prominence magnetic topology). Two typical initiation processes are tested; (1) injection of the magnetic flux into the flux-rope causes additional Lorentz force to destabilize the streamer launching a CME (Wu et al., 1997) resulting in a category slow CME and (2) draining the plasma from the flux-rope together with flux injection leads to a balloon instability due to the magnetic buoyancy force which results in a impulsive eruption and launches a fast CME. References Andrews, M.D. and Howard, R.A., Space Sci. Rev., 95, 147, 2001 Dere, K.P. et al., Ap. J., 529, 575, 1999 Lin, et al., Proceedings of ICSC 2003: Solar Variability as an Input to the Earth's Environemnt, ESA-SP-535, 2003 (in press). Low, B.C. and Zhang, M., Ap. J., 564, L53, 2002. MacQueen, R.M. and Fisher, R.R., Solar Phys. 89, 89

  17. Rolamite acceleration sensor

    DOEpatents

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  18. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  19. Rolamite acceleration sensor

    DOEpatents

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  20. ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Sagi, Eran; Nakar, Ehud

    2012-04-10

    It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

  1. Vacuum electron acceleration by coherent dipole radiation

    SciTech Connect

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}

  2. Vacuum electron acceleration by coherent dipole radiation.

    PubMed

    Troha, A L; Van Meter, J R; Landahl, E C; Alvis, R M; Unterberg, Z A; Li, K; Luhmann, N C; Kerman, A K; Hartemann, F V

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. PMID:11969838

  3. Vacuum electron acceleration by coherent dipole radiation.

    PubMed

    Troha, A L; Van Meter, J R; Landahl, E C; Alvis, R M; Unterberg, Z A; Li, K; Luhmann, N C; Kerman, A K; Hartemann, F V

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically.

  4. Lorentz-invariant formulation of Cherenkov radiation by tachyons

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1972-01-01

    Previous treatments of Cherenkov radiation, electromagnetic and gravitational, by tachyons were in error because the prescription employed to cut off the divergent integral over frequency is not a Lorentz invariant procedure. The resulting equation of motion for the tachyon is therefore not covariant. The proper procedure requires an extended, deformable distribution of charge or mass and yields a particularly simple form for the tachyon's world line, one that could be deduced from simple invariance considerations. It is shown that Cherenkov radiation by tachyons implys their ultimate annihilation with an antitachyon and demonstrates a disturbing property of tachyons, namely the impossibility of specifying arbitrary Cauchy data even in a purely classical theory.

  5. Tests of CPT, Lorentz invariance and the WEP with antihydrogen

    SciTech Connect

    Holzscheiter, M.H.; ATHENA Collaboration

    1999-03-01

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. Equally well, such a system could be used for searches of violations of the Weak Equivalence Principle (WEP) at high precision. The author describes his plans to form a significant number of cold, trapped antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen and comment on possible first experiments.

  6. Properties of a consistent Lorentz-violating Abelian gauge theory

    SciTech Connect

    Alexandre, J.; Vergou, A.

    2011-06-15

    A Lorentz-violating modification of massless QED is proposed, with higher-order space derivatives for the photon field. The fermion dynamical mass generation is studied with the Schwinger-Dyson approach. Perturbative properties of the model are calculated at one-loop and discussed at higher-order loops, showing the consistency of the model. We explain that there is no contradiction with the definition of the speed of light c, although fermions see an effective light cone, with a maximum speed smaller than c.

  7. Modeling plasmonics: a Huygens subgridding scheme for Lorentz media.

    PubMed

    Hu, Zixuan; Ratner, Mark A; Seideman, Tamar

    2012-11-28

    Huygens subgridding for the grid-based solution of the Maxwell equations is a new and promising technique that enables accurate computation of mixed systems, by efficiently reducing the computational cost for simulating structures where increased spatial resolution is required in part of space. The Huygens subgridding approach has previously been derived and tested for perfect electric conductors and Debye media. This work introduces a Huygens subgridding method that is applicable to Lorentz media, thus opening a range of new applications in the field of plasmonics.

  8. The Need for a First-order Quasi Lorentz Transformation

    SciTech Connect

    Censor, D.

    2010-11-25

    Solving electromagnetic scattering problems involving non-uniformly moving objects or media requires an approximate but consistent extension of Einstein's Special Relativity theory, originally valid for constant velocities only. For moderately varying velocities a quasi Lorentz transformation is presented. The conditions for form-invariance of the Maxwell equations, the so-called ''principle of relativity'', are shown to hold for a broad class of motional modes and time scales. A simple example of scattering by a harmonically oscillating mirror is analyzed in detail. Application to generally orbiting objects is mentioned.

  9. Black hole entropy and Lorentz-diffeomorphism Noether charge

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Mohd, Arif

    2015-12-01

    We show that, in the first or second order orthonormal frame formalism, black hole entropy is the horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface. We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form and curvature 2-form, including general relativity, Lovelock gravity, and "topological" terms in four dimensions.

  10. Renormalization of high-energy Lorentz-violating QED

    SciTech Connect

    Anselmi, Damiano; Taiuti, Martina

    2010-04-15

    We study a QED extension that is unitary, CPT invariant, and super-renormalizable, but violates Lorentz symmetry at high energies, and contains higher-dimension operators (LVQED). Divergent diagrams are only one- and two-loop. We compute the one-loop renormalizations at high and low energies and analyze the relation between them. It emerges that the powerlike divergences of the low-energy theory are multiplied by arbitrary constants, inherited by the high-energy theory, and therefore can be set to zero at no cost, bypassing the hierarchy problem.

  11. A microwave inverse Cerenkov accelerator ({open_quotes}MICA{close_quotes})

    SciTech Connect

    Zhang, T.B.; Marshall, T.C.

    1995-12-31

    By {open_quotes}inverting{close_quotes} the stimulated Cerenkov effect to stimulated Cerenkov absorption, it is possible to build an electron accelerator device driven by high power microwaves that propagate in a slow-wave TM mode (axial E-field). An experiment now running at Brookhaven uses a powerful C02 laser and a 50MeV electron beam moving in a gas-loaded cell. Our approach is to use the 15MW available at 2.865GHz from a SLAC klystron to accelerate an electron beam provided from an rf gun ({approximately}6MeV, few psec pulses) to energy {approximately}20MeV. The use of microwaves permits a well defined group of electrons to be accelerated in a narrow window of phase. The waveguide is a cylinder, radius = 1.59cm, which contains an annular tube of alumina ({epsilon} = 9.4) having a hole about 1cm diameter, we show this will slow the waves to 0.9943c and permit electrons to be accelerated by a co-propagating field. This results in a relatively compact structure that has the advantage of a smooth-bore design and no need of magnetic focussing. We have solved for the wave dispersion in the structure, found the fields, and then used the Lorentz force equations to obtain the motion of a group of electrons distributed in radius and along the axis. We find the radial forces are focussing. Electrons in a well-defined filament (r < 0.5mm) remain collimated and do not strike the dielectric. Techniques for improving the dielectric breakdown of the surface should permit axial fields in the range of 100-200 kV/cm.

  12. Effects of electromagnetic forcing on self-sustained jet oscillations

    NASA Astrophysics Data System (ADS)

    Kalter, R.; Tummers, M. J.; Kenjereš, S.; Righolt, B. W.; Kleijn, C. R.

    2014-06-01

    The influence of electromagnetic forcing on self-sustained oscillations of a jet issuing from a submerged nozzle into a thin vertical cavity (width W much larger than thickness T) has been studied using particle image velocimetry. A permanent Lorentz force is produced by applying an electrical current across the width of the cavity in conjunction with a magnetic field from three permanent magnets across its thickness. As a working fluid a saline solution is used. The magnetic field is in the north-south-north configuration, such that the Lorentz force can be applied in an up-down-up configuration or in a down-up-down configuration by switching the direction of the electrical current. A critical Stuart number Nc was found. For N < Nc, the jet oscillates with a constant Strouhal number St, independent of the Reynolds number Re. For N > Nc and an oscillation enhancing up-down-up configuration of the Lorentz force, St grows with N as St ∝ sqrt{N}. In contrast, for N > Nc and an oscillation suppressing down-up-down configuration of the Lorentz force, all jet oscillations are suppressed.

