Science.gov

Sample records for accelerating rate calorimetry

  1. Accelerating rate calorimetry: A new technique for safety studies in lithium systems

    NASA Technical Reports Server (NTRS)

    Ebner, W. B.

    1982-01-01

    The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.

  2. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry

    NASA Astrophysics Data System (ADS)

    Feng, Xuning; Fang, Mou; He, Xiangming; Ouyang, Minggao; Lu, Languang; Wang, Hao; Zhang, Mingxuan

    2014-06-01

    In this paper, the thermal runaway features of a 25 Ah large format prismatic lithium ion battery with Li(NixCoyMnz)O2 (NCM) cathode are evaluated using the extended volume-accelerating rate calorimetry (EV-ARC). 4 thermocouples are set at different positions of the battery. The temperature inside the battery is 870 °C or so, much higher than that outside the battery. The temperature difference is calculated from the recorded data. The temperature difference within the battery stays lower than 1 °C for 97% of the test period, while it rises to its highest, approximately 520 °C, when thermal runaway happens. The voltage of the battery is also measured during the test. It takes 15-40 s from the sharp drop of voltage to the instantaneous rise of temperature. Such a time interval is beneficial for early warning of the thermal runaway. Using a pulse charge/discharge profile, the internal resistance is derived from the quotient of the pulse voltage and the current during the ARC test. The internal resistance of the battery increases slowly from 20 mΩ to 60 mΩ before thermal runaway, while it rises to 370 mΩ when thermal runaway happens indicating the loss of the integrity of the separator or the battery swell.

  3. Thermal characterization of Li/sulfur, Li/ S-LiFePO4 and Li/S-LiV3O8 cells using Isothermal Micro-Calorimetry and Accelerating Rate Calorimetry

    NASA Astrophysics Data System (ADS)

    Seo, Jeongwook; Sankarasubramanian, Shrihari; Kim, Chi-Su; Hovington, Pierre; Prakash, Jai; Zaghib, Karim

    2015-09-01

    The thermal behavior of three cathode materials for the lithium/sulfur (Li/S) cell, namely - sulfur, sulfur-LiFePO4 (S-LFP) composite and sulfur-LiV3O8 (S-LVO) composite was studied using Isothermal Micro-Calorimetry (IMC) at various discharge rates. A continuum model was used to calculate the reversible entropic heat and irreversible resistive heat generated over the discharge process and the model data was compared to the experimental data to elucidate contributions of reversible and irreversible heats to the overall heat generated during discharge. The reaction enthalpy (ΔHRx) was measured using IMC for each elementary reaction step and in combination with the calculated reversible entropic heat and irreversible resistive heat was fitted against the experimental total heat measurement. The model showed an excellent fit against the experimental data. Further, Accelerating Rate Calorimetry (ARC) was used to study the thermal safety of these three cells. The cell with the S-LVO composite cathode was found to have the highest onset temperature for thermal runaway and also the lowest maximum self-heat rate. Results of this study suggest that S-LVO composite is a promising electrode for Li/S cells.

  4. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Nie, Mengyun; Xia, Jian; Dahn, J. R.

    2016-09-01

    The reactivity between charged Li[NixMnyCoz]O2 (NMC, with x + y + z = 1, x:y:z = 1:1:1 (NMC111), 4:4:2 (NMC442), 5:3:2 (NMC532), 6:2:2 (NMC622) and 8:1:1 (NMC811)) and traditional carbonate-based electrolytes at elevated temperatures was systematically studied using accelerating rate calorimetry (ARC). The ARC results showed that the upper cut-off potential and NMC composition strongly affect the thermal stability of the various NMC grades when traditional carbonate-based electrolyte was used. Although higher cut-off potential and higher Ni content can help increase the energy density of lithium ion cells, these factors generally increase the reactivity between charged NMC and electrolyte at elevated temperatures. It is hoped that this report can be used to help guide the wise selection of NMC grade and upper cut-off potential to achieve high energy density Li-ion cells without seriously compromising cell safety.

  5. Estimation of the nucleation rate by differential scanning calorimetry

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1992-01-01

    A realistic computer model is presented for calculating the time-dependent volume fraction transformed during the devitrification of glasses, assuming the classical theory of nucleation and continuous growth. Time- and cluster-dependent nucleation rates are calculated by modeling directly the evolving cluster distribution. Statistical overlap in the volume fraction transformed is taken into account using the standard Johnson-Mehl-Avrami formalism. Devitrification behavior under isothermal and nonisothermal conditions is described. The model is used to demonstrate that the recent suggestion by Ray and Day (1990) that nonisothermal DSC studies can be used to determine the temperature for the peak nucleation rate, is qualitatively correct for lithium disilicate, the glass investigated.

  6. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Parker, J. A.; Duskin, F.; Speith, H.; Trabold, E.

    1980-01-01

    Multilayered samples of contemporary and improved fire-resistant aircraft seat materials were evaluated for their rates of heat release and smoke generation. Top layers with glass-fiber block cushion were evaluated to determine which materials, based on their minimum contributions to the total heat release of the multilayered assembly, may be added or deleted. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/cm2. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers

  7. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Parker, J. A.; Duskin, F.; Spieth, H.; Trabold, E.

    1980-01-01

    Multilayered samples of contemporary and improved fire-resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire-blocking layer, and cushion-reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass-fiber block cushion were evaluated to determine which materials, based on their minimum contributions to the total heat release of the multilayered assembly, may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat-release rate of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicon adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis.

  8. Comparison of Indirect Calorimetry and Predictive Equations in Estimating Resting Metabolic Rate in Underweight Females

    PubMed Central

    ALIASGHARZADEH, Soghra; MAHDAVI, Reza; ASGHARI JAFARABADI, Mohammad; NAMAZI, Nazli

    2015-01-01

    Background: Underweight as a public health problem in young women is associated with nutritional deficiencies, menstrual irregularity, eating disorders, reduced fertility, etc. Since resting metabolic rate (RMR) is a necessary component in the development of nutrition support therapy, therefore we determined the accuracy of commonly used predictive equations against RMR measured by indirect calorimetry among healthy young underweight females. Methods: This cross-sectional study was conducted on 104 underweight females aged 18–30 years old with body mass index (BMI) <18.5 kg/m2 in 2013. After collecting anthropometric data, body composition was measured by bioelectric impedance analysis (BIA). RMR was measured by using indirect calorimetry (FitMate™) and was estimated by 10 commonly used predictive equations. Comparisons were conducted using paired t-test. The accuracy of the RMR equations was evaluated on the basis of the percentage of subjects’ predicted RMR within 10% of measured RMR. Results: The mean BMI of subjects was 17.3±1.3 kg/m2. The measured RMR ranged 736–1490 kcal/day (mean 1084.7±175 kcal/day). Findings indicated that except Muller and Abbreviation, other equations significantly over estimated RMR, compared to measured value (P<0.05). As an individual prediction accuracy, these predictive equations showed poor performance with the highest accuracy rate of 54.8% for Muller equation (22.1% under and 23.1% over-prediction) and 43.3% for Abbreviation equation (31.7% under and 25% over-prediction), the percentage bias was 1.8% and 0.63% and RMSE was 162 and 173 kcal/d, respectively. Conclusion: Although Muller equation gave fairly acceptable prediction, more suitable new equations are needed to be developed to help better management of nutritional plans in young underweight people. PMID:26258095

  9. Energy expenditure in children predicted from heart rate and activity calibrated against respiration calorimetry.

    PubMed

    Treuth, M S; Adolph, A L; Butte, N F

    1998-07-01

    The purpose of this study was to predict energy expenditure (EE) from heart rate (HR) and activity calibrated against 24-h respiration calorimetry in 20 children. HR, oxygen consumption (VO2), carbon dioxide production (VCO2), and EE were measured during rest, sleep, exercise, and over 24 h by room respiration calorimetry on two separate occasions. Activity was monitored by a leg vibration sensor. The calibration day (day 1) consisted of specified behaviors categorized as inactive (lying, sitting, standing) or active (two bicycle sessions). On the validation day (day 2), the child selected activities. Separate regression equations for VO2, VCO2, and EE for method 1 (combining awake and asleep using HR, HR2, and HR3), method 2 (separating awake and asleep), and method 3 (separating awake into active and inactive, and combining activity and HR) were developed using the calibration data. For day 1, the errors were similar for 24-h VO2, VCO2, and EE among methods and also among HR, HR2, and HR3. The methods were validated using measured data from day 2. There were no significant differences in HR, VO2, VCO2, respiratory quotient, and EE values during rest, sleep, or over the 24 h between days 1 and 2. Applying the linear HR equations to day 2 data, the errors were the lowest with the combined HR/activity method (-2.6 +/- 5.2%, -4.1 +/- 5.9%, -2.9 +/- 5.1% for VO2, VCO2, and EE, respectively). To demonstrate the utility of the HR/activity method, HR and activity were monitored for 24 h at home (day 3). Free-living EE was predicted as 7,410 +/- 1,326 kJ/day. In conclusion, the combination of HR and activity is an acceptable method for determining EE not only for groups of children, but for individuals. PMID:9688868

  10. On the accuracy of instantaneous gas exchange rates, energy expenditure, and respiratory quotient calculations obtained in indirect whole room calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molar balance equations of indirect calorimetry are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes heed to be inferred from a known noisy effect – gaseous concentrations. Two methods of such inversion are analyzed. Th...

  11. Quantifying the rates of relaxation of binary mixtures of amorphous pharmaceuticals with isothermal calorimetry.

    PubMed

    Alem, Naziha; Beezer, Anthony E; Gaisford, Simon

    2010-10-31

    While the use of isothermal calorimetry to quantify the rate of relaxation of one-phase amorphous pharmaceuticals, through application of models, is well documented, the resolution of the models to detect and quantify relaxation in systems containing two independent amorphous phases is not known. Addressing this knowledge gap is the focus of this work. Two fitting models were tested; the Kohlrausch-Williams-Watts model (KWW) and the modified-stretch exponential (MSE). The ability of each model to resolve relaxation processes in binary systems was determined with simulated calorimetric data. It was found that as long as the relaxation time constants of the relaxation processes were with 10(3) of each other, the models could determine that two events were occurring and could quantify the correct reaction parameters of each. With greater differences in the time constants, the faster process always dominates the data and the resolving power of the models is lost. Real calorimetric data were then obtained for two binary amorphous systems (sucrose-lactose and sucrose-indomethacin mixtures). The relaxation behaviour of all the single components was characterised as they relaxed individually to provide reference data. The ability of the KWW model to recover the expected relaxation parameters for two component data was impaired because of their inherently noisy nature. The MSE model reasonably recovered the expected parameters for each component for the sucrose-indomethacin system but not for the sucrose-lactose system, which may indicate a possible interaction in that case. PMID:20655372

  12. CALORIMETRY OF GRB 030329: SIMULTANEOUS MODEL FITTING TO THE BROADBAND RADIO AFTERGLOW AND THE OBSERVED IMAGE EXPANSION RATE

    SciTech Connect

    Mesler, Robert A.; Pihlstroem, Ylva M.

    2013-09-01

    We perform calorimetry on the bright gamma-ray burst GRB 030329 by fitting simultaneously the broadband radio afterglow and the observed afterglow image size to a semi-analytic MHD and afterglow emission model. Our semi-analytic method is valid in both the relativistic and non-relativistic regimes, and incorporates a model of the interstellar scintillation that substantially effects the broadband afterglow below 10 GHz. The model is fitted to archival measurements of the afterglow flux from 1 day to 8.3 yr after the burst. Values for the initial burst parameters are determined and the nature of the circumburst medium is explored. Additionally, direct measurements of the lateral expansion rate of the radio afterglow image size allow us to estimate the initial Lorentz factor of the jet.

  13. Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    This meeting marks the the International Year of Astronomy by reviewing the extent to which astronomers are achieving the optimal rate of astronomical discovery. Can we identify and overcome the limits to progress? What steps can be taken to accelerate the rate of expansion of astronomical knowledge? What lessons can be learnt both from the recent and distant past? As the public announcements regarding the 2009 IYA have emphasized, new astronomical discoveries are currently being made at an extraordinary rate, while the invention of the telescope ushered in an equally momentous "golden age of discovery" 400 years ago. The meeting addresses a range of potential limits to progress-paradigmatic, technological, organizational, and political-examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. The program focusses on how astronomy actually progresses, using careful historical studies and real data, rather than anecdotes and folklore.

  14. Quantum Calorimetry

    NASA Technical Reports Server (NTRS)

    Stahle, Caroline Kilbourne; McCammon, Dan; Irwin, Kent D.

    1999-01-01

    Your opponent's serve was almost perfect, but you vigorously returned it beyond his outstretched racquet to win the point. Now the tennis ball sits wedged in the chain-link fence around the court. What happened to the ball's kinetic energy? It has gone to heat the fence, of course, and you realize that if the fence were quite colder, you might be able to measure that heat and determine just how energetic your swing really was. Calorimetry has been a standard measurement technique since James Joule and Julius von Mayer independently concluded, about 150 years ago, that heat is a form of energy. But only in the past 15 years or so has calorimetry been applied, at millikelvin temperatures, to the measurement of the energy of individual photons and particles with exquisite sensitivity. In this article, we have tried to show that continuing research in low-temperature physics leads to a greater understanding of high-temperature astrophysics. Adaptations of the resulting spectrometers will be useful tool for fields of research beyond astrophysics.

  15. Validation and recovery rates of an indirect calorimetry headbox system used to measure heat production of cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A headbox system was constructed at the University of Nebraska-Lincoln to determine heat production from dairy cattle using indirect calorimetry. The system was designed for use in a tie-stall barn to allow the animal to be comfortable and was mounted on wheels to transport between animals between s...

  16. Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry

    PubMed Central

    Burnett, Colin M.L.; Grobe, Justin L.

    2014-01-01

    Resting metabolic rate (RMR) studies frequently involve genetically-manipulated mice and high fat diets (HFD). We hypothesize that the use of inadequate methods impedes the identification of novel regulators of RMR. This idea was tested by simultaneously measuring RMR by direct calorimetry and respirometry in C57BL/6J mice fed chow, 45% HFD, and then returned to chow. Comparing results during chow feeding uncovered an underestimation of RMR by respirometry (0.010 ± 0.001 kcal/h, P < 0.05), which is equivalent in magnitude to ∼2% of total daily caloric turnover. RMR during 45% HFD feeding was increased by respirometry (+0.013 ± 0.003 kcal/h, P < 0.05), but not direct calorimetry (+0.001 ± 0.002 kcal/h). Both methods indicated that return to chow reduced RMR compared to HFD, though direct calorimetry indicated a reduction below the initial chow fed state (−0.019 ± 0.004 kcal/h versus baseline, P < 0.05) that was not detected by respirometry (−0.003 ± 0.002 kcal/h versus baseline). These results highlight method-specific interpretations of the effects of dietary interventions upon RMR in mice, and prompt the reevaluation of preclinical screening methods used to identify novel RMR modulators. PMID:24944905

  17. ON PARTICLE ACCELERATION RATE IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Sagi, Eran; Nakar, Ehud

    2012-04-10

    It is well known that collisionless shocks are major sites of particle acceleration in the universe, but the details of the acceleration process are still not well understood. The particle acceleration rate, which can shed light on the acceleration process, is rarely measured in astrophysical environments. Here, we use observations of gamma-ray burst (GRB) afterglows, which are weakly magnetized relativistic collisionless shocks in ion-electron plasma, to constrain the rate of particle acceleration in such shocks. We find, based on X-ray and GeV afterglows, an acceleration rate that is most likely very fast, approaching the Bohm limit, when the shock Lorentz factor is in the range of {Gamma} {approx} 10-100. In that case X-ray observations may be consistent with no amplification of the magnetic field in the shock upstream region. We examine the X-ray afterglow of GRB 060729, which is observed for 642 days showing a sharp decay in the flux starting about 400 days after the burst, when the shock Lorentz factor is {approx}5. We find that inability to accelerate X-ray-emitting electrons at late time provides a natural explanation for the sharp decay, and that also in that case acceleration must be rather fast, and cannot be more than a 100 times slower than the Bohm limit. We conclude that particle acceleration is most likely fast in GRB afterglows, at least as long as the blast wave is ultrarelativistic.

  18. THE SPECIFIC ACCELERATION RATE IN LOOP-STRUCTURED SOLAR FLARES-IMPLICATIONS FOR ELECTRON ACCELERATION MODELS

    SciTech Connect

    Guo, Jingnan; Emslie, A. Gordon; Piana, Michele E-mail: piana@dima.unige.it

    2013-03-20

    We analyze electron flux maps based on RHESSI hard X-ray imaging spectroscopy data for a number of extended coronal-loop flare events. For each event, we determine the variation of the characteristic loop length L with electron energy E, and we fit this observed behavior with models that incorporate an extended acceleration region and an exterior 'propagation' region, and which may include collisional modification of the accelerated electron spectrum inside the acceleration region. The models are characterized by two parameters: the plasma density n in, and the longitudinal extent L{sub 0} of, the acceleration region. Determination of the best-fit values of these parameters permits inference of the volume that encompasses the acceleration region and of the total number of particles within it. It is then straightforward to compute values for the emission filling factor and for the specific acceleration rate (electrons s{sup -1} per ambient electron above a chosen reference energy). For the 24 events studied, the range of inferred filling factors is consistent with a value of unity. The inferred mean value of the specific acceleration rate above E{sub 0} = 20 keV is {approx}10{sup -2} s{sup -1}, with a 1{sigma} spread of about a half-order-of-magnitude above and below this value. We compare these values with the predictions of several models, including acceleration by large-scale, weak (sub-Dreicer) fields, by strong (super-Dreicer) electric fields in a reconnecting current sheet, and by stochastic acceleration processes.

  19. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  20. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  1. A count rate based contamination control standard for electron accelerators

    SciTech Connect

    May, R.T.; Schwahn, S.O.

    1996-12-31

    Accelerators of sufficient energy and particle fluence can produce radioactivity as an unwanted byproduct. The radioactivity is typically imbedded in structural materials but may also be removable from surfaces. Many of these radionuclides decay by positron emission or electron capture; they often have long half lives and produce photons of low energy and yield making detection by standard devices difficult. The contamination control limit used throughout the US nuclear industry and the Department of Energy is 1,000 disintegrations per minute. This limit is based on the detection threshold of pancake type Geiger-Mueller probes for radionuclides of relatively high radiotoxicity, such as cobalt-60. Several radionuclides of concern at a high energy electron accelerator are compared in terms of radiotoxicity with radionuclides commonly found in the nuclear industry. Based on this comparison, a count-rate based contamination control limit and associated measurement strategy is proposed which provides adequate detection of contamination at accelerators without an increase in risk.

  2. High data-rate atom interferometer for measuring acceleration

    SciTech Connect

    McGuinness, Hayden J.; Rakholia, Akash V.; Biedermann, Grant W.

    2012-01-02

    We demonstrate a high data-rate light-pulse atom interferometer for measuring acceleration. The device is optimized to operate at rates between 50 Hz to 330 Hz with sensitivities of 0.57{mu}g/{radical}(Hz) to 36.7{mu}g/{radical}(Hz), respectively. Our method offers a dramatic increase in data rate and demonstrates a path to applications in highly dynamic environments. The performance of the device can largely be attributed to the high recapture efficiency of atoms from one interferometer measurement cycle to another.

  3. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  4. Unexpectedly large dose rate dependent output from a linear accelerator.

    PubMed

    Cheng, P C; Kubo, H

    1988-01-01

    During our routine calibration of a Varian Clinac-20 linear accelerator, the absorbed dose for a fixed monitor unit (mu) was found to decrease with increasing dose rate. Between dose rates of 100 and 500 mu/min, there was up to 20% difference in absorbed dose for a 20-MeV electron beam. The cause of this problem was a failure in the electronics circuit of an integrating board. This paper presents our analysis of the problem and suggests a possible means of isolating such a failure to warn technologists, physicists, and engineers. PMID:3141760

  5. SCIRAS sensor - Sundstrand Coriolis Inertial Rate and Acceleration Sensor

    NASA Astrophysics Data System (ADS)

    Hulsing, Rand H., II

    The evolution of the design of SCIRAS (Sundstrand Coriolis Inertial Rate and Acceleration Sensor) from operational theory through three generations of hardware is discussed. SCIRAS measures both angular rotation and linear acceleration and is suitable for a full three-axis inertial navigation package replacing conventional clusters of gyros and accelerometers. Using only accelerometers, the package can be made smaller, lighter, and at less cost than equivalent performance sensors. Since a microprocessor is included, thermal modeling, misaligment correction, and size effect corrections can be made providing 'ideal' delta velocity and delta angle in digital format to a navigational computer. Since the sensor is all flexure, it has no wearout, is extremely rugged, and requires no special backfill, sealing, or maintenance.

  6. Dynamic Calorimetry for Students

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A student experiment on dynamic calorimetry is described. Dynamic calorimetry is a powerful technique for calorimetric studies, especially at high temperatures and pressures. A low-power incandescent lamp serves as the sample. The ScienceWorkshop data-acquisition system with DataStudio software from PASCO Scientific displays the results of the…

  7. 1-year retention rates and performance ratings: comparing associate degree, baccalaureate, and accelerated baccalaureate degree nurses.

    PubMed

    Weathers, Suzanne M; Raleigh, Edith D Hunt

    2013-09-01

    The purpose of this study was to examine 1-year retention and managerial performance ratings of newly licensed RNs (NLRNs) according to nursing education program types (associate degree, traditional baccalaureate, and accelerated 2nd degree baccalaureate). Findings revealed retention and performance differences, suggesting the possibility of tradeoffs related to educational program type when selecting NLRNs for open positions. PMID:23958525

  8. Automatic calorimetry system monitors RF power

    NASA Technical Reports Server (NTRS)

    Harness, B. W.; Heiberger, E. C.

    1969-01-01

    Calorimetry system monitors the average power dissipated in a high power RF transmitter. Sensors measure the change in temperature and the flow rate of the coolant, while a multiplier computes the power dissipated in the RF load.

  9. Differential scanning calorimetry of coal

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  10. Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice

    PubMed Central

    Burnett, Colin M. L.

    2013-01-01

    Substantial research efforts have been aimed at identifying novel targets to increase resting metabolic rate (RMR) as an adjunct approach to the treatment of obesity. Respirometry (one form of “indirect calorimetry”) is unquestionably the dominant technique used in the obesity research field to assess RMR in vivo, although this method relies upon a lengthy list of assumptions that are likely to be violated in pharmacologically or genetically manipulated animals. A “total” calorimeter, including a gradient layer direct calorimeter coupled to a conventional respirometer, was used to test the accuracy of respirometric-based estimations of RMR in laboratory mice (Mus musculus Linnaeus) of the C57Bl/6 and FVB background strains. Using this combined calorimeter, we determined that respirometry underestimates RMR of untreated 9- to 12-wk-old male mice by ∼10–12%. Quantitative and qualitative differences resulted between methods for untreated C57Bl/6 and FVB mice, C57Bl/6 mice treated with ketamine-xylazine anesthesia, and FVB mice with genetic deletion of the angiotensin II type 2 receptor. We conclude that respirometric methods underestimate RMR in mice in a magnitude that is similar to or greater than the desired RMR effects of novel therapeutics. Sole reliance upon respirometry to assess RMR in mice may lead to false quantitative and qualitative conclusions regarding the effects of novel interventions. Increased use of direct calorimetry for the assessment of RMR and confirmation of respirometry results and the reexamination of previously discarded potential obesity therapeutics are warranted. PMID:23964071

  11. Basal Metabolic Rate of Adolescent Modern Pentathlon Athletes: Agreement between Indirect Calorimetry and Predictive Equations and the Correlation with Body Parameters

    PubMed Central

    Loureiro, Luiz Lannes; Fonseca, Sidnei; Castro, Natalia Gomes Casanova de Oliveira e; dos Passos, Renata Baratta; Porto, Cristiana Pedrosa Melo; Pierucci, Anna Paola Trindade Rocha

    2015-01-01

    Purpose The accurate estimative of energy needs is crucial for an optimal physical performance among athletes and the basal metabolic rate (BMR) equations often are not well adjusted for adolescent athletes requiring the use of specific methods, such as the golden standard indirect calorimetry (IC). Therefore, we had the aim to analyse the agreement between the BMR of adolescents pentathletes measured by IC and estimated by commonly used predictive equations. Methods Twenty-eight athletes (17 males and 11 females) were evaluated for BMR, using IC and the predictive equations Harris and Benedict (HB), Cunningham (CUN), Henry and Rees (HR) and FAO/WHO/UNU (FAO). Body composition was obtained using DXA and sexual maturity data were retrieved through validated questionnaires. The correlations among anthropometric variables an IC were analysed by T-student test and ICC, while the agreement between IC and the predictive equations was analysed according to Bland and Altman and by survival-agreement plotting. Results The whole sample average BMR measured by IC was significantly different from the estimated by FAO (p<0.05). Adjusting data by gender FAO and HR equations were statistically different from IC (p <0.05) among males, while female differed only for the HR equation (p <0.05). Conclusion The FAO equation underestimated athletes’ BMR when compared with IC (T Test). When compared to the golden standard IC, using Bland and Altman, ICC and Survival-Agreement, the equations underestimated the energy needs of adolescent pentathlon athletes up to 300kcal/day. Therefore, they should be used with caution when estimating individual energy requirements in such populations. PMID:26569101

  12. Extruded scintillator for the calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.; /SUNY, Stony Brook

    2006-08-01

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R&D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  13. Extruded scintillator for the Calorimetry applications

    SciTech Connect

    Dyshkant, A.; Rykalin, V.; Pla-Dalmau, A.; Beznosko, D.

    2006-10-27

    An extrusion line has been installed and successfully operated at FNAL (Fermi National Accelerator Laboratory) in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new Facility will serve to further develop and improve extruded plastic scintillator. Recently progress has been made in producing co-extruded plastic scintillator, thus increasing the potential HEP applications of this Facility. The current R and D work with extruded and co-extruded plastic scintillator for a potential ALICE upgrade, the ILC calorimetry program and the MINERvA experiment show the attractiveness of the chosen strategy for future experiments and calorimetry. We extensively discuss extruded and co-extruded plastic scintillator in calorimetry in synergy with new Solid State Photomultipliers. The characteristics of extruded and co-extruded plastic scintillator will be presented here as well as results with non-traditional photo read-out.

  14. SpS5: Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2010-11-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress: paradigmatic, technological, organizational, and political. It examined each issue both from modern and historical perspectives, and drew lessons to guide future progress. A number of issues were identified which may regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  15. GPU accelerated processing of astronomical high frame-rate videosequences

    NASA Astrophysics Data System (ADS)

    Vítek, Stanislav; Švihlík, Jan; Krasula, Lukáš; Fliegel, Karel; Páta, Petr

    2015-09-01

    Astronomical instruments located around the world are producing an incredibly large amount of possibly interesting scientific data. Astronomical research is expanding into large and highly sensitive telescopes. Total volume of data rates per night of operations also increases with the quality and resolution of state-of-the-art CCD/CMOS detectors. Since many of the ground-based astronomical experiments are placed in remote locations with limited access to the Internet, it is necessary to solve the problem of the data storage. It mostly means that current data acquistion, processing and analyses algorithm require review. Decision about importance of the data has to be taken in very short time. This work deals with GPU accelerated processing of high frame-rate astronomical video-sequences, mostly originating from experiment MAIA (Meteor Automatic Imager and Analyser), an instrument primarily focused to observing of faint meteoric events with a high time resolution. The instrument with price bellow 2000 euro consists of image intensifier and gigabite ethernet camera running at 61 fps. With resolution better than VGA the system produces up to 2TB of scientifically valuable video data per night. Main goal of the paper is not to optimize any GPU algorithm, but to propose and evaluate parallel GPU algorithms able to process huge amount of video-sequences in order to delete all uninteresting data.

