Science.gov

Sample records for accelerating protein gap

  1. Phospholipases as GTPase activity accelerating proteins (GAPs) in plants.

    PubMed

    Pandey, Sona

    2016-05-01

    GTPase activity accelerating proteins (GAPs) are key regulators of the G-protein signaling cycle. By facilitating effective hydrolysis of the GTP bound on Gα proteins, GAPs control the timing and amplitude of the signaling cycle and ascertain the availability of the inactive heterotrimer for the next round of activation. Until very recently, the studies of GAPs in plants were focused exclusively on the regulator of G-protein signaling (RGS) protein. We now show that phospholipase Dα1 (PLDα1) is also a bona fide GAP in plants and together with the RGS protein controls the level of active Gα protein. PMID:27124090

  2. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  3. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair.

    PubMed

    Morimatsu, Katsumi; Kowalczykowski, Stephen C

    2003-05-01

    Genetic evidence suggests that the RecF, RecO, and RecR (RecFOR) proteins participate in a common step of DNA recombination and repair, yet the biochemical event requiring collaboration of all three proteins is unknown. Here, we show that the concerted action of the RecFOR complex directs the loading of RecA protein specifically onto gapped DNA that is coated with single-stranded DNA binding (SSB) protein, thereby accelerating DNA strand exchange. The RecFOR complex recognizes the junction between the ssDNA and dsDNA regions and requires a base-paired 5' terminus at the junction. Thus, the RecFOR complex is a structure-specific mediator that targets recombinational repair to ssDNA-dsDNA junctions. This reaction reconstitutes the initial steps of recombinational gapped DNA repair and uncovers an event also common to the repair of ssDNA-tailed intermediates of dsDNA-break repair. We propose that the behavior of the RecFOR proteins is mimicked by functional counterparts that exist in all organisms. PMID:12769856

  4. Particle acceleration in the vacuum gaps in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Ptitsyna, K.; Neronov, A.

    2016-08-01

    Aims: We consider particle acceleration in the vacuum gaps in magnetospheres of black holes powered by the Blandford-Znajek mechanism and embedded in the radiatively-inefficient accretion flow (RIAF) environment. In this situation, the gap height is limited by the onset of gamma-gamma pair production on the infrared photons originating in the RIAF. Methods: We numerically calculated the acceleration and propagation of charged particles by taking the detailed structure of the electric and magnetic fields in the gap and in the entire black hole magnetosphere into account, as well as the radiative energy losses and interactions of γ-rays produced by the propagated charged particles with the background radiation field of the RIAF. Results: We show that the presence of the vacuum gap has clear observational signatures. The spectra of emission from gaps embedded in a relatively high-luminosity RIAF are dominated by the inverse Compton emission with a sharp, super-exponential cut-off in the very-high-energy gamma-ray band. The cut-off energy is determined by the properties of the RIAF and is largely independent of the structure of magnetosphere and geometry of the gap. The spectra of the gap residing in low-luminosity RIAFs are dominated by synchrotron or curvature emission with the spectra extending into 1-100 GeV energy range. We also consider the effect of possible acceleration of protons in the gap and find that proton energies could reach the ultra-high-energy cosmic ray (UHECR) range only in extremely low-luminosity RIAFs.

  5. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    SciTech Connect

    Noble, Robert J.; Spencer, James E.; Kuhlmey, Boris T.; /Sydney U.

    2011-08-19

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.

  6. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  7. Experimental Work With Photonic Band Gap Fiber: Building A Laser Electron Accelerator

    SciTech Connect

    Lincoln, Melissa; Ischebeck, Rasmus; Nobel, Robert; Siemann, Robert; /SLAC

    2006-09-29

    In the laser acceleration project E-163 at the Stanford Linear Accelerator Center, work is being done toward building a traveling wave accelerator that uses as its accelerating structure a length of photonic band gap fiber. The small scale of the optical fiber allows radiation at optical wavelengths to be used to provide the necessary accelerating energy. Optical wavelength driving energy in a small structure yields higher accelerating fields. The existence of a speed-of-light accelerating mode in a photonic band gap fiber has been calculated previously [1]. This paper presents an overview of several of the experimental challenges posed in the development of the proposed photonic band gap fiber accelerator system.

  8. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    PubMed

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  9. Longitudinal impedance measurement of an RK-TBA induction accelerating gap

    SciTech Connect

    Eylon, S.; Henestroza, E.; Kim, J.-S.; Houck, T.L.; Westenskow, G.A.; Yu, S.S.

    1997-05-01

    Induction accelerating gap designs are being studied for Relativistic Klystron Two-Beam Accelerator (RK-TBA) applications. The accelerating gap has to satisfy the following major requirements: hold-off of the applied accelerating voltage pulse, low transverse impedance to limit beam breakup, low longitudinal impedance at the beam-modulation frequency to minimize power loss. Various gap geometries, materials and novel insulating techniques were explored to optimize the gap design. We report on the experimental effort to evaluate the rf properties of the accelerating gaps in a simple pillbox cavity structure. The experimental cavity setup was designed using the AMOS, MAFIA and URMEL numerical codes. Longitudinal impedance measurements above beam-tube cut-off frequency using a single-wire measuring system are presented.

  10. Accelerated Plan for Closing the Gaps by 2015

    ERIC Educational Resources Information Center

    Texas Higher Education Coordinating Board, 2010

    2010-01-01

    Texas launched its ambitious strategic plan for higher education, "Closing the Gaps by 2015," in the year 2000 to create a statewide vision for closing the higher education gaps within Texas and between Texas and other leading states. The plan focuses on bringing Texas to national parity in four critical areas of higher education: participation,…

  11. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  12. Beam dynamics of a double-gap acceleration cell for ion implantation with multiple atomic species

    SciTech Connect

    Wadlinger, E.A.; Lysenko, W.P.; Rusnak, B.; Saadatmand, K.

    1997-02-01

    As a result of our work on ion implantation, we derived equations for the beam dynamics of a two-gap-resonator cavity for accelerating and bunching various ion species of varying energies with the cavity designed for one particular ion species of a given energy (the design-reference particle). A two gap structure is useful at low resonant frequencies where lumped circuit elements (inductors) can be used and the structure kept small. A single gap structure has the advantage that each gap can be independently phased to produce the desired beam dynamics behavior for various ion species and ion energies. However at low frequencies, single gap resonant structures can be large. We find that the two-gap structure, where the phase difference between gaps, for the design reference particle, is fixed at {pi} radians can give acceptable performance provided that the individual two gap cells in the entire accelerator are optimized for the ion species having the largest mass to charge ratio and having the maximum required output energy. Our equations show how to adjust the cavity phases and electric fields to obtain equivalent first-order accelerator performance for various ion species and energies. These equations allow for the effective evaluation of various accelerator concepts and can facilitate the tuning of a linac when changing energies and ion species. Extensive simulations have confirmed the efficacy of our equations. {copyright} {ital 1997 American Institute of Physics.}

  13. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGES

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  14. Coordinate Regulation of G Protein Signaling via Dynamic Interactions of Receptor and GAP

    PubMed Central

    Turcotte, Marc; Tang, Wei; Ross, Elliott M.

    2008-01-01

    Signal output from receptor–G-protein–effector modules is a dynamic function of the nucleotide exchange activity of the receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output when the receptor is active. Further, some effectors (e.g., phospholipase C-β) are themselves GAPs, and it is unclear how such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple combinations of protein–protein associations and interacting regulatory effects that allow such complex behaviors in this system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1 muscarinic receptor–Gq–phospholipase C-β1 module in which GTPase activities were varied by ∼104-fold. We provide multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state GTPase hydrolysis, thus further enhancing receptor activity

  15. One-Dimensional Electric Field Structure of an Outer Gap Accelerator

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Bo; Zhang, Li

    2006-10-01

    We re-study the one-dimensional electric field structure of an outer gap accelerator by considering the physical limit of trans-field height. Inside the outer gap, the charge depletion creates a large electric field along the magnetic field lines. Electrons and/or positrons are accelerated to ultra-relativistic energies by this longitudinal electric field, and then radiate γ-ray photons by curvature radiation. The collision of these γ-rays and ambient x-ray photons further produce radiating particles, resulting in a stationary gap. We solve the structure of this longitudinal electric field together with the distributions of electrons and positrons and γ-ray photons for an aligned rotator. Our results indicate that the outer gap can extend to the light cylinder using reasonable parameters.

  16. Accelerated protein crystal growth by protein thin film template

    NASA Astrophysics Data System (ADS)

    Pechkova, Eugenia; Nicolini, Claudio

    2001-11-01

    A new method based on Langmuir-Blodgett (LB) technology is presented for the template stimulation of protein crystal growth. The new approach allows the acceleration of the hen egg white lysozyme (HEWL) crystal growth rate in comparison with such a classical vapour diffusion method as hanging drop. Protein thin films were coated on the cover slide of the common crystallization plates. Lysozyme crystal growth was observed on the LB thin films of HEWL.

  17. Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.

    2003-01-01

    We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller

  18. Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover

    PubMed Central

    Farkas, Zoltán; Horvath, Peter; Bódi, Zoltán; Daraba, Andreea; Szamecz, Béla; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.; Pál, Csaba

    2015-01-01

    Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that

  19. Insulator Protein Helps Organize the Gaps in the Axon's Insulation.

    PubMed

    Robinson, Richard

    2015-01-01

    The protein P0 has long been known to play a crucial role in holding together the myelin sheath that insulates peripheral nerves. A new study reveals that P0 is also important for organizing the nodes of Ranvier that occupy the gaps in the insulation. Read the Research Article.

  20. Observation of wakefields in a beam-driven photonic band gap accelerating structure.

    SciTech Connect

    Conde, M.; Yusof, Z.; Power, J. G.; Jing, C.; Gao, F.; Antipov, S.; Xu, P.; Zheng, S.; Chen, H.; Tang, C.; Gai, W.; High Energy Physics; Euclid Techlabs LLC; Tsinghua Univ.

    2009-12-01

    Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM{sub 01}- and TM{sub 02}-like) and dipole (TM{sub 11}- and TM{sub 12}-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be {approx}10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to {approx} 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.

  1. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions.

    PubMed

    Nicholson, B J; Takemoto, L J; Hunkapiller, M W; Hood, L E; Revel, J P

    1983-03-01

    Liver gap junctions and gap-junction-like structures from eye lenses are each comprised of a single major protein (Mr 28,000 and 26,000, respectively). These proteins display different two-dimensional peptide fingerprints, distinct amino acid compositions, nonhomologous N-terminal amino acid sequences and different sensitivities to proteases when part of the intact junction. However, the junctional protein of each tissue is well conserved between species, as demonstrated previously for lens and now for liver in several mammalian species. The possiblity of tissue-specific gap junction proteins is discussed in the light of data suggesting that rat heart gap junctions are comprised of yet a third protein. PMID:6299583

  2. Human Articular Chondrocytes Express Multiple Gap Junction Proteins

    PubMed Central

    Mayan, Maria D.; Carpintero-Fernandez, Paula; Gago-Fuentes, Raquel; Martinez-de-Ilarduya, Oskar; Wang, Hong-Zhang; Valiunas, Virginijus; Brink, Peter; Blanco, Francisco J.

    2014-01-01

    Osteoarthritis (OA) is the most common joint disease and involves progressive degeneration of articular cartilage. The aim of this study was to investigate if chondrocytes from human articular cartilage express gap junction proteins called connexins (Cxs). We show that human chondrocytes in tissue express Cx43, Cx45, Cx32, and Cx46. We also find that primary chondrocytes from adults retain the capacity to form functional voltage-dependent gap junctions. Immunohistochemistry experiments in cartilage from OA patients revealed significantly elevated levels of Cx43 and Cx45 in the superficial zone and down through the next approximately 1000 μm of tissue. These zones corresponded with regions damaged in OA that also had high levels of proliferative cell nuclear antigen. An increased number of Cxs may help explain the increased proliferation of cells in clusters that finally lead to tissue homeostasis loss. Conversely, high levels of Cxs in OA cartilage reflect the increased number of adjacent cells in clusters that are able to interact directly by gap junctions as compared with hemichannels on single cells in normal cartilage. Our data provide strong evidence that OA patients have a loss of the usual ordered distribution of Cxs in the damaged zones and that the reductions in Cx43 levels are accompanied by the loss of correct Cx localization in the nondamaged areas. PMID:23416160

  3. High power experimental studies of hybrid photonic band gap accelerator structures

    NASA Astrophysics Data System (ADS)

    Zhang, JieXi; Munroe, Brian J.; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-08-01

    This paper reports the first high power tests of hybrid photonic band gap (PBG) accelerator structures. Three hybrid PBG (HPBG) structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM02 mode, with suppression of both lower order modes, such as the TM11 mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19 MV /m , corresponding to a surface electric field of 78 MV /m , with a breakdown probability of 5 ×10-1 per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20 MV /m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  4. Gap junction proteins and their role in spinal cord injury

    PubMed Central

    Tonkin, Ryan S.; Mao, Yilin; O’Carroll, Simon J.; Nicholson, Louise F. B.; Green, Colin R.; Gorrie, Catherine A.; Moalem-Taylor, Gila

    2015-01-01

    Gap junctions are specialized intercellular communication channels that are formed by two hexameric connexin hemichannels, one provided by each of the two adjacent cells. Gap junctions and hemichannels play an important role in regulating cellular metabolism, signaling, and functions in both normal and pathological conditions. Following spinal cord injury (SCI), there is damage and disturbance to the neuronal elements of the spinal cord including severing of axon tracts and rapid cell death. The initial mechanical disruption is followed by multiple secondary cascades that cause further tissue loss and dysfunction. Recent studies have implicated connexin proteins as playing a critical role in the secondary phase of SCI by propagating death signals through extensive glial networks. In this review, we bring together past and current studies to outline the distribution, changes and roles of various connexins found in neurons and glial cells, before and in response to SCI. We discuss the contribution of pathologically activated connexin proteins, in particular connexin 43, to functional recovery and neuropathic pain, as well as providing an update on potential connexin specific pharmacological agents to treat SCI. PMID:25610368

  5. High-Altitude Particle Acceleration and Radiation in Pulsar Slot Gaps

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2004-01-01

    We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, where for most relatively rapidly rotating pulsars both the standard small-angle approximation and the assumption that the magnetic field lines are ideal stream lines break down. We address the importance of the electrodynamic conditions at the SG boundaries and the occurrence of a steady-state drift of charged particles across the SG field lines at very high altitudes. These boundary conditions and the cross-field particle motion determine the asymptotic behavior of the scalar potential at all radii from the polar cap (PC) to near the light cylinder. As a result, we demonstrate that the steady-state accelerating electric field, E(sub ll), must approach a small and constant value at high altitude above the PC. This E(sub ll) is capable of maintaining electrons moving with high Lorentz factors (approx. a few x 10(exp 7)) and emitting curvature gamma-ray photons up to nearly the light cylinder. By numerical simulations, we show that primary electrons accelerating from the PC surface to high altitude in the SG along the outer edge of the open field region will form caustic emission patterns on the trailing dipole field lines. Acceleration and emission in such an extended SG may form the physical basis of a model that can successfully reproduce some pulsar high-energy light curves.

  6. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    PubMed

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients. PMID:21265597

  7. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect

    Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  8. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  9. Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics

    PubMed Central

    Mücksch, Christian; Urbassek, Herbert M.

    2013-01-01

    The atomistic modeling of protein adsorption on surfaces is hampered by the different time scales of the simulation ( s) and experiment (up to hours), and the accordingly different ‘final’ adsorption conformations. We provide evidence that the method of accelerated molecular dynamics is an efficient tool to obtain equilibrated adsorption states. As a model system we study the adsorption of the protein BMP-2 on graphite in an explicit salt water environment. We demonstrate that due to the considerably improved sampling of conformational space, accelerated molecular dynamics allows to observe the complete unfolding and spreading of the protein on the hydrophobic graphite surface. This result is in agreement with the general finding of protein denaturation upon contact with hydrophobic surfaces. PMID:23755156

  10. Attomole quantitation of protein separations with accelerator mass spectrometry

    SciTech Connect

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  11. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques

    PubMed Central

    Khorasani, Ali A; Weaver, James L; Salvador-Morales, Carolina

    2014-01-01

    On the cusp of widespread permeation of nanomedicine, academia, industry, and government have invested substantial financial resources in developing new ways to better treat diseases. Materials have unique physical and chemical properties at the nanoscale compared with their bulk or small-molecule analogs. These unique properties have been greatly advantageous in providing innovative solutions for medical treatments at the bench level. However, nanomedicine research has not yet fully permeated the clinical setting because of several limitations. Among these limitations are the lack of universal standards for characterizing nanomaterials and the limited knowledge that we possess regarding the interactions between nanomaterials and biological entities such as proteins. In this review, we report on recent developments in the characterization of nanomaterials as well as the newest information about the interactions between nanomaterials and proteins in the human body. We propose a standard set of techniques for universal characterization of nanomaterials. We also address relevant regulatory issues involved in the translational process for the development of drug molecules and drug delivery systems. Adherence and refinement of a universal standard in nanomaterial characterization as well as the acquisition of a deeper understanding of nanomaterials and proteins will likely accelerate the use of nanomedicine in common practice to a great extent. PMID:25525356

  12. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-01

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  13. Optimizing the configuration of a superconducting photonic band gap accelerator cavity to increase the maximum achievable gradients

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Kurennoy, Sergey S.; O'Hara, James F.; Olivas, Eric R.; Shchegolkov, Dmitry Yu.

    2014-02-01

    We present a design of a superconducting rf photonic band gap (SRF PBG) accelerator cell with specially shaped rods in order to reduce peak surface magnetic fields and improve the effectiveness of the PBG structure for suppression of higher order modes (HOMs). The ability of PBG structures to suppress long-range wakefields is especially beneficial for superconducting electron accelerators for high power free-electron lasers (FELs), which are designed to provide high current continuous duty electron beams. Using PBG structures to reduce the prominent beam-breakup phenomena due to HOMs will allow significantly increased beam-breakup thresholds. As a result, there will be possibilities for increasing the operation frequency of SRF accelerators and for the development of novel compact high-current accelerator modules for the FELs.

  14. GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes.

    PubMed Central

    Strittmatter, S M; Cannon, S C; Ross, E M; Higashijima, T; Fishman, M C

    1993-01-01

    The neuronal protein GAP-43 is thought to play a role in determining growth-cone motility, perhaps as an intracellular regulator of signal transduction, but its molecular mechanism of action has remained unclear. We find that GAP-43, when microinjected into Xenopus laevis oocytes, increases the oocyte response to G protein-coupled receptor agonists by 10- to 100-fold. Higher levels of GAP-43 cause a transient current flow, even without receptor stimulation. The GAP-43-induced current, like receptor-stimulated currents, is mediated by a calcium-activated chloride channel and can be desensitized by injection of inositol 1,4,5-trisphosphate. This suggests that neuronal GAP-43 may serve as an intracellular signal to greatly enhance the sensitivity of G protein-coupled receptor transduction. Images Fig. 1 Fig. 2 PMID:7685122

  15. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    PubMed

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-01-01

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans. PMID:26469632

  16. The influence of GAP-43 on orientation of cell division through G proteins.

    PubMed

    Huang, Rui; Zhao, Junpeng; Ju, Lili; Wen, Yujun; Xu, Qunyuan

    2015-12-01

    Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain.

  17. Quality protein maize for Africa: closing the protein inadequacy gap in vulnerable populations.

    PubMed

    Nuss, Emily T; Tanumihardjo, Sherry A

    2011-05-01

    Africa shares a unique relationship with maize (Zea mays). After its introduction from New World explorers, maize was quickly adopted as the cornerstone of local cuisine, especially in sub-Saharan countries. Although maize provides macro- and micronutrients required for humans, it lacks adequate amounts of the essential amino acids lysine and tryptophan. For those consuming >50% of their daily energy from maize, pandemic protein malnutrition may exist. Severe protein and energy malnutrition increases susceptibility to life-threatening diseases such as tuberculosis and gastroenteritis. A nutritionally superior maize cultivar named quality protein maize (QPM) represents nearly one-half century of research dedicated to malnutrition eradication. Compared with traditional maize types, QPM has twice the amount of lysine and tryptophan, as well as protein bioavailability that rivals milk casein. Animal and human studies suggest that substituting QPM for common maize results in improved health. However, QPM's practical contribution to maize-subsisting populations remains unresolved. Herein, total protein and essential amino acid requirements recommended by the WHO and the Institute of Medicine were applied to estimate QPM target intake levels for young children and adults, and these were compared with mean daily maize intakes by African country. The comparisons revealed that ~100 g QPM is required for children to maintain adequacy of lysine, the most limiting amino acid, and nearly 500 g is required for adults. This represents a 40% reduction in maize intake relative to common maize to meet protein requirements. The importance of maize in Africa underlines the potential for QPM to assist in closing the protein inadequacy gap.

  18. Acyl-Protein Thioesterase 2 Catalizes the Deacylation of Peripheral Membrane-Associated GAP-43

    PubMed Central

    Tomatis, Vanesa M.; Trenchi, Alejandra; Gomez, Guillermo A.; Daniotti, Jose L.

    2010-01-01

    An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution. PMID:21152083

  19. Accelerated chemical synthesis of peptides and small proteins

    PubMed Central

    Miranda, Les P.; Alewood, Paul F.

    1999-01-01

    The chemical synthesis of peptides and small proteins is a powerful complementary strategy to recombinant protein overexpression and is widely used in structural biology, immunology, protein engineering, and biomedical research. Despite considerable improvements in the fidelity of peptide chain assembly, side-chain protection, and postsynthesis analysis, a limiting factor in accessing polypeptides containing greater than 50 residues remains the time taken for chain assembly. The ultimate goal of this work is to establish highly efficient chemical procedures that achieve chain-assembly rates of approximately 10–15 residues per hour, thus underpinning the rapid chemical synthesis of long polypeptides and proteins, including cytokines, growth factors, protein domains, and small enzymes. Here we report Boc chemistry that employs O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU)/dimethyl sulfoxide in situ neutralization as the coupling agent and incorporates a protected amino acid residue every 5 min to produce peptides of good quality. This rapid coupling chemistry was successfully demonstrated by synthesizing several small to medium peptides, including the “difficult” C-terminal sequence of HIV-1 proteinase (residues 81–99); fragment 65–74 of the acyl carrier protein; conotoxin PnIA(A10L), a potent neuronal nicotinic receptor antagonist; and the pro-inflammatory chemotactic protein CP10, an 88-residue protein, by means of native chemical ligation. The benefits of this approach include enhanced ability to identify and characterize “difficult couplings,” rapid access to peptides for biological and structure–activity studies, and accelerated synthesis of tailored large peptide segments (<50 residues) for use in chemoselective ligation methods. PMID:9989998

  20. Acceleration of calcite kinetics by abalone nacre proteins

    SciTech Connect

    Fu, G; Qiu, S R; Orme, C A; Morse, D E; De Yoreo, J J

    2005-06-09

    The fascinating shapes and hierarchical designs of biomineralized structures have long been an inspiration to materials scientists because of the potential they suggest for biomolecular control over synthesis of crystalline materials. One prevailing view is that mineral-associated macromolecules are responsible for initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineral surfaces. Indeed, numerous studies have demonstrated that bio-organic additives can dramatically alter crystal shapes and growth-rates in vitro. However, previous molecular-scale studies revealing mechanisms of growth modification focused on small molecules such as amino acids or peptides and always observed growth inhibition. In contrast, studies using full proteins were non-quantitative and underlying sources of growth modification were ill-defined. Here we investigate interactions between proteins isolated from abalone shell nacre and growing surfaces of calcite. We find that these proteins significantly accelerate the molecular-scale kinetics and, though much larger than atomic steps, alter growth morphology through step-specific interactions that lower their free energies. We propose that these proteins act as surfactants to promote ion attachment at calcite surfaces.

  1. LRP6 acts as a scaffold protein in cardiac gap junction assembly.

    PubMed

    Li, Jun; Li, Changming; Liang, Dandan; Lv, Fei; Yuan, Tianyou; The, Erlinda; Ma, Xiue; Wu, Yahan; Zhen, Lixiao; Xie, Duanyang; Wang, Shiyi; Liu, Yuan; Huang, Jian; Shi, Jingyi; Liu, Yi; Shi, Dan; Xu, Liang; Lin, Li; Peng, Luying; Cui, Jianmin; Zhu, Weidong; Chen, Yi-Han

    2016-01-01

    Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor in the canonical Wnt/β-catenin signalling. Here, we report the scaffold function of LRP6 in gap junction formation of cardiomyocytes. Cardiac LRP6 is spatially restricted to intercalated discs and binds to gap junction protein connexin 43 (Cx43). A deficiency in LRP6 disrupts Cx43 gap junction formation and thereby impairs the cell-to-cell coupling, which is independent of Wnt/β-catenin signalling. The defect in Cx43 gap junction resulting from LRP6 reduction is attributable to the defective traffic of de novo Cx43 proteins from the endoplasmic reticulum to the Golgi apparatus, leading to the lysosomal degradation of Cx43 proteins. Accordingly, the hearts of conditional cardiac-specific Lrp6-knockout mice consistently exhibit overt reduction of Cx43 gap junction plaques without any abnormality in Wnt signalling and are predisposed to lethal arrhythmias. These findings uncover a distinct role of LRP6 as a platform for intracellular protein trafficking.

  2. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin

    PubMed Central

    Li, Yirong; Chen, Yabing; Huang, Xiang; Zhou, Meixian; Wu, Ren; Dong, Shengli; Pritchard, David G.; Fives-Taylor, Paula; Wu, Hui

    2010-01-01

    Summary Fap1-like serine-rich proteins are a new family of bacterial adhesins found in a variety of streptococci and staphylococci that have been implicated in bacterial pathogenesis. A gene cluster encoding glycosyltransferases and accessory Sec components is required for Fap1 glycosylation and biogenesis in Streptococcus parasanguinis. Here we report that the glycosylation-associated protein, Gap1, contributes to glycosylation and biogenesis of Fap1 by interacting with another glycosylation-associated protein, Gap3. Gap1 shares structural homology with glycosyltransferases. The gap1 mutant, like the gap3 mutant, produced an aberrantly-glycosylated Fap1 precursor and failed to produce mature Fap1, suggesting that Gap1 and Gap3 might function in concert in the Fap1 glycosylation and biogenesis. Indeed, Gap1 interacted with Gap3 in vitro and in vivo. A Gap1 amino-terminal motif, within a highly conserved domain of unknown function (DUF1975) identified in many bacterial glycosyltrasnferases, was required for the Gap1-Gap3 interaction. Deletion of one, four, and nine amino acids within the conserved motif gradually inhibited the Gap1-Gap3 interaction and diminished production of mature Fap1 and concurrently increased production of the Fap1 precursor. Consequently, bacterial adhesion to an in vitro tooth model was also reduced. These data demonstrate that the Gap1-Gap3 interaction is required for Fap1 biogenesis and Fap1-dependent bacterial adhesion. PMID:18826412

  3. Closing the Gap between Experiment and Theory: Crystal Growth by Temperature Accelerated Dynamics

    SciTech Connect

    Montalenti, F.; Sorensen, M. R.; Voter, A. F.

    2001-09-17

    We present atomistic simulations of crystal growth where realistic experimental deposition rates are reproduced, without needing any a priori information on the relevant diffusion processes. Using the temperature accelerated dynamics method, we simulate the deposition of 4 monolayers (ML) of Ag/Ag(100) at the rate of 0.075 ML/s, thus obtaining a boost of several orders of magnitude with respect to ordinary molecular dynamics. In the temperature range analyzed (0--70 K), steering and activated mechanisms compete in determining the surface roughness.

  4. cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), GTPase-activating protein of Ras

    SciTech Connect

    Li, Shaowei; Nakamura, Shun; Hattori, Seisuke

    1996-08-01

    We have previously isolated a novel Ras GTPase-activating protein (Ras GAP), Gapl{sup m}, from rat brain. Gap1{sup m} is considered to be a negative regulator of the Ras signaling pathways, like other Ras GAPs, neurofibromin, which is a gene product of the neurofibromatosis type I gene, and p120GAP. In this study we have isolated a human cDNA of this Gap and mapped the gene. The gene encodes a protein of 853 amino acids that shows 89% sequence identity to rat Gapl{sup m}. The human gene was mapped to chromosome 3 by PCR analysis on a panel of human-mouse hybrid cells. FISH analysis refined the location of the gene further to 3q22-q23. 11 refs., 2 figs.

  5. The Mr 28,000 gap junction proteins from rat heart and liver are different but related.

    PubMed

    Nicholson, B J; Gros, D B; Kent, S B; Hood, L E; Revel, J P

    1985-06-10

    The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens. PMID:2987225

  6. A Stretch of Polybasic Residues Mediates Cdc42 GTPase-activating Protein (CdGAP) Binding to Phosphatidylinositol 3,4,5-Trisphosphate and Regulates Its GAP Activity*

    PubMed Central

    Karimzadeh, Fereshteh; Primeau, Martin; Mountassif, Driss; Rouiller, Isabelle; Lamarche-Vane, Nathalie

    2012-01-01

    The Rho family of small GTPases are membrane-associated molecular switches involved in the control of a wide range of cellular activities, including cell migration, adhesion, and proliferation. Cdc42 GTPase-activating protein (CdGAP) is a phosphoprotein showing GAP activity toward Rac1 and Cdc42. CdGAP activity is regulated in an adhesion-dependent manner and more recently, we have identified CdGAP as a novel molecular target in signaling and an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells. In this study, we identified a small polybasic region (PBR) preceding the RhoGAP domain that mediates specific binding to negatively charged phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In vitro reconstitution of membrane vesicles loaded with prenylated Rac1 demonstrates that the PBR is required for full activation of CdGAP in the presence of PI(3,4,5)P3. In fibroblast cells, the expression of CdGAP protein mutants lacking an intact PBR shows a significant reduced ability of the protein mutants to induce cell rounding or to mediate negative effects on cell spreading. Furthermore, an intact PBR is required for CdGAP to inactivate Rac1 signaling into cells, whereas it is not essential in an in vitro context. Altogether, these studies reveal that specific interaction between negatively charged phospholipid PI(3,4,5)P3 and the stretch of polybasic residues preceding the RhoGAP domain regulates CdGAP activity in vivo and is required for its cellular functions. PMID:22518840

  7. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5' terminus: implication for repair of stalled replication forks.

    PubMed

    Morimatsu, Katsumi; Wu, Yun; Kowalczykowski, Stephen C

    2012-10-12

    The repair of single-stranded gaps in duplex DNA by homologous recombination requires the proteins of the RecF pathway. The assembly of RecA protein onto gapped DNA (gDNA) that is complexed with the single-stranded DNA-binding protein is accelerated by the RecF, RecO, and RecR (RecFOR) proteins. Here, we show the RecFOR proteins specifically target RecA protein to gDNA even in the presence of a thousand-fold excess of single-stranded DNA (ssDNA). The binding constant of RecF protein, in the presence of the RecOR proteins, to the junction of ssDNA and dsDNA within a gap is 1-2 nm, suggesting that a few RecF molecules in the cell are sufficient to recognize gDNA. We also found that the nucleation of a RecA filament on gDNA in the presence of the RecFOR proteins occurs at a faster rate than filament elongation, resulting in a RecA nucleoprotein filament on ssDNA for 1000-2000 nucleotides downstream (5' → 3') of the junction with duplex DNA. Thus, RecA loading by RecFOR is localized to a region close to a junction. RecFOR proteins also recognize RNA at the 5'-end of an RNA-DNA junction within an ssDNA gap, which is compatible with their role in the repair of lagging strand gaps at stalled replication forks. PMID:22902627

  8. Protein-Protein Interaction Inhibition (2P2I)-Oriented Chemical Library Accelerates Hit Discovery.

    PubMed

    Milhas, Sabine; Raux, Brigitt; Betzi, Stéphane; Derviaux, Carine; Roche, Philippe; Restouin, Audrey; Basse, Marie-Jeanne; Rebuffet, Etienne; Lugari, Adrien; Badol, Marion; Kashyap, Rudra; Lissitzky, Jean-Claude; Eydoux, Cécilia; Hamon, Véronique; Gourdel, Marie-Edith; Combes, Sébastien; Zimmermann, Pascale; Aurrand-Lions, Michel; Roux, Thomas; Rogers, Catherine; Müller, Susanne; Knapp, Stefan; Trinquet, Eric; Collette, Yves; Guillemot, Jean-Claude; Morelli, Xavier

    2016-08-19

    Protein-protein interactions (PPIs) represent an enormous source of opportunity for therapeutic intervention. We and others have recently pinpointed key rules that will help in identifying the next generation of innovative drugs to tackle this challenging class of targets within the next decade. We used these rules to design an oriented chemical library corresponding to a set of diverse "PPI-like" modulators with cores identified as privileged structures in therapeutics. In this work, we purchased the resulting 1664 structurally diverse compounds and evaluated them on a series of representative protein-protein interfaces with distinct "druggability" potential using homogeneous time-resolved fluorescence (HTRF) technology. For certain PPI classes, analysis of the hit rates revealed up to 100 enrichment factors compared with nonoriented chemical libraries. This observation correlates with the predicted "druggability" of the targets. A specific focus on selectivity profiles, the three-dimensional (3D) molecular modes of action resolved by X-ray crystallography, and the biological activities of identified hits targeting the well-defined "druggable" bromodomains of the bromo and extraterminal (BET) family are presented as a proof-of-concept. Overall, our present study illustrates the potency of machine learning-based oriented chemical libraries to accelerate the identification of hits targeting PPIs. A generalization of this method to a larger set of compounds will accelerate the discovery of original and potent probes for this challenging class of targets. PMID:27219844

  9. Sequence and developmental expression of mRNA coding for a gap junction protein in Xenopus

    PubMed Central

    1988-01-01

    Cloned complementary DNAs representing the complete coding sequence for an embryonic gap junction protein in the frog Xenopus laevis have been isolated and sequenced. The cDNAs hybridize with an RNA of 1.5 kb that is first detected in gastrulating embryos and accumulates throughout gastrulation and neurulation. By the tailbud stage, the highest abundance of the transcript is found in the region containing ventroposterior endoderm and the rudiment of the liver. In the adult, transcripts are present in the lungs, alimentary tract organs, and kidneys, but are not detected in the brain, heart, body wall and skeletal muscles, spleen, or ovary. The gene encoding this embryonic gap junction protein is present in only one or a few copies in the frog genome. In vitro translation of RNA synthesized from the cDNA template produces a 30-kD protein, as predicted by the coding sequence. This product has extensive sequence similarity to mammalian gap junction proteins in its putative transmembrane and extracellular domains, but has diverged substantially in two of its intracellular domains. PMID:2843548

  10. Application of Gap-Constraints Given Sequential Frequent Pattern Mining for Protein Function Prediction

    PubMed Central

    Park, Hyeon Ah; Kim, Taewook; Li, Meijing; Shon, Ho Sun; Park, Jeong Seok; Ryu, Keun Ho

    2015-01-01

    Objectives Predicting protein function from the protein–protein interaction network is challenging due to its complexity and huge scale of protein interaction process along with inconsistent pattern. Previously proposed methods such as neighbor counting, network analysis, and graph pattern mining has predicted functions by calculating the rules and probability of patterns inside network. Although these methods have shown good prediction, difficulty still exists in searching several functions that are exceptional from simple rules and patterns as a result of not considering the inconsistent aspect of the interaction network. Methods In this article, we propose a novel approach using the sequential pattern mining method with gap-constraints. To overcome the inconsistency problem, we suggest frequent functional patterns to include every possible functional sequence—including patterns for which search is limited by the structure of connection or level of neighborhood layer. We also constructed a tree-graph with the most crucial interaction information of the target protein, and generated candidate sets to assign by sequential pattern mining allowing gaps. Results The parameters of pattern length, maximum gaps, and minimum support were given to find the best setting for the most accurate prediction. The highest accuracy rate was 0.972, which showed better results than the simple neighbor counting approach and link-based approach. Conclusion The results comparison with other approaches has confirmed that the proposed approach could reach more function candidates that previous methods could not obtain. PMID:25938021

  11. Molecular cloning of cDNA for rat liver gap junction protein

    PubMed Central

    1986-01-01

    An affinity-purified antibody directed against the 27-kD protein associated with isolated rat liver gap junctions was produced. Light and electron microscopic immunocytochemistry showed that this antigen was localized specifically to the cytoplasmic surfaces of gap junctions. The antibody was used to select cDNA from a rat liver library in the expression vector lambda gt11. The largest cDNA selected contained 1,494 bp and coded for a protein with a calculated molecular mass of 32,007 daltons. Northern blot analysis indicated that brain, kidney, and stomach express an mRNA with similar size and homology to that expressed in liver, but that heart and lens express differently sized, less homologous mRNA. PMID:3013898

  12. In vitro mutation analysis of Arabidopsis thaliana small GTP-binding proteins and detection of GAP-like activities in plant cells.

    PubMed

    Anai, T; Matsui, M; Nomura, N; Ishizaki, R; Uchimiya, H

    1994-06-13

    Previously, we have reported the molecular cloning of ara genes encoding a small GTP-binding protein from Arabidopsis thaliana. The criterion based on amino acid sequences suggest that such an ara gene family can be classified to be of the YPT/rab type. To examine the biochemical properties of ARA proteins, several deletions and point mutations were introduced into ara cDNAs. Mutant proteins were expressed in E. coli as GST-chimeric molecules and analyzed in terms of their GTP-binding or GTP-hydrolysing ability in vitro. The results indicate that four conserved amino acid sequence regions of ARA proteins are necessary for GTP-binding. A point mutation of Asn at position 72 for ARA-2, or 71 for ARA-4, to Ile decreased GTP-binding and a point mutation of Gln at position 126 for ARA-2, or 125 for ARA-4, to Leu suppressed GTP-hydrolysis activity. Furthermore, certain factors associated with the membrane fraction accelerated GTPase activities of ARA proteins, suggesting the presence of GTPase activating protein(s) (GAP(s)) in the vesicular transport system of higher plant cells.

  13. Modulation of gap junction transcript and protein expression during pregnancy in the rat

    PubMed Central

    1990-01-01

    The expression of three different gap junction transcripts, alpha 1 (Cx43), beta 1 (Cx32), and beta 2 (Cx26) was examined in several organs during pregnancy in the rat. In all of the organs that were examined-- uterus, ovary, heart, and liver--there was a strong correlation between levels of gap junction mRNA and gap junction antigens that were detected at different stages of pregnancy. A striking change in alpha 1 transcript levels (a 5.5-fold increase) was detected in the uterine myometrium on the day before parturition. This elevation of the alpha 1 transcript is thought to be associated with the formation of gap junctions that are required for synchronizing the contractility of the myometrial cells during parturition. 2 d before parturition, there was a detectable elevation of beta 2 transcripts and protein in the endometrial epithelium, which was then followed by a dramatic decrease in beta 2 gap junctional protein on the day before parturition. There was also a substantial elevation of alpha 1 transcripts (a 6.7-fold increase) in the stromal regions of the ovary on the day before parturition that was identical to the temporal pattern of alpha 1 expression in the myometrium. In all three instances--the alpha 1 transcripts in the myometrium, beta 2 transcripts in the endometrium, and alpha 1 transcripts in the ovary--the transcript modulation appeared to be cell specific, because the changes in transcript levels of these three gene products occurred independently of the poly(A) + RNA concentrations at the same pregnancy stages in the respective organs. There were no specific changes detected in gap junction transcript levels in the heart and liver during pregnancy. These observations indicate that a cell-specific modulation of gap junction expression occurs in two regions of the uterus and the ovary during pregnancy. Further, it appears that the same gap junction gene in different organs, such as the alpha 1 gene in the uterine myometrium and the heart, can be

  14. Automated small‐scale protein purification and analysis for accelerated development of protein therapeutics

    PubMed Central

    LeSaout, Xavier; Costioli, Matteo; Jordan, Lynn; Lambert, Jeremy; Beighley, Ross; Provencher, Laurel; McGuire, Kevin; Verlinden, Nico; Barry, Andrew

    2015-01-01

    Small‐scale protein purification presents opportunities for accelerated process development of biotherapeutic molecules. Miniaturization of purification conditions reduces time and allows for parallel processing of samples, thus offering increased statistical significance and greater breadth of variables. The ability of the miniaturized platform to be predictive of larger scale purification schemes is of critical importance. The PerkinElmer JANUS BioTx Pro and Pro‐Plus workstations were developed as intuitive, flexible, and automated devices capable of performing parallel small‐scale analytical protein purification. Preprogrammed methods automate a variety of commercially available ion exchange and affinity chromatography solutions, including miniaturized chromatography columns, resin‐packed pipette tips, and resin‐filled microtiter vacuum filtration plates. Here, we present a comparison of microscale chromatography versus standard fast protein LC (FPLC) methods for process optimization. In this study, we evaluated the capabilities of the JANUS BioTx Pro‐Plus robotic platform for miniaturized chromatographic purification of proteins with the GE ӒKTA Express system. We were able to demonstrate predictive analysis similar to that of larger scale purification platforms, while offering advantages in speed and number of samples processed. This approach is predictive of scale‐up conditions, resulting in shorter biotherapeutic development cycles and less consumed material than traditional FPLC methods, thus reducing time‐to‐market from discovery to manufacturing.

  15. Antofine-induced connexin43 gap junction disassembly in rat astrocytes involves protein kinase Cβ.

    PubMed

    Huang, Yu-Fang; Liao, Chih-Kai; Lin, Jau-Chen; Jow, Guey-Mei; Wang, Hwai-Shi; Wu, Jiahn-Chun

    2013-03-01

    Antofine, a phenanthroindolizidine alkaloid derived from Cryptocaryachinensis and Ficusseptica in the Asclepiadaceae milkweed family, is cytotoxic for various cancer cell lines. In this study, we demonstrated that treatment of rat primary astrocytes with antofine induced dose-dependent inhibition of gap junction intercellular communication (GJIC), as assessed by scrape-loading 6-carboxyfluorescein dye transfer. Levels of Cx43 protein were also decreased in a dose- and time-dependent manner following antofine treatment. Double-labeling immunofluorescence microscopy showed that antofine (10ng/ml) induced endocytosis of surface gap junctions into the cytoplasm, where Cx43 was co-localized with the early endosome marker EEA1. Inhibition of lysosomes or proteasomes by co-treatment with antofine and their respective specific inhibitors, NH4Cl or MG132, partially inhibited the antofine-induced decrease in Cx43 protein levels, but did not inhibit the antofine-induced inhibition of GJIC. After 30min of treatment, antofine induced a rapid increase in the intracellular Ca(2+) concentration and activation of protein kinase C (PKC)α/βII, which was maintained for at least 6h. Co-treatment of astrocytes with antofine and the intracellular Ca(2+) chelator BAPTA-AM prevented downregulation of Cx43 and inhibition of GJIC. Moreover, co-treatment with antofine and a specific PKCβ inhibitor prevented endocytosis of gap junctions, downregulation of Cx43, and inhibition of GJIC. Taken together, these findings indicate that antofine induces Cx43 gap junction disassembly by the PKCβ signaling pathway. Inhibition of GJIC by antofine may undermine the neuroprotective effect of astrocytes in CNS. PMID:23403203

  16. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue.

  17. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. PMID:26635392

  18. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps

    PubMed Central

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P.; Kasif, Simon; Roberts, Richard J.; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. PMID:26635392

  19. Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations.

    PubMed

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-09-18

    Members of the Ras superfamily regulate many cellular processes. They are down-regulated by a GTPase reaction in which GTP is cleaved into GDP and P(i) by nucleophilic attack of a water molecule. Ras proteins accelerate GTP hydrolysis by a factor of 10(5) compared to GTP in water. GTPase-activating proteins (GAPs) accelerate hydrolysis by another factor of 10(5) compared to Ras alone. Oncogenic mutations in Ras and GAPs slow GTP hydrolysis and are a factor in many cancers. Here, we elucidate in detail how this remarkable catalysis is brought about. We refined the protein-bound GTP structure and protein-induced charge shifts within GTP beyond the current resolution of X-ray structural models by combining quantum mechanics and molecular mechanics simulations with time-resolved Fourier-transform infrared spectroscopy. The simulations were validated by comparing experimental and theoretical IR difference spectra. The reactant structure of GTP is destabilized by Ras via a conformational change from a staggered to an eclipsed position of the nonbridging oxygen atoms of the γ- relative to the β-phosphates and the further rotation of the nonbridging oxygen atoms of α- relative to the β- and γ-phosphates by GAP. Further, the γ-phosphate becomes more positive although two of its oxygen atoms remain negative. This facilitates the nucleophilic attack by the water oxygen at the phosphate and proton transfer to the oxygen. Detailed changes in geometry and charge distribution in the ligand below the resolution of X-ray structure analysis are important for catalysis. Such high resolution appears crucial for the understanding of enzyme catalysis.