  13. An analytical drilling force model and GPU-accelerated haptics-based simulation framework of the pilot drilling procedure for micro-implants surgery training.

    PubMed

    Zheng, Fei; Lu, Wen Feng; Wong, Yoke San; Foong, Kelvin Weng Chiong

    2012-12-01

    The placement of micro-implants is a common but relatively new surgical procedure in clinical dentistry. This paper presents a haptics-based simulation framework for the pilot drilling of micro-implants surgery to train orthodontists to successfully perform this essential procedure by tactile sensation, without damaging tooth roots. A voxel-based approach was employed to model the inhomogeneous oral tissues. A preprocessing pipeline was designed to reduce imaging noise, smooth segmentation results and construct an anatomically correct oral model from patient-specific data. In order to provide a physically based haptic feedback, an analytical drilling force model based on metal cutting principles was developed and adapted for the voxel-based approach. To improve the real-time response, the parallel computing power of Graphics Processing Units is exploited through extra efforts for data structure design, algorithms parallelization, and graphic memory utilization. A prototype system has been developed based on the proposed framework. Preliminary results show that, by using this framework, proper drilling force can be rendered at different tissue layers with reduced cycle time, while the visual display has also been enhanced.

  14. An improved correlation of the pressure drop in stenotic vessels using Lorentz's reciprocal theorem

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Jin; Sugiyama, Kazuyasu; Noda, Shigeho; He, Ying; Himeno, Ryutaro

    2015-02-01

    A mathematical model of the human cardiovascular system in conjunction with an accurate lumped model for a stenosis can provide better insights into the pressure wave propagation at pathological conditions. In this study, a theoretical relation between pressure drop and flow rate based on Lorentz's reciprocal theorem is derived, which offers an identity to describe the relevance of the geometry and the convective momentum transport to the drag force. A voxel-based simulator V-FLOW VOF3D, where the vessel geometry is expressed by using volume of fluid (VOF) functions, is employed to find the flow distribution in an idealized stenosis vessel and the identity was validated numerically. It is revealed from the correlation that the pressure drop of NS flow in a stenosis vessel can be decomposed into a linear term caused by Stokes flow with the same boundary conditions, and two nonlinear terms. Furthermore, the linear term for the pressure drop of Stokes flow can be summarized as a correlation by using a modified equation of lubrication theory, which gives favorable results compared to the numerical ones. The contribution of the nonlinear terms to the pressure drop was analyzed numerically, and it is found that geometric shape and momentum transport are the primary factors for the enhancement of drag force. This work paves a way to simulate the blood flow and pressure propagation under different stenosis conditions by using 1D mathematical model.

  15. Elementary Particles and Forces.

    ERIC Educational Resources Information Center

    Quigg, Chris

    1985-01-01

    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  16. Lorentz symmetric n-particle systems without ``multiple times''

    NASA Astrophysics Data System (ADS)

    Smith, Felix

    2013-05-01

    The need for multiple times in relativistic n-particle dynamics is a consequence of Minkowski's postulated symmetry between space and time coordinates in a space-time s = [x1 , . . ,x4 ] = [ x , y , z , ict ] , Eq. (1). Poincaré doubted the need for this space-time symmetry, believing Lorentz covariance could also prevail in some geometries with a three-dimensional position space and a quite different time coordinate. The Hubble expansion observed later justifies a specific geometry of this kind, a negatively curved position 3-space expanding with time at the Hubble rate lH (t) =lH , 0 + cΔt (F. T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005) and 35, 395 (2010)). Its position 4-vector is not s but q = [x1 , . . ,x4 ] = [ x , y , z , ilH (t) ] , and shows no 4-space symmetry. What is observed is always a difference 4-vector Δq = [ Δx , Δy , Δz , icΔt ] , and this displays the structure of Eq. (1) perfectly. Thus we find the standard 4-vector of special relativity in a geometry that does not require a Minkowski space-time at all, but a quite different geometry with a expanding 3-space symmetry and an independent time. The same Lorentz symmetry with but a single time extends to 2 and n-body systems.

  17. Noncommutativity in (2+1)-dimensions and the Lorentz group

    NASA Astrophysics Data System (ADS)

    Falomir, H.; Vega, F.; Gamboa, J.; Méndez, F.; Loewe, M.

    2012-11-01

    In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrödinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopp’s shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to noncommutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.

  18. A gyrokinetic collision operator for magnetized Lorentz plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Qin, Hong; Ma, Chenhao; Yu, Xiongjie

    2011-03-01

    A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field. The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates.

  19. Cosmic censorship in Lorentz-violating theories of gravity

    NASA Astrophysics Data System (ADS)

    Meiers, Michael; Saravani, Mehdi; Afshordi, Niayesh

    2016-05-01

    Is cosmic censorship special to general relativity, or can it survive a violation of local Lorentz invariance? Recent studies have shown that singularities in Lorentz -violating Einstein-Aether (or Horava-Lifshitz) theories can lie behind a universal horizon in simple black hole spacetimes. Even infinitely fast signals cannot escape these universal horizons. We extend this result, for an incompressible aether, to 3 +1 d dynamical or spinning spacetimes which possess inner Killing horizons, and show that a universal horizon always forms in between the outer and (would-be) inner horizons. This finding suggests a notion of cosmic censorship, given that geometry in these theories never evolves beyond the universal horizon (avoiding potentially singular inner Killing horizons). A surprising result is that there are 3 distinct possible stationary universal horizons for a spinning black hole, only one of which matches the dynamical spherical solution. This motivates dynamical studies of collapse in Einstein-Aether theories beyond spherical symmetry, which may reveal instabilities around the spherical solution.

  20. Acceleration and Collimation of Relativistic Magnetohydrodynamic Disk Winds

    NASA Astrophysics Data System (ADS)

    Porth, Oliver; Fendt, Christian

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 × 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied—an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically—implying three relativistically distinct regimes in the flow—an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface—similar to the spine-sheath structure

  1. ACCELERATION AND COLLIMATION OF RELATIVISTIC MAGNETOHYDRODYNAMIC DISK WINDS

    SciTech Connect

    Porth, Oliver; Fendt, Christian E-mail: fendt@mpia.d

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 x 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied-an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically-implying three relativistically distinct regimes in the flow-an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface-similar to the spine-sheath structure currently

  2. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT

  3. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT

  4. Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background

    SciTech Connect

    Bakke, K.; Belich, H.; Silva, E. O.

    2011-06-15

    Based on the discussions about the Aharonov-Casher effect in the Lorentz symmetry violation background, we show that the analogue of the relativistic Landau quantization in the Aharonov-Casher setup can be achieved in the Lorentz-symmetry violation background.

  5. Radiation from Accelerated Particles in Shocks and Reconnections

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Fishman, G. J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; Hartmann, D. H.

    2012-01-01

    We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jets propagating into an unmagnetized plasmas. Strong magnetic fields generated in the trailing shock contribute to the electrons transverse deflection and acceleration. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants

  6. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    SciTech Connect

    Katori, Teppei

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  7. Lorentz invariance and quantum gravity: an additional fine-tuning problem?

    PubMed

    Collins, John; Perez, Alejandro; Sudarsky, Daniel; Urrutia, Luis; Vucetich, Héctor

    2004-11-01

    Trying to combine standard quantum field theories with gravity leads to a breakdown of the usual structure of space time at around the Planck length, 1.6x10(-35) m, with possible violations of Lorentz invariance. Calculations of preferred-frame effects in quantum gravity have further motivated high precision searches for Lorentz violation. Here, we explain that combining known elementary particle interactions with a Planck-scale preferred frame gives rise to Lorentz violation at the percent level, some 20 orders of magnitude higher than earlier estimates, unless the bare parameters of the theory are unnaturally strongly fine tuned. Therefore an important task is not just the improvement of the precision of searches for violations of Lorentz invariance, but also the search for theoretical mechanisms for automatically preserving Lorentz invariance.