  16. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  17. DnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes.

    PubMed

    Kadibalban, A Samer; Bogumil, David; Landan, Giddy; Dagan, Tal

    2016-01-01

    Many proteins depend on an interaction with molecular chaperones in order to fold into a functional tertiary structure. Previous studies showed that protein interaction with the GroEL/GroES chaperonine and Hsp90 chaperone can buffer the impact of slightly deleterious mutations in the protein sequence. This capacity of GroEL/GroES to prevent protein misfolding has been shown to accelerate the evolution of its client proteins. Whether other bacterial chaperones have a similar effect on their client proteins is currently unknown. Here, we study the impact of DnaK (Hsp70) chaperone on the evolution of its client proteins. Evolutionary parameters were derived from comparison of the Escherichia coli proteome to 1,808,565 orthologous proteins in 1,149 proteobacterial genomes. Our analysis reveals a significant positive correlation between protein binding frequency with DnaK and evolutionary rate. Proteins with high binding affinity to DnaK evolve on average 4.3-fold faster than proteins in the lowest binding affinity class at the genus resolution. Differences in evolutionary rates of DnaK interactor classes are still significant after adjusting for possible effects caused by protein expression level. Furthermore, we observe an additive effect of DnaK and GroEL chaperones on the evolutionary rates of their common interactors. Finally, we found pronounced similarities in the physicochemical profiles that characterize proteins belonging to DnaK and GroEL interactomes. Our results thus implicate DnaK-mediated folding as a major component in shaping protein evolutionary dynamics in bacteria and supply further evidence for the long-term manifestation of chaperone-mediated folding on genome evolution. PMID:27189986

  18. DnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes

    PubMed Central

    Kadibalban, A. Samer; Bogumil, David; Landan, Giddy; Dagan, Tal

    2016-01-01

    Many proteins depend on an interaction with molecular chaperones in order to fold into a functional tertiary structure. Previous studies showed that protein interaction with the GroEL/GroES chaperonine and Hsp90 chaperone can buffer the impact of slightly deleterious mutations in the protein sequence. This capacity of GroEL/GroES to prevent protein misfolding has been shown to accelerate the evolution of its client proteins. Whether other bacterial chaperones have a similar effect on their client proteins is currently unknown. Here, we study the impact of DnaK (Hsp70) chaperone on the evolution of its client proteins. Evolutionary parameters were derived from comparison of the Escherichia coli proteome to 1,808,565 orthologous proteins in 1,149 proteobacterial genomes. Our analysis reveals a significant positive correlation between protein binding frequency with DnaK and evolutionary rate. Proteins with high binding affinity to DnaK evolve on average 4.3-fold faster than proteins in the lowest binding affinity class at the genus resolution. Differences in evolutionary rates of DnaK interactor classes are still significant after adjusting for possible effects caused by protein expression level. Furthermore, we observe an additive effect of DnaK and GroEL chaperones on the evolutionary rates of their common interactors. Finally, we found pronounced similarities in the physicochemical profiles that characterize proteins belonging to DnaK and GroEL interactomes. Our results thus implicate DnaK-mediated folding as a major component in shaping protein evolutionary dynamics in bacteria and supply further evidence for the long-term manifestation of chaperone-mediated folding on genome evolution. PMID:27189986

  19. Calorimetry for the SSC

    SciTech Connect

    Gordon, H.A.; Grannis, P.D.

    1984-01-01

    The activities related to calorimetry at Snowmass took place in three main areas. These were: (1) The performance criteria for SSC calorimetry, including the requirements on hermeticity, shower containment, segmentation and time resolution. The use of calorimetric means of particle identification was studied. (2) The study of triggering methods using calorimeter energy, angle and timing information. (3) A review of a wide variety of calorimeter materials for absorber and sampling, as well as several means of obtaining the readout of the energy deposits. 48 references, 10 figures, 1 table.

  20. The temporal relationship between infant heart rate acceleration and crying in an aversive situation.

    PubMed

    Vaughn, B; Sroufe, L A

    1979-06-01

    The temporal relationship between heart rate (HR) acceleration and crying was examined in 16 8-16-month-old infants. Consistently, the HR acceleration began well before the onset of crying, suggesting that such acceleration is not merely a by-product of crying. The accelerations observed were above and beyond a return to baseline following orienting. The crying itself validates the association between these instances of HR acceleration and negative effect. PMID:487890

  1. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  2. Effect of acceleration rate on automatic transmission shift-speeds for two 1979 Novas. Technical report

    SciTech Connect

    Jones, R.

    1980-01-01

    Variations in acceleration rates will result in variations in vehicle fuel economy. If typical vehicle acceleration rates are distributed in the same manner as the accelerations are distributed on the EPA test cycles, or if the vehicle operational characteristics do not significantly change with acceleration rate, then results from the EPA cycles should be representative of average vehicle use. However, if vehicle operational characteristics change with changing acceleration rates, and if vehicle accelerations in consumer use are not distributed in the same manner as the accelerations of the EPA test cycle, then significant differences between EPA estimated fuel economy and actual vehicle fuel consumption may result. One vehicle characteristic which often changes with acceleration rate is the transmission shift speed for vehicles with automatic transmissions. To determine the effects of acceleration rates on transmission shift speeds, EPA recently conducted a short test sequence on two vehicles with automatic transmissions. These tests determined the relation between vehicle acceleration rate and transmission shift speed for acceleration rates from 1 to 6 mph/sec.

  3. Scintillator materials for calorimetry

    SciTech Connect

    Weber, M.J.

    1994-09-01

    Requirements for fast, dense scintillator materials for calorimetry in high energy physics and approaches to satisfying these requirements are reviewed with respect to possible hosts and luminescent species. Special attention is given to cerium-activated crystals, core-valence luminescence, and glass scintillators. The present state of the art, limitations, and suggestions for possible new scintillator materials are presented.

  4. The Temporal Relationship between Infant Heart Rate Acceleration and Crying in an Aversive Situation.

    ERIC Educational Resources Information Center

    Vaughn, Brian; Sroufe, L. Alan

    1979-01-01

    Shows that the heart rate acceleration of 16 infants ranging in age from 8 to 16 months consistently began well before the onset of crying. This suggests that heart rate acceleration is not merely a by-product of crying but that it is associated with negative affect. (JMB)

  5. Effects of propellant composition variables on acceleration-induced burning-rate augmentation of solid propellants

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1972-01-01

    This work was conducted to define further the effects of propellant composition variables on the acceleration-induced burning rate augmentation of solid propellants. The rate augmentation at a given acceleration was found to be a nonlinear inverse function of the reference burning rate and not controlled by binder or catalyst type at a given reference rate. A nonaluminized propellant and a low rate double-base propellant exhibited strong transient rate augmentation due to surface pitting resulting from the retention of hot particles on the propellant surface.

  6. Near-term acceleration in the rate of temperature change

    NASA Astrophysics Data System (ADS)

    Smith, Steven J.; Edmonds, James; Hartin, Corinne A.; Mundra, Anupriya; Calvin, Katherine

    2015-04-01

    Anthropogenically driven climate changes, which are expected to impact human and natural systems, are often expressed in terms of global-mean temperature. The rate of climate change over multi-decadal scales is also important, with faster rates of change resulting in less time for human and natural systems to adapt. We find that present trends in greenhouse-gas and aerosol emissions are now moving the Earth system into a regime in terms of multi-decadal rates of change that are unprecedented for at least the past 1,000 years. The rate of global-mean temperature increase in the CMIP5 (ref. ) archive over 40-year periods increases to 0.25 +/- 0.05 °C (1σ) per decade by 2020, an average greater than peak rates of change during the previous one to two millennia. Regional rates of change in Europe, North America and the Arctic are higher than the global average. Research on the impacts of such near-term rates of change is urgently needed.

  7. Near-Term Acceleration In The Rate of Temperature Change

    SciTech Connect

    Smith, Steven J.; Edmonds, James A.; Hartin, Corinne A.; Mundra, Anupriya; Calvin, Katherine V.

    2015-03-09

    Anthropogenically-driven climate changes, which are expected to impact human and natural systems, are often expressed in terms of global-mean temperature . The rate of climate change over multi-decadal scales is also important, with faster rates of change resulting in less time for human and natural systems to adapt . We find that current trends in greenhouse gas and aerosol emissions are now moving the Earth system into a regime in terms of multi-decadal rates of change that are unprecedented for at least the last 1000 years. The rate of global-mean temperature increase in the CMIP5 archive over 40-year periods increases to 0.25±0.05 (1σ) °C per decade by 2020, an average greater than peak rates of change during the previous 1-2 millennia. Regional rates of change in Europe, North America and the Arctic are higher than the global average. Research on the impacts of such near-term rates of change is urgently needed.

  8. The rate of change of acceleration: implications to head kinematics during rear-end impacts.

    PubMed

    Hynes, Loriann M; Dickey, James P

    2008-05-01

    Whiplash is a mechanism of injury commonly associated with rear-impact vehicle collisions. To date, research has focused primarily on changes in velocity and acceleration as key factors for determining injuries due to whiplash mechanisms, but other characteristics of the acceleration pulse may be important. This study assessed whether the head acceleration response to whiplash-like perturbation profiles were affected by a change in the rate of the applied acceleration, or jerk. Twenty-one subjects were exposed to different low-velocity rear-impact whiplash-like perturbations using a precisely controlled robotic platform. The perturbations were divided into two groupings of peak acceleration (approximately 10 (high) and 5.7 (low) m/s2) and three groupings of jerk (approximately 260, 310, and 360 m/s3). These six profiles were repeated twice. Results demonstrated that the jerk magnitude significantly affected forehead acceleration in the vertical and horizontal directions. Increasing the magnitude of the platform acceleration also differentially affected the horizontal and vertical forehead accelerations. This indicates that the level of jerk influences the resulting head kinematics and should be considered when designing or interpreting experiments that are attempting to predict injury from whiplash-like perturbations. PMID:18460374

  9. Acceleration of the rate of ethanol fermentation by addition of nitrogen in high tannin grain sorghum

    SciTech Connect

    Mullins, J.T.; NeSmith, C.C.

    1987-01-01

    In this communication, the authors show that accelerated rates of ethanol production, comparable to sorghum varieties containing low levels of tannins and to corn, can occur without the removal of the tannins. The basis of the inhibition appears to be a lack of sufficient nitrogen in the mash for protein synthesis required to support an accelerated fermentative metabolism in Saccharomyces. No inhibition of the enzymes used for starch hydrolysis was found.

  10. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Gnanaraj, J. S.; Zinigrad, E.; Asraf, L.; Gottlieb, H. E.; Sprecher, M.; Aurbach, D.; Schmidt, M.

    The thermal stability of 1M LiPF 6, LiClO 4, LiN(SO 2CF 2CF 3) 2 (LiBETI) and LiPF 3(CF 2CF 3) 3 (LiFAP) solutions in mixtures of ethylene carbonate, diethyl carbonate and dimethyl carbonate in the temperature range 40-350 °C was studied by ARC and DSC. NMR was used to analyze the reaction products at different reaction stages. The least thermally stable are LiClO 4 solutions. LiPF 3(CF 2CF 3) 3 solutions showed higher thermal stability than LiPF 6 solutions. The highest thermal stability was found for LiN(SO 2CF 2CF 3) 2 solutions. Studies by DSC and pressure measurements during ARC experiments with LiPF 6 and LiFAP solutions detected an endothermic reaction, which occurs before a number of exothermic reactions as the temperature increases. Fluoride ions are formed and react with the alkyl carbonate molecules both as bases and as nucleophiles.

  11. Effects of normal acceleration on transient burning rate augmentation of an aluminized solid propellant

    NASA Technical Reports Server (NTRS)

    Northam, G. B.

    1972-01-01

    Instantaneous burning rate data for a polybutadiene acrylic acid propellant, containing 16 weight percent aluminum, were calculated from the pressure histories of a test motor with 96.77 sq cm of burning area and a 5.08-cm-thick propellant web. Additional acceleration tests were conducted with reduced propellant web thicknesses of 3.81, 2.54, and 1.27 cm. The metallic residue collected from the various web thickness tests was characterized by weight and shape and correlated with the instantaneous burning rate measurements. Rapid depressurization extinction tests were conducted in order that surface pitting characteristics due to localized increased burning rate could be correlated with the residue analysis and the instantaneous burning rate data. The acceleration-induced burning rate augmentation was strongly dependent on propellant distance burned, or burning time, and thus was transient in nature. The results from the extinction tests and the residue analyses indicate that the transient rate augmentation was highly dependent on local enhancement of the combustion zone heat feedback to the surface by the growth of molten residue particles on or just above the burning surface. The size, shape, and number density of molten residue particles, rather than the total residue weight, determined the acceleration-induced burning rate augmentation.

  12. Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance

    PubMed Central

    Hu, Wei; Jin, Xian; Zhang, Peng; Yu, Qiang; Yin, Guizhi; Lu, Yi; Xiao, Hongbing; Chen, Yueguang; Zhang, Dadong

    2016-01-01

    Accurate measurements of autonomic nerve regulation in heart failure (HF) were unresolved. The discriminating performance of deceleration and acceleration capacities of heart rate in HF was evaluated in 130 HF patients and 212 controls. Acceleration capacity and deceleration capacity were independent risk factors for HF in males, evaluated by multiple logistic regression analysis, with odds ratios (ORs) of 5.94 and 0.13, respectively. Acceleration capacity was also an independent risk factor for HF in females, with an OR of 8.58. Deceleration capacity was the best cardiac electrophysiological index to classify HF in males, with an area under the receiver operating characteristic curve (AUC) of 0.88. Deceleration capacity was the best classification factor of HF in females with an AUC of 0.97, significantly higher than even left ventricular ejection fraction (LVEF). Acceleration capacity also showed high performance in classifying HF in males (0.84) and females (0.92). The cut-off values of deceleration capacity for HF classification in males and females were 4.55 ms and 4.85 ms, respectively. The cut-off values of acceleration capacity for HF classification in males and females were −6.15 ms and −5.75 ms, respectively. Our study illustrates the role of acceleration and deceleration capacity measurements in the neuro-pathophysiology of HF. PMID:27005970

  13. CALORIMETRY OF TRU WASTE MATERIALS

    SciTech Connect

    C. RUDY; ET AL

    2000-08-01

    Calorimetry has been used for accountability measurements of nuclear material in the US. Its high accuracy, insensitivity to matrix effects, and measurement traceability to National Institute of Standards and Technology have made it the primary accountability assay technique for plutonium (Pu) and tritium in the Department of Energy complex. A measurement of Pu isotopic composition by gamma-ray spectroscopy is required to transform the calorimeter measurement into grams Pu. The favorable calorimetry attributes allow it to be used for verification measurements, for production of secondary standards, for bias correction of other faster nondestructive (NDA) methods, or to resolve anomalous measurement results. Presented in this paper are (1) a brief overview of calorimeter advantages and disadvantages, (2) a description of projected large volume calorimeters suitable for waste measurements, and (3) a new technique, direct measurement of transuranic TRU waste alpha-decay activity through calorimetry alone.

  14. Contactless Calorimetry for Levitated Samples

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Dokko, W.

    1986-01-01

    Temperature and specific heat of hot sample measured with pyrometer in proposed experimental technique. Technique intended expecially for contactless calorimetry of such materials as undercooled molten alloys, samples of which must be levitated to prevent contamination and premature crystallization. Contactless calorimetry technique enables data to be taken over entire undercooling temperature range with only one sample. Technique proves valuable in study of undercooling because difference in specific heat between undercooled-liquid and crystalline phases at same temperature provides driving force to convert metastable undercooled phase to stable crystalline phase.

  15. A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.

    PubMed

    Perrin, Bruce; Walker, Anne; Mackay, Ranald

    2003-03-01

    The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804

  16. Mound calorimetry for explosive surveillance

    SciTech Connect

    Shockey, G.C.; Rodenburg, W.W.

    1985-01-01

    Heat of reaction determinations of pyrotechnics and explosives is made at MRC-Mound by bomb calorimetry. Energy releases from ten calories to 94 kilocalories have been measured accurately using four different calorimeter systems. Each system is described and some heat of reaction results are given. 3 figs., 4 tabs.

  17. Charge Accretion Rate and Injection Radius of Ionized-Induced Injections in Laser Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Zeng, Ming; Chen, Min; Sheng, Zheng-Ming

    2016-03-01

    Ionization-induced injection has recently been proved to be a stable injection method with several advantages in laser wakefield accelerators. However, the controlling of this injection process aiming at producing high quality electron beams is still challenging. In this paper, we examine the ionization injection processes and estimate the injection rate with two-dimensional particle-in-cell simulations. The injection rate is shown to increase linearly with the high-Z gas density as long as its ratio is smaller than some threshold in the mix gases. It is also shown that by changing the transverse mode of the driving lasers one can control the injection rate.

  18. Sensory Constraints on Birdsong Syntax: Neural Responses to Swamp Sparrow Songs with Accelerated Trill Rates

    PubMed Central

    Prather, JF; Peters, S; Mooney, R; Nowicki, S

    2013-01-01

    Both sensory and motor mechanisms can constrain behavioral performance. Sensory mechanisms may be especially important for constraining behaviors that depend on experience, such as learned birdsongs. Swamp sparrows learn to sing by imitating the song of a tutor, but sparrows fail to accurately imitate artificial tutor songs with abnormally accelerated trills, instead singing brief and rapid trills interrupted by silent gaps. This “broken syntax” has been proposed to arise from vocal-motor limitations. Here we consider whether sensory limitations exist that could also contribute to broken syntax. We tested this idea by recording auditory-evoked activity of sensorimotor neurons in the swamp sparrow’s brain that are known to be important for the learning, performance and perception of song. In freely behaving adult sparrows that sang songs with normal syntax, neurons were detected that exhibited precisely time-locked activity to each repetition of the syllable in a trill when presented at a natural rate. Those cells failed to faithfully follow syllables presented at an accelerated rate, however, and their failure to respond to consecutive syllables increased as a function of trill rate. This “flickering” auditory representation in animals performing normal syntax reveals a central constraint on the sensory processing of rapid trills. Furthermore, because these neurons are implicated in both song learning and perception, and because auditory flickering began to occur at accelerated trill rates previously associated with the emergence of broken song syntax, these sensory constraints may contribute to the emergence of broken syntax. PMID:23976787

  19. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  20. The Formalism for Energy Changing Rate of an Accelerated Atom Coupled with Electromagnetic Vacuum Fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Anwei

    2016-05-01

    The structure of the rate of variation of the atomic energy for an arbitrary stationary motion of the atom in interaction with a quantum electromagnetic field is investigated. Our main purpose is to rewrite the formalism in Zhu et al. (Phys Rev D 73:107501, 2006) and to deduce the general expressions of the Einstein A coefficients of an atom on an arbitrary stationary trajectory. The total rate of change of the energy and Einstein coefficients of the atom near a plate with finite temperature or acceleration are also investigated.

  1. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates

    PubMed Central

    2012-01-01

    Background Understanding the causes underlying heterogeneity of molecular evolutionary rates among lineages is a long-standing and central question in evolutionary biology. Although several earlier studies showed that modern frogs (Neobatrachia) experienced an acceleration of mitochondrial gene substitution rates compared to non-neobatrachian relatives, no further characterization of this phenomenon was attempted. To gain new insights on this topic, we sequenced the complete mitochondrial genomes and nine nuclear loci of one pelobatoid (Pelodytes punctatus) and five neobatrachians, Heleophryne regis (Heleophrynidae), Lechriodus melanopyga (Limnodynastidae), Calyptocephalella gayi (Calyptocephalellidae), Telmatobius bolivianus (Ceratophryidae), and Sooglossus thomasseti (Sooglossidae). These represent major clades not included in previous mitogenomic analyses, and most of them are remarkably species-poor compared to other neobatrachians. Results We reconstructed a fully resolved and robust phylogeny of extant frogs based on the new mitochondrial and nuclear sequence data, and dated major cladogenetic events. The reconstructed tree recovered Heleophryne as sister group to all other neobatrachians, the Australasian Lechriodus and the South American Calyptocephalella formed a clade that was the sister group to Nobleobatrachia, and the Seychellois Sooglossus was recovered as the sister group of Ranoides. We used relative-rate tests and direct comparison of branch lengths from mitochondrial and nuclear-based trees to demonstrate that both mitochondrial and nuclear evolutionary rates are significantly higher in all neobatrachians compared to their non-neobatrachian relatives, and that such rate acceleration started at the origin of Neobatrachia. Conclusions Through the analysis of the selection coefficient (ω) in different branches of the tree, we found compelling evidence of relaxation of purifying selection in neobatrachians, which could (at least in part) explain the

  2. Artificial accelerators of the molecular chaperone Hsp90 facilitate rate-limiting conformational transitions.

    PubMed

    Zierer, Bettina K; Weiwad, Matthias; Rübbelke, Martin; Freiburger, Lee; Fischer, Gunter; Lorenz, Oliver R; Sattler, Michael; Richter, Klaus; Buchner, Johannes

    2014-11-01

    The molecular chaperone Hsp90 undergoes an ATP-driven cycle of conformational changes in which large structural rearrangements precede ATP hydrolysis. Well-established small-molecule inhibitors of Hsp90 compete with ATP-binding. We wondered whether compounds exist that can accelerate the conformational cycle. In a FRET-based screen reporting on conformational rearrangements in Hsp90 we identified compounds. We elucidated their mode of action and showed that they can overcome the intrinsic inhibition in Hsp90 which prevents these rearrangements. The mode of action is similar to that of the co-chaperone Aha1 which accelerates the Hsp90 ATPase. However, while the two identified compounds influence conformational changes, they target different aspects of the structural transitions. Also, the binding site determined by NMR spectroscopy is distinct. This study demonstrates that small molecules are capable of triggering specific rate-limiting transitions in Hsp90 by mechanisms similar to those in protein cofactors. PMID:25244159

  3. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  4. Modeling accelerated and decelerated drug release in terms of fractional release rate.

    PubMed

    Weiss, Michael

    2015-02-20

    The model of a proportional change in fractional dissolution rate was used to quantify influences on the vitro dissolution process. After fitting the original dissolution profile with an empirical model (inverse Gaussian distribution), acceleration and deceleration effects due to dissolution conditions or formulation parameters could be described by one parameter only. Acceleration of dissolution due to elevated temperature and deceleration by increasing the content of glyceryl monostearate in theophylline tablets are presented as examples. Likewise, this approach was applied to in vitro-in vivo correlation (IVIVC). It is shown that the model is appropriate when the plot of the in vivo versus in vivo times is nonlinear and can be described by a power function. The results demonstrate the utility of the model in dissolution testing and IVIVC assessment. PMID:25486334

  5. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  6. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  7. Reaction Rate Acceleration and Tg Depression of Polycyanurate Under Nanopore Confinement

    NASA Astrophysics Data System (ADS)

    Lopez, Evelyn; Simon, Sindee L.

    2015-03-01

    Material properties such as Tg and the reaction kinetics are known to deviate from the bulk when subjected to nano-sized confinement. Previous work from our laboratory on the trimerization of cyanate esters found that the reaction kinetics were faster for a monofunctional reactant compared to a difunctional monomer, whereas the Tg depression was greater for the crosslinked product of the latter compared to the low molecular weight trimer of the former. The origin of the changes in nanoconfined reaction rates differs from those that govern changes in the Tg. The research objective is to further explore the effect that confinement has on reaction kinetics and Tg using a mixture consisting of mono- and di- cyanate ester monomers. The product is an uncrosslinked polycyanurate with Mn = 5240 g/mol and PDI = 1.78. The confinement mediums are controlled pore glasses with diameters ranging from 8.1 to 111.1 nm. The nanopore-confined material was synthesized in-situ and the reaction kinetics are followed by DSC; after the reaction, the Tg values of the nanoconfined polymer where also measured by DSC. An acceleration factor of 13 and a Tg depression of 38 °C are observed for the material confined in the smallest 8.1 nm-diameter pores. The Tg depression is between those of the trimer and network previously studied, while the acceleration of the reaction rate is lower. Our results are consistent with the reaction acceleration arising from packing effects at the pore wall and the Tg depression arising from intrinsic size effects.

  8. Accelerated evolutionary rate in sulfur-oxidizing endosymbiotic bacteria associated with the mode of symbiont transmission.

    PubMed

    Peek, A S; Vrijenhoek, R C; Gaut, B S

    1998-11-01

    The nearly neutral theory of molecular evolution predicts that the rate of nucleotide substitution should accelerate in small populations at sites under low selective constraint. We examined these predictions with respect to the relative population sizes for three bacterial life histories within chemolithoautotrophic sulfur-oxidizing bacteria: (1) free-living bacteria, (2) environmentally captured symbionts, and (3) maternally transmitted symbionts. Both relative rates of nucleotide substitution and relative ratios of loop, stem, and domain substitutions from 1,165 nt of the small-subunit 16S rDNA were consistent with expectations of the nearly neutral theory. Relative to free-living sulfur-oxidizing autotrophic bacteria, the maternally transmitted symbionts have faster substitution rates overall and also in low-constraint domains of 16S rDNA. Nucleotide substitition rates also differ between loop and stem positions. All of these findings are consistent with the predictions that these symbionts have relatively small effective population sizes. In contrast, the rates of nucleotide substitution in environmentally captured symbionts are slower, particularly in high-constraint domains, than in free-living bacteria. PMID:12572615

  9. Mortality rate acceleration and post-reproductive lifespan in matrilineal whale species.

    PubMed

    Foote, Andrew D

    2008-04-23

    The strength of selection to increase the span of a life stage is dependent upon individuals at that stage being able to contribute towards individual fitness and the probability of their surviving to that stage. Complete reproductive cessation and a long post-reproductive female lifespan as found in humans are also found in killer whale (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus), but not in the long-finned pilot whale (Globicephala melaena). Each species forms kin-based, stable matrilineal groups and exhibits kin-directed behaviours that could increase inclusive fitness. Here, the initial mortality rate and mortality rate-doubling time of females of these three closely related whale species are compared. The initial mortality rate shows little variation among pilot whale species; however mortality rate accelerates almost twice as fast in the long-finned pilot whale as it does in killer whale and short-finned pilot whale. Selection for a long post-reproductive female lifespan in matrilineal whales may therefore be determined by the proportion of females surviving past the point of reproductive cessation. PMID:18252662

  10. Isothermal titration calorimetry of RNA.

    PubMed

    Salim, Nilshad N; Feig, Andrew L

    2009-03-01

    Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. A single well-designed experiment can provide complete thermodynamic characterization of a binding reaction, including K(a), DeltaG, DeltaH, DeltaS and reaction stoichiometry (n). Repeating the experiment at different temperatures allows determination of the heat capacity change (DeltaC(P)) of the interaction. Modern calorimeters are sensitive enough to probe even weak biological interactions making ITC a very popular method among biochemists. Although ITC has been applied to protein studies for many years, it is becoming widely applicable in RNA biochemistry as well, especially in studies which involve RNA folding and RNA interactions with small molecules, proteins and with other RNAs. This review focuses on best practices for planning, designing and executing effective ITC experiments when one or more of the reactants is an RNA. PMID:18835447

  11. Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches?