  20. Fast Gap-Free Enumeration of Conformations and Sequences for Protein Design

    PubMed Central

    Hallen, Mark A.; Donald, Bruce R.

    2016-01-01

    Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically-relevant designs. PMID:26235965

  1. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  2. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    SciTech Connect

    Karas’, V. I. Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  3. Switch in Gap Junction Protein Expression is Associated with Selective Changes in Junctional Permeability During Keratinocyte Differentiation

    NASA Astrophysics Data System (ADS)

    Brissette, Janice L.; Kumar, Nalin M.; Gilula, Norton B.; Hall, James E.; Dotto, G. Paolo

    1994-07-01

    Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of α_1 (connexin 43) and β_2 (connexin 26) gap junction proteins is down-modulated, whereas that of β_3 (connexin 31) and β_4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process.

  4. Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation.

    PubMed Central

    Brissette, J L; Kumar, N M; Gilula, N B; Hall, J E; Dotto, G P

    1994-01-01

    Gap junctional communication provides a mechanism for regulating multicellular activities by allowing the exchange of small diffusible molecules between neighboring cells. The diversity of gap junction proteins may exist to form channels that have different permeability properties. We report here that induction of terminal differentiation in mouse primary keratinocytes by calcium results in a specific switch in gap junction protein expression. Expression of alpha 1 (connexin 43) and beta 2 (connexin 26) gap junction proteins is down-modulated, whereas that of beta 3 (connexin 31) and beta 4 (connexin 31.1) proteins is induced. Although both proliferating and differentiating keratinocytes are electrically coupled, there are significant changes in the permeability properties of the junctions to small molecules. In parallel with the changes in gap junction protein expression during differentiation, the intercellular transfer of the small dyes neurobiotin, carboxyfluorescein, and Lucifer yellow is significantly reduced, whereas that of small metabolites, such as nucleotides and amino acids, proceeds unimpeded. Thus, a switch in gap junction protein expression in differentiating keratinocytes is accompanied by selective changes in junctional permeability that may play an important role in the coordinate control of the differentiation process. Images PMID:8022804

  5. Reduction and Redistribution of Gap and Adherens Junction Proteins After Ischemia and Reperfusion

    PubMed Central

    Tansey, Erin E.; Kwaku, Kevin F.; Hammer, Peter E.; Cowan, Douglas B.; Federman, Micheline; Levitsky, Sidney; McCully, James D.

    2007-01-01

    Background Previous studies have demonstrated that alterations in myocardial structure, consistent with tissue and sarcomere disruption as well as myofibril dissociation, occur after myocardial ischemia and reperfusion. In this study we determine the onset of these structural changes and their contribution to electrical conduction. Methods Langendorff perfused rabbit hearts (n = 47) were subjected to 0, 5, 10, 15, 20, 25, and 30 minutes global ischemia, followed by 120 minutes reperfusion. Hemodynamics were recorded and tissue samples were collected for histochemical and immunohistochemical studies. Orthogonal epicardial conduction velocities were measured, with temperature controlled, in a separate group of 10 hearts subjected to 0 or 30 minutes of global ischemia, followed by 120 minutes of reperfusion. Results Histochemical and quantitative light microscopy spatial analysis showed significantly increased longitudinal and transverse interfibrillar separation after 15 minutes or more of ischemia (p < 0.05 versus control). Confocal immunohistochemistry and Western blot analysis demonstrated significant reductions (p < .05 versus control) of the intercellular adherens junction protein, N-cadherin, and the active phosphorylated isoform of the principal gap junction protein, connexin 43 at more than 15 minutes of ischemia. Cellular redistribution of connexin 43 was also evidenced on immunohistochemistry. No change in integrin-β1, an extracellular matrix attachment protein, or in epicardial conduction velocity anisotropy was observed. Conclusions These data indicate that there are significant alterations in the structural integrity of the myocardium as well as gap and adherens junction protein expression with increasing global ischemia time. The changes occur coincident with previously observed significant decreases in postischemic functional recovery, but are not associated with altered expression of matrix binding proteins or electrical anisotropic conduction. PMID

  6. Accelerated Nucleation of Hydroxyapatite Using an Engineered Hydrophobin Fusion Protein.

    PubMed

    Melcher, Melanie; Facey, Sandra J; Henkes, Thorsten M; Subkowski, Thomas; Hauer, Bernhard

    2016-05-01

    Calcium phosphate mineralization is of particular interest in dental repair. A biomimetic approach using proteins or peptides is a highly promising way to reconstruct eroded teeth. In this study, the screening of several proteins is described for their binding and nucleating activities toward hydroxyapatite. Out of 27 tested candidates, only two hydrophobin fusion proteins showed binding abilities to hydroxyapatite in a mouthwash formulation and an increased nucleation in artificial saliva. Using a semirational approach, one of the two candidates (DEWA_5), a fusion protein consisting of a truncated section of the Bacillus subtilis synthase YaaD, the Aspergillus nidulans hydrophobin DEWA, and the rationally designed peptide P11-4 described in the literature, could be further engineered toward a faster mineral formation. The variants DEWA_5a (40aaYaaD-SDSDSD-DEWA) and DEWA_5b (40aaYaaD-RDRDRD-DEWA) were able to enhance the nucleation activity without losing the ability to form hydroxyapatite. In the case of variant DEWA_5b, an additional increase in the binding toward hydroxyapatite could be achieved. Especially with the variant DEWA_5a, the protein engineering of the rationally designed peptide sequence resulted in a resemblance of an amino acid motif that is found in nature. The engineered peptide resembles the amino acid motif in dentin phosphoprotein, one of the major proteins involved in dentinogenesis. PMID:27010648

  7. Accelerated protein engineering for chemical biotechnology via homologous recombination.

    PubMed

    Nordwald, Erik M; Garst, Andrew; Gill, Ryan T; Kaar, Joel L

    2013-12-01

    Protein engineering has traditionally relied on random mutagenesis strategies to generate diverse libraries, which require high-throughput screening or selection methods to identify rare variants. Alternatively, approaches to semi-rational library construction can be used to minimize the screening load and enhance the efficiency by which improved mutants may be identified. Such methods are typically limited to characterization of relatively few variants due to the difficulties in generating large rational libraries. New tools from synthetic biology, namely multiplexed DNA synthesis and homologous recombination, provide a promising avenue to rapidly construct large, rational libraries. These technologies also enable incorporation of synthetically encoded features that permit efficient characterization of the fitness of each mutant. Extension of these tools to protein library design could complement rational protein design cycles in an effort to more systematically search complex fitness landscapes. The highly parallelized nature with which such libraries can be generated also has the potential to expand directed protein evolution from single protein targets to protein networks whose concerted activities are required for the biological function of interest. PMID:23540421

  8. Accelerated protein engineering for chemical biotechnology via homologous recombination.

    PubMed

    Nordwald, Erik M; Garst, Andrew; Gill, Ryan T; Kaar, Joel L

    2013-12-01

    Protein engineering has traditionally relied on random mutagenesis strategies to generate diverse libraries, which require high-throughput screening or selection methods to identify rare variants. Alternatively, approaches to semi-rational library construction can be used to minimize the screening load and enhance the efficiency by which improved mutants may be identified. Such methods are typically limited to characterization of relatively few variants due to the difficulties in generating large rational libraries. New tools from synthetic biology, namely multiplexed DNA synthesis and homologous recombination, provide a promising avenue to rapidly construct large, rational libraries. These technologies also enable incorporation of synthetically encoded features that permit efficient characterization of the fitness of each mutant. Extension of these tools to protein library design could complement rational protein design cycles in an effort to more systematically search complex fitness landscapes. The highly parallelized nature with which such libraries can be generated also has the potential to expand directed protein evolution from single protein targets to protein networks whose concerted activities are required for the biological function of interest.

  9. Reduced expression of SynGAP, a neuronal GTPase-activating protein, enhances capsaicin-induced peripheral sensitization

    PubMed Central

    Duarte, Djane Braz; Duan, Jian-Hong; Nicol, Grant D.; Vasko, Michael R.

    2011-01-01

    Synaptic GTPase-activating protein (SynGAP) is a neuronal-specific Ras/Rap-GAP that increases the hydrolysis rate of GTP to GDP, converting Ras/Rap from the active into the inactive form. The Ras protein family modulates a wide range of cellular pathways including those involved in sensitization of sensory neurons. Since GAPs regulate Ras activity, SynGAP might be an important regulator of peripheral sensitization and pain. Therefore, we evaluated excitability, stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP), and nociception from wild-type (WT) mice and those with a heterozygous mutation of the SynGAP gene (SynGAP+/−). Our results demonstrate that SynGAP is expressed in primary afferent sensory neurons and that the capsaicin-stimulated CGRP release from spinal cord slices was two-fold higher from SynGAP+/− mice than that observed from WT mouse tissue, consistent with an increase in expression of the capsaicin receptor, transient receptor potential cation channel subfamily V member 1 (TRPV1), in SynGAP+/− dorsal root ganglia. However, there was no difference between the two genotypes in potassium-stimulated release of CGRP, the number of action potentials generated by a ramp of depolarizing current, or mechanical hypernociception elicited by intraplantar injection of capsaicin. In contrast, capsaicin-induced thermal hypernociception occurred at lower doses of capsaicin and had a longer duration in SynGAP+/− mice than WT mice. These results provide the first evidence that SynGAP is an important regulator of neuropeptide release from primary sensory neurons and can modulate capsaicin-induced hypernociception, demonstrating the importance of GAP regulation in signaling pathways that play a role in peripheral sensitization. PMID:21525372

  10. GPU-accelerated visualization of protein dynamics in ribbon mode

    NASA Astrophysics Data System (ADS)

    Wahle, Manuel; Birmanns, Stefan

    2011-01-01

    Proteins are biomolecules present in living organisms and essential for carrying out vital functions. Inherent to their functioning is folding into different spatial conformations, and to understand these processes, it is crucial to visually explore the structural changes. In recent years, significant advancements in experimental techniques and novel algorithms for post-processing of protein data have routinely revealed static and dynamic structures of increasing sizes. In turn, interactive visualization of the systems and their transitions became more challenging. Therefore, much research for the efficient display of protein dynamics has been done, with the focus being space filling models, but for the important class of abstract ribbon or cartoon representations, there exist only few methods for an efficient rendering. Yet, these models are of high interest to scientists, as they provide a compact and concise description of the structure elements along the protein main chain. In this work, a method was developed to speed up ribbon and cartoon visualizations. Separating two phases in the calculation of geometry allows to offload computational work from the CPU to the GPU. The first phase consists of computing a smooth curve along the protein's main chain on the CPU. In the second phase, conducted independently by the GPU, vertices along that curve are moved to set up the final geometrical representation of the molecule.

  11. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    PubMed

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A; Dilly, Suzanne J; James, Sean; Dimitri, Wade; Ladwa, Sweta R; Taylor, Paul C; Singer, Donald R J

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  12. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein.

    PubMed

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A; Dilly, Suzanne J; James, Sean; Dimitri, Wade; Ladwa, Sweta R; Taylor, Paul C; Singer, Donald R J

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively 'regulating' connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  13. Sequence heterogeneity accelerates protein search for targets on DNA

    NASA Astrophysics Data System (ADS)

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-12-01

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  14. Sequence heterogeneity accelerates protein search for targets on DNA

    SciTech Connect

    Shvets, Alexey A.; Kolomeisky, Anatoly B.

    2015-12-28

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity, and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry, and heterogeneity of a genome.

  15. An efficient parallel algorithm for accelerating computational protein design

    PubMed Central

    Zhou, Yichao; Xu, Wei; Donald, Bruce R.; Zeng, Jianyang

    2014-01-01

    Motivation: Structure-based computational protein design (SCPR) is an important topic in protein engineering. Under the assumption of a rigid backbone and a finite set of discrete conformations of side-chains, various methods have been proposed to address this problem. A popular method is to combine the dead-end elimination (DEE) and A* tree search algorithms, which provably finds the global minimum energy conformation (GMEC) solution. Results: In this article, we improve the efficiency of computing A* heuristic functions for protein design and propose a variant of A* algorithm in which the search process can be performed on a single GPU in a massively parallel fashion. In addition, we make some efforts to address the memory exceeding problem in A* search. As a result, our enhancements can achieve a significant speedup of the A*-based protein design algorithm by four orders of magnitude on large-scale test data through pre-computation and parallelization, while still maintaining an acceptable memory overhead. We also show that our parallel A* search algorithm could be successfully combined with iMinDEE, a state-of-the-art DEE criterion, for rotamer pruning to further improve SCPR with the consideration of continuous side-chain flexibility. Availability: Our software is available and distributed open-source under the GNU Lesser General License Version 2.1 (GNU, February 1999). The source code can be downloaded from http://www.cs.duke.edu/donaldlab/osprey.php or http://iiis.tsinghua.edu.cn/∼compbio/software.html. Contact: zengjy321@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931991

  16. Sequence Heterogeneity Accelerates Protein Search for Targets on DNA

    NASA Astrophysics Data System (ADS)

    Shvets, Alexey; Kolomeisky, Anatoly

    The process of protein search for specific binding sites on DNA is fundamentally important since it marks the beginning of all major biological processes. We present a theoretical investigation that probes the role of DNA sequence symmetry, heterogeneity and chemical composition in the protein search dynamics. Using a discrete-state stochastic approach with a first-passage events analysis, which takes into account the most relevant physical-chemical processes, a full analytical description of the search dynamics is obtained. It is found that, contrary to existing views, the protein search is generally faster on DNA with more heterogeneous sequences. In addition, the search dynamics might be affected by the chemical composition near the target site. The physical origins of these phenomena are discussed. Our results suggest that biological processes might be effectively regulated by modifying chemical composition, symmetry and heterogeneity of a genome. The work was supported by the Welch Foundation (Grant C-1559), by the NSF (Grant CHE-1360979), and by the Center for Theoretical Biological Physics sponsored by the NSF (Grant PHY-1427654).

  17. The role of gap junction proteins in the development of neural network functional topology.

    PubMed

    Anava, S; Saad, Y; Ayali, A

    2013-10-01

    Gap junctions (GJs) provide a common form of intercellular communication in most animal cells and tissues, from Hydra to human, including electrical synaptic signalling. Cell coupling via GJs has an important role in development in general, and in neural network development in particular. However, quantitative studies monitoring GJ proteins throughout nervous system development are few. Direct investigations demonstrating a role for GJ proteins by way of experimental manipulation of their expression are also rare. In the current work we focused on the role of invertebrate GJ proteins (innexins) in the in vitro development of neural network functional topology, using two-dimensional neural culture preparations derived from the frontal ganglion of the desert locust, Schistocerca gregaria. Immunocytochemistry and quantitative real-time PCR revealed a dynamic expression pattern of the innexins during development of the cultured networks. Changes were observed both in the levels and in the localization of expression. Down-regulating the expression of innexins, by using double-strand RNA for the first time in locust neural cultures, induced clear changes in network morphology, as well as inhibition of synaptogenesis, thus suggesting a role for GJs during the development of the functional topology of neuronal networks.

  18. Global optimum protein threading with gapped alignment and empirical pair score functions.

    PubMed

    Lathrop, R H; Smith, T F

    1996-02-01

    We describe a branch-and-bound search algorithm for finding the exact global optimum gapped sequence-structure alignment ("threading") between a protein sequence and a protein core or structural model, using an arbitrary amino acid pair score function (e.g. contact potentials, knowledge-based potentials, potentials of mean force, etc.). The search method imposes minimal conditions on how structural environments are defined or the form of the score function, and allows arbitrary sequence-specific functions for scoring loops and active site residues. Consequently the search method can be used with many different score functions and threading methodologies; this paper illustrates five from the literature. On a desktop workstation running LISP, we have found the global optimum protein sequence-structure alignment in NP-hard search spaces as large as 9.6 x 10(31), at rates ranging as high as 6.8 x 10(28) equivalent threadings per second (most of which are pruned before they ever are examined explicitly). Continuing the procedure past the global optimum enumerates successive candidate threadings in monotonically increasing score order. We give efficient algorithms for search space size, uniform random sampling, segment placement probabilities, mean, standard deviation and partition function. The method should prove useful for structure prediction, as well as for critical evaluation of new pair score functions. PMID:8568903

  19. Three-dimensional Non-vacuum Pulsar Outer-gap Model: Localized Acceleration Electric Field in the Higher Altitudes

    NASA Astrophysics Data System (ADS)

    Hirotani, Kouichi

    2015-01-01

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  20. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    SciTech Connect

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leading to typical double-peak light curves, which are commonly observed from many high-energy pulsars.

  1. Simvastatin Sodium Salt and Fluvastatin Interact with Human Gap Junction Gamma-3 Protein

    PubMed Central

    Marsh, Andrew; Casey-Green, Katherine; Probert, Fay; Withall, David; Mitchell, Daniel A.; Dilly, Suzanne J.; James, Sean; Dimitri, Wade; Ladwa, Sweta R.; Taylor, Paul C.; Singer, Donald R. J.

    2016-01-01

    Finding pleiomorphic targets for drugs allows new indications or warnings for treatment to be identified. As test of concept, we applied a new chemical genomics approach to uncover additional targets for the widely prescribed lipid-lowering pro-drug simvastatin. We used mRNA extracted from internal mammary artery from patients undergoing coronary artery surgery to prepare a viral cardiovascular protein library, using T7 bacteriophage. We then studied interactions of clones of the bacteriophage, each expressing a different cardiovascular polypeptide, with surface-bound simvastatin in 96-well plates. To maximise likelihood of identifying meaningful interactions between simvastatin and vascular peptides, we used a validated photo-immobilisation method to apply a series of different chemical linkers to bind simvastatin so as to present multiple orientations of its constituent components to potential targets. Three rounds of biopanning identified consistent interaction with the clone expressing part of the gene GJC3, which maps to Homo sapiens chromosome 7, and codes for gap junction gamma-3 protein, also known as connexin 30.2/31.3 (mouse connexin Cx29). Further analysis indicated the binding site to be for the N-terminal domain putatively ‘regulating’ connexin hemichannel and gap junction pores. Using immunohistochemistry we found connexin 30.2/31.3 to be present in samples of artery similar to those used to prepare the bacteriophage library. Surface plasmon resonance revealed that a 25 amino acid synthetic peptide representing the discovered N-terminus did not interact with simvastatin lactone, but did bind to the hydrolysed HMG CoA inhibitor, simvastatin acid. This interaction was also seen for fluvastatin. The gap junction blockers carbenoxolone and flufenamic acid also interacted with the same peptide providing insight into potential site of binding. These findings raise key questions about the functional significance of GJC3 transcripts in the vasculature and

  2. Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA

    PubMed Central

    Graham, John S.; Johnson, Reid C.; Marko, John F.

    2011-01-01

    The multistep kinetics through which DNA-binding proteins bind their targets are heavily studied, but relatively little attention has been paid to proteins leaving the double helix. Using single-DNA stretching and fluorescence detection, we find that sequence-neutral DNA-binding proteins Fis, HU and NHP6A readily exchange with themselves and with each other. In experiments focused on the Escherichia coli nucleoid-associated protein Fis, only a small fraction of protein bound to DNA spontaneously dissociates into protein-free solution. However, if Fis is present in solution, we find that a concentration-dependent exchange reaction occurs which turns over the bound protein, with a rate of kexch = 6 × 104 M−1s−1. The bacterial DNA-binding protein HU and the yeast HMGB protein NHP6A display the same phenomenon of protein in solution accelerating dissociation of previously bound labeled proteins as exchange occurs. Thus, solvated proteins can play a key role in facilitating removal and renewal of proteins bound to the double helix, an effect that likely plays a major role in promoting the turnover of proteins bound to DNA in vivo and, therefore, in controlling the dynamics of gene regulation. PMID:21097894

  3. Accelerated Disease Onset with Stabilized Familial Amyotrophic Lateral Sclerosis (ALS)-linked Mutant TDP-43 Proteins*

    PubMed Central

    Watanabe, Shoji; Kaneko, Kumi; Yamanaka, Koji

    2013-01-01

    Abnormal protein accumulation is a pathological hallmark of neurodegenerative diseases, including accumulation of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS). Dominant mutations in the TDP-43 gene are causative for familial ALS; however, the relationship between mutant protein biochemical phenotypes and disease course and their significance to disease pathomechanism are not known. Here, we found that longer half-lives of mutant proteins correlated with accelerated disease onset. Based on our findings, we established a cell model in which chronic stabilization of wild-type TDP-43 protein provoked cytotoxicity and recapitulated pathogenic protein cleavage and insolubility to the detergent Sarkosyl, TDP-43 properties that have been observed in sporadic ALS lesions. Furthermore, these cells showed proteasomal impairment and dysregulation of their own mRNA levels. These results suggest that chronically increased stability of mutant or wild-type TDP-43 proteins results in a gain of toxicity through abnormal proteostasis. PMID:23235148

  4. Bisphenol A accelerates capacitation-associated protein tyrosine phosphorylation of rat sperm by activating protein kinase A.

    PubMed

    Wan, Xiaofeng; Ru, Yanfei; Chu, Chen; Ni, Zimei; Zhou, Yuchuan; Wang, Shoulin; Zhou, Zuomin; Zhang, Yonglian

    2016-06-01

    Bisphenol A (BPA) is a synthetic estrogen-mimic chemical. It has been shown to affect many reproductive endpoints. However, the effect of BPA on the mature sperm and the mechanism of its action are not clear yet. Here, our in vitro studies indicated that BPA could accelerate sperm capacitation-associated protein tyrosine phosphorylation in time- and dose-dependent manners. In vivo, the adult male rats exposed to a high dose of BPA could result in a significant increase in sperm activity. Further investigation demonstrated that BPA could accelerate capacitation-associated protein tyrosine phosphorylation even if sperm were incubated in medium devoid of BSA, HCO3 (-), and Ca(2+) However, this action of BPA stimulation could be blocked by H89, a highly selective blocker of protein kinase A (PKA), but not by KH7, a specific inhibitor of adenylyl cyclase. These data suggest that BPA may activate PKA to affect sperm functions and male fertility. PMID:27174873

  5. FilGAP, a Rac-specific Rho GTPase-activating protein, is a novel prognostic factor for follicular lymphoma.

    PubMed

    Nishi, Tatsuya; Takahashi, Hiroyuki; Hashimura, Miki; Yoshida, Tsutomu; Ohta, Yasutaka; Saegusa, Makoto

    2015-06-01

    FilGAP, a Rho GTPase-activating protein (GAP), acts as a mediator of Rho/ROCK (Rho-associated protein kinase)-dependent amoeboid movement, and its knockdown results in Rac-driven mesenchymal morphology. Herein, we focus on the possible roles of FilGAP expression in normal and malignant lymphocytes. Eighty-three cases of follicular lymphoma (FL), 84 of diffuse large B-cell lymphoma (DLBCL), and 25 of peripheral T-cell lymphoma (PTCL), as well as 10 of normal lymph nodes, were immunohistochemically investigated. In normal lymph nodes, FilGAP immunoreactivity was significantly higher in lymphocytes in the mantle zone as compared to those in the germinal center and paracortical areas. In contrast, the expression levels of both cytoplasmic and perinuclear Rac1 were significantly lower in the germinal center as compared to paracortical regions, suggesting that changes in the FilGAP/Rac axis may occur in B-cell lineages. In malignant lymphomas, FilGAP expression was significantly higher in B-cell lymphomas than PTCL, and the immunohistochemical scores were positively correlated with cytoplasmic Rac1 scores in FL and DLBCL, but not in PTCL. Patients with FL and germinal center B-cell-like (GCB)-type DLBCL showing high FilGAP scores had poor overall survival rates as compared to the low-score patients. Moreover, multivariate Cox regression analysis showed that a high FilGAP score was a significant and independent unfavorable prognostic factor in FL, but not in DLBCL. In conclusion, FilGAP may contribute to change in cell motility of B-lymphocytes. In addition, its expression appears to be useful for predicting the behavior of B-cell lymphoma, in particular FL. PMID:25641953

  6. Closing the Achievement Gap: A Summer School Program to Accelerate the Academic Performance of Economically Disadvantaged Students

    ERIC Educational Resources Information Center

    Gonzalez, Ramon Michael

    2013-01-01

    With the increasing disparity in educational outcomes among economically and racially different groups of students, summer school has received attention from school reformers as a means to close the achievement gap. Given the interest in this topic by educators, researchers, and policymakers, there is little research on the impact of summer school…

  7. Synaptotagmin-like protein 1 interacts with the GTPase-activating protein Rap1GAP2 and regulates dense granule secretion in platelets.

    PubMed

    Neumüller, Olga; Hoffmeister, Meike; Babica, Jan; Prelle, Carola; Gegenbauer, Kristina; Smolenski, Albert P

    2009-08-13

    The small guanine-nucleotide-binding protein Rap1 plays a key role in platelet aggregation and hemostasis, and we recently identified Rap1GAP2 as the only GTPase-activating protein of Rap1 in platelets. In search of Rap1GAP2-associated proteins, we performed yeast-2-hybrid screening and found synaptotagmin-like protein 1 (Slp1) as a new binding partner. We confirmed the interaction of Rap1GAP2 and Slp1 in transfected COS-1 and HeLa cells and at endogenous level in human platelets. Mapping studies showed that Rap1GAP2 binds through amino acids T524-K525-X-T527 within its C-terminus to the C2A domain of Slp1. Slp1 contains a Rab27-binding domain, and we demonstrate that Rap1GAP2, Slp1, and Rab27 form a trimeric complex in transfected cells and in platelets. Purified Slp1 dose-dependently decreased dense granule secretion in streptolysin-O-permeabilized platelets stimulated with calcium or guanosine 5'-O-[gamma-thio] triphosphate. The isolated C2A domain of Slp1 had a stimulatory effect on granule secretion and reversed the inhibitory effect of full-length Slp1. Purified Rap1GAP2 augmented dense granule secretion of permeabilized platelets, whereas deletion of the Slp1-binding TKXT motif abolished the effect of Rap1GAP2. We conclude that Slp1 inhibits dense granule secretion in platelets and that Rap1GAP2 modulates secretion by binding to Slp1. PMID:19528539

  8. Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model

    PubMed Central

    Neuwald, Andrew F; Liu, Jun S

    2004-01-01

    Background Certain protein families are highly conserved across distantly related organisms and belong to large and functionally diverse superfamilies. The patterns of conservation present in these protein sequences presumably are due to selective constraints maintaining important but unknown structural mechanisms with some constraints specific to each family and others shared by a larger subset or by the entire superfamily. To exploit these patterns as a source of functional information, we recently devised a statistically based approach called contrast hierarchical alignment and interaction network (CHAIN) analysis, which infers the strengths of various categories of selective constraints from co-conserved patterns in a multiple alignment. The power of this approach strongly depends on the quality of the multiple alignments, which thus motivated development of theoretical concepts and strategies to improve alignment of conserved motifs within large sets of distantly related sequences. Results Here we describe a hidden Markov model (HMM), an algebraic system, and Markov chain Monte Carlo (MCMC) sampling strategies for alignment of multiple sequence motifs. The MCMC sampling strategies are useful both for alignment optimization and for adjusting position specific background amino acid frequencies for alignment uncertainties. Associated statistical formulations provide an objective measure of alignment quality as well as automatic gap penalty optimization. Improved alignments obtained in this way are compared with PSI-BLAST based alignments within the context of CHAIN analysis of three protein families: Giα subunits, prolyl oligopeptidases, and transitional endoplasmic reticulum (p97) AAA+ ATPases. Conclusion While not entirely replacing PSI-BLAST based alignments, which likewise may be optimized for CHAIN analysis using this approach, these motif-based methods often more accurately align very distantly related sequences and thus can provide a better measure of

  9. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  10. Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties.

    PubMed

    Neuwald, Andrew F; Altschul, Stephen F

    2016-05-01

    We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a "top-down" strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins' structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO's superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/. PMID:27192614

  11. Determination of protein-ligand interactions using accelerator mass spectrometry: modified crosslinking assay.

    PubMed

    Hah, Sang Soo

    2009-05-01

    A highly sensitive detection method for the determination of protein-ligand interactions has been developed. Radiocarbon-labeled 17beta-estradiol was incubated with estrogen receptor-alpha; as a selective binding partner, and covalently attached using crosslinking agents, to form covalently linked protein-ligand complexes. After separation using a denaturing gel, the (14)C content in the sliced gels was identified by accelerator mass spectrometry. The obtained data demonstrated specific binding of the small molecule to its binding partner. In theory, this method can be applied to most protein-ligand interaction studies.

  12. Revisiting G3BP1 as a RasGAP Binding Protein: Sensitization of Tumor Cells to Chemotherapy by the RasGAP 317–326 Sequence Does Not Involve G3BP1

    PubMed Central

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317–326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317–326 sequence of RasGAP (TAT-RasGAP317–326), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP317–326 did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP317–326 was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP. PMID:22205990

  13. Displacement of plasma protein and conduction velocity in rats under action of acceleration forces and hypokinesia

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Edelwejn, Z.; Wojtkowiak, M.

    1980-01-01

    The permeability of capillary vessels was investigated in order to determine if acceleration alone or following prolonged hypokinesia would induce changes in the vascular wall leading to the penetration by l-albumins and/or proteins with larger molecules. In rats undergoing action of +5 Gz accelerations, no increase in vascular permeability, as tested with the use of (Cr-5k)-globulin, was demostrated. In rats immobilized for 4 weeks before centrifugation, rather weak migration of (Cr-51)-globulin from the vessels was observed. Immobilization resulted also in lowering of conduction velocity in the sciatic nerve.

  14. Scaffold State Switching Amplifies, Accelerates, and Insulates Protein Kinase C Signaling*

    PubMed Central

    Greenwald, Eric C.; Redden, John M.; Dodge-Kafka, Kimberly L.; Saucerman, Jeffrey J.

    2014-01-01

    Scaffold proteins localize two or more signaling enzymes in close proximity to their downstream effectors. A-kinase-anchoring proteins (AKAPs) are a canonical family of scaffold proteins known to bind protein kinase A (PKA) and other enzymes. Several AKAPs have been shown to accelerate, amplify, and specify signal transduction to dynamically regulate numerous cellular processes. However, there is little theory available to mechanistically explain how signaling on protein scaffolds differs from solution biochemistry. In our present study, we propose a novel kinetic mechanism for enzymatic reactions on protein scaffolds to explain these phenomena, wherein the enzyme-substrate-scaffold complex undergoes stochastic state switching to reach an active state. This model predicted anchored enzymatic reactions to be accelerated, amplified, and insulated from inhibition compared with those occurring in solution. We exploited a direct interaction between protein kinase C (PKC) and AKAP7α as a model to validate these predictions experimentally. Using a genetically encoded PKC activity reporter, we found that both the strength and speed of substrate phosphorylation were enhanced by AKAP7α. PKC tethered to AKAP7α was less susceptible to inhibition from the ATP-competitive inhibitor Gö6976 and the substrate-competitive inhibitor PKC 20-28, but not the activation-competitive inhibitor calphostin C. Model predictions and experimental validation demonstrated that insulation is a general property of scaffold tethering. Sensitivity analysis indicated that these findings may be applicable to many other scaffolds as well. Collectively, our findings provide theoretical and experimental evidence that scaffold proteins can amplify, accelerate, and insulate signal transduction. PMID:24302730

  15. Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.

    PubMed

    Ye, Wenyu; Chen, Xiao; Zhong, Zhenhui; Chen, Meilian; Shi, Lei; Zheng, Huakun; Lin, Yahong; Zhang, Dongmei; Lu, Guodong; Li, Guangpu; Chen, Jisheng; Wang, Zonghua

    2014-06-01

    Rho GTPases, acting as molecular switches, are involved in the regulation of diverse cellular functions. Rho GTPase activating proteins (Rho GAPs) function as negative regulators of Rho GTPases and are required for a variety of signaling processes in cell development. But the mechanisms underlying Rho GAPs in Rho-mediated signaling pathways in fungi are still elusive. There are eight RhoGAP domain-containing genes annotated in the Magnaporthe oryzae genome. To understand the function of these RhoGAP genes, we generated knockout mutants of each of the RhoGAP genes through a homologous recombination-based method. Phenotypic analysis showed that growth rate of aerial hyphae of the Molrg1 deletion mutant decreased dramatically. The ΔMolrg1 mutant showed significantly reduced conidiation and appressorium formation by germ tubes. Moreover, it lost pathogenicity completely. Deletion of another Rho GAP (MoRga1) resulted in high percentage of larger or gherkin-shaped conidia and slight decrease in conidiation. Appressorial formation of the ΔMoRga1 mutant was delayed significantly on hydrophobic surface, while the development of mycelial growth and pathogenicity in plants was not affected. Confocal fluorescence microscopy imaging showed that MoRga1-GFP localizes to septal pore of the conidium, and this localization pattern requires both LIM and RhoGAP domains. Furthermore, either deleting the LIM or RhoGAP domain or introducing an inactivating R1032A mutation in the RhoGAP domain of MoRga1 caused similar defects as the Morga1 deletion mutant in terms of conidial morphology and appressorial formation, suggesting that MoRga1 is a stage-specific regulator of conidial differentiation by regulating some specific Rho GTPases. In this regard, MoRga1 and MoLrg1 physically interacted with both MoRac1-CA and MoCdc42-CA in the yeast two-hybrid and pull-down assays, suggesting that the actions of these two GAPs are involved in MoRac1 and MoCdc42 pathways. On the other hand, six other

  16. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder.

    PubMed

    Forsova, Oksana S; Zakharov, Vladislav V

    2016-04-01

    Brain acid-soluble protein-1 (BASP1) and growth-associated protein-43 (GAP-43) are presynaptic membrane proteins participating in axon guidance, neuroregeneration and synaptic plasticity. They are presumed to sequester phosphatidylinositol-4,5-bisphosphate (PIP2 ) in lipid rafts. Previously we have shown that the proteins form heterogeneously sized oligomers in the presence of anionic phospholipids or SDS at submicellar concentration. BASP1 and GAP-43 are intrinsically disordered proteins (IDPs). In light of this, we investigated the structure of their oligomers. Using partial cross-linking of the oligomers with glutaraldehyde, the aggregation numbers of BASP1 and GAP-43 were estimated as 10-14 and 6-7 monomer subunits, respectively. The cross-linking pattern indicated that the subunits are circularly arranged. The circular dichroism (CD) spectra of the monomers were characteristic of coil-like IDPs showing unordered structure with a high population of polyproline-II conformation. The oligomerization was accompanied by a minor CD spectral change attributable to formation of a small amount of α-helix. The number of residues in the α-helical conformation was estimated as 13 in BASP1 and 18 in GAP-43. However, the overall structure of the oligomers remained disordered, indicating a high degree of 'fuzziness'. This was confirmed by measuring the hydrodynamic dimensions of the oligomers using polyacrylamide gradient gel electrophoresis and size-exclusion chromatography, and by assaying their sensitivity to proteolytic digestion. There is evidence that the observed α-helical folding occurs within the basic effector domains, which are presumably tethered together via anionic molecules of SDS or PIP2 . We conclude that BASP1 and GAP-43 oligomers preserve a mostly disordered structure, which may be of great importance for their function in PIP2 signaling pathway. PMID:26918762

  17. Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties

    PubMed Central

    Neuwald, Andrew F.; Altschul, Stephen F.

    2016-01-01

    We describe a Bayesian Markov chain Monte Carlo (MCMC) sampler for protein multiple sequence alignment (MSA) that, as implemented in the program GISMO and applied to large numbers of diverse sequences, is more accurate than the popular MSA programs MUSCLE, MAFFT, Clustal-Ω and Kalign. Features of GISMO central to its performance are: (i) It employs a “top-down” strategy with a favorable asymptotic time complexity that first identifies regions generally shared by all the input sequences, and then realigns closely related subgroups in tandem. (ii) It infers position-specific gap penalties that favor insertions or deletions (indels) within each sequence at alignment positions in which indels are invoked in other sequences. This favors the placement of insertions between conserved blocks, which can be understood as making up the proteins’ structural core. (iii) It uses a Bayesian statistical measure of alignment quality based on the minimum description length principle and on Dirichlet mixture priors. Consequently, GISMO aligns sequence regions only when statistically justified. This is unlike methods based on the ad hoc, but widely used, sum-of-the-pairs scoring system, which will align random sequences. (iv) It defines a system for exploring alignment space that provides natural avenues for further experimentation through the development of new sampling strategies for more efficiently escaping from suboptimal traps. GISMO’s superior performance is illustrated using 408 protein sets containing, on average, 235 sequences. These sets correspond to NCBI Conserved Domain Database alignments, which have been manually curated in the light of available crystal structures, and thus provide a means to assess alignment accuracy. GISMO fills a different niche than other MSA programs, namely identifying and aligning a conserved domain present within a large, diverse set of full length sequences. The GISMO program is available at http://gismo.igs.umaryland.edu/. PMID

  18. Acceleration through passive destabilization: protein folding in a weak hydrophobic environment

    NASA Astrophysics Data System (ADS)

    Jewett, Andrew; Baumketner, Andrij; Shea, Joan-Emma

    2004-03-01

    The GroEL chaperonin is a biomolecule which assists the folding of an extremely diverse range of proteins in Eubacteria. Some proteins undergo many rounds of ATP-regulated binding and dissociation from GroEL/ES before folding. It has been proposed that transient stress from ATP-regulated binding and release from GroEL/ES frees frustrated proteins from misfolded conformations. However recent evidence suggests that chaperonin-accelerated protein folding can take place entirely within a mutated GroEL+ES cavity that is unable to open and release the protein. Using molecular dynamics, we demonstrate that static confinement within a weakly hydrophobic (attractive) cavity (similar to the interior of the cavity formed by the GroEL+ES complex) is sufficient to significantly accelerate the folding of a highly frustrated protein-like heteropolymer. Our frustrated molecule benifits kinetically from a static hydrophobic environment that destabilizes misfolded conformations. This may shed light on the mechanisms used by other chaperones which do not depend on ATP.

  19. Growth associated protein (GAP-43): cloning and the development of a sensitive ELISA for neurological disorders.

    PubMed

    Gnanapavan, Sharmilee; Yousaf, Nasim; Heywood, Wendy; Grant, Donna; Mills, Kevin; Chernajovsky, Yuti; Keir, Geoff; Giovannoni, Gavin

    2014-11-15

    GAP-43 has been studied in the rodent and mammalian brain and shown to be present specifically in areas undergoing axonal elongation and synapse formation. GAP-43 was cloned using the baculovirus expression system and purified. A sandwich ELISA was developed using the recombinant GAP-43 as standard and validated. CSF GAP-43 levels were analysed in benign intracranial hypertension, movement disorders, multiple sclerosis, neuropathy, CNS infections, motor neuron disease, and headache (neurological controls). GAP-43 levels were low in all disorders analysed (in particular motor neuron disease; p=0.001, and movement disorders and multiple sclerosis; p<0.0001) compared to controls, aside from CNS infections. GAP-43 is preferentially reduced in the CSF of neurological disorders associated with neurodegeneration.

  20. Conformational Changes in Acetylcholine Binding Protein Investigated by Temperature Accelerated Molecular Dynamics

    PubMed Central

    Mohammad Hosseini Naveh, Zeynab; Malliavin, Therese E.; Maragliano, Luca; Cottone, Grazia; Ciccotti, Giovanni

    2014-01-01

    Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP), a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD) and Temperature Accelerated Molecular Dynamics (TAMD) simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit. PMID:24551117

  1. A novel ER J-protein DNAJB12 accelerates ER-associated degradation of membrane proteins including CFTR.

    PubMed

    Yamamoto, Yo-hei; Kimura, Taiji; Momohara, Shuku; Takeuchi, Masato; Tani, Tokio; Kimata, Yukio; Kadokura, Hiroshi; Kohno, Kenji

    2010-01-01

    Cytosolic Hsc70/Hsp70 are known to contribute to the endoplasmic reticulum (ER)-associated degradation of membrane proteins. However, at least in mammalian cells, its partner ER-localized J-protein for this cellular event has not been identified. Here we propose that this missing protein is DNAJB12. Protease protection assay and immunofluorescence study revealed that DNAJB12 is an ER-localized single membrane-spanning protein carrying a J-domain facing the cytosol. Using co-immunoprecipitation assay, we found that DNAJB12 is able to bind Hsc70 and thus can recruit Hsc70 to the ER membrane. Remarkably, cellular overexpression of DNAJB12 accelerated the degradation of misfolded membrane proteins including cystic fibrosis transmembrane conductance regulator (CFTR), but not a misfolded luminal protein. The DNAJB12-dependent degradation of CFTR was compromised by a proteasome inhibitor, lactacystin, suggesting that this process requires the ubiquitin-proteasome system. Conversely, knockdown of DNAJB12 expression attenuated the degradation of CFTR. Thus, DNAJB12 is a novel mammalian ER-localized J-protein that plays a vital role in the quality control of membrane proteins.

  2. Phosphoregulation of MgcRacGAP in mitosis involves Aurora B and Cdk1 protein kinases and the PP2A phosphatase.

    PubMed

    Touré, Aminata; Mzali, Rym; Liot, Caroline; Seguin, Laetitia; Morin, Laurence; Crouin, Catherine; Chen-Yang, Ilin; Tsay, Yeou-Guang; Dorseuil, Olivier; Gacon, Gérard; Bertoglio, Jacques

    2008-04-01

    MgcRacGAP, a Rho GAP essential to cytokinesis, works both as a Rho GTPase regulator and as a scaffolding protein. MgcRacGAP interacts with MKLP1 to form the centralspindlin complex and associates with the RhoGEF Ect2. The GAP activity of MgcRacGAP is regulated by Aurora B phosphorylation. We have isolated B56epsilon, a PP2A regulatory subunit, as a new MgcRacGAP partner. We report here that (i) MgcRacGAP is phosphorylated by Aurora B and Cdk1, (ii) PP2A dephosphorylates Aurora B and Cdk1 phosphorylated sites and (iii) inhibition of PP2A abrogates MgcRacGAP/Ect2 interaction. Therefore, PP2A may regulate cytokinesis by dephosphorylating MgcRacGAP and its interacting partners.

  3. Identification of a novel zinc finger protein gene (ZNF298) in the GAP2 of human chromosome 21q

    SciTech Connect

    Shibuya, Kazunori; Kudoh, Jun; Okui, Michiyo; Shimizu, Nobuyoshi . E-mail: shimizu@dmb.med.keio.ac.jp

    2005-07-01

    We have isolated a novel zinc finger protein gene, designated ZNF298, as a candidate gene for a particular phenotype of Down syndrome or bipolar affective disorder (BPAD) which maps to human chromosome 21q22.3. ZNF298 gene consists of 25 exons spanning approximately 80 kb in a direction from the telomere to centromere. There are four kinds of transcripts that harbor three types of 3' UTR. These four transcripts (ZNF298a, ZNF298b, ZNF298c, and ZNF298d) contain putative open reading frames encoding 1178, 1198, 555, and 515 amino acids, respectively. ZNF298 gene was ubiquitously expressed in various tissues at very low level. The protein motif analysis revealed that ZNF298 proteins contain a SET [Su(var)3-9, Enhancer-of-zeste, Trithorax] domain, multiple C2H2-type zinc finger (ZnF{sub C}2H2) domains, several nuclear localization signals (NLSs), and PEST sequences. Nuclear localization of ZNF298 protein was confirmed by transfection of expression vector of GFP-tagged protein into two human cell lines. Interestingly, this gene crosses over a clone gap (GAP2) remaining in the band 21q22.3. We obtained the DNA fragments corresponding to GAP2 using ZNF298 cDNA sequence as anchor primers for PCR and determined its genomic DNA sequence.