  8. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail.

  9. The neutrino electron accelerator

    SciTech Connect

    Shukla, P.K.; Stenflo, L.; Bingham, R.; Bethe, H.A.; Dawson, J.M.; Mendonca, J.T.

    1998-01-01

    It is shown that a wake of electron plasma oscillations can be created by the nonlinear ponderomotive force of an intense neutrino flux. The electrons trapped in the plasma wakefield will be accelerated to high energies. Such processes may be important in supernovas and pulsars. {copyright} {ital 1998 American Institute of Physics.}

  10. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  11. CONSTRAINTS ON THE LORENTZ INVARIANCE VIOLATION WITH GAMMA-RAY BURSTS VIA A MARKOV CHAIN MONTE CARLO APPROACH

    SciTech Connect

    Pan, Yu; Gong, Yungui; Cao, Shuo; Zhu, Zong-Hong; Gao, He

    2015-07-20

    In the quantum theory of gravity, for photons we expect the Lorentz Invariance Violation (LIV) and the modification of the dispersion relation between energy and momentum. The effect of the energy-dependent velocity due to the modified dispersion relation for photons was studied in the standard cosmological context by using a sample of gamma-ray bursts (GRBs). In this paper we mainly discuss the possible LIV effect of using different cosmological models for the accelerating universe. Due to the degeneracies among model parameters, the GRBs’ time delay data are combined with the cosmic microwave background data from the Planck first-year release, the baryon acoustic oscillation data at six different redshifts, and Union2 Type Ia supernovae data to constrain both the model parameters and the LIV effect. We find no evidence of the LIV.

  12. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  13. Noninvariance of space- and time-scale ranges under a Lorentz Transformation and the implications for the study of relativistic interactions.

    PubMed

    Vay, J-L

    2007-03-30

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived, for example, for the following cases: free electron laser, laser-plasma accelerator, and particle beams interacting with electron clouds. The implications for experimental, theoretical, and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems. PMID:17501172

  14. Noninvariance of space- and time-scale ranges under a Lorentz Transformation and the implications for the study of relativistic interactions.

    PubMed

    Vay, J-L

    2007-03-30

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived, for example, for the following cases: free electron laser, laser-plasma accelerator, and particle beams interacting with electron clouds. The implications for experimental, theoretical, and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems.

  15. Noninvariance of Space and Time Scale Ranges under a Lorentz Transformation and the Implications for the Numerical Study of Relativistic Systems

    SciTech Connect

    Vay, J.-L.; Vay, J.-L.

    2007-11-12

    We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems.

  16. New directions in linear accelerators

    SciTech Connect

    Jameson, R.A.

    1984-01-01

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures.

  17. Resolution of resonances with the Lorentz integral transform

    NASA Astrophysics Data System (ADS)

    Leidemann, Winfried

    2016-03-01

    The energy resolution of cross sections calculated with the Lorentz integral transform (LIT) method is investigated. It is shown that a crucial role is played by the density of LIT states obtained in the calculation. The situation is illustrated for the simple case of deuteron photodisintegration in unretarded dipole approximation. In a next step the 4He isoscalar monopole resonance is considered. It is pointed out that in a specific energy interval the density of LIT states may depend on the A-body basis chosen for the solution of the LIT equation. Using a central NN potential and choosing a proper A-body basis set it is shown that the width of the 4He isoscalar monopole resonance can be determined. A value of 180(70) keV is obtained, which is close to the experimental value of 270(50) keV.

  18. Dual properties of spacetime under an alternative Lorentz transformation

    NASA Technical Reports Server (NTRS)

    Chang, T.; Torr, D. G.

    1988-01-01

    A coordinate time, t(A), with absolute synchronization is defined as an alternative fourth spatial coordinate for model universes with flat space-time, and the theoretical implications of t(A) are explored in detail. Particular attention is given to a t(A)-based reformulation of the Lorentz transformation, the generalized Galilean transformation, which is found to offer significant advantages in understanding special-relativistic phenomena such as length contraction, time dilation, and the interaction of objects with the physical vacuum. With respect to astrophysical observations of superluminal motion, it is shown that the problem of causality violation can be avoided; the theory also predicts that weak anisotropic effects may be detectable in the earth reference frame.

  19. New methods of testing Lorentz violation in electrodynamics

    SciTech Connect

    Tobar, Michael Edmund; Fowler, Alison; Hartnett, John Gideon; Wolf, Peter

    2005-01-15

    We investigate experiments that are sensitive to the scalar and parity-odd coefficients for Lorentz violation in the photon sector of the standard model extension (SME). We show that of the classic tests of special relativity, Ives-Stilwell (IS) experiments are sensitive to the scalar coefficient, but at only parts in 10{sup 5} for the state-of-the-art experiment. We then propose asymmetric Mach-Zehnder interferometers with different electromagnetic properties in the two arms, including recycling techniques based on travelling wave resonators to improve the sensitivity. With present technology we estimate that the scalar and parity-odd coefficients may be measured with a sensitivity better than parts in 10{sup 11} and 10{sup 15} respectively.

  20. Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons

    SciTech Connect

    Altarev, I.; Gutsmiedl, E.; Baker, C. A.; Iaydjiev, P.; Ivanov, S. N.; Ban, G.; Lefort, T.; Naviliat-Cuncic, O.; Quemener, G.; Bodek, K.; Kistryn, S.; Zejma, J.; Daum, M.; Henneck, R.; Kirch, K.; Knecht, A.; Lauss, B.; Mtchedlishvili, A.; Petzoldt, G.

    2009-08-21

    A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and {sup 199}Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b{sub perpendicular}<2x10{sup -20} eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |g{sub n}|<0.3 eV/c{sup 2} m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |g{sub n}|<3x10{sup -4} eV/c{sup 2} m.

  1. Observability of Higgs mode in a system without Lorentz invariance

    NASA Astrophysics Data System (ADS)

    Han, Xinloong; Liu, Boyang; Hu, Jiangping

    2016-09-01

    We study the observability of the Higgs mode in BEC-BCS crossover. The observability of the Higgs mode is investigated by calculating the spectral weight functions of the amplitude fluctuation below the critical transition temperature. At zero temperature, we find that there are two sharp peaks on the spectral function of the amplitude fluctuation attributed to Goldstone and Higgs modes, respectively. As the system goes from the BCS to Bose-Einstein condensate (BEC) side, there is strong enhancement of spectral weight transfer from the Higgs to Goldstone mode. However, even at the unitary regime where the Lorentz invariance is lost, the sharp feature of the Higgs mode still exists. We specifically calculate the finite-temperature spectral function of the amplitude fluctuation at the unitary regime and show that the Higgs mode is observable at the temperature that present experiments can reach.

  2. Constraints and stability in vector theories with spontaneous Lorentz violation

    SciTech Connect

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus; Vrublevskis, Arturs

    2008-06-15

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stability of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.

  3. Bounding isotropic Lorentz violation using synchrotron losses at LEP

    SciTech Connect

    Altschul, Brett

    2009-11-01

    Some deviations from special relativity - especially isotropic effects - are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |{kappa}-tilde{sub tr}-(4/3)c{sub 00}| must be smaller than 5x10{sup -15}.

  4. Piezoelectric Tuner Compensation of Lorentz Detuning in Superconducting Cavities

    SciTech Connect

    G. Davis; Jean Delayen

    2003-05-12

    Pulsed operation of superconducting cavities can induce large variations of the resonant frequency through excitation of the mechanical modes by the radiation pressure. The phase and amplitude control system must be able to accommodate this frequency variation; this can be accomplished by increasing the capability of the rf power source. Alternatively, a piezo electric tuner can be activated at the same repetition rate as the rf to counteract the effect of the radiation pressure. We have demonstrated such a system on the prototype medium beta SNS cryomodule [1] with a reduction of the dynamic Lorentz detuning during the rf pulse by a factor of 3. We have also measured the amplitude and phase of the transfer function of the piezo control system (from input voltage to cavity frequency) up to several kHz [2].