    PubMed

    Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R

    2014-10-15

    Ultrasonography is a safe and efficient technique for monitoring fetal development and viability. One of the most important and widely used parameters to verify fetal viability is the fetal heart rate (HR). In human medicine, the fetal HR normally oscillates during labor in transient accelerations and decelerations associated with uterine contractions. The present study investigated whether these variations also occur in canine fetuses and its relationship to parturition. A cohort study was conducted in 15 pregnant bitches undergoing two-dimensional high-resolution ultrasonographic examination during the 8th and 9th week of gestation. Fetal HR was assessed in M-mode for 5 minutes in each fetus in all bitches. In addition, the bitches were monitored for clinical signs of imminent parturition. Associations between the HR, antepartum time, and delivery characteristics were evaluated with a Poisson regression model. Fetal HR acceleration and deceleration occurred in canine fetuses and predicted the optimal time of parturition. These findings can help veterinarians and sonographers better understand this phenomenon in canine fetuses. PMID:24888684

  12. Direct Animal Calorimetry, the Underused Gold Standard for Quantifying the Fire of Life*

    PubMed Central

    Kaiyala, Karl J.; Ramsay, Douglas S.

    2012-01-01

    Direct animal calorimetry, the gold standard method for quantifying animal heat production (HP), has been largely supplanted by respirometric indirect calorimetry owing to the relative ease and ready commercial availability of the latter technique. Direct calorimetry, however, can accurately quantify HP and thus metabolic rate (MR) in both metabolically normal and abnormal states, whereas respirometric indirect calorimetry relies on important assumptions that apparently have never been tested in animals with genetic or pharmacologically-induced alterations that dysregulate metabolic fuel partitioning and storage so as to promote obesity and/or diabetes. Contemporary obesity and diabetes research relies heavily on metabolically abnormal animals. Recent data implicating individual and group variation in the gut microbiome in obesity and diabetes raise important questions about transforming aerobic gas exchange into HP because 99% of gut bacteria are anaerobic and they outnumber eukaryotic cells in the body by ~10-fold. Recent credible work in non-standard laboratory animals documents substantial errors in respirometry-based estimates of HP. Accordingly, it seems obvious that new research employing simultaneous direct and indirect calorimetry (total calorimetry) will be essential to validate respirometric MR phenotyping in existing and future pharmacological and genetic models of obesity and diabetes. We also detail the use of total calorimetry with simultaneous core temperature assessment as a model for studying homeostatic control in a variety of experimental situations, including acute and chronic drug administration. Finally, we offer some tips on performing direct calorimetry, both singly and in combination with indirect calorimetry and core temperature assessment. PMID:20427023

  13. Human microRNAs originated from two periods at accelerated rates in mammalian evolution.

    PubMed

    Iwama, Hisakazu; Kato, Kiyohito; Imachi, Hitomi; Murao, Koji; Masaki, Tsutomu

    2013-03-01

    MicroRNAs (miRNAs) are short, noncoding RNAs that modulate genes posttranscriptionally. Frequent gains and losses of miRNA genes have been reported to occur during evolution. However, little is known systematically about the periods of evolutionary origin of the present miRNA gene repertoire of an extant mammalian species. Thus, in this study, we estimated the evolutionary periods during which each of 1,433 present human miRNA genes originated within 15 periods, from human to platypus-human common ancestral branch and a class "conserved beyond theria," primarily using multiple genome alignments of 38 species, plus the pairwise genome alignments of five species. The results showed two peak periods in which the human miRNA genes originated at significantly accelerated rates. The most accelerated rate appeared in the period of the initial phase of hominoid lineage, and the second appeared shortly before Laurasiatherian divergence. Approximately 53% of the present human miRNA genes have originated within the simian lineage to human. In particular, approximately 28% originated within the hominoid lineage. The early phase of placental mammal radiation comprises approximately 28%, while no more than 15% of human miRNAs have been conserved beyond placental mammals. We also clearly showed a general trend, in which the miRNA expression level decreases as the miRNA becomes younger. Intriguingly, amid this decreasing trend of expression, we found one significant rise in the expression level that corresponded to the initial phase of the hominoid lineage, suggesting that increased functional acquisitions of miRNAs originated at this particular period. PMID:23171859

  14. The effects of accelerated growth rates and estrogen implants in prepubertal Holstein heifers on growth, feed efficiency, and blood parameters.

    PubMed

    Lammers, B P; Heinrichs, A J; Kensinger, R S

    1999-08-01

    Sixty-eight Holstein heifers were used to determine the effects of accelerated growth rates by increased nutrient intake and estrogen implants on feed efficiency, structural growth, and blood parameters in heifers between 19 and 39 wk of age. At the beginning of the treatment period, the heifers were assigned to one of four treatment groups by using a randomized complete block design in a 2 x 2 factorial arrangement. The treatments were standard growth rate (700 g/d), accelerated growth rate (1000 g/d), standard growth rate with an estradiol implant, and accelerated growth rate with an estradiol implant. All heifers received the same diet, but dry matter intake was adjusted weekly to achieve the target rate of gain. Accelerating heifer growth rates from 705 to 1007 g/d improved feed efficiency 5.1%, increased the rate of withers height, heart girth, and hip width growth 12, 27, and 27%, respectively, and body condition scores 0.25 points. Estradiol implants improved feed efficiency 2.4% and decreased the rate of withers height 6% and heart girth growth 3.5%. Increased nutrient intake and average daily gain depressed mean plasma growth hormone and urea nitrogen content 17 and 7%, respectively, while elevating insulin-like growth factor-1 levels by 10%. Estradiol implants increased mean plasma growth hormone content by 29% and insulin-like growth factor-1 levels by 17%, but decreased urea nitrogen content by 11%. Feeding prepubertal heifers for accelerated growth rates increased structural growth with a small increase in body condition, whereas estradiol implants improved feed efficiency and decreased the growth rate of withers height and heart girth without affecting the rate of hip width growth. PMID:10480101

  15. Warm-up calorimetry of Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Shlomovich, B.; Tuito, A.

    2015-12-01

    Boil-off isothermal calorimetry of Dewar-Detector Assemblies (DDA) is a routine part of their Acceptance Testing Procedure. In this approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil-off from the Dewar well to the atmosphere through a mass flow meter; the parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate. An inherent major limitation of this technique is that it may be performed only at the fixed boiling temperature of the chosen liquid coolant. A further drawback is related to the explosive nature of "last drop" boiling, manifesting itself as an uneven flow rate. This especially holds true for advanced High Operational Temperature Dewar-Detector Assemblies, typically featuring short cold fingers and working at 150 K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate heat load evaluation may be performed by comparing the slopes of the warm-up thermal transients under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  16. Technical memo on PbF/sub 2/ as a Cherenkov radiator for EM calorimetry

    SciTech Connect

    Anderson, D.F.

    1989-06-26

    It is apparent that the ever increasing rates and radiation levels found in high-energy physics are excluding more and more instrumental techniques. Those techniques that are remaining are often pushed to their theoretical limits. This situation reaches an extreme at the proposed luminosity of the SSC. Also, it is fair to say that at the SSC, after the accelerator itself, calorimetry will be the next most important physics tool. Therefore, we should be ever alert to new calorimetry techniques which may operate in this demanding environment. The material lead fluoride, PbF/sub 2/, has a real potential of yielding a very compact, high-resolution electromagnetic calorimeter that is both fast and radiation hard. PbF/sub 2/ is not a scintillator but a Cherenkov radiator like lead glass, but with a radiation length even harder shorter than of BGO. This memo discusses this property as well as comparison PbF/sub 2/ to other scintillating materials. 2 refs., 14 figs., 1 tab.

  17. Calorimetry with meta-crystals

    NASA Astrophysics Data System (ADS)

    Auffray, Etiennette; Lecoq, Paul; Mavromanolakis, Georgios

    2011-04-01

    We present the meta-crystals concept, an approach that consists of using both undoped and properly doped heavy crystal fibers of identical material as the active medium of a calorimeter. The undoped fibers behave as Cherenkov radiators while the doped ones behave as scintillators. A dual readout calorimeter can be built with its sensitive volume composed of a mixture of both types of crystals. In addition if the calorimeter is adequately finely segmented it can also function as a particle flow calorimeter at the same time. In this way one could possibly combine the advantages of both the particle flow concept and the dual-readout scheme. We discuss the approach of dual readout calorimetry with meta-crystals made of Lutetium Aluminium Garnet (LuAG) and present studies on the material development, first testbeam activities and results based on simulation for understanding the performance trends. We close with a brief outlook on open issues and further R&D needed to proceed from an ideal conceptual case to the design of a realistic detector.

  18. Effect of initial acceleration on the development of the flow field of an airfoil pitching at constant rate

    NASA Technical Reports Server (NTRS)

    Koochesfahani, M. M.; Smiljanovski, V.; Brown, T. A.

    1992-01-01

    We present results from a series of experiments where an airfoil is pitched at constant rate from 0 to 60 degrees angle of attack. It is well documented that the dynamic stall behavior of such an airfoil strongly depends on the nondimensional pitch rate K = dot-alpha C/(2U(sub infinity)), where C is the chord, dot-alpha the constant pitch rate, and U(sub infinity) the free stream speed. In reality, the actual motion of the airfoil deviates from the ideal ramp due to the finite acceleration and deceleration periods imposed by the damping of drive system and response characteristics of the airfoil. It is possible that the pitch rate alone may not suffice in describing the flow and that the details of the motion trajectory before achieving a desired constant pitch rate may also affect the processes involved in the dynamic stall phenomenon. The effects of acceleration and deceleration periods are investigated by systematically varing the acceleration magnitude and its duration through the initial acceleration phase to constant pitch rate. The magnitude and duration of deceleration needed to bring the airfoil motion to rest is similarly controlled.

  19. Rate-related accelerating (autodecremental) atrial pacing for reversion of paroxysmal supraventricular tachycardia.

    PubMed

    Nathan, A; Hellestrand, K; Ward, D; Spurrell, R; Camm, J

    1982-01-01

    Twenty consecutive patients with paroxysmal intra A-V nodal or atrio-ventricular tachycardia had a new tachycardia reversion pacing modality evaluated during routine electrophysiological study. The pacing was controlled by a micropressor interfaced with a stimulator connected to a right atrial pacing electrode. On detection of tachycardia the first pacing cycle interval is equal to the tachycardia cycle length minus a decrement value D. Each subsequent pacing cycle is further reduced by the same value of D, thus accelerating the pacing burst until a plateau of 100 beats/min faster than tachycardia (with an absolute lower limit of 275 beats/min) is reached. Seven different values of D (2, 4, 8, 16, 24, 34, 50 msec) were assessed in combination with three different durations of pacing P (500, 5000 msec). With P:500, only 2/20 tachycardias were terminated, but with P:1000, 16/20 were terminated. With P:5000 all were terminated and the combination successful in all patients was P:5000 and D:16. No unwanted arrhythmias were induced. In contrast, competitive constant rate overdrive atrial pacing accomplished tachycardia termination in all cases, but in four instances resulted in atrial flutter or fibrillation. Autodecremental pacing, which tends to avoid stimulation in the vulnerable period, allowed safe and successful termination of all tachycardias evaluated in this study. PMID:7069321

  20. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'.

    PubMed

    Salter, Bill J; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min(-1)) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach. PMID:21364260

  1. The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae.

    PubMed

    Hillyer, Julián F; Estévez-Lao, Tania Y; Mirzai, Homa E

    2015-10-01

    Serotonin and glutamate are neurotransmitters that in insects are involved in diverse physiological processes. Both serotonin and glutamate have been shown to modulate the physiology of the dorsal vessel of some insects, yet until the present study, their activity in mosquitoes remained unknown. To test whether serotonin or glutamate regulate dorsal vessel physiology in the African malaria mosquito, Anopheles gambiae, live mosquitoes were restrained, and a video of the contracting heart (the abdominal portion of the dorsal vessel) was acquired. These adult female mosquitoes were then injected with various amounts of serotonin, glutamate, or a control vehicle solution, and additional videos were acquired at 2 and 10 min post-treatment. Comparison of the videos taken before and after treatment revealed that serotonin accelerates the frequency of heart contractions, with the cardioacceleration being significantly more pronounced when the wave-like contractions of cardiac muscle propagate in the anterograde direction (toward the head). Comparison of the videos taken before and after treatment with glutamate revealed that this molecule is also cardioacceleratory. However, unlike serotonin, the activity of glutamate does not depend on whether the contractions propagate in the anterograde or the retrograde (toward the posterior of the abdomen) directions. Serotonin or glutamate induces a minor change or no change in the percentage of contractions and the percentage of the time that the heart contracts in the anterograde or the retrograde directions. In summary, this study shows that the neurotransmitters serotonin and glutamate increase the heart contraction rate of mosquitoes. PMID:26099947

  2. What does calorimetry and thermodynamics of living cells tell us?

    PubMed

    Maskow, Thomas; Paufler, Sven

    2015-04-01

    This article presents and compares several thermodynamic methods for the quantitative interpretation of data from calorimetric measurements. Heat generation and absorption are universal features of microbial growth and product formation as well as of cell cultures from animals, plants and insects. The heat production rate reflects metabolic changes in real time and is measurable on-line. The detection limit of commercially available calorimetric instruments can be low enough to measure the heat of 100,000 aerobically growing bacteria or of 100 myocardial cells. Heat can be monitored in reaction vessels ranging from a few nanoliters up to many cubic meters. Most important the heat flux measurement does not interfere with the biological process under investigation. The practical advantages of calorimetry include the waiver of labeling and reactants. It is further possible to assemble the thermal transducer in a protected way that reduces aging and thereby signal drifts. Calorimetry works with optically opaque solutions. All of these advantages make calorimetry an interesting method for many applications in medicine, environmental sciences, ecology, biochemistry and biotechnology, just to mention a few. However, in many cases the heat signal is merely used to monitor biological processes but only rarely to quantitatively interpret the data. Therefore, a significant proportion of the information potential of calorimetry remains unutilized. To fill this information gap and to motivate the reader using the full information potential of calorimetry, various methods for quantitative data interpretations are presented, evaluated and compared with each other. Possible errors of interpretation and limitations of quantitative data analysis are also discussed. PMID:25461814

  3. Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke

    PubMed Central

    Xu, Yan-Hong; Wang, Xing-De; Yang, Jia-Jun; Zhou, Li; Pan, Yong-Chao

    2016-01-01

    Background and purpose Autonomic dysfunction is common after stroke, which is correlated with unfavorable outcome. Phase-rectified signal averaging is a newly developed technique for assessing cardiac autonomic function, by detecting sympathetic and vagal nerve activity separately through calculating acceleration capacity (AC) and deceleration capacity (DC) of heart rate. In this study, we used this technique for the first time to investigate the cardiac autonomic function of patients with acute hemispheric ischemic stroke. Methods A 24-hour Holter monitoring was performed in 63 patients with first-ever acute ischemic stroke in hemisphere and sinus rhythm, as well as in 50 controls with high risk of stroke. DC, AC, heart rate variability parameters, standard deviation of all normal-to-normal intervals (SDNN), and square root of the mean of the sum of the squares of differences between adjacent normal-to-normal intervals (RMSSD) were calculated. The National Institutes of Health Stroke Scale (NIHSS) was used to assess the severity of stroke. We analyzed the changes of DC, AC, SDNN, and RMSSD and also studied the correlations between these parameters and NIHSS scores. Results The R–R (R wave to R wave on electrocardiogram) intervals, DC, AC, and SDNN in the cerebral infarction group were lower than those in controls (P=0.003, P=0.002, P=0.006, and P=0.043), but the difference of RMSSD and the D-value and ratio between absolute value of AC (|AC|) and DC were not statistically significant compared with those in controls. The DC of the infarction group was significantly correlated with |AC|, SDNN, and RMSSD (r=0.857, r=0.619, and r=0.358; P=0.000, P=0.000, and P=0.004). Correlation analysis also showed that DC, |AC|, and SDNN were negatively correlated with NIHSS scores (r=−0.279, r=−0.266, and r=−0.319; P=0.027, P=0.035, and P=0.011). Conclusion Both DC and AC of heart rate decreased in patients with hemispheric infarction, reflecting a decrease in both vagal

  4. Language-Dependent Pitch Encoding Advantage in the Brainstem Is Not Limited to Acceleration Rates that Occur in Natural Speech

    ERIC Educational Resources Information Center

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Smalt, Christopher J.; Bidelman, Gavin M.

    2010-01-01

    Experience-dependent enhancement of neural encoding of pitch in the auditory brainstem has been observed for only specific portions of native pitch contours exhibiting high rates of pitch acceleration, irrespective of speech or nonspeech contexts. This experiment allows us to determine whether this language-dependent advantage transfers to…

  5. Phycocyanobilin accelerates liver regeneration and reduces mortality rate in carbon tetrachloride-induced liver injury mice

    PubMed Central

    Liu, Jie; Zhang, Qing-Yu; Yu, Li-Ming; Liu, Bin; Li, Ming-Yi; Zhu, Run-Zhi

    2015-01-01

    AIM: To investigate the hepatoprotective effects of phycocyanobilin (PCB) in reducing hepatic injury and accelerating hepatocyte proliferation following carbon tetrachloride (CCl4) treatment. METHODS: C57BL/6 mice were orally administered PCB 100 mg/kg for 4 d after CCl4 injection, and then the serum and liver tissue of the mice were collected at days 1, 2, 3, 5 and 7 after CCl4 treatment. A series of evaluations were performed to identify the curative effects on liver injury and recovery. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin and superoxide dismutase (SOD) were detected to indirectly assess the anti-inflammatory effects of PCB. Meanwhile, we detected the expressions of hepatocyte growth factor, transforming growth factor alpha (TGF-α), TGF-β, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), the factors which are associated with inflammation and liver regeneration. The protein expressions of proliferating cell nuclear antigen (PCNA), TNF-α and cytochrome C were detected by western blot. Furthermore, the survival rates were analyzed of mice which were administered a lethal dose of CCl4 (2.6 mg/kg) with or without PCB. RESULTS: In our research, PCB showed a strongly anti-inflammatory effect on CCl4-induced liver injury in mice. The ALT was significantly decreased after CCl4 treatment from day 1 (P < 0.01) and the AST was significantly decreased from day 2 (P < 0.001). Both albumin and liver SOD were increased from day 2 (P < 0.001 and P < 0.01), but serum SOD levels did not show a significant increase (P > 0.05). PCB protected the structure of liver from the injury by CCl4. TUNEL assay showed that PCB dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (101.0 ± 25.4 vs 25.7 ± 6.4, P < 0.01). The result of western blotting showed that PCB could increase PCNA expression, decrease TNF-α and cytochrome C expression. Furthermore, data shows that PCB could improve the

  6. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  7. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems

    PubMed Central

    Geurts, Sofie; van der Werf, Sieberen P.; Kessels, Roy P. C.

    2015-01-01

    The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests, days, to weeks, after initial learning) are more sensitive measures than standard delayed recall measures to detect memory problems in various patient groups. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed in other populations. Here, we identified eleven studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to those of healthy controls. Signs of accelerated forgetting were found in three studies. The results of eight studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on these results, we recommend the use of a combined recall and recognition procedure to examine accelerated forgetting and we discuss the relevance of standard and optimized learning procedures in clinical practice. PMID:26106343

  8. Accelerated forgetting? An evaluation on the use of long-term forgetting rates in patients with memory problems.

    PubMed

    Geurts, Sofie; van der Werf, Sieberen P; Kessels, Roy P C

    2015-01-01

    The main focus of this review was to evaluate whether long-term forgetting rates (delayed tests, days, to weeks, after initial learning) are more sensitive measures than standard delayed recall measures to detect memory problems in various patient groups. It has been suggested that accelerated forgetting might be characteristic for epilepsy patients, but little research has been performed in other populations. Here, we identified eleven studies in a wide range of brain injured patient groups, whose long-term forgetting patterns were compared to those of healthy controls. Signs of accelerated forgetting were found in three studies. The results of eight studies showed normal forgetting over time for the patient groups. However, most of the studies used only a recognition procedure, after optimizing initial learning. Based on these results, we recommend the use of a combined recall and recognition procedure to examine accelerated forgetting and we discuss the relevance of standard and optimized learning procedures in clinical practice. PMID:26106343

  9. Determination of the cosmological rate of change of G and the tidal accelerations of earth and moon from ancient and modern astronomical data

    NASA Technical Reports Server (NTRS)

    Muller, P. M.

    1976-01-01

    The theory and numerical analysis of ancient astronomical observations (1374 to 1715) are combined with modern data in a simultaneous solution for: the tidal acceleration of the lunar longitude; the observed apparent acceleration of the earth's rotation; the true nontidal geophysical part of this acceleration; and the rate of change in the gravitational constant. Provided are three independent determinations of a rate of change of G consistent with the Hubble Constant and a near zero nontidal rotational acceleration of the earth. The tidal accelerations are shown to have remained constant during the historical period within uncertainties. Ancient and modern solar system data, and extragalactic observations provided a completely consistent astronomical and cosmological scheme.

  10. Unraveling Entropic Rate Acceleration Induced by Solvent Dynamics in Membrane Enzymes

    PubMed Central

    Kürten, Charlotte; Syrén, Per-Olof

    2016-01-01

    Enzyme catalysis evolved in an aqueous environment. The influence of solvent dynamics on catalysis is, however, currently poorly understood and usually neglected. The study of water dynamics in enzymes and the associated thermodynamical consequences is highly complex and has involved computer simulations, nuclear magnetic resonance (NMR) experiments, and calorimetry. Water tunnels that connect the active site with the surrounding solvent are key to solvent displacement and dynamics. The protocol herein allows for the engineering of these motifs for water transport, which affects specificity, activity and thermodynamics. By providing a biophysical framework founded on theory and experiments, the method presented herein can be used by researchers without previous expertise in computer modeling or biophysical chemistry. The method will advance our understanding of enzyme catalysis on the molecular level by measuring the enthalpic and entropic changes associated with catalysis by enzyme variants with obstructed water tunnels. The protocol can be used for the study of membrane-bound enzymes and other complex systems. This will enhance our understanding of the importance of solvent reorganization in catalysis as well as provide new catalytic strategies in protein design and engineering. PMID:26862836

  11. Unraveling Entropic Rate Acceleration Induced by Solvent Dynamics in Membrane Enzymes.

    PubMed

    Kürten, Charlotte; Syrén, Per-Olof

    2016-01-01

    Enzyme catalysis evolved in an aqueous environment. The influence of solvent dynamics on catalysis is, however, currently poorly understood and usually neglected. The study of water dynamics in enzymes and the associated thermodynamical consequences is highly complex and has involved computer simulations, nuclear magnetic resonance (NMR) experiments, and calorimetry. Water tunnels that connect the active site with the surrounding solvent are key to solvent displacement and dynamics. The protocol herein allows for the engineering of these motifs for water transport, which affects specificity, activity and thermodynamics. By providing a biophysical framework founded on theory and experiments, the method presented herein can be used by researchers without previous expertise in computer modeling or biophysical chemistry. The method will advance our understanding of enzyme catalysis on the molecular level by measuring the enthalpic and entropic changes associated with catalysis by enzyme variants with obstructed water tunnels. The protocol can be used for the study of membrane-bound enzymes and other complex systems. This will enhance our understanding of the importance of solvent reorganization in catalysis as well as provide new catalytic strategies in protein design and engineering. PMID:26862836

  12. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  13. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. PMID:27025293

  14. In Vivo Human Left-to-Right Ventricular Differences in Rate Adaptation Transiently Increase Pro-Arrhythmic Risk following Rate Acceleration

    PubMed Central

    Bueno-Orovio, Alfonso; Hanson, Ben M.; Gill, Jaswinder S.; Taggart, Peter; Rodriguez, Blanca

    2012-01-01

    Left-to-right ventricular (LV/RV) differences in repolarization have been implicated in lethal arrhythmias in animal models. Our goal is to quantify LV/RV differences in action potential duration (APD) and APD rate adaptation and their contribution to arrhythmogenic substrates in the in vivo human heart using combined in vivo and in silico studies. Electrograms were acquired from 10 LV and 10 RV endocardial sites in 15 patients with normal ventricles. APD and APD adaptation were measured during an increase in heart rate. Analysis of in vivo electrograms revealed longer APD in LV than RV (207.8±21.5 vs 196.7±20.1 ms; P<0.05), and slower APD adaptation in LV than RV (time constant τs = 47.0±14.3 vs 35.6±6.5 s; P<0.05). Following rate acceleration, LV/RV APD dispersion experienced an increase of up to 91% in 12 patients, showing a strong correlation (r2 = 0.90) with both initial dispersion and LV/RV difference in slow adaptation. Pro-arrhythmic implications of measured LV/RV functional differences were studied using in silico simulations. Results show that LV/RV APD and APD adaptation heterogeneities promote unidirectional block following rate acceleration, albeit being insufficient for establishment of reentry in normal hearts. However, in the presence of an ischemic region at the LV/RV junction, LV/RV heterogeneity in APD and APD rate adaptation promotes reentrant activity and its degeneration into fibrillatory activity. Our results suggest that LV/RV heterogeneities in APD adaptation cause a transient increase in APD dispersion in the human ventricles following rate acceleration, which promotes unidirectional block and wave-break at the LV/RV junction, and may potentiate the arrhythmogenic substrate, particularly in patients with ischemic heart disease. PMID:23284948

  15. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    SciTech Connect

    Zhu, J.; Clavaguera-Mora, M.T.; Clavaguera, N.

    1997-03-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (T{sub C}) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. {copyright} {ital 1997 American Institute of Physics.}

  16. Particle Flow Calorimetry at the ILC

    SciTech Connect

    Thomson, M. A.

    2007-03-19

    One of the most important requirements for a detector at the ILC is good jet energy resolution. It is widely believed that the particle flow approach to calorimetry is the key to achieving the goal of 0.3/{radical}(E(GeV)). In contrast to the traditional approach to calorimetry, potentially the performance of particle flow calorimetry is sensitive to the detailed structure of hadronic showers. This paper describes the current performance of the PANDORAPFA particle flow algorithm. For 45 GeV jets in the Tesla TDR detector concept, the ILC jet energy resolution goal is reached. First detector optimisation studies are presented and the aspects of hadronic showers which are most likely to impact particle flow performance are discussed.

  17. Thermal Properties of Trogamid by Conventional and Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Merfeld, John; Mao, Bin; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We use conventional slow scan rate differential scanning calorimetry, and fast scanning chip-based calorimetry (FSC), to investigate the crystallization and melting behavior of Trogamid, a chemical relative of nylon. Fundamental thermal properties of Trogamid were studied, including the melt crystallization kinetics, heat of fusion, and the solid and liquid state heat capacities. Using slow scan DSC (at 5 K/min), Trogamid displays a glass transition relaxation process at ~133 C, melting endotherm peak at 250 C, and is stable upon repeated heating to 310 C. When using slow scan DSC, the isothermal melt crystallization temperatures were restricted to 225 C or above. Trogamid crystallizes rapidly from the melt and conventional calorimetry is unable to cool sufficiently fast to prevent nucleation and crystal growth prior to stabilization at lower crystallization temperatures. Using FSC we were able to cool nano-gram sizes samples at 2000 K/s to investigate a much lower range of melt crystallization temperatures, from 205-225 C. The experimental protocol for performing FSC on semicrystalline polymers to obtain liquid state heat capacity data will be presented. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  18. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  19. Calculation of Temperature Rise in Calorimetry.