  4. Accelerated Molecular Dynamics Study of the Effects of Surface Hydrophilicity on Protein Adsorption.

    PubMed

    Mücksch, Christian; Urbassek, Herbert M

    2016-09-13

    The adsorption of streptavidin is studied on two surfaces, graphite and titanium dioxide, using accelerated molecular dynamics. Adsorption on graphite leads to strong conformational changes while the protein spreads out over the surface. Interestingly, also adsorption on the highly hydrophilic rutile surface induces considerable spreading of the protein. We pin down the cause for this unfolding to the interaction of the protein with the ordered water layers above the rutile surface. For special orientations, the protein penetrates the ordered water layers and comes into direct contact with the surface where the positively charged amino acids settle in places adjacent to the negatively charged top surface atom layer of rutile. We conclude that for both surface materials studied, streptavidin changes its conformation so strongly that it loses its potential for binding biotin. Our results are in good qualitative agreement with available experimental studies. PMID:27533302

  5. Accelerating the clearance of mutant huntingtin protein aggregates through autophagy induction by europium hydroxide nanorods.

    PubMed

    Wei, Peng-Fei; Zhang, Li; Nethi, Susheel Kumar; Barui, Ayan Kumar; Lin, Jun; Zhou, Wei; Shen, Yi; Man, Na; Zhang, Yun-Jiao; Xu, Jing; Patra, Chitta Ranjan; Wen, Long-Ping

    2014-01-01

    Autophagy is one of the well-known pathways to accelerate the clearance of protein aggregates, which contributes to the therapy of neurodegenerative diseases. Although there are numerous reports that demonstrate the induction of autophagy with small molecules including rapamycin, trehalose and lithium, however, there are few reports mentioning the clearance of aggregate-prone proteins through autophagy induction by nanoparticles. In the present article, we have demonstrated that europium hydroxide [Eu(III)(OH)3] nanorods can reduce huntingtin protein aggregation (EGFP-tagged huntingtin protein with 74 polyQ repeats), responsible for neurodegenerative diseases. Again, we have found that these nanorods induce authentic autophagy flux in different cell lines (Neuro 2a, PC12 and HeLa cells) through the expression of higher levels of characteristic autophagy marker protein LC3-II and degradation of selective autophagy substrate/cargo receptor p62/SQSTM1. Furthermore, depression of protein aggregation clearance through the autophagy blockade has also been observed by using specific inhibitors (wortmannin and chloroquine), indicating that autophagy is involved in the degradation of huntingtin protein aggregation. Since [Eu(III)(OH)3] nanorods can enhance the degradation of huntingtin protein aggregation via autophagy induction, we strongly believe that these nanorods would be useful for the development of therapeutic treatment strategies for various neurodegenerative diseases in near future using nanomedicine approach.

  6. Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes.

    PubMed Central

    Warner, A; Clements, D K; Parikh, S; Evans, W H; DeHaan, R L

    1995-01-01

    1. Gap junction formation was compared in the absence and presence of small peptides containing extracellular loop sequences of gap junction (connexin) proteins by measuring the time taken for pairs of spontaneously beating embryonic chick heart myoballs to synchronize beat rates. Test peptides were derived from connexin 32. Non-homologous peptides were used as controls. Control pairs took 42 +/- 0.5 min (mean +/- S.E.M.; n = 1088) to synchronize. 2. Connexins 32 and 43, but not 26, were detected in gap junction plaques. The density and distribution of connexin immunolabelling varied between myoballs. 3. Peptides containing conserved motifs from extracellular loops 1 and 2 delayed gap junction formation. The steep portion of the dose-response relation lay between 30 and 300 microM peptide. 4. In loop 1, the conserved motifs QPG and SHVR were identified as being involved in junction formation. In loop 2, the conserved SRPTEK motif was important. The ability of peptides containing the SRPTEK motif to interfere with the formation of gap junctions was enhanced by amino acids from the putative membrane-spanning region. 5. Peptides from loop 1 and loop 2 were equivalently effective; there was no synergism between them. 6. The inclusion of conserved cysteines in test peptides did not make them more effective in the competition assay. Images Figure 1 PMID:8576861

  7. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope.

    PubMed

    Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong

    2015-02-01

    Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine.

  8. Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1.

    PubMed

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.

  9. Automated Technologies and Novel Techniques to Accelerate Protein Crystallography for Structrual Genomics

    SciTech Connect

    Manjasetty,B.; Turnbull, A.; Panjikar, S.; Bussow, K.; Chance, M.

    2008-01-01

    The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- all of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis.

  10. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation.

    PubMed

    Patel, Avinash; Lee, Hyun O; Jawerth, Louise; Maharana, Shovamayee; Jahnel, Marcus; Hein, Marco Y; Stoynov, Stoyno; Mahamid, Julia; Saha, Shambaditya; Franzmann, Titus M; Pozniakovski, Andrej; Poser, Ina; Maghelli, Nicola; Royer, Loic A; Weigert, Martin; Myers, Eugene W; Grill, Stephan; Drechsel, David; Hyman, Anthony A; Alberti, Simon

    2015-08-27

    Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases. PMID:26317470

  11. Photoperiod-Dependent Effects of 4-tert-Octylphenol on Adherens and Gap Junction Proteins in Bank Vole Seminiferous Tubules

    PubMed Central

    Kuras, Paulina; Lydka-Zarzycka, Marta; Bilinska, Barbara

    2013-01-01

    In the present study we evaluated in vivo and in vitro effects of 4-tert-octylphenol (OP) on the expression and distribution of adherens and gap junction proteins, N-cadherin, β-catenin, and connexin 43 (Cx43), in testes of seasonally breeding rodents, bank voles. We found that in bank vole testes expression and distribution of N-cadherin, β-catenin, and Cx43 were photoperiod dependent. Long-term treatment with OP (200 mg/kg b.w.) resulted in the reduction of junction proteins expressions (P < 0.05, P < 0.01) and their delocalization in the testes of males kept in long photoperiod, whereas in short-day animals slight increase of Cx43 (P < 0.05), N-cadherin, and β-catenin (statistically nonsignificant) levels was observed. Effects of OP appeared to be independent of FSH and were maintained during in vitro organ culture, indicating that OP acts directly on adherens and gap junction proteins in the testes. An experiment performed using an antiestrogen ICI 182,780 demonstrated that the biological effects of OP on β-catenin and Cx43 involve an estrogen receptor-mediated response. Taken together, in bank vole organization of adherens and gap junctions and their susceptibility to OP are related to the length of photoperiod. Alterations in cadherin/catenin and Cx43-based junction may partially result from activation of estrogen receptor α and/or β signaling pathway. PMID:23737770

  12. Retention of chimeric Tat2-Gap1 permease in the endoplasmic reticulum induces unfolded protein response in Saccharomyces cerevisiae.

    PubMed

    Mochizuki, Takahiro; Kimata, Yukio; Uemura, Satoshi; Abe, Fumiyoshi

    2015-08-01

    In Saccharomyces cerevisiae, high-affinity tryptophan import is performed by subtle mechanisms involving tryptophan permease Tat2. We have shown that Tat2 requires 15 amino acid residues in the transmembrane domains (TMDs) for its import activity, whereas leucine permease Bap2 requires only seven corresponding residues for its leucine import. For this reason, the structure of Tat2 is elaborately designed to transport the hydrophobic and bulky tryptophan. Newly synthesized cell surface proteins first undergo endoplasmic reticulum (ER)-associated quality check before entering the secretory pathway. In this study, we used domain replacement with general amino acid permease Gap1 to show that Tat2 chimeric proteins were dysfunctional when TMD10 or TMD11 was replaced. These chimeras formed large 270-800-kDa protein complexes and were stably retained in the ER membrane without efficient degradation. In contrast, Tat2 chimeras of TMD9 or TMD12 retained some of their tryptophan import activity and underwent vacuolar degradation as observed with wild-type Tat2. Thus, ours results suggest that TMD10 and TMD11 are essential for the correct folding of Tat2, probably because of their interdomain interactions. Notably, overexpression of Tat2-Gap1 chimera of TMD10 activated the unfolded protein response (UPR) element-lacZ reporter, suggesting that ER retention of the protein aggregates induces the UPR.

  13. Protein tyrosine phosphatase 1B targets PITX1/p120RasGAP thus showing therapeutic potential in colorectal carcinoma

    PubMed Central

    Teng, Hao-Wei; Hung, Man-Hsin; Chen, Li-Ju; Chang, Mao-Ju; Hsieh, Feng-Shu; Tsai, Ming-Hsien; Huang, Jui-Wen; Lin, Chih-Lung; Tseng, Hsiang-Wen; Kuo, Zong-Keng; Jiang, Jeng-Kai; Yang, Shung-Haur; Shiau, Chung-Wai; Chen, Kuen-Feng

    2016-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is known to promote the pathogenesis of diabetes and obesity by negatively regulating insulin and leptin pathways, but its role associated with colon carcinogenesis is still under debate. In this study, we demonstrated the oncogenic role of PTP1B in promoting colon carcinogenesis and predicting worse clinical outcomes in CRC patients. By co-immunoprecipitation, we showed that PITX1 was a novel substrate of PTP1B. Through direct dephosphorylation at Y160, Y175 and Y179, PTP1B destabilized PITX1, which resulted in downregulation of the PITX1/p120RasGAP axis. Interestingly, we found that regorafenib, the approved target agent for advanced CRC patients, exerted a novel property against PTP1B. By inhibiting PTP1B activity, regorafenib treatment augmented the stability of PITX1 protein and upregulated the expression of p120RasGAP in CRC. Importantly, we found that this PTP1B-dependant PITX1/p120RasGAP axis determines the in vitro anti-CRC effects of regorafenib. The above-mentioned effects of regorafenib were confirmed by the HT-29 xenograft tumor model. In conclusion, we demonstrated a novel oncogenic mechanism of PTP1B on affecting PITX1/p120RasGAP in CRC. Regorafenib inhibited CRC survival through reserving PTP1B-dependant PITX1/p120RasGAP downregulation. PTP1B may be a potential biomarker predicting regorafenib effectiveness, and a potential solution for CRC. PMID:27752061

  14. Dephosphorylated C/EBPalpha accelerates cell proliferation through sequestering retinoblastoma protein.

    PubMed

    Wang, Guo-Li; Timchenko, Nikolai A

    2005-02-01

    CCAAT/enhancer-binding protein alpha (C/EBPalpha) has been previously considered a strong inhibitor of cell proliferation which uses multiple pathways to cause growth arrest. In this paper, we describe a new function of C/EBPalpha, which is an acceleration of cell proliferation. This new function of C/EBPalpha is created in proliferating livers by protein phosphatase 2A-mediated dephosphorylation of C/EBPalpha at Ser193. The Ser193-dephosphorylated C/EBPalpha interacts with retinoblastoma protein (Rb) independently on E2Fs and sequesters Rb, leading to a reduction of E2F-Rb repressors and to acceleration of proliferation. This new function of C/EBPalpha requires Rb, since the dephosphorylated C/EBPalpha does not promote proliferation in Rb-negative cells. We also show that a balance of Rb and Ser193-dephosphorylated C/EBPalpha determines if the cells are growth arrested or have an increased rate of proliferation. Consistently with these findings, a significant portion of Rb is sequestered into Rb-C/EBPalpha complexes in proliferating livers, and E2F-Rb complexes are not detectable in these livers. Our data demonstrate a new pathway by which the phosphorylation-dependent switch of biological functions of C/EBPalpha promotes liver proliferation. PMID:15684384

  15. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush.

    PubMed

    McQuarrie, I G; Jacob, J M

    1991-03-01

    To examine the relationship between axonal outgrowth and the delivery of cytoskeletal proteins to the growing axon tip, outgrowth was accelerated by using a conditioning nerve crush. Because slow component b (SCb) of axonal transport is the most rapid vehicle for carrying cytoskeletal proteins to the axon tip, the rate of SCb was measured in conditioned vs. sham-conditioned sprouts. In young Sprague-Dawley rats, the conditioning crush was made to sciatic nerve branches at the knee; 14 days later, the test crush was made where the L4 and L5 spinal nerves join to form the sciatic nerve in the flank. Newly synthesized proteins were labeled in motor neurons by injecting 35S-methionine into the lumbar spinal cord 7 days before the test crush. The wave of pulse-labeled SCb proteins reached the crush by the time it was made and subsequently entered sprouts. The nerve was removed and sectioned for SDS-PAGE and fluorography 4-12 days after the crush. Tubulins, neurofilament proteins, and representative "cytomatrix" proteins (actin, calmodulin, and putative microtubule-associated proteins) were removed from gels for liquid scintillation counting. Labeled SCb proteins entered sprouts without first accumulating in parent axon stumps, presumably because sprouts begin to grow within hours after axotomy. The peak of SCb moved 11% faster in conditioned than in sham-conditioned sprouts: 3.0 vs. 2.7 mm/d (p less than 0.05). To confirm that sprouts elongate more rapidly when a test crush is preceded by a conditioning crush, outgrowth distances were measured in a separate group of rats by labeling fast axonal transport with 3H-proline 24 hours before nerve retrieval.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    SciTech Connect

    Ganesan, Shanthi Nteeba, Jackson Keating, Aileen F.

    2015-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1 mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. - Highlights: • Ovarian gap junction proteins are affected by ovarian aging and obesity. • DMBA exposure negatively impacts gap junction proteins. • Altered gap junction proteins may contribute to infertility.

  17. Identification and characterization of CD4⁺ T-cell epitopes on GapC protein of Streptococcus dysgalactiae.

    PubMed

    Yao, Di; Zhang, Hua; Wang, Xintong; Yu, Simiao; Wei, Yuhua; Liu, Wei; Wang, Jiannan; Chen, Xiaoting; Zhang, Zhenghai; Sun, Hunan; Yu, Liquan; Ma, Jinzhu; Tong, Chunyu; Song, Baifen; Cui, Yudong

    2016-02-01

    The GapC protein is highly conserved surface dehydrogenase among Streptococcus dysgalactiae (S. dysgalactiae) and is shown to be involved in bacterial virulence. Immunization of GapC protein can induce specific CD4(+) T-cell immune responses and protect against S. dysgalactiae infection. However, there are no studies to identify immunodominant CD4(+) T-cell epitopes on GapC protein. In this study, in silico MHC affinity measurement method was firstly used to predict potential CD4(+) T-cell epitopes on GapC protein. Six predictive 15-mer peptides were synthesized and two novel GapC CD4(+) T-cell epitopes, GapC63-77 and GapC96-110, were for the first time identified using CD4(+) T-cells obtained from GapC-immunized BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice spleen based on cell proliferation and cytokines response. The results showed that peptides containing 63-77 and 96-110 induced significant antigen-specific CD4(+) T-cells proliferation response in vivo. At the same time, high levels of IFN-γ and IL-17A, as well as moderate levels of IL-10 and IL-4 were detected in CD4(+) T-cells isolated from both GapC and peptide-immunized mice in vivo, suggesting that GapC63-77 and GapC96-110 preferentially elicited polarized Th1/Th17-type responses. The characterization of GapC CD4(+) T-cell epitopes not only helps us understand its protective immunity, but also contributes to design effective T-cell epitope-based vaccine against S. dysgalactiae infection.

  18. Developmental expression and molecular characterization of two gap junction channel proteins expressed during embryogenesis in the grasshopper Schistocerca americana.

    PubMed

    Ganfornina, M D; Sánchez, D; Herrera, M; Bastiani, M J

    1999-01-01

    Gap junctions are membrane channels that directly connect the cytoplasm of neighboring cells, allowing the exchange of ions and small molecules. Two analogous families of proteins, the connexins and innexins, are the channel-forming molecules in vertebrates and invertebrates, respectively. In order to study the role of gap junctions in the embryonic development of the nervous system, we searched for innexins in the grasshopper Schistocerca americana. Here we present the molecular cloning and sequence analysis of two novel innexins, G-Inx(1) and G-Inx(2), expressed during grasshopper embryonic development. The analysis of G-Inx(1) and G-Inx(2) proteins suggests they bear four transmembrane domains, which show strong conservation in members of the innexin family. The study of the phylogenetic relationships between members of the innexin family and the new grasshopper proteins suggests that G-Inx(1) is orthologous to the Drosophila 1(1)-ogre. However, G-Inx(2) seems to be a member of a new group of insect innexins. We used in situ hybridization with the G-Inx(1) and G-Inx(2) cDNA clones, and two polyclonal sera raised against different regions of G-Inx(1) to study the mRNA and protein expression patterns and the subcellular localization of the grasshopper innexins. G-Inx(1) is primarily expressed in the embryonic nervous system, in neural precursors and glial cells. In addition, a restricted stripe of epithelial cells in the developing limb, involved in the guidance of sensory growth cones, expresses G-Inx(1). G-Inx(2) expression is more widespread in the grasshopper embryo, but a restricted expression is found in a subset of neural precursors. The generally different but partially overlapping expression patterns of G-Inx(1) and G-Inx(2) supports the combinatorial character of gap junction formation in invertebrates, an essential property to generate specificity in this form of cell-cell communication.

  19. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    SciTech Connect

    Chen, Chunlong; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald; De Yoreo, James J.

    2014-09-05

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  20. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.

    2014-09-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.

  1. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.

    PubMed

    Walkup, Ward G; Washburn, Lorraine; Sweredoski, Michael J; Carlisle, Holly J; Graham, Robert L; Hess, Sonja; Kennedy, Mary B

    2015-02-20

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons.

  2. Synthesis of aberrant decay-accelerating factor proteins by affected paroxysmal nocturnal hemoglobinuria leukocytes.

    PubMed Central

    Carothers, D J; Hazra, S V; Andreson, S W; Medof, M E

    1990-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) leukocytes fail to express decay-accelerating factor (DAF) but contain DAF mRNA transcripts resembling those in normal cells. To further investigate the nature of the DAF defect in affected cells, patients' polymorphonuclear and mononuclear leukocytes (PMN and MNC) were biosynthetically labeled and newly synthesized DAF proteins examined. Analyses of greater than 98% surface DAF-negative PMN and MNC from a patient with PNH III erythrocytes showed precursor DAF protein approximately 3 kD smaller in each cell type than in normal cells. The proportion of precursor to mature (O-glycosylated) DAF protein was increased and soluble DAF protein was detected in the medium. Studies of 70-80% surface DAF-negative PMN and MNC from four patients with type II erythrocytes showed mixtures of the 3 kD smaller and normal DAF precursors. Partitioning with Triton X-114 detergent and biosynthetic labeling with the anchor precursor [3H]ethanolamine indicated that the abnormal peptides lacked glycosyl-inositolphospholipid membrane-anchoring structures. Thus, in PNH cells nascent DAF polypeptides are synthesized. Some of the abnormal pro-DAF molecules are processed in the Golgi and some are released extracellularly. Images PMID:1688570

  3. Tissue and species conservation of the vertebrate and arthropod forms of the low molecular weight (16-18000) proteins of gap junctions.

    PubMed

    Buultjens, T E; Finbow, M E; Lane, N J; Pitts, J D

    1988-03-01

    Gap junctions have been isolated from four murine tissues, from rat and Xenopus laevis liver, and from Nephrops norvegicus (Norway lobster) hepatopancreas. The preparations of gap junctions from each vertebrate tissue contain a single major protein, Mr 16,000, and those from Nephrops hepatopancreas a protein, Mr 18,000. Immunocytochemical studies using affinity-purified antibodies raised against gap junctions from Nephrops show the junctional origin of the 18k protein. Immunological studies using Western blotting and biochemical studies using tryptic peptide mapping show no significant differences between the 16k junctional proteins of mouse and hence provide no evidence of tissue variation. These studies also suggest that the mouse, rat, and Xenopus 16k proteins and the Nephrops 18k protein share some common structural features.

  4. Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function

    PubMed Central

    Tong, Carl W.; Stelzer, Julian E.; Greaser, Marion L.; Powers, Patricia A.; Moss, Richard L.

    2009-01-01

    Normal cardiac function requires dynamic modulation of contraction. β1 adrenergic-induced protein kinase A (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking three PKA sites on cMyBP-C, i.e., cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser to Ala mutations on the cMyBP-C knock-out (KO) background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, i.e., cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force, and finally a delayed development of force, i.e., stretch activation. The rate constants of relaxation, krel (s−1), and delayed force development, kdf (s−1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline krel and kdf similar to WT myocardium, but unlike WT, krel and kdf were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiagraphic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction. PMID:18802026

  5. 3BP-1, an SH3 domain binding protein, has GAP activity for Rac and inhibits growth factor-induced membrane ruffling in fibroblasts.

    PubMed Central

    Cicchetti, P; Ridley, A J; Zheng, Y; Cerione, R A; Baltimore, D

    1995-01-01

    The SH3 binding protein, 3BP-1, was originally cloned as a partial cDNA from an expression library using the Abl SH3 domain as a probe. In addition to an SH3 binding domain, 3BP-1 displayed homology to a class of GTPase activating proteins (GAPs) active against Rac and Rho proteins. We report here a full length cDNA of 3BP-1 which extends the homology to GAP proteins previously noted. 3BP-1 functions in vitro as a GAP with a specificity for Rac-related G proteins. Microinjection of the 3BP-1 protein into serum-starved fibroblasts produces an inhibition of platelet-derived growth factor (PDGF)-induced membrane ruffling mediated by Rac. Co-injection of 3BP-1 with an activated Rac mutant that is unresponsive to GAPs, counter-acts this inhibition. 3BP-1 does not show in vitro activity towards Rho and, in agreement with this finding, microinjection of 3BP-1 into fibroblasts has no effect on lysophosphatidic acid (LPA)-induced stress fiber assembly mediated by Rho. Thus 3BP-1 is a new and specific Rac GAP that can act in cells to counter Rac-mediated membrane ruffling. How its SH3 binding site interacts with its GAP activity remains to be understood. Images PMID:7621827

  6. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK).

    PubMed

    Tang, Xiao Xiao; Chen, Hao; Yu, Sidney; Zhang, Li; Caplan, Michael J; Chan, Hsiao Chang

    2010-01-01

    The tight junctions (TJs), characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK) cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK). AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK. PMID:20808811

  7. Chondroitin Sulfate Accelerates Trans-Golgi-to-Surface Transport of Proteoglycan Amyloid Precursor Protein.

    PubMed

    Mihov, Deyan; Raja, Eva; Spiess, Martin

    2015-08-01

    The amyloid precursor protein (APP) is a membrane protein implicated in the pathogenesis of Alzheimer's disease. APP is a part-time proteoglycan, as splice variants lacking exon 15 are modified by a chondroitin sulfate glycosaminoglycan (GAG) chain. Investigating the effect of the GAG chain on the trafficking of APP in non-polarized cells, we found it to increase the steady-state surface-to-intracellular distribution, to reduce the rate of endocytosis and to accelerate transport kinetics from the trans-Golgi network (TGN) to the plasma membrane. Deletion of the cytosolic domain resulted in delayed surface arrival of GAG-free APP, but did not affect the rapid export kinetics of the proteoglycan form. Protein-free GAG chains showed the same TGN-to-cell surface transport kinetics as proteoglycan APP. Endosome ablation experiments were performed to distinguish between indirect endosomal and direct pathways to the cell surface. Surprisingly, TGN-to-cell surface transport of both GAG-free and proteoglycan APP was found to be indirect via transferrin-positive endosomes. Our results show that GAGs act as alternative sorting determinants in cellular APP transport that are dominant over cytoplasmic signals and involve distinct sorting mechanisms.

  8. Mitochondrial Complex I Deficiency Increases Protein Acetylation and Accelerates Heart Failure

    PubMed Central

    Karamanlidis, Georgios; Lee, Chi Fung; Garcia-Menendez, Lorena; Kolwicz, Stephen C.; Suthammarak, Wichit; Gong, Guohua; Sedensky, Margaret M.; Morgan, Philip G.; Wang, Wang; Tian, Rong

    2013-01-01

    Summary Mitochondrial respiratory dysfunction is linked to the pathogenesis of multiple diseases including heart failure but the specific mechanisms for this link remain largely elusive. We modeled the impairment of mitochondrial respiration by inactivation of the Ndufs4 gene, a protein critical for Complex I (C-I) assembly, in the mouse heart (cKO). While C-I supported respiration decreased by >40%, the cKO mice maintained normal cardiac function in vivo and high-energy phosphate content in isolated perfused hearts. However, the cKO mice developed accelerated heart failure after pressure overload or repeated pregnancy. Decreased NAD+/NADH ratio by C-I deficiency inhibited Sirt3 activity, leading to increase in protein acetylation, and sensitization of the permeability transition in mitochondria (mPTP). NAD+ precursor supplementation to cKO mice partially normalized the NAD+/NADH ratio, protein acetylation and mPTP sensitivity. These findings describe a mechanism connecting mitochondrial dysfunction to the susceptibility to diseases and propose a potential therapeutic target. PMID:23931755

  9. Decreased Gap Width in a Cylindrical High-Field Asymmetric Waveform Ion Mobility Spectrometry Device Improves Protein Discovery.

    PubMed

    Swearingen, Kristian E; Winget, Jason M; Hoopmann, Michael R; Kusebauch, Ulrike; Moritz, Robert L

    2015-12-15

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas phase ions according to their characteristic dependence of ion mobility on electric field strength. FAIMS can be implemented as a means of automated gas-phase fractionation in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments. We modified a commercially available cylindrical FAIMS device by enlarging the inner electrode, thereby narrowing the gap and increasing the effective field strength. This modification provided a nearly 4-fold increase in FAIMS peak capacity over the optimally configured unmodified device. We employed the modified FAIMS device for on-line fractionation in a proteomic analysis of a complex sample and observed major increases in protein discovery. NanoLC-FAIMS-MS/MS of an unfractionated yeast tryptic digest using the modified FAIMS device identified 53% more proteins than were identified using an unmodified FAIMS device and 98% more proteins than were identified with unaided nanoLC-MS/MS. We describe here the development of a nanoLC-FAIMS-MS/MS protocol that provides automated gas-phase fractionation for proteomic analysis of complex protein digests. We compare this protocol against prefractionation of peptides with isoelectric focusing and demonstrate that FAIMS fractionation yields comparable protein recovery while significantly reducing the amount of sample required and eliminating the need for additional sample handling. PMID:26560994

  10. Acceleration of protein folding by four orders of magnitude through a single amino acid substitution

    PubMed Central

    Roderer, Daniel J. A.; Schärer, Martin A.; Rubini, Marina; Glockshuber, Rudi

    2015-01-01

    Cis prolyl peptide bonds are conserved structural elements in numerous protein families, although their formation is energetically unfavorable, intrinsically slow and often rate-limiting for folding. Here we investigate the reasons underlying the conservation of the cis proline that is diagnostic for the fold of thioredoxin-like thiol-disulfide oxidoreductases. We show that replacement of the conserved cis proline in thioredoxin by alanine can accelerate spontaneous folding to the native, thermodynamically most stable state by more than four orders of magnitude. However, the resulting trans alanine bond leads to small structural rearrangements around the active site that impair the function of thioredoxin as catalyst of electron transfer reactions by more than 100-fold. Our data provide evidence for the absence of a strong evolutionary pressure to achieve intrinsically fast folding rates, which is most likely a consequence of proline isomerases and molecular chaperones that guarantee high in vivo folding rates and yields. PMID:26121966

  11. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    Sáez, J C; Nairn, A C; Czernik, A J; Spray, D C; Hertzberg, E L; Greengard, P; Bennett, M V

    1990-09-11

    Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced

  12. Computational Protein Engineering: Bridging the Gap between Rational Design and Laboratory Evolution

    PubMed Central

    Barrozo, Alexandre; Borstnar, Rok; Marloie, Gaël; Kamerlin, Shina Caroline Lynn

    2012-01-01

    Enzymes are tremendously proficient catalysts, which can be used as extracellular catalysts for a whole host of processes, from chemical synthesis to the generation of novel biofuels. For them to be more amenable to the needs of biotechnology, however, it is often necessary to be able to manipulate their physico-chemical properties in an efficient and streamlined manner, and, ideally, to be able to train them to catalyze completely new reactions. Recent years have seen an explosion of interest in different approaches to achieve this, both in the laboratory, and in silico. There remains, however, a gap between current approaches to computational enzyme design, which have primarily focused on the early stages of the design process, and laboratory evolution, which is an extremely powerful tool for enzyme redesign, but will always be limited by the vastness of sequence space combined with the low frequency for desirable mutations. This review discusses different approaches towards computational enzyme design and demonstrates how combining newly developed screening approaches that can rapidly predict potential mutation “hotspots” with approaches that can quantitatively and reliably dissect the catalytic step can bridge the gap that currently exists between computational enzyme design and laboratory evolution studies. PMID:23202907

  13. Self-Complementarity within Proteins: Bridging the Gap between Binding and Folding

    PubMed Central

    Basu, Sankar; Bhattacharyya, Dhananjay; Banerjee, Rahul

    2012-01-01

    Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors. PMID:22713576

  14. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model.

    PubMed

    Ohkubo, Y Zenmei; Pogorelov, Taras V; Arcario, Mark J; Christensen, Geoff A; Tajkhorshid, Emad

    2012-05-01

    Characterizing atomic details of membrane binding of peripheral membrane proteins by molecular dynamics (MD) has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and orientation of the lipids. In the HMMM membrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins by using the membrane anchor (γ-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very efficiently and reproducibly. The HMMM model will provide significant improvements to the current all-atom models by accelerating lipid dynamics to examine protein-membrane interactions more efficiently. PMID:22824277

  15. Accelerating Membrane Insertion of Peripheral Proteins with a Novel Membrane Mimetic Model

    PubMed Central

    Ohkubo, Y. Zenmei; Pogorelov, Taras V.; Arcario, Mark J.; Christensen, Geoff A.; Tajkhorshid, Emad

    2012-01-01

    Characterizing atomic details of membrane binding of peripheral membrane proteins by molecular dynamics (MD) has been significantly hindered by the slow dynamics of membrane reorganization associated with the phenomena. To expedite lateral diffusion of lipid molecules without sacrificing the atomic details of such interactions, we have developed a novel membrane representation, to our knowledge, termed the highly mobile membrane-mimetic (HMMM) model to study binding and insertion of various molecular species into the membrane. The HMMM model takes advantage of an organic solvent layer to represent the hydrophobic core of the membrane and short-tailed phospholipids for the headgroup region. We demonstrate that using these components, bilayer structures are formed spontaneously and rapidly, regardless of the initial position and orientation of the lipids. In the HMMM membrane, lipid molecules exhibit one to two orders of magnitude enhancement in lateral diffusion. At the same time, the membrane atomic density profile of the headgroup region produced by the HMMM model is essentially identical to those obtained for full-membrane models, indicating the faithful representation of the membrane surface by the model. We demonstrate the efficiency of the model in capturing spontaneous binding and insertion of peripheral proteins by using the membrane anchor (γ-carboxyglutamic-acid-rich domain; GLA domain) of human coagulation factor VII as a test model. Achieving full insertion of the GLA domain consistently in 10 independent unbiased simulations within short simulation times clearly indicates the robustness of the HMMM model in capturing membrane association of peripheral proteins very efficiently and reproducibly. The HMMM model will provide significant improvements to the current all-atom models by accelerating lipid dynamics to examine protein-membrane interactions more efficiently. PMID:22824277

  16. UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport

    PubMed Central

    Almenar-Queralt, Angels; Falzone, Tomas L.; Shen, Zhouxin; Lillo, Concepcion; Killian, Rhiannon L.; Arreola, Angela S.; Niederst, Emily D.; Ng, Kheng S.; Kim, Sonia N.; Briggs, Steven P.; Williams, David S.

    2014-01-01

    Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction. PMID:24573290

  17. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  18. HPV16 E6 Controls the Gap Junction Protein Cx43 in Cervical Tumour Cells

    PubMed Central

    Sun, Peng; Dong, Li; MacDonald, Alasdair I.; Akbari, Shahrzad; Edward, Michael; Hodgins, Malcolm B.; Johnstone, Scott R.; Graham, Sheila V.

    2015-01-01

    Human papillomavirus type 16 (HPV16) causes a range of cancers including cervical and head and neck cancers. HPV E6 oncoprotein binds the cell polarity regulator hDlg (human homologue of Drosophila Discs Large). Previously we showed in vitro, and now in vivo, that hDlg also binds Connexin 43 (Cx43), a major component of gap junctions that mediate intercellular transfer of small molecules. In HPV16-positive non-tumour cervical epithelial cells (W12G) Cx43 localised to the plasma membrane, while in W12T tumour cells derived from these, it relocated with hDlg into the cytoplasm. We now provide evidence that E6 regulates this cytoplasmic pool of Cx43. E6 siRNA depletion in W12T cells resulted in restoration of Cx43 and hDlg trafficking to the cell membrane. In C33a HPV-negative cervical tumour cells expressing HPV16 or 18 E6, Cx43 was located primarily in the cytoplasm, but mutation of the 18E6 C-terminal hDlg binding motif resulted in redistribution of Cx43 to the membrane. The data indicate for the first time that increased cytoplasmic E6 levels associated with malignant progression alter Cx43 trafficking and recycling to the membrane and the E6/hDlg interaction may be involved. This suggests a novel E6-associated mechanism for changes in Cx43 trafficking in cervical tumour cells. PMID:26445057

  19. Connexin 35: a gap-junctional protein expressed preferentially in the skate retina.

    PubMed

    O'Brien, J; al-Ubaidi, M R; Ripps, H

    1996-02-01

    We have used low stringency hybridization to clone a novel connexin from a skate retinal cDNA library. A rat connexin 32 clone was used to isolate a single partial clone that was subsequently used to isolate seven more overlapping clones of the same cDNA. Two clones containing the entire open reading frame have a consensus sequence of 1456 bp and predict a protein of 302 amino acids length and molecular mass of 35,044 daltons, referred to as connexin 35 or Cx35. Southern blot analysis suggests that the cloned sequence lies in a single gene with one intron. Polymerase chain reaction amplification from genomic DNA and partial sequencing of this intron showed that it was approximately 950 bp in length, and located within the coding region 71 bp after the translation start site. Hydropathy analysis of the predicted protein and alignments with previously cloned connexins indicate that Cx35 has a long cytoplasmic loop and a relatively short carboxyl terminal tail. Multiple sequence alignments show that Cx35 has similarities to both alpha and beta groups of connexins and suggests that its origins may be near the divergence point for the two groups. Consensus sequences consistent with sites for phosphorylation by protein kinase C and by cAMP - or cGMP -dependent protein kinase were identified. Two transcripts were detected in Northern blot analysis: a 1.95-kb primary transcript and a 4.6-kb minor transcript. In RNA samples from 10 tissues, transcripts were detected only in the retina.

  20. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  1. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  2. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43.

    PubMed

    Li, Nan; Mruk, Dolores D; Chen, Haiqi; Wong, Chris K C; Lee, Will M; Cheng, C Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  3. Regulation of the substrate preference of p190RhoGAP by protein kinase C-mediated phosphorylation of a phospholipid binding site.

    PubMed

    Lévay, Magdolna; Settleman, Jeffrey; Ligeti, Erzsébet

    2009-09-15

    The Rho family GTPases are stringently regulated through the action of a large family of GTPase activating proteins (GAPs) that stimulate their relatively weak intrinsic GTP hydrolyzing activity. The p190RhoGAPs, which include the p190A and p190B proteins, are potent and widely expressed GAPs acting on both Rho and Rac GTPases. We have observed that several acidic phospholipids inhibit the RhoGAP activity and promote the RacGAP activity of p190 proteins. In liposome binding assays we have demonstrated that binding of p190A to phospholipids is controlled by electrostatic interactions. Using mapping techniques, we determined that a small polybasic peptide stretch within p190A is a common site for both the phospholipid binding and PKC phosphorylation. Moreover, PKC-mediated phosphorylation of two amino acids (serine-1221 and threonine-1226) within this region of p190A prevents the binding and substrate specificity regulation by phospholipids. Transfection of COS-7 cells with mutant forms of p190A either unable to bind to phospholipids or unable to become phosphorylated induced distinct morphological changes. Together, these findings reveal a novel GAP regulatory mechanism in which phosphorylation indirectly alters GTPase substrate preference by affecting the interaction with acidic phospholipids. Our observations provide a potential mechanism of Rac/Rho antagonism described in several cellular functions.

  4. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA.

    PubMed Central

    Irwin, N; Baekelandt, V; Goritchenko, L; Benowitz, L I

    1997-01-01

    GAP-43 is a membrane phosphoprotein that is important for the development and plasticity of neural connections. In undifferentiated PC12 pheochromocytoma cells, GAP-43 mRNA degrades rapidly ( t = 5 h), but becomes stable when cells are treated with nerve growth factor. To identify trans- acting factors that may influence mRNA stability, we combined column chromatography and gel mobility shift assays to isolate GAP-43 mRNA binding proteins from neonatal bovine brain tissue. This resulted in the isolation of two proteins that bind specifically and competitively to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Partial amino acid sequencing revealed that one of the RNA binding proteins coincides with FBP (far upstream element binding protein), previously characterized as a protein that resembles hnRNP K and which binds to a single-stranded, pyrimidine-rich DNA sequence upstream of the c -myc gene to activate its expression. The other binding protein shares sequence homology with PTB, a polypyrimidine tract binding protein implicated in RNA splicing and regulation of translation initiation. The two proteins bind to a 26 nt pyrimidine-rich sequence lying 300 nt downstream of the end of the coding region, in an area shown by others to confer instability on a reporter mRNA in transient transfection assays. We therefore propose that FBP and the PTB-like protein may compete for binding at the same site to influence the stability of GAP-43 mRNA. PMID:9092640

  5. A RabGAP Regulates Life-Cycle Duration via Trimeric G-protein Cascades in Dictyostelium discoideum

    PubMed Central

    Kuwayama, Hidekazu; Miyanaga, Yukihiro; Urushihara, Hideko; Ueda, Masahiro

    2013-01-01

    Background The life-cycle of cellular slime molds comprises chronobiologically regulated processes. During the growth phase, the amoeboid cells proliferate at a definite rate. Upon starvation, they synthesize cAMP as both first and second messengers in signalling pathways and form aggregates, migrating slugs, and fruiting bodies, consisting of spores and stalk cells, within 24 h. In Dictyostelium discoideum, because most growth-specific events cease during development, proliferative and heterochronic mutations are not considered to be interrelated and no genetic factor governing the entire life-cycle duration has ever been identified. Methodology/Principal Findings Using yeast 2-hybrid library screening, we isolated a Dictyostelium discoideum RabGAP, Dd Rbg-3, as a candidate molecule by which the Dictyostelium Gα2 subunit directs its effects. Rab GTPase-activating protein, RabGAP, acts as a negative regulator of Rab small GTPases, which orchestrate the intracellular membrane trafficking involved in cell proliferation. Deletion mutants of Dd rbg-3 exhibited an increased growth rate and a shortened developmental period, while an overexpression mutant demonstrated the opposite effects. We also show that Dd Rbg-3 interacts with 2 Gα subunits in an activity-dependent manner in vitro. Furthermore, both human and Caenorhabditis elegans rbg-3 homologs complemented the Dd rbg-3–deletion phenotype in D. discoideum, indicating that similar pathways may be generally conserved in multicellular organisms. Conclusions/Significance Our findings suggest that Dd Rbg-3 acts as a key element regulating the duration of D. discoideum life-span potentially via trimeric G-protein cascades. PMID:24349132

  6. Molecular cloning, expression analysis, and functional characterization of connexin44.1: a zebrafish lens gap junction protein.

    PubMed

    Cason, N; White, T W; Cheng, S; Goodenough, D A; Valdimarsson, G

    2001-06-01

    The connexin family of genes codes for proteins that oligomerize into a connexon of six subunits to form one half of the gap junction channel. Gap junctions are plasma membrane structures that mediate intercellular communication by joining the cytoplasm of two cells, allowing the passage of small molecules and metabolites, and contributing significantly to the maintenance of tissue homeostasis. The signaling mediated by these junctions appears to be necessary for the correct timing of key developmental events. This communication is especially important in the avascular lens where the intercellular passage of metabolites, second messengers, and ions is necessary to maintain the correct ionic balance in the lens fibre cells, and prevent cataract formation. To characterize the role that the connexin genes play in development, a novel connexin was cloned from zebrafish. A genomic clone was isolated that contained a 1,173 base open reading frame. The nucleotide sequence in this open reading frame shows extensive sequence similarity to mouse connexin50 (Cx50), chicken Cx45.6, sheep Cx49, and human Cx50. The protein encoded by this open reading frame contains 391 amino acids, with a predicted molecular weight of 44.1 kDa and a typical connexin transmembrane topology. By using the LN54 radiation hybrid panel, the Cx44.1 gene was mapped to linkage group 1. Whole-mount in situ hybridization and Northern blot analyses were performed on zebrafish embryos at various developmental stages to characterize the developmental expression of the Cx44.1 message. The ocular lens was the only tissue in which Cx44.1 transcripts were detected. The transcripts were first detected in the lens around 24 hr post fertilization and remained detectable until 120 hr post fertilization. Electrophysiological analysis of Cx44.1 channels revealed gating properties that were virtually identical to the mouse and chicken orthologues of Cx44.1.

  7. Rho/RacGAPs

    PubMed Central

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-01-01

    Regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) determine the activity of small GTPases. In the Rho/Rac family, the number of GEFs and GAPs largely exceeds the number of small GTPases, raising the question of specific or overlapping functions. In our recent study we investigated the first time ARHGAP25 at the protein level, determined its activity as RacGAP and showed its involvement in phagocytosis. With the discovery of ARHGAP25, the number of RacGAPs described in phagocytes is increased to six. We provide data that indicate the specific functions of selected Rho/RacGAPs and we show an example of differential regulation of a Rho/Rac family GAP by different kinases. We propose that the abundance of Rho/Rac family GAPs is an important element of the fine spatiotemporal regulation of diverse cellular functions. PMID:22751505

  8. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise.

    PubMed

    Farup, Jean; Rahbek, Stine Klejs; Knudsen, Inge Skovgaard; de Paoli, Frank; Mackey, Abigail L; Vissing, Kristian

    2014-11-01

    Human skeletal muscle satellite cells (SCs) are essential for muscle regeneration and remodeling processes in healthy and clinical conditions involving muscle breakdown. However, the potential influence of protein supplementation on post-exercise SC regulation in human skeletal muscle has not been well investigated. In a comparative human study, we investigated the effect of hydrolyzed whey protein supplementation following eccentric exercise on fiber type-specific SC accumulation. Twenty-four young healthy subjects received either hydrolyzed whey protein + carbohydrate (whey, n = 12) or iso-caloric carbohydrate (placebo, n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to and 24, 48 and 168 h post-exercise, muscle biopsies were obtained from the exercise leg and analyzed for fiber type-specific SC content. Maximal voluntary contraction (MVC) and serum creatine kinase (CK) were evaluated as indices of recovery from muscle damage. In type II fiber-associated SCs, the whey group increased SCs/fiber from 0.05 [0.02; 0.07] to 0.09 [0.06; 0.12] (p < 0.05) and 0.11 [0.06; 0.16] (p < 0.001) at 24 and 48 h, respectively, and exhibited a difference from the placebo group (p < 0.05) at 48 h. The whey group increased SCs/myonuclei from 4 % [2; 5] to 10 % [4; 16] (p < 0.05) at 48 h, whereas the placebo group increased from 5 % [2; 7] to 9 % [3; 16] (p < 0.01) at 168 h. MVC decreased (p < 0.001) and muscle soreness and CK increased (p < 0.001), irrespective of supplementation. In conclusion, whey protein supplementation may accelerate SC proliferation as part of the regeneration or remodeling process after high-intensity eccentric exercise.