  5. Spontaneous Lorentz symmetry breaking in non-linear electrodynamics

    SciTech Connect

    Urrutia, Luis F.

    2010-07-29

    A recently proposed model of non-linear electrodynamics arising from a gauge invariant spontaneous Lorentz symmetry breaking is reviewed. The potential providing the symmetry breaking is argued to arise from the integration of gauge bosons and fermions in an underlying theory. The invariant subgroups remaining after the symmetry breaking are determined, as well as the dispersion relations and polarization modes of the propagating linear sector or the model. Strong bounds upon the predicted anisotropy of the speed of light are obtained by embedding the model in the electromagnetic sector of the Standard Model Extension and taking advantage of the restrictions in the parameters derived there. Finally, a reasonable estimation of the intergalactic magnetic field is obtained by assuming that the vacuum energy of the model is described by the standard cosmological constant.

  6. Singular Lorentz-violating Lagrangians and associated Finsler structures

    NASA Astrophysics Data System (ADS)

    Colladay, Don; McDonald, Patrick

    2015-10-01

    Several Lagrangians associated with classical limits of Lorentz-violating fermions in the standard model extension (SME) have been shown to yield Finsler functions when the theory is expressed in Euclidean space. When spin couplings are present, the Lagrangian can develop singularities that obstruct the construction of a globally defined Legendre transformation, leading to singular Finsler spaces. A specific sector of the SME where such problems arise is studied. It is found that the singular behavior can be eliminated by an appropriate lifting of the problem to an associated algebraic variety. This provides a smooth classical model for the singular problem. In Euclidean space, the procedure involves combining two related singular Finsler functions into a single smooth function with a semi-positive-definite quadratic form defined on a desingularized variety.

  7. Bounding isotropic Lorentz violation using synchrotron losses at LEP

    NASA Astrophysics Data System (ADS)

    Altschul, Brett

    2009-11-01

    Some deviations from special relativity—especially isotropic effects—are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |κ˜tr-(4)/(3)c00| must be smaller than 5×10-15.

  8. Stability and Acceleration of Solar Flux Ropes: Application to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Schuck, Peter; Chen, James

    2006-10-01

    The dynamics of solar flux ropes have received much attention in connection with coronal mass ejections (CMEs). A major unanswered question is how initial quasi-equilibrium flux ropes are driven. The Lorentz hoop force, originally derived for toroidal tokamak equilibrium, has been extented to expanding solar flux ropes with stationary footpoints [1]. We discuss the results of extensive comparisons between calculated flux-rope dynamics and recently observed CME dynamics (17 events). The agreement is found to be very good. In particular, the intrinsic spatial and temporal scales produced by the model equations are manifested in observed CME acceleration profiles [2]. More recently, a simplified equation based on the same concept has been proposed to describe CME dynamics [3]. This equation describes a system with no fixed footpoints and yields fundamentally different scales. We discuss how the differences are manifested in observed acceleration and how they can be used as observational discriminators. [1] Chen, J., Astrophy. J., 338, 453, 1989. Garren, D. and Chen, J., Phys. Plasmas, 1, 3425, 1994. Chen, J., J. Geophys. Res., 101, 27499, 1996. [2] Chen, J. and Krall, J., in press, Astrophys. J., 2006. [3] Kliem, B. and Torok, T., Phys. Rev. Lett., 96, 255002, 2006.

  9. Hidden in Plain View: The Material Invariance of Maxwell-Hertz-Lorentz Electrodynamics

    NASA Astrophysics Data System (ADS)

    Christov, C. I.

    2006-04-01

    Maxwell accounted for the apparent elastic behavior of the electromagnetic field through augmenting Ampere's law by the so-called displacement current much in the same way that he treated the viscoelasticity of gases. Original Maxwell constitutive relations for both electrodynamics and fluid dynamics were not material invariant, while combin- ing Faraday's law and the Lorentz force makes the first of Maxwell's equation material invariant. Later on, Oldroyd showed how to make a viscoelastic constitutive law mate- rial invariant. The main assumption was that the proper description of a constitutive law must be material invariant. Assuming that the electromagnetic field is a material field, we show here that if the upper convected Oldroyd derivative (related to Lie derivative) is used, the displacement current becomes material invariant. The new formulation ensures that the equation for conser- vation of charge is also material invariant which vindicates the choice of Oldroyd derivative over the standard convec- tive derivative. A material invariant field model is by ne- cessity Galilean invariant. We call the material field (the manifestation of which are the equations of electrodynam- ics the metacontinuum), in order to distinguish it form the standard material continua.

  10. E258K HCM-causing mutation in cardiac MyBP-C reduces contractile force and accelerates twitch kinetics by disrupting the cMyBP-C and myosin S2 interaction.

    PubMed

    De Lange, Willem J; Grimes, Adrian C; Hegge, Laura F; Spring, Alexander M; Brost, Taylor M; Ralphe, J Carter

    2013-09-01

    Mutations in cardiac myosin binding protein C (cMyBP-C) are prevalent causes of hypertrophic cardiomyopathy (HCM). Although HCM-causing truncation mutations in cMyBP-C are well studied, the growing number of disease-related cMyBP-C missense mutations remain poorly understood. Our objective was to define the primary contractile effect and molecular disease mechanisms of the prevalent cMyBP-C E258K HCM-causing mutation in nonremodeled murine engineered cardiac tissue (mECT). Wild-type and human E258K cMyBP-C were expressed in mECT lacking endogenous mouse cMyBP-C through adenoviral-mediated gene transfer. Expression of E258K cMyBP-C did not affect cardiac cell survival and was appropriately incorporated into the cardiac sarcomere. Functionally, expression of E258K cMyBP-C caused accelerated contractile kinetics and severely compromised twitch force amplitude in mECT. Yeast two-hybrid analysis revealed that E258K cMyBP-C abolished interaction between the N terminal of cMyBP-C and myosin heavy chain sub-fragment 2 (S2). Furthermore, this mutation increased the affinity between the N terminal of cMyBP-C and actin. Assessment of phosphorylation of three serine residues in cMyBP-C showed that aberrant phosphorylation of cMyBP-C is unlikely to be responsible for altering these interactions. We show that the E258K mutation in cMyBP-C abolishes interaction between N-terminal cMyBP-C and myosin S2 by directly disrupting the cMyBP-C-S2 interface, independent of cMyBP-C phosphorylation. Similar to cMyBP-C ablation or phosphorylation, abolition of this inhibitory interaction accelerates contractile kinetics. Additionally, the E258K mutation impaired force production of mECT, which suggests that in addition to the loss of physiological function, this mutation disrupts contractility possibly by tethering the thick and thin filament or acting as an internal load.

  11. Pre-acceleration from Landau-Lifshitz series

    NASA Astrophysics Data System (ADS)

    Zhang, Sen

    2013-12-01

    The Landau-Lifshitz equation is considered as an approximation of the Abraham-Lorentz-Dirac equation. It is derived from the Abraham-Lorentz-Dirac equation by treating radiation reaction terms as a perturbation. However, while the Abraham-Lorentz-Dirac equation has pathological solutions of pre-acceleration and runaway, the Landau-Lifshitz equation and its finite higher-order extensions are free of these problems. So it seems mysterious that the properties of the solutions of these two equations are so different. In this paper we show that the problems of pre-acceleration and runaway appear when one considers a series of all-order perturbation which we call the Landau-Lifshitz series. We show that the Landau-Lifshitz series diverges in general. Hence a resummation is necessary to obtain a well-defined solution from the Landau-Lifshitz series. This resummation leads the pre-accelerating and the runaway solutions. The analysis focuses on the non-relativistic case, but we can extend the results obtained here to the relativistic case, at least in one dimension.

  12. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  13. Searching for photon-sector Lorentz violation using gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew

    2016-10-01

    We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.