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.; Witt, Jerry

    1988-01-01

    Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)

  20. Isothermal Titration Calorimetry in the Student Laboratory

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Yujing; Li, Xi

    2011-01-01

    Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…

  1. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  2. Liquid argon calorimetry for the SSC

    SciTech Connect

    Gordon, H.A.

    1990-01-01

    Liquid argon calorimetry is a mature technique. However, adapting it to the challenging environment of the SSC requires a large amount of R D. The advantages of the liquid argon approach are summarized and the issues being addressed by the R D program are described. 18 refs.

  3. CCAP and FMRFamide-like peptides accelerate the contraction rate of the antennal accessory pulsatile organs (auxiliary hearts) of mosquitoes.

    PubMed

    Suggs, Julia M; Jones, Talitha H; Murphree, Steven C; Hillyer, Julián F

    2016-08-01

    Insects rely on specialized accessory pulsatile organs (APOs), also known as auxiliary hearts, to propel hemolymph into their antennae. In most insects, this is accomplished via the pulsations of a pair of ampulla located in the head, each of which propels hemolymph across an antenna via an antennal vessel. Once at the distal end of the appendage, hemolymph returns to the head via the antennal hemocoel. Although the structure of the antennal hearts has been elucidated in various insect orders, their hormonal modulation has only been studied in cockroaches and other hemimetabolous insects within the superorder Polyneoptera, where proctolin and FMRFamide-like peptides accelerate the contraction rate of these auxiliary hearts. Here, we assessed the hormonal modulation of the antennal APOs of mosquitoes, a group of holometabolous (Endopterygota) insects within the order Diptera. We show that crustacean cardioactive peptide (CCAP), FMRFamide and SALDKNFMRFamide increase the contraction rate of the antennal APOs and the heart of Anopheles gambiae Both antennal hearts are synchronously responsive to these neuropeptides, but their contractions are asynchronous with the contraction of the heart. Furthermore, we show that these neuropeptides increase the velocity and maximum acceleration of hemolymph within the antennal space, suggesting that each contraction is also more forceful. To our knowledge, this is the first report demonstrating that hormones of a holometabolous insect modulate the contraction dynamics of an auxiliary heart, and the first report that shows that the hormones of any insect accelerate the velocity of hemolymph in the antennal space. PMID:27247317

  4. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT1). A similar analysis that was conducted for the NASA's Solar Electric Propulsion Technology Applications Readiness Program (NSTAR) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future post-test analyses are incorporated. The worst-case impact of carbon

  5. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back

  6. The Impact of Prematriculation Admission Characteristics on Graduation Rates in an Accelerated Doctor of Pharmacy Program

    PubMed Central

    Morin, Anna K.

    2015-01-01

    Objective. To evaluate the impact of admission characteristics on graduation in an accelerated doctor of pharmacy (PharmD) program. Methods. Selected prematriculation characteristics of students entering the graduation class years of 2009-2012 on the Worcester and Manchester campuses of MCPHS University were analyzed and compared for on-time graduation. Results. Eighty-two percent of evaluated students (699 of 852) graduated on time. Students who were most likely to graduate on-time attended a 4-year school, previously earned a bachelor’s degree, had an overall prematriculation grade point average (GPA) greater than or equal to 3.6, and graduated in the spring just prior to matriculating to the university. Factors that reduced the likelihood of graduating on time were also identified. Work experience had a marginal impact on graduating on time. Conclusion. Although there is no certainty in college admission decisions, prematriculation characteristics can help predict the likelihood for academic success of students in an accelerated PharmD program. PMID:26689686

  7. Differential scanning calorimetry in determining kinetics parameter of Si oxidation

    NASA Astrophysics Data System (ADS)

    Faruque, Sk. Abdul Kader Md.; Chakraborty, Supratic

    2016-05-01

    Differential scanning calorimetry (DSC) technique is employed here to study the oxidation of silicon by solid-gas reaction at a constant heating rate. The diffusion coefficient of oxygen into silicon at 900 °C is estimated from the kinetic equation of 1-dimensional diffusion controlled growth. The diffusion coefficient, D estimated as 4.5 × 10-5 exp (1.01ev/κBT) m2/s, as is in well agreement with the standard value available in literature.

  8. SU-E-T-495: Neutron Induced Electronics Failure Rate Analysis for a Single Room Proton Accelerator

    SciTech Connect

    Knutson, N; DeWees, T; Klein, E

    2014-06-01

    Purpose: To determine the failure rate as a function of neutron dose of the range modulator's servo motor controller system (SMCS) while shielded with Borated Polyethylene (BPE) and unshielded in a single room proton accelerator. Methods: Two experimental setups were constructed using two servo motor controllers and two motors. Each SMCS was then placed 30 cm from the end of the plugged proton accelerator applicator. The motor was then turned on and observed from outside of the vault while being irradiated to known neutron doses determined from bubble detector measurements. Anytime the motor deviated from the programmed motion a failure was recorded along with the delivered dose. The experiment was repeated using 9 cm of BPE shielding surrounding the SMCS. Results: Ten SMCS failures were recorded in each experiment. The dose per monitor unit for the unshielded SMCS was 0.0211 mSv/MU and 0.0144 mSv/MU for the shielded SMCS. The mean dose to produce a failure for the unshielded SMCS was 63.5 ± 58.3 mSv versus 17.0 ±12.2 mSv for the shielded. The mean number of MUs between failures were 2297 ± 1891 MU for the unshielded SMCS and 2122 ± 1523 MU for the shielded. A Wilcoxon Signed Ranked test showed the dose between failures were significantly different (P value = 0.044) while the number of MUs between failures were not (P value = 1.000). Statistical analysis determined a SMCS neutron dose of 5.3 mSv produces a 5% chance of failure. Depending on the workload and location of the SMCS, this failure rate could impede clinical workflow. Conclusion: BPE shielding was shown to not reduce the average failure of the SMCS and relocation of the system outside of the accelerator vault was required to lower the failure rate enough to avoid impeding clinical work flow.

  9. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling.

    PubMed

    Johnston, Christopher A; Taylor, J Philip; Gao, Yajun; Kimple, Adam J; Grigston, Jeffrey C; Chen, Jin-Gui; Siderovski, David P; Jones, Alan M; Willard, Francis S

    2007-10-30

    Heterotrimeric G protein signaling is important for cell-proliferative and glucose-sensing signal transduction pathways in the model plant organism Arabidopsis thaliana. AtRGS1 is a seven-transmembrane, RGS domain-containing protein that is a putative membrane receptor for d-glucose. Here we show, by using FRET, that d-glucose alters the interaction between the AtGPA1 and AtRGS1 in vivo. AtGPA1 is a unique heterotrimeric G protein alpha subunit that is constitutively GTP-bound given its high spontaneous nucleotide exchange coupled with slow GTP hydrolysis. Analysis of a point mutation in AtRGS1 that abrogates GTPase-accelerating activity demonstrates that the regulation of AtGPA1 GTP hydrolysis mediates sugar signal transduction during Arabidopsis development, in contrast to animals where nucleotide exchange is the limiting step in the heterotrimeric G protein nucleotide cycle. PMID:17951432

  10. Advanced ion beam calorimetry for the test facility ELISE

    SciTech Connect

    Nocentini, R. Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-04-08

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m{sup 2} in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m{sup 2}, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  11. Advanced ion beam calorimetry for the test facility ELISE

    NASA Astrophysics Data System (ADS)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  12. Water Calorimetry: A Correction to the Heat Defect Calculations

    PubMed Central

    Klassen, Norman V.; Ross, Carl K.

    2002-01-01

    In a recent publication, we used a reaction model (model III) to calculate the heat defect for the irradiation of aqueous solutions with ionizing radiation at 21 °C. Subsequent work has revealed that the literature value used for one of the rate constants in the model was incorrect. A revised model (model IIIR) incorporates the correct rate constant for 21 °C. Versions of models III and IIIR were created for irradiations at 4 °C. For our current water calorimetry protocol, the values of the heat defect for H2/O2-water (water saturated with a flow of 43 % H2 and 57 % O2, by volume) at 21 °C predicted by model III and model IIIR are similar but the value for 4 °C predicted by III is 30 % smaller than the value predicted by IIIR. Model IIIR predicts that the values of the heat defect at 21 °C and 4 °C lie within the range −0.023±0.002, in agreement with the values obtained from our water calorimetry measurements done using pure water and H2-saturated water at 21 °C and 4 °C. The yields of hydrogen peroxide in H2/O2-water at 21 °C and 4 °C were measured and agree with the predictions of model IIIR. Our water calorimetry measurements made with pure water and H2-saturated water are now of sufficient quality that they can be used to determine the heat defect for H2/O2-water better than can be done by simulations. However, consistency between the three systems continues to be an excellent check on water purity which is crucial, especially for the pure water system.

  13. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  14. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  15. Surface composition and barium evaporation rate of ``pedigreed'' impregnated tungsten dispenser cathodes during accelerated life testing

    NASA Astrophysics Data System (ADS)

    Tomich, D. H.; Mescher, J. A.; Grant, J. T.

    1987-03-01

    A study has been made of the surface composition and barium evaporation rate of "pedigreed" impregnated tungsten dispenser cathodes. The effect of air exposure on coated cathodes was examined and was found to have no significant effect on barium evaporation rate although in some cases longer reactivation times were required. No changes in surface topography were apparent following air exposure and reactivation. Life testing was done at 100°C above the typical operating temperature for the cathode, where the typical operating temperature was taken to be 950°C for coated cathodes and 1050°C for uncoated cathodes. The cathodes were examined at different stages of life testing, up to 1200 h. Significant decreases in barium evaporation rates were found after as few as 500 h of life testing. After 1000 h the evaporation rate had decreased more than an order of magnitude. Changes in surface composition were also found. The effects of tungsten particle size, used in manufacture of the billet, on barium evaporation rate were also studied but no correlation was found.

  16. Coevolution within and between Regulatory Loci Can Preserve Promoter Function Despite Evolutionary Rate Acceleration

    PubMed Central

    Barrière, Antoine; Gordon, Kacy L.; Ruvinsky, Ilya

    2012-01-01

    Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns. PMID:23028368

  17. Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals

    PubMed Central

    Beck, Robin M. D.; Lee, Michael S. Y.

    2014-01-01

    Analyses of a comprehensive morphological character matrix of mammals using ‘relaxed’ clock models (which simultaneously estimate topology, divergence dates and evolutionary rates), either alone or in combination with an 8.5 kb nuclear sequence dataset, retrieve implausibly ancient, Late Jurassic–Early Cretaceous estimates for the initial diversification of Placentalia (crown-group Eutheria). These dates are much older than all recent molecular and palaeontological estimates. They are recovered using two very different clock models, and regardless of whether the tree topology is freely estimated or constrained using scaffolds to match the current consensus placental phylogeny. This raises the possibility that divergence dates have been overestimated in previous analyses that have applied such clock models to morphological and total evidence datasets. Enforcing additional age constraints on selected internal divergences results in only a slight reduction of the age of Placentalia. Constraining Placentalia to less than 93.8 Ma, congruent with recent molecular estimates, does not require major changes in morphological or molecular evolutionary rates. Even constraining Placentalia to less than 66 Ma to match the ‘explosive’ palaeontological model results in only a 10- to 20-fold increase in maximum evolutionary rate for morphology, and fivefold for molecules. The large discrepancies between clock- and fossil-based estimates for divergence dates might therefore be attributable to relatively small changes in evolutionary rates through time, although other explanations (such as overly simplistic models of morphological evolution) need to be investigated. Conversely, dates inferred using relaxed clock models (especially with discrete morphological data and MrBayes) should be treated cautiously, as relatively minor deviations in rate patterns can generate large effects on estimated divergence dates. PMID:25165770

  18. Selective sinoatrial node optical mapping to investigate the mechanism of sinus rate acceleration

    NASA Astrophysics Data System (ADS)

    Lin, Shien-Fong; Shinohara, Tetsuji; Joung, Boyoung; Chen, Peng-Sheng

    2011-03-01

    Studies using isolated sinoatrial node (SAN) cells indicate that rhythmic spontaneous sarcoplasmic reticulum Ca release (Ca clock) plays an important role in SAN automaticity. However, it is difficult to translate these findings into intact SAN because the SAN is embedded in the right atrium (RA). Cross contamination of the optical signals between SAN and RA prevented the definitive testing of Ca clock hypothesis in intact SAN. We use a novel approach to selectively map intact SAN to examine the Ca clock function in intact RA. We simultaneously mapped intracellular Ca (Cai) and membrane potential (Vm) in 7 isolated, Langendorff perfused normal canine RA. Electrical conduction from the SAN to RA was inhibited with high potassium (10 mmol/L) Tyrode's solution, allowing selective optical mapping of Vm and Cai of the SAN. Isoproterenol (ISO, 0.03 μmol/L) decreased cycle length of the sinus beats from 586+/-17 ms at baseline to 366+/-32 ms, and shifted the leading pacemaker site from the middle or inferior SAN to the superior SAN in all RAs. The Cai upstroke preceded the Vm in the leading pacemaker site by up to 18+/-2 ms. ISO-induced changes to SAN were inhibited by ryanodine (3 μmol/L), but not ZD7288 (3 μmol/L), a selective If blocker. We conclude that a high extracellular potassium concentration results in intermittent SAN-RA conduction block, allowing selective optical mapping of the intact SAN. Acceleration of Ca cycling in the superior SAN underlies the mechanism of sinus tachycardia during sympathetic stimulation.

  19. The acceleration rate of cosmic rays at cosmic ray modified shocks

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  20. UVB Exposure Does Not Accelerate Rates of Litter Decomposition in a Semiarid Riparian Ecosystem

    NASA Astrophysics Data System (ADS)

    Uselman, S. M.; Snyder, K. A.; Blank, R. R.; Jones, T. J.

    2010-12-01

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive effects of UVB exposure and litter quality on decomposition in a Tamarix-invaded riparian ecosystem during the establishment of an insect biological control agent in northern Nevada. Feeding by the northern tamarisk beetle (Diorhabda carinulata) on Tamarix spp. trees leads to altered leaf litter quality and increased exposure to solar UVB radiation from canopy opening. In addition, we examined the dynamics of litter decomposition of the invasive exotic Lepidium latifolium, because it is well-situated to invade beetle-infested Tamarix sites. Three leaf litter types (natural Tamarix, beetle-affected Tamarix, and L. latifolium) differing in substrate quality were decomposed in litterbags for one year in the field. Litterbags were subjected to one of three treatments: (1) Ambient UVB or (2) Reduced UVB (where UVB was manipulated by using clear plastic films that transmit or block UVB), and (3) No Cover (a control used to test for the effect of using the plastic films, i.e. a cover effect). Results showed a large cover effect on rates of decomposition and nutrient release, and our findings suggested that frequent cycles of freeze-thaw, and possibly rainfall intensity, influenced decomposition at this site. Contrary to our expectations, greater UVB exposure did not result in faster rates of decomposition. Greater UVB exposure resulted in decreased rates of decomposition and P release for the lower quality litter and no change in rates of decomposition and nutrient release for the two higher quality litter types, possibly due to a negative effect of UVB on soil microbes. Among litter types, rates of decomposition and net release of N and P followed this ranking: L. latifolium

  1. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates.

    PubMed

    Kominoski, John S; Rosemond, Amy D; Benstead, Jonathan P; Gulis, Vladislav; Maerz, John C; Manning, David W P

    2015-04-01

    Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and.drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-moderate N and P concentrations are needed to establish likely interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems. We established 25 combinations of dissolved inorganic N (DIN; 55-545 µg/L) and soluble reactive P (SRP; 4-86 µg/L) concentrations with corresponding N:P molar ratios of 2-127 in experimental stream channels. We excluded macroinvertebrates, focusing on microbially driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum L.) leaf litter. Breakdown rates, k, per day (d-1) and per degree-day (dd-l), increased by up to 6X for maple and 12× for rhododendron over our N and P enrichment gradient compared to rates at low ambient N and P concentrations. The best models of k (d- and dd-1) included litter species identity and N and P concentrations; there was evidence for both additive and interactive effects of N and P. Models explaining variation in k dd-1 were supported by N and P for both maple and rhododendron (R =0.67 and 0.33, respectively). Residuals in the relationship between k dd-1 and N concentration were largely explained by P, but residuals for k dd-1 and P. concentration were less adequately explained by N. Breakdown rates were more closely related to nutrient concentrations than variables associated with measurements of two mechanistic parameters associated with C loss (fungal biomass and microbial respiration rate). We also determined the effects of nutrient addition on litter C: nutrient stoichiometry and found reductions in litter C:N and C:P along our experimental nutrient gradient. Our results indicate that

  2. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    PubMed

    Hadrys, Heike; Simon, Sabrina; Kaune, Barbara; Schmitt, Oliver; Schöner, Anja; Jakob, Wolfgang; Schierwater, Bernd

    2012-01-01

    Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution. PMID:22685537

  3. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    SciTech Connect

    Dobbs, Adam James

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10:9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31:1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  4. The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates

    PubMed Central

    2008-01-01

    Background Welwitschia mirabilis is the only extant member of the family Welwitschiaceae, one of three lineages of gnetophytes, an enigmatic group of gymnosperms variously allied with flowering plants or conifers. Limited sequence data and rapid divergence rates have precluded consensus on the evolutionary placement of gnetophytes based on molecular characters. Here we report on the first complete gnetophyte chloroplast genome sequence, from Welwitschia mirabilis, as well as analyses on divergence rates of protein-coding genes, comparisons of gene content and order, and phylogenetic implications. Results The chloroplast genome of Welwitschia mirabilis [GenBank: EU342371] is comprised of 119,726 base pairs and exhibits large and small single copy regions and two copies of the large inverted repeat (IR). Only 101 unique gene species are encoded. The Welwitschia plastome is the most compact photosynthetic land plant plastome sequenced to date; 66% of the sequence codes for product. The genome also exhibits a slightly expanded IR, a minimum of 9 inversions that modify gene order, and 19 genes that are lost or present as pseudogenes. Phylogenetic analyses, including one representative of each extant seed plant lineage and based on 57 concatenated protein-coding sequences, place Welwitschia at the base of all seed plants (distance, maximum parsimony) or as the sister to Pinus (the only conifer representative) in a monophyletic gymnosperm clade (maximum likelihood, bayesian). Relative rate tests on these gene sequences show the Welwitschia sequences to be evolving at faster rates than other seed plants. For these genes individually, a comparison of average pairwise distances indicates that relative divergence in Welwitschia ranges from amounts about equal to other seed plants to amounts almost three times greater than the average for non-gnetophyte seed plants. Conclusion Although the basic organization of the Welwitschia plastome is typical, its compactness, gene content

  5. Hillslope-channel coupling in a steep Hawaiian catchment accelerates erosion rates over 100-fold

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Hanshaw, M. N.; Rosener, M.; Schmidt, K. M.; Brooks, B. A.; Tribble, G.; Jacobi, J.

    2009-12-01

    In tropical watersheds, hillslope changes are producing increasing amounts of fine sediment that can be quickly carried to reefs by channels. Suspended sediment concentrations off the reefs of Molokai, Hawaii, chronically exceed a toxic level of 10 mg/L, threatening reef ecosystems. We hypothesize that historic conversion of watersheds from soil creep to overland flow erosion increased both magnitude and frequency of sediment flooding adjacent reefs. We combined surficial and ecological mapping, hillslope and stream gages, and novel sensors to locate, quantify and model the generation of fine sediments polluting the Molokai reef. Ecological and geomorphic mapping from LiDAR and multi-spectral imagery located a subset of overland flow areas with vegetation cover below a threshold value preventing erosion. Here, feral goat grazing exposed cohesive volcanic soils whose low matrix hydraulic conductivities (1-20 mm/hour) promote Horton overland flow erosion. We instrumented steep, barren hillslopes with soil moisture sensors, overland flow meters, Parshall flumes, ISCO sediment samplers, and a rain gage and conducted repeat Tripod LiDAR and infiltration tests. To characterize soil resistance here and elsewhere to overland flow erosion, we deployed a Cohesive Strength Meter (CSM) to simulate the stresses of flowing water. At the 13.5 km 2 watershed mouth we used a USGS stream gage and ISCO sediment sampler to estimate total load. Over 2 years, storms triggered overland flow during rainfall intensities above 10-15 mm/hr. Overland flow meters indicate such flows can be up to 3 cm deep, with a tendency to deepen downslope. CSM tests indicate that these depths are insufficient to erode soils where vegetation is dense, but far above threshold values of 2-3 mm depth for bare soil erosion. Sediment ratings curves for both hillslope and downstream catchment gages show strong clock-wise hysteresis during the first intense storms in the Fall, becoming linear later in the rainy

  6. The use of calorimetry in nuclear materials management

    SciTech Connect

    Nutter, J.D.; O`Hara, F.A.; Rodenburg, W.W.

    1996-07-01

    A calorimeter is a device to measure evolved or adsorbed heat. For our purposes, the heat measured is that associated with radioactive decay and the unit of measurement is the watt. Each time an atom decays, energy is released and absorbed by the surroundings and heat generated. For each isotope, this heat is a constant related to the energy of the decay particles and the half-life of the isotope. A point which is often overlooked is that calorimetry is one of the oldest techniques known for measuring radioactivity. In 1903, Pierre Curie and A. Laborde used a twin microcalorimeter to determine that one gram of radium generates about 100 calories per hour. Several months later, Curie and Dewar used liquid oxygen and hydrogen to show that the amount of energy developed by radium and other radioactive elements did not depend on temperature. At that time, this observation was extremely important. It indicated that the nature of radioactivity is entirely different and cannot be compared with any known phenomena. In all other thermal processes known in physics and chemistry, the rate at which heat is developed changes with temperature. In 1942, Monsanto was asked by General Leslie Groves, Head of the Manhattan Project, to accept the responsibility for the chemistry and metallurgy of radioactive polonium. Late in 1943, two Monsanto scientists began a study of the half-life of polonium-210 using calorimetry.

  7. Calorimetry of the CMD-3 detector

    NASA Astrophysics Data System (ADS)

    Shebalin, V. E.; Akhmetshin, R. R.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Grebenuk, A. A.; Grigoriev, D. N.; Ignatov, F. V.; Kazanin, V. F.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Okhapkin, V. S.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Titov, V. M.; Talyshev, A. A.; Yudin, Yu. V.

    2016-07-01

    CMD-3 is a general purpose detector designed to study e+e- annihilation into hadrons. It is mounted at VEPP-2000 collider which operates in the wide energy range, E c . m . s = 0.32 - 2 GeV. The calorimetry at the detector is based on three subsystems: closest to the beam pipe barrel Liquid Xenon calorimeter, outer barrel calorimeter based on CsI scintillation crystals and the endcap calorimeter made of BGO scintillation crystals. We describe the structure of the calorimeters, their electronics and the energy calibration procedures.

  8. High rates of carbon storage in old deciduous forests: Emerging mechanisms from the Forest Accelerated Succession ExperimenT (FASET)

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Nave, L. E.; Hardiman, B. S.; Bohrer, G.; Halperin, A.; Maurer, K.; Le Moine, J.; Nadelhoffer, K.; Vogel, C. S.; Curtis, P.; University Of Michigan Biological Station Forest Ecosystem Study (Umbs-Fest) Team

    2010-12-01

    Deciduous forests of the eastern US are broadly approaching an ecological threshold in which early successional dominant trees are senescing and giving way to later successional species, with unknown consequences for regional carbon (C) cycling. Though recent research demonstrates that forests may accumulate C for centuries, the mechanisms behind sustained rates of C storage in old, particularly deciduous, forests have not been identified. In a regionally representative forest at the University of Michigan Biological Station, we are combining observational and experimental C cycling studies to forecast how forest C storage responds to climate variation, disturbance, and succession. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is testing the hypothesis that forest production will increase rather than decline with age, due to increases in nitrogen (N) availability, N allocation to the canopy, and the concurrent development of a more biologically and structurally complex canopy. Results thus far support our hypothesis that aging forests in the region may sustain high rates of C storage through shifts in N cycling and increased canopy complexity. Girdling-induced mortality of early successional species reduced soil respiration, accelerated fine root turnover, and prompted the redistribution of N from the foliage of early to later successional species. Nitrogen redistribution increased leaf area index (LAI) production by later successional species, offsetting declines in LAI from senescing early successional species. High rates of net primary production (NPP) were sustained in stands comprising a diverse assemblage of early and later successional species because later successional species, when already present in the canopy, rapidly compensated for declining growth of early successional species. Canopy structural complexity, which increased with forest age, was positively

  9. Consumers' Interest In Provider Ratings Grows, And Improved Report Cards And Other Steps Could Accelerate Their Use.

    PubMed

    Findlay, Steven D

    2016-04-01

    Encouraging patients and consumers to use data and other information in choosing health care providers is an important way to enhance patient engagement and improve the quality of care. The growing use of technology, including smart phones and near-ubiquitous Internet access, provides consumers with easy access to websites that collect and report assessments and ratings of providers, primarily physicians and hospitals. In addition to new technology, recent laws and changes in society and the delivery of care are laying the foundation for greater use by consumers of provider performance report cards. Such use could be accelerated if the shortcomings of current report card efforts were addressed. Recommendations include making online report cards easier to use and more understandable, engaging, substantive, and relevant to consumers' health and medical concerns and choices. PMID:27044970

  10. System modelling to support accelerated fuel transfer rate at EBR-II

    SciTech Connect

    Imel, G.R.; Houshyar, A.; Planchon, H.P.; Cutforth, D.C.

    1995-06-01

    The Experimental Breeder Reactor-II (EBR-II) ia a 62.5 MW(th) liquid metal reactor operated by Argonne National Laboratory for The United States Department of Energy. The reactor is located near Idaho Falls, Idaho at the Argonne-West site (ANL-W). Full power operation was achieved in 1964,- the reactor operated continuously since that time until October 1994 in a variety of configurations depending on the programmatic mission. A three year program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. It was intended to operate the reactor during the three year blanket unloading program, followed by about a half year of driver fuel unloading. However, in the summer of 1994, Congress dictacted that EBR-II be shut down October 1, and complete defueling without operation. To assist in the planning for resources needed for this defueling campaign, a mathematical model of the fuel handling sequence was developed utilizing the appropriate reliability factors and inherent mm constraints of each stage of the process. The model allows predictions of transfer rates under different scenarios. Additionally, it has facilitated planning of maintenance activities, as well as optimization of resources regarding manpower and modification effort. The model and its application is described in this paper.

  11. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26

    PubMed Central

    Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  12. The degree of heart rate asymmetry is crucial for the validity of the deceleration and acceleration capacity indices of heart rate: A model-based study.