  9. Insulin accelerates inter-endosomal GLUT4 traffic via phosphatidylinositol 3-kinase and protein kinase B.

    PubMed

    Foster, L J; Li, D; Randhawa, V K; Klip, A

    2001-11-23

    Insulin enhances plasmalemmal-directed traffic of glucose transporter-4 (GLUT4), but it is unknown whether insulin regulates GLUT4 traffic through endosomal compartments. In L6 myoblasts expressing Myc-tagged GLUT4, insulin markedly stimulated the rate of GLUT4myc recycling. In myoblasts stimulated with insulin to maximize surface GLUT4myc levels, we followed the rates of surface-labeled GLUT4myc endocytosis and chased its intracellular distribution in space and time using confocal immunofluorescence microscopy. Surface-labeled GLUT4myc internalized rapidly (t(12) 3 min), reaching the early endosome by 2 min and the transferrin receptor-rich, perinuclear recycling endosome by 20 min. Upon re-addition of insulin, the t(12) of GLUT4 disappearance from the plasma membrane was unchanged (3 min), but strikingly, GLUT4myc reached the recycling endosome by 10 and left by 20 min. This effect of insulin was blocked by the phosphatidylinositol 3-kinase inhibitor LY294002 or by transiently transfected dominant-negative phosphatidylinositol 3-kinase and protein kinase B mutants. In contrast, insulin did not alter the rate of arrival of rhodamine-labeled transferrin at the recycling endosome. These results reveal a heretofore unknown effect of insulin to accelerate inter-endosomal travel rates of GLUT4 and identify the recycling endosome as an obligatory stage in insulin-dependent GLUT4 recycling.

  10. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle.

    PubMed

    Peiper, U; Knipp, S C; Thies, B; Henke, R

    1996-01-01

    Contraction kinetics of isolated rat tracheal smooth muscle were studied by analysing the increase of force subsequent to force-inhibiting passive length changes lasting 1 s (100 Hz, sinus, 5% of muscle length). Compared with carbachol activation, phorboldibutyrate (PDBu)-induced stimulation of protein kinase C (PKC) demonstrated no significant difference in the extent of force development in the polarized preparation [mean peak force 9.16 +/- 0.37 mN (carbachol) vs. 9.12 +/- 0.37 mN (PDBu)]. However, the time constant calculated for the slow component of post-vibration force recovery was 6.40 +/- 0.29 s after addition of PDBu vs. 22.39 +/- 1.40 s during carbachol activation, indicating a significant phorbol ester-induced acceleration of the cross-bridge cycling rate. In the K-depolarized preparation, treatment with 26.4 microM indolactam (IL) to activate PKC produced muscle relaxation (9.94 +/- 0.16 mN measured 0-30 min after the onset of depolarization vs. 4.13 +/- 0.05 mN measured during 30-60 min of IL treatment). Again, even in the presence of high sarcoplasmic Ca2+ resulting from tonic depolarization, PKC activation was associated with a distinct diminution of the time constant (25.99 +/- 0.79 s during the first 30 min of depolarization vs. 10.32 +/- 0.21 s during 30-60 min of IL treatment). In contrast, addition of 0.035 microM verapamil, 1.5 microM isoproterenol, and 32 microM dibutyryl-cAMP to the bathing medium induced relaxation without affecting the rate of post-vibration force recovery. The results suggest that the calcium-dependent signal cascade (agonist receptor/inositol trisphosphate/ Ca(2+)-calmodulin/myosin light chain kinase) hardly affects the regulation of contraction kinetics in the tonically activated intact smooth muscle preparation. PKC stimulation, however, accelerates actin/myosin interaction kinetics, possibly by inhibition of phosphatase(s).

  11. Purification, crystallization and preliminary X-ray analysis of the inverse F-BAR domain of the human srGAP2 protein.

    PubMed

    Wang, Hongpeng; Zhang, Yan; Zhang, Zhenyi; Jin, Wei Lin; Wu, Geng

    2014-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins play essential roles in diverse cellular processes by inducing membrane invaginations or membrane protrusions. Among the BAR superfamily, the `classical' BAR and Fes/CIP4 homology BAR (F-BAR) subfamilies of proteins usually promote membrane invaginations, whereas the inverse BAR (I-BAR) subfamily generally incur membrane protrusions. Despite possessing an N-terminal F-BAR domain, the srGAP2 protein regulates neurite outgrowth and neuronal migration by causing membrane protrusions reminiscent of the activity of I-BAR domain proteins. In this study, the inverse F-BAR (IF-BAR) domain of human srGAP2 was overexpressed, purified and crystallized. The crystals of the srGAP2 IF-BAR domain protein diffracted to 3.50 Å resolution and belonged to space group P2(1). These results will facilitate further structural determination of the srGAP2 IF-BAR domain and the ultimate elucidation of its peculiar behaviour of inducing membrane protrusions rather than membrane invaginations.

  12. Identification of a Conserved Linear B-Cell Epitope of Streptococcus dysgalactiae GapC Protein by Screening Phage-Displayed Random Peptide Library

    PubMed Central

    Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Wang, Xintong; Zhu, Zhanbo; Cui, Yudong

    2015-01-01

    The GapC of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce protective humoral immune response in animals. However, B-cell epitopes on the S. dysgalactiae GapC have not been well identified. In this study, a monoclonal antibody (mAb5B7) against the GapC1-150 protein was prepared. After passive transfer, mAb5B7 could partially protect mice against S. dysgalactiae infection. Eleven positive phage clones recognized by mAb5B7 were identified by screening phage-displayed random 12-peptide library, most of which matched the consensus motif DTTQGRFD. The motif sequence exactly matches amino acids 48-55 of the S. dysgalactiae GapC protein. In addition, the motif 48DTTQGRFD55 shows high homology among various streptococcus species. Site-directed mutagenic analysis further confirmed that residues D48, T50, Q51, G52 and F54 formed the core motif of 48DTTQGRFD55. This motif was the minimal determinant of the B-cell epitope recognized by the mAb5B7. As expected, epitope-peptide evoked protective immune response against S. dysgalactiae infection in immunized mice. Taken together, this identified conserved B-cell epitope within S. dysgalactiae GapC could provide very valuable insights for vaccine design against S. dysgalactiae infection. PMID:26121648

  13. Impact of obesity on 7,12-dimethylbenz[a]anthracene-induced altered ovarian connexin gap junction proteins in female mice

    PubMed Central

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    The ovarian gap junction proteins alpha 4 (GJA4 or connexin 37; CX37), alpha 1 (GJA1 or connexin 43; CX43) and gamma 1 (GJC1 or connexin 45; CX45) are involved in cell communication and folliculogenesis. 7,12-dimethylbenz[a]anthracene (DMBA) alters Cx37 and Cx43 expression in cultured neonatal rat ovaries. Additionally, obesity has an additive effect on DMBA-induced ovarian cell death and follicle depletion, thus, we investigated in vivo impacts of obesity and DMBA on CX protein levels. Ovaries were collected from lean and obese mice aged 6, 12, 18, or 24 wks. A subset of 18 wk old mice (lean and obese) were dosed with sesame oil or DMBA (1mg/kg; ip) for 14 days and ovaries collected 3 days thereafter. Cx43 and Cx45 mRNA and protein levels decreased (P < 0.05) after 18 wks while Cx37 mRNA and protein levels decreased (P < 0.05) after 24 wks in obese ovaries. Cx37 mRNA and antral follicle protein staining intensity were reduced (P < 0.05) by obesity while total CX37 protein was reduced (P < 0.05) in DMBA exposed obese ovaries. Cx43 mRNA and total protein levels were decreased (P < 0.05) by DMBA in both lean and obese ovaries while basal protein staining intensity was reduced (P < 0.05) in obese controls. Cx45 mRNA, total protein and protein staining intensity level were decreased (P < 0.05) by obesity. These data support that obesity temporally alters gap junction protein expression and that DMBA-induced ovotoxicity may involve reduced gap junction protein function. PMID:25447408

  14. Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.

    PubMed

    Crapeau, Myriam; Merhi, Ahmad; André, Bruno

    2014-08-01

    Gap1, the yeast general amino acid permease, is a convenient model for studying how the intracellular traffic of membrane transporters is regulated. Present at the plasma membrane under poor nitrogen supply conditions, it undergoes ubiquitylation, endocytosis, and degradation upon activation of the TORC1 kinase complex in response to an increase in internal amino acids. This down-regulation is stimulated by TORC1-dependent phosphoinhibition of the Npr1 kinase, resulting in activation by dephosphorylation of the arrestin-like Bul1 and Bul2 adaptors recruiting the Rsp5 ubiquitin ligase to Gap1. We report here that Gap1 is also down-regulated when cells are treated with the TORC1 inhibitor rapamycin or subjected to various stresses and that a lack of the Tco89 subunit of TORC1 causes constitutive Gap1 down-regulation. Both the Bul1 and Bul2 and the Aly1 and Aly2 arrestin-like adaptors of Rsp5 promote this down-regulation without undergoing dephosphorylation. Furthermore, they act via the C-terminal regions of Gap1 not involved in ubiquitylation in response to internal amino acids, whereas a Gap1 mutant altered in the N-terminal tail and resistant to ubiquitylation by internal amino acids is efficiently down-regulated under stress via the Bul and Aly adaptors. Although the Bul proteins mediate Gap1 ubiquitylation of two possible lysines, Lys-9 and Lys-16, the Aly proteins promote ubiquitylation of the Lys-16 residue only. This stress-induced pathway of Gap1 down-regulation targets other permeases as well, and it likely allows cells facing adverse conditions to retrieve amino acids from permease degradation.

  15. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line.

    PubMed

    Zhang, Lidong; Zhu, Hongbo; Teraishi, Fuminori; Davis, John J; Guo, Wei; Fan, Zhen; Fang, Bingliang

    2005-06-01

    The tumor-selective cytotoxic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) makes TRAIL an attractive candidate as an anticancer agent. However, resistance to TRAIL poses a challenge in anticancer therapy with TRAIL. Therefore, characterizing the mechanisms of resistance and developing strategies to overcome the resistance are important steps toward successful TRAIL-mediated cancer therapy. In this study, we investigated mechanisms of acquired TRAIL resistance in a colon cancer DLD1 cell line. Compared with the TRAIL-susceptible DLD1 cell line, TRAIL-resistant DLD1/TRAIL-R cells have a low level of caspase-8 protein, but not its mRNA. Suppression of caspase-8 expression by siRNA in parental DLD1 cells led to TRAIL resistance. Restoration of caspase-8 protein expression by stable transfection rendered the DLD1/TRAIL-R cell line fully sensitive to TRAIL protein, suggesting that the low level of caspase-8 protein expression might be the culprit in TRAIL resistance in DLD1/TRAIL-R cells. Sequencing analysis of the caspase-8 coding region revealed a missense mutation that is present in both TRAIL-sensitive and TRAIL-resistant DLD1 cells. Subsequent study showed that the degradation of caspase-8 protein was accelerated in DLD1/TRAIL-R cells compared to parental DLD1 cells. Thus, accelerated degradation of caspase-8 protein is one of the mechanisms that lead to TRAIL resistance. PMID:16036110

  16. A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density

    PubMed Central

    Walkup, Ward G; Mastro, Tara L; Schenker, Leslie T; Vielmetter, Jost; Hu, Rebecca; Iancu, Ariella; Reghunathan, Meera; Bannon, Barry Dylan; Kennedy, Mary B

    2016-01-01

    SynGAP is a Ras/Rap GTPase-activating protein (GAP) that is a major constituent of postsynaptic densities (PSDs) from mammalian forebrain. Its α1 isoform binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and can occupy as many as 15% of these PDZ domains. We present evidence that synGAP-α1 regulates the composition of the PSD by restricting binding to the PDZ domains of PSD-95. We show that phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Polo-like kinase-2 (PLK2) decreases its affinity for the PDZ domains by several fold, which would free PDZ domains for occupancy by other proteins. Finally, we show that three critical postsynaptic signaling proteins that bind to the PDZ domains of PSD-95 are present in higher concentration in PSDs isolated from mice with a heterozygous deletion of synGAP. DOI: http://dx.doi.org/10.7554/eLife.16813.001 PMID:27623146

  17. Accelerated Growth Rate Induced by Neonatal High-Protein Milk Formula Is Not Supported by Increased Tissue Protein Synthesis in Low-Birth-Weight Piglets

    PubMed Central

    Jamin, Agnès; Sève, Bernard; Thibault, Jean-Noël; Floc'h, Nathalie

    2012-01-01

    Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass. PMID:22315674

  18. [Docking of low-molecular ligands on the plant FtsZ-protein with application of CUDA-accelerated calculations].

    PubMed

    Demchuk, O N; Karpov, P A; Blium, Ia B

    2012-01-01

    This article provides review and analysis of opportunities for application of the CUDA technology for acceleration of computations in structural biology and bioinformatics. On the example of work with the Hex 6.1 program, comparative analysis of increase in the speed and quality of results of hard-docking of a number of low-molecular compounds on the surface of the FtsZ protein from Arabidopsis thaliana was performed. Several potential benzimidazole--plant FtsZ protein binding sites were identified. PMID:22856146

  19. Hydrolysis of Guanosine Triphosphate (GTP) by the Ras·GAP Protein Complex: Reaction Mechanism and Kinetic Scheme.

    PubMed

    Khrenova, Maria G; Grigorenko, Bella L; Kolomeisky, Anatoly B; Nemukhin, Alexander V

    2015-10-01

    Molecular mechanisms of the hydrolysis of guanosine triphosphate (GTP) to guanosine diphosphate (GDP) and inorganic phosphate (Pi) by the Ras·GAP protein complex are fully investigated by using modern modeling tools. The previously hypothesized stages of the cleavage of the phosphorus-oxygen bond in GTP and the formation of the imide form of catalytic Gln61 from Ras upon creation of Pi are confirmed by using the higher-level quantum-based calculations. The steps of the enzyme regeneration are modeled for the first time, providing a comprehensive description of the catalytic cycle. It is found that for the reaction Ras·GAP·GTP·H2O → Ras·GAP·GDP·Pi, the highest barriers correspond to the process of regeneration of the active site but not to the process of substrate cleavage. The specific shape of the energy profile is responsible for an interesting kinetic mechanism of the GTP hydrolysis. The analysis of the process using the first-passage approach and consideration of kinetic equations suggest that the overall reaction rate is a result of the balance between relatively fast transitions and low probability of states from which these transitions are taking place. Our theoretical predictions are in excellent agreement with available experimental observations on GTP hydrolysis rates.

  20. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain.

    PubMed

    Poon, H F; Castegna, A; Farr, S A; Thongboonkerd, V; Lynn, B C; Banks, W A; Morley, J E; Klein, J B; Butterfield, D A

    2004-01-01

    The senescence-accelerated mouse (SAM) is a murine model of accelerated senescence that was established using phenotypic selection. The SAMP series includes nine substrains, each of which exhibits characteristic disorders. SAMP8 is known to exhibit age-dependent learning and memory deficits. In our previous study, we reported that brains from 12-month-old SAMP8 have greater protein oxidation, as well as lipid peroxidation, compared with brains from 4-month-old SAMP8 mice. In order to investigate the relation between age-associated oxidative stress on specific protein oxidation and age-related learning and memory deficits in SAMP8, we used proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. We report here that in 12 month SAMP8 mice brains the expressions of neurofilament triplet L protein, lactate dehydrogenase 2 (LDH-2), heat shock protein 86, and alpha-spectrin are significantly decreased, while the expression of triosephosphate isomerase (TPI) is increased compared with 4-month-old SAMP8 brains. We also report that the specific protein carbonyl levels of LDH-2, dihydropyrimidinase-like protein 2, alpha-spectrin and creatine kinase, are significantly increased in the brain of 12-month-old SAMP8 mice when compared with the 4-month-old SAMP8 brain. These findings are discussed in reference to the effect of specific protein oxidation and changes of expression on potential mechanisms of abnormal alterations in metabolism and neurochemicals, as well as to the learning and memory deficits in aged SAMP8 mice.

  1. A New Activity of Anti-HIV and Anti-tumor Protein GAP31: DNA Adenosine Glycosidase – Structural and Modeling Insight into its Functions

    SciTech Connect

    Li, H.; Huang, P; Zhang, D; Sun, Y; Chen, H; Zhang, J; Huang, P; Kong, X; Lee-Huang, S

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  2. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase - Structural and modeling insight into its functions

    SciTech Connect

    Li, Hui-Guang; Huang, Philip L.; Zhang, Dawei; Sun, Yongtao; Chen, Hao-Chia; Zhang, John; Huang, Paul L.; Kong, Xiang-Peng; Lee-Huang, Sylvia

    2010-01-01

    We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.

  3. Ablation of cardiac myosin–binding protein-C accelerates contractile kinetics in engineered cardiac tissue

    PubMed Central

    de Lange, Willem J.; Grimes, Adrian C.; Hegge, Laura F.

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) caused by mutations in cardiac myosin–binding protein-C (cMyBP-C) is a heterogenous disease in which the phenotypic presentation is influenced by genetic, environmental, and developmental factors. Though mouse models have been used extensively to study the contractile effects of cMyBP-C ablation, early postnatal hypertrophic and dilatory remodeling may overshadow primary contractile defects. The use of a murine engineered cardiac tissue (mECT) model of cMyBP-C ablation in the present study permits delineation of the primary contractile kinetic abnormalities in an intact tissue model under mechanical loading conditions in the absence of confounding remodeling events. We generated mechanically integrated mECT using isolated postnatal day 1 mouse cardiac cells from both wild-type (WT) and cMyBP-C–null hearts. After culturing for 1 wk to establish coordinated spontaneous contraction, we measured twitch force and Ca2+ transients at 37°C during pacing at 6 and 9 Hz, with and without dobutamine. Compared with WT, the cMyBP-C–null mECT demonstrated faster late contraction kinetics and significantly faster early relaxation kinetics with no difference in Ca2+ transient kinetics. Strikingly, the ability of cMyBP-C–null mECT to increase contractile kinetics in response to adrenergic stimulation and increased pacing frequency were severely impaired. We conclude that cMyBP-C ablation results in constitutively accelerated contractile kinetics with preserved peak force with minimal contractile kinetic reserve. These functional abnormalities precede the development of the hypertrophic phenotype and do not result from alterations in Ca2+ transient kinetics, suggesting that alterations in contractile velocity may serve as the primary functional trigger for the development of hypertrophy in this model of HCM. Our findings strongly support a mechanism in which cMyBP-C functions as a physiological brake on contraction by positioning myosin

  4. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses.

    PubMed Central

    Bergelson, J M; Chan, M; Solomon, K R; St John, N F; Lin, H; Finberg, R W

    1994-01-01

    Echoviruses are human pathogens belonging to the picornavirus family. Decay-accelerating factor (DAF) is a glycosylphosphatidylinositol (GPI)-anchored surface protein that protects cells from lysis by autologous complement. Anti-DAF monoclonal antibodies prevented echovirus 7 attachment to susceptible cells and protected cells from infection. HeLa cells specifically lost the capacity to bind echovirus 7 when treated with phosphatidylinositol-specific phospholipase C, an enzyme that releases GPI-anchored proteins from the cell surface, indicating that the virus receptor, like DAF, is a GPI-anchored protein. Although Chinese hamster ovary cells do not bind echovirus 7, transfectants expressing human DAF bound virus efficiently, and binding was prevented by pretreatment with an anti-DAF monoclonal antibody. Anti-DAF antibodies prevented infection by at least six echovirus serotypes. These results indicate that DAF is the receptor mediating attachment and infection by several echoviruses. Images PMID:7517044

  5. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  6. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.

    PubMed

    Otsuka, Takao; Okimoto, Noriaki; Taiji, Makoto

    2015-11-15

    In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics-based force fields, although they cannot fully describe protein-ligand interactions. A noteworthy computational method in development involves large-scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large-scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange-correlation functionals, and solvation effects) on the binding energies of the FK506-binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2-MP2/6-31G(d), is suitable for evaluating the protein-ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure-activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein-ligand interaction distance. Our acceleration scheme, which uses FMO2-HF/STO-3G:MP2/6-31G(d) at R(int) = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy.

  7. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    PubMed Central

    Hu, Wei; Nessler, Stefan; Hemmer, Bernhard; Eagar, Todd N.; Kane, Lawrence P.; Leliveld, S. Rutger; Müller-Schiffmann, Andreas; Gocke, Anne R.; Lovett-Racke, Amy; Ben, Li-Hong; Hussain, Rehana Z.; Breil, Andreas; Elliott, Jeffrey L.; Puttaparthi, Krishna; Cravens, Petra D.; Singh, Mahendra P.; Petsch, Benjamin; Stitz, Lothar; Racke, Michael K.

    2010-01-01

    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central

  8. Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons

    PubMed Central

    Galic, Milos; Tsai, Feng-Chiao; Collins, Sean R; Matis, Maja; Bandara, Samuel; Meyer, Tobias

    2014-01-01

    In the vertebrate central nervous system, exploratory filopodia transiently form on dendritic branches to sample the neuronal environment and initiate new trans-neuronal contacts. While much is known about the molecules that control filopodia extension and subsequent maturation into functional synapses, the mechanisms that regulate initiation of these dynamic, actin-rich structures have remained elusive. Here, we find that filopodia initiation is suppressed by recruitment of ArhGAP44 to actin-patches that seed filopodia. Recruitment is mediated by binding of a membrane curvature-sensing ArhGAP44 N-BAR domain to plasma membrane sections that were deformed inward by acto-myosin mediated contractile forces. A GAP domain in ArhGAP44 triggers local Rac-GTP hydrolysis, thus reducing actin polymerization required for filopodia formation. Additionally, ArhGAP44 expression increases during neuronal development, concurrent with a decrease in the rate of filopodia formation. Together, our data reveals a local auto-regulatory mechanism that limits initiation of filopodia via protein recruitment to nanoscale membrane deformations. DOI: http://dx.doi.org/10.7554/eLife.03116.001 PMID:25498153

  9. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps.

    PubMed

    Webb, B L; Cox, M M; Inman, R B

    1997-10-31

    In the presence of both the RecF and RecR proteins, RecA filament extension from a single strand gap into adjoining duplex DNA is attenuated. RecR protein alone has no effect, and RecF protein alone has a reduced activity. The RecFR complexes bind randomly, primarily to the duplex regions of the DNA, and the extension of the RecA filament is halted at the first complex encountered. A very slow lengthening of RecA filaments observed in the presence of RecFR is virtually eliminated when RecF is replaced with an RecF mutant protein that does not hydrolyze ATP. These observations are incorporated into an expanded model for the functions of RecF, RecO, and RecR proteins in the early stages of postreplication DNA repair. PMID:9363943

  10. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    PubMed

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M

    2000-04-01

    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.

  11. MIIP accelerates epidermal growth factor receptor protein turnover and attenuates proliferation in non-small cell lung cancer

    PubMed Central

    Wen, Jing; Fu, Jianhua; Ling, Yihong; Zhang, Wei

    2016-01-01

    The migration and invasion inhibitory protein (MIIP) has been discovered recently to have inhibitory functions in cell proliferation and migration. Overexpression of MIIP reduced the intracellular steady-state level of epidermal growth factor receptor (EGFR) protein in lung cancer cells with no effect on EGFR mRNA expression compared to that in the control cells. This MIIP-promoted EGFR protein degradation was reversed by proteasome and lysosome inhibitors, suggesting the involvement of both proteasomal and lysosomal pathways in this degradation. This finding was further validated by pulse-chase experiments using 35S-methionine metabolic labeling. We found that MIIP accelerates EGFR protein turnover via proteasomal degradation in the endoplasmic reticulum and then via the lysosomal pathway after its entry into endocytic trafficking. MIIP-stimulated downregulation of EGFR inhibits downstream activation of Ras and blocks the MEK signal transduction pathway, resulting in inhibition of cell proliferation. The negative correlation between MIIP and EGFR protein expression was validated in lung adenocarcinoma samples. Furthermore, the higher MIIP protein expression predicts a better overall survival of Stage IA-IIIA lung adenocarcinoma patients who underwent radical surgery. These findings reveal a new mechanism by which MIIP inhibits cell proliferation. PMID:26824318

  12. Methoprene and protein supplements accelerate reproductive development and improve mating success of male tephritid flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been studying the physiological mechanisms responsible for coordination of reproductive maturity and sex pheromone communication in males of tephritid flies in order to develop methods for acceleration of reproductive maturity among sterilized males. Our studies revealed that the juvenile ho...

  13. Atomic-level description of protein-lipid interactions using an accelerated membrane model.

    PubMed

    Baylon, Javier L; Vermaas, Josh V; Muller, Melanie P; Arcario, Mark J; Pogorelov, Taras V; Tajkhorshid, Emad

    2016-07-01

    Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26940626

  14. Atomic-level description of protein-lipid interactions using an accelerated membrane model.

    PubMed

    Baylon, Javier L; Vermaas, Josh V; Muller, Melanie P; Arcario, Mark J; Pogorelov, Taras V; Tajkhorshid, Emad

    2016-07-01

    Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.

  15. The Legionella pneumophila GTPase Activating Protein LepB Accelerates Rab1 Deactivation by a Non-canonical Hydrolytic Mechanism*

    PubMed Central

    Mishra, Ashwini K.; Del Campo, Claudia M.; Collins, Robert E.; Roy, Craig R.; Lambright, David G.

    2013-01-01

    GTPase activating proteins (GAPs) from pathogenic bacteria and eukaryotic host organisms deactivate Rab GTPases by supplying catalytic arginine and glutamine fingers in trans and utilizing the cis-glutamine in the DXXGQ motif of the GTPase for binding rather than catalysis. Here, we report the transition state mimetic structure of the Legionella pneumophila GAP LepB in complex with Rab1 and describe a comprehensive structure-based mutational analysis of potential catalytic and recognition determinants. The results demonstrate that LepB does not simply mimic other GAPs but instead deploys an expected arginine finger in conjunction with a novel glutamic acid finger, which forms a salt bridge with an indispensible switch II arginine that effectively locks the cis-glutamine in the DXXGQ motif of Rab1 in a catalytically competent though unprecedented transition state configuration. Surprisingly, a heretofore universal transition state interaction with the cis-glutamine is supplanted by an elaborate polar network involving critical P-loop and switch I serines. LepB further employs an unusual tandem domain architecture to clamp a switch I tyrosine in an open conformation that facilitates access of the arginine finger to the hydrolytic site. Intriguingly, the critical P-loop serine corresponds to an oncogenic substitution in Ras and replaces a conserved glycine essential for the canonical transition state stereochemistry. In addition to expanding GTP hydrolytic paradigms, these observations reveal the unconventional dual finger and non-canonical catalytic network mechanisms of Rab GAPs as necessary alternative solutions to a major impediment imposed by substitution of the conserved P-loop glycine. PMID:23821544

  16. The RGS proteins add to the diversity of soybean heterotrimeric G-protein signaling

    PubMed Central

    Choudhury, Swarup Roy; Westfall, Corey S.; Pandey, Sona

    2012-01-01

    Regulator of G-protein signaling (RGS) proteins are a family of highly diverse, multifunctional proteins that function primarily as GTPase accelerating proteins (GAPs). RGS proteins increase the rate of GTP hydrolysis by Gα proteins and essentially regulate the duration of active signaling. Recently, we have identified two chimeric RGS proteins from soybean and reported their distinct GAP activities on individual Gα proteins. A single amino acid substitution (Alanine 357 to Valine) of RGS2 is responsible for differential GAP activity. Surprisingly, most monocot plant genomes do not encode for a RGS protein homolog. Here we discuss the soybean RGS proteins in the context of their evolution in plants, their relatedness to non-plant RGS protein homologs and the effect they might have on the heterotrimeric G-protein signaling mechanisms. We also provide experimental evidence to show that the interaction interface between plant RGS and Gα proteins is different from what is predicted based on mammalian models. PMID:22899066

  17. Accelerated simulation of unfolding and refolding of a large single chain globular protein

    PubMed Central

    Seddon, Gavin M.; Bywater, Robert P.

    2012-01-01

    We have developed novel strategies for contracting simulation times in protein dynamics that enable us to study a complex protein with molecular weight in excess of 34 kDa. Starting from a crystal structure, we produce unfolded and then refolded states for the protein. We then compare these quantitatively using both established and new metrics for protein structure and quality checking. These include use of the programs Concoord and Darvols. Simulation of protein-folded structure well beyond the molten globule state and then recovery back to the folded state is itself new, and our results throw new light on the protein-folding process. We accomplish this using a novel cooling protocol developed for this work. PMID:22870389

  18. Accelerated simulation of unfolding and refolding of a large single chain globular protein.

    PubMed

    Seddon, Gavin M; Bywater, Robert P

    2012-07-01

    We have developed novel strategies for contracting simulation times in protein dynamics that enable us to study a complex protein with molecular weight in excess of 34 kDa. Starting from a crystal structure, we produce unfolded and then refolded states for the protein. We then compare these quantitatively using both established and new metrics for protein structure and quality checking. These include use of the programs Concoord and Darvols. Simulation of protein-folded structure well beyond the molten globule state and then recovery back to the folded state is itself new, and our results throw new light on the protein-folding process. We accomplish this using a novel cooling protocol developed for this work. PMID:22870389

  19. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  20. The SM protein Sly1 accelerates assembly of the ER–Golgi SNARE complex

    PubMed Central

    Demircioglu, F. Esra; Burkhardt, Pawel; Fasshauer, Dirk

    2014-01-01

    Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ‟closed conformation” of syntaxin 1, the ER–Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5. PMID:25189771

  1. The SM protein Sly1 accelerates assembly of the ER-Golgi SNARE complex.

    PubMed

    Demircioglu, F Esra; Burkhardt, Pawel; Fasshauer, Dirk

    2014-09-23

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ‟closed conformation" of syntaxin 1, the ER-Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5.

  2. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics. PMID:24244114

  3. Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence.

    PubMed

    Bosshard, Franziska; Riedel, Kathrin; Schneider, Thomas; Geiser, Carina; Bucheli, Margarete; Egli, Thomas

    2010-11-01

    Solar disinfection (SODIS) is a simple drinking water treatment method that improves microbiological water quality where other means are unavailable. It makes use of the deleterious effect of solar irradiation on pathogenic microbes and viruses. A positive impact on health has been documented in several epidemiological studies. However, the molecular mechanisms damaging cells during this simple treatment are not yet fully understood. Here we show that protein damage is crucial in the process of inactivation by sunlight. Protein damages in UVA-irradiated Escherichia coli cells have been evaluated by an immunoblot method for carbonylated proteins and an aggregation assay based on semi-quantitative proteomics. A wide spectrum of structural and enzymatic proteins within the cell is affected by carbonylation and aggregation. Vital cellular functions like the transcription and translation apparatus, transport systems, amino acid synthesis and degradation, respiration, ATP synthesis, glycolysis, the TCA cycle, chaperone functions and catalase are targeted by UVA irradiation. The protein damage pattern caused by SODIS strongly resembles the pattern caused by reactive oxygen stress. Hence, sunlight probably accelerates cellular senescence and leads to the inactivation and finally death of UVA-irradiated cells.

  4. Functions of the novel RhoGAP proteins RGA-3 and RGA-4 in the germ line and in the early embryo of C. elegans.

    PubMed

    Schmutz, Cornelia; Stevens, Julia; Spang, Anne

    2007-10-01

    We have identified two redundant GTPase activating proteins (GAPs) - RGA-3 and RGA-4 - that regulate Rho GTPase function at the plasma membrane in early Caenorhabditis elegans embryos. Knockdown of both RhoGAPs resulted in extensive membrane ruffling, furrowing and pronounced pseudo-cleavages. In addition, the non-muscle myosin NMY-2 and RHO-1 accumulated on the cortex at sites of ruffling. RGA-3 and RGA-4 are GAPs for RHO-1, but most probably not for CDC-42, because only RHO-1 was epistatic to the two GAPs, and the GAPs had no obvious influence on CDC-42 function. Furthermore, knockdown of either the RHO-1 effector, LET-502, or the exchange factor for RHO-1, ECT-2, alleviated the membrane-ruffling phenotype caused by simultaneous knockdown of both RGA-3 and RGA-4 [rga-3/4 (RNAi)]. GFP::PAR-6 and GFP::PAR-2 were localized at the anterior and posterior part of the early C. elegans embryo, respectively showing that rga-3/4 (RNAi) did not interfere with polarity establishment. Most importantly, upon simultaneous knockdown of RGA-3, RGA-4 and the third RhoGAP present in the early embryo, CYK-4, NMY-2 spread over the entire cortex and GFP::PAR-2 localization at the posterior cortex was greatly diminished. These results indicate that the functions of CYK-4 are temporally and spatially distinct from RGA-3 and RGA-4 (RGA-3/4). RGA-3/4 and CYK-4 also play different roles in controlling LET-502 activation in the germ line, because rga-3/4 (RNAi), but not cyk-4 (RNAi), aggravated the let-502(sb106) phenotype. We propose that RGA-3/4 and CYK-4 control with which effector molecules RHO-1 interacts at particular sites at the cortex in the zygote and in the germ line.

  5. Low-Level Laser-Accelerated Peripheral Nerve Regeneration within a Reinforced Nerve Conduit across a Large Gap of the Transected Sciatic Nerve in Rats

    PubMed Central

    Shen, Chiung-Chyi; Yang, Yi-Chin; Huang, Tsung-Bin; Chan, Shiuh-Chuan; Liu, Bai-Shuan

    2013-01-01

    This study proposed a novel combination of neural regeneration techniques for the repair of damaged peripheral nerves. A biodegradable nerve conduit containing genipin-cross-linked gelatin was annexed using beta-tricalcium phosphate (TCP) ceramic particles (genipin-gelatin-TCP, GGT) to bridge the transection of a 15 mm sciatic nerve in rats. Two trigger points were irradiated transcutaneously using 660 nm of gallium-aluminum arsenide phosphide (GaAlAsP) via laser diodes for 2 min daily over 10 consecutive days. Walking track analysis showed a significant improvement in sciatic functional index (SFI) (P < 0.01) and pronounced improvement in the toe spreading ability of rats undergoing laser stimulation. Electrophysiological measurements (peak amplitude and area) illustrated by compound muscle action potential (CMAP) curves demonstrated that laser stimulation significantly improved nerve function and reduced muscular atrophy. Histomorphometric assessments revealed that laser stimulation accelerated nerve regeneration over a larger area of neural tissue, resulting in axons of greater diameter and myelin sheaths of greater thickness than that observed in rats treated with nerve conduits alone. Motor function, electrophysiological reactions, muscular reinnervation, and histomorphometric assessments all demonstrate that the proposed therapy accelerated the repair of transected peripheral nerves bridged using a GGT nerve conduit. PMID:23737818

  6. Low-Level Laser-Accelerated Peripheral Nerve Regeneration within a Reinforced Nerve Conduit across a Large Gap of the Transected Sciatic Nerve in Rats.

    PubMed

    Shen, Chiung-Chyi; Yang, Yi-Chin; Huang, Tsung-Bin; Chan, Shiuh-Chuan; Liu, Bai-Shuan

    2013-01-01

    This study proposed a novel combination of neural regeneration techniques for the repair of damaged peripheral nerves. A biodegradable nerve conduit containing genipin-cross-linked gelatin was annexed using beta-tricalcium phosphate (TCP) ceramic particles (genipin-gelatin-TCP, GGT) to bridge the transection of a 15 mm sciatic nerve in rats. Two trigger points were irradiated transcutaneously using 660 nm of gallium-aluminum arsenide phosphide (GaAlAsP) via laser diodes for 2 min daily over 10 consecutive days. Walking track analysis showed a significant improvement in sciatic functional index (SFI) (P < 0.01) and pronounced improvement in the toe spreading ability of rats undergoing laser stimulation. Electrophysiological measurements (peak amplitude and area) illustrated by compound muscle action potential (CMAP) curves demonstrated that laser stimulation significantly improved nerve function and reduced muscular atrophy. Histomorphometric assessments revealed that laser stimulation accelerated nerve regeneration over a larger area of neural tissue, resulting in axons of greater diameter and myelin sheaths of greater thickness than that observed in rats treated with nerve conduits alone. Motor function, electrophysiological reactions, muscular reinnervation, and histomorphometric assessments all demonstrate that the proposed therapy accelerated the repair of transected peripheral nerves bridged using a GGT nerve conduit. PMID:23737818

  7. Investigation of carbohydrate and protein metabolism in the digestive organs of the rabbit under the combined influence of vibration, acceleration and irradiation

    NASA Technical Reports Server (NTRS)

    Yuy, R. I.

    1975-01-01

    During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.

  8. Mevastatin accelerates loss of synaptic proteins and neurite degeneration in aging cortical neurons in a heme-independent manner.

    PubMed

    Kannan, Madhuvanthi; Steinert, Joern R; Forsythe, Ian D; Smith, Andrew G; Chernova, Tatyana

    2010-09-01

    The therapeutic use of statins in reducing cholesterol requires careful assessment of potential neuroprotective and/or neurotoxic mechanisms. Chronic treatment with mevastatin (MV) exerts effects on cortical neuron morphology, protein expression and synaptic function in primary culture. MV impaired expression of synaptic proteins, reduced N-methyl-d-aspartate receptor (NMDAR) currents and accelerated neurodegeneration associated with aging. The down-regulating effect of MV on neuronal protein expression was additive with aging-associated decline in culture. Induction of Heme oxygenase-1 (HMOX1) by MV was superimposed on age-related up-regulation. Comparison of MV-treated and heme-deficient neurons showed that inhibition of heme synthesis (by succinyl acetone) had similar damaging effect on neurite integrity and MNDAR expression and function but not on expression of the receptor for neuropeptide Y1 (NPY1R). Replacement of heme in heme-deficient cultures restored protein expression but had no effect in those cultures co-treated with MV. Despite the dramatic induction of HMOX1, intracellular heme remained sufficient in MV-treated cultures, consistent with a heme-independent mechanism of MV-induced neurotoxicity and this was confirmed by analysing neurons with lentiviral over-expression of HMOX1. We conclude that MV exerts a neurotoxic effect in cultured neurons in a heme-independent manner.

  9. Accelerated Evolution of Schistosome Genes Coding for Proteins Located at the Host–Parasite Interface

    PubMed Central

    Philippsen, Gisele S.; Wilson, R. Alan; DeMarco, Ricardo

    2015-01-01

    Study of proteins located at the host–parasite interface in schistosomes might provide clues about the mechanisms utilized by the parasite to escape the host immune system attack. Micro-exon gene (MEG) protein products and venom allergen-like (VAL) proteins have been shown to be present in schistosome secretions or associated with glands, which led to the hypothesis that they are important components in the molecular interaction of the parasite with the host. Phylogenetic and structural analysis of genes and their transcripts in these two classes shows that recent species-specific expansion of gene number for these families occurred separately in three different species of schistosomes. Enrichment of transposable elements in MEG and VAL genes in Schistosoma mansoni provides a credible mechanism for preferential expansion of gene numbers for these families. Analysis of the ratio between synonymous and nonsynonymous substitution rates (dN/dS) in the comparison between schistosome orthologs for the two classes of genes reveals significantly higher values when compared with a set of a control genes coding for secreted proteins, and for proteins previously localized in the tegument. Additional analyses of paralog genes indicate that exposure of the protein to the definitive host immune system is a determining factor leading to the higher than usual dN/dS values in those genes. The observation that two genes encoding S. mansoni vaccine candidate proteins, known to be exposed at the parasite surface, also display similar evolutionary dynamics suggests a broad response of the parasite to evolutionary pressure imposed by the definitive host immune system. PMID:25567667

  10. Identification of a conserved B-cell epitope on the GapC protein of Streptococcus dysgalactiae.

    PubMed

    Zhang, Limeng; Zhou, Xue; Fan, Ziyao; Tang, Wei; Chen, Liang; Dai, Jian; Wei, Yuhua; Zhang, Jianxin; Yang, Xuan; Yang, Xijing; Liu, Daolong; Yu, Liquan; Zhang, Hua; Wu, Zhijun; Yu, Yongzhong; Sun, Hunan; Cui, Yudong

    2015-01-01

    Streptococcus dysgalactiae (S. dysgalactia) GapC is a highly conserved surface dehydrogenase among the streptococcus spp., which is responsible for inducing protective antibody immune responses in animals. However, the B-cell epitope of S. dysgalactia GapC have not been well characterized. In this study, a monoclonal antibody 1F2 (mAb1F2) against S. dysgalactiae GapC was generated by the hybridoma technique and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12) for mapping the linear B-cell epitope. The mAb1F2 recognized phages displaying peptides with the consensus motif TRINDLT. Amino acid sequence of the motif exactly matched (30)TRINDLT(36) of the S. dysgalactia GapC. Subsequently, site-directed mutagenic analysis further demonstrated that residues R31, I32, N33, D34 and L35 formed the core of (30)TRINDLT(36), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1F2. The epitope (30)TRINDLT(36) showed high homology among different streptococcus species. Overall, our findings characterized a conserved B-cell epitope, which will be useful for the further study of epitope-based vaccines.

  11. Accelerating molecular simulations of proteins using Bayesian inference on weak information.

    PubMed

    Perez, Alberto; MacCallum, Justin L; Dill, Ken A

    2015-09-22

    Atomistic molecular dynamics (MD) simulations of protein molecules are too computationally expensive to predict most native structures from amino acid sequences. Here, we integrate "weak" external knowledge into folding simulations to predict protein structures, given their sequence. For example, we instruct the computer "to form a hydrophobic core," "to form good secondary structures," or "to seek a compact state." This kind of information has been too combinatoric, nonspecific, and vague to help guide MD simulations before. Within atomistic replica-exchange molecular dynamics (REMD), we develop a statistical mechanical framework, modeling using limited data with coarse physical insight(s) (MELD + CPI), for harnessing weak information. As a test, we apply MELD + CPI to predict the native structures of 20 small proteins. MELD + CPI samples to within less than 3.2 Å from native for all 20 and correctly chooses the native structures (<4 Å) for 15 of them, including ubiquitin, a millisecond folder. MELD + CPI is up to five orders of magnitude faster than brute-force MD, satisfies detailed balance, and should scale well to larger proteins. MELD + CPI may be useful where physics-based simulations are needed to study protein mechanisms and populations and where we have some heuristic or coarse physical knowledge about states of interest. PMID:26351667

  12. Accelerating molecular simulations of proteins using Bayesian inference on weak information

    PubMed Central

    Perez, Alberto; MacCallum, Justin L.; Dill, Ken A.

    2015-01-01

    Atomistic molecular dynamics (MD) simulations of protein molecules are too computationally expensive to predict most native structures from amino acid sequences. Here, we integrate “weak” external knowledge into folding simulations to predict protein structures, given their sequence. For example, we instruct the computer “to form a hydrophobic core,” “to form good secondary structures,” or “to seek a compact state.” This kind of information has been too combinatoric, nonspecific, and vague to help guide MD simulations before. Within atomistic replica-exchange molecular dynamics (REMD), we develop a statistical mechanical framework, modeling using limited data with coarse physical insight(s) (MELD + CPI), for harnessing weak information. As a test, we apply MELD + CPI to predict the native structures of 20 small proteins. MELD + CPI samples to within less than 3.2 Å from native for all 20 and correctly chooses the native structures (<4 Å) for 15 of them, including ubiquitin, a millisecond folder. MELD + CPI is up to five orders of magnitude faster than brute-force MD, satisfies detailed balance, and should scale well to larger proteins. MELD + CPI may be useful where physics-based simulations are needed to study protein mechanisms and populations and where we have some heuristic or coarse physical knowledge about states of interest. PMID:26351667

  13. Theoretical vibrational spectroscopy of intermediates and the reaction mechanism of the guanosine triphosphate hydrolysis by the protein complex Ras-GAP

    NASA Astrophysics Data System (ADS)

    Khrenova, Maria G.; Grigorenko, Bella L.; Nemukhin, Alexander V.

    2016-09-01

    The structures and vibrational spectra of the reacting species upon guanosine triphosphate (GTP) hydrolysis to guanosine diphosphate and inorganic phosphate (Pi) trapped inside the protein complex Ras-GAP were analyzed following the results of QM/MM simulations. The frequencies of the phosphate vibrations referring to the reactants and to Pi were compared to those observed in the experimental FTIR studies. A good correlation between the theoretical and experimental vibrational data provides a strong support to the reaction mechanism of GTP hydrolysis by the Ras-GAP enzyme system revealed by the recent QM/MM modeling. Evolution of the vibrational bands associated with the inorganic phosphate Pi during the elementary stages of GTP hydrolysis is predicted.