  14. CONSTRAINING THE LORENTZ FACTOR OF A RELATIVISTIC SOURCE FROM ITS THERMAL EMISSION

    SciTech Connect

    Zou, Yuan-Chuan; Cheng, K. S.; Wang, F. Y.

    2015-02-20

    We propose a direct and simple method to measure the Lorentz factor of relativistically expanding objects such as gamma-ray bursts (GRBs). Only three measurements, i.e., the thermal component of the emission, the distance, and the variable timescale of the light curve, are used. When the uncertainties are considered, we will obtain a lower limit of the Lorentz factor instead. We apply this method to GRB 090618 and get a lower limit of 22 for the Lorentz factor. This method can be used for any relativistically moving objects, such as GRBs and soft gamma-ray repeaters.

  15. Geometric relativistic phase from Lorentz symmetry breaking effects in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Belich, H.; Bakke, K.

    2016-04-01

    In this paper, we have investigated the arising of geometric quantum phases in a relativistic quantum dynamics of a Dirac neutral particle from the spontaneous Lorentz symmetry violation effects in the cosmic string spacetime. We started by the Dirac equation in an effective metric, and we have observed a relativistic geometric phase which stems from the topology of the cosmic string spacetime and an intrinsic Lorentz symmetry breaking effects. It is shown that both Lorentz symmetry breaking effects and the topology of the defect yields a phase shift in the wave function of the nonrelativistic spin-1/2 particle.

  16. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  17. Modified entropic force

    SciTech Connect

    Gao Changjun

    2010-04-15

    The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

  18. Numerical calculations of the driving force on an Abrikosov vortex

    NASA Astrophysics Data System (ADS)

    Chen, D.-X.; Pardo, E.; Sanchez, A.

    2010-05-01

    The driving force on an Abrikosov vortex is calculated numerically from the London equation and involved energies for a vortex perpendicular to the screening current near the surface of a superconductor. Compared with previous analytical derivation of the total force, the partial magnetic, kinematic, and external forces are also obtained so that the nature of the driving force may be deeply discussed. It is shown that the force is neither a Lorentz force nor a Magnus force as often believed and that in order to get a correct result, the image effects and the work done by the applied field must be taken into account. A name of London force is suggested for the driving force. A deep understanding of the nature of the driving force on Abrikosov vortices may also be important in the study of vortex pinning and dynamics in type-II superconductors.

  19. Anisotropic Hardy-Lorentz spaces and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yang, DaChun; Yuan, Wen

    2016-09-01

    Let $p\\in(0,1]$, $q\\in(0,\\infty]$ and $A$ be a general expansive matrix on $\\mathbb{R}^n$. The authors introduce the anisotropic Hardy-Lorentz space $H^{p,q}_A(\\mathbb{R}^n)$ associated with $A$ via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic or the molecular decompositions, the radial or the non-tangential maximal functions, or the finite atomic decompositions. All these characterizations except the $\\infty$-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on $\\mathbb{R}^n$. As applications, the authors first prove that $H^{p,q}_A(\\mathbb{R}^n)$ is an intermediate space between $H^{p_1,q_1}_A(\\mathbb{R}^n)$ and $H^{p_2,q_2}_A(\\mathbb{R}^n)$ with $0

  20. Testing Lorentz Invariance with Laser-Cooled Cesium Atomic Frequency Standards

    NASA Technical Reports Server (NTRS)

    Klipstein, William M.

    2004-01-01

    This slide presentation reviews the Lorentz invariance testing during the proposed PARCS experiment. It includes information on the primary atomic reference clock in space (PARCS), cesium, laser cooling, and the vision for the future.

  1. Energy positivity, non-renormalization, and holomorphy in Lorentz-violating supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Clark, Adam B.

    2014-01-01

    This paper shows that the positive-energy and non-renormalization theorems of traditional supersymmetry survive the addition of Lorentz violating interactions. The Lorentz-violating coupling constants in theories using the construction of Berger and Kostelecky must obey certain constraints in order to preserve the positive energy theorem. Seiberg's holomorphic arguments are used to prove that the superpotential remains non-renormalized (perturbatively) in the presence of Lorentz-violating interactions of the Berger-Kostelecky type. We briefly comment on Lorentz-violating theories of the type constructed by Nibbelink and Pospelov to note that holomorphy arguments offer elegant proofs of many non-renormalization results, some known by other arguments, some new.

  2. Two-pion exchange NN potential from Lorentz-invariant $\\chi$EFT

    SciTech Connect

    Higa, Renato; Robilotta, Manoel; da Rocha, Carlos A

    2006-10-12

    We outline the progress made in the past five years by the Sao Paulo group in the development of a two-pion exchange nucleon-nucleon potential within a Lorentz-invariant framework of (baryon) chiral perturbation theory.

  3. Generation of higher derivatives operators and electromagnetic wave propagation in a Lorentz-violation scenario

    NASA Astrophysics Data System (ADS)

    Borges, L. H. C.; Dias, A. G.; Ferrari, A. F.; Nascimento, J. R.; Petrov, A. Yu.

    2016-05-01

    We study the perturbative generation of higher-derivative Lorentz violating operators as quantum corrections to the photon effective action, originated from a specific Lorentz violation background, which has already been studied in connection with the physics of light pseudoscalars. We calculate the complete one loop effective action of the photon field through the proper-time method, using the zeta function regularization. This result can be used as a starting point to study possible effects of the Lorentz violating background we are considering in photon physics. As an example, we focus on the lowest order corrections and investigate whether they could influence the propagation of electromagnetic waves through the vacuum. We show, however, that no effects of the kind of Lorentz violation we consider can be detected in such a context, so that other aspects of photon physics have to be studied.

  4. Testing Lorentz invariance using an odd-parity asymmetric optical resonator

    SciTech Connect

    Baynes, Fred N.; Luiten, Andre N.; Tobar, Michael E.

    2011-10-15

    We present the first experimental test of Lorentz invariance using the frequency difference between counter-propagating modes in an asymmetric odd-parity optical resonator. This type of test is {approx}10{sup 4} more sensitive to odd-parity and isotropic (scalar) violations of Lorentz invariance than equivalent conventional even-parity experiments due to the asymmetry of the optical resonator. The disadvantages of odd-parity resonators have been negated by the use of counter-propagating modes, delivering a high level of immunity to environmental fluctuations. With a nonrotating experiment our result limits the isotropic Lorentz violating parameter {kappa}-tilde{sub tr} to 3.4{+-}6.2x10{sup -9}, the best reported constraint from direct measurements. Using this technique the bounds on odd-parity and scalar violations of Lorentz invariance can be improved by many orders of magnitude.

  5. Zero Density of Open Paths in the Lorentz Mirror Model for Arbitrary Mirror Probability

    NASA Astrophysics Data System (ADS)

    Kraemer, Atahualpa S.; Sanders, David P.

    2014-09-01

    We show, incorporating results obtained from numerical simulations, that in the Lorentz mirror model, the density of open paths in any finite box tends to 0 as the box size tends to infinity, for any mirror probability.

  6. Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres.

    PubMed

    Jacak, Witold A

    2015-02-23

    An inclusion of the Lorentz friction to the damping of plasmons in metallic nanosphere is performed within the random phase approximation quasiclassical approach. The explanation of the experimentally observed anomalous red shift of plasmon resonance frequency with increase of the metallic particle radius for a large size limit is given and the perfect coincidence of the measured plasmon resonance red shift for Au nanospheres with radii 10 - 75 nm and the theory with accurately included Lorentz friction is demonstrated. PMID:25836484

  7. New parametrization of lorentz transformations and tachyonic motion in special theory of relativity

    SciTech Connect

    Kapuscik, E.

    2011-06-15

    Assuming the existence of an invariant velocity a slightly generalized form of Lorentz transformations is derived. The group of these transformations has a simpler composition law than the group of standard Lorentz transformations has. It is shown that this new form allows the description of both subluminal and superluminal motions. It also allows to find all velocity-dependent tensors. In particular, the tachyonic momentum as a function of superluminal velocity is derived.