    PubMed

    Pan, Qing; Zhou, Gongzhan; Wang, Ruofan; Yu, Yihua; Li, Feng; Fang, Luping; Yan, Jing; Ning, Gangmin

    2016-09-01

    The deceleration capacity (DC) and acceleration capacity (AC) of heart rate are a pair of indices used for evaluating the autonomic nervous system (ANS). We assessed the role of heart rate asymmetry (HRA) in defining the relative performance of DC and AC using a mathematical model, which is able to generate a realistic RR interval (RRI) time series with controlled ANS states. The simulation produced a set of RRI series with random sympathetic and vagal activities. The multi-scale DCs and ACs were computed from the RRI series, and the correlation of DC and AC with the ANS functions was analyzed to evaluate the performance of the indices. In the model, the HRA level was modified by changing the inspiration/expiration (I/E) ratio to examine the influence of HRA on the performances of DC and AC. The results show that on the conventional scales (T=1, s=2), an HRA level above 50% results in a stronger association of DC with the ANS, compared with AC. On higher scales (T=4, s=6), there was no HRA and DC showed a similar performance to AC for all I/E ratios. The data suggest that the HRA level determines which of DC or AC is the optimal index for expressing ANS functions. Future clinical applications of DC and AC should be accompanied by an HRA analysis to provide a better index for assessing ANS. PMID:27392228

  13. Formulated collagen gel accelerates healing rate immediately after application in patients with diabetic neuropathic foot ulcers

    PubMed Central

    Blume, Peter; Driver, Vickie R; Tallis, Arthur J; Kirsner, Robert S; Kroeker, Roy; Payne, Wyatt G; Wali, Soma; Marston, William; Dove, Cyaandi; Engler, Robert L; Chandler, Lois A; Sosnowski, Barbara K

    2011-01-01

    We assessed the safety and efficacy of Formulated Collagen Gel (FCG) alone and with Ad5PDGF-B (GAM501) compared with Standard of Care (SOC) in patients with 1.5–10.0 cm2 chronic diabetic neuropathic foot ulcers that healed <30% during Run-in. Wound size was assessed by planimetry of acetate tracings and photographs in 124 patients. Comparison of data sets revealed that acetate tracings frequently overestimated areas at some sites. For per-protocol analysis, 113 patients qualified using acetate tracings but only 82 qualified using photographs. Prior animal studies suggested that collagen alone would have little effect on healing and would serve as a negative control. Surprisingly trends for increased incidence of complete closure were observed for both GAM501 (41%) and FCG (45%) vs. Standard of Care (31%). By photographic data, Standard of Care had no significant effect on change in wound radius (mm/week) from during Run-in to Week 1 (−0.06±0.32 to 0.78±1.53, p=ns) but both FCG (−0.08±0.61 to 1.97±1.77, p<0.002) and GAM501 (−0.02±0.58 to 1.46±1.37, p<0.002) significantly increased healing rates that gradually declined over subsequent weeks. Both GAM501 and FCG appeared to be safe and well tolerated, and alternate dosing schedules hold promise to improve overall complete wound closure in adequately powered trials. PMID:21371164

  14. Application of Overall Dynamic Body Acceleration as a Proxy for Estimating the Energy Expenditure of Grazing Farm Animals: Relationship with Heart Rate

    PubMed Central

    Miwa, Masafumi; Oishi, Kazato; Nakagawa, Yasuhiro; Maeno, Hiromichi; Anzai, Hiroki; Kumagai, Hajime; Okano, Kanji; Tobioka, Hisaya; Hirooka, Hiroyuki

    2015-01-01

    Estimating the energy expenditure of farm animals at pasture is important for efficient animal management. In recent years, an alternative technique for estimating energy expenditure by measuring body acceleration has been widely performed in wildlife and human studies, but the availability of the technique in farm animals has not yet been examined. In the present study, we tested the potential use of an acceleration index, overall dynamic body acceleration (ODBA), as a new proxy for estimating the energy expenditure of grazing farm animals (cattle, goats and sheep) at pasture with the simultaneous evaluation of a conventional proxy, heart rate. Body accelerations in three axes and heart rate for cows (n = 8, two breeds), goats (n = 6) and sheep (n = 5) were recorded, and the effect of ODBA calculated from the body accelerations on heart rate was analyzed. In addition, the effects of the two other activity indices, the number of steps and vectorial dynamic body acceleration (VeDBA), on heart rate were also investigated. The results of the comparison among three activity indices indicated that ODBA was the best predictor for heart rate. Although the relationship between ODBA and heart rate was different between the groups of species and breeds and between individuals (P<0.01), the difference could be explained by different body weights; a common equation could be established by correcting the body weights (M: kg): heart rate (beats/min) = 147.263∙M-0.141 + 889.640∙M-0.179∙ODBA (g). Combining this equation with the previously reported energy expenditure per heartbeat, we estimated the energy expenditure of the tested animals, and the results indicated that ODBA is a good proxy for estimating the energy expenditure of grazing farm animals across species and breeds. The utility and simplicity of the procedure with acceleration loggers could make the accelerometry technique a worthwhile option in field research and commercial farm use. PMID:26030931

  15. Calorimetry exchange program. Annual report, 1988

    SciTech Connect

    Lyons, J.E.

    1988-12-31

    The goals of the Calorimetry Sample Program are: 1. Discuss measurement differences, 2. Review and improve analytical measurements and methods, 3. Discuss new measurement capabilities, 4. Provide data to DOE on measurement capabilities to evaluate shipper- receiver differences, 5. Provide characterized or standard materials as necessary for exchange participants, 6. Provide a measurement control program for plutonium analysis. A sample of PuO{sub 2} powder is available at each participating site for NDA measurement, including either or both calorimetry and high-resolution gamma-ray spectroscopy, the elements which are typically combined to provide a calorimetric assay of plutonium. The facilities measure the sample as frequently and to the level of precision which they desire, and then submit the data to the Exchange for analysis. Statistical tests are used to evaluate the data and to determine if there are significant differences from accepted values for the exchange or from data previously reported by that facility. Data included in this report is a compilation of all exchange data received in 1988. Since a large number of data points were recorded, a change was made to the analysis method to account for the uncertainty in the accepted values.

  16. Electronics for calorimetry: An overview of requirements

    SciTech Connect

    Radeka, V.

    1995-10-01

    Calorimetry in large detectors at LHC poses some requirements on readout electronics which are quite different than for central tracking and muon tracking. The main distinction is, (a) in the large dynamic range of the energies to be measured; and (b) uniformity of response and accuracy of calibration over the whole detector. As in all other functions of the detector, low noise is essential. High luminosity results in pileup effects, which are present in every measurement, and in high radiation for front and forward parts of the calorimeter. Power dissipation and cooling is a concern as in any other detector component, in some respects only more so, since all the elements of the signal processing chain require more power due to the large dynamic range, speed of response, high precision and low noise required. The key requirements on the calorimetry readout electronics are briefly discussed here, with an emphasis on the dynamic range. While there are quite significant differences in the principles and technology among the crystals, tiles with fibers and liquid ionization, the signal is finally reduced to a charge measurement from a capacitive source in all three cases, and the signal processing chain becomes remarkably identical.

  17. Evaluation of the amorphous content of lactose by solution calorimetry and Raman spectroscopy.

    PubMed

    Katainen, Erja; Niemelä, Pentti; Harjunen, Päivi; Suhonen, Janne; Järvinen, Kristiina

    2005-11-15

    Solution calorimetry can be used to determine the amorphous content of a compound when the solubility and dissolution rate of the compound in the chosen solvent are reasonably high. Sometimes, it can be difficult find a solvent in which a sample is freely soluble. The present study evaluated the use of solution calorimetry for the assessment of the amorphous content of a sample that is poorly soluble in a solvent. Physical mixtures of lactose and spray-dried lactose samples (the amorphous content varied from 0 to 100%) were analyzed by a solution calorimeter and the results were compared with Raman spectroscopy determinations. The heat of solvation of the samples was determined by solution calorimetry in organic solvents MeOH, EtOH, ACN, THF, acetone (400mg sample/100ml solvent). Lactose is virtually insoluble in ACN, THF and acetone and very slightly soluble in EtOH and MeOH. The amorphous content of the samples could not be determined by solution calorimetry in EtOH, ACN, THF or acetone. However, an excellent correlation was observed between the heat of solvation and the amorphous content of the samples in MeOH. Furthermore, the heat of solvation values of the samples in MeOH showed a linear correlation with the Raman quantifications. Therefore, our results demonstrate that solution calorimetry may represent a rapid and simple method for determining the amorphous content also in samples that are not freely soluble in the solvent. PMID:18970276

  18. Dual-rate-loop control based on disturbance observer of angular acceleration for a three-axis aerial inertially stabilized platform.

    PubMed

    Zhou, Xiangyang; Jia, Yuan; Zhao, Qiang; Cai, Tongtong

    2016-07-01

    This paper presents a dual-rate-loop control method based on disturbance observer (DOB) of angular acceleration for a three-axis ISP for aerial remote sensing applications, by which the control accuracy and stabilization of ISP are improved obviously. In stabilization loop of ISP, a dual-rate-loop strategy is designed through constituting inner rate loop and the outer rate loop, by which the capability of disturbance rejection is advanced. Further, a DOB-based on angular acceleration is proposed to attenuate the influences of the main disturbances on stabilization accuracy. Particularly, an information fusion method is suggested to obtain accurate angular acceleration in DOB design, which is the key for the disturbance compensation. The proposed methods are theoretically analyzed and experimentally validated to illustrate the effectiveness. PMID:27016450

  19. Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Deepanjan

    This dissertation is a compilation of research results of extensive Fast Scanning Calorimetry studies of two non-crystalline materials: Toluene and Water. Motivation for fundamental studies of non-crystalline phases, a brief overview of glassy materials and concepts and definitions related to them is provided in Chapter 1. Chapter 2 provides fundamentals and details of experimental apparata, experimental protocol and calibration procedure. Chapter 3 & 4 provides extensive studies of stable non-crystalline toluene films of micrometer and nanometer thicknesses grown by vapor deposition at distinct deposition rates and temperatures and probed by Fast Scanning Calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor -deposited samples of toluene during heating with rates in excess 100,000 K/s follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics correlates with the surface roughness scale of the substrate, which is interpreted as evidence for kinetic anisotropy of the samples. We also show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited (VD) films of toluene are distinct from those of ordinary supercooled (OS) phase even when the deposition takes place at temperatures above the glass softening (Tg). The implications of these findings for the formation mechanism and structure of vapor deposited stable glasses are discussed. Chapter 5 and 6 provide detailed Fast Scanning Calorimetry studies

  20. An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity

    NASA Astrophysics Data System (ADS)

    Nicholls, M. E.

    2015-03-01

    Recent cloud-resolving numerical modeling results suggest that radiative forcing causes accelerated rates of tropical cyclogenesis and early intensification. Furthermore, observational studies of tropical cyclones have found that oscillations of the cloud canopy areal extent often occur that are clearly related to the solar diurnal cycle. A theory is put forward to explain these findings. The primary mechanism that seems responsible can be considered a refinement of the mechanism proposed by Gray and Jacobson (1977) to explain diurnal variations of oceanic tropical deep cumulus convection. It is hypothesized that differential radiative cooling or heating between a relatively cloud-free environment and a developing tropical disturbance generates circulations that can have very significant influences on convective activity in the core of the system. It is further suggested that there are benefits to understanding this mechanism by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations, also known as buoyancy bores. Numerical model experiments indicate that mean environmental radiative cooling outside the cloud system is playing an important role in causing a significant horizontal differential radiative forcing and accelerating the rate of tropical cyclogenesis. As an expansive stratiform cloud layer forms aloft within a developing system the mean low level radiative cooling is reduced while at mid levels small warming occurs. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but at nighttime when there is strong radiative clear sky cooling of the environment it becomes significant. Thermally driven circulations develop, characterized by relatively weak subsidence in the environment but much stronger upward motion in the cloud system. This upward motion leads to a cooling tendency and increased relative humidity. The increased relative humidity at night

  1. An investigation of how radiation may cause accelerated rates of tropical cyclogenesis and diurnal cycles of convective activity

    NASA Astrophysics Data System (ADS)

    Nicholls, M. E.

    2015-08-01

    Recent cloud-resolving numerical modeling results suggest that radiative forcing causes accelerated rates of tropical cyclogenesis and early intensification. Furthermore, observational studies of tropical cyclones have found that oscillations of the cloud canopy areal extent often occur that are clearly related to the solar diurnal cycle. A theory is put forward to explain these findings. The primary mechanism that seems responsible can be considered a refinement of the mechanism proposed by Gray and Jacobson (1977) to explain diurnal variations of oceanic tropical deep cumulus convection. It is hypothesized that differential radiative cooling or heating between a relatively cloud-free environment and a developing tropical disturbance generates circulations that can have very significant influences on convective activity in the core of the system. It is further suggested that there are benefits to understanding this mechanism by viewing it in terms of the lateral propagation of thermally driven gravity wave circulations, also known as buoyancy bores. Numerical model experiments indicate that mean environmental radiative cooling outside the cloud system is playing an important role in causing a significant horizontal differential radiative forcing and accelerating the rate of tropical cyclogenesis. As an expansive stratiform cloud layer forms aloft within a developing system the mean low-level radiative cooling is reduced, while at mid levels small warming occurs. During the daytime there is not a very large differential radiative forcing between the environment and the cloud system, but at nighttime when there is strong radiative clear-sky cooling of the environment it becomes significant. Thermally driven circulations develop, characterized by relatively weak subsidence in the environment but much stronger upward motion in the cloud system. This upward motion leads to a cooling tendency and increased relative humidity. The increased relative humidity at night

  2. Multi-slope warm-up calorimetry of Integrated Dewar-Detector Assemblies

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Shlomovich, Baruch; Tuito, Avi

    2015-05-01

    Boil-off isothermal calorimetry of Integrated Dewar-Detector Assemblies (IDDA) is a routine part of acceptance testing. In this traditional approach, the cryogenic liquid coolant (typically LN2) is allowed to naturally boil off from the Dewar well to the atmosphere. The parasitic heat load is then evaluated as the product of the latent heat of vaporization and the "last drop" boil-off rate monitored usually by a mass flow meter. An inherent limitation of this technique is that it is applicable only at the fixed boiling temperature of the chosen liquid coolant, for example, 77K for LN2. There is a need, therefore, to use other (often exotic) cryogenic liquids when calorimetry is needed at temperatures other than 77K. A further drawback is related to the transitional nature of last drop boiling, which manifests itself in development of enlarged bubbles, explosions and geysering. This results in an uneven flow rate and also affects the natural temperature gradient along the cold finger. Additionally, mass flow meters are known to have limited measurement accuracy. The above considerations especially hold true for advanced High Operational Temperature IDDAs, typically featuring short cold fingers and working at 150K and above. In this work, we adapt the well-known technique of dual-slope calorimetry and show how accurate calorimetry may be performed by precooling the IDDA and comparing the warm-up slopes of the thermal transient processes under different trial added heat loads. Because of the simplicity, accuracy and ability to perform calorimetry literally at any temperature of interest, this technique shows good potential for replacing traditional boil-off calorimetry.

  3. Decadal trends reveal recent acceleration in the rate of recovery from acidification in the northeastern U.S.

    PubMed

    Strock, Kristin E; Nelson, Sarah J; Kahl, Jeffrey S; Saros, Jasmine E; McDowell, William H

    2014-05-01

    Previous reports suggest variable trends in recovery from acidification in northeastern U.S. surface waters in response to the Clean Air Act Amendments. Here we analyze recent trends in emissions, wet deposition, and lake chemistry using long-term data from a variety of lakes in the Adirondack Mountains and New England. Sulfate concentration in wet deposition declined by more than 40% in the 2000s and sulfate concentration in lakes declined at a greater rate from 2002 to 2010 than during the 1980s or 1990s (-3.27 μeq L(-1)year(-1) as compared to -1.26 μeq L(-1)year(-1)). During the 2000s, nitrate concentration in wet deposition declined by more than 50% and nitrate concentration in lakes, which had no linear trend prior to 2000, declined at a rate of -0.05 μeq L(-1)year(-1). Base cation concentrations, which decreased during the 1990s (-1.5 μeq L(-1) year(-1)), have stabilized in New England lakes. Although total aluminum concentrations increased since 1999 (2.57 μg L(-1) year(-1)), there was a shift to nontoxic, organic aluminum. Despite this recent acceleration in recovery in multiple variables, both ANC and pH continue to have variable trends. This may be due in part to variable trajectories in the concentrations of base cations and dissolved organic carbon among our study lakes. PMID:24669928

  4. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP

    PubMed Central

    Dugas, Diana V.; Hernandez, David; Koenen, Erik J.M.; Schwarz, Erika; Straub, Shannon; Hughes, Colin E.; Jansen, Robert K.; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T.; Hajrah, Nahid H.; Alharbi, Njud S.; Al-Malki, Abdulrahman L.; Sabir, Jamal S. M.; Bailey, C. Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  5. Stability and chaotic dynamics of a rate gyro with feedback control under uncertain vehicle spin and acceleration

    NASA Astrophysics Data System (ADS)

    Chen, Heng-Hui

    2004-06-01

    An analysis of stability and chaotic dynamics is presented by a single-axis rate gyro subjected to linear feedback control loops. This rate gyro is supposed to be mounted on a space vehicle which undergoes an uncertain angular velocity ωZ( t) around its spin axis. And simultaneously acceleration ω˙X(t) occurs with respect to the output axis. The necessary and sufficient conditions of stability for the autonomous case, whose vehicle undergoes a steady rotation, were provided by Routh-Hurwitz theory. Also, the degeneracy conditions of the non-hyperbolic point were derived and the dynamics of the resulting system on the center manifold near the double-zero degenerate point by using center manifold and normal form methods were examined. The stability of the non-linear non-autonomous system was investigated by Liapunov stability and instability theorems. As the electrical time constant is much smaller than the mechanical time constant, the singularly perturbed system can be obtained by the singular perturbation theory. The Liapunov stability of this system by studying the reduced and boundary-layer systems was also analyzed. Numerical simulations were performed to verify the analytical results. The stable regions of the autonomous system were obtained in parametric diagrams. For the non-autonomous case in which ωZ( t) oscillates near boundary of stability, periodic, quasiperiodic and chaotic motions were demonstrated by using time history, phase plane and Poincaré maps.

  6. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.

    PubMed

    Dugas, Diana V; Hernandez, David; Koenen, Erik J M; Schwarz, Erika; Straub, Shannon; Hughes, Colin E; Jansen, Robert K; Nageswara-Rao, Madhugiri; Staats, Martijn; Trujillo, Joshua T; Hajrah, Nahid H; Alharbi, Njud S; Al-Malki, Abdulrahman L; Sabir, Jamal S M; Bailey, C Donovan

    2015-01-01

    The Leguminosae has emerged as a model for studying angiosperm plastome evolution because of its striking diversity of structural rearrangements and sequence variation. However, most of what is known about legume plastomes comes from few genera representing a subset of lineages in subfamily Papilionoideae. We investigate plastome evolution in subfamily Mimosoideae based on two newly sequenced plastomes (Inga and Leucaena) and two recently published plastomes (Acacia and Prosopis), and discuss the results in the context of other legume and rosid plastid genomes. Mimosoid plastomes have a typical angiosperm gene content and general organization as well as a generally slow rate of protein coding gene evolution, but they are the largest known among legumes. The increased length results from tandem repeat expansions and an unusual 13 kb IR-SSC boundary shift in Acacia and Inga. Mimosoid plastomes harbor additional interesting features, including loss of clpP intron1 in Inga, accelerated rates of evolution in clpP for Acacia and Inga, and dN/dS ratios consistent with neutral and positive selection for several genes. These new plastomes and results provide important resources for legume comparative genomics, plant breeding, and plastid genetic engineering, while shedding further light on the complexity of plastome evolution in legumes and angiosperms. PMID:26592928

  7. MRI-based brain atrophy rates in ADNI phase 2: acceleration and enrichment considerations for clinical trials.

    PubMed

    Hua, Xue; Ching, Christopher R K; Mezher, Adam; Gutman, Boris A; Hibar, Derrek P; Bhatt, Priya; Leow, Alex D; Jack, Clifford R; Bernstein, Matt A; Weiner, Michael W; Thompson, Paul M

    2016-01-01

    The goal of this work was to assess statistical power to detect treatment effects in Alzheimer's disease (AD) clinical trials using magnetic resonance imaging (MRI)-derived brain biomarkers. We used unbiased tensor-based morphometry (TBM) to analyze n = 5,738 scans, from Alzheimer's Disease Neuroimaging Initiative 2 participants scanned with both accelerated and nonaccelerated T1-weighted MRI at 3T. The study cohort included 198 healthy controls, 111 participants with significant memory complaint, 182 with early mild cognitive impairment (EMCI) and 177 late mild cognitive impairment (LMCI), and 155 AD patients, scanned at screening and 3, 6, 12, and 24 months. The statistical power to track brain change in TBM-based imaging biomarkers depends on the interscan interval, disease stage, and methods used to extract numerical summaries. To achieve reasonable sample size estimates for potential clinical trials, the minimal scan interval was 6 months for LMCI and AD and 12 months for EMCI. TBM-based imaging biomarkers were not sensitive to MRI scan acceleration, which gave results comparable with nonaccelerated sequences. ApoE status and baseline amyloid-beta positron emission tomography data improved statistical power. Among healthy, EMCI, and LMCI participants, sample size requirements were significantly lower in the amyloid+/ApoE4+ group than for the amyloid-/ApoE4- group. ApoE4 strongly predicted atrophy rates across brain regions most affected by AD, but the remaining 9 of the top 10 AD risk genes offered no added predictive value in this cohort. PMID:26545631

  8. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase

    PubMed Central

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L.L.; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E.

    2015-01-01

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration. PMID:26240657

  9. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase.

    PubMed

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L L; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E

    2015-06-27

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s-1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s-1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration. PMID:26240657

  10. Calorimetry for Fast Authentication of Edible Oils

    NASA Astrophysics Data System (ADS)

    Angiuli, Marco; Bussolino, Gian Carlo; Ferrari, Carlo; Matteoli, Enrico; Righetti, Maria Cristina; Salvetti, Giuseppe; Tombari, Elpidio

    2009-06-01

    There are little data in the literature on how to authenticate edible oils through calorimetry techniques. However, oil melting curves can be used to represent correlations between calorimetric results and oil quality. A calorimetric method has been developed for studying the solid-liquid phase transitions of olive oil and seed oils, in which melting peak behavior is correlated to the type, quality, and composition of the oil. Good reproducible thermograms were obtained by defining precise protocols for use in testing, which take into account the specific characteristics of a particular oil. This approach does not replace classical analytical methods; nevertheless, it is believed that calorimetric tests could be a useful preliminary stage for quality testing. The calorimetric technique allows the detection of the adulterant (seed oils or refined olive oil), oil origin, and possible photo-oxidation degradation processes, before more complex and expensive procedures and analyses are applied.

  11. Synergies between electromagnetic calorimetry and PET

    SciTech Connect

    Moses, William W.

    2002-07-30

    The instrumentation used for the nuclear medical imaging technique of Positron Emission Tomography (PET) shares many features with the instrumentation used for electromagnetic calorimetry. Both fields can certainly benefit from technical advances in many common areas, and this paper discusses both the commonalties and the differences between the instrumentation needs for the two fields. The overall aim is to identify where synergistic development opportunities exist. While such opportunities exist in inorganic scintillators, photodetectors, amplification and readout electronics, and high-speed computing, it is important to recognize that while the requirements of the two fields are similar, they are not identical, and so it is unlikely that advances specific to one field can be transferred without modification to the other.

  12. Calorimetry At Very High Energy Colliders

    SciTech Connect

    Chiu, Mickey

    2011-06-01

    The capability of hadron colliders has increased to where it will soon be possible to collide protons at center of mass energies of 14 TeV with the advent of the LHC. With increasing collision energy, calorimeters become ever more essential components of a detector, and collaborations often choose very different technologies to meet their goals. From the perspective of a high energy particle and nuclear physicist, a survey is presented of the differences in design considerations and actual performance of the wide variety of calorimeters used in modern hadron colliders such as the Tevatron, RHIC, and LHC. The lessons learned and some ideas for future development of calorimetry will also be discussed.

  13. Sensor response rate accelerator

    DOEpatents

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  14. Cure kinetics of epoxy matrix resin by differential scanning calorimetry

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, M.; Gupta, A.

    1982-01-01

    A study was made on the cure kinetics of an epoxy neat-resin (Narmco 5208) using Differential Scanning Calorimetry (DSC). Two interrelated analytical methods were applied to dynamic DSC data for evaluating the kinetic parameters, such as activation energy, E, the order of reaction, n, and the total heat of polymerization (or crosslinking), delta H sub t. The first method was proposed by Ellerstein (1968), and uses a thorough differential-integral analysis of a single DSC curve to evaluate the kinetic parameters. The second method was proposed by Kissinger (1957), and uses multiple DSC curves obtained at various heating rates to evaluate E regardless of n. Kinetic analysis of Narmco 5208 epoxy resin showed that the reaction order, n, is substantially affected by the rate of heating; i.e., n is approximately 2 at slow scan rates but is reduced to 1.5 at higher scan rates. The activation energy, E, is not affected by the scan rate, and the average value of E is 25.6 + or - 1.8 kcal/mole.

  15. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience

    PubMed Central

    Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan

    2010-01-01

    This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience. PMID:21119929

  16. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range.

    PubMed

    Krishnan, A; Gandour, J T; Suresh, C H

    2015-09-10

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one's native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  17. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  18. Development and Initial Validation of the Student Rating of Environmental Stressors Scale: Stressors Faced by Students in Accelerated High School Curricula

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Dedrick, Robert F.; Shaunessy-Dedrick, Elizabeth; Roth, Rachel A.; Ferron, John

    2015-01-01

    High school students in accelerated curricula face stressors beyond typical adolescent developmental challenges. The Student Rating of Environmental Stressors Scale (StRESS) is a self-report measure of environmental stressors appropriate for students in Advanced Placement (AP) and International Baccalaureate (IB) courses. We developed the StRESS…

  19. Melting by temperature-modulated calorimetry

    SciTech Connect

    Wunderlich, B.; Okazaki, Iwao; Ishikiriyama, Kazuhiko; Boller, A. |

    1997-09-01

    Well-crystallized macromolecules melt irreversibly due to the need of molecular nucleation, while small molecules melt reversibly as long as crystal nuclei are present to assist crystallization. Furthermore, imperfect crystals of low-molar-mass polymers may have a sufficiently small region of metastability between crystallization and melting to show a reversing heat-flow component due to melting of poor crystals followed by crystallization of imperfect crystals which have insufficient time to perfect before the modulation switches to heating and melts the imperfect crystals. Many metals, in turn. melt sharply and reversibly as long as nuclei remain after melting for subsequent crystallization during the cooling cycle. Their analysis is complicated, however, due to thermal conductivity limitations of the calorimeters. Polymers of sufficiently high molar mass, finally, show a small amount of reversible. local melting that may be linked to partial melting of individual molecules. Experiments by temperature-modulated calorimetry and model calculations are presented. The samples measured included poly(ethylene terephthalate)s, poly(ethylene oxide)s, and indium. Two unsolved problems that arose from this research involve the origin of a high, seemingly stable, reversible heat capacity of polymers in the melting region, and a smoothing of melting and crystallization into a close-to-elliptical Lissajous figure in a heat-flow versus sample-temperature plot.

  20. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  1. Calorimetry using organic scintillators, 'a sideways perspective'.

    SciTech Connect

    Proudfoot, J.

    1999-09-10

    Over the last two decades, calorimetry baaed on organic scintillators has developed into an excellent technology for many experimental situations in high energy physics. The primary difficulty, that of extracting the light signals, has benefited from two milestone innovations. The first was the use of wavelength-shifting bars to allow light to be efficiently collected from large areas of scintillator and then readily piped to a readout device. The second of these was the extension of this approach to plastic wavelength-shifting optical fibers whose great flexibility and small diameter allowed a minimum of detector volume to be compromised by the read-out. These two innovations coupled with inventiveness have produced many varied and successful calorimeters. Equal response to both hadronic and electromagnetic showers can be realized in scintillator-based calorimeters. However, in general this is not the case and it is likely that in the search for greater performance, in the future, combined tracking and calorimeter systems will be required.

  2. Current status of tritium calorimetry at TLK

    SciTech Connect

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.; Bornschein, B.