  14. Protein-ligand binding region prediction (PLB-SAVE) based on geometric features and CUDA acceleration

    PubMed Central

    2013-01-01

    Background Protein-ligand interactions are key processes in triggering and controlling biological functions within cells. Prediction of protein binding regions on the protein surface assists in understanding the mechanisms and principles of molecular recognition. In silico geometrical shape analysis plays a primary step in analyzing the spatial characteristics of protein binding regions and facilitates applications of bioinformatics in drug discovery and design. Here, we describe the novel software, PLB-SAVE, which uses parallel processing technology and is ideally suited to extract the geometrical construct of solid angles from surface atoms. Representative clusters and corresponding anchors were identified from all surface elements and were assigned according to the ranking of their solid angles. In addition, cavity depth indicators were obtained by proportional transformation of solid angles and cavity volumes were calculated by scanning multiple directional vectors within each selected cavity. Both depth and volume characteristics were combined with various weighting coefficients to rank predicted potential binding regions. Results Two test datasets from LigASite, each containing 388 bound and unbound structures, were used to predict binding regions using PLB-SAVE and two well-known prediction systems, SiteHound and MetaPocket2.0 (MPK2). PLB-SAVE outperformed the other programs with accuracy rates of 94.3% for unbound proteins and 95.5% for bound proteins via a tenfold cross-validation process. Additionally, because the parallel processing architecture was designed to enhance the computational efficiency, we obtained an average of 160-fold increase in computational time. Conclusions In silico binding region prediction is considered the initial stage in structure-based drug design. To improve the efficacy of biological experiments for drug development, we developed PLB-SAVE, which uses only geometrical features of proteins and achieves a good overall performance

  15. Interaction of HTLV-1 Tax with minichromosome maintenance proteins accelerates the replication timing program.

    PubMed

    Boxus, Mathieu; Twizere, Jean-Claude; Legros, Sébastien; Kettmann, Richard; Willems, Luc

    2012-01-01

    The Tax oncoprotein encoded by the human T-cell leukemia virus type 1 plays a pivotal role in viral persistence and pathogenesis. Human T-cell leukemia virus type 1-infected cells proliferate faster than normal lymphocytes, expand through mitotic division, and accumulate genomic lesions. Here, we show that Tax associates with the minichromosome maintenance MCM2-7 helicase complex and localizes to origins of replication. Tax modulates the spatiotemporal program of origin activation and fires supplementary origins at the onset of S phase. Thereby, Tax increases the DNA replication rate, accelerates S phase progression, but also generates a replicative stress characterized by the presence of genomic lesions. Mechanistically, Tax favors p300 recruitment and histone hyperacetylation at late replication domains, advancing their replication timing in early S phase. PMID:22058115

  16. Accelerating protein docking in ZDOCK using an advanced 3D convolution library.

    PubMed

    Pierce, Brian G; Hourai, Yuichiro; Weng, Zhiping

    2011-01-01

    Computational prediction of the 3D structures of molecular interactions is a challenging area, often requiring significant computational resources to produce structural predictions with atomic-level accuracy. This can be particularly burdensome when modeling large sets of interactions, macromolecular assemblies, or interactions between flexible proteins. We previously developed a protein docking program, ZDOCK, which uses a fast Fourier transform to perform a 3D search of the spatial degrees of freedom between two molecules. By utilizing a pairwise statistical potential in the ZDOCK scoring function, there were notable gains in docking accuracy over previous versions, but this improvement in accuracy came at a substantial computational cost. In this study, we incorporated a recently developed 3D convolution library into ZDOCK, and additionally modified ZDOCK to dynamically orient the input proteins for more efficient convolution. These modifications resulted in an average of over 8.5-fold improvement in running time when tested on 176 cases in a newly released protein docking benchmark, as well as substantially less memory usage, with no loss in docking accuracy. We also applied these improvements to a previous version of ZDOCK that uses a simpler non-pairwise atomic potential, yielding an average speed improvement of over 5-fold on the docking benchmark, while maintaining predictive success. This permits the utilization of ZDOCK for more intensive tasks such as docking flexible molecules and modeling of interactomes, and can be run more readily by those with limited computational resources. PMID:21949741

  17. Role of Polymer Architecture on the Activity of Polymer-Protein Conjugates for the Treatment of Accelerated Bone Loss Disorders.

    PubMed

    Tucker, Bryan S; Stewart, Jon D; Aguirre, J Ignacio; Holliday, L Shannon; Figg, C Adrian; Messer, Jonathan G; Sumerlin, Brent S

    2015-08-10

    Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.

  18. Accelerating atomic-level protein simulations by flat-histogram techniques

    NASA Astrophysics Data System (ADS)

    Jónsson, Sigurður Ć.; Mohanty, Sandipan; Irbäck, Anders

    2011-09-01

    Flat-histogram techniques provide a powerful approach to the simulation of first-order-like phase transitions and are potentially very useful for protein studies. Here, we test this approach by implicit solvent all-atom Monte Carlo (MC) simulations of peptide aggregation, for a 7-residue fragment (GIIFNEQ) of the Cu/Zn superoxide dismutase 1 protein (SOD1). In simulations with 8 chains, we observe two distinct aggregated/non-aggregated phases. At the midpoint temperature, these phases coexist, separated by a free-energy barrier of height 2.7 kBT. We show that this system can be successfully studied by carefully implemented flat-histogram techniques. The frequency of barrier crossing, which is low in conventional canonical simulations, can be increased by turning to a two-step procedure based on the Wang-Landau and multicanonical algorithms.

  19. Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis.

    PubMed

    Jang, Hee-Seong; Kim, Jee In; Noh, Mira; Rhee, Man Hee; Park, Kwon Moo

    2014-09-01

    The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.

  20. Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis.

    PubMed

    Jang, Hee-Seong; Kim, Jee In; Noh, Mira; Rhee, Man Hee; Park, Kwon Moo

    2014-09-01

    The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling. PMID:24973550

  1. G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.

    PubMed

    Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao

    2015-01-01

    Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer.

  2. Target disruption of ribosomal protein pNO40 accelerates aging and impairs osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Lin, Yen-Ming; Wu, Chih-Ching; Chang, Yu-Chen; Wu, Chu-Han; Ho, Hsien Li; Hu, Ji Wei; Chang, Ren-Chi; Wang, Chung-Ta; Ouyang, Pin

    2016-01-22

    pNO40/PS1D, a novel nucleolar protein, has been characterized as a core protein of eukaryotic 60S ribosome and at least two splicing forms of pNO40 mRNAs with alternative starting sites have been identified. Through production of knockout (ko) mice with either exon 2 (△E2), exon 4 (△E4) or △E2+E4 targeted disruption we identified a cryptic splicing product occurring in the ko tissues examined which in general cannot be observed in regular RT-PCR detection of wild-type (wt) animals. Among ko animals, △E4 null embryos exhibited prominent senescence-associated β-galactosidase (SA-β-gal) staining, a marker for senescent cells, in notochord, forelimbs and heart while bone marrow-derived mesenchymal stem cells (MSCs) from △E4 null mice developed accelerated aging and osteogenic differentiation defects compared to those from wt and other isoform mutant mice. Examination of the causal relationship between pNO40 deficiency and MSC-accelerated aging revealed △E4 null disruption in MSCs elicits high levels of ROS and elevated expression levels of p16 and Rb but not p53. Further analysis with iTraq identified CYP1B1, a component of the cytochrome p450 system, as a potential molecule mediating ROS generation in pNO40 deficient MSCs. We herein established a mouse model of MSC aging through pNO40-targeted depletion and demonstrated the effects of loss of pNO40 on bone homeostasis.

  3. Targeted disruption of fibrinogen like protein-1 accelerates hepatocellular carcinoma development

    SciTech Connect

    Nayeb-Hashemi, Hamed; Desai, Anal; Demchev, Valeriy; Bronson, Roderick T.; Hornick, Jason L.; Cohen, David E.; Ukomadu, Chinweike

    2015-09-18

    Fibrinogen like protein-1 (Fgl1) is a predominantly liver expressed protein that has been implicated as both a hepatoprotectant and a hepatocyte mitogen. Fgl1 expression is decreased in hepatocellular carcinoma (HCC) and its loss correlates with a poorly differentiated phenotype. To better elucidate the role of Fgl1 in hepatocarcinogenesis, we treated mice wild type or null for Fgl1 with diethyl nitrosamine and monitored for incidence of hepatocellular cancer. We find that mice lacking Fgl1 develop HCC at more than twice the rate of wild type mice. We show that hepatocellular cancers from Fgl1 null mice are molecularly distinct from those of the wild type mice. In tumors from Fgl1 null mice there is enhanced activation of Akt and downstream targets of the mammalian target of rapamycin (mTOR). In addition, there is paradoxical up regulation of putative hepatocellular cancer tumor suppressors; tripartite motif-containing protein 35 (Trim35) and tumor necrosis factor super family 10b (Tnfrsf10b). Taken together, these findings suggest that Fgl1 acts as a tumor suppressor in hepatocellular cancer through an Akt dependent mechanism and supports its role as a potential therapeutic target in HCC. - Highlights: • Fgl1 knockout mice (Fgl1KO) are more prone to carcinogen-induced liver cancer compared to wild type (WT) mates. • Tumors from the Fgl1KO are molecularly distinct with enhanced Akt and mTOR activity in comparison with Fgl1WT tumors. • Tumors from the Fgl1KO have enhanced expression of Trim35 and Tnfrsf10b, putative HCC tumor suppressors.

  4. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Lin, Xianzhi; Chan, Tak-Ming; Wang, Rena; Xiao, Xinshu

    2016-01-01

    Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting that cis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon. PMID:26888265

  5. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification.

    PubMed

    Yildirim, Eda D; Besunder, Robyn; Pappas, Daphne; Allen, Fred; Güçeri, Selçuk; Sun, Wei

    2010-03-01

    A combined effect of protein coating and plasma modification on the quality of the osteoblast-scaffold interaction was investigated. Three-dimensional polycaprolactone (PCL) scaffolds were manufactured by the precision extrusion deposition (PED) system. The structural, physical, chemical and biological cues were introduced to the surface through providing 3D structure, coating with adhesive protein fibronectin and modifying the surface with oxygen-based plasma. The changes in the surface properties of PCL after those modifications were examined by contact angle goniometry, surface energy calculation, surface chemistry analysis (XPS) and surface topography measurements (AFM). The effects of modification techniques on osteoblast short-term and long-term functions were examined by cell adhesion, proliferation assays and differentiation markers, namely alkaline phosphatase activity (ALP) and osteocalcin secretion. The results suggested that the physical and chemical cues introduced by plasma modification might be sufficient for improved cell adhesion, but for accelerated osteoblast differentiation the synergetic effects of structural, physical, chemical and biological cues should be introduced to the PCL surface.

  6. Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin).

    PubMed

    Niehans, G A; Cherwitz, D L; Staley, N A; Knapp, D J; Dalmasso, A P

    1996-07-01

    Normal human tissues express membrane-associated complement inhibitory proteins that protect these tissues from damage by autologous complement. To determine whether neoplasms also express these proteins, we examined the distribution of the complement inhibitors decay-accelerating factor (DAF), CD59 (protectin), and membrane cofactor protein in frozen samples of human breast, colon, kidney, and lung carcinomas and in adjacent non-neoplastic tissues, using immunohistochemistry. All samples were also studied for deposition of C3 fragments and activated C5b-9. Differences between normal tissues and the corresponding neoplasms were often observed, with loss or gain of expression of one or more inhibitors. Ductal carcinomas of the breast showed the most variation in phenotype; some tumors expressed only one inhibitor while others expressed different combinations of two or three inhibitors. Colon carcinomas, by contrast, stained intensely for all inhibitors. Renal cell carcinomas had weak to moderate expression of one to three inhibitors, generally DAF and CD59, whereas non-small cell carcinomas of the lung usually expressed CD59 and membrane cofactor protein with variable DAF immunoreactivity. The two small cell carcinomas of the lung showed little or no staining for any inhibitor. Activated C5b-9 deposition was seen adjacent to tumor nests in a minority of carcinomas and showed no correlation with complement inhibitor expression. C3 fragment deposition was minimal. Our results demonstrate that most carcinomas, with the exception of small cell carcinomas of the lung, do express one or more complement inhibitors at a level likely to inhibit complement-mediated cellular damage. Unexpectedly, large quantities of DAF and CD59 were often observed in tumor stroma, with only limited deposition in normal connective tissue. This suggests that carcinomas may supplement the activity of membrane-associated complement inhibitors by release of soluble forms of DAF and CD59 into the

  7. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis

    PubMed Central

    Bilic, R.; Simic, P.; Jelic, M.; Stern-Padovan, R.; Dodig, D.; van Meerdervoort, H. Pompe; Martinovic, S.; Ivankovic, D.; Pecina, M.

    2006-01-01

    We randomly assigned 17 patients with scaphoid non-union at the proximal pole to three treatment groups: (1) autologous iliac graft (n=6), (2) autologous iliac graft + osteogenic protein-1 (OP-1; n=6), and (3) allogenic iliac graft + OP-1 (n=5). Radiographic, scintigraphic, and clinical assessments were performed throughout the follow-up period of 24 months. OP-1 improved the performance of both autologous and allogenic bone implants and reduced radiographic healing time to 4 weeks compared with 9 weeks in group 1. Helical CT scans and scintigraphy showed that in OP-1-treated patients sclerotic bone was replaced by well-vascularised bone. The addition of OP-1 to allogenic bone implant equalised the clinical outcome with the autologous graft procedure. Consequently the harvesting of autologous graft can be avoided. PMID:16506027

  8. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  9. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-01

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms.

  10. Functional expression of Ca²⁺ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum.

    PubMed

    Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu

    2012-03-01

    In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms. PMID:22330805

  11. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA

    PubMed Central

    Harata, N. Charles

    2014-01-01

    Background An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. Methods We evaluated the literature regarding the subcellular localization of torsinA. Results Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. Discussion As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins. PMID:25279252

  12. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response

    PubMed Central

    Li, Chang Xian; Lo, Chung Mau; Lian, Qizhou; Ng, Kevin Tak-Pan; Liu, Xiao Bing; Ma, Yuen Yuen; Qi, Xiang; Yeung, Oscar Wai Ho; Tergaonkar, Vinay; Yang, Xin Xiang; Liu, Hui; Liu, Jiang; Shao, Yan; Man, Kwan

    2016-01-01

    Repressor and activator protein (Rap1) directly regulates nuclear factor-κB (NF-κB) dependent signaling, which contributes to hepatic IRI. We here intended to investigate the effect of Rap1 in hepatic ischemia reperfusion injury (IRI) and to explore the underlying mechanisms. The association of Rap1 expression with hepatic inflammatory response were investigated in both human and rat liver transplantation. The effect of Rap1 in hepatic IRI was studied in Rap1 knockout mice IRI model in vivo and primary cells in vitro. Our results showed that over expression of Rap1 was associated with severe liver graft inflammatory response, especially in living donor liver transplantation. The results were also validated in rat liver transplantation model. In mice hepatic IRI model, the knockout of Rap1 reduced hepatic damage and hepatic inflammatory response. In primary cells, the knockout of Rap1 suppressed neutrophils migration activity and adhesion in response to liver sinusoidal endothelial cells through down-regulating neutrophils F-Actin expression and CXCL2/CXCR2 pathway. In addition, the knockout of Rap1 also decreased production of pro-inflammatory cytokines/chemokines in primary neutrophils and neutrophils-induced hepatocyte damage. In conclusion, Rap1 may induce hepatic IRI through promoting neutrophils inflammatory response. Rap1 may be the potential therapeutic target of attenuating hepatic IRI. PMID:27050284

  13. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  14. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice.

    PubMed

    Fan, Ming-Hui; Zhu, Qiang; Li, Hui-Hua; Ra, Hyun-Jeong; Majumdar, Sonali; Gulick, Dexter L; Jerome, Jacob A; Madsen, Daniel H; Christofidou-Solomidou, Melpo; Speicher, David W; Bachovchin, William W; Feghali-Bostwick, Carol; Puré, Ellen

    2016-04-01

    Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.

  15. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  16. Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Peters, Carsten; Wagner, Melanie; Völkert, Martin; Waldmann, Herbert

    2002-08-01

    We have developed a basic concept for studying cell biological phenomena using an interdisciplinary approach starting from organic chemistry. Based on structural information available for a given biological phenomenon, unsolved chemical problems are identified. For their solution, new synthetic pathways and methods are developed, which reflect the state of the art in synthesising lipidated peptide conjugates. These compounds are used as molecular probes for the investigation of biological phenomena that involve both the determination of biophysical properties and cell biological studies. The interplay between organic synthesis, biophysics and cell biology in the study of protein lipidation may open up new and alternative opportunities to gain knowledge about the biological phenomenon that could not be obtained by employing biological techniques alone. This fruitful combination is highlighted using the Ras protein as an outstanding example. Included herein is: the development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of the biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and proteins in cell biological experiments.

  17. Impact of 7,12-dimethylbenz[a]anthracene exposure on connexin gap junction proteins in cultured rat ovaries

    SciTech Connect

    Ganesan, Shanthi Keating, Aileen F.

    2014-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA) destroys ovarian follicles in a concentration-dependent manner. The impact of DMBA on connexin (CX) proteins that mediate communication between follicular cell types along with pro-apoptotic factors p53 and Bax were investigated. Postnatal day (PND) 4 Fisher 344 rat ovaries were cultured for 4 days in vehicle medium (1% DMSO) followed by a single exposure to vehicle control (1% DMSO) or DMBA (12.5 nM or 75 nM) and cultured for 4 or 8 days. RT-PCR was performed to quantify Cx37, Cx43, p53 and Bax mRNA level. Western blotting and immunofluorescence staining were performed to determine CX37 or CX43 level and/or localization. Cx37 mRNA and protein increased (P < 0.05) at 4 days of 12.5 nM DMBA exposure. Relative to vehicle control-treated ovaries, mRNA encoding Cx43 decreased (P < 0.05) but CX43 protein increased (P < 0.05) at 4 days by both DMBA exposures. mRNA expression of pro-apoptotic p53 was decreased (P < 0.05) but no changes in Bax expression were observed after 4 days of DMBA exposures. In contrast, after 8 days, DMBA decreased Cx37 and Cx43 mRNA and protein but increased both p53 and Bax mRNA levels. CX43 protein was located between granulosa cells, while CX37 was located at the oocyte cell surface of all follicle stages. These findings support that DMBA exposure impacts ovarian Cx37 and Cx43 mRNA and protein prior to both observed changes in pro-apoptotic p53 and Bax and follicle loss. It is possible that such interference in follicular cell communication is detrimental to follicle viability, and may play a role in DMBA-induced follicular atresia. - Highlights: • DMBA increases Cx37 and Cx43 expression prior to follicle loss. • During follicle loss both Cx37 and Cx43 expressions are reduced. • CX43 protein is absent in follicle remnants lacking an oocyte.

  18. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    PubMed Central

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis

  19. Accelerating the Association of the Most Stable Protein-Ligand Complex by More than Two Orders of Magnitude.

    PubMed

    Giese, Christoph; Eras, Jonathan; Kern, Anne; Schärer, Martin A; Capitani, Guido; Glockshuber, Rudi

    2016-08-01

    The complex between the bacterial type 1 pilus subunit FimG and the peptide corresponding to the N-terminal extension (termed donor strand, Ds) of the partner subunit FimF (DsF) shows the strongest reported noncovalent molecular interaction, with a dissociation constant (KD ) of 1.5×10(-20)  m. However, the complex only exhibits a slow association rate of 330 m(-1)  s(-1) that limits technical applications, such as its use in affinity purification. Herein, a structure-based approach was used to design pairs of FimGt (a FimG variant lacking its own N-terminal extension) and DsF variants with enhanced electrostatic surface complementarity. Association of the best mutant FimGt/DsF pairs was accelerated by more than two orders of magnitude, while the dissociation rates and 3D structures of the improved complexes remained essentially unperturbed. A KD  value of 8.8×10(-22)  m was obtained for the best mutant complex, which is the lowest value reported to date for a protein/ligand complex. PMID:27351462

  20. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration

    SciTech Connect

    Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe

    2011-09-09

    A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.

  1. Accelerating the Association of the Most Stable Protein-Ligand Complex by More than Two Orders of Magnitude.

    PubMed

    Giese, Christoph; Eras, Jonathan; Kern, Anne; Schärer, Martin A; Capitani, Guido; Glockshuber, Rudi

    2016-08-01

    The complex between the bacterial type 1 pilus subunit FimG and the peptide corresponding to the N-terminal extension (termed donor strand, Ds) of the partner subunit FimF (DsF) shows the strongest reported noncovalent molecular interaction, with a dissociation constant (KD ) of 1.5×10(-20)  m. However, the complex only exhibits a slow association rate of 330 m(-1)  s(-1) that limits technical applications, such as its use in affinity purification. Herein, a structure-based approach was used to design pairs of FimGt (a FimG variant lacking its own N-terminal extension) and DsF variants with enhanced electrostatic surface complementarity. Association of the best mutant FimGt/DsF pairs was accelerated by more than two orders of magnitude, while the dissociation rates and 3D structures of the improved complexes remained essentially unperturbed. A KD  value of 8.8×10(-22)  m was obtained for the best mutant complex, which is the lowest value reported to date for a protein/ligand complex.

  2. Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice.

    PubMed

    Frisch, C; De Souza-Silva, M A; Söhl, G; Güldenagel, M; Willecke, K; Huston, J P; Dere, E

    2005-02-10

    Gap junction channels, composed of connexin (Cx) proteins, are conduits for intercellular communication and metabolic exchange in the central nervous system. Connexin36 (Cx36) is expressed in distinct subpopulations of neurons throughout the mammalian brain. Deletion of the Cx36 gene in the mouse affected power and frequency of gamma and sharp wave-ripple oscillations, putative correlates of memory engram inscription. Here, we present a behavioral analysis of Cx36-deficient mice. Activity patterns, exploratory- and anxiety-related responses were largely unaffected by elimination of Cx36, while sensorimotor capacities and learning and memory processes were impaired. Repeated testing on the rotarod suggested that the Cx36-deficient mice showed slower motor-coordination learning. After a retention interval of 24 h the Cx36-deficient mice showed habituation to an open-field, but failed to habituate to a more complex spatial environment (Y-maze). A more pronounced memory impairment was found when Cx36 knockout mice had to remember recently explored objects. Cx36-deficient mice were unable to recognize objects after short delays of 15 and 45 min. These data suggest that lack of Cx36 induces memory impairments that vary in dependence of the complexity of the stimuli presented. Our results suggest that neuronal gap junctions incorporating Cx36 play a role in learning and memory.

  3. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells.

    PubMed

    Saito, Suguru; Kawamura, Toshihiko; Higuchi, Masaya; Kobayashi, Takahiro; Yoshita-Takahashi, Manami; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Kanda, Yasuhiro; Kawamura, Hiroki; Jiang, Shuying; Naito, Makoto; Yoshizaki, Takumi; Takahashi, Masahiko; Fujii, Masahiro

    2015-05-01

    Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.

  4. p190RhoGAP has cellular RacGAP activity regulated by a polybasic region.

    PubMed

    Lévay, Magdolna; Bartos, Balázs; Ligeti, Erzsébet

    2013-06-01

    p190RhoGAP is a GTPase-activating protein (GAP) known to regulate actin cytoskeleton dynamics by decreasing RhoGTP levels through activation of the intrinsic GTPase activity of Rho. Although the GAP domain of p190RhoGAP stimulates the intrinsic' GTPase activity of several Rho family members (Rho, Rac, Cdc42) under in vitro conditions, p190RhoGAP is generally regarded as a GAP for RhoA in the cell. The cellular RacGAP activity of the protein has not been proven directly. We have previously shown that the in vitro RacGAP and RhoGAP activity of p190RhoGAP was inversely regulated through a polybasic region of the protein. Here we provide evidence that p190RhoGAP shows remarkable GAP activity toward Rac also in the cell. The cellular RacGAP activity of p190RhoGAP requires an intact polybasic region adjacent to the GAP domain whereas the RhoGAP activity is inhibited by the same domain. Our data indicate that through its alternating RacGAP and RhoGAP activity, p190RhoGAP plays a more complex role in the Rac-Rho antagonism than it was realized earlier.

  5. Gap Resolution

    2009-06-16

    With the continued improvements of next generation DNA sequencing technologies and their advantages over traditional Sanger sequencing, the Joint Genome Institute (JGI) has modified its sequencing pipeline to take advantage of the benefits of such technologies. Currently, standard 454 Titanium, paired end 454 Titanium, and Illumina GAll data are generated for all microbial projects and then assembled using draft assemblies at a much greater throughput than before. However, it also presents us with new challenges.more » In addition to the increased throughput, we also have to deal with a larger number of gaps in the Newbler genome assemblies. Gaps in these assemblies are usually caused by repeats (Newbler collapses repeat copies into individual contigs, thus creating gaps), strong secondary structures, and artifacts of the PCR process (specific to 454 paired end libraries). Some gaps in draft assemblies can be resolved merely by adding back the collapsed data from repeats. To expedite gap closure and assembly improvement on large numbers of these assemblies, we developed software to address this issue.« less

  6. Flooding Vocabulary Gaps to Accelerate Word Learning

    ERIC Educational Resources Information Center

    Brabham, Edna; Buskist, Connie; Henderson, Shannon Coman; Paleologos, Timon; Baugh, Nikki

    2012-01-01

    Students entering school with limited vocabularies are at a disadvantage compared to classmates with robust knowledge of words and meanings. Teaching a few unrelated words at a time is insufficient for catching these students up with peers and preparing them to comprehend texts they will encounter across the grades. This article presents…

  7. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat.

    PubMed

    Uauy, Cristobal; Brevis, Juan Carlos; Dubcovsky, Jorge

    2006-01-01

    High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines (RSLs) segregating for Gpc-B1 is reported here. Flag leaf chlorophyll degradation, change in peduncle colour, and spike water content were completely linked to the Gpc-B1 locus and to the differences in GPC within a 0.3 cM interval corresponding to a physical distance of only 250 kb. The effect of Gpc-B1 was also examined in different environments and genetic backgrounds using a set of tetraploid and hexaploid pairs of isogenic lines. The results were consistent with those observed in the RSLs. The high GPC allele conferred a shorter duration of grain fill due to earlier flag leaf senescence and increased GPC in all four genetic backgrounds. The effect on grain size was more variable, depending on the genotype-environment combinations. These results are consistent with a model in which the wild-type allele of Gpc-B1 accelerates senescence in flag leaves producing pleiotropic effects on nitrogen remobilization, total GPC, and grain size. PMID:16831844

  8. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster

    PubMed Central

    Rodriguez-Fernandez, Imilce A.; Dell’Angelica, Esteban C.

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated

  9. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury.

    PubMed

    Tian, Zhe; Miyata, Keishi; Tazume, Hirokazu; Sakaguchi, Hisashi; Kadomatsu, Tsuyoshi; Horio, Eiji; Takahashi, Otowa; Komohara, Yoshihiro; Araki, Kimi; Hirata, Yoichiro; Tabata, Minoru; Takanashi, Shuichiro; Takeya, Motohiro; Hao, Hiroyuki; Shimabukuro, Michio; Sata, Masataka; Kawasuji, Michio; Oike, Yuichi

    2013-04-01

    Much attention is currently focused on the role of perivascular adipose tissue in development of cardiovascular disease (CVD). Some researchers view it as promoting CVD through secretion of cytokines and growth factors called adipokines, while recent reports reveal that perivascular adipose tissue can exert a protective effect on CVD development. Furthermore, adiponectin, an anti-inflammatory adipokine, reportedly suppresses neointimal hyperplasia after endovascular injury, whereas such vascular remodeling is enhanced by pro-inflammatory adipokines secreted by perivascular adipose, such as tumor necrosis factor-α (TNF-α). These findings suggest that extent of vascular remodeling, a pathological process associated with CVD development, depends on the balance between pro- and anti-inflammatory adipokines secreted from perivascular adipose tissue. We previously demonstrated that angiopoietin-like protein 2 (Angptl2), a pro-inflammatory factor secreted by adipose tissue, promotes adipose tissue inflammation and subsequent systemic insulin resistance in obesity. Here, we examined whether Angptl2 secreted by perivascular adipose tissue contributes to vascular remodeling after endovascular injury in studies of transgenic mice expressing Angptl2 in adipose tissue (aP2-Angptl2 transgenic mice) and Angptl2 knockout mice (Angptl2(-/-) mice). To assess the role of Angptl2 secreted by perivascular adipose tissue on vascular remodeling after endovascular injury, we performed adipose tissue transplantation experiments using these mice. Wild-type mice with perivascular adipose tissue derived from aP2-Angptl2 mice exhibited accelerated neointimal hyperplasia after endovascular injury compared to wild-type mice transplanted with wild-type tissue. Conversely, vascular inflammation and neointimal hyperplasia after endovascular injury were significantly attenuated in wild-type mice transplanted with Angptl2(-/-) mouse-derived perivascular adipose tissue compared to wild-type mice

  10. Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor.

    PubMed

    Miao, Yinglong; Goldfeld, Dahlia Anne; Moo, Ee Von; Sexton, Patrick M; Christopoulos, Arthur; McCammon, J Andrew; Valant, Celine

    2016-09-20

    Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [(3)H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 μM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies. PMID:27601651

  11. Hepatitis B virus X protein accelerates hepatocarcinogenesis with partner survivin through modulating miR-520b and HBXIP

    PubMed Central

    2014-01-01

    Background Hepatitis B virus X protein (HBx) plays crucial roles in hepatocarcinogenesis. However, the underlying mechanism remains elusive. We have reported that HBx is able to up-regulate survivin in hepatocellular carcinoma tissues. The oncopreotein hepatitis B X-interacting protein (HBXIP), a target of miR-520b, is involved in the development of cancer. In this study, we focus on the investigation of hepatocarcinogenesis mediated by HBx. Methods The expression of HBx and survivin was examined in the liver tissues of HBx-Tg mice. The effect of HBx/survivin on the growth of LO2-X-S cells was determined by colony formation and transplantation in nude mice. The effect of HBx/survivin on promoter of miR-520b was determined by Western blot analysis, luciferase reporter gene assay, co-immunoprecipitation (co-IP) and chromatin immunoprecipitation (ChIP), respectively. The expression of HBx, survivin and HBXIP was detected by immunohistochemistry and real-time PCR in clinical HCC tissues, respectively. The DNA demethylation of HBXIP promoter was examined. The functional influence of miR-520b and HBXIP on proliferation of hepatoma cells was analyzed by MTT, colony formation, EdU and transplantation in nude mice in vitro and in vivo. Results In this study, we provided evidence that HBx up-regulated survivin in the liver cancer tissues of HBx-Tg mice aged 18 M. The engineered LO2 cell lines with survivin and/or HBx were successfully established, termed LO2-X-S. MiR-520b was down-regulated in LO2-X-S cells and clinical HCC tissues. Our data revealed that HBx survivin-dependently down-regulated miR-520b through interacting with Sp1 in the cells. HBXIP was highly expressed in LO2-X-S cells, liver cancer tissues of HBx-Tg mice aged 18 M and clinical HCC tissues (75.17%, 112/149). The expression level of HBXIP was positively associated with those of HBx or survivin in clinical HCC tissues. In addition, we showed that HBx survivin-dependently up-regulated HBXIP through

  12. Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study.

    PubMed

    Briassoulis, George; Briassouli, Efrossini; Fitrolaki, Diana-Michaela; Plati, Ioanna; Apostolou, Kleovoulos; Tavladaki, Theonymfi; Spanaki, Anna-Maria

    2014-01-01

    Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical "comparative study" model. Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.

  13. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma.

    PubMed

    Vernon, D; Gutell, R R; Cannone, J J; Rumpf, R W; Birky, C W

    2001-09-01

    Polytoma obtusum and Polytoma uvella are members of a clade of nonphotosynthetic chlorophyte algae closely related to Chlamydomonas humicola and other photosynthetic members of the Chlamydomonadaceae. Descended from a nonphotosynthetic mutant, these obligate heterotrophs retain a plastid (leucoplast) with a functional protein synthetic system, and a plastid genome (lpDNA) with functional genes encoding proteins required for transcription and translation. Comparative studies of the evolution of genes in chloroplasts and leucoplasts can identify modes of selection acting on the plastid genome. Two plastid genes--rrn16, encoding the plastid small-subunit rRNA, and tufA, encoding elongation factor Tu--retain their functions in protein synthesis after the loss of photosynthesis in two nonphotosynthetic Polytoma clades but show a substantially accelerated rate of base substitution in the P. uvella clade. The accelerated evolution of tufA is due, at least partly, to relaxed codon bias favoring codons that can be read without wobble, mainly in three amino acids. Selection for these codons may be relaxed because leucoplasts are required to synthesize fewer protein molecules per unit time than are chloroplasts (reduced protein synthetic load) and thus require a lower rate of synthesis of elongation factor Tu. Relaxed selection due to a lower protein synthetic load is also a plausible explanation for the accelerated rate of evolution of rrn16, but the available data are insufficient to test the hypothesis for this gene. The tufA and rrn16 genes in Polytoma oviforme, the sole member of a second nonphotosynthetic clade, are also functional but show no sign of relaxed selection.

  14. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity

    PubMed Central

    Cabré, Elisa J.; Monterroso, Begoña; Alfonso, Carlos; Sánchez-Gorostiaga, Alicia; Reija, Belén; Jiménez, Mercedes

    2015-01-01

    Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ. PMID:25950808

  15. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age.

    PubMed

    Procacci, Patrizia; Magnaghi, Valerio; Pannese, Ennio

    2008-03-28

    Satellite glial cells that envelope the bodies of sensory neurons in spinal ganglia are connected to each other by gap junctions and exhibit dye coupling. These junctions may endow perineuronal satellite cells with the coordination necessary for the efficient performance of functions such as buffering of K(+) in the perineuronal microenvironment, provision of metabolic support to ganglionic neurons, and neuroprotection. Our knowledge of gap junctions has increased considerably in recent years, but little information is available on the connexins that form these junctions in spinal ganglia. In the present study we set out to determine whether the perineuronal satellite cells of mouse spinal ganglia express the connexins that are mainly present in neuroglial cells (Cx32 and Cx43). In young (3 months) mice, PCR showed the presence of both Cx32 and Cx43 transcripts. By immunocytochemistry, we localized Cx32 to axon-ensheathing Schwann cells, but not to other parts of the ganglion. We found Cx43 positivity in the perineuronal satellite cells, which were identified by their immunoreactivity to S100 protein and to glutamine synthetase. PCR showed Cx43 transcripts also in the spinal ganglia of adult (8 months) and old (24 months) animals. Cx43 immunostaining was present in satellite cells surrounding all nerve cell bodies, irrespective of size. The mean number of Cx43-immunoreactive puncta was significantly lower in the perineuronal satellite cells of aged mice compared to young and adult animals. This latter finding is consistent with observations in non-nervous tissues, and the hypothesis that a prominent decrease in Cx43 is a marker of senescence. PMID:18355632

  16. Mutation Analysis of Gap Junction Protein Beta 1 and Genotype–Phenotype Correlation in X-linked Charcot–Marie–Tooth Disease in Chinese Patients

    PubMed Central

    Sun, Bo; Chen, Zhao-Hui; Ling, Li; Li, Yi-Fan; Liu, Li-Zhi; Yang, Fei; Huang, Xu-Sheng

    2016-01-01

    Background: Among patients with Charcot–Marie–Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approximately 90% of all CMTX. More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32). CX32 is thought to form gap junctions that promote the diffusion pathway between cells. GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin, and novel mutations are continually discovered. Methods: We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20, 2012, to December 31, 2015. Clinical examination, nerve conduction studies, and molecular and bioinformatics analyses were performed to identify patients with CMTX1. Results: Nine GJB1 mutations (c.283G>A, c.77C>T, c.643C>T, c.515C>T, c.191G>A, c.610C>T, c.490C>T, c.491G>A, and c.44G>A) were discovered in nine patients. Median motor nerve conduction velocities of all nine patients were < 38 m/s, resembling CMT Type 1. Three novel mutations, c.643C>T, c.191G>A, and c.610C>T, were revealed and bioinformatics analyses indicated high pathogenicity. Conclusions: The three novel missense mutations within the GJB1 gene broaden the mutational diversity of CMT1X. Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations. PMID:27098783

  17. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  18. Confronting Twin Paradox Acceleration

    NASA Astrophysics Data System (ADS)

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  19. Effect of total or partial uterus extirpation on uterus-projecting neurons in porcine inferior mesenteric ganglion. C. Changes in expression of apoptosis-associated (Bcl-2 and Bax) and regeneration-associated (GAP-43) proteins.

    PubMed

    Wasowicz, K

    2003-01-01

    The expression of Bcl-2 and Bax proteins was studied with immunohistochemistry, immuoblotting and RT-PCR in the uterine horn- and uterine cervix-projecting neurons of the inferior mesenteric ganglion (IMG) of the sexually immature gilts after partial or total hysterectomy. Additionally, the expression of regeneration-associated protein GAP-43 was studied in these neurons with immunohistochemistry. The uterus-projecting neurons were identified with retrograde fluorescent tracer Fast Blue (FB). The weak immunoreactivity to Bcl-2 and GAP-43 and moderately intense immunoreactivity to Bax was revealed in all FB+ (FB+) neurons of control and hysterectomized pigs. No difference in the intensity of immunostaining for Bcl-2, Bax and GAP-43 was found between control and hysterectomized gilts. Immunoblotting revealed the presence of Bcl-2 and Bax proteins in IMGs of control and hysterectomized animals and no difference in the band intensities between control and experimental groups was detected. RT-PCR detected weak induction of bcl-2 and bax only in the ganglia of animals which had undergone total hysterectomy. It was found that the axotomy of the uterus-projecting neurons located in the porcine IMG did not change the expression of the studied substances (Bcl-2, Bax and GAP-43) at protein level and only the induction of bcl-2 and bax at the level of RNA was visible. PMID:12817786

  20. Modulation of adrenal gap junction expression.

    PubMed

    Murray, S A; Shah, U S

    1998-01-01

    To increase our knowledge of the role of peptide hormone stimulation in gap junction protein expression and adrenal cortical cell function, primary rat adrenal cortical cells were treated with adrenocorticotropin, and gap junction proteins were measured. Immunocytochemistry and western blot analysis were used to detect and characterize gap junction type and distribution. The gap junction protein, connexin 43 (alpha 1), was detected. Analysis of six connexin protein types did not reveal gap junction species other than alpha 1. Cells of the inner adrenal cortical zones, zonae fasciculata and reticularis, were demonstrated to have the highest number of gap junctions per cell in the adrenal gland. Adrenal cell cultures enriched for the two inner cortical adrenal zones were established and demonstrated also to express alpha 1 gap junction protein. Adrenocorticotropin (40 mUnits/ml) and dibutyryl cyclic adenosine monophosphate (1 mM) treatments increased alpha 1 gap junction protein levels and decreased cell proliferation rates in the cell cultures. The results are consistent with the hypothesis that gap junction expression can be regulated by adrenocorticotropin acting through the second messenger cyclic adenosine monophosphate. It can be suggested that gap junction expression in the adrenal gland may be under hormonal influence, and that gap junctions serve as passage for movement of molecules involved in control of cell proliferation. PMID:9694574

  1. Minding the Gap

    SciTech Connect

    Firestone, Millicent Anne

    2015-02-23

    Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.

  2. Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply.

    PubMed

    Sugimura, Satoshi; Ritter, Lesley J; Sutton-McDowall, Melanie L; Mottershead, David G; Thompson, Jeremy G; Gilchrist, Robert B

    2014-06-01

    This study assessed the participation of amphiregulin (AREG) and bone morphogenetic protein 15 (BMP15) during maturation of bovine cumulus-oocyte complexes (COCs) on cumulus cell function and their impact on subsequent embryo development. AREG treatment of COCs enhanced blastocyst formation and quality only when in the presence of BMP15. Expression of hyaluronan synthase 2 was enhanced by follicle-stimulating hormone (FSH) but not by AREG, which was reflected in the level of cumulus expansion. Although both FSH and AREG stimulated glycolysis, AREG-treated COCs had higher glucose consumption, lactate production and ratio of lactate production to glucose uptake. Autofluorescence levels in oocytes, indicative of NAD(P)H and FAD(++), were increased with combined AREG and BMP15 treatment of COCs. In contrast, these treatments did not alter autofluorescence levels when cumulus cells were removed from oocytes, even in the presence of other COCs, suggesting that oocyte-cumulus gap-junctional communication (GJC) is required. FSH contributed to maintaining GJC for an extended period of time. Remarkably, BMP15 was equally effective at maintaining GJC even in the presence of AREG. Hence, AREG stimulation of COC glycolysis and BMP15 preservation of GJC may facilitate efficient transfer of metabolites from cumulus cells to the oocyte thereby enhancing oocyte developmental competence. These results have implications for improving in vitro oocyte maturation systems.

  3. MicroRNA-19b Downregulates Gap Junction Protein Alpha1 and Synergizes with MicroRNA-1 in Viral Myocarditis

    PubMed Central

    Lin, Junyi; Xue, Aimin; Li, Liliang; Li, Beixu; Li, Yuhua; Shen, Yiwen; Sun, Ning; Chen, Ruizhen; Xu, Hongfei; Zhao, Ziqin

    2016-01-01

    Viral myocarditis (VMC) is a life-threatening disease that leads to heart failure or cardiac arrhythmia. A large number of researches have revealed that mircroRNAs (miRNAs) participate in the pathological processes of VMC. We previously reported that miR-1 repressed the expression of gap junction protein α1 (GJA1) in VMC. In this study, miR-19b was found to be significantly upregulated using the microarray analysis in a mouse model of VMC, and overexpression of miR-19b led to irregular beating pattern in human cardiomyocytes derived from the induced pluripotent stem cells (hiPSCs-CMs). The upregulation of miR-19b was associated with decreased GJA1 in vivo. Furthermore, a miR-19b inhibitor increased, while its mimics suppressed the expression of GJA1 in HL-1 cells. When GJA1 was overexpressed, the miR-19b mimics-mediated irregular beating was reversed in hiPSCs-CMs. In addition, the effect of miR-19b on GJA1 was enhanced by miR-1 in a dose-dependent manner. These data suggest miR-19b contributes to irregular beating through regulation of GJA1 by cooperating with miR-1. Based on the present and our previous studies, it could be indicated that miR-19b and miR-1 might be critically involved in cardiac arrhythmia associated with VMC. PMID:27213338

  4. Neuropeptide Y, substance P, and human bone morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication

    PubMed Central

    Ma, W.H.; Liu, Y.J.; Wang, W.; Zhang, Y.Z.

    2015-01-01

    Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation. PMID:25714881

  5. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase.

    PubMed

    Kanemitsu, M Y; Lau, A F

    1993-08-01

    We previously reported that epidermal growth factor (EGF) induced the disruption of gap junctional communication (gjc) and serine phosphorylation of connexin43 (Cx43) in T51B rat liver epithelial cells. However, the cascade of events linking EGF receptor activation to these particular responses have not been fully characterized. Furthermore, the serine kinase(s) acting directly on Cx43 remain unidentified. In the current study, we demonstrate that downmodulation of 12-0-tetradecanoylphorbol 13-acetate (TPA)-sensitive protein kinase C (PKC) activity does not affect EGF's ability to reduce junctional permeability or phosphorylate Cx43 in T51B cells. EGF in the presence or absence of chronic TPA treatment stimulated marked increases in Cx43 phosphorylation on numerous sites as determined by two-dimensional tryptic phosphopeptide mapping. Computer-assisted sequence analysis of Cx43 identified several protein kinase phosphorylation consensus sites including two sites for mitogen-activated protein (MAP) kinase. EGF stimulated activation of MAP kinase in a time- and dose-dependent manner where the kinetics of kinase activity corroborated its possible involvement in mediating EGF's effects. Moreover, purified MAP kinase directly phosphorylated Cx43 on serine residues in vitro. Two-dimensional tryptic and chymotryptic phosphopeptide mapping demonstrated that the in vitro phosphopeptides represented a specific subset of the in vivo phosphopeptides produced in response to EGF after chronic TPA treatment. Therefore, EGF-induced disruption of gjc and phosphorylation of Cx43 may be mediated in part by MAP kinase in vivo.