  8. Laboratory Test of Newton's Second Law for Small Accelerations

    SciTech Connect

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10{sup -14} m/s{sup 2}.

  9. Laboratory test of Newton's second law for small accelerations.

    PubMed

    Gundlach, J H; Schlamminger, S; Spitzer, C D; Choi, K-Y; Woodahl, B A; Coy, J J; Fischbach, E

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2).

  10. Testing the Lorentz Invariance of Light with a Birefringent Cavity

    NASA Astrophysics Data System (ADS)

    Hohensee, Michael; Monsalve, Francisco; Müller, Holger

    2010-03-01

    We report on the progress of a novel experimental test of the isotropy of c, based on measuring the birefringence of a single optical cavity. Tests of the isotropy of c typically compare the phase velocities of two orthogonally propagating optical modes. Using pairs of high-finesse optical cavities, such tests have constrained direction-dependent variations in the speed of light to the level of parts per 10^17 [1-2]. The precision of these tests is presently limited by systematic stochastic fluctuations in the relative length of such cavities. We have developed an experiment which compares the phase velocities of two orthogonally polarized optical modes in a single high-finesse dielectric-filled optical cavity. Since anisotropies in c can make otherwise isotropic materials optically birefringent [3-4], we anticipate that we will be able to place significantly tighter constraints on Lorentz violation for photons. [4pt] [1] S. Herrmann, A. Senger, K. Möhle, M. Nagel, E.V. Kovalchuk and A. Peters, PRD 80, 105011 (2009).[2] Ch. Eisel, A. Yu. Nevsky, and S. Schiller, PRL 103, 090401 (2009).[3] H. Müller, PRD 71, 045004 (2005).[4] V.A. Kosteleck'y and M. Mewes, PRD 80, 015020 (2009).

  11. Completing Lorentz violating massive gravity at high energies

    SciTech Connect

    Blas, D.; Sibiryakov, S.

    2015-03-15

    Theories with massive gravitons are interesting for a variety of physical applications, ranging from cosmological phenomena to holographic modeling of condensed matter systems. To date, they have been formulated as effective field theories with a cutoff proportional to a positive power of the graviton mass m{sub g} and much smaller than that of the massless theory (M{sub P} ≈ 10{sup 19} GeV in the case of general relativity). In this paper, we present an ultraviolet completion for massive gravity valid up to a high energy scale independent of the graviton mass. The construction is based on the existence of a preferred time foliation combined with spontaneous condensation of vector fields. The perturbations of these fields are massive and below their mass, the theory reduces to a model of Lorentz violating massive gravity. The latter theory possesses instantaneous modes whose consistent quantization we discuss in detail. We briefly study some modifications to gravitational phenomenology at low-energies. The homogeneous cosmological solutions are the same as in the standard cosmology. The gravitational potential of point sources agrees with the Newtonian one at distances small with respect to m{sub g}{sup −1}. Interestingly, it becomes repulsive at larger distances.

  12. On the Lorentz invariance of bit-string geometry

    SciTech Connect

    Noyes, H.P.

    1995-09-01

    We construct the class of integer-sided triangles and tetrahedra that respectively correspond to two or three discriminately independent bit-strings. In order to specify integer coordinates in this space, we take one vertex of a regular tetrahedron whose common edge length is an even integer as the origin of a line of integer length to the {open_quotes}point{close_quotes} and three integer distances to this {open_quotes}point{close_quotes} from the three remaining vertices of the reference tetrahedron. This - usually chiral - integer coordinate description of bit-string geometry is possible because three discriminately independent bit-strings generate four more; the Hamming measures of these seven strings always allow this geometrical interpretation. On another occasion we intend to prove the rotational invariance of this coordinate description. By identifying the corners of these figures with the positions of recording counters whose clocks are synchronized using the Einstein convention, we define velocities in this space. This suggests that it may be possible to define boosts and discrete Lorentz transformations in a space of integer coordinates. We relate this description to our previous work on measurement accuracy and the discrete ordered calculus of Etter and Kauffman (DOC).

  13. Stars and (furry) black holes in Lorentz breaking massive gravity

    NASA Astrophysics Data System (ADS)

    Comelli, D.; Nesti, F.; Pilo, L.

    2011-04-01

    We study the exact spherically symmetric solutions in a class of Lorentz-breaking massive gravity theories, using the effective-theory approach where the graviton mass is generated by the interaction with a suitable set of Stückelberg fields. We find explicitly the exact black-hole solutions which generalizes the familiar Schwarzschild one, which shows a nonanalytic hair in the form of a powerlike term rγ. For realistic self-gravitating bodies, we find interesting features, linked to the effective violation of the Gauss law: (i) the total gravitational mass appearing in the standard 1/r term gets a multiplicative renormalization proportional to the area of the body itself; (ii) the magnitude of the powerlike hairy correction is also linked to size of the body. The novel features can be ascribed to the presence of the Goldstones fluid turned on by matter inside the body; its equation of state approaching that of dark energy near the center. The Goldstones fluid also changes the matter equilibrium pressure, leading to an upper limit for the graviton mass, m≲10-28÷29eV, derived from the largest stable gravitational bound states in the Universe.

  14. Lorentz violation in the gravity sector: The t puzzle

    NASA Astrophysics Data System (ADS)

    Bonder, Yuri

    2015-06-01

    Lorentz violation is a candidate quantum-gravity signal, and the Standard-Model Extension (SME) is a widely used parametrization of such a violation. In the gravitational SME sector, there is an elusive coefficient for which no effects have been found. This is known as the t puzzle and, to date, it has no compelling explanation. This paper analyzes whether there is a fundamental explanation for the t puzzle. To tackle this question, several approaches are followed. Mainly, redefinitions of the dynamical fields are studied, showing that other SME coefficients can be moved to nongravitational sectors. It is also found that the gravity SME sector can be consistently treated à la Palatini, and that, in the presence of spacetime boundaries, it is possible to correct its action to get the desired equations of motion. Moreover, through a reformulation as a Lanczos-type tensor, some problematic features of the t term, which should arise at the phenomenological level, are revealed. The most important conclusion of the paper is that there is no evidence of a fundamental explanation for the t puzzle, suggesting that it may be linked to the approximations taken at the phenomenological level.

  15. Test of Lorentz invariance in β decay of polarized 20Na

    NASA Astrophysics Data System (ADS)

    Sytema, A.; van den Berg, J. E.; Böll, O.; Chernowitz, D.; Dijck, E. A.; Grasdijk, J. O.; Hoekstra, S.; Jungmann, K.; Mathavan, S. C.; Meinema, C.; Mohanty, A.; Müller, S. E.; Noordmans, J. P.; Nuñez Portela, M.; Onderwater, C. J. G.; Pijpker, C.; Timmermans, R. G. E.; Vos, K. K.; Willmann, L.; Wilschut, H. W.

    2016-08-01

    Background: Lorentz invariance is key in our understanding of nature, yet relatively few experiments have tested Lorentz invariance in weak interactions. Purpose: Our goal is to obtain limits on Lorentz-invariance violation in weak interactions, in particular rotational invariance in β decay. Method: We search for a dependence of the lifetime of 20Na nuclei on the nuclear spin direction. Such directional dependence would be evidence for Lorentz-invariance violation in weak interactions. A difference in lifetime between nuclei that are polarized in the east and west direction is searched for. This difference is maximally sensitive to the rotation of the Earth, while the sidereal dependence is free from most systematic errors. Results: The experiment sets a limit of 2 ×10-4 at 90% C.L. on the amplitude of the sidereal variation of the relative lifetime differences, an improvement by a factor 15 compared to an earlier result. Conclusions: No significant violation of Lorentz invariance is found. The result sets limits on parameters of theories describing Lorentz-invariance violation.

  16. Direct terrestrial test of Lorentz symmetry in electrodynamics to 10−18

    PubMed Central

    Nagel, Moritz; Parker, Stephen R.; Kovalchuk, Evgeny V.; Stanwix, Paul L.; Hartnett, John G.; Ivanov, Eugene N.; Peters, Achim; Tobar, Michael E.