    2015-03-15

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  3. Immersion Calorimetry: Molecular Packing Effects in Micropores.

    PubMed

    Madani, S Hadi; Silvestre-Albero, Ana; Biggs, Mark J; Rodríguez-Reinoso, Francisco; Pendleton, Phillip

    2015-12-21

    Repeated and controlled immersion calorimetry experiments were performed to determine the specific surface area and pore-size distribution (PSD) of a well-characterized, microporous poly(furfuryl alcohol)-based activated carbon. The PSD derived from nitrogen gas adsorption indicated a narrow distribution centered at 0.57±0.05 nm. Immersion into liquids of increasing molecular sizes ranging from 0.33 nm (dichloromethane) to 0.70 nm (α-pinene) showed a decreasing enthalpy of immersion at a critical probe size (0.43-0.48 nm), followed by an increase at 0.48-0.56 nm, and a second decrease at 0.56-0.60 nm. This maximum has not been reported previously. After consideration of possible reasons for this new observation, it is concluded that the effect arises from molecular packing inside the micropores, interpreted in terms of 2D packing. The immersion enthalpy PSD was consistent with that from quenched solid density functional theory (QSDFT) analysis of the nitrogen adsorption isotherm. PMID:26394883

  4. Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Townsley, Leisa K.; Robitaille, Thomas P.; Broos, Patrick S.; Orbin, Wesley T.; King, Robert R.; Naylor, Tim; Whitney, Barbara A.

    2016-07-01

    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared (IR) dark cloud G014.225–00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by archival data from the Spitzer Space Telescope, we discover a population of X-ray-emitting, intermediate-mass pre-main-sequence stars that lack IR excess emission from circumstellar disks. We model the IR spectral energy distributions of this source population to measure its mass function and place new constraints on the destruction timescales for the inner dust disk for 2–8 M ⊙ stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high (\\dot{M}≥slant 0.007 M ⊙ yr‑1), equivalent to several Orion Nebula Clusters in G14.225–0.506 alone, and likely accelerating. The cloud complex has not produced a population of massive, O-type stars commensurate with its SFR. This absence of very massive (≳20 M ⊙) stars suggests that either (1) M17 SWex is an example of a distributed mode of star formation that will produce a large OB association dominated by intermediate-mass stars but relatively few massive clusters, or (2) the massive cores are still in the process of accreting sufficient mass to form massive clusters hosting O stars.

  5. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to

  6. Thermal Properties of Silk Fibroin Using Fast Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Cebe, Peggy; Partlow, Benjamin; Kaplan, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph

    We performed fast scanning chip-based calorimetry of silk protein using the Mettler Flash DSC1. We suggest the methodology by which to obtain quantitative information on the very first scan to high temperature, including the melting endotherm of the beta pleated sheets. For proteins, this first scan is the most important one, because the crystalline secondary structural features, the beta pleated sheets, melt after the first heating and cannot be thermally reintroduced. To obtain high quality data, the samples must be treated to drying and enthalpy relaxation sequences. The heat flow rates in heating and cooling must be corrected for asymmetric heat loses. We evaluate methods to obtain an estimate of the sample mass, finally choosing internal calibration using the known heat capacity increment at the glass transition. We report that even heating at rates of 2000 K/s, thermal degradation of silk cannot be totally avoided, though it can be minimized. Using a set of nineteen samples, we successfully determine the liquid state heat capacity of silk as: Cpliquid (T) = (1.98 +0.06) J/gK + T (6.82 +1.4) x10-4 J/gK2. Methods for estimation of the sample mass will be presented and compared. National Science Foundation, Polymers Program DMR-1206010; DAAD; Tufts Faculty Supported Leave.

  7. Evaluation of three flame retardant (FR) grey cotton blend nonwoven fabrics using micro-scale combustion calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...

  8. Membrane Tension Accelerates Rate-limiting Voltage-dependent Activation and Slow Inactivation Steps in a Shaker Channel

    PubMed Central

    Laitko, Ulrike; Morris, Catherine E.

    2004-01-01

    A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize

  9. Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel.

    PubMed

    Laitko, Ulrike; Morris, Catherine E

    2004-02-01

    A classical voltage-sensitive channel is tension sensitive--the kinetics of Shaker and S3-S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982-2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193-208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically--normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore

  10. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  11. Water calorimetry-based radiation dosimetry in iridium-192 brachytherapy and proton therapy

    NASA Astrophysics Data System (ADS)

    Sarfehnia, Arman

    The aim of this work is to develop and evaluate a primary standard for HDR 192Ir brachytherapy sources as well as for active spot scanning proton radiotherapy beams based on stagnant 4 °C water calorimetry. The measurements were performed using an in-house built water calorimeter and a parallel-plate calorimeter vessel. The dose measurement results of the McGill calorimeter were validated in high energy photon beams against Canada's national established primary standard at the NRC. The measurements in brachytherapy were performed with a spring-loaded catheter holder which allowed for the 192Ir source to come directly inside the water calorimeter. The COMSOL MULTIPHYSICS(TM) software was used to solve the heat transport equation numerically for a detailed geometrical model of our experimental setup. In brachytherapy, reference dosimetry protocols were also developed and used to measure the dose to water directly using thimble type ionization chambers and Gafchromic films with traceable 60Co (or higher energy photons) calibration factor. Based on water calorimetry standard, we measured an absolute dose rate to water of 361+/-7 microGy/(h·U) at 55 mm source-to-detector separation. The 1.9 % uncertainty on water calorimetry results is in contrast with the current recommended AAPM TG-43 protocol that achieves at best an uncertainty (k=1) of 2.5 % based on an indirect dose to water measurement technique. All measurement results from water calorimetry, ion chamber, film, and TG-43 agreed to within 0.83 %. We achieved an overall dose uncertainty of 0.4 % and 0.6 % for scattered and scanned proton radiation water calorimetry, respectively. The water calorimetry absorbed dose to water results agreed with those obtained through the currently recommended IAEA TRS-398 protocol (measurements made using an ionization chamber with a 60Co calibration factor) to better than 0.14 % and 0.32 % in scattered and scanned proton beams, respectively. In conclusion, this work forms the

  12. Procedure to estimate maximum ground acceleration from macroseismic intensity rating: application to the Lima, Perú data from the October-3-1974-8.1-Mw earthquake

    NASA Astrophysics Data System (ADS)

    Ocola, L.

    2008-01-01

    Post-disaster reconstruction management of urban areas requires timely information on the ground response microzonation to strong levels of ground shaking to minimize the rebuilt-environment vulnerability to future earthquakes. In this paper, a procedure is proposed to quantitatively estimate the severity of ground response in terms of peak ground acceleration, that is computed from macroseismic rating data, soil properties (acoustic impedance) and predominant frequency of shear waves at a site. The basic mathematical relationships are derived from properties of wave propagation in a homogeneous and isotropic media. We define a Macroseismic Intensity Scale IMS as the logarithm of the quantity of seismic energy that flows through a unit area normal to the direction of wave propagation in unit time. The derived constants that relate the IMS scale and peak acceleration agree well with coefficients derived from a linear regression between MSK macroseismic rating and peak ground acceleration for historical earthquakes recorded at a strong motion station, at IGP's former headquarters, since 1954. The procedure was applied to 3-October-1974 Lima macroseismic intensity data at places where there was geotechnical data and predominant ground frequency information. The observed and computed peak acceleration values, at nearby sites, agree well.

  13. Tests of GNSS receivers for dynamic, high sample rate response using controlled sources of displacement, velocity, and acceleration

    NASA Astrophysics Data System (ADS)

    Langbein, J. O.; Evans, J. R.; Blume, F.; Johanson, I. A.

    2012-12-01

    Global Navigational Satellite Systems (GNSS) are being employed to augment seismic instrumentation to record large, dynamic displacements and accelerations from large earthquakes. To date, however, there have been only a few tests that independently characterize the GNSS at frequencies and displacements that occur during large earthquakes (a number of error sources might influence such GPS result, including loss of lock or bias in signal tracking loops). Many of these tests consist of replaying the observed accelerations for select earthquakes recorded by seismic instruments through a shake-table on which a GNSS antenna is attached. Then the derived displacement from the accelerometer is compared with the displacement estimated from the GNSS system, or the GNSS derived acceleration is compared with the acceleration of the shake table. Neither comparison is optimal since derived quantities are used, and in particular, displacements derived from acceleration data have many sources of error at long periods. Another approach is to test the response of the GNSS receiver using a GNSS-simulator where synthetic GNSS signals are generated that mimic the signals that are actually received. Ebinuma and Kato (Earth Planet Space, 2012) describe a series of controlled tests using this approach with three different GNSS receivers. As a "real world" test, we performed similar experiments using a shake table, in open air with normal views of GNSS satellites, with controlled displacement inputs but, importantly, measured the displacement and acceleration of this table independently. We used a single-axis shake-table having up to 40 cm horizontal displacement and independently measured the position of the stage to better than 0.1 mm (from table servo loop optical reference; accelerations measured by accelerometers attached to moving part of stage). We tested five different GNSS receivers recording both GPS and GLONASS at 50 samples per second (sps), with the exception of the Trimble

  14. Determination of Purity by Differential Scanning Calorimetry (DSC).

    ERIC Educational Resources Information Center

    Brown, M. E.

    1979-01-01

    An exercise is presented which demonstrates the determination of sample purity by differential scanning calorimetry. Data and references are provided to enable the exercise to be carried out as a dry-lab experiment. (BB)

  15. Cycle-Powered Short Radius (1.9 m) Centrifuge: Effect of Exercise Versus Passive Acceleration on Heart Rate in Humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.

    1997-01-01

    In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.

  16. Differential Scanning Calorimetry (DSC) for planetary surface exploration

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Ming, Douglas W.

    1993-01-01

    Differential Scanning Calorimetry (DSC) is the quantitative measurement of the enthalpic response of a material to a systematic change in temperature. In practice, the heat flow into or outward from a sample is measured as the sample is heated or cooled at a carefully controlled rate. DSC superficially resembles, but is not the same as differential thermal analysis (DTA), which is the measurement of temperature differences between a sample and reference material as the pair is heated or cooled. The fundamental properties measured by DSC are enthalpies and temperatures of phase transitions and constant-pressure heat capacities. Depending on instrument design and the nature of the sample, high-quality DSC analyses can be obtained on only a few milligrams of solid materials. DSC requires direct contact with the sample and generally degrades, if not destroys, the sample as a consequence of heating. In laboratory applications, it is common to subject the gaseous effluent from the DSC to analysis by a separate evolved-gas analyzer (EGA).

  17. High resolution optical calorimetry for synchrotron microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Ackerly, T.; Crosbie, J. C.; Fouras, A.; Sheard, G. J.; Higgins, S.; Lewis, R. A.

    2011-03-01

    We propose the application of optical calorimetry to measure the peak to valley ratio for synchrotron microbeam radiation therapy (MRT). We use a modified Schlieren approach known as reference image topography (RIT) which enables one to obtain a map of the rate of change of the refractive index in a water bath from which the absorbed dose can be determined with sufficient spatial accuracy to determine the peak to valley ratio. We modelled the calorimetric properties of X-rays using a heated wire in a water bath. Our RIT system comprised a light source, a textured reference object and a camera and lens combination. We measured temperature contours and showed a plume rising from the heated wire. The total temperature change in water was 12 degrees C, 500 times greater than the calculated change from a 1 ms exposure on a synchrotron. At 1.0 ms, thermal diffusion will be the major cause of uncertainty in determining the peak to valley ratio, and we calculate thermal diffusion will reduce the measured peak to valley ratio to 76% of its initial value, but the individual microbeams will still resolve. We demonstrate proof of concept for measuring X-ray dose using a modified RIT method.

  18. Doppler-derived acceleration rate of right ventricular early filling as a measurement of right atrial pressure in chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy.

    PubMed

    Scapellato, F; Eleuteri, E; Temporelli, P L; Imparato, A; Corrà, U; Giannuzzi, P

    1998-02-15

    This study demonstrates that a Doppler-derived tricuspid flow velocity pattern provides an accurate, feasible, and noninvasive method of estimating and monitoring mean right atrial pressure in patients with heart failure due to left ventricular systolic dysfunction, and who are both in sinus rhythm and atrial fibrillation. In particular, the acceleration rate of early right ventricular filling is a powerful and independent predictor of mean right atrial pressure. PMID:9485149

  19. The Effect of Maternal Relaxation Training on Reactivity of Non-Stress Test, Basal Fetal Heart Rate, and Number of Fetal Heart Accelerations: A Randomized Controlled Trial

    PubMed Central

    Akbarzade, Marzieh; Rafiee, Bahare; Asadi, Nasrin; Zare, Najaf

    2015-01-01

    Background: Relaxation-training, as an anxiety-reducer intervention, plays an important role in fetal health. The present study aimed to analyze the effect of maternal relaxation on stress test (NST), basal fetal heart rate, and number of fetal heart accelerations. Methods: In this randomized controlled trial, 84 pregnant women were randomly divided into two groups of teaching relaxation and control groups in 2012. In the intervention group, 60-90 minute classes were held every week lasting for 4 weeks. Besides, home practice charts were given to the mothers and researchers controlled the home practices by phone calls every week. The control group received routine prenatal care. In the 4th week, NST was performed in the intervention group 30 minutes before and after the 4th session. In the control group, NST was done in the 4th week. The quantitative variables in the two groups were compared through ANOVA and Chi-square test. Results: The results of paired t-test showed that relaxation could improve the NST results (P=0.01). Mean and standard deviation of basal fetal heart rate was 138.95±8.18 before the intervention and 133.07±6.9 after the intervention. Paired t-test also showed that relaxation reduced the basal fetal heart rate (P=0.001). Mean and standard deviation of the number of fetal heart accelerations was 1.5±0.8 before the intervention and 2.2±0.9 after it. The results of paired t-test also showed that relaxation increased the number of fetal heart accelerations (P=0.001). Conclusions: Relaxation could improve the NST results, reduce the basal fetal heart rate, and increase the number of fetal heart accelerations. Therefore, relaxation is recommended during pregnancy. Trial Registration Number: IRCT2012072810418N1 PMID:25553334

  20. A study of the influence of the data acquisition system sampling rate on the accuracy of measured acceleration loads for transport aircraft

    NASA Technical Reports Server (NTRS)

    Whitehead, Julia H.

    1992-01-01

    A research effort was initiated at National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), to describe the relationship between the sampling rate and the accuracy of acceleration loads obtained from the data acquisition system of a transport aircraft. An accelerometer was sampled and digitized at a rate of 100 samples per second onboard a NASA Boeing 737 (B-737) flight research aircraft. Numerical techniques were used to reconstruct 2.5 hours of flight data into its original input waveform and then re-sample the waveform into rates of 4, 8, 16, and 32 samples per second. Peak-between-means counting technique and power spectral analysis were used to evaluate each sampling rate using the 32 samples per second data as the comparison. This paper presents the results from these methods and includes in appendix A, the peak-between-means counting results used in a general fatigue analysis for each of the sampling rates.

  1. Use of scanning calorimetry and microrespiration to determine effects of Bt toxin doses on Pandemis leafroller (Lepidoptera: Tortricidae) metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...

  2. Use of scanning calorimetry and microrespiration to determine effects of Bt toxin doses on Pandemis leafroller (Lepidoptera: Tortricidae) metabolosim

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...

  3. Vitreous State Characterization of Pharmaceutical Compounds Degrading upon Melting by Using Fast Scanning Calorimetry.

    PubMed

    Corvis, Yohann; Wurm, Andreas; Schick, Christoph; Espeau, Philippe

    2015-06-01

    Fast scanning calorimetry, a technique mainly devoted to polymer characterization, is applied here for the first time to low molecular mass organic compounds that degrade upon melting, such as ascorbic acid and prednisolone. Due to the fast scan rates upon heating and cooling, the substances can be obtained in the molten state without degradation and then quenched into the glassy state. The hydrated form and the polymorphic Form 1 of prednisolone were investigated. It is shown that once the sesquihydrate dehydrates, a molten product is obtained. Depending on the heating rate, this molten phase may recrystallize or not into Form 1. PMID:25951890

  4. Biological Manipulation of Migration Rate: The Use of Advanced Photoperiod to Accelerate Smoltification in Yearling Chinook Salmon, Annual Report 1989.

    SciTech Connect

    Giorgi, Albert E.; Muir, William D.; Zaugg, Waldo S.

    1991-01-01

    Research was conducted to assess the feasibility of biologically manipulating physiological development and migratory behavior of yearling spring chinook salmon, Oncorhynchus tshawytscha. At Dworshak National Fish Hatchery, treatment groups were exposed to a variety of advanced photoperiod cycles preceding release to accelerate smolt development. Physiological development and migratory performance were described for all groups. The treatments included a 14-week exposure to a 3-month advanced photoperiod cycle, an 18-week exposure to a 3-month advanced photoperiod cycle, and an 18-week exposure to a 4-month advanced photoperiod cycle. Two additional groups, an 18-week exposure to a 3-month advanced photoperiod and a control equivalent, were reared at an elevated water temperature (11{degrees}C) for 2 weeks prior to release. Results indicated that the treated fish which were the most physiologically advanced at release were detected in the highest proportion at collector dams and also migrated fastest downstream. 26 refs., 10 figs., 5 tabs.

  5. The Effects of Vestibular Stimulation Rate and Magnitude of Acceleration on Central Pattern Generation for Chest Wall Kinematics in Preterm Infants

    PubMed Central

    Zimmerman, Emily; Barlow, Steven M.

    2013-01-01

    Objective To examine the role of vestibular inputs on respiratory and oromotor systems in healthy preterm infants. Study Design 27 preterm infants were quasi-randomly assigned to either the VestibuGlide treatment or control groups. VestibuGlide infants were held in a developmentally supportive position, given a pacifier and received a series of vestibular stimuli, counterbalanced across rate and acceleration conditions, 15 minutes 3x/day for 10 days. The control infants were also held in a developmentally supportive position, given a pacifier for 15 minutes 3x/day for 10 days but did not receive the VestibuGlide stimulation. Result A multi-level regression model revealed that treatment infants increased their respiratory rate in response to vestibular stimulus and that the highest level of vestibular acceleration delivered to the infants (0.51 m/s2) resulted in a significant increase in breaths per minute. Conclusion Vestibular stimulation delivered to preterm infants prior to scheduled feeds effectively modulates respiratory rate and resets the respiratory central pattern generator. PMID:22157627

  6. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    from Cells to Cities - a Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics,' inspired many interesting questions from the audience both after the talk and throughout the week during informal conversations. Calorimetry is extremely diverse: many different techniques may be employed in building the detector and also in extracting information from it. The topics of the Calorimeter Techniques sessions included high-rate liquid argon calorimeters, SiPM sensors, highly granular digital calorimeters, new crystals, and beam test and simulation results. In these pages, you will find exciting and sometimes contradicting points of view expressed, for example about fully sampling hadronic calorimeters. A rare astronomical event, the Venus transit, coincided with the second day of the conference. The participants enjoyed viewing Venus' trail across the sun with a solar telescope (H-alpha line at 656 nm). In Santa Fe, the interior ingress was at 16:23:04 and reached center at 19:27:04. The last transit occurred in 2004, and the next one will happen in 2117. In 1627, Johannes Kepler published data about the planetary orbits that predicted that Venus would pass directly between earth and the sun in 1631. Unfortunately Kepler died in 1630 and apparently nobody recorded the 1631 transit. The first recorded observation of a transit was in 1638, which Kepler had not predicted. Later, Jeremiah Horracks, an English astronomer, realized Kepler had made an error in his calculations. It was not until the Venus transit observations of 1769 that scientists measured the distance from the earth to the sun to be 95 million miles (actually 93 million miles or 149.7 million kilometers) based on the 1716 triangulation suggestion from Edmund Halley (of comet fame). It's interesting to remember that before the 18th century, one of the most vexing scientific puzzles, not unlike today's Higgs boson quest, was 'How far away is the Sun?' Although natural

  7. Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities

    ERIC Educational Resources Information Center

    Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.

    2016-01-01

    College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…

  8. Calorimetry applied to nucleus-nucleus collisions at ultrarelativistic energies

    SciTech Connect

    Plasil, F.

    1988-01-01

    A general introduction to high-energy calorimetry is presented, together with brief descriptions of the two types of cascades relevant to calorimetric measurements. This is followed by a discussion of ''compensation'' and of the ''e/h'' ratio. A detailed description of two calorimeters designed and constructed for the CERN WA80 experiment are also given. 16 refs., 17 figs., 5 tabs.

  9. Preparation of Solid Derivatives by Differential Scanning Calorimetry.

    ERIC Educational Resources Information Center

    Crandall, E. W.; Pennington, Maxine

    1980-01-01

    Describes the preparation of selected aldehydes and ketones, alcohols, amines, phenols, haloalkanes, and tertiaryamines by differential scanning calorimetry. Technique is advantageous because formation of the reaction product occurs and the melting point of the product is obtained on the same sample in a short time with no additional purification…

  10. Meerwein-Ponndorf-Verley alkynylation of aldehydes: essential modification of aluminium alkoxides for rate acceleration and asymmetric synthesis.

    PubMed

    Ooi, Takashi; Miura, Tomoya; Ohmatsu, Kohsuke; Saito, Akira; Maruoka, Keiji

    2004-11-21

    A novel carbonyl alkynylation has been accomplished based on utilization of the Meerwein-Ponndorf-Verley (MPV) reaction system. The success of the MPV alkynylation crucially depends on the discovery of the remarkable ligand acceleration effect of 2,2'-biphenol. For example, the alkynylation of chloral (2c) with the aluminium alkoxide 6(R = Ph), prepared in situ from Me(3)Al, 2,2'-biphenol and 2-methyl-4-phenyl-3-butyn-2-ol (1a) as an alkynyl source, proceeded smoothly in CH(2)Cl(2) at room temperature to give the desired propargyl alcohol 3ca in almost quantitative yield after 5 h stirring. The characteristic feature of this new transformation involving no metal alkynides can be visualized by the fact that the alkynyl group bearing keto carbonyl was transferred successfully to aldehyde carbonyl without any side reactions on keto carbonyl. Although the use of (S)-1,1[prime or minute]-bi-2-naphthol and its simple analogues was found to be unsuitable for inducing asymmetry in this reaction, design of new chiral biphenols bearing a certain flexibility of the biphenyl axis led to satisfactory results in terms of enantioselectivity as well as reactivity. PMID:15534709

  11. GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding

    PubMed Central

    Bracher, Andreas; Engen, John R.; Hayer-Hartl, Manajit; Hartl, F. Ulrich

    2014-01-01

    SUMMARY The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM-barrel acquire structure simultaneously, in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM-barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin-independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant time-scale, avoiding aggregation or degradation. PMID:24813614

  12. Doubling Graduation Rates: Three-Year Effects of CUNY's Accelerated Study in Associate Programs (ASAP) for Developmental Education Students

    ERIC Educational Resources Information Center

    Scrivener, Susan; Weiss, Michael J.; Ratledge, Alyssa; Rudd, Timothy; Sommo, Colleen; Fresques, Hannah

    2015-01-01

    Community colleges offer a pathway to the middle class for low-income individuals. Although access to college has expanded, graduation rates at community colleges remain low, especially for students who need developmental (remedial) courses to build their math, reading, or writing skills. The City University of New York's (CUNY's) Accelerated…

  13. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation

    PubMed Central

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J.; Saran, Anna

    2015-01-01

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE−/− mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE−/− females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  14. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  15. Kinetics Characteristics of Nitrogen Hydrates Respond to Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Liu, C.; Ye, Y.; Gong, J.

    2012-12-01

    In this study, a high pressure differential scanning calorimetry (HP DSC) based on thermo-analytical technique was applied to investigate the kinetics and thermodynamics characteristics of nitrogen hydrates. Nitrogen hydrates was synthesized in the sample vessel under different pressures as temperature decreased from 293 to 233 K with a constant cooling rate of 0.2 K/min controlled by the DSC. To measure the hydrates dissociation enthalpies , the temperature was slowly raised up from 233 to 293 K at a constant rate ranging of 0.05 K/min. 1. Peak area on the heat flow curves represents the amount of heat during phase transition. In these experiments, the total water added to the sample vessel (mt) is already known. By integrating the peak areas of ice and hydrate, we know the total heats of ice (Qi) and hydrate (Qh), respectively. As the heat of ice per gram can be measured easily (336.366 J/g), the mass of ice (mi) can be obtain. Then, the dissociation heat of nitrogen hydrate per gram (Hh ) can be calculated by the equation: H(J/g)=Qh/(mt-mi) It is shown that the dissociation heats of nitrogen hydrates are a little larger than ice, but do not change a lot with different pressures. The average value of dissociation heat is 369.158 J/g. 2. During the DSC cooling stage, hydrate formed at temperature much lower than equilibrium. The biggest sub-cooling is about 291 K, while the smallest one is about 279 K. However, during these experiments, the pressure did not show obvious relationship with sub-cooling. It confirmed that even the proper conditions were achieved, formation was still a stochastic process. For one thing, due to the random distribution of dissolved gas in water, the interfacial tension and the water activity were not equal in the whole system. And if there was a free gas phase, which leads to different fugacity on water-gas interface, the stochastic behavior would be more significant in the sample vessel. 3. The energy released from hydrates formation as

  16. Factors Associated With Chest Wall Toxicity After Accelerated Partial Breast Irradiation Using High-Dose-Rate Brachytherapy

    SciTech Connect

    Brown, Sheree; Vicini, Frank; Vanapalli, Jyotsna R.; Whitaker, Thomas J.; Pope, D. Keith; Lyden, Maureen; Bruggeman, Lisa; Haile, Kenneth L.; McLaughlin, Mark P.

    2012-07-01

    Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc) (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.

  17. Accelerated Partial Breast Irradiation With Low-Dose-Rate Interstitial Implant Brachytherapy After Wide Local Excision: 12-Year Outcomes From a Prospective Trial

    SciTech Connect

    Hattangadi, Jona A.; Powell, Simon N.; MacDonald, Shannon M.; Mauceri, Thomas; Ancukiewicz, Marek; Freer, Phoebe; Lawenda, Brian; Alm El-Din, Mohamed A.; Gadd, Michele A.; Smith, Barbara L.; Taghian, Alphonse G.

    2012-07-01

    Purpose: To evaluate the long-term toxicity, cosmesis, and local control of accelerated partial breast irradiation with implant brachytherapy after wide local excision for Stage T1N0 breast cancer (BCa). Materials and Methods: Between 1997 and 2001, 50 patients with Stage T1N0M0 BCa were treated in a Phase I-II protocol using low-dose-rate accelerated partial breast irradiation with implant brachytherapy after wide local excision and lymph node surgery. The total dose was escalated in three groups: 50 Gy (n = 20), 55 Gy (n = 17), and 60 Gy (n = 13). Patient- and physician-assessed breast cosmesis, patient satisfaction, toxicity, mammographic abnormalities, repeat biopsies, and disease status were prospectively evaluated at each visit. Kendall's tau ({tau}{sub {beta}}) and logistic regression analyses were used to correlate outcomes with dose, implant volume, patient age, and systemic therapy. Results: The median follow-up period was 11.2 years (range, 4-14). The patient satisfaction rate was 67%, 67% reported good-excellent cosmesis, and 54% had moderate-severe fibrosis. Higher dose was correlated with worse cosmetic outcome ({tau}{sub {beta}} 0.6, p < .0001), lower patient satisfaction ({tau}{sub {beta}} 0.5, p < .001), and worse fibrosis ({tau}{sub {beta}} 0.4, p = .0024). Of the 50 patients, 35% had fat necrosis and 34% developed telangiectasias {>=}1 cm{sup 2}. Grade 3-4 late skin and subcutaneous toxicities were seen in 4 patients (9%) and 6 patients (13%), respectively, and both correlated with higher dose ({tau}{sub {beta}} 0.3-0.5, p {<=} .01). One patient had Grade 4 skin ulceration and fat necrosis requiring surgery. Mammographic abnormalities were seen in 32% of the patients, and 30% underwent repeat biopsy, of which 73% were benign. Six patients had ipsilateral breast recurrence: five elsewhere in the breast, and one at the implant site. One patient died of metastatic BCa after recurrence. The 12-year actuarial local control, recurrence-free survival

  18. Resistive Micromegas for sampling calorimetry, a study of charge-up effects

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Karyotakis, Y.; Geralis, T.; Titov, M.