  6. Absence of persistent spreading, branching, and adhesion in GAP-43- depleted growth cones

    PubMed Central

    1995-01-01

    The growth-associated protein GAP-43 is a major protein kinase C substrate of growth cones and developing nerve terminals. In the growth cone, it accumulates near the plasma membrane, where it associates with the cortical cytoskeleton and membranes. The role of GAP-43 in neurite outgrowth is not yet clear, but recent findings suggest that it may be a crucial competence factor in this process. To define the role of GAP- 43 in growth cone activity, we have analyzed neurite outgrowth and growth cone activity in primary sensory neurons depleted of GAP-43 by a specific antisense oligonucleotide procedure. Under optimal culture conditions, but in the absence of GAP-43, growth cones adhered poorly, displayed highly dynamic but unstable lamellar extensions, and were strikingly devoid of local f-actin concentrations. Upon stimulation, they failed to produce NGF-induced spreading or insulin-like growth factor-1-induced branching, whereas growth factor-induced phosphotyrosine immunoreactivity and acceleration of neurite elongation were not impaired. Unlike their GAP-43-expressing counterparts, they readily retracted when exposed to inhibitory central nervous system myelin-derived liposomes. Frequency and extent of induced retraction were attenuated by NGF. Our results indicate that GAP-43 can promote f- actin accumulation, evoked morphogenic activity, and resistance to retraction of the growth cone, suggesting that it may promote regulated neurite outgrowth during development and regeneration. PMID:7860637

  7. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. Can Accelerators Accelerate Learning?

    SciTech Connect

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-10

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  9. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  10. Expression and role of gap junction protein connexin43 in immune challenge-induced extracellular ATP release in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Li, Shuo; Peng, Weijiao; Chen, Xiaoli; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-08-01

    Connexin43 (Cx43) is the best characterized gap junction protein that allows the direct exchange of signaling molecules during cell-to-cell communications. The immunological functions and ATP permeable properties of Cx43 have been insensitively examined in mammals. The similar biological significance of Cx43 in lower vertebrates, however, is not yet understood. In the present study we identified and characterized a Cx43 ortholog (termed PoCx43) from Japanese flounder (Paralichthys olivaceus) and investigated its role in immune challenge-induced extracellular ATP release. PoCx43 mRNA transcripts are widely distributed in all tested normal tissues and cells with predominant expression in the brain, and are significantly up-regulated by LPS, poly(I:C) and zymosan challenges and Edwardsiella tarda infections as well, suggesting that PoCx43 expression was modulated by the inflammatory stresses. In addition, cyclic AMP (cAMP), an essential second messenger, also plays an important role in regulating PoCx43 gene expression, by which the PoCx43-mediated gap junctional communication may be regulated. Furthermore, overexpression of PoCx43 in Japanese flounder FG-9307 cells significantly potentiates the LPS- and poly(I:C)-induced extracellular ATP release and this enhanced ATP release was attenuated by pre-incubation with Cx43 inhibitor carbenoxolone. In a complementary experiment, down-regulation of PoCx43 endogenous expression in FG-9307 cells with small interfering RNA also significantly reduced the PAMP-induced extracellular ATP release, suggesting that PoCx43 is an important ATP release conduit under the immune challenge conditions. Finally, we showed that extracellular ATP stimulation led to an increased PoCx43 expression which probably provides a feedback mechanism in regulating PoCx43 expression at the transcriptional level. These findings suggest that PoCx43 is an inducible immune response gene and an important conduit for immune challenge-induced extracellular ATP

  11. Expression and role of gap junction protein connexin43 in immune challenge-induced extracellular ATP release in Japanese flounder (Paralichthys olivaceus).

    PubMed

    Li, Shuo; Peng, Weijiao; Chen, Xiaoli; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-08-01

    Connexin43 (Cx43) is the best characterized gap junction protein that allows the direct exchange of signaling molecules during cell-to-cell communications. The immunological functions and ATP permeable properties of Cx43 have been insensitively examined in mammals. The similar biological significance of Cx43 in lower vertebrates, however, is not yet understood. In the present study we identified and characterized a Cx43 ortholog (termed PoCx43) from Japanese flounder (Paralichthys olivaceus) and investigated its role in immune challenge-induced extracellular ATP release. PoCx43 mRNA transcripts are widely distributed in all tested normal tissues and cells with predominant expression in the brain, and are significantly up-regulated by LPS, poly(I:C) and zymosan challenges and Edwardsiella tarda infections as well, suggesting that PoCx43 expression was modulated by the inflammatory stresses. In addition, cyclic AMP (cAMP), an essential second messenger, also plays an important role in regulating PoCx43 gene expression, by which the PoCx43-mediated gap junctional communication may be regulated. Furthermore, overexpression of PoCx43 in Japanese flounder FG-9307 cells significantly potentiates the LPS- and poly(I:C)-induced extracellular ATP release and this enhanced ATP release was attenuated by pre-incubation with Cx43 inhibitor carbenoxolone. In a complementary experiment, down-regulation of PoCx43 endogenous expression in FG-9307 cells with small interfering RNA also significantly reduced the PAMP-induced extracellular ATP release, suggesting that PoCx43 is an important ATP release conduit under the immune challenge conditions. Finally, we showed that extracellular ATP stimulation led to an increased PoCx43 expression which probably provides a feedback mechanism in regulating PoCx43 expression at the transcriptional level. These findings suggest that PoCx43 is an inducible immune response gene and an important conduit for immune challenge-induced extracellular ATP

  12. Rho/RacGAPs: embarras de richesse?

    PubMed

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-01-01

    Regulatory proteins such as guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) determine the activity of small GTPases. In the Rho/Rac family, the number of GEFs and GAPs largely exceeds the number of small GTPases, raising the question of specific or overlapping functions. In our recent study we investigated the first time ARHGAP25 at the protein level, determined its activity as RacGAP and showed its involvement in phagocytosis. With the discovery of ARHGAP25, the number of RacGAPs described in phagocytes is increased to six. We provide data that indicate the specific functions of selected Rho/RacGAPs and we show an example of differential regulation of a Rho/Rac family GAP by different kinases. We propose that the abundance of Rho/Rac family GAPs is an important element of the fine spatiotemporal regulation of diverse cellular functions.

  13. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  14. Generic chromatography-based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants.

    PubMed

    Buyel, Johannes F; Fischer, Rainer

    2014-04-01

    Plants offer a valuable alternative to cultured mammalian cells for the production of recombinant biopharmaceutical proteins. However, the target protein typically represents only a minor fraction of the total protein in the initial plant extract, which means that the development of product-specific chromatography-based purification strategies is often laborious and expensive. To address this challenge, we designed a generic downstream process that is suitable for the purification of recombinant proteins with diverse properties from plant production platforms. This was achieved by focusing on the binding behavior of tobacco host cell proteins (HCPs) to a broad set of chromatography resins under different pH and conductivity conditions. Strong cation exchanger and salt-tolerant anion exchanger resins exhibited the best resolution of tobacco HCPs among the 13 tested resins, and their selectivity was easy to manipulate through the adjustment of pH and conductivity. The advantages, such as direct capture of a target protein from leaf extract, and limitations, such as low binding capacity, of various chromatography ligands and resins are discussed. We also address the most useful applications of the chromatography ligands, namely recovery of proteins with a certain pI, in a downstream process that aims to purify diverse plant-derived biopharmaceutical proteins. Based on these results, we describe generic purification schemes that are suitable for acidic, neutral, and basic target proteins, as a first step toward the development of industrial platform processes.

  15. Generic chromatography-based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants.

    PubMed

    Buyel, Johannes F; Fischer, Rainer

    2014-04-01

    Plants offer a valuable alternative to cultured mammalian cells for the production of recombinant biopharmaceutical proteins. However, the target protein typically represents only a minor fraction of the total protein in the initial plant extract, which means that the development of product-specific chromatography-based purification strategies is often laborious and expensive. To address this challenge, we designed a generic downstream process that is suitable for the purification of recombinant proteins with diverse properties from plant production platforms. This was achieved by focusing on the binding behavior of tobacco host cell proteins (HCPs) to a broad set of chromatography resins under different pH and conductivity conditions. Strong cation exchanger and salt-tolerant anion exchanger resins exhibited the best resolution of tobacco HCPs among the 13 tested resins, and their selectivity was easy to manipulate through the adjustment of pH and conductivity. The advantages, such as direct capture of a target protein from leaf extract, and limitations, such as low binding capacity, of various chromatography ligands and resins are discussed. We also address the most useful applications of the chromatography ligands, namely recovery of proteins with a certain pI, in a downstream process that aims to purify diverse plant-derived biopharmaceutical proteins. Based on these results, we describe generic purification schemes that are suitable for acidic, neutral, and basic target proteins, as a first step toward the development of industrial platform processes. PMID:24478119

  16. GAP-43 Gene Expression Regulates Information Storage

    ERIC Educational Resources Information Center

    Holahan, Matthew R.; Honegger, Kyle S.; Tabatadze, Nino; Routtenberg, Aryeh

    2007-01-01

    Previous reports have shown that overexpression of the growth- and plasticity-associated protein GAP-43 improves memory. However, the relation between the levels of this protein to memory enhancement remains unknown. Here, we studied this issue in transgenic mice (G-Phos) overexpressing native, chick GAP-43. These G-Phos mice could be divided at…

  17. Annular-gap washer including electrode means

    SciTech Connect

    Hegemann, K.; Kautz, J.W.; Weissert, H.

    1982-02-23

    An annular-gap washer especially for scrubbing of industrial gases, comprises a central body which is axially shiftable in a housing defining an all-around clearance with the body. The clearance forms an annular gap through which the gas stream and water droplets from a spray nozzle axially spaced from the gap, are accelerated and brought into intimate contact. According to the invention at least over part of the gap, the mixture is subjected to an electrostatic field having generally radial field lines.

  18. The Structure of the RLIP76 RhoGAP-Ral Binding Domain Dyad: Fixed Position of the Domains Leads to Dual Engagement of Small G Proteins at the Membrane

    PubMed Central

    Rajasekar, Karthik V.; Campbell, Louise J.; Nietlispach, Daniel; Owen, Darerca; Mott, Helen R.

    2013-01-01

    Summary RLIP76 is an effector for Ral small GTPases, which in turn lie downstream of the master regulator Ras. Evidence is growing that Ral and RLIP76 play a role in tumorigenesis, invasion, and metastasis. RLIP76 contains both a RhoGAP domain and a Ral binding domain (GBD) and is, therefore, a node between Ras and Rho family signaling. The structure of the RhoGAP-GBD dyad reveals that the RLIP76 RhoGAP domain adopts a canonical RhoGAP domain structure and that the linker between the two RLIP76 domains is structured, fixing the orientation of the two domains and allowing RLIP76 to interact with Rho-family GTPases and Ral simultaneously. However, the juxtaposed domains do not influence each other functionally, suggesting that the RLIP76-Ral interaction controls cellular localization and that the fixed orientation of the two domains orientates the RhoGAP domain with respect to the membrane, allowing it to be perfectly poised to engage its target G proteins. PMID:24207123

  19. c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas.

    PubMed

    Tang, Zhuo; Araysi, Lita M; Fathallah-Shaykh, Hassan M

    2013-01-01

    Malignant gliomas remain associated with poor prognosis and high morbidity because of their ability to invade the brain; furthermore, human gliomas exhibit a phenotype of accelerated brain invasion in response to anti-angiogenic drugs. Here, we study 8 human glioblastoma cell lines; U251, U87, D54 and LN229 show accelerated motility in low ambient oxygen. Src inhibition by Dasatinib abrogates this phenotype. Molecular discovery and validation studies evaluate 46 molecules related to motility or the src pathway in U251 cells. Demanding that the molecular changes induced by low ambient oxygen are reversed by Dasatinib in U251 cells, identifies neural Wiskott-Aldrich syndrome protein (NWASP), Focal adhesion Kinase (FAK), [Formula: see text]-Catenin, and Cofilin. However, only Src-mediated NWASP phosphorylation distinguishes the four cell lines that exhibit enhanced motility in low ambient oxygen. Downregulating c-Src or NWASP by RNA interference abrogates the low-oxygen-induced enhancement in motility by in vitro assays and in organotypic brain slice cultures. The findings support the idea that c-Src and NWASP play key roles in mediating the molecular pathogenesis of low oxygen-induced accelerated brain invasion by gliomas.

  20. Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation.

    PubMed

    Malishev, Ravit; Nandi, Sukhendu; Kolusheva, Sofiya; Shaham-Niv, Shira; Gazit, Ehud; Jelinek, Raz

    2016-09-01

    Bacosides, class of compounds extracted from the Bacopa monniera plant, exhibit interesting therapeutic properties, particularly enhancing cognitive functions and putative anti-amyloid activity. We show that bacoside-A exerted significant effects upon fibrillation and membrane interactions of the amyloidogenic fragment of the prion protein [PrP(106-126)]. Specifically, when co-incubated with PrP(106-126), bacoside-A accelerated fibril formation in the presence of lipid bilayers and in parallel inhibited bilayer interactions of the peptide aggregates formed in solution. These interesting phenomena were studied by spectroscopic and microscopic techniques, which suggest that bacoside A-promoted fibrillation reduced the concentration of membrane-active pre-fibrillar species of the prion fragment. This study suggests that induction of fibril formation and corresponding inhibition of membrane interactions are likely the underlying factors for ameliorating amyloid protein toxicity by bacoside-A.

  1. Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation.

    PubMed

    Malishev, Ravit; Nandi, Sukhendu; Kolusheva, Sofiya; Shaham-Niv, Shira; Gazit, Ehud; Jelinek, Raz

    2016-09-01

    Bacosides, class of compounds extracted from the Bacopa monniera plant, exhibit interesting therapeutic properties, particularly enhancing cognitive functions and putative anti-amyloid activity. We show that bacoside-A exerted significant effects upon fibrillation and membrane interactions of the amyloidogenic fragment of the prion protein [PrP(106-126)]. Specifically, when co-incubated with PrP(106-126), bacoside-A accelerated fibril formation in the presence of lipid bilayers and in parallel inhibited bilayer interactions of the peptide aggregates formed in solution. These interesting phenomena were studied by spectroscopic and microscopic techniques, which suggest that bacoside A-promoted fibrillation reduced the concentration of membrane-active pre-fibrillar species of the prion fragment. This study suggests that induction of fibril formation and corresponding inhibition of membrane interactions are likely the underlying factors for ameliorating amyloid protein toxicity by bacoside-A. PMID:27365272

  2. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    SciTech Connect

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  3. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain.

    PubMed

    Penes, Mihai C; Li, Xinbo; Nagy, James I

    2005-07-01

    The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes. PMID:16045494

  4. Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication.

    PubMed

    Shi, Tao; Dimitrov, Ivan; Zhang, Yinling; Tax, Frans E; Yi, Jing; Gou, Xiaoping; Li, Jia

    2015-10-01

    Traits related to grain and reproductive organs in grass crops have been under continuous directional selection during domestication. Barley is one of the oldest domesticated crops in human history. Thus genes associated with the grain and reproductive organs in barley may show evidence of dramatic evolutionary change. To understand how artificial selection contributes to protein evolution of biased genes in different barley organs, we used Digital Gene Expression analysis of six barley organs (grain, pistil, anther, leaf, stem and root) to identify genes with biased expression in specific organs. Pairwise comparisons of orthologs between barley and Brachypodium distachyon, as well as between highland and lowland barley cultivars mutually indicated that grain and pistil biased genes show relatively higher protein evolutionary rates compared with the median of all orthologs and other organ biased genes. Lineage-specific protein evolutionary rates estimation showed similar patterns with elevated protein evolution in barley grain and pistil biased genes, yet protein sequences generally evolve much faster in the lowland barley cultivar. Further functional annotations revealed that some of these grain and pistil biased genes with rapid protein evolution are related to nutrient biosynthesis and cell cycle/division. Our analyses provide insights into how domestication differentially shaped the evolution of genes specific to different organs of a crop species, and implications for future functional studies of domestication genes.

  5. Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments

    NASA Astrophysics Data System (ADS)

    D'Angelo, C.; Smith, E. G.; Oswald, F.; Burt, J.; Tchernov, D.; Wiedenmann, J.

    2012-12-01

    Homologs of the green fluorescent protein (GFP) are a prevalent group of host pigments responsible for the green, red and purple-blue colours of many reef-building corals. They have been suggested to contribute to the striking coloration changes of different corals species in response to wounding and infestation with epibionts/parasites. In order to elucidate the physiological processes underlying the potentially disease-related colour changes, we have analysed spatial and temporal expression patterns of GFP-like proteins and other biomarkers in corals from the Red Sea, the Arabian/Persian Gulf and Fiji both in their natural habitat and under specific laboratory conditions. The expression of distinct GFP-like proteins and the growth marker proliferating cell nuclear antigen was upregulated in growing branch tips and margins of healthy coral colonies as well as in disturbed colony parts. Furthermore, phenoloxidase activity increased in these proliferating tissues. It is thus demonstrated that locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals and, moreover, these processes can be detected utilizing the excellent biomarker properties of GFP-like proteins. Finally, the results of this work suggest an additional vulnerability of corals in predicted future scenarios of increased ocean acidification, warming and eutrophication that are anticipated to reduce coral growth capacity.

  6. Differential Effects of B Cell Receptor and B Cell Receptor–FcγRIIB1 Engagement on Docking of Csk to GTPase-activating Protein (GAP)-associated p62

    PubMed Central

    Vuica, Milena; Desiderio, Stephen; Schneck, Jonathan P.

    1997-01-01

    The stimulatory and inhibitory pathways initiated by engagement of stimulatory receptors such as the B cell receptor for antigen (BCR) and inhibitory receptors such as Fcγ receptors of the IIB1 type (FcγRIIB1) intersect in ways that are poorly understood at the molecular level. Because the tyrosine kinase Csk is a potential negative regulator of lymphocyte activation, we examined the effects of BCR and FcγRIIB1 engagement on the binding of Csk to phosphotyrosine-containing proteins. Stimulation of a B lymphoma cell line, A20, with intact anti-IgG antibody induced a direct, SH2-mediated association between Csk and a 62-kD phosphotyrosine-containing protein that was identified as RasGTPase-activating protein–associated p62 (GAP-A.p62). In contrast, stimulation of A20 cells with anti-IgG F(ab′)2 resulted in little increase in the association of Csk with GAP-A.p62. The effect of FcγRIIB1 engagement on this association was abolished by blockade of FcγRIIB1 with the monoclonal antibody 2.4G2. Furthermore, the increased association between Csk and GAP-A.p62 seen upon stimulation with intact anti-Ig was abrogated in the FcγRIIB1-deficient cell line IIA1.6 and recovered when FcγRIIB1 expression was restored by transfection. The differential effects of BCR and BCR-FcγRIIB1–mediated signaling on the phosphorylation of GAP-A.p62 and its association with Csk suggest that docking of Csk to GAP-A.p62 may function in the negative regulation of antigen receptor–mediated signals in B cells. PMID:9221755

  7. The Membrane-associated Protein, Supervillin, Accelerates F-actin-dependent Rapid Integrin Recycling and Cell Motility

    PubMed Central

    Fang, Zhiyou; Takizawa, Norio; Wilson, Korey A.; Smith, Tara C.; Delprato, Anna; Davidson, Michael W.; Lambright, David G.; Luna, Elizabeth J.

    2010-01-01

    In migrating cells, the cytoskeleton coordinates signal transduction and re-distributions of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, “lipid raft” membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases 1 and 2 (ERK) and increases the velocity of cell translocation. These results suggest that supervillin, F-actin, and associated proteins may coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility. PMID:20331534

  8. A GAP in our knowledge of vascular signaling in acute kidney injury.

    PubMed

    Basile, David P

    2011-08-01

    Injury resulting from ischemia-reperfusion injury is a multifactorial process involving compromised function in both the tubular and the vascular compartments. Multiple vasoactive compounds have been implicated in the profound vasoconstriction that occurs in response to ischemia-reperfusion injury, and many of these factors signal through common G protein-coupled receptors. The report by Siedlecki et al. highlights the important roles of RGS4, a GTPase-accelerating protein (GAP), in the regulation of vascular tone in the setting of acute kidney injury.

  9. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  10. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.

    PubMed

    Murton, A J; Greenhaff, P L

    2013-10-01

    Increasing muscle mass is important when attempting to maximize sports performance and achieve physique augmentation. However, the preservation of muscle mass is essential to maintaining mobility and quality of life with aging, and also impacts on our capacity to recover from illness. Nevertheless, our understanding of the processes that regulate muscle mass in humans during resistance exercise training, chronic disuse and rehabilitation training following atrophy remains very unclear. Here, we report on some of the recent developments in the study of those processes thought to be responsible for governing human muscle protein turnover in response to intense physical activity. Specifically, the effects of acute and chronic resistance exercise in healthy volunteers and also in response to rehabilitation resistance exercise training following muscle atrophy will be discussed, with discrepancies and gaps in our understanding highlighted. In particular, ubiquitin-proteasome mediated muscle proteolysis (Muscle Atrophy F-box/Atrogin-1 and Muscle RING Finger 1), translation initiation of muscle protein synthesis (mammalian target of rapamycin signaling), and satellite cell mediated myogenesis are highlighted as pathways of special relevance to muscle protein metabolism in response to acute resistance exercise. Furthermore, research focused on quantifying signaling and molecular events that modulate muscle protein synthesis and protein degradation under conditions of chronic resistance training is highlighted as being urgently needed to improve knowledge gaps. These studies need to include multiple time-point measurements over the course of any training intervention and must include dynamic measurements of muscle protein synthesis and degradation and sensitive measures of muscle mass. This article is part of a Directed Issue entitled Molecular basis of muscle wasting.

  11. Accelerated evolution of CES7, a gene encoding a novel major urinary protein in the cat family.

    PubMed

    Li, Gang; Janecka, Jan E; Murphy, William J

    2011-02-01

    Cauxin is a novel urinary protein recently identified in the domestic cat that regulates the excretion of felinine, a pheromone precursor involved in sociochemical communication and territorial marking of domestic and wild felids. Understanding the evolutionary history of cauxin may therefore illuminate molecular adaptations involved in the evolution of pheromone-based communication, recognition, and mate selection in wild animals. We sequenced the gene encoding cauxin, CES7, in 22 species representing all major felid lineages, and multiple outgroups and showed that it has undergone rapid evolutionary change preceding and during the diversification of the cat family. A comparison between feline cauxin and orthologous carboxylesterases from other mammalian lineages revealed evidence of strong positive Darwinian selection within and between several cat lineages, enriched at functionally important sites of the protein. The higher rate of radical amino acid replacements in small felids, coupled with the lack of felinine and extremely low levels of cauxin in the urine of the great cats (Panthera), correlates with functional divergence of this gene in Panthera, and its putative loss in the snow leopard. Expression studies found evidence for several alternatively spliced transcripts in testis and brain, suggesting additional roles in male reproductive fitness and behavior. Our work presents the first report of strong positive natural selection acting on a major urinary protein of nonrodent mammals, providing evidence for parallel selection pressure on the regulation of pheromones in different mammalian lineages, despite the use of different metabolic pathways. Our results imply that natural selection may drive rapid changes in the regulation of pheromones in urine among the different cat species, which in turn may influence social behavior, such as territorial marking and conspecific recognition, therefore serving as an important mechanism for the radiation of this group

  12. Accelerated evolution of CES7, a gene encoding a novel major urinary protein in the cat family.

    PubMed

    Li, Gang; Janecka, Jan E; Murphy, William J

    2011-02-01

    Cauxin is a novel urinary protein recently identified in the domestic cat that regulates the excretion of felinine, a pheromone precursor involved in sociochemical communication and territorial marking of domestic and wild felids. Understanding the evolutionary history of cauxin may therefore illuminate molecular adaptations involved in the evolution of pheromone-based communication, recognition, and mate selection in wild animals. We sequenced the gene encoding cauxin, CES7, in 22 species representing all major felid lineages, and multiple outgroups and showed that it has undergone rapid evolutionary change preceding and during the diversification of the cat family. A comparison between feline cauxin and orthologous carboxylesterases from other mammalian lineages revealed evidence of strong positive Darwinian selection within and between several cat lineages, enriched at functionally important sites of the protein. The higher rate of radical amino acid replacements in small felids, coupled with the lack of felinine and extremely low levels of cauxin in the urine of the great cats (Panthera), correlates with functional divergence of this gene in Panthera, and its putative loss in the snow leopard. Expression studies found evidence for several alternatively spliced transcripts in testis and brain, suggesting additional roles in male reproductive fitness and behavior. Our work presents the first report of strong positive natural selection acting on a major urinary protein of nonrodent mammals, providing evidence for parallel selection pressure on the regulation of pheromones in different mammalian lineages, despite the use of different metabolic pathways. Our results imply that natural selection may drive rapid changes in the regulation of pheromones in urine among the different cat species, which in turn may influence social behavior, such as territorial marking and conspecific recognition, therefore serving as an important mechanism for the radiation of this group

  13. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    PubMed Central

    Ortega-Amaro, María A.; Rodríguez-Hernández, Aída A.; Rodríguez-Kessler, Margarita; Hernández-Lucero, Eloísa; Rosales-Mendoza, Sergio; Ibáñez-Salazar, Alejandro; Delgado-Sánchez, Pablo; Jiménez-Bremont, Juan F.

    2015-01-01

    Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif (RRM). AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8, and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling. PMID:25653657

  14. Overexpression of Monocyte Chemotactic Protein-1/CCL2 in β-Amyloid Precursor Protein Transgenic Mice Show Accelerated Diffuse β-Amyloid Deposition

    PubMed Central

    Yamamoto, Masaru; Horiba, Masahide; Buescher, James L.; Huang, DeReng; Gendelman, Howard E.; Ransohoff, Richard M.; Ikezu, Tsuneya

    2005-01-01

    Microglia accumulation at the site of amyloid plaques is a strong indication that microglia play a major role in Alzheimer’s disease pathogenesis. However, how microglia affect amyloid-β peptide (Aβ) deposition remains poorly understood. To address this question, we developed a novel bigenic mouse that overexpresses both amyloid precursor protein (APP) and monocyte chemotactic protein-1 (MCP-1; CCL2 in systematic nomenclature). CCL2 expression, driven by the glial fibrillary acidic protein promoter, induced mononuclear phagocyte (MP; monocyte-derived macrophage and microglial) accumulation in the brain. When APP/CCL2 transgenic mice were compared to APP mice, a fivefold increase in Aβ deposition was present despite increased MP accumulation around hippocampal and cortical amyloid plaques. Levels of full-length APP, its C-terminal fragment, and Aβ-degrading enzymes (insulin-degrading enzyme and neprilysin) in APP/CCL2 and APP mice were indistinguishable. Sodium dodecyl sulfate-insoluble Aβ (an indicator of fibrillar Aβ) was increased in APP/CCL2 mice at 5 months of age. Apolipoprotein E, which enhances Aβ deposition, was also increased (2.2-fold) in aged APP/CCL2 as compared to APP mice. We propose that although CCL2 stimulates MP accumulation, it increases Aβ deposition by reducing Aβ clearance through increased apolipoprotein E expression. Understanding the mechanisms underlying these events could be used to modulate microglial function in Alzheimer’s disease and positively affect disease outcomes. PMID:15855647

  15. Theoretical problems in accelerator physics. Progress report

    SciTech Connect

    Kroll, N.M.

    1993-08-01

    This report discusses the following topics in accelerator physics: radio frequency pulse compression and power transport; computational methods for the computer analysis of microwave components; persistent wakefields associated with waveguide damping of higher order modes; and photonic band gap cavities.

  16. The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease.

    PubMed

    Butterfield, D Allan; Poon, H Fai

    2005-10-01

    The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels. PMID:16026957

  17. Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair.

    PubMed

    Solan, Joell L; Lampe, Paul D

    2016-02-01

    Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing. PMID:26706150

  18. GAP Activity, but Not Subcellular Targeting, Is Required for Arabidopsis RanGAP Cellular and Developmental Functions[OPEN

    PubMed Central

    Boruc, Joanna; Griffis, Anna H.N.; Rodrigo-Peiris, Thushani; Zhou, Xiao; Tilford, Bailey; Van Damme, Daniël; Meier, Iris

    2015-01-01

    The Ran GTPase activating protein (RanGAP) is important to Ran signaling involved in nucleocytoplasmic transport, spindle organization, and postmitotic nuclear assembly. Unlike vertebrate and yeast RanGAP, plant RanGAP has an N-terminal WPP domain, required for nuclear envelope association and several mitotic locations of Arabidopsis thaliana RanGAP1. A double null mutant of the two Arabidopsis RanGAP homologs is gametophyte lethal. Here, we created a series of mutants with various reductions in RanGAP levels by combining a RanGAP1 null allele with different RanGAP2 alleles. As RanGAP level decreases, the severity of developmental phenotypes increases, but nuclear import is unaffected. To dissect whether the GAP activity and/or the subcellular localization of RanGAP are responsible for the observed phenotypes, this series of rangap mutants were transformed with RanGAP1 variants carrying point mutations abolishing the GAP activity and/or the WPP-dependent subcellular localization. The data show that plant development is differentially affected by RanGAP mutant allele combinations of increasing severity and requires the GAP activity of RanGAP, while the subcellular positioning of RanGAP is dispensable. In addition, our results indicate that nucleocytoplasmic trafficking can tolerate both partial depletion of RanGAP and delocalization of RanGAP from the nuclear envelope. PMID:26091693

  19. Human plasma phospholipid transfer protein accelerates exchange/transfer of alpha-tocopherol between lipoproteins and cells.

    PubMed Central

    Kostner, G M; Oettl, K; Jauhiainen, M; Ehnholm, C; Esterbauer, H; Dieplinger, H

    1995-01-01

    alpha-Tocopherol (alpha-T), an important anti-oxidant of plasma lipoproteins and cell membranes, is secreted from liver together with very-low-density lipoproteins into the blood stream. Other serum lipoprotein classes gain alpha-T by exchange and transfer processes. We show here that the lipoprotein-free d > 1.22 g/ml fraction of human or pig serum increases the exchange rate of alpha-T by a factor of 2-4 as compared with spontaneous exchange/transfer. The alpha-T exchange/transfer (alpha-TET) activity was purified by multiple-step column chromatography. It gave a single band in PAGE with an apparent molecular mass of 75 kDa, and was found to be identical with the phospholipid transfer protein (PLTP). PLTP catalysed alpha-T exchange between different lipoprotein classes, as well as the transfer of alpha-T from artificial liposomes to high-density lipoproteins. The alpha-TET activity measured with a newly developed assay in ten healthy people was 2.45 +/- 0.88 nmol.ml-1.h-1.alpha-TET activity was negatively correlated with plasma low-density lipoprotein-cholesterol (r = -0.75; P < 0.01). It is concluded that human PLTP catalyses exchange/transfer processes of alpha-T between lipid compartments. This factor may be of relevance in atherogenesis and tumour initiation and growth. Images Figure 2 PMID:7832785

  20. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    PubMed

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.

  1. Coarse kMC-based replica exchange algorithms for the accelerated simulation of protein folding in explicit solvent.

    PubMed

    Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V

    2016-05-14

    In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules. PMID:27111190

  2. Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease.

    PubMed

    Soncini, C; Berdo, I; Draetta, G

    2001-06-28

    Degradation of cellular proteins through ubiquitination is a fundamental strategy for regulating biological pathways. De-ubiquitination, i.e. the removal of ubiquitin from proteins and peptides to which ubiquitin is attached, is catalyzed by processing proteases known as de-ubiquitinating enzymes. We are studying the biology of a family of de-ubiquitinating enzymes, the mammalian ubiquitin-specific proteases (USPs), some of which appear to play a role in growth control. Given the fact that the modes of regulation of USPs and of their substrate specificity are poorly understood, we decided to attempt the identification of USP interacting proteins. Using the yeast two-hybrid system (2HS), we have isolated a cDNA clone whose product specifically interacts with USP10 but not with other USP baits tested. The isolated clone encodes a protein known to interact with the Ras-GTPase activating protein (G3BP). This interaction was further confirmed by performing a 2HS with G3BP, which led to the isolation of USP10 encoding cDNAs. We validated the interaction between the two proteins by performing in vitro binding assays and immunoprecipitations in human cells. G3BP does not appear to be a substrate of USP10; it rather inhibits the ability of USP10 to disassemble ubiquitin chains. The USP10/G3BP complex appears to co-immunoprecipitate with ubiquitinated species that could be substrates of USP10.

  3. Chlorophyll breakdown: Pheophorbide a oxygenase is a Rieske-type iron–sulfur protein, encoded by the accelerated cell death 1 gene

    PubMed Central

    Pružinská, Adriana; Tanner, Gaby; Anders, Iwona; Roca, Maria; Hörtensteiner, Stefan

    2003-01-01

    Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well. PMID:14657372

  4. Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene.

    PubMed

    Pruzinská, Adriana; Tanner, Gaby; Anders, Iwona; Roca, Maria; Hörtensteiner, Stefan

    2003-12-01

    Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron-sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.

  5. Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit.

    PubMed

    Zhu, Mingku; Li, Yali; Chen, Guoping; Ren, Lijun; Xie, Qiaoli; Zhao, Zhiping; Hu, Zongli

    2015-01-09

    The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.

  6. Macromolecular composition dictates receptor and G protein selectivity of regulator of G protein signaling (RGS) 7 and 9-2 protein complexes in living cells.

    PubMed

    Masuho, Ikuo; Xie, Keqiang; Martemyanov, Kirill A

    2013-08-30

    Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.

  7. Protein-energy malnutrition developing after global brain ischemia induces an atypical acute-phase response and hinders expression of GAP-43.

    PubMed

    Smith, Shari E; Figley, Sarah A; Schreyer, David J; Paterson, Phyllis G

    2014-01-01

    Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.

  8. Wakefield accelerators

    SciTech Connect

    Simpson, J.D.

    1990-01-01

    The search for new methods to accelerate particle beams to high energy using high gradients has resulted in a number of candidate schemes. One of these, wakefield acceleration, has been the subject of considerable R D in recent years. This effort has resulted in successful proof of principle experiments and in increased understanding of many of the practical aspects of the technique. Some wakefield basics plus the status of existing and proposed experimental work is discussed, along with speculations on the future of wake field acceleration. 10 refs., 6 figs.

  9. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  10. Behind the Pay Gap

    ERIC Educational Resources Information Center

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  11. Practice Gaps in Pruritus.

    PubMed

    Silverberg, Jonathan I

    2016-07-01

    There are several practice gaps in the evaluation and management of itch. These gaps include a dearth of objective measures of itch, infrequent use of validated patient-reported outcomes for itch, non-evidence-based treatment, and lack of consensus about the ideal workup for generalized itch. The present article reviews these gaps and presents potential solutions. PMID:27363881

  12. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS.

    PubMed

    Wu, Hui-Fen; Agrawal, Kavita; Shrivas, Kamlesh; Lee, Yi-Hsien

    2010-12-01

    A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.

  13. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  14. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  15. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  16. Accelerated, Spleen-Based Titration of Variant Creutzfeldt-Jakob Disease Infectivity in Transgenic Mice Expressing Human Prion Protein with Sensitivity Comparable to That of Survival Time Bioassay

    PubMed Central

    Halliez, Sophie; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Haïk, Stéphane; Rezaei, Human; Vilotte, Jean-Luc; Laude, Hubert

    2014-01-01

    ABSTRACT The dietary exposure of the human population to the prions responsible for the bovine spongiform encephalopathy (BSE) epizooty has led to the emergence of variant Creutzfeldt-Jakob disease (vCJD). This fatal, untreatable neurodegenerative disorder is a growing public health concern because the prevalence of the infection seems much greater than the disease incidence and because secondary transmission of vCJD by blood transfusion or use of blood products has occurred. A current limitation in variant CJD risk assessment is the lack of quantitative information on the infectivity of contaminated tissues. To address this limitation, we tested the potential of a transgenic mouse line overexpressing human prion protein (PrP), which was previously reported to propagate vCJD prions. Endpoint titration of vCJD infectivity in different tissues was evaluated by two different methods: (i) the “classical” bioassay, based on the appearance of clinical symptoms and the detection of pathological prion protein in tissues of the inoculated mouse, and (ii) a shortened bioassay based on the detection of the protein in the mouse spleen at defined time points. The two methods proved equally sensitive in quantifying infectivity, even after very-low-dose inoculation of infected material, but the time schedule was shortened from ∼2.5 years to ∼1 year with the spleen bioassay. Compared to the “gold-standard” RIII model routinely used for endpoint titration of vCJD/BSE prions, either method improved the sensitivity by >2 orders of magnitude and allowed reevaluating the infectious titer of spleen from a vCJD individual at disease end stage to >1,000-fold-higher values. IMPORTANCE Here, we provide key reevaluation of the infectious titer of variant CJD brain and spleen tissues. The highly sensitive, accelerated spleen-based assay should thus constitute a key advance for variant CJD epidemiological and risk assessment purposes and should greatly facilitate future titration

  17. Prototype rf cavity for the HISTRAP accelerator

    SciTech Connect

    Mosko, S.W.; Dowling, D.T.; Olsen, D.K.

    1989-01-01

    HISTRAP, a proposed synchrotron-cooling-storage ring designed to both accelerate and decelerate very highly charged very heavy ions for atomic physics research, requires an rf accelerating system to provide /+-/2.5 kV of peak accelerating voltage per turn while tuning through a 13.5:1 frequency range in a fraction of a second. A prototype half-wave, single gap rf cavity with biased ferrite tuning was built and tested over a continuous tuning range of 200 kHz through 2.7 MHz. Initial test results establish the feasibility of using ferrite tuning at the required rf power levels. The resonant system is located entirely outside of the accelerator's 15cm ID beam line vacuum enclosure except for a single rf window which serves as an accelerating gap. Physical separation of the cavity and the beam line permits in situ vacuum baking of the beam line at 300/degree/C.

  18. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  19. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions

    PubMed Central

    Kang, Bok Eum; Baker, Bradley J.

    2016-01-01

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response. PMID:27040905

  20. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  1. Computer assisted accelerator tuning

    SciTech Connect

    Boyd, J.K.

    1993-04-14

    The challenge of tuning an induction accelerator in real time has been addressed with the new TUNE GUIDE code. The code initializes a beam at a particular position using a tracer particle representation of the phase space. The particles are transported, using a matrix formulation, element by element along the beamline assuming that the field of a solenoid, or steering element is constant over its length. The other allowed elements are gaps and drift sections. A great deal of effort has been spent programming TUNE GUIDE to operate under the IBMPC Windows 3.1 system. This system features an intuitive, menu driven interface, which provides an ability to rapidly change beamline component parameter values. Consequently various accelerator setups can be explored and new values determined in real time while the accelerator is operating. In addition the code has the capability of varying a capability value over a range and then plotting the resulting beam properties, such as radius or centroid position, at a down stream position. Element parameter editing is also included along with an on-line hyper text oriented help package.

  2. Downregulation of gap junctions in cancer cells.

    PubMed

    Leithe, Edward; Sirnes, Solveig; Omori, Yasufumi; Rivedal, Edgar

    2006-12-01

    Gap junctions are intercellular plasma membrane domains enriched in channels that allow direct exchange of ions and small molecules between adjacent cells. Gap junction channels are composed of a family of transmembrane proteins called connexin. Connexins play important roles in the regulation of cell growth and differentiation. Cancer cells usually have downregulated levels of gap junctions, and several lines of evidence suggest that loss of gap junctional intercellular communication is an important step in carcinogenesis. In support of this hypothesis are studies showing that reexpression of connexins in cancer cells causes normalization of cell growth control and reduced tumor growth. To gain a more detailed understanding of the role of connexins as tumor suppressors, a clearer picture of the mechanisms involved in loss of gap junctions in cancer cells is needed. Furthermore, defining the mechanisms involved in downregulation of connexins in carcinogenesis will be an important step toward utilizing the potential of connexins as targets in cancer prevention and therapy. Various mechanisms are involved in the loss of gap junctions in cancer cells, ranging from loss of connexin gene transcription to aberrant trafficking of connexin proteins. This review will discuss our current knowledge on the molecular mechanisms involved in the downregulation of gap junctions in cancer cells. PMID:17425504

  3. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  4. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  5. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  6. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats.

    PubMed

    dos Santos, Daniele O; Blefari, Valdecir; Prado, Fernanda P; Silva, Carlos A; Fazan, Rubens; Salgado, Helio C; Ramos, Simone G; Prado, Cibele M

    2016-02-01

    Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could

  7. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  8. Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons.

    PubMed

    Yanagisawa, Hiroko; Komuta, Yukari; Kawano, Hitoshi; Toyoda, Masashi; Sango, Kazunori

    2010-01-01

    Pleiotrophin (PTN) is highly expressed in the nervous system during embryogenesis; however, little is known about its functional role in neural development. By using whole mount in situ hybridization, we observed that the expression pattern of PTN was similar to that of Wnt3a; PTN mRNA was abundant in the nervous tissue along the dorsal midline and in the forelimb and hindlimb buds of embryonic mice (E8.5-E12.5). Treatment with recombinant PTN (100ng/ml) induced phosphorylation of glycogen synthase kinase 3beta (GSK3beta), nuclear localization of beta-catenin and up-regulation of growth-associated protein (GAP)-43 mRNA in cultured embryonic mouse (E14.5) neurons. Furthermore, recombinant PTN enhanced neurite outgrowth from cortical explants embedded in Matrigel. These PTN-induced biochemical changes and neurite outgrowth were attenuated by the co-treatment with anti-anaplastic lymphoma kinase (ALK) antibodies, but not with anti-protein tyrosine phosphatase (PTP)zeta antibodies. These findings imply that ALK is involved in the PTN signaling on neural development.

  9. Bridging the Gap: Linking Simulation and Testing

    SciTech Connect

    Krajewski, Paul E.; Carsley, John; Stoudt, Mark R.; Hovanski, Yuri

    2012-09-01

    The Materials Genome Initiative (MGI) which is a key enabler for the Advanced Manufacturing Partnership, announced in 2011 by U.S. President Barack Obama, was established to accelerate the development and deployment of advanced materials. The MGI is driven by the need to "bridge the gap" between (I) experimental results and computational analysis to enable the rapid development and validation of new mateirals, and (II) the processes required to convert these materials into useable goods.

  10. Narrowing Participation Gaps

    ERIC Educational Resources Information Center

    Hand, Victoria; Kirtley, Karmen; Matassa, Michael

    2015-01-01

    Shrinking the achievement gap in mathematics is a tall order. One way to approach this challenge is to think about how the achievement gap manifests itself in the classroom and take concrete action. For example, opportunities to participate in activities that involve mathematical reasoning and argumentation in a safe and supportive manner are…

  11. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  12. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  13. California: Emigrant Gap

    Atmospheric Science Data Center

    2014-05-15

    article title:  Emigrant Gap Fire, California     View Larger ... The most prominent plume arises from the Emigrant Gap Fire, located about 40 kilometers west of Lake Tahoe. The animated panorama ... left is Mount Shasta. As of August 30, 2001, the US Forest Service reported the total year-to-date area burned in Northern ...

  14. Knowledge Gaps, Social Locators, and Media Schemata: Gaps, Reverse Gaps, and Gaps of Disaffection.

    ERIC Educational Resources Information Center

    Fredin, Eric S.; And Others

    1994-01-01

    Studies a public school controversy and finds a knowledge gap--a gap of disaffection. Finds that, among women only, higher education leads to greater knowledge but does so partly through reduced trust of government and lower perceived fairness of the news media. Shows similar findings with other less powerful groups. (SR)

  15. The Parenting Gap

    ERIC Educational Resources Information Center

    Reeves, Richard V.; Howard, Kimberly

    2013-01-01

    The parenting gap is a big factor in the opportunity gap. The chances of upward social mobility are lower for children with parents struggling to do a good job--in terms of creating a supportive and stimulating home environment. Children lucky enough to have strong parents are more likely to succeed at all the critical life stages, which means…

  16. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  17. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  18. Anion gap acidosis.