    2015-01-01

    Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson–Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10−19 (95% confidence interval). This order of magnitude improvement over previous Michelson–Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry. PMID:26323989

  17. Direct terrestrial test of Lorentz symmetry in electrodynamics to 10(-18).

    PubMed

    Nagel, Moritz; Parker, Stephen R; Kovalchuk, Evgeny V; Stanwix, Paul L; Hartnett, John G; Ivanov, Eugene N; Peters, Achim; Tobar, Michael E

    2015-09-01

    Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.

  18. Direct terrestrial test of Lorentz symmetry in electrodynamics to 10(-18).

    PubMed

    Nagel, Moritz; Parker, Stephen R; Kovalchuk, Evgeny V; Stanwix, Paul L; Hartnett, John G; Ivanov, Eugene N; Peters, Achim; Tobar, Michael E

    2015-01-01

    Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry. PMID:26323989

  19. Radiative damping in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  20. ACCELERATION INTEGRATING MEANS

    DOEpatents

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  1. Force balance in the magnetospheres of Jupiter and Saturn

    SciTech Connect

    Mcnutt, R.L. Jr.

    1983-01-01

    Spacecraft measurements of the plasma populations and magnetic fields near Jupiter and Saturn have revealed that large magnetospheres surround both planets. Magnetic field measurements have indicated closed field line topologies in the dayside magnetospheres of both planets while plasma instruments have shown these regions to be populated by both hot and cold plasma components convected azimuthally in the sense of planetary rotation. By using published data from the Voyager Plasma Science (PLS), Low Energy Charged Particle (LECP), and Magnetometer (MAG) instruments, it is possible to investigate the validity of the time stationary MHD momentum equation in the middle magnetospheres of Jupiter and Saturn. At Saturn, the hot plasma population is negligible in the dynamic sense and the centrifugal force of the cold rotating plasma appears to balance the Lorentz force. At Jupiter, the centrifugal force balances about 25 percent of the Lorentz force. The remaining inward Lorentz force is balanced by pessure gradients in the hot, high-beta plasma of the Jovian magnetodisk.

  2. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  3. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  4. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  5. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  6. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  7. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  8. Conditions for Lorentz-invariant superluminal information transfer without signaling

    NASA Astrophysics Data System (ADS)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2016-03-01

    We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.

  9. THE ACCELERATING JET OF 3C 279

    SciTech Connect

    Bloom, S. D.; Fromm, C. M.; Ros, E.

    2013-01-01

    Analysis of the proper motions of the subparsec scale jet of the quasar 3C 279 at 15 GHz with the Very Long Baseline Array shows significant accelerations in four of nine superluminal features. Analysis of these motions is combined with the analysis of flux density light curves to constrain values of Lorentz factor and viewing angle (and their derivatives) for each component. The data for each of these components are consistent with significant changes to the Lorentz factor, viewing angle, and azimuthal angle, suggesting jet bending with changes in speed. We see that for these observed components Lorentz factors are in the range {Gamma} = 10-41, viewing angles are in the range thetav = 0. Degree-Sign 1-5. Degree-Sign 0, and intrinsic (source frame) flux density is in the range, F{sub {nu},int} 1.5 Multiplication-Sign 10{sup -9}-1.5 Multiplication-Sign 10{sup -5} Jy. Considering individual components, the Lorentz factors vary from {Gamma} = 11-16 for C1, {Gamma} = 31-41 for C5, {Gamma} = 29-41 for C6, and {Gamma} = 9-12 for C8, indicating that there is no single underlying flow speed to the jet and likely we are seeing pattern speeds from shocks in the jet. The viewing angles vary in time from 0. Degree-Sign 6 to 1. Degree-Sign 5 in the case of C1 (the least extreme example), from 0. Degree-Sign 5 to 5. Degree-Sign 0 in the case of C8, and from 0. Degree-Sign 1 to 0. Degree-Sign 9 for C5 (the last two being the most extreme examples). The intrinsic flux density varies by factors from 1.4 for C8 and 430 for C5. Theoretical analysis of the accelerations also indicates potential jet bending. In addition, for one component, C5, polarization measurements also set limits to the trajectory of the jet.

  10. Direct measurement of Lorentz transformation with Doppler effects

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    , r is the unit vector from lamphouse point to counters. Or: L (0) L (pi) =L0 (1+(v/c)) L0 (1 - (v/c)) =L0 2 y2 =L2 Or: L ≡ [L(0)L(pi)]1/2 =L0 y , which y ≡ (1 - (v/c)2 )1/2 is just Fitzgerald-Lorentzian contraction-factor. Also, when a light-wave period p is defined as time unit, from Doppler's frequency-shift the count N with p of one period T of moving-clock is: T(q) = N(q) p = T0 /(1+(v/c) cos q) Or: T ≡ (T(0) T(pi))1/2 = T 0 /y , where T0 is the proper period when v = 0, which is just the moving-clock-slower effect. Let r from clock point to lamp-house ((v/c) symbol reverse), Doppler formula in the usual form is: f (q) = 1/T(q) = f0 (1 - (v/c) cos q). Therefore, Lorentz transformation is the square root average of positive and negative directions twice metrical results of Doppler's frequency-shift, which Doppler's once items ( positive and negative v/c ) are counteract only residual twice item (v/c)2 (relativity-factor). Then Lorentz transformation can be directly measured by Doppler's frequency-shift method. The half-life of moving mu-meson is statistical average of many particles, the usual explanation using relativity-factor y is correct. An airship moving simultaneously along contrary directions is impossible, which makes that the relativity-factor y and the twin-paradox are inexistent in the macroscopical movement. Thereby, in the navigations of airship or satellite only use the measurement of Doppler's frequency-shift but have no use for Lorentz transformation.

  11. Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2011-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma

  12. Traceable periodic force calibration

    NASA Astrophysics Data System (ADS)

    Schlegel, Ch; Kieckenap, G.; Glöckner, B.; Buß, A.; Kumme, R.

    2012-06-01

    A procedure for dynamic force calibration using sinusoidal excitations of force transducers is described. The method is based on a sinusoidal excitation of force transducers equipped with an additional top mass excited with an electrodynamic shaker system. The acting dynamic force can in this way be determined according to Newton's law as mass times acceleration, whereby the acceleration is measured on the surface of the top mass with the aid of laser interferometers. The dynamic sensitivity, which is the ratio of the electrical output signal of the force transducer and the acting dynamic force, is the main point of interest of such a dynamic calibration. In addition to the sensitivity, the parameter stiffness and damping of the transducer can also be determined. The first part of the paper outlines a mathematical model to describe the dynamic behaviour of a transducer. This is followed by a presentation of the traceability of the measured quantities involved and their uncertainties. The paper finishes with an example calibration of a 25 kN strain gauge force transducer.

  13. Levitation forces in bearingless permanent magnet motors

    SciTech Connect

    Amrhein, W.; Silber, S.; Nenninger, K.

    1999-09-01

    Bearingless motors combine brushless AC-motors with active magnetic bearings by the integration of two separate winding systems (torque and radial levitation force windings with different pole pairs) in one housing. This paper gives an insight into the influences of the motor design on the levitation force and torque generation. It is shown that especially for machines with small air gaps it can be very important to choose the right design parameters. Increasing the permanent magnet height in order to increase the motor torque can result in a remarkable reduction of radial forces. The interrelationships are discussed on the basis of Maxwell and Lorentz forces acting upon the stator surface. The investigations are presented for a bearingless low cost motor, suited for pump, fan or blower applications. The presented motor needs only four coils for operation.

  14. Computational studies and optimization of wakefield accelerators

    SciTech Connect

    Tsung, Frank S.; Bruhwiler, David L.; Cary, John R.; Esarey, Eric H.; Mori, Warren B.; Vay, Jean-Luc; Martins, Samuel F.; Katsouleas, Tom; Cormier-Michel, Estelle; Fawley, William M.; Huang, Chengkun; Wang, Xiadong; Cowan, Ben; Decyk, Victor K.; Fonseca, Ricardo A.; Lu, Wei; Messmer, Peter; Mullowney, Paul; Nakamura, Kei; Paul, Kevin; Plateau, Guillaume R.; Schroeder, Carl B.; Silva, Luis O.; Toth, Csaba; Geddes, C.G.R.; Tzoufras, Michael; Antonsen, Tom; Vieira, Jorge; Leemans, Wim P.