    2016-07-01

    Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.

  19. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial

    PubMed Central

    Smith, Stephen M.; de Jager, Celeste A.; Whitbread, Philippa; Johnston, Carole; Agacinski, Grzegorz; Oulhaj, Abderrahim; Bradley, Kevin M.; Jacoby, Robin

    2010-01-01

    Background An increased rate of brain atrophy is often observed in older subjects, in particular those who suffer from cognitive decline. Homocysteine is a risk factor for brain atrophy, cognitive impairment and dementia. Plasma concentrations of homocysteine can be lowered by dietary administration of B vitamins. Objective To determine whether supplementation with B vitamins that lower levels of plasma total homocysteine can slow the rate of brain atrophy in subjects with mild cognitive impairment in a randomised controlled trial (VITACOG, ISRCTN 94410159). Methods and Findings Single-center, randomized, double-blind controlled trial of high-dose folic acid, vitamins B6 and B12 in 271 individuals (of 646 screened) over 70 y old with mild cognitive impairment. A subset (187) volunteered to have cranial MRI scans at the start and finish of the study. Participants were randomly assigned to two groups of equal size, one treated with folic acid (0.8 mg/d), vitamin B12 (0.5 mg/d) and vitamin B6 (20 mg/d), the other with placebo; treatment was for 24 months. The main outcome measure was the change in the rate of atrophy of the whole brain assessed by serial volumetric MRI scans. Results A total of 168 participants (85 in active treatment group; 83 receiving placebo) completed the MRI section of the trial. The mean rate of brain atrophy per year was 0.76% [95% CI, 0.63–0.90] in the active treatment group and 1.08% [0.94–1.22] in the placebo group (P = 0.001). The treatment response was related to baseline homocysteine levels: the rate of atrophy in participants with homocysteine >13 µmol/L was 53% lower in the active treatment group (P = 0.001). A greater rate of atrophy was associated with a lower final cognitive test scores. There was no difference in serious adverse events according to treatment category. Conclusions and Significance The accelerated rate of brain atrophy in elderly with mild cognitive impairment can be slowed by treatment with homocysteine

  20. Comparative Oxidative Stability of Fatty Acid Alkyl Esters by Accelerated Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several fatty acid alkyl esters were subjected to accelerated methods of oxidation, including EN 14112 (Rancimat method) and pressurized differential scanning calorimetry (PDSC). Structural trends elucidated from both methods that improved oxidative stability included decreasing the number of doubl...

  1. Accelerating Rates of Discontinuous Permafrost Thaw Associated with Ground Surface Morphology and Changing Vegetation Structures Determined from Multi-Temporal LIDAR Data

    NASA Astrophysics Data System (ADS)

    Chasmer, L.; Hopkinson, C.

    2015-12-01

    Rates of permafrost thaw within the discontinuous permafrost zone are expected to accelerate with permafrost fragmentation. However quantification of drivers of permafrost change remain elusive due to the non-linearity of feedbacks in space and time. Given the extent of permafrost in Canada, there is significant interest in the mechanisms associated with land cover change as climate change and disturbance intensifies.We quantify the variability of rates of thaw associated with structural characteristics of the land surface within a discontinuous permafrost watershed in the NWT, Canada. Results are compared to an isolated permafrost watershed in Alberta, which may exemplify the northern discontinuous landscape in ~350 years. Three airborne Light Detection And Ranging (LiDAR) datasets have been collected in 2008, 2011 and 2015, coincident with digital photogrammetry (2008), thermal infrared (2011) and bathymetry (2015) within both watersheds. Rates of change of land elevation associated with permafrost thaw within plateaus and peatlands are quantified using non-linear spatial regression, and compared with topographic and vegetation derivatives. Results indicate that increasing fragmentation of discontinuous permafrost plateaus results in exponential thaw. Rates of thaw become linear with decreasing complexity. Accelerating thaw is related to substantial Picea mariana mortality (up to 45%), increased gap fraction within 1-2 m of plateau edges, and shrub succession (average growth ~0.2 m yr—1) at the 0-2m boundary within the 7-year period. Thaw rate in parts is also complicated by understory succession within the area of local convexity between the plateau and slope edge and linear thaw pathways. Greatest rates of thaw and vegetation mortality (~30-50%) are found on plateaus with populous tremuloides. In the central boreal watershed, vegetation succession at peatland margins is associated with increased drying and changes to runoff trends over the last 40 years

  2. Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds.

    PubMed

    Maas, Peter van der; Brink, Paula van den; Klapwijk, Bram; Lens, Piet

    2009-04-01

    BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound. PMID:18561978

  3. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    SciTech Connect

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd.

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  4. Inherent limitations of fixed time servo-controlled radiometric calorimetry

    SciTech Connect

    Wetzel, J.R.; Duff, M.F.; Lemming, J.F.

    1987-01-01

    There has been some interest in low precision, short run time calorimetry measurements. This type of calorimetry measurement has been proposed for use when high precision measurements are not required, for example, to screen scrap containers to determine if there is enough material to be measured more accurately of for confirmatory measurements that only require low precision results. The equipment needed to make these measurements is a servo-controlled calorimeter with a sample preequilibration bath. The preequilibration bath temperature is set to the internal temperature of the calorimeter running at a fixed servo-controlled wattage level. The sample power value is determined at a fixed time form the sample loading into the calorimeter. There are some limitations and areas of uncertainties in the use of data obtained by this method. Data collected under controlled conditions demonstrate the limitations. Sample packaging, preequilibration time, and item wattage were chosen as the variables most likely to be encountered in a plant environment.

  5. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  6. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  7. Accelerated Rates of Nitrogen Cycling and N2O Production in Salt Marsh Sediments due to Long-Term Fertilization

    NASA Astrophysics Data System (ADS)

    Peng, X.; Ji, Q.; Angell, J.; Kearns, P.; Bowen, J. L.; Ward, B. B.

    2014-12-01

    Intensified sedimentary production of nitrous oxide (N2O), one of the most potent greenhouse gases, is one of the many possible environmental consequences of elevated nitrogen (N) loading into estuarine ecosystems. This study investigates the response to over 40 years of fertilization of nitrogen removal processes in the sediments of the Great Sippewissett Marsh in Falmouth, MA. Sediment slurries were incubated (1.5 hr) with trace amounts (< 10% of ambient concentration) of 15NH4+ + 14NO3- or 15NO3- + 14NH4+. An additional parallel incubation with 15NH4+ + 14NO3- and 1 mM of allylthiourea (ATU) was included to measure rates of anaerobic ammonia oxidation (anammox). Well-homogenized slurries filled about 10% of the volume in the gas-tight incubation vials, and the rest of the volume was replaced with an O2/He (20%/80%) mixture. The production of 29N2, 44N2O and 45N2O were determined using isotope ratio mass spectrometry. The rate of total N2O production in fertilized sediments (0.89 nmol hr-1 g-1 wet weight) was 30-fold higher than in unfertilized sediments. The ratio of N2O to N2 production was also significantly higher in fertilized sediments (2.9%) than in unfertilized sediments (1.2%). This highlights the disproportionally large effect of long-term fertilization on N2O production in salt marsh sediments. The reduced oxygen level and higher ammonium concentrations in situ probably contributed to the significant rise in N2O production as a result of long-term fertilization. When detected, anammox and coupled nitrification-denitrification accounted for 10% and 14% of the total N2 production in fertilized sediments (30.5 nmol hr-1 g-1 wet weight), respectively, whereas neither was detected in unfertilized sediments. Thus these experiments indicate that N loading has important effects on multiple N cycle processes that result in N loss and N2O production.

  8. Application of kinetic inductance thermometers to x-ray calorimetry

    SciTech Connect

    Wai, Y.C.; Labov, S.E.; Silver, E.H.

    1990-08-13

    A kinetic inductance thermometer is applied to x-ray calorimetry, and its operation over a wide range of frequencies and geometries is discussed. Three amplifier configurations are described, one using a superconducting quantum interference device (SQUID) amplifier, another incorporating an FET amplifier in an amplitude modulated system, and the third, using a tunnel diode frequency modulated oscillator circuit. The predicted performance of each configuration is presented. 13 refs., 6 figs., 1 tab.

  9. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  10. The Philosophy and Feasibility of Dual Readout Calorimetry

    SciTech Connect

    Hauptman, John

    2006-10-27

    I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification.

  11. On the nature of rate acceleration in the synthesis and fragmentation of triazolines by Brønsted acid: secondary catalysis by water (hydronium triflate).

    PubMed

    Hong, Ki Bum; Donahue, Matthew G; Johnston, Jeffrey N

    2008-02-20

    Rate acceleration of the addition of benzyl azide to an electron deficient olefin is characterized using in situ IR spectroscopy. Under strictly anhydrous conditions and at depressed temperature (-20 degrees C), a triazoline intermediate is selectively formed. The stability of this protonated triazoline intermediate at -20 degrees C is indefinite, but warming of the reaction mixture to 0 degrees C or above results in its conversion to the beta-amino oxazolidine dione observed under conditions used in our earlier report. As an alternative to warming, the same conversion can be effected by the addition of a single equivalent of water. Our experiments collectively demonstrate the metastability of the protonated triazoline intermediate and secondary catalysis of triazolinium ring fragmentation by water. This behavior is attributed to the ability of water to transfer a proton from N3 to N1 of the triazoline, thereby allowing ring fragmentation and nitrogen expulsion. PMID:18217758

  12. Acceleration of the Rate-Limiting Step of Thioredoxin Folding by Replacement of its Conserved cis-Proline with (4 S)-Fluoroproline.

    PubMed

    Roderer, Daniel; Glockshuber, Rudi; Rubini, Marina

    2015-10-12

    The incorporation of the non-natural amino acids (4R)- and (4S)-fluoroproline (Flp) has been successfully used to improve protein stability, but little is known about their effect on protein folding kinetics. Here we analyzed the influence of (4R)- and (4S)-Flp on the rate-limiting trans-to-cis isomerization of the Ile75-Pro76 peptide bond in the folding of Escherichia coli thioredoxin (Trx). While (4R)-Flp at position 76 had essentially no effect on the isomerization rate in the context of the intact tertiary structure, (4S)-Flp accelerated the folding reaction ninefold. Similarly, tenfold faster trans-to-cis isomerization of Ile75-(4S)-Flp76 relative to Ile75-Pro76 was observed in the unfolded state of Trx. Our results show that the replacement of cis prolines by non-natural proline analogues can be used for modulating the folding rates of proteins with cis prolyl-peptide bonds in the native state. PMID:26382254

  13. Chip calorimetry for evaluation of biofilm treatment with biocides, antibiotics, and biological agents.

    PubMed

    Morais, Frida Mariana; Buchholz, Friederike; Maskow, Thomas

    2014-01-01

    Any growth or bioconversion in biofilms is accompanied by the release of heat. The heat (in J) is tightly related to the stoichiometry of the respective process via law of Hess, and the heat production rate (in W or J/s) is additionally related to the process kinetics. This heat and the heat production rate can nowadays be measured by modern calorimetry with extremely high sensitivity. Flow-through calorimetry allows the measurement of bioprocesses in biofilms in real time, without the need of invasive sample preparation and disturbing of biofilm processes. Furthermore, it can be applied for long-term measurements and is even applicable to turbid media. Chip or miniaturized calorimeters have the additional advantages of extremely short thermal equilibration times and the requirement of very small amounts of media and chemicals. The precision of flow-through chip calorimeters (about 3 mW/L) allows the detection of early stages of biofilm development (about 10(5) bacteria cm(-2)). PMID:24664840

  14. Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    NASA Technical Reports Server (NTRS)

    Neveu, M. C.; Stocker, D. P.

    1985-01-01

    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.

  15. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    SciTech Connect

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-10-27

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  16. Myth Exposed: Academically Deficient Students Gain 2.3 Grade Equivalents in Only One Semester at a 96% Black Inner-City Community College in South Central Los Angeles Or Inner-City Academic Acceleration: How to Structure a Developmental Skills Program so that Black, Inner-City Students Accelerate Their Academic Growth Rate to a Rate 5.9 Times as Great as They Have Achieved in the Past.

    ERIC Educational Resources Information Center

    Wallace, Ruby; And Others

    The success of the Developmental Skills Program offered at Los Angeles Southwest College, a 96% black institution, is indicated by an average student grade equivalent gain of 2.3 years in one semester; a 5 year average accelerated academic growth rate that is 5.9 times the rate of academic growth black inner-city students have experienced in the…

  17. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  18. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  19. Late Pleistocene-Holocene acceleration of uplift rate in southwest Erromango Island, Southern Vanuatu, South Pacific: relation to the growth of the Vanuatuan Mid Sedimentary Basin

    SciTech Connect

    Neef, G.; Hendy, C.

    1988-07-01

    Late Quaternary and Holocene raised coral reefs are well developed in southwestern Erromango Island, which lies in the frontal arc area of the Vanuatuan Island Arc. Eight uranium series ages and one /sup 14/C age from samples from coral reefs at three localities range in age from 4800 B.P. to about 320,000 B.P. Six of the samples dated are from the Matiwo Point area. Here the youngest reef has given a /sup 230/Th//sup 234/U age of 4800 B.P. and a slightly older reef, 4.3 m higher in elevation, has a /sup 14/C age of 5270 B.P. Inland of a cliff the youngest three of four northeastward-tilted raised reefs have given /sup 230/Th//sup 234/U ages ranging from 104,000 B.P. to about 320,000 B.P. These data indicate accelerating uplift rates for southwest Erromango: during the periods 320,000-133,000 B.P., 133,000-6000 B.P., and 6000 - 0 B.P. average uplift rates were 0.33 mm/yr, 0.65 mm/yr, and about 1 mm/yr respectively. These data are interpreted to indicate the growth of the Mid Sedimentary Basin, which lies within the frontal and volcanic arc part of the island arc complex. This increase in uplift/eastward-tilting could represent a Quaternary-Late Pleistocene increase in the subduction rate of the Australian Plate beneath Erromango.

  20. Fast Scanning Calorimetry study of non-equilibrium relaxation in fragile organic liquids

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; O'Reilly, Liam

    2013-03-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick viscous liquid films of several organic compounds (e.g.2-ethyl-1-hexanol, Toluene, and 1-propanol) under high vacuum conditions. Rapid heating of samples, vapor deposited at temperatures above their standard glass softening transition (Tg), resulted in observable endotherms which onset temperatures were strongly dependent on heating rate and the deposition temperature. Furthermore, all of the studied compounds were characterized by distinct critical deposition temperatures at which observation of endotherm became impossible. Based on the results of these studies, we have developed a simple model which makes it possible to infer the equilibrium enthalpy relaxation times for liquids from FSC data. We will discuss implications of these studies for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids. Supported by NSF Grant 1012692.

  1. Calorimetry, activity, and micro-FTIR analysis of CO chemisorption, titration, and oxidation on supported Pt

    NASA Technical Reports Server (NTRS)

    Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.

    1990-01-01

    The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.

  2. Direct calorimetry of free-moving eels with manipulated thyroid status

    NASA Astrophysics Data System (ADS)

    van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido

    2007-02-01

    In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.

  3. Accelerated growth of calcium silicate hydrates: Experiments and simulations

    SciTech Connect

    Nicoleau, Luc

    2011-12-15

    Despite the usefulness of isothermal calorimetry in cement analytics, without any further computations this brings only little information on the nucleation and growth of hydrates. A model originally developed by Garrault et al. is used in this study in order to simulate hydration curves of cement obtained by calorimetry with different known hardening accelerators. The limited basis set of parameters used in this model, having a physical or chemical significance, is valuable for a better understanding of mechanisms underlying in the acceleration of C-S-H precipitation. Alite hydration in presence of four different types of hardening accelerators was investigated. It is evidenced that each accelerator type plays a specific role on one or several growth parameters and that the model may support the development of new accelerators. Those simulations supported by experimental observations enable us to follow the formation of the C-S-H layer around grains and to extract interesting information on its apparent permeability.

  4. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements

    PubMed Central

    Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID

  5. The Pandora Software Development Kit for Particle Flow Calorimetry

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Thomson, M. A.

    2012-12-01

    Pandora is a robust and efficient framework for developing and running pattern-recognition algorithms. It was designed to perform particle flow calorimetry, which requires many complex pattern-recognition techniques to reconstruct the paths of individual particles through fine granularity detectors. The Pandora C++ software development kit (SDK) consists of a single library and a number of carefully designed application programming interfaces (APIs). A client application can use the Pandora APIs to pass details of tracks and hits/cells to the Pandora framework, which then creates and manages named lists of self-describing objects. These objects can be accessed by Pandora algorithms, which perform the pattern-recognition reconstruction. Development with the Pandora SDK promotes the creation of small, re-usable algorithms containing just the kernel of a specific operation. The algorithms are configured via XML and can be nested to perform complex reconstruction tasks. As the algorithms only access the Pandora objects in a controlled manner, via the APIs, the framework can perform most book-keeping and memory-management operations. The Pandora SDK has been fully exploited in the implementation of PandoraPFA, which uses over 60 algorithms to provide the state of the art in particle flow calorimetry for ILC and CLIC.

  6. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte

    NASA Astrophysics Data System (ADS)

    Richard, M. N.; Dahn, J. R.

    An accelerating rate calorimeter (ARC) is used to measure the thermal stability of de-intercalated Li 1+ xMn 2- xO 4 in LiPF 6 EC:DEC (33:67) electrolyte. Self-heating is detected well after the 80°C onset of self-heating measured for lithium intercalated mesocarbon microbead (MCMB) electrodes in LiPF 6 EC:DEC (33:67) electrolyte. As a result, the initial self-heating measured in a practical carbon/Li 1+ xMn 2- xO 4 lithium-ion cell is caused by reactions at the anode. In previous work, we have proposed a model for the reactions that cause self-heating in MCMB electrodes in electrolyte. By assuming that a cell self-heats only because reactions occur at the anode, the model can be used to predict the power generated by the amount of MCMB in practical cells with an inert cathode. The calculated chemically generated power can be combined with power loss measurements, due to the transfer of heat to the environment, to predict the short-circuit behaviour and the oven exposure behaviour for a cell containing an MCMB anode and an inert cathode. The results agree qualitatively with short-circuit and oven exposure results measured on NEC Moli energy 18650 cells containing an Li 1+ xMn 2- xO 4 cathode.

  7. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    SciTech Connect

    2010-02-17

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  8. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema

    None

    2011-10-06

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  9. Accelerated partial breast irradiation: An analysis of variables associated with late toxicity and long-term cosmetic outcome after high-dose-rate interstitial brachytherapy

    SciTech Connect

    Wazer, David E. . E-mail: dwazer@tufts-nemc.org; Kaufman, Seth; Cuttino, Laurie; Di Petrillo, Thomas; Arthur, Douglas W.

    2006-02-01

    Purpose: To perform a detailed analysis of variables associated with late tissue effects of high-dose-rate (HDR) interstitial brachytherapy accelerated partial breast irradiation (APBI) in a large cohort of patients with prolonged follow-up. Methods and Materials: Beginning in 1995, 75 women with Stage I/II breast cancer were enrolled in identical institutional trials evaluating APBI as monotherapy after lumpectomy. Patients eligible included those with T1-2, N0-1 ({<=}3 nodes positive), M0 tumors of nonlobular histology with negative surgical margins, no extracapsular nodal extension, and negative results on postexcision mammogram. All patients underwent surgical excision and postoperative irradiation with HDR interstitial brachytherapy. The planning target volume was defined as the excision cavity plus a 2-cm margin. Treatment was delivered with a high-activity Ir-192 source at 3.4 Gy per fraction twice daily for 5 days to a total dose of 34 Gy. Dosimetric analyses were performed with three-dimensional postimplant dose and volume reconstructions. All patients were evaluated at 3-6-month intervals and assessed with a standardized cosmetic rating scale and according to Radiation Therapy Oncology Group late normal tissue toxicity scoring criteria. Clinical and therapy-related features were analyzed for their relationship to cosmetic outcome and toxicity rating. Clinical features analyzed included age, volume of resection, history of diabetes or hypertension, extent of axillary surgery, and systemic therapies. Therapy-related features analyzed included volume of tissue encompassed by the 100%, 150%, and 200% isodose lines (V100, V150, and V200, respectively), the dose homogeneity index (DHI), number of source dwell positions, and planar separation. Results: The median follow-up of all patients was 73 months (range, 43-118 months). The cosmetic outcome at last follow-up was rated as excellent, good, and fair/poor in 67%, 24%, and 9% of patients, respectively

  10. Online particle detection with Neural Networks based on topological calorimetry information

    NASA Astrophysics Data System (ADS)

    Ciodaro, T.; Deva, D.; de Seixas, J. M.; Damazio, D.

    2012-06-01

    This paper presents the latest results from the Ringer algorithm, which is based on artificial neural networks for the electron identification at the online filtering system of the ATLAS particle detector, in the context of the LHC experiment at CERN. The algorithm performs topological feature extraction using the ATLAS calorimetry information (energy measurements). The extracted information is presented to a neural network classifier. Studies showed that the Ringer algorithm achieves high detection efficiency, while keeping the false alarm rate low. Optimizations, guided by detailed analysis, reduced the algorithm execution time by 59%. Also, the total memory necessary to store the Ringer algorithm information represents less than 6.2 percent of the total filtering system amount.

  11. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    NASA Astrophysics Data System (ADS)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine; Hecksher, Tina; Pedersen, Ib H.; Rasmussen, Torben; Christensen, Tage; Olsen, Niels Boye; Dyre, Jeppe C.

    2016-05-01

    We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This "Thermalization Calorimetry" technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample's specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  12. Fast Scanning Calorimetry study of non-equilibrium relaxation in 2-Ethyl-1-Hexanol

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; Pane, Candace

    2012-02-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick ultraviscous of 2-Ethyl-1-Hexanol (2E1H) films under high vacuum conditions. Rapid heating of 2E1H samples prepared at temperatures above approximately 145 K (standard glass transition temperature of 2E1H, Tgs), resulted in well manifested dynamic glass transitions at temperatures tens of degrees higher than Tgs. Furthermore, strong and complex dependence of dynamic glass transition temperature on the sample's initial state, i.e., the starting temperature of FSC scan was also observed. We discuss implications of these results for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids.

  13. Dynamics of phase separation in polymer blends studied by ultrafast scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Zhou, Dongshan; Wei, Lai; Luo, Shaochuan; Jiang, Jing; Wang, Xiaoliang; Xue, Gi

    2015-03-01

    Phase separation in polymer blends has been widely studied in material science due to the special microstructures they may form during the processes. The recently developed ultrafast scanning calorimetry (UFSC) with heating and cooling rates up to 10E5 K/s provides better chance to follow the fast de-mixing of polymer blends occurring in sub-milliseconds. In this work, the dynamics of phase separation in several proportions of poly(styrene) and poly(vinyl methyl ether) (PS/PVME) blends with different molecular weights were studied using UFSC. It shows that the phase diagrams of the blend can be easily built and that the de-mixing level can be well controlled by the fast heating and quenching program the UFSC offers. The authors appreciate the financial support of National Basic Research Program of China (973 program, 2012CB821503) and the NSF of China (21274059 and 21027006).

  14. Energetics of methanol and formic acid oxidation on Pt(111): Mechanistic insights from adsorption calorimetry

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Karp, Eric M.; Campbell, Charles T.

    2016-08-01

    The catalytic and electrocatalytic oxidation and reforming of methanol and formic acid have received intense interest due to potential use in direct fuel cells and as prototype models for understanding electrocatalysis. Consequently, the reaction energy diagram (energies of all the adsorbed intermediates and activation energies of all the elementary steps) have been estimated for these reactions on Pt(111) by density functional theory (DFT) in several studies. However, no experimental measurement of these energy diagrams have been reported, nor is there a consensus on the mechanisms. Here, we use energies of key intermediates on Pt(111) from single crystal adsorption calorimetry (SCAC) and temperature programmed desorption (TPD) to build a combined energy diagram for these reactions. It suggests a new pathway involving monodentate formate as a key intermediate, with bidentate formate only being a spectator species that slows the rate. This helps reconcile conflicting proposed mechanisms.

  15. Comparison of the Effects of Two Auditory Methods by Mother and Fetus on the Results of Non-Stress Test (Baseline Fetal Heart Rate and Number of Accelerations) in Pregnant Women: A Randomized Controlled Trial

    PubMed Central

    Khoshkholgh, Roghaie; Keshavarz, Tahereh; Moshfeghy, Zeinab; Akbarzadeh, Marzieh; Asadi, Nasrin; Zare, Najaf

    2016-01-01

    Objective: To compare the effects of two auditory methods by mother and fetus on the results of NST in 2011-2012. Materials and methods: In this single-blind clinical trial, 213 pregnant women with gestational age of 37-41 weeks who had no pregnancy complications were randomly divided into 3 groups (auditory intervention for mother, auditory intervention for fetus, and control) each containing 71 subjects. In the intervention groups, music was played through the second 10 minutes of NST. The three groups were compared regarding baseline fetal heart rate and number of accelerations in the first and second 10 minutes of NST. The data were analyzed using one-way ANOVA, Kruskal-Wallis, and paired T-test. Results: The results showed no significant difference among the three groups regarding baseline fetal heart rate in the first (p = 0.945) and second (p = 0.763) 10 minutes. However, a significant difference was found among the three groups concerning the number of accelerations in the second 10 minutes. Also, a significant difference was observed in the number of accelerations in the auditory intervention for mother (p = 0.013) and auditory intervention for fetus groups (p < 0.001). The difference between the number of accelerations in the first and second 10 minutes was also statistically significant (p = 0.002). Conclusion: Music intervention was effective in the number of accelerations which is the indicator of fetal health. Yet, further studies are required to be conducted on the issue. PMID:27385971

  16. Isothermal titration calorimetry of ion-coupled membrane transporters

    PubMed Central

    SeCheol, Oh

    2015-01-01

    Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding - enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors. PMID:25676707

  17. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry.