    PubMed

    Ishihara, K; Szerlip, H M

    1998-01-01

    Although an anion gap at less than 20 mEq/L rarely has a defined etiology, significant elevations in the anion gap almost always signify presence of an acidosis that can be easily identified. Anion gap acidoses can be divided into those caused by lactate accumulation, ketoacid production, toxin/drugs, and uremia. Lactic acidoses caused by decreased oxygen delivery or defective oxygen utilization are associated with high mortality. The treatment of lactic acidosis is controversial. The use of bicarbonate to increase pH is rarely successful and, by generating PCO2, may worsen outcome. Ketoacidosis is usually secondary to diabetes or alcohol. Treatment is aimed at turning off ketogenesis and repairing fluid and electrolyte abnormalities. Methanol, ethylene glycol, and salicylates are responsible for the majority of toxin-induced anion gap acidoses. Both methanol and ethylene glycol are associated with severe acidoses and elevated osmolar gaps. Treatment of both is alcohol infusion to decrease formation of toxic metabolites and dialyses to remove toxins. Salicylate toxicity usually is associated with a mild metabolic acidosis and a respiratory alkalosis. Uremia is associated with a mild acidosis secondary to decreased ammonia secretion and an anion gap caused by the retention of unmeasured anions. A decrease in anion gap is caused by numerous mechanisms and thus has little clinical utility.

  19. The rate of polymerase release upon filling the gap between Okazaki fragments is inadequate to support cycling during lagging strand synthesis.

    PubMed

    Dohrmann, Paul R; Manhart, Carol M; Downey, Christopher D; McHenry, Charles S

    2011-11-18

    Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5'-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t(1/2)~2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5'-triphosphate nor a 5'-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor.

  20. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  1. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  2. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  3. Cysteine-capped ZnSe quantum dots as affinity and accelerating probes for microwave enzymatic digestion of proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis.

    PubMed

    Shastri, Lokesh A; Kailasa, Suresh Kumar; Wu, Hui-Fen

    2009-08-01

    Fluorescent semiconductor quantum dots (QDs) exhibit great potential and capability for many biological and biochemical applications. We report a simple strategy for the synthesis of aqueous stable ZnSe QDs by using cysteine as the capping agent (ZnSe-Cys QDs). The ZnSe QDs can act as affinity probes to enrich peptides and proteins via direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. This nanoprobe could significantly enhance protein signals (insulin, ubiquitin, cytochrome c, myoglobin and lysozyme) in MALDI-TOFMS by 2.5-12 times compared with the traditional method. Additionally, the ZnSe-Cys QDs can be applied as heat absorbers (as accelerating probes) to speed up microwave-assisted enzymatic digestion reactions and also as affinity probes to enrich lysozyme-digested products in MALDI-TOFMS. Furthermore, after the enrichment experiments, the solutions of ZnSe-Cys QDs mixed with proteins can be directly deposited onto the MALDI plates for rapid analysis. This approach shows a simple, rapid, efficient and straightforward method for direct analysis of proteins or peptides by MALDI-TOFMS without the requirement for further time-consuming separation processes, tedious washing steps or laborious purification procedures. The present study has demonstrated that ZnSe-Cys QDs are reliable and potential materials for rapid, selective separation and enrichment of proteins as well as accelerating probes for microwave-digested reactions for proteins than the regular MALDI-MS tools. Additionally, we also believe that this work may also inspire investigations for applications of QDs in the field of MALDI-MS for proteomics.

  4. Gaps in Oncology

    Cancer.gov

    The first plenary of the EPEC-O (Education in Palliative and End-of-Life Care for Oncology) Self-Study Original Version provides background for the curriculum and identifies gaps in current and desired comprehensive cancer care.

  5. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  6. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  7. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  8. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  9. Cellular Noise Suppression by the Regulator of G Protein Signaling Sst2

    PubMed Central

    Dixit, Gauri; Kelley, Joshua B.; Houser, John R.; Elston, Timothy C.; Dohlman, Henrik G.

    2014-01-01

    Summary G proteins and their associated receptors process information from a variety of environmental stimuli to induce appropriate cellular responses. Generally speaking, each cell in a population responds within defined limits despite large variation in the expression of protein signaling components. Therefore we postulated that noise suppression is encoded within the signaling system. Using the yeast mating pathway as a model we evaluated the ability of a regulator of G protein signaling (RGS) protein to suppress noise. We found that the RGS protein Sst2 limits variability in transcription and morphogenesis in response to pheromone stimulation. While signal suppression is a result of both the GAP (GTPase accelerating) and receptor binding functions of Sst2, noise suppression requires only the GAP activity. Taken together our findings reveal a hitherto overlooked role of RGS proteins as noise suppressors, and demonstrate an ability to uncouple signal and noise in a prototypical stimulus-response pathway. PMID:24954905

  10. Robotic Tube-Gap Inspector

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  11. Current Status and Future Plans for the General Antiparticle Spectrometer (GAPS)

    SciTech Connect

    Fabris, Lorenzo; Koglin, Johnathon D; Craig, Teresa M; Mori, Ken-Ichi; Ziock, Klaus-Peter

    2012-01-01

    We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza-Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.

  12. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily.

    PubMed

    Muntean, Brian S; Martemyanov, Kirill A

    2016-03-25

    Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity.

  13. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  14. Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2012-01-01

    Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.

  15. Gap Cycling for SWIFT

    PubMed Central

    Corum, Curtis A.; Idiyatullin, Djaudat; Snyder, Carl J.; Garwood, Michael

    2014-01-01

    Purpose SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a “bulls-eye” artifact in SWIFT images. We present a method to cancel this inter-band crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy “gap cycling.” Methods We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Results Theoretical analysis reveals the mechanism for gap-cycling’s effectiveness in canceling inter-band crosstalk in the received data. We show phantom and in-vivo results demonstrating bulls-eye artifact free images. Conclusion Gap cycling is an effective method to remove bulls-eye artifact resulting from inter-band crosstalk in SWIFT data. PMID:24604286

  16. Supersize me: Cronobacter sakazakii phage GAP32

    SciTech Connect

    Abbasifar, Reza; Griffiths, Mansel W.; Sabour, Parviz M.; Ackermann, Hans-Wolfgang; Vandersteegen, Katrien; Lavigne, Rob; Noben, Jean-Paul; Alanis Villa, Argentina; Abbasifar, Arash; Nash, John H.E.; Kropinski, Andrew M.

    2014-07-15

    Cronobacter sakazakii is a Gram-negative pathogen found in milk-based formulae that causes infant meningitis. Bacteriophages have been proposed to control bacterial pathogens; however, comprehensive knowledge about a phage is required to ensure its safety before clinical application. We have characterized C. sakazakii phage vB{sub C}saM{sub G}AP32 (GAP32), which possesses the second largest sequenced phage genome (358,663 bp). A total of 571 genes including 545 protein coding sequences and 26 tRNAs were identified, thus more genes than in the smallest bacterium, Mycoplasma genitalium G37. BLASTP and HHpred searches, together with proteomic analyses reveal that only 23.9% of the putative proteins have defined functions. Some of the unique features of this phage include: a chromosome condensation protein, two copies of the large subunit terminase, a predicted signal-arrest-release lysin; and an RpoD-like protein, which is possibly involved in the switch from immediate early to delayed early transcription. Its closest relatives are all extremely large myoviruses, namely coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2, with whom it shares approximately 44% homologous proteins. Since the homologs are not evenly distributed, we propose that these three phages belong to a new subfamily. - Highlights: • Cronobacter sakazakii phage vB{sub C}saM{sub G}AP32 has a genome of 358,663 bp. • It encodes 545 proteins which is more than Mycoplasma genitalium G37. • It is a member of the Myoviridae. • It is peripherally related to coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2. • GAP32 encodes a chromosome condensation protein.

  17. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  18. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  19. Bridging NCL research gaps.

    PubMed

    Stehr, Frank; van der Putten, Herman

    2015-10-01

    The neuronal ceroid lipofuscinoses, collectively called NCLs, are rare and fatal lysosomal storage diseases that mainly affect children. Due to the fact that NCLs are both rare and heterogeneous (mutations in thirteen different genes) significant gaps exist in both preclinical and clinical research. Altogether, these gaps are major hurdles to bring therapies to patients while the need for new therapies is urgent to help them and their families. To define gaps and discuss solutions, a round table discussion involving teams and different stake holders took place during the 14th International Conference on Neuronal Ceroid Lipofuscinoses (Batten Disease) in Cordóba, Argentina. Topics covered by the teams and their leaders (in parentheses) included basic and translational research gaps with regard to large animal models (I. Tammen, D.N. Palmer), human NCL pathology and access to human tissue (J.D. Cooper, H.H. Goebel), rare NCLs (S. Hofman, I. Noher), links of NCLs to other diseases (F.M. Platt), gaps between clinic and clinical trials (H. Adams, A. Schulz), international collaborative efforts working towards a cure (S.E. Mole, H. Band) perspectives on palliative care from patient organizations (M. Frazier, A. West), and issues NCL researchers face when progressing to independent career in academia (M. Bond). Thoughts presented by the team leaders include previously unpublished opinions and information on the lack of understanding of disease pathomechanisms, gene function, assays for drug discovery and target validation, natural history of disease, and biomarkers for monitoring disease progression and treatment effects. This article is not intended to review the NCL literature. It includes personal opinions of the authors and it provides the reader with a summary of gaps discussed and solutions proposed by the teams. This article is part of a Special Issue entitled: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease). PMID:26056946

  20. RF-Based Accelerators for HEDP Research

    SciTech Connect

    Staples, John W.; Sessler, Andrew; Keller, Roderich; Ostroumov,Petr; Chou, Weiren

    2005-05-09

    Accelerator-driven High-Energy Density Physics (HEDP) experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the warm dense matter regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field compact superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with multiple parallel beams combined at the target. The beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  1. Mind the Gap

    NASA Astrophysics Data System (ADS)

    Litim, Daniel F.

    We discuss an optimisation criterion for the exact renormalisation group based on the inverse effective propagator, which displays a gap. We show that a simple extremisation of the gap stabilises the flow, leading to better convergence of approximate solutions towards the physical theory. This improves the reliability of truncations, most relevant for any high precision computation. These ideas are closely linked to the removal of a spurious scheme dependence and a minimum sensitivity condition. The issue of predictive power and a link to the Polchinski RG are discussed as well. We illustrate our findings by computing critical exponents for the Ising universality class.

  2. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  3. A Particle Simulation for the Pulsar Magnetosphere: Relationship of Polar Cap, Slot Gap, and Outer Gap

    NASA Astrophysics Data System (ADS)

    Yuki, Shinya; Shibata, Shinpei

    2012-06-01

    To explain the pulsed emission of the rotation powered pulsars from radio to gamma-ray, polar cap models, slot gap models, and outer gap models are proposed. Recent observations suggest that these models are likely to co-exist in the same magnetosphere. If so, their mutual relation is known to be troublesome (Harding 2009), due to the boundary conditions and the direction of the current, which are properly assumed in each acceleration model. We performed a particle simulation for the global magnetospheric structure. Based on this simulation, we present a new picture of the global structure of the pulsar magnetosphere. It is found that a new dead zone is formed along the current neutral line that separates the oppositely directed current. We shall call this the current-neutral zone. We suggest that the polar cap accelerators and the slot gaps locate above the current-neutral zone, and the outer gap exist between the current neutral zone and the traditional dead zone. We also give an estimate of the super-rotation region.

  4. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  5. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    SciTech Connect

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-11-04

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  6. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  7. Graphene: Mind the gap

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    2007-10-01

    Research now shows that interaction with silicon carbide substrate leads to the opening of a semiconductor gap in epitaxial graphene. This is an important first step towards bandgap engineering in this two-dimensional crystal, and its incorporation in electronic devices.

  8. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  9. Crossing the Gap

    ERIC Educational Resources Information Center

    Lockette, Tim

    2009-01-01

    In a nation where education is funded largely by local property taxes, schools in wealthy communities have plenty of funds to spend on programs that get their kids ready for college. Schools in poor communities scrimp and save to get the job done--or hope that funding from the state will help fill in the gap. This article describes how students…

  10. Closing the Performance Gap.

    ERIC Educational Resources Information Center

    Riggins, Cheryl G.

    2002-01-01

    Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)

  11. STEMMING the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…

  12. Gaining on the Gap

    ERIC Educational Resources Information Center

    Smith, Robert G.

    2010-01-01

    About three-quarters of the 2009 graduates of the highly diverse Arlington, Virginia, Public Schools completed one or more Advanced Placement or International Baccalaureate courses during their high school careers. That figure serves as one indicator of a decade-long initiative to eliminate achievement gaps while raising achievement for all…

  13. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  14. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity.

    PubMed

    Gerber, Kyle J; Squires, Katherine E; Hepler, John R

    2016-02-01

    The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.

  15. Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation

    SciTech Connect

    S Park; W Jin; S Shoelson

    2011-12-31

    We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 {angstrom} resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have 16 {alpha}-helices and no {beta}-sheet elements. We expected the yeast Gyp1p RabGAP/mouse Rab33B structure to predict the corresponding interfaces between cognate mammalian RabGAPs and Rabs, but found that residues were poorly conserved. We further tested the relevance of this model by Ala-scanning mutagenesis, but only one of five substitutions within the inferred binding site of the TBC1D1 RabGAP significantly perturbed catalytic efficiency. In addition, substitution of TBC1D1 residues with corresponding residues from Gyp1p did not enhance catalytic efficiency. We hypothesized that biologically relevant RabGAP/Rab partners utilize additional contacts not described in the yeast Gyp1p/mouse Rab33B structure, which we predicted using our two new human TBC1D1 and TBC1D4 structures. Ala substitution of TBC1D1 Met{sup 930}, corresponding to a residue outside of the Gyp1p/Rab33B contact, substantially reduced catalytic activity. GLUT4 translocation assays confirmed the biological relevance of our findings. Substitutions with lowest RabGAP activity, including catalytically dead RK and Met{sup 930} and Leu{sup 1019} predicted to perturb Rab binding, confirmed that biological activity requires contacts between cognate RabGAPs and Rabs beyond those in the yeast Gyp1p RabGAP/mouse Rab33B structure.

  16. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion.

    PubMed

    Chen Scarabelli, Carol; McCauley, Roy B; Yuan, Zhaokan; Di Rezze, Justin; Patel, David; Putt, Jeff; Raddino, Riccardo; Allebban, Zuhair; Abboud, John; Scarabelli, Gabriele M; Chilukuri, Karuna; Gardin, Julius; Saravolatz, Louis; Faggian, Giuseppe; Mazzucco, Alessandro; Scarabelli, Tiziano M

    2008-06-01

    Sarcopenia is an inevitable age-related degenerative process chiefly characterized by decreased synthesis of muscle proteins and impaired mitochondrial function, leading to progressive loss of muscle mass. Here, we sought to probe whether long-term administration of oral amino acids (AAs) can increase protein and adenosine triphosphate (ATP) content in the gastrocnemius muscle of aged rats, enhancing functional performance. To this end, 6- and 24-month-old male Fisher 344 rats were divided into 3 groups: group A (6-month-old rats) and group B (24-month-old rats) were used as adult and senescent control group, respectively, while group C (24-month-old rats) was used as senescent treated group and underwent 1-month oral treatment with a mixture of mainly essential AAs. Untreated senescent animals exhibited a 30% reduction in total and fractional protein content, as well as a 50% reduction in ATP content and production, compared with adult control rats (p <0.001). Long-term supplementation with mixed AAs significantly improved protein and high-energy phosphate content, as well as the rate of mitochondrial ATP production, conforming their values to those of adult control animals (p <0.001). The improved availability of protein and high-energy substrates in the gastrocnemius muscle of treated aged rats paralleled a significant enhancement in functional performance assessed by swim test, with dramatic elongation of maximal exertion times compared with untreated senescent rats (p <0.001). In line with these findings, we observed that, after 6 hours of rest following exhaustive swimming, the recovery in mitochondrial ATP content was approximately 70% in adult control rats, approximately 60% in senescent control rats, and normalized in treated rats as compared with animals of the same age unexposed to maximal exertion (p <0.001). In conclusion, nutritional supplementation with oral AAs improved protein and energy profiles in the gastrocnemius of treated rats, enhancing

  17. A Twenty-Five-Year Review of Knowledge Gap Research.

    ERIC Educational Resources Information Center

    Gaziano, Cecilie

    Evidence from 34 studies published since a 1983 review of 58 earlier studies underscores knowledge inequalities as an enduring phenomenon and emphasizes that interest in the knowledge gap phenomenon is accelerating. All 10 studies which varied "media publicity" supported the hypothesis. Eleven of 12 studies which varied some aspect of "media use"…

  18. Harmonic ratcheting for fast acceleration

    NASA Astrophysics Data System (ADS)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  19. Deterministic multidimensional nonuniform gap sampling.

    PubMed

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  20. Deterministic multidimensional nonuniform gap sampling

    NASA Astrophysics Data System (ADS)

    Worley, Bradley; Powers, Robert

    2015-12-01

    Born from empirical observations in nonuniformly sampled multidimensional NMR data relating to gaps between sampled points, the Poisson-gap sampling method has enjoyed widespread use in biomolecular NMR. While the majority of nonuniform sampling schemes are fully randomly drawn from probability densities that vary over a Nyquist grid, the Poisson-gap scheme employs constrained random deviates to minimize the gaps between sampled grid points. We describe a deterministic gap sampling method, based on the average behavior of Poisson-gap sampling, which performs comparably to its random counterpart with the additional benefit of completely deterministic behavior. We also introduce a general algorithm for multidimensional nonuniform sampling based on a gap equation, and apply it to yield a deterministic sampling scheme that combines burst-mode sampling features with those of Poisson-gap schemes. Finally, we derive a relationship between stochastic gap equations and the expectation value of their sampling probability densities.

  1. Stemming the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    In years past, strong analytical, creative, and communication skills were enough to prepare students for successful careers, but as technological change accelerates, so must innovation in science education. Unfortunately, American students today are lacking exposure to the programs and curriculum that teach these technical skills. Only 32.4% of…

  2. Presence of functional gap junctions in human embryonic stem cells.

    PubMed

    Wong, Raymond C B; Pébay, Alice; Nguyen, Linh T V; Koh, Karen L L; Pera, Martin F

    2004-01-01

    Gap junctions are intercellular channels that allow both chemical and electrical signaling between two adjacent cells. Gap junction intercellular communication has been implicated in the regulation of various cellular processes, including cell migration, cell proliferation, cell differentiation, and cell apoptosis. This study aimed to determine the presence and functionality of gap junctions in human embryonic stem cells (hESCs). Using reverse transcription--polymerase chain reaction and immunocytochemistry, we demonstrate that human ES cells express two gap junction proteins, connexin 43 and connexin 45. Western blot analysis revealed the presence of three phosphorylated forms (nonphosphorylated [NP], P1, and P2) of connexin 43, NP being prominent. Moreover, scrape loading/dye transfer assay indicates that human ES cells are coupled through functional gap junctions that are inhibited by protein kinase C activation and extracellular signal-regulated kinase inhibition.

  3. Mind the Gap

    NASA Astrophysics Data System (ADS)

    Staedter, Tracy

    2007-03-01

    A new finding gets scientists one step closer to understanding what causes the gap in the Van Allen radiation belts. The discovery could help better predict fluxes of energetic particles that have the potential for damaging spacecraft and satellites and harming astronauts. An improved understanding could also give space physicists better insight into the radiation belts of other planets, including Jupiter, Saturn, Uranus, and Neptune, all of which have strong magnetic fields.

  4. Air-gap heterostructures

    SciTech Connect

    Heyn, Ch.; Schmidt, M.; Schwaiger, S.; Stemmann, A.; Mendach, S.; Hansen, W.

    2011-01-17

    We demonstrate the fabrication of thin GaAs layers which quasi hover above the underlying GaAs substrate. The hovering layers have a perfect epitaxial relationship to the substrate crystal lattice and are connected to the substrate surface only by lattice matched nanopillars of low density. These air-gap heterostructures are created by combining in situ molecular beam epitaxy compatible self-assembled droplet-etching and ex situ selective wet-chemical etching.

  5. Gender gaps within management.

    PubMed

    Ronk, L L

    1993-05-01

    Traditional roles need not become self-fulfilling prophecies if managers can bridge the gender gap. Feminine, as well as masculine, characteristics can be incorporated into managerial styles to enhance effective leadership. Autonomy, decision-making and assertiveness are as important as nurturing and caring. What are little girls made of? Little girls are made of sugar and spice and everything nice. What are little boys made of? Little boys are made of rats and snails and puppy dog tails.

  6. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation.

    PubMed

    Ye, Bu-Qing; Geng, Zhen H; Ma, Li; Geng, Jian-Guo

    2010-11-15

    Directional migration of leukocytes is an essential step in leukocyte trafficking during inflammatory responses. However, the molecular mechanisms governing directional chemotaxis of leukocytes remain poorly understood. The Slit family of guidance cues has been implicated for inhibition of leuocyte migration. We report that Clara cells in the bronchial epithelium secreted Slit2, whereas eosinophils and neutrophils expressed its cell-surface receptor, Robo1. Compared to neutrophils, eosinophils exhibited a significantly lower level of Slit-Robo GTPase-activating protein 1 (srGAP1), leading to activation of Cdc42, recruitment of PI3K to Robo1, enhancment of eotaxin-induced eosinophil chemotaxis, and exaggeration of allergic airway inflammation. Notably, OVA sensitization elicited a Slit2 gradient at so-called bronchus-alveoli axis, with a higher level of Slit2 in the bronchial epithelium and a lower level in the alveolar tissue. Aerosol administration of rSlit2 accelerated eosinophil infiltration, whereas i.v. administered Slit2 reduced eosinophil deposition. In contrast, Slit2 inactivated Cdc42 and suppressed stromal cell-derived factor-1α-induced chemotaxis of neutrophils for inhibiting endotoxin-induced lung inflammation, which were reversed by blockade of srGAP1 binding to Robo1. These results indicate that the newly identified Slit2 gradient at the bronchus-alveoli axis induces attractive PI3K signaling in eosinophils and repulsive srGAP1 signaling in neutrophils through differential srGAP1 expression during lung inflammation.

  7. G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease.

    PubMed

    Kwon, Michelle; Pavlov, Tengis S; Nozu, Kandai; Rasmussen, Shauna A; Ilatovskaya, Daria V; Lerch-Gaggl, Alexandra; North, Lauren M; Kim, Hyunho; Qian, Feng; Sweeney, William E; Avner, Ellis D; Blumer, Joe B; Staruschenko, Alexander; Park, Frank

    2012-12-26

    Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1(V/V) mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1(+/+) and Gpsm1(+/-) mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.

  8. The Pathogenic Mutation T182A Converts the Prion Protein into a Molten Globule-like Conformation Whose Misfolding to Oligomers but Not to Fibrils Is Drastically Accelerated.

    PubMed

    Singh, Jogender; Udgaonkar, Jayant B

    2016-01-26

    Delineation of the effects of pathogenic mutations linked with familial prion diseases on the structure and misfolding of prion protein (PrP) will be useful in understanding the molecular mechanism of PrP misfolding. Here, it has been shown that the pathogenic mutation T182A causes a drastic reduction in the apparent cooperativity and enthalpy of unfolding of the mouse prion protein (moPrP) under misfolding-prone conditions by converting the protein into a molten globule (MG)-like conformation. Hydrogen-deuterium exchange studies in conjunction with mass spectrometry indicate that the T182A mutation disrupts the core of the protein, thereby increasing overall structural dynamics. T182A moPrP is shown to misfold to oligomers very much faster than does wild-type (wt) moPrP but to misfold to fibrils at a rate similar to that of wt moPrP. This observation suggests that oligomers are unlikely to play a productive role in the direct pathway of aggregation from monomer to fibrils. The observation that fully folded T182A moPrP has a MG-like structure, and that it misfolds to oligomers much faster than does wt moPrP, suggests that a MG-like intermediate, whose structure resembles that of fully folded T182A moPrP, might be populated early on the pathway of misfolding of wt moPrP to oligomers. PMID:26713717

  9. How empty are disk gaps opened by giant planets?

    SciTech Connect

    Fung, Jeffrey; Shi, Ji-Ming; Chiang, Eugene

    2014-02-20

    Gap clearing by giant planets has been proposed to explain the optically thin cavities observed in many protoplanetary disks. How much material remains in the gap determines not only how detectable young planets are in their birth environments, but also how strong co-rotation torques are, which impacts how planets can survive fast orbital migration. We determine numerically how the average surface density inside the gap, Σ{sub gap}, depends on planet-to-star mass ratio q, Shakura-Sunyaev viscosity parameter α, and disk height-to-radius aspect ratio h/r. Our results are derived from our new graphics processing unit accelerated Lagrangian hydrodynamical code PEnGUIn and are verified by independent simulations with ZEUS90. For Jupiter-like planets, we find Σ{sub gap}∝q {sup –2.2}α{sup 1.4}(h/r){sup 6.6}, and for near brown dwarf masses, Σ{sub gap}∝q {sup –1}α{sup 1.3}(h/r){sup 6.1}. Surface density contrasts inside and outside gaps can be as large as 10{sup 4}, even when the planet does not accrete. We derive a simple analytic scaling, Σ{sub gap}∝q {sup –2}α{sup 1}(h/r){sup 5}, that compares reasonably well to empirical results, especially at low Neptune-like masses, and use discrepancies to highlight areas for progress.

  10. Light-dependent degradation of the D1 protein in photosystem II is accelerated after inhibition of the water splitting reaction

    SciTech Connect

    Jegerschoeld, C.V.; Virgin, I.; Styring, S. )

    1990-07-03

    Strong illumination of oxygen-evolving organisms inhibits the electron transport through photosystem II (photoinhibition). In addition the illumination leads to a rapid turnover of the D1 protein in the reaction center of photosystem II. In this study the light-dependent degradation of the D1 reaction center protein and the light-dependent inhibition of electron-transport reactions have been studied in thylakoid membranes in which the oxygen evolution has been reversibly inhibited by Cl- depletion. The results show that Cl(-)-depleted thylakoid membranes are very vulnerable to damage induced by illumination. Both the D1 protein and the inhibition of the oxygen evolution are 15-20 times more sensitive to illumination than in control thylakoid membranes. The presence, during the illumination, of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) prevented both the light-dependent degradation of the D1 protein and the inhibition of the electron transport. The protection exerted by DCMU is seen only in Cl(-)-depleted thylakoid membranes. These observations lead to the proposal that continuous illumination of Cl(-)-depleted thylakoid membranes generates anomalously long-lived, highly oxidizing radicals on the oxidizing side of photosystem II, which are responsible for the light-induced protein damage and inhibition. The presence of DCMU during the illumination prevents the formation of these radicals, which explains the protective effects of the herbicide. It is also observed that in Cl(-)-depleted thylakoid membranes, oxygen evolution (measured after the readdition of Cl-) is inhibited before electron transfer from diphenylcarbazide to dichlorophenolindophenol.

  11. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  12. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    PubMed

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer. PMID:27171416

  13. Mapping of four mouse genes encoding eye lens-specific structural, gap junction, and integral membrane proteins: Cryba1 (crystallin{beta}A3/A1), Crybb2 (crystallin{beta}B2), Gja8 (MP70), and Lim2 (MP19)

    SciTech Connect

    Kerscher, S.; Boyd, Y.; Lyon, M.F.

    1995-09-20

    Four genes encoding eye lens-specific proteins, potential candidate genes for congenital cataract (CC) mutations, were mapped in the mouse genome using a panel of somatic cell hybrids and DNAs from the EUCIB (European Collaborative Interspecific Backcross). Two of them are lens fiber cell structural proteins: the Cryba1 locus encoding crystallin{beta}A3/A1 maps to chromosome 11, 2.5 {+-} 2.5 cM distal to D11Mit31, and the Crybb2 locus encoding crystallin{beta}B2 maps to chromosome 5, 9.1 {+-} 4.3 cM distal to D5Mit88. The other two genes encode lens-specific gap junction and integral membrane proteins, respectively: the Gja8 locus encoding gap junction membrane channel protein {alpha}8, also called connexin50 or MP70, maps to chromosome 3, 11.9 {+-} 5.0 cM distal to D3Mit22, and the Lim2 locus encoding lens intrinsic membrane protein 2, also call MP19, maps to chromosome 7, 2.5 {+-} 2.5 cM proximal to Ngfg. All four map positions, when compared with the corresponding positions in human, lie within known regions of conserved synteny between mouse and human chromosomes. 43 refs., 2 figs., 1 tab.

  14. Determinants of Small Ubiquitin-like Modifier 1 (SUMO1) Protein Specificity, E3 Ligase, and SUMO-RanGAP1 Binding Activities of Nucleoporin RanBP2

    SciTech Connect

    Gareau, Jaclyn R.; Reverter, David; Lima, Christopher D.

    2012-02-16

    The RanBP2 nucleoporin contains an internal repeat domain (IR1-M-IR2) that catalyzes E3 ligase activity and forms a stable complex with SUMO-modified RanGAP1 and UBC9 at the nuclear pore complex. RanBP2 exhibits specificity for SUMO1 as RanGAP1-SUMO1/UBC9 forms a more stable complex with RanBP2 compared with RanGAP1-SUMO2 that results in greater protection of RanGAP-SUMO1 from proteases. The IR1-M-IR2 SUMO E3 ligase activity also shows a similar preference for SUMO1. We utilized deletions and domain swap constructs in protease protection assays and automodification assays to define RanBP2 domains responsible for RanGAP1-SUMO1 protection and SUMO1-specific E3 ligase activity. Our data suggest that elements in both IR1 and IR2 exhibit specificity for SUMO1. IR1 protects RanGAP1-SUMO1/UBC9 and functions as the primary E3 ligase of RanBP2, whereas IR2 retains the ability to interact with SUMO1 to promote SUMO1-specific E3 ligase activity. To determine the structural basis for SUMO1 specificity, a hybrid IR1 construct and IR1 were used to determine three new structures for complexes containing UBC9 with RanGAP1-SUMO1/2. These structures show more extensive contacts among SUMO, UBC9, and RanBP2 in complexes containing SUMO1 compared with SUMO2 and suggest that differences in SUMO specificity may be achieved through these subtle conformational differences.

  15. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System.

    PubMed

    Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun

    2015-01-01

    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  16. SOUTHWEST REGIONAL GAP LAND COVER

    EPA Science Inventory

    The Gap Analysis Program is a national inter-agency program that maps the distribution

    of plant communities and selected animal species and compares these distributions with land

    stewardship to identify gaps in biodiversity protection. GAP uses remote satellite imag...

  17. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap…

  18. Bridging Gaps Between Refractory Tiles

    NASA Technical Reports Server (NTRS)

    Haney, J. W. J.

    1982-01-01

    Excessively large gaps between tiles on Space Shuttle eliminated without time-consuming and costly procedure of removing and replacing tiles. Ceramic tile silver is bonded in gap. Bonded silver prevents airframe under gap from getting too hot during reentry and presents aerodynamically smooth exterior surface.

  19. Arabidopsis accelerated-cell-death11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels

    PubMed Central

    Simanshu, Dhirendra K.; Zhai, Xiuhong; Munch, David; Hofius, Daniel; Markham, Jonathan E.; Bielawski, Jacek; Bielawska, Alicja; Malinina, Lucy; Molotkovsky, Julian G.; Mundy, John W.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2014-01-01

    SUMMARY The accelerated-cell-death11 (acd11) mutant of Arabidopsis provides a genetic model for studying immune response activation and localized cellular suicide that halts pathogen spread during infection in plants. Here, we elucidate ACD11 structure/function and show that acd11 disruption dramatically alters the in vivo balance of sphingolipid mediators that regulate eukaryotic programmed cell death. In acd11 mutants, normally low ceramide-1-phosphate (C1P) levels become elevated, but the relatively abundant cell death inducer, phytoceramide, rises acutely. ACD11 exhibits selective intermembrane transfer of C1P and phyto-C1P. Crystal structures establish C1P binding via a surface-localized, phosphate headgroup recognition center connected to an interior hydrophobic pocket that adaptively ensheaths lipid chains via a cleft-like gating mechanism. Point mutation mapping confirms functional involvement of binding-site residues. A π-helix (π-bulge) near the lipid-binding cleft distinguishes apo-ACD11 from other GLTP-folds. The global two-layer, α-helically-dominated, ‘sandwich’ topology displaying C1P-selective binding identifies ACD11 as the plant prototype of a new GLTP-fold subfamily. PMID:24412362

  20. Enhanced SIV replication and accelerated progression to AIDS in macaques primed to mount a CD4 T cell response to the SIV envelope protein

    PubMed Central

    Staprans, Silvija I.; Barry, Ashley P.; Silvestri, Guido; Safrit, Jeffrey T.; Kozyr, Natalia; Sumpter, Beth; Nguyen, Hanh; McClure, Harold; Montefiori, David; Cohen, Jeffrey I.; Feinberg, Mark B.

    2004-01-01

    Given the dual role of CD4 T cells as both immune effectors and targets for HIV infection, the balance of CD4 versus CD8 T cell-mediated responses induced by candidate AIDS vaccines may be critical in determining postvaccination infection outcomes. An attenuated recombinant varicella-zoster virus vaccine expressing the simian immunodeficiency virus (SIV) envelope (Env) elicited nonneutralizing Env-binding antibodies and little if any cytotoxic T lymphocyte responses in rhesus macaques (Macaca mulatta). After challenge with SIV, Env vaccinees manifested increased levels of SIV replication, more rapid CD4 depletion, and accelerated progression to AIDS compared with controls. Enhanced SIV replication correlated with increased CD4 T cell proliferation soon after SIV challenge, apparently the result of an anamnestic response to SIV antigens. Thus activation of virus-specific CD4 T cells at the time of exposure to a CD4 T cell-tropic lentivirus, in the absence of an effective CD8 response, may enhance virus replication and disease. These data suggest suggest that candidate AIDS vaccines may not simply be either efficacious or neutral; they may also have the potential to be harmful. PMID:15326293

  1. Mind the gap

    NASA Astrophysics Data System (ADS)

    Bhagwat, M. S.; Krassnigg, A.; Maris, P.; Roberts, C. D.

    2007-03-01

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors.

  2. Photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  3. The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes

    PubMed Central

    Abudara, Verónica; Bechberger, John; Freitas-Andrade, Moises; De Bock, Marijke; Wang, Nan; Bultynck, Geert; Naus, Christian C.; Leybaert, Luc; Giaume, Christian

    2014-01-01

    In the brain, astrocytes represent the cellular population that expresses the highest amount of connexins (Cxs). This family of membrane proteins is the molecular constituent of gap junction channels and hemichannels that provide pathways for direct cytoplasm-to-cytoplasm and inside-out exchange, respectively. Both types of Cx channels are permeable to ions and small signaling molecules allowing astrocytes to establish dynamic interactions with neurons. So far, most pharmacological approaches currently available do not distinguish between these two channel functions, stressing the need to develop new specific molecular tools. In astrocytes two major Cxs are expressed, Cx43 and Cx30, and there is now evidence indicating that at least Cx43 operates as a gap junction channel as well as a hemichannel in these cells. Based on studies in primary cultures as well as in acute hippocampal slices, we report here that Gap19, a nonapeptide derived from the cytoplasmic loop of Cx43, inhibits astroglial Cx43 hemichannels in a dose-dependent manner, without affecting gap junction channels. This peptide, which not only selectively inhibits hemichannels but is also specific for Cx43, can be delivered in vivo in mice as TAT-Gap19, and displays penetration into the brain parenchyma. As a result, Gap19 combined with other tools opens up new avenues to decipher the role of Cx43 hemichannels in interactions between astrocytes and neurons in physiological as well as pathological situations. PMID:25374505

  4. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  5. Decay-accelerating factor induction by tumour necrosis factor-alpha, through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway, protects murine vascular endothelial cells against complement deposition.

    PubMed

    Ahmad, Saifur R; Lidington, Elaine A; Ohta, Rieko; Okada, Noriko; Robson, Michael G; Davies, Kevin A; Leitges, Michael; Harris, Claire L; Haskard, Dorian O; Mason, Justin C

    2003-10-01

    We have shown that human endothelial cells (EC) are protected against complement-mediated injury by the inducible expression of decay-accelerating factor (DAF). To understand further the importance of DAF regulation, we characterized EC DAF expression on murine EC in vitro and in vivo using a model of glomerulonephritis. Flow cytometry using the monoclonal antibody (mAb) Riko-3 [binds transmembrane- and glycosylphosphatidylinositol (GPI)-anchored DAF], mAb Riko-4 (binds GPI-anchored DAF) and reverse transcription-polymerase chain reaction (RT-PCR), demonstrated that murine EC DAF is GPI-anchored. Tumour necrosis factor-alpha (TNF-alpha) increased EC DAF expression, detectable at 6 hr and maximal at 24-48 hr poststimulation. DAF upregulation required increased steady-state DAF mRNA and protein synthesis. In contrast, no increased expression of the murine complement receptor-related protein-Y (Crry) was seen with TNF-alpha. DAF upregulation was mediated via a protein kinase C (PKC)alpha, phosphoinositide-3 kinase (PI-3 kinase), p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB)-dependent pathway. The increased DAF was functionally relevant, resulting in a marked reduction in C3 deposition following complement activation. In a nephrotoxic nephritis model, DAF expression on glomerular capillaries was significantly increased 2 hr after the induction of disease. The demonstration of DAF upregulation above constitutive levels suggests that this may be important in the maintenance of vascular integrity during inflammation, when the risk of complement-mediated injury is increased. The mouse represents a suitable model for the study of novel therapeutic approaches by which vascular endothelium may be conditioned against complement-mediated injury.

  6. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System

    PubMed Central

    Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun

    2015-01-01

    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively. PMID:26568953

  7. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    SciTech Connect

    Wang, Ren-Bo; Hirotani, Kouichi E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.

  8. Gapped domain walls, gapped boundaries, and topological degeneracy.

    PubMed

    Lan, Tian; Wang, Juven C; Wen, Xiao-Gang

    2015-02-20

    Gapped domain walls, as topological line defects between (2+1)D topologically ordered states, are examined. We provide simple criteria to determine the existence of gapped domain walls, which apply to both Abelian and non-Abelian topological orders. Our criteria also determine which (2+1)D topological orders must have gapless edge modes, namely, which (1+1)D global gravitational anomalies ensure gaplessness. Furthermore, we introduce a new mathematical object, the tunneling matrix W, whose entries are the fusion-space dimensions W(ia), to label different types of gapped domain walls. By studying many examples, we find evidence that the tunneling matrices are powerful quantities to classify different types of gapped domain walls. Since a gapped boundary is a gapped domain wall between a bulk topological order and the vacuum, regarded as the trivial topological order, our theory of gapped domain walls inclusively contains the theory of gapped boundaries. In addition, we derive a topological ground state degeneracy formula, applied to arbitrary orientable spatial 2-manifolds with gapped domain walls, including closed 2-manifolds and open 2-manifolds with gapped boundaries.

  9. Gap-bridging During Quasi-simultaneous Laser Transmission Welding

    NASA Astrophysics Data System (ADS)

    Schmailzl, Anton; Hierl, Stefan; Schmidt, Michael

    Tightness is often the main requirement for quasi-simultaneous laser transmission welds. However, remaining gaps cannot be detected by the used set-path monitoring. By using a pyrometer in combination with a 3D-scanner, weld seam interruptions can be localized precisely while welding, due to temperature deviations along the weld contour. To analyze the temperature signal in correlation to the progress of gap-bridging, T-joint samples with predefined gaps are welded. The set-path is measured synchronously. Additionally, the temperature distribution and the influence of the thermal expansion of the polymers are studied by a thermo-mechanical FEM-process simulation. On top of that, the melt blow-out of the welded samples is analyzed using μCT-measurements. The experiments have shown that closing of a gap can be identified reliably by the temperature signal and that the squeezed melt flow into the gap and the thermal expansion in the gap zone accelerates gap-bridging. Furthermore the inserted heat can be adapted in the fault zone, in order to avoid thermal damage.

  10. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.

    PubMed

    Zhong, Huailing; Wade, Susan M; Woolf, Peter J; Linderman, Jennifer J; Traynor, John R; Neubig, Richard R

    2003-02-28

    Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals. PMID:12446706

  11. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.

    PubMed

    Zhong, Huailing; Wade, Susan M; Woolf, Peter J; Linderman, Jennifer J; Traynor, John R; Neubig, Richard R

    2003-02-28

    Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals.

  12. SH3 Domain–Based Phototrapping in Living Cells Reveals Rho Family GAP Signaling Complexes

    PubMed Central

    Okada, Hirokazu; Uezu, Akiyoshi; Mason, Frank M.; Soderblom, Erik J.; Moseley, M. Arthur; Soderling, Scott H.

    2012-01-01

    Rho family GAPs [guanosine triphosphatase (GTPase) activating proteins] negatively regulate Rho family GTPase activity and therefore modulate signaling events that control cytoskeletal dynamics. The spatial distribution of these GAPs and their specificity toward individual GTPases are controlled by their interactions with various proteins within signaling complexes. These interactions are likely mediated through the Src homology 3 (SH3) domain, which is abundant in the Rho family GAP proteome and exhibits a micromolar binding affinity, enabling the Rho family GAPs to participate in transient interactions with multiple binding partners. To capture these elusive GAP signaling complexes in situ, we developed a domain-based proteomics approach, starting with in vivo phototrapping of SH3 domain– binding proteins and the mass spectrometry identification of associated proteins for nine representative Rho family GAPs. After the selection of candidate binding proteins by cluster analysis, we performed peptide array–based high-throughput in vitro binding assays to confirm the direct interactions and map the SH3 domain–binding sequences. We thereby identified 54 SH3-mediated binding interactions (including 51 previously unidentified ones) for nine Rho family GAPs. We constructed Rho family GAP interactomes that provided insight into the functions of these GAPs. We further characterized one of the predicted functions for the Rac-specific GAP WRP and identified a role for WRP in mediating clustering of the postsynaptic scaffolding protein gephyrin and the GABAA (γ-aminobutyric acid type A) receptor at inhibitory synapses. PMID:22126966

  13. Introducing Defects in Photonic Band-Gap (PBG) Crystals

    SciTech Connect

    Johnson, Elliott C.; /North Dakota State U. /SLAC

    2007-11-07

    Photonic Band-Gap (PBG) fibers are a periodic array of optical materials arranged in a lattice called a photonic crystal. The use of PBG fibers for particle acceleration is being studied by the Advanced Accelerator Research Department (AARD) at SLAC. By introducing defects in such fibers, e.g. removing one or more capillaries from a hexagonal lattice, spatially confined modes suitable for particle acceleration may be created. The AARD has acquired several test samples of PBG fiber arrays with varying refractive index, capillary size, and length from an external vendor for testing. The PBGs were inspected with a microscope and characteristics of the capillaries including radii, spacing, and errors in construction were determined. Transmission tests were performed on these samples using a broad-range spectrophotometer. In addition, detailed E-field simulations of different PBG configurations were done using the CUDOS and RSOFT codes. Several accelerating modes for different configurations were found and studied in detail.

  14. The Gap-Tpc

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Anastasio, A.; Boiano, A.; Catalanotti, S.; Cocco, A. G.; Covone, G.; Di Meo, P.; Longo, G.; Vanzanella, A.; Walker, S.; Wang, H.; Wang, Y.; Fiorillo, G.

    2016-02-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency.

  15. Isolation and purification of gap junction channels.

    PubMed

    Stauffer, K A; Kumar, N M; Gilula, N B; Unwin, N

    1991-10-01

    This paper reports methods we have developed to solubilize gap junction channels, or connexons, from isolated gap junctions and to purify them in milligram quantities. Two sources of material are used: rat liver gap junctions and gap junctions produced by infecting insect cells with a baculovirus containing the cDNA for human liver beta 1 protein (connexin 32). Complete solubilization is obtained with long chain detergents (lauryl dimethyl amineoxide, dodecyl maltoside) and requires high ionic strength and high pH as well as reducing conditions. The purification involves chromatography on hydroxylapatite and gel filtration on Superose 6. A homogeneous product is indicated by a single band on a silver-stained gel and a homogeneous population of doughnut-shaped particles under the electron microscope. These particles have hexameric symmetry. The purified connexons have a tendency to form aggregates: filaments and sheets. The filaments grow by end-to-end association of connexons and are nonpolar, suggesting that the connexons are paired as in the cell-to-cell channel. The sheets grow by lateral association of the filaments.