    2008-06-16

    Laser- and particle beam-driven plasma wakefield accelerators produce accelerating fields thousands of times higher than radio-frequency accelerators, offering compactness and ultrafast bunches to extend the frontiers of high energy physics and to enable laboratory-scale radiation sources. Large-scale kinetic simulations provide essential understanding of accelerator physics to advance beam performance and stability and show and predict the physics behind recent demonstration of narrow energy spread bunches. Benchmarking between codes is establishing validity of the models used and, by testing new reduced models, is extending the reach of simulations to cover upcoming meter-scale multi-GeV experiments. This includes new models that exploit Lorentz boosted simulation frames to speed calculations. Simulations of experiments showed that recently demonstrated plasma gradient injection of electrons can be used as an injector to increase beam quality by orders of magnitude. Simulations are now also modeling accelerator stages of tens of GeV, staging of modules, and new positron sources to design next-generation experiments and to use in applications in high energy physics and light sources.

  15. Lorentz-Lorenz coefficient, critical point constants, and coexistence curve of 1,1-difluoroethylene.

    PubMed

    Fameli, Nicola; Balzarini, David A

    2005-11-01

    We report measurements of the Lorentz-Lorenz coefficient density dependence L(rho), the critical temperature Tc, and the critical density rho c of the fluid 1,1-difluoroethylene H2C2F2. Lorentz-Lorenz coefficient data were obtained by measuring refractive index n, and density rho of the same fluid sample independently of one another. Accurate determination of the Lorentz-Lorenz coefficient is necessary for the transformation of refractive index data into density data from optics-based experiments on critical phenomena of fluid systems done with different apparatuses, with which independent measurement of n and rho is not possible. Measurements were made along the coexistence curve of the fluid and span the density range 0.01 to 0.80 g cm(-3). The Lorentz-Lorenz coefficient results show a stronger density dependence along the coexistence curve than previously observed in other fluids, with a monotonic decrease from a density of about onward, and an overall variation of about 2.5% in the density range studied. No anomaly in the Lorentz-Lorenz function was observed near the critical density. The critical temperature is measured at Tc=(302.964+/-0.002) K (29.814 degrees C) and the measured critical density is rho c=(0.4195+/-0.0018) g cm(-3). PMID:16383686

  16. White matter shifts in MRI: Rehabilitating the Lorentz sphere in magnetic resonance.

    PubMed

    Barbara, Thomas M

    2016-09-01

    A thorough exposition and analysis of the role of the Lorentz sphere in magnetic resonance is presented from the fundamental standpoint of macroscopic magnetostatics. The analysis will be useful to those interested in understanding susceptibility and chemical shift contributions to frequency shifts in magnetic resonance. Though the topic is mature, recent research on white matter shifts in the brain promotes the notion of replacing the Lorentz sphere with a generalized Lorentzian cylinder, and has put into question the long standing spherical approach when elongated structures are present. The cavity shape issue can be resolved by applying Helmholtz's theorem, which can be expressed in a differential and an integral formulation. The general validity of the Lorentz sphere for any situation is confirmed. Furthermore, a clear exposition of the "generalized approach" is offered, using the language of Lorentz's theory. With the rehabilitation of the Lorentz sphere settled, one must consider alternative contributions to white matter shifts and a likely candidate is the effect of molecular environment on chemical shifts. PMID:27393892

  17. White matter shifts in MRI: Rehabilitating the Lorentz sphere in magnetic resonance

    NASA Astrophysics Data System (ADS)

    Barbara, Thomas M.

    2016-09-01

    A thorough exposition and analysis of the role of the Lorentz sphere in magnetic resonance is presented from the fundamental standpoint of macroscopic magnetostatics. The analysis will be useful to those interested in understanding susceptibility and chemical shift contributions to frequency shifts in magnetic resonance. Though the topic is mature, recent research on white matter shifts in the brain promotes the notion of replacing the Lorentz sphere with a generalized Lorentzian cylinder, and has put into question the long standing spherical approach when elongated structures are present. The cavity shape issue can be resolved by applying Helmholtz's theorem, which can be expressed in a differential and an integral formulation. The general validity of the Lorentz sphere for any situation is confirmed. Furthermore, a clear exposition of the "generalized approach" is offered, using the language of Lorentz's theory. With the rehabilitation of the Lorentz sphere settled, one must consider alternative contributions to white matter shifts and a likely candidate is the effect of molecular environment on chemical shifts.

  18. On existence of a possible Lorentz invariant modified gravity in Weitzenböck spacetime

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Myrzakulov, Ratbay

    2015-11-01

    Modified gravity which was constructed by torsion scalar T, namely f(T) doesn't respect Lorentz symmetry. As an attempt to make a new torsion based modified gravity with Lorentz invariance, recently f(T,B) introduced where B=2nabla_{μ}T^{μ} (Bahamonde et al. in arXiv:1508.05120, 2015). We would argue, even when theory is constructed and done in a self-consistent form, but if we handle them properly, we observe that there is no Lorentz invariant teleparallel equivalent of f(R) gravity. All we found is that the f(R) gravity in which R must be computed in Weitzenböck spacetime, using Weitzenböck's connection, nor Levi-Civita connections is the only possible Lorentz invariant type of modified gravity. Consequently, f(T) gravity can not obey Lorentz symmetry not only in its orthodoxica form but even in this new framework f(T,B).

  19. Cosmological constraints on deviations from Lorentz invariance in gravity and dark matter

    SciTech Connect

    Audren, B.; Lesgourgues, J.; Sibiryakov, S.; Ivanov, M.M. E-mail: diego.blas@cern.ch E-mail: Julien.Lesgourgues@cern.ch

    2015-03-01

    We consider a scenario where local Lorentz invariance is violated by the existence of a preferred time direction at every space-time point. This scenario can arise in the context of quantum gravity and its description at low energies contains a unit time-like vector field which parameterizes the preferred direction. The particle physics tests of Lorentz invariance preclude a direct coupling of this vector to the fields of the Standard Model, but do not bear implications for dark matter. We discuss how the presence of this vector and its possible coupling to dark matter affect the evolution of the Universe. At the level of homogeneous cosmology the only effect of Lorentz invariance violation is a rescaling of the expansion rate. The physics is richer at the level of perturbations. We identify three effects crucial for observations: the rescaling of the matter contribution to the Poisson equation, the appearance of an extra contribution to the anisotropic stress and the scale-dependent enhancement of dark matter clustering. These effects result in distinctive features in the power spectra of the CMB and density fluctuations. Making use of the data from Planck and WiggleZ we obtain the most stringent cosmological constraints to date on departures from Lorentz symmetry. Our analysis provides the first direct bounds on deviations from Lorentz invariance in the dark matter sector.

  20. Eikonal approximation, Finsler structures, and implications for Lorentz-violating photons in weak gravitational fields

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2015-12-01

    In the current article, the classical analog of the minimal photon sector in the Lorentz-violating Standard-Model extension (SME) is investigated. The analysis is based on describing a photon classically by a geometric ray that satisfies the eikonal equation. The action principle, which leads to the eikonal equation in conventional optics, is demonstrated to work in most (but not all) Lorentz-violating cases as well. Furthermore it is found that the integrands of the action functional correspond to Finsler structures. Based on these results, Lorentz-violating light rays in a weak gravitational background are treated through the use of the minimal-coupling principle. This allows for obtaining sensitivities on Lorentz violation in the photon sector by measurements of light bending at massive bodies such as the Sun. The computations are carried out for the currently running ESA mission GAIA and the planned NASA/ESA mission LATOR. Finally, a range of aspects of explicit Lorentz violation for photons is discussed in the Finsler setting.