    PubMed

    Liu, Lijun; Wei, Chunyang; Guo, Yuyan; Rogers, William J; Sam Mannan, M

    2009-03-15

    Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine compound family with applications that include equipment decontamination in the nuclear industry and aqueous or solid propellants. Due to its instability and autocatalytic behavior, HAN has been involved in several incidents at the Hanford and Savannah River Site (SRS) [Technical Report on Hydroxylamine Nitrate, US Department of Energy, 1998]. Much research has been conducted on HAN in different areas, such as combustion mechanism, decomposition mechanism, and runaway behavior. However, the autocatalytic decomposition behavior of HAN at runaway stage has not been fully addressed due to its highly exothermic and rapid decomposition behavior. This work is focused on extracting HAN autocatalytic kinetics and analyzing HAN critical behavior from adiabatic calorimetry measurements. A lumped autocatalytic kinetic model for HAN and associated model parameters are determined. Also the storage and handling critical conditions of diluted HAN solution without metal presence are quantified. PMID:18639378

  18. NEUTRON-ENHANCED CALORIMETRY FOR HADRONS (NECH): FINAL REPORT

    SciTech Connect

    Andrew Stroud, Lee Sawyer

    2012-08-31

    We present the results of a project to apply scintillator technology recently developed at Louisiana Tech University to hadronic calorimetry. In particular, we developed a prototype calorimeter module incorporating scintillator embedded with metal oxide nanoparticles as the active layers. These metal oxide nanoparticles of gadolinium oxide, have high cross-sections for interactions with slow neutrons. As a part fo this research project, we have developed a novel method for producing plastic scintillators with metal oxide nanoparticles evenly distributed through the plastic without aggregation.We will test the performance of the calorimeter module in test beam and with a neutron source, in order to measure the response to the neutron component of hadronic showers. We will supplement our detector prototyping activities with detailed studies of the effect of neutron component on the resolution of hadronic energy measurements, particular in the next generation of particle flow calorimeters.

  19. Preparation To Minimize Buffer Mismatch in Isothermal Titration Calorimetry Experiments.

    PubMed

    Bian, Xuelin; Lockless, Steve W

    2016-05-17

    There is a growing need to study ligand binding to proteins in native or complex solution using isothermal titration calorimetry (ITC). For example, it is desirable to measure ligand binding to membrane proteins in more native lipid-like environments such as bicelles, where ligands can access both sides of the membrane in a homogeneous environment. A critical step to obtain high signal-to-noise is matching the reaction chamber solution to the ligand solution, typically through a final dialysis or gel filtration step. However, to obtain reproducible bicelles, the lipid concentrations must be carefully controlled which eliminates the use of dialysis that can disrupt these parameters. Here, we report and validate a rapid preparation ITC (RP-ITC) approach to measure ligand binding without the need for a dialysis step. This general approach is used to quantify ion binding to a K(+) channel embedded in bicelles and can be applied to complex, less defined systems. PMID:27092566

  20. Measuring the Imaginary Part of the Permittivity Using Calorimetry

    NASA Astrophysics Data System (ADS)

    Kashuri, Hektor; Sigdel, Krishna; Kashuri, Klaida; Iannacchione, Germano S.

    2011-03-01

    Modulated or AC calorimetry is a well established technique for measuring the temperature dependence of the heat capacity of many complex fluids. Employing a dielectric or RF heating method, the heat capacity, thermal conductivity, and the dielectric properties of the sample are all probed simultaneously. Combining the results obtained by this technique for the liquid crystal 4-n-pentyl-4-cyanophenyl (5CB) with those obtained by our novel AC calorimetric technique employing RF (dielectric) heating, we have been able to directly measure the temperature dependence of the imaginary part of the permittivity of this liquid crystal. Measurements were performed over a temperature range from 303 to 313 K, spanning the nematic to isotropic phase transition, as well as radio frequencies from 10 to 30 MHz Worcester Polytechnic Institute (WPI).

  1. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  2. Anticancer compound ABT-263 accelerates apoptosis in virus-infected cells and imbalances cytokine production and lowers survival rates of infected mice.

    PubMed

    Kakkola, L; Denisova, O V; Tynell, J; Viiliäinen, J; Ysenbaert, T; Matos, R C; Nagaraj, A; Ohman, T; Kuivanen, S; Paavilainen, H; Feng, L; Yadav, B; Julkunen, I; Vapalahti, O; Hukkanen, V; Stenman, J; Aittokallio, T; Verschuren, E W; Ojala, P M; Nyman, T; Saelens, X; Dzeyk, K; Kainov, D E

    2013-01-01

    ABT-263 and its structural analogues ABT-199 and ABT-737 inhibit B-cell lymphoma 2 (Bcl-2), BCL2L1 long isoform (Bcl-xL) and BCL2L2 (Bcl-w) proteins and promote cancer cell death. Here, we show that at non-cytotoxic concentrations, these small molecules accelerate the deaths of non-cancerous cells infected with influenza A virus (IAV) or other viruses. In particular, we demonstrate that ABT-263 altered Bcl-xL interactions with Bcl-2 antagonist of cell death (Bad), Bcl-2-associated X protein (Bax), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA). ABT-263 thereby activated the caspase-9-mediated mitochondria-initiated apoptosis pathway, which, together with the IAV-initiated caspase-8-mediated apoptosis pathway, triggered the deaths of IAV-infected cells. Our results also indicate that Bcl-xL, Bcl-2 and Bcl-w interact with pattern recognition receptors (PRRs) that sense virus constituents to regulate cellular apoptosis. Importantly, premature killing of IAV-infected cells by ABT-263 attenuated the production of key pro-inflammatory and antiviral cytokines. The imbalance in cytokine production was also observed in ABT-263-treated IAV-infected mice, which resulted in an inability of the immune system to clear the virus and eventually lowered the survival rates of infected animals. Thus, the results suggest that the chemical inhibition of Bcl-xL, Bcl-2 and Bcl-w could potentially be hazardous for cancer patients with viral infections. PMID:23887633

  3. Anticancer compound ABT-263 accelerates apoptosis in virus-infected cells and imbalances cytokine production and lowers survival rates of infected mice

    PubMed Central

    Kakkola, L; Denisova, O V; Tynell, J; Viiliäinen, J; Ysenbaert, T; Matos, R C; Nagaraj, A; Öhman, T; Kuivanen, S; Paavilainen, H; Feng, L; Yadav, B; Julkunen, I; Vapalahti, O; Hukkanen, V; Stenman, J; Aittokallio, T; Verschuren, E W; Ojala, P M; Nyman, T; Saelens, X; Dzeyk, K; Kainov, D E

    2013-01-01

    ABT-263 and its structural analogues ABT-199 and ABT-737 inhibit B-cell lymphoma 2 (Bcl-2), BCL2L1 long isoform (Bcl-xL) and BCL2L2 (Bcl-w) proteins and promote cancer cell death. Here, we show that at non-cytotoxic concentrations, these small molecules accelerate the deaths of non-cancerous cells infected with influenza A virus (IAV) or other viruses. In particular, we demonstrate that ABT-263 altered Bcl-xL interactions with Bcl-2 antagonist of cell death (Bad), Bcl-2-associated X protein (Bax), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA). ABT-263 thereby activated the caspase-9-mediated mitochondria-initiated apoptosis pathway, which, together with the IAV-initiated caspase-8-mediated apoptosis pathway, triggered the deaths of IAV-infected cells. Our results also indicate that Bcl-xL, Bcl-2 and Bcl-w interact with pattern recognition receptors (PRRs) that sense virus constituents to regulate cellular apoptosis. Importantly, premature killing of IAV-infected cells by ABT-263 attenuated the production of key pro-inflammatory and antiviral cytokines. The imbalance in cytokine production was also observed in ABT-263-treated IAV-infected mice, which resulted in an inability of the immune system to clear the virus and eventually lowered the survival rates of infected animals. Thus, the results suggest that the chemical inhibition of Bcl-xL, Bcl-2 and Bcl-w could potentially be hazardous for cancer patients with viral infections. PMID:23887633

  4. Plasma accelerators

    SciTech Connect

    Ruth, R.D.; Chen, P.

    1986-03-01

    In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.

  5. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    PubMed

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. PMID:26272165

  6. PREFACE: XIV International Conference on Calorimetry in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Wang, Yifang

    2011-03-01

    The International Conferences on Calorimetry in High Energy Physics (also known as the Calor Conference series, started in October 1990 at Fermilab) address all aspects of calorimetric particle detection and measurement, with an emphasis on high energy physics experiments. The XIV International Conference on Calorimetry in High Energy Physics (Calor 2010) was held at the campus of the Institute of High Energy Physics, Beijing, China, from May 10-14, 2010. This conference brought together more than 110 participants from 20 countries, including senior scientists and young physicists. During the five days of the conference, 98 presentations were given in seven plenary sessions. The attendees had in-depth discussions on the latest developments and innovations in calorimetry, including the exciting new LHC results. From the presentations, 83 papers were published in this proceedings. The success of the conference was due to the participants' enthusiasm and the excellent talks given by the speakers, and to the conveners for organizing the individual sessions. We would like to thank the International Advisory Committee for giving us the opportunity to host this Conference in Beijing. Finally we would like to thank all the people involved in the organization of the Conference, who have provided valuable local support. Yifang WangChair of Local Organizing Committee International Advisory Committee M DanilovITEP Moscow M DiemozINFN Roma I A EreditatoBern F L FabbriINFN Frascati T KobayashiICEPP Tokyo M LivanPavia University & INFN P LubranoINFN Perugia S MagillANL Argonne A MaioLIPP Lisbon H OberlackMPI Munich A ParaFermilab R WigmansTTU Lubbock R YoshidaANL Argonne R ZhuCaltech Local Organizing Committee Y WangIHEP (Chair) Y GaoTshinghua University T HuIHEP (Scientific secretary) C LiUSTC W LiIHEP J LuIHEP P WangIHEP T XuIHEP L ZhouIHEP Session Conveners 1) Materials and detectors - Junguang Lu (IHEP), Francesca Nessi (CERN) 2) Algorithm and simulation - Nural Akchurin

  7. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC. PMID:22300357

  8. Relaxation behaviour of D(-)-salicin as studied by Thermally Stimulated Depolarisation Currents (TSDC) and Differential Scanning Calorimetry (DSC).

    PubMed

    Diogo, Hermínio P; Pinto, Susana S; Moura Ramos, Joaquim J

    2008-06-24

    Thermally Stimulated Depolarisation Currents (TSDC) measurements on D(-)-salicin have been carried out in the temperature region from -165 degrees C up to 150 degrees C. The slow molecular mobility was characterised in the crystal and in the glassy state. The value of the steepness index or fragility (T(g)-normalized temperature dependence of the relaxation time) was obtained by Differential Scanning Calorimetry (DSC) from the analysis of the scanning rate dependency of T(g). The existence of an unknown polymorph of salicin is also reported. PMID:18417303

  9. A microfabrication-based approach to quantitative isothermal titration calorimetry.

    PubMed

    Wang, Bin; Jia, Yuan; Lin, Qiao

    2016-04-15

    Isothermal titration calorimetry (ITC) directly measures heat evolved in a chemical reaction to determine equilibrium binding properties of biomolecular systems. Conventional ITC instruments are expensive, use complicated design and construction, and require long analysis times. Microfabricated calorimetric devices are promising, although they have yet to allow accurate, quantitative ITC measurements of biochemical reactions. This paper presents a microfabrication-based approach to integrated, quantitative ITC characterization of biomolecular interactions. The approach integrates microfabricated differential calorimetric sensors with microfluidic titration. Biomolecules and reagents are introduced at each of a series of molar ratios, mixed, and allowed to react. The reaction thermal power is differentially measured, and used to determine the thermodynamic profile of the biomolecular interactions. Implemented in a microdevice featuring thermally isolated, well-defined reaction volumes with minimized fluid evaporation as well as highly sensitive thermoelectric sensing, the approach enables accurate and quantitative ITC measurements of protein-ligand interactions under different isothermal conditions. Using the approach, we demonstrate ITC characterization of the binding of 18-Crown-6 with barium chloride, and the binding of ribonuclease A with cytidine 2'-monophosphate within reaction volumes of approximately 0.7 µL and at concentrations down to 2mM. For each binding system, the ITC measurements were completed with considerably reduced analysis times and material consumption, and yielded a complete thermodynamic profile of the molecular interaction in agreement with published data. This demonstrates the potential usefulness of our approach for biomolecular characterization in biomedical applications. PMID:26655185

  10. Calorimetry study of microwave absorption of some solid materials.

    PubMed

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi

    2013-01-01

    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber. PMID:24779227

  11. Liposome/Graphene Oxide Interaction Studied by Isothermal Titration Calorimetry.

    PubMed

    Huang, Po-Jung Jimmy; Wang, Feng; Liu, Juewen

    2016-03-15

    The interaction between graphene oxide (GO) and lipid bilayers is important for fundamental surface science and many applications. In this work, isothermal titration calorimetry (ITC), cryo-TEM, and fluorescence spectroscopy were used to study the adsorption of three types of liposomes. Heat release was observed when GO was mixed with zwitterionic DOPC liposomes, while heat absorption occurred with cationic DOTAP liposomes. For comparison, anionic DOPG liposomes released heat when mixed with DOTAP. DOPC was adsorbed as intact liposomes, but DOTAP ruptured and induced stacking and folding of GO sheets. This study suggests the release of more water molecules from the GO surface when mixed with DOTAP liposomes. This can be rationalized by the full rupture of the DOTAP liposomes interacting with the whole GO surface, including hydrophobic regions, while DOPC liposomes only interact with a small area on GO near the edge, which is likely to be more hydrophilic. This interesting biointerfacial observation has enhanced our fundamental understanding of lipid/GO interactions. PMID:26908113

  12. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  13. Calorimetry of deformed aluminum reinforced with alumina particles

    SciTech Connect

    Srichai, M.B.; Dunand, D.C.; Mortensen, A. . Dept. of Materials Science and Engineering)

    1994-06-15

    It is known that stiff, elastic ceramic reinforcements used in metal matrix composites can strongly influence dislocation creation, annihilation and motion within the matrix. In particular, mechanical interaction between reinforcement and matrix may result in dislocation densities in reinforced metals that exceed greatly those found in the unreinforced matrix metal, processed and strained analogously to the composite. Dislocation densities in metals are generally measured using transmission electron microscopy; however several precautions are required with this technique, which are exacerbated in the case of metal matrix composites because of thermal strain mismatch between matrix and reinforcement. Differential scanning calorimetry offers an alternative method of measuring dislocation densities in deformed metals, which has its limitations (dislocation densities must be relatively high, and the matrix must be highly pure and must recrystallize), but is well established for unreinforced metals, and is particularly suited for the measurement of high dislocation densities. In what follows the authors present an exploration of the use of this technique for deformed particle reinforced metals.

  14. Adiabatic calorimetry (RSST and VSP) tests with sodium acetate

    SciTech Connect

    Kirch, N.W.

    1993-09-01

    As requested in the subject reference, adiabatic calorimetry (RSST and VSP) tests have been performed with sodium acetate covering TOC concentrations from 3 to 7% with the following results: Exothermic activity noted around 200{degrees}C. Propagating reaction initiated at about 300{degrees}C. Required TOC concentration for propagation estimated at about 6 w% (dry mixture) or about 20 w% sodium acetate. Heat of reaction estimated to be 3.7 MJ per kg of sodium acetate (based on VSP test with 3 w% TOC and using a dry mixture specific heat of 1000 J kg{sup {minus}1} K{sup {minus}1}). Based upon the above results we estimate that a moisture content in excess of 14 w% would prevent a propagating reaction of a stoichiometric mixture of fuel and oxidizer ({approximately} 38 w% sodium acetate and {approximately}62 w% sodium nitrate). Assuming that the fuel can be treated as sodium acetate equivalent, and considering that the moisture content in the organic containing waste generally is believed to be in excess of 14 w%, it follows that the possibility of propagating reactions in the Hanford waste tanks can be ruled out.

  15. Combined Forward Calorimetry Option for Phase II CMS Endcap Upgrade

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2015-02-01

    Traditionally, EM and HAD compartments are thought to be separate and are often optimized individually. However, it is possible to optimize a robust and economical combined calorimeter system for myriad physics objectives. By employing event-by-event compensation afforded by the dual-readout technique, we have shown that excellent jet performance can be attained with a longitudinally un-segmented calorimeter that is calibrated only with electrons. In addition, the linear hadronic energy scale renders complex off-line correction schemes unnecessary. The proposed replacement of the CMS EE and HE calorimeters with a single Combined Forward Calorimeter (CFC) shows excellent jet performance complemented by good EM object detection. In this paper, we give brief snapshots on basic design criteria, timing characteristics of Cherenkov and scintillation pulses, trigger generation criteria and performance under high radiation fields. Although CMS has recently chosen different technologies for its endcap calorimetry in Phase II, the concepts developed here are likely to remain valuable for some time to come.

  16. Energetics of adsorbed CH3 on Pt(111) by calorimetry.

    PubMed

    Karp, Eric M; Silbaugh, Trent L; Campbell, Charles T

    2013-04-01

    The enthalpy and sticking probability for the dissociative adsorption of methyl iodide were measured on Pt(111) at 320 K and at low coverages (up to 0.04 ML, where 1 ML is equal to one adsorbate molecule for every surface Pt atom) using single crystal adsorption calorimetry (SCAC). At this temperature and in this coverage range, methyl iodide produces adsorbed methyl (CH(3,ad)) plus an iodine adatom (I(ad)). Combining the heat of this reaction with reported energetics for Iad gives the standard heat of formation of adsorbed methyl, ΔH(f)(0)(CH3,ad), to be −53 kJ/mol and a Pt(111)–CH3 bond energy of 197 kJ/mol. (The error bar of ±20 kJ/mol for both values is limited by the reported heat of formation of I(ad).) This is the first direct measurement of these values for any alkyl fragment on any surface. PMID:23461481

  17. Academic genealogy and direct calorimetry: a personal account.

    PubMed

    Jackson, Donald C

    2011-06-01

    Each of us as a scientist has an academic legacy that consists of our mentors and their mentors continuing back for many generations. Here, I describe two genealogies of my own: one through my PhD advisor, H. T. (Ted) Hammel, and the other through my postdoctoral mentor, Knut Schmidt-Nielsen. Each of these pathways includes distingished scientists who were all major figures in their day. The striking aspect, however, is that of the 14 individuals discussed, including myself, 10 individuals used the technique of direct calorimetry to study metabolic heat production in humans or other animals. Indeed, the patriarchs of my PhD genealogy, Antoine Lavoisier and Pierre Simon Laplace, were the inventors of this technique and the first to use it in animal studies. Brief summaries of the major accomplishments of each my scientific ancestors are given followed by a discussion of the variety of calorimeters and the scientific studies in which they were used. Finally, readers are encouraged to explore their own academic legacies as a way of honoring those who prepared the way for us. PMID:21652494

  18. Explicit formulation of titration models for isothermal titration calorimetry.

    PubMed

    Poon, Gregory M K

    2010-05-15

    Isothermal titration calorimetry (ITC) produces a differential heat signal with respect to the total titrant concentration. This feature gives ITC excellent sensitivity for studying the thermodynamics of complex biomolecular interactions in solution. Currently, numerical methods for data fitting are based primarily on indirect approaches rooted in the usual practice of formulating biochemical models in terms of integrated variables. Here, a direct approach is presented wherein ITC models are formulated and solved as numerical initial value problems for data fitting and simulation purposes. To do so, the ITC signal is cast explicitly as a first-order ordinary differential equation (ODE) with total titrant concentration as independent variable and the concentration of a bound or free ligand species as dependent variable. This approach was applied to four ligand-receptor binding and homotropic dissociation models. Qualitative analysis of the explicit ODEs offers insights into the behavior of the models that would be inaccessible to indirect methods of analysis. Numerical ODEs are also highly compatible with regression analysis. Since solutions to numerical initial value problems are straightforward to implement on common computing platforms in the biochemical laboratory, this method is expected to facilitate the development of ITC models tailored to any experimental system of interest. PMID:20100451

  19. Differential scanning calorimetry study--assessing the influence of composition of vegetable oils on oxidation.

    PubMed

    Qi, Baokun; Zhang, Qiaozhi; Sui, Xiaonan; Wang, Zhongjiang; Li, Yang; Jiang, Lianzhou

    2016-03-01

    The thermal oxidation of eight different vegetable oils was studied using differential scanning calorimetry (DSC) under non-isothermal conditions at five different heating rates (5, 7.5, 10, 12.5, and 15°C/min), in a temperature range of 100-400°C. For all oils, the activation energy (Ea) values at Tp were smaller than that at Ts and Ton. Among all the oils, refined palm oil (RPO) exhibited the highest Ea values, 126.06kJ/mol at Ts, 134.7kJ/mol at Ton, and 91.88kJ/mol at Tp. The Ea and reaction rate constant (k) values at Ts, Ton, and Tp were further correlated with oil compositions (fatty acids and triacylglycerols) using Pearson correlation analysis. The rate constant (k) and Ea of all oils exhibited varying correlations with FAs and TAGs, indicating that the thermal oxidation behaviors were affected by oil compositions. PMID:26471598

  20. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    from Cells to Cities - a Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics,' inspired many interesting questions from the audience both after the talk and throughout the week during informal conversations. Calorimetry is extremely diverse: many different techniques may be employed in building the detector and also in extracting information from it. The topics of the Calorimeter Techniques sessions included high-rate liquid argon calorimeters, SiPM sensors, highly granular digital calorimeters, new crystals, and beam test and simulation results. In these pages, you will find exciting and sometimes contradicting points of view expressed, for example about fully sampling hadronic calorimeters. A rare astronomical event, the Venus transit, coincided with the second day of the conference. The participants enjoyed viewing Venus' trail across the sun with a solar telescope (H-alpha line at 656 nm). In Santa Fe, the interior ingress was at 16:23:04 and reached center at 19:27:04. The last transit occurred in 2004, and the next one will happen in 2117. In 1627, Johannes Kepler published data about the planetary orbits that predicted that Venus would pass directly between earth and the sun in 1631. Unfortunately Kepler died in 1630 and apparently nobody recorded the 1631 transit. The first recorded observation of a transit was in 1638, which Kepler had not predicted. Later, Jeremiah Horracks, an English astronomer, realized Kepler had made an error in his calculations. It was not until the Venus transit observations of 1769 that scientists measured the distance from the earth to the sun to be 95 million miles (actually 93 million miles or 149.7 million kilometers) based on the 1716 triangulation suggestion from Edmund Halley (of comet fame). It's interesting to remember that before the 18th century, one of the most vexing scientific puzzles, not unlike today's Higgs boson quest, was 'How far away is the Sun?' Although natural

  1. Implementation of Constant Dose Rate and Constant Angular Spacing Intensity-modulated Arc Therapy for Cervical Cancer by Using a Conventional Linear Accelerator

    PubMed Central

    Zhang, Ruo-Hui; Fan, Xiao-Mei; Bai, Wen-Wen; Cao, Yan-Kun

    2016-01-01

    Background: Volumetric-modulated arc therapy (VMAT) can only be implemented on the new generation linacs such as the Varian Trilogy® and Elekta Synergy®. This prevents most existing linacs from delivering VMAT. The purpose of this study was to investigate the feasibility of using a conventional linear accelerator delivering constant dose rate and constant angular spacing intensity-modulated arc therapy (CDR-CAS-IMAT) for treating cervical cancer. Methods: Twenty patients with cervical cancer previously treated with intensity-modulated radiation therapy (IMRT) using Varian Clinical 23EX were retreated using CDR-CAS-IMAT. The planning target volume (PTV) was set as 50.4 Gy in 28 fractions. Plans were evaluated based on the ability to meet the dose volume histogram. The homogeneity index (HI), target volume conformity index (CI), the dose to organs at risk, radiation delivery time, and monitor units (MUs) were also compared. The paired t-test was used to analyze the two data sets. All statistical analyses were performed using SPSS 19.0 software. Results: Compared to the IMRT group, the CDR-CAS-IMAT group showed better PTV CI (0.85 ± 0.03 vs. 0.81 ± 0.03, P = 0.001), clinical target volume CI (0.46 ± 0.05 vs. 0.43 ± 0.05, P = 0.001), HI (0.09±0.02 vs. 0.11 ± 0.02, P = 0.005) and D95 (5196.33 ± 28.24 cGy vs. 5162.63 ± 31.12 cGy, P = 0.000), and cord D2 (3743.8 ± 118.7 cGy vs. 3806.2 ± 98.7 cGy, P = 0.017) and rectum V40 (41.9 ± 6.1% vs. 44.2 ± 4.8%, P = 0.026). Treatment time (422.7 ± 46.7 s vs. 84.6 ± 7.8 s, P = 0.000) and the total plan Mus (927.4 ± 79.1 vs. 787.5 ± 78.5, P = 0.000) decreased by a factor of 0.8 and 0.15, respectively. The IMRT group plans were superior to the CDR-CAS-IMAT group plans considering decreasing bladder V50 (17.4 ± 4.5% vs. 16.6 ± 4.2%, P = 0.049), bowel V30 (39.6 ± 6.5% vs. 36.6 ± 7.5%, P = 0.008), and low-dose irradiation volume; there were no significant differences in other statistical indexes. Conclusions

  2. Statistical correlation of the soil incubation and the accelerated laboratory extraction methods to estimate nitrogen release rates of slow- and controlled-release fertilizers.

    PubMed

    Medina, L Carolina; Sartain, Jerry; Obreza, Thomas; Hall, William L; Thiex, Nancy J

    2014-01-01

    Several technologies have been proposed to characterize the nutrient release patterns of enhanced-efficiency fertilizers (EEFs) during the last few decades. These technologies have been developed mainly by manufacturers and are product-specific based on the regulation and analysis of each EEF product. Despite previous efforts to characterize nutrient release of slow-release fertilizer (SRF) and controlled-release fertilizer (CRF) materials, no official method exists to assess their nutrient release patterns. However, the increased production and distribution of EEFs in specialty and nonspecialty markets requires an appropriate method to verify nutrient claims and material performance. Nonlinear regression was used to establish a correlation between the data generated from a 180-day soil incubation-column leaching procedure and 74 h accelerated lab extraction method, and to develop a model that can predict the 180-day nitrogen (N) release curve for a specific SRF and CRF product based on the data from the accelerated laboratory extraction method. Based on the R2 > 0.90 obtained for most materials, results indicated that the data generated from the 74 h accelerated lab extraction method could be used to predict N release from the selected materials during 180 days, including those fertilizers that require biological activity for N release. PMID:25051612

  3. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. PMID:27402175

  4. Pore size distribution in porous glass: fractal dimension obtained by calorimetry

    NASA Astrophysics Data System (ADS)

    Neffati, R.; Rault, J.

    2001-05-01

    By differential Scanning Calorimetry (DSC), at low heating rate and using a technique of fractionation, we have measured the equilibrium DSC signal (heat flow) J q 0 of two families of porous glass saturated with water. The shape of the DSC peak obtained by these techniques is dependent on the sizes distribution of the pores. For porous glass with large pore size distribution, obtained by sol-gel technology, we show that in the domain of ice melting, the heat flow Jq is related to the melting temperature depression of the solvent, Δ T m , by the scaling law: J q 0˜Δ T m - (1 + D). We suggest that the exponent D is of the order of the fractal dimension of the backbone of the pore network and we discuss the influence of the variation of the melting enthalpy with the temperature on the value of this exponent. Similar D values were obtained from small angle neutron scattering and electronic energy transfer measurements on similar porous glass. The proposed scaling law is explained if one assumes that the pore size distribution is self similar. In porous glass obtained from mesomorphic copolymers, the pore size distribution is very sharp and therefore this law is not observed. One concludes that DSC, at low heating rate ( q? 2°C/min) is the most rapid and less expensive method for determining the pore distribution and the fractal exponent of a porous material.

  5. Annual meeting of the Calorimetry Exchange Program: minutes--April 24-25, 1991

    SciTech Connect

    1991-12-31

    On April 24-25, 1991, people from seven DOE organizations participated in the annual meeting of the Calorimetry Exchange Program. The meeting featured a review of the statistical analysis of the calorimetry and gamma-ray data submitted to the exchange program