  16. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  17. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  18. Gap Filling Ceramic Insulating Putty for High Field Magnets

    NASA Astrophysics Data System (ADS)

    Rice, J. A.; Rice, H. M.

    2008-03-01

    Gaps between the A15 superconducting cable and its supports can sometimes occur requiring expensive rework of the support or filling with a non-optimal material. Recently, a new ceramic putty has been developed that can fill these gaps to fully support the superconducting cable. This ceramic material can withstand the extreme temperature differences between the high temperature heat treatment and the cryogenic operation. Significant performance improvements have been made that will enable the insulating putty to be used in some accelerator magnet systems. Processing methods will be discussed as well as strength and thermal data.

  19. Aberrant expression and function of gap junctions during carcinogenesis.

    PubMed Central

    Yamasaki, H

    1991-01-01

    Gap junctional intercellular communication plays a key role in the maintenance of homeostasis in multicellular organisms. Reflecting deranged homeostasis in cancer cells, most transformed or cancerous cells show aberrant gap junctional intercellular communication; they have decreased junctional communication between each other and/or with surrounding normal cells. Studies with in vitro cell transformation and animal carcinogenesis models suggest an involvement of blocked intercellular communication in later stages of carcinogenesis. Analysis of expression of gap junction proteins (connexins) and corresponding mRNA indicates that a number of regulation sites are involved in aberrant function of gap junctions during carcinogenesis. Suppression of transformed phenotypes is often seen when transformed cells are physically in contact with their normal counterparts. Some studies suggest that gap junctional intercellular communication is involved in such tumor suppression. PMID:1663449

  20. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  1. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  2. Acceleration of free electrons in a symmetric evanescent wave

    NASA Astrophysics Data System (ADS)

    Frandsen, B. R.; Glasgow, S. A.; Peatross, J. B.

    2006-09-01

    The possibility of accelerating free electrons in a vacuum gap between closely spaced dielectric materials is explored. Plane waves impinging symmetrically on the gap from either side at oblique incidence produce an evanescent wave with net electric field along the direction of propagation. Near the critical angle, the evanescent wave propagates at the vacuum speed of light. A theoretical development and numerical simulations show that free electrons in the gap can be accelerated and accumulate energy indefinitely. This approach lies outside the purview of the Lawson-Woodward theorem, which does not apply in the vicinity of a medium. Damage thresholds of materials restrict the light intensity to far below that achievable by current high-power lasers. This limits the particle energy that might be achieved from an accelerator based on this approach.

  3. Critical assessment of accelerating trypsination methods.

    PubMed

    Hustoft, Hanne Kolsrud; Reubsaet, Leon; Greibrokk, Tyge; Lundanes, Elsa; Malerod, Helle

    2011-12-15

    In LC-MS based proteomics, several accelerating trypsination methods have been introduced in order to speed up the protein digestion, which is often considered a bottleneck. Traditionally and most commonly, due to sample heterogeneity, overnight digestion at 37 °C is performed in order to digest both easily and more resistant proteins. High efficiency protein identification is important in proteomics, hours with LC-MS/MS analysis is needless if the majority of the proteins are not digested. Based on preliminary experiments utilizing some of the suggested accelerating methods, the question of whether accelerating digestion methods really provide the same protein identification efficiency as the overnight digestion was asked. In the present study we have evaluated four different accelerating trypsination methods (infrared (IR) and microwave assisted, solvent aided and immobilized trypsination). The methods were compared with conventional digestion at 37 °C in the same time range using a four protein mixture. Sequence coverage and peak area of intact proteins were used for the comparison. The accelerating methods were able to digest the proteins, but none of the methods appeared to be more efficient than the conventional digestion method at 37 °C. The conventional method at 37 °C is easy to perform using commercially available instrumentation and appears to be the digestion method to use. The digestion time in targeted proteomics can be optimized for each protein, while in comprehensive proteomics the digestion time should be extended due to sample heterogeneity and influence of other proteins present. Recommendations regarding optimizing and evaluating the tryptic digestion for both targeted and comprehensive proteomics are given, and a digestion method suitable as the first method for newcomers in comprehensive proteomics is suggested.

  4. Loss of Ypk1, the Yeast Homolog to the Human Serum- and Glucocorticoid-induced Protein Kinase, Accelerates Phospholipase B1-mediated Phosphatidylcholine Deacylation*

    PubMed Central

    Surlow, Beth A.; Cooley, Benjamin M.; Needham, Patrick G.; Brodsky, Jeffrey L.; Patton-Vogt, Jana

    2014-01-01

    Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1. PMID:25258318

  5. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    PubMed

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  6. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  7. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  8. Undecidability of the spectral gap

    NASA Astrophysics Data System (ADS)

    Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M.

    2015-12-01

    The spectral gap—the energy difference between the ground state and first excited state of a system—is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding ‘halting problem’. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  9. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  10. Gap and stripline combined monitor

    DOEpatents

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  11. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  12. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  13. Linear accelerator: A concept

    NASA Technical Reports Server (NTRS)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  14. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  15. Acceleration of lipid peroxidation in alpha-tocopherol transfer protein-knockout mice following the consumption of drinking water containing a radical initiator.

    PubMed

    Yoshida, Yasukazu; Hayakawa, Mieko; Cynshi, Osamu; Jishage, Kou-ichi; Niki, Etsuo

    2008-01-01

    To assess the antioxidative role of vitamin E (VE) in a mouse model of severe VE deficiency by using biomarkers, alpha-tocopherol transfer protein (alpha-TTP(-/-))-knockout mice were maintained on a VE-deficient diet for 28 weeks [KO group, n = 6]. Wild-type C57BL/6 mice were maintained on a diet containing 0.002% alpha-tocopherol [WT group, n = 6]. The animals were housed individually in a metabolic cage from the age of 9 weeks (Week 0) to 27 weeks. Urine was collected every week, and the levels of total hydroxyoctadecadienoic acid (tHODE), 7-hydroxycholesterol (t7-OHCh), and 8-iso-prostaglandin F(2alpha)(t8-isoPGF(2alpha)), which are biomarkers for lipid peroxidation, were measured by gas chromatography (GC)-mass spectrometry. From the age of 21 weeks (Week 12), three mice in each group were provided drinking water containing the water-soluble radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) until the end of the study (Week 19). Blood and tissue samples were collected, and the levels of the abovementioned biomarkers therein were assessed. AIPH consumption clearly elevated the plasma and erythrocyte levels of tHODE and t8-isoPGF(2alpha) in both the WT and KO groups except for the erythrocyte level of tHODE in the WT group. Furthermore, this elevation was more prominent in the KO group than in the WT group. Interestingly, AIPH consumption reduced the stereoisomer ratio of HODE (ZE/EE), which is reflective of the efficacy of a compound as an antioxidant in vivo; this suggests that free radical-mediated oxidation reduces the antioxidant capacity in vivo. The urine levels of tHODE, t7-OHCh, and t8-isoPGF(2alpha) tended to increase with AIPH consumption, but these individual levels fluctuated. It was clearly demonstrated by the proposed biomarkers that maintaining alpha-TTP(-/-) mice on a VE-deficient diet results in a severe VE deficiency and promotes lipid peroxidation.

  16. Accelerated postero-lateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats.

    PubMed

    Han, Xinglong; Zhang, Wen; Gu, Jun; Zhao, Huan; Ni, Li; Han, Jiajun; Zhou, Yun; Gu, Yannan; Zhu, Xuesong; Sun, Jie; Hou, Xianglin; Yang, Huilin; Dai, Jianwu; Shi, Qin

    2014-01-01

    Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role in bone regeneration and repair. However, its distribution and side effects are major barriers to its success as therapeutic treatment. The improvement of therapy using collagen delivery matrices has been reported. To investigate a delivery system on postero-lateral spinal fusion, both engineered human BMP-2 with a collagen binding domain (CBD-BMP-2) and collagen scaffolds were developed and their combination was implanted into Sprague-Dawley (SD) rats to study Lumbar 4-5 (L4-L5) posterolateral spine fusion. We divided SD rats into three groups, the sham group (G1, n = 20), the collagen scaffold-treated group (G2, n = 20) and the BMP-2-loaded collagen scaffolds group (G3, n = 20). 16 weeks after surgery, the spines of the rats were evaluated by X-radiographs, high-resolution micro-computed tomography (micro-CT), manual palpation and hematoxylin and eosin (H&E) staining. The results showed that spine L4-L5 fusions occurred in G2(40%) and G3(100%) group, while results from the sham group were inconsistent. Moreover, G3 had better results than G2, including higher fusion efficiency (X score, G2 = 2.4±0.163, G3 = 3.0±0, p<0.05), higher bone mineral density (BMD, G2: 0.3337±0.0025g/cm3, G3: 0.4353±0.0234g/cm3. p<0.05) and more bone trabecular formation. The results demonstrated that with site-specific collagen binding domain, a dose of BMP-2 as low as 0.02mg CBD-BMP-2/cm3 collagen scaffold could enhance the posterolateral intertransverse process fusion in rats. It suggested that combination delivery could be an alternative in spine fusion with dramatically decreased side effects caused by high dose of BMP-2.

  17. Accelerated Postero-Lateral Spinal Fusion by Collagen Scaffolds Modified with Engineered Collagen-Binding Human Bone Morphogenetic Protein-2 in Rats

    PubMed Central

    Zhao, Huan; Ni, Li; Han, Jiajun; Zhou, Yun; Gu, Yannan; Zhu, Xuesong; Sun, Jie; Hou, Xianglin; Yang, Huilin; Dai, Jianwu; Shi, Qin

    2014-01-01

    Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role in bone regeneration and repair. However, its distribution and side effects are major barriers to its success as therapeutic treatment. The improvement of therapy using collagen delivery matrices has been reported. To investigate a delivery system on postero-lateral spinal fusion, both engineered human BMP-2 with a collagen binding domain (CBD-BMP-2) and collagen scaffolds were developed and their combination was implanted into Sprague-Dawley (SD) rats to study Lumbar 4–5 (L4–L5) posterolateral spine fusion. We divided SD rats into three groups, the sham group (G1, n = 20), the collagen scaffold-treated group (G2, n = 20) and the BMP-2-loaded collagen scaffolds group (G3, n = 20). 16 weeks after surgery, the spines of the rats were evaluated by X-radiographs, high-resolution micro-computed tomography (micro-CT), manual palpation and hematoxylin and eosin (H&E) staining. The results showed that spine L4–L5 fusions occurred in G2(40%) and G3(100%) group, while results from the sham group were inconsistent. Moreover, G3 had better results than G2, including higher fusion efficiency (X score, G2 = 2.4±0.163, G3 = 3.0±0, p<0.05), higher bone mineral density (BMD, G2: 0.3337±0.0025g/cm3, G3: 0.4353±0.0234g/cm3. p<0.05) and more bone trabecular formation. The results demonstrated that with site-specific collagen binding domain, a dose of BMP-2 as low as 0.02mg CBD-BMP-2/cm3 collagen scaffold could enhance the posterolateral intertransverse process fusion in rats. It suggested that combination delivery could be an alternative in spine fusion with dramatically decreased side effects caused by high dose of BMP-2. PMID:24869484

  18. MEQALAC rf accelerating structure

    SciTech Connect

    Keane, J.; Brodowski, J.

    1981-01-01

    A prototype MEQALAC capable of replacing the Cockcroft Walton pre-injector at BNL is being fabricated. Ten milliamperes of H/sup -/ beam supplied from a source sitting at a potential of -40 kilovolt is to be accelerated to 750 keV. This energy gain is provided by a 200 Megahertz accelerating system rather than the normal dc acceleration. Substantial size and cost reduction would be realized by such a system over conventional pre-accelerator systems.

  19. Hexadecameric structure of an invertebrate gap junction channel.

    PubMed

    Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2016-03-27

    Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. PMID:26883891

  20. Anchored PKA as a gatekeeper for gap junctions

    PubMed Central

    Pidoux, Guillaume; Taskén, Kjetil

    2015-01-01

    Anchored protein kinase A (PKA) bound to A Kinase Anchoring Protein (AKAP) mediates effects of localized increases in cAMP in defined subcellular microdomains and retains the specificity in cAMP-PKA signaling to distinct extracellular stimuli. Gap junctions are pores between adjacent cells constituted by connexin proteins that provide means of communication and transfer of small molecules. While the PKA signaling is known to promote human trophoblast cell fusion, the gap junction communication through connexin 43 (Cx43) is a prerequisite for this process. We recently demonstrated that trophoblast fusion is regulated by ezrin, a known AKAP, which binds to Cx43 and delivers PKA in the vicinity gap junctions. We found that disruption of the ezrin-Cx43 interaction abolished PKA-dependent phosphorylation of Cx43 as well as gap junction communication and subsequently cell fusion. We propose that the PKA-ezrin-Cx43 macromolecular complex regulating gap junction communication constitutes a general mechanism to control opening of Cx43 gap junctions by phosphorylation in response to cAMP signaling in various cell types. PMID:26478781

  1. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  2. Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus.

    PubMed

    Purves, Joanne; Cockayne, Alan; Moody, Peter C E; Morrissey, Julie A

    2010-12-01

    The Gram-positive bacterium Staphylococcus aureus contains two glyceraldehyde-3-phosphate dehydrogenase (GAPDH) homologues known as GapA and GapB. GapA has been characterized as a functional GAPDH protein, but currently there is no biological evidence for the role of GapB in metabolism in S. aureus. In this study we show through a number of complementary methods that S. aureus GapA is essential for glycolysis while GapB is essential in gluconeogenesis. These proteins are reciprocally regulated in response to glucose concentrations, and both are influenced by the glycolysis regulator protein GapR, which is the first demonstration of the role of this regulator in S. aureus and the first indication that GapR homologues control genes other than those within the glycolytic operon. Furthermore, we show that both GapA and GapB are important in the pathogenesis of S. aureus in a Galleria mellonella model of infection, showing for the first time in any bacteria that both glycolysis and gluconeogenesis have important roles in virulence.

  3. The Nature of Accelerating Modes in PBG Fibers

    SciTech Connect

    Noble, TRobert J.; /SLAC

    2011-05-19

    Transverse magnetic (TM) modes with phase velocities at or just below the speed of light, c, are intended to accelerate relativistic particles in hollow-core, photonic band gap (PBG) fibers. These are so-called 'surface defect modes', being lattice modes perturbed by the defect to have their frequencies shifted into the band gap, and they can have any phase velocity. PBG fibers also support so-called 'core defect modes' which are characterized as having phase velocities always greater than c and never cross the light line. In this paper we explore the nature of these two classes of accelerating modes and compare their properties.

  4. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  5. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  6. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  7. Progresses in Ab Initio QM/MM Free Energy Simulations of Electrostatic Energies in Proteins: Accelerated QM/MM Studies of pKa, Redox Reactions and Solvation Free Energies

    SciTech Connect

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-03-01

    Hybrid quantum mechanical / molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches still present a major challenge to computational chemists, not only because of the need for very large computer time in order to evaluate the QM energy but also because of the need for propercomputational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting here different types of QM/MM calculations of electrostatic energies (and related properties), our focus will be on pKa calculations. This reflects the fact that pKa of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pKa calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pKa calculations using QM/MM-FEP have led to large discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor, as well as a residue buried in a hydrophobic pocket (Lys102) of the T4-lysozyme mutant. We demonstrate that by using this approach, we are able to reproduce the relevant sidechain pKas with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide an

  8. Project acceleration : making the leap from pilot to commercialization.

    SciTech Connect

    Borneo, Daniel R.

    2010-05-01

    Since the energy storage technology market is in a relatively emergent phase, narrowing the gap between pilot project status and commercialization is fundamental to the accelerating of this innovative market space. This session will explore regional market design factors to facilitate the storage enterprise. You will also hear about: quantifying transmission and generation efficiency enhancements; resource planning for storage; and assessing market mechanisms to accelerate storage adoption regionally.

  9. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  10. Measuring the Gap

    PubMed Central

    She, Xinshu; Zhao, Deqing; Scholnick, Jenna

    2016-01-01

    China is a large country where rapid development is accompanied by growing inequalities. How economic inequalities translate to health inequalities is unknown. Baseline health assessment is lacking among rural Chinese children. We aimed at assessing baseline student health of rural Chinese children and comparing them with those of urban children of similar ages. A cross-sectional study was conducted using the 2003 Global School-Based Student Health Survey among 100 students Grade 4 to 6 from rural Guizhou, China. Results were summarized and compared with public data from urban Beijing using multivariate logistic regression models. Rural children are more likely to not wash their hands before a meal (odds ratio [OR] = 5.71, P < .01) and after using the toilet (OR = 5.41, P < .01). They are more likely to feel sick or to get into trouble after drinking (OR = 7.28, P < .01). They are more likely to have used drugs (OR = 8.54, P < .01) and to have no close friends (OR = 8.23, P < .01). An alarming percentage of rural (8.22%) and urban (14.22%) children have had suicidal ideation in the past year (OR = 0.68, P > .05). Rural parents are more likely to not know their children’s whereabouts (OR = 1.81, P < .05). Rural children are more than 4 times likely to have serious injuries (OR = 4.64, P < .01) and to be bullied (OR = 4.01, P < .01). In conclusion, school-age rural Chinese children exhibit more health risk behaviors and fewer protective factors at baseline compared to their urban counterparts. Any intervention aimed at improving child health should take this distributive gap into consideration. PMID:27335999

  11. Paramagnetically induced gapful topological superconductors

    NASA Astrophysics Data System (ADS)

    Daido, Akito; Yanase, Youichi

    2016-08-01

    We propose a generic scenario for realizing gapful topological superconductors (TSCs) from gapless spin-singlet superconductors (SCs). Noncentrosymmetric nodal SCs in two dimensions are shown to be gapful under a Zeeman field, as a result of the cooperation of inversion-symmetry breaking and time-reversal-symmetry breaking. In particular, non-s -wave SCs acquire a large excitation gap. Such paramagnetically induced gapful SCs may be classified into TSCs in the symmetry class D specified by the Chern number. We show nontrivial Chern numbers over a wide parameter range for spin-singlet SCs. A variety of the paramagnetically induced gapful TSCs are demonstrated, including D +p -wave TSC, extended S +p -wave TSC, p +D +f -wave TSC, and s +P -wave TSC. Natural extension toward three-dimensional Weyl SCs is also discussed.

  12. Mind the Gap

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers have been able to study planet-forming discs around young Sun-like stars in unsurpassed detail, clearly revealing the motion and distribution of the gas in the inner parts of the disc. This result, which possibly implies the presence of giant planets, was made possible by the combination of a very clever method enabled by ESO's Very Large Telescope. Uncovering the disc ESO PR Photo 27a/08 Planet-forming Disc Planets could be home to other forms of life, so the study of exoplanets ranks very high in contemporary astronomy. More than 300 planets are already known to orbit stars other than the Sun, and these new worlds show an amazing diversity in their characteristics. But astronomers don't just look at systems where planets have already formed - they can also get great insights by studying the discs around young stars where planets may currently be forming. "This is like going 4.6 billion years back in time to watch how the planets of our own Solar System formed," says Klaus Pontoppidan from Caltech, who led the research. Pontoppidan and colleagues have analysed three young analogues of our Sun that are each surrounded by a disc of gas and dust from which planets could form. These three discs are just a few million years old and were known to have gaps or holes in them, indicating regions where the dust has been cleared and the possible presence of young planets. The new results not only confirm that gas is present in the gaps in the dust, but also enable astronomers to measure how the gas is distributed in the disc and how the disc is oriented. In regions where the dust appears to have been cleared out, molecular gas is still highly abundant. This can either mean that the dust has clumped together to form planetary embryos, or that a planet has already formed and is in the process of clearing the gas in the disc. For one of the stars, SR 21, a likely explanation is the presence of a massive giant planet orbiting at less than 3.5 times the distance

  13. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  14. GAP Analysis Bulletin Number 15

    USGS Publications Warehouse

    Maxwell, Jill; Gergely, Kevin; Aycrigg, Jocelyn; Canonico, Gabrielle; Davidson, Anne; Coffey, Nicole

    2008-01-01

    The Mission of the Gap Analysis Program (GAP) is to promote conservation by providing broad geographic information on biological diversity to resource managers, planners, and policy makers who can use the information to make informed decisions. As part of the National Biological Information Infrastructure (NBII) ?a collaborative program to provide increased access to data and information on the nation?s biological resources--GAP data and analytical tools have been used in hundreds of applications: from basic research to comprehensive state wildlife plans; from educational projects in schools to ecoregional assessments of biodiversity. The challenge: keeping common species common means protecting them BEFORE they become threatened. To do this on a state or regional basis requires key information such as land cover descriptions, predicted distribution maps for native animals, and an assessment of the level of protection currently given to those plants and animals. GAP works cooperatively with Federal, state, and local natural resource professionals and academics to provide this kind of information. GAP activities focus on the creation of state and regional databases and maps that depict patterns of land management, land cover, and biodiversity. These data can be used to identify ?gaps? in conservation--instances where an animal or plant community is not adequately represented on the existing network of conservation lands. GAP is administered through the U.S. Geological Survey. Through building partnerships among disparate groups, GAP hopes to foster the kind of collaboration that is needed to address conservation issues on a broad scale. For more information, contact: John Mosesso National GAP Director 703-648-4079 Kevin Gergely National GAP Operations Manager 208-885-3565

  15. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  16. CONTINUOUS ABORT GAP CLEANING AT RHIC.

    SciTech Connect

    DREES,A.FLILLER,R.III.FU,W.MICHNOFF,R.

    2004-07-05

    Since the RHIC Au-Au run in the year 2001 the 200 MHz cavity system was used at storage and a 28 MHz system during injection and acceleration. The rebucketing procedure potentially causes a higher debunching rate of heavy ion beams in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam can easily account for more than 50% of the total beam intensity. This effect is even stronger with the achieved high intensities of the RHIC Au-Au run in 2004. A beam abort at the presence of a lot of debunched beam bears the risk of magnet quenching and experimental detector damage due to uncontrolled beam losses. Thus it is desirable to avoid any accumulation of debunched beam from the beginning of each store, in particular to anticipate cases of unscheduled beam aborts due to a system failure. A combination of a fast transverse kickers and the new 2-stage copper collimator system are used to clean the abort gap continuously throughout the store with a repetition rate of 1 Hz. This report gives. an overview of the new gap cleaning procedure and the achieved performance.

  17. MTV1 and MTV4 Encode Plant-Specific ENTH and ARF GAP Proteins That Mediate Clathrin-Dependent Trafficking of Vacuolar Cargo from the Trans-Golgi Network[C][W

    PubMed Central

    Sauer, Michael; Delgadillo, M. Otilia; Zouhar, Jan; Reynolds, Gregory D.; Pennington, Janice G.; Jiang, Liwen; Liljegren, Sarah J.; Stierhof, York-Dieter; De Jaeger, Geert; Otegui, Marisa S.; Bednarek, Sebastian Y.; Rojo, Enrique

    2013-01-01

    Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an EPSIN N-TERMINAL HOMOLOGY protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein NEVERSHED/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants. PMID:23771894

  18. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  19. Pneumatic gap sensor and method

    DOEpatents

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  20. Senescence-accelerated OXYS rats

    PubMed Central

    Stefanova, Natalia A; Kozhevnikova, Oyuna S; Vitovtov, Anton O; Maksimova, Kseniya Yi; Logvinov, Sergey V; Rudnitskaya, Ekaterina A; Korbolina, Elena E; Muraleva, Natalia A; Kolosova, Nataliya G

    2014-01-01

    Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from Wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. In recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. In addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. With age, neurodegenerative changes in the brain of OXYS rats become amplified. We have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMD-like retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD. PMID:24552807

  1. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

    PubMed Central

    Park, Mi-Young; Kim, Min Young; Seo, Young Rok; Kim, Jong-Sang; Sung, Mi-Kyung

    2016-01-01

    Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in ApcMin/+ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2′-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis. PMID:27390738

  2. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  3. Switched matrix accelerator

    SciTech Connect

    Whittum, David H.; Tantawi, Sami G.

    2001-01-01

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We also provide an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392 GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  4. Switched Matrix Accelerator

    SciTech Connect

    Whittum, David H

    2000-10-04

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium.

  5. Studies on the cell biology of interendothelial cell gaps

    PubMed Central

    Ochoa, Cristhiaan D.

    2012-01-01

    Pain, redness, heat, and swelling are hallmarks of inflammation that were recognized as early as the first century AD. Despite these early observations, the mechanisms responsible for swelling, in particular, remained an enigma for nearly two millennia. Only in the past century have scientists and physicians gained an appreciation for the role that vascular endothelium plays in controlling the exudation that is responsible for swelling. One of these mechanisms is the formation of transient gaps between adjacent endothelial cell borders. Inflammatory mediators act on endothelium to reorganize the cytoskeleton, decrease the strength of proteins that connect cells together, and induce transient gaps between endothelial cells. These gaps form a paracellular route responsible for exudation. The discovery that interendothelial cell gaps are causally linked to exudation began in the 1960s and was accompanied by significant controversy. Today, the role of gap formation in tissue edema is accepted by many, and significant scientific effort is dedicated toward developing therapeutic strategies that will prevent or reverse the endothelial cell gaps that are present during the course of inflammatory illness. Given the importance of this field in endothelial cell biology and inflammatory disease, this focused review catalogs key historical advances that contributed to our modern-day understanding of the cell biology of interendothelial gap formation. PMID:21964402

  6. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  7. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  8. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  9. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  10. Fermilab tevatron high level RF accelerating systems

    SciTech Connect

    Kerns, Q.; Kerns, C.; Miller, H.; Reid, J.; Tawzer, S.; Webber, R.; Wildman, D.

    1985-10-01

    Eight tuned rf cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an rf signal representing the amplitude and phase as ''seen by the beam,'' separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer. A cavity consists of two quarter-wave resonators placed back to back with a coaxial drift tube separating the two accelerating gaps by ..pi.. radians. The cavities are very similar to the prototype which has been previously described/sup 3/ and is operating as Station 8 in the Tevatron. Only additional water cooling around the high current region of the drift tube supports and a double loop used to monitor the unbalance current through the Hipernom mode damping resistor have been added. Each cavity has a Q of about7100, a shunt impedance of 1.2 M..cap omega.., and is capable of running cw with a peak accelerating voltage of 360

  11. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  12. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  13. Particle acceleration in flares

    NASA Technical Reports Server (NTRS)

    Benz, Arnold O.; Kosugi, Takeo; Aschwanden, Markus J.; Benka, Steve G.; Chupp, Edward L.; Enome, Shinzo; Garcia, Howard; Holman, Gordon D.; Kurt, Victoria G.; Sakao, Taro

    1994-01-01

    Particle acceleration is intrinsic to the primary energy release in the impulsive phase of solar flares, and we cannot understand flares without understanding acceleration. New observations in soft and hard X-rays, gamma-rays and coherent radio emissions are presented, suggesting flare fragmentation in time and space. X-ray and radio measurements exhibit at least five different time scales in flares. In addition, some new observations of delayed acceleration signatures are also presented. The theory of acceleration by parallel electric fields is used to model the spectral shape and evolution of hard X-rays. The possibility of the appearance of double layers is further investigated.

  14. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  15. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. PMID:24365468

  16. Charged particle accelerator grating

    DOEpatents

    Palmer, Robert B.

    1986-09-02

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  17. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    PubMed

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times. PMID:25705700

  18. Eight electrode optical readout gap

    DOEpatents

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  19. Gap Filling in Road Extraction Using Radon Transformation

    NASA Astrophysics Data System (ADS)

    Matkan, A. A.; Hajeb, M.; Eslami, M.; Pourali, H.; Sadeghian, S.

    2012-07-01

    Road information has a key role in many applications such as transportation, automatic navigation, traffic management, crisis management, and also to facilitate and accelerate updating databases in a GIS. Therefore in the past two decades, automatic road extraction has become an important issue in remote sensing, photogrammetry and computer vision. An essential challenge in road extraction process is filling the gaps which have appeared due to getting placed under trees, tunnels or any other reason. Connection of roads is a momentous topological property that is necessity to perform most of the spatial analyses. Hence, Gap filling is an important post-process. The main aim of this paper is to provide a method which is applicable in road extraction algorithms to automatic fill the gaps. The proposed algorithm is based on Radon transformation and has four stags. In the first stage, detected road are thinned insofar as one pixel width is achieved. Then endpoints are detected. In the second stage, regarding to some constraints those endpoints which do not belong to any gaps are identified and deleted from endpoints list. In the third stage, the real gaps are found using the road direction computed by used of Radon technique. In fourth stage, the selected endpoints are connected together using Spline interpolation. This algorithm is applied on several datasets and also on a real detected road. The experimental results show that the proposed algorithm has good performance on straight roads but it does not work well in intersections, due to being direction-oriented.

  20. Pneumatic gap sensor and method

    SciTech Connect

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    This patent describes in a casting system which including an apparatus for monitoring the gap between a casting nozzle and a casting surface of a substrate during casting of molten material, wherein the molten material is provided through a channel of the casting nozzle for casting onto the casting surface of the substrate for solidification. It comprises: a pneumatic gap mounted at least partially within a cavity in the casting nozzle adjacent the channel and having a sensor face located within the gap between the nozzle and the casting surface of the substrate, means for supply gas under predetermined pressure to the inlet orifice; and means for measuring the pressure of the gas within the sensor chamber during casting procedures, whereby relative changes in the gap can be determined by corresponding changes in the measured pressure. This patent also describes a method for monitoring the gap between a casting nozzle and a casting surface of a substrate for continuous casting of molten material. It comprises: providing a casting nozzle with a channel for directing the flow of molten material, locating the nozzle and the casting surface is proximity with one another and having a predetermined gap there-between, and dressing the sensor face to correspond in conformation to the casting surface and to adjust the predetermined distance as desired; providing a molten material to the nozzle for casting onto and casting surface; supplying gas at a predetermined pressure to the inlet orifice of the sensor during casting procedures.

  1. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  2. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  3. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  4. TE sub r azimuthal modes for a biconic transmission line in the small-gap limit

    SciTech Connect

    Johnson, W.A.; Mendel, C.W. Jr.; Seidel, D.B. )

    1992-04-15

    Azimuthally asymmetric modes in a biconic transmission line with a small-gap angle may be approximated by transmission-line-like'' modes. It is shown that the errors in these approximations are second order in the gap angle and approximate error bounds are provided. As an example demonstrating the application of this analysis in biconic structures, an analysis to characterize of the electromagnetic waves in the vacuum feed of the Particle Beam Fusion Accelerator II is provided.

  5. Verb gapping: an action-gap compatibility study.

    PubMed

    Claus, Berry

    2015-03-01

    This study addresses the processing of verb-gapping sentences, e.g., John closes a juice bottle and Jim [ ] a lemonade bottle. The goal was to explore if there would be an interaction between language comprehension and motor action not only for overt action verbs but also for gapped verbs. Participants read gapping sentences that either described clockwise or counter-clockwise manual rotations (e.g., closes vs. opens a juice bottle). Adopting a paradigm developed by Zwaan and Taylor (2006), sentence presentation was frame-by-frame. Participants proceeded from frame to frame by turning a knob either clockwise or counter clockwise. Analyses of the frame reading-times yielded a significant effect of compatibility between the linguistically conveyed action and the knob turning for the overt-verb (e.g., closes/opens a juice bottle) as well as for the gapped-verb frame (e.g., a lemonade bottle) - with longer reading times in the match condition than in the mismatch condition - but not for any of the other frames (e.g., and Jim). The results are promising in providing novel evidence for the real-time reactivation of gapped verbs and in suggesting that action simulation is not bound to the processing of overt verbs. PMID:25103783

  6. Convergent Use of RhoGAP Toxins by Eukaryotic Parasites and Bacterial Pathogens

    PubMed Central

    Colinet, Dominique; Schmitz, Antonin; Depoix, Delphine; Crochard, Didier; Poirié, Marylène

    2007-01-01

    Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs) to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain–containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals. PMID:18166080

  7. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  8. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  9. Accelerators (4/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  10. Accelerators (3/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Accelerators (5/5)

    ScienceCinema

    None

    2016-07-12

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Accelerators (5/5)

    SciTech Connect

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Accelerators (4/5)

    SciTech Connect

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (3/5)

    SciTech Connect

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  16. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  17. Microscale acceleration history discriminators

    DOEpatents

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  18. Diagnostics for induction accelerators

    SciTech Connect

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960`s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore`s Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail.

  19. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  20. Accelerating molecular docking calculations using graphics processing units.

    PubMed

    Korb, Oliver; Stützle, Thomas; Exner, Thomas E

    2011-04-25

    The generation of molecular conformations and the evaluation of interaction potentials are common tasks in molecular modeling applications, particularly in protein-ligand or protein-protein docking programs. In this work, we present a GPU-accelerated approach capable of speeding up these tasks considerably. For the evaluation of interaction potentials in the context of rigid protein-protein docking, the GPU-accelerated approach reached speedup factors of up to over 50 compared to an optimized CPU-based implementation. Treating the ligand and donor groups in the protein binding site as flexible, speedup factors of up to 16 can be observed in the evaluation of protein-ligand interaction potentials. Additionally, we introduce a parallel version of our protein-ligand docking algorithm PLANTS that can take advantage of this GPU-accelerated scoring function evaluation. We compared the GPU-accelerated parallel version to the same algorithm running on the CPU and also to the highly optimized sequential CPU-based version. In terms of dependence of the ligand size and the number of rotatable bonds, speedup factors of up to 10 and 7, respectively, can be observed. Finally, a fitness landscape analysis in the context of rigid protein-protein docking was performed. Using a systematic grid-based search methodology, the GPU-accelerated version outperformed the CPU-based version with speedup factors of up to 60. PMID:21434638

  1. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  2. Cascaded radiation pressure acceleration

    SciTech Connect

    Pei, Zhikun; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Wang, Wenpeng; Zhang, Lingang; Yi, Longqing; Shi, Yin; Xu, Zhizhan

    2015-07-15

    A cascaded radiation-pressure acceleration scheme is proposed. When an energetic proton beam is injected into an electrostatic field moving at light speed in a foil accelerated by light pressure, protons can be re-accelerated to much higher energy. An initial 3-GeV proton beam can be re-accelerated to 7 GeV while its energy spread is narrowed significantly, indicating a 4-GeV energy gain for one acceleration stage, as shown in one-dimensional simulations and analytical results. The validity of the method is further confirmed by two-dimensional simulations. This scheme provides a way to scale proton energy at the GeV level linearly with laser energy and is promising to obtain proton bunches at tens of gigaelectron-volts.

  3. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  4. Explaining the gender wealth gap.

    PubMed

    Ruel, Erin; Hauser, Robert M

    2013-08-01

    To assess and explain the United States' gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family's best financial reporters. We find large gender wealth gaps between currently married men and women, and between never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. After controlling for the full model, we find that a gender wealth gap remains between married men and women that we speculate may be related to gender differences in investment strategies and selection effects.

  5. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  6. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  7. Radio frequency focused interdigital linear accelerator

    DOEpatents

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  8. Large electrostatic accelerators

    SciTech Connect

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  9. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  10. Direct band gap silicon allotropes.

    PubMed

    Wang, Qianqian; Xu, Bo; Sun, Jian; Liu, Hanyu; Zhao, Zhisheng; Yu, Dongli; Fan, Changzeng; He, Julong

    2014-07-16

    Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in solar cell industry. The great demand of society for new clean energy and the shortcomings of the current silicon solar cells are calling for new materials that can make full use of the solar power. In this paper, six metastable allotropes of silicon with direct or quasidirect band gaps of 0.39-1.25 eV are predicted by ab initio calculations at ambient pressure. Five of them possess band gaps within the optimal range for high converting efficiency from solar energy to electric power and also have better optical properties than the Si-I phase. These Si structures with different band gaps could be applied to multiple p-n junction photovoltaic modules.

  11. ABORT GAP CLEANING IN RHIC.

    SciTech Connect

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  12. Folk Belief Theory, the Rigor Gap, and the Achievement Gap

    ERIC Educational Resources Information Center

    Torff, Bruce

    2014-01-01

    Folk belief theory is suggested as a primary cause for the persistence of the achievement gap. In this research-supported theory, culturally specified folk beliefs about learning and teaching prompt educators to direct more rigorous curriculum to high-advantage students but not to low-advantage students, resulting in impoverished pedagogy in…

  13. Minority Gaps Smaller in Some Pentagon Schools. The Achievement Gap.

    ERIC Educational Resources Information Center

    Viadero, Debra

    2000-01-01

    This third in a four-part series on why academic achievement gaps exist explains how U.S. Department of Defense schools for children of military families offer lessons on how to raise academic achievement among minority students. Minority students in these schools do better than their counterparts almost anywhere in the United States on…

  14. Twisted waveguide accelerating structure.

    SciTech Connect

    Kang, Y. W.

    2000-08-15

    A hollow waveguide with a uniform cross section may be used for accelerating charged particles if the phase velocity of an accelerating mode is equal to or less than the free space speed of light. Regular straight hollow waveguides have phase velocities of propagating electromagnetic waves greater than the free-space speed of light. if the waveguide is twisted, the phase velocities of the waveguide modes become slower. The twisted waveguide structure has been modeled and computer simulated in 3-D electromagnetic solvers to show the slow-wave properties for the accelerating mode.

  15. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  16. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  17. NOMA-GAP/ARHGAP33 regulates synapse development and autistic-like behavior in the mouse.

    PubMed

    Schuster, S; Rivalan, M; Strauss, U; Stoenica, L; Trimbuch, T; Rademacher, N; Parthasarathy, S; Lajkó, D; Rosenmund, C; Shoichet, S A; Winter, Y; Tarabykin, V; Rosário, M

    2015-09-01

    Neuropsychiatric developmental disorders, such as autism spectrum disorders (ASDs) and schizophrenia, are typically characterized by alterations in social behavior and have been linked to aberrant dendritic spine and synapse development. Here we show, using genetically engineered mice, that the Cdc42 GTPase-activating multiadaptor protein, NOMA-GAP, regulates autism-like social behavior in the mouse, as well as dendritic spine and synapse development. Surprisingly, we were unable to restore spine morphology or autism-associated social behavior in NOMA-GAP-deficient animals by Cre-mediated deletion of Cdc42 alone. Spine morphology can be restored in vivo by re-expression of wild-type NOMA-GAP or a mutant of NOMA-GAP that lacks the RhoGAP domain, suggesting that other signaling functions are involved. Indeed, we show that NOMA-GAP directly interacts with several MAGUK (membrane-associated guanylate kinase) proteins, and that this modulates NOMA-GAP activity toward Cdc42. Moreover, we demonstrate that NOMA-GAP is a major regulator of PSD-95 in the neocortex. Loss of NOMA-GAP leads to strong upregulation of serine 295 phosphorylation of PSD-95 and moreover to its subcellular mislocalization. This is associated with marked loss of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and defective synaptic transmission, thereby providing a molecular basis for autism-like social behavior in the absence of NOMA-GAP.

  18. Molecular and Behavioral Changes Associated with Adult Hippocampus-Specific SynGAP1 Knockout

    ERIC Educational Resources Information Center

    Muhia, Mary; Willadt, Silvia; Yee, Benjamin K.; Feldon, Joram; Paterna, Jean-Charles; Schwendener, Severin; Vogt, Kaspar; Kennedy, Mary B.; Knuesel, Irene

    2012-01-01

    The synaptic Ras/Rap-GTPase-activating protein (SynGAP1) plays a unique role in regulating specific downstream intracellular events in response to N-methyl-D-aspartate receptor (NMDAR) activation. Constitutive heterozygous loss of SynGAP1 disrupts NMDAR-mediated physiological and behavioral processes, but the disruptions might be of developmental…

  19. A C-terminal mutant of CCAAT-enhancer-binding protein α (C/EBPα-Cm) downregulates Csf1r, a potent accelerator in the progression of acute myeloid leukemia with C/EBPα-Cm.

    PubMed

    Togami, Katsuhiro; Kitaura, Jiro; Uchida, Tomoyuki; Inoue, Daichi; Nishimura, Koutarou; Kawabata, Kimihito C; Nagase, Reina; Horikawa, Sayuri; Izawa, Kumi; Fukuyama, Tomofusa; Nakahara, Fumio; Oki, Toshihiko; Harada, Yuka; Harada, Hironori; Aburatani, Hiroyuki; Kitamura, Toshio

    2015-04-01

    Two types of CCAAT-enhancer-binding protein α (C/EBPα) mutants are found in acute myeloid leukemia (AML) patients: N-terminal frame-shift mutants (C/EBPα-N(m)) generating p30 as a dominant form and C-terminal basic leucine zipper domain mutants (C/EBPα-C(m)). We have previously shown that C/EBPα-K304_R323dup belonging to C/EBPα-C(m), but not C/EBPα-T60fsX159 belonging to C/EBPα-N(m), alone induced AML in mouse bone marrow transplantation (BMT) models. Here we show that various C/EBPα-C(m) mutations have a similar, but not identical, potential in myeloid leukemogenesis. Notably, like C/EBPα-K304_R323dup, any type of C/EBPα-C(m) tested (C/EBPα-S299_K304dup, K313dup, or N321D) by itself induced AML, albeit with different latencies after BMT; C/EBPα-N321D induced AML with the shortest latency. By analyzing the gene expression profiles of C/EBPα-N321D- and mock-transduced c-kit(+)Sca-1(+)Lin(-) cells, we identified Csf1r as a gene downregulated by C/EBPα-N321D. In addition, leukemic cells expressing C/EBPα-C(m) exhibited low levels of colony stimulating factor 1 receptor in mice. On the other hand, transduction with C/EBPα-N(m) did not influence Csf1r expression in c-kit(+)Sca-1(+)Lin(-) cells, implying a unique role for C/EBPα-C(m) in downregulating Csf1r. Importantly, Csf1r overexpression collaborated with C/EBPα-N321D to induce fulminant AML with leukocytosis in mouse BMT models to a greater extent than did C/EBPα-N321D alone. Collectively, these results suggest that C/EBPα-C(m)-mediated downregulation of Csf1r has a negative, rather than a positive, impact on the progression of AML involving C/EBPα-C(m), which might possibly be accelerated by additional genetic and/or epigenetic alterations inducing Csf1r upregulation.

  20. Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10.

    PubMed

    Yamada, Hazuki; Tsutsumi, Koji; Nakazawa, Yuki; Shibagaki, Yoshio; Hattori, Seisuke; Ohta, Yasutaka

    2016-01-01

    FilGAP is a Rac-specific GTPase-activating protein (GAP) that suppresses lamellae formation. In this study, we have identified RBM10 (RNA Binding Motif domain protein 10) as a FilGAP-interacting protein. Although RBM10 is mostly localized in the nuclei in human melanoma A7 cells, forced expression of Src family tyrosine kinase Fyn induced translocation of RBM10 from nucleus into cell peripheries where RBM10 and FilGAP are co-localized. The translocation of RBM10 from nucleus appears to require catalytic activity of Fyn since kinase-negative Fyn mutant failed to induce translocation of RBM10 in A7 cells. When human breast carcinoma MDA-MB-231 cells are spreading on collagen-coated coverslips, endogenous FilGAP and RBM10 were localized at the cell periphery with tyrosine-phosphorylated proteins. RBM10 appears to be responsible for targeting FilGAP at the cell periphery because depletion of RBM10 by siRNA abrogated peripheral localization of FilGAP during cell spreading. Association of RBM10 with FilGAP may stimulate RacGAP activity of FilGAP. First, forced expression of RBM10 suppressed FilGAP-mediated cell spreading on collagen. Conversely, depletion of endogenous RBM10 by siRNA abolished FilGAP-mediated suppression of cell spreading on collagen. Second, FilGAP suppressed formation of membrane ruffles induced by Fyn and instead produced spiky cell protrusions at the cell periphery. This protrusive structure was also induced by depletion of Rac, suggesting that the formation of protrusions may be due to suppression of Rac by FilGAP. We found that depletion of RBM10 markedly reduced the formation of protrusions in cells transfected with Fyn and FilGAP. Finally, depletion of RBM10 blocked FilGAP-mediated suppression of ruffle formation induced by EGF. Taken together, these results suggest that Src family tyrosine kinase signaling may regulate FilGAP through association with RBM10. PMID:26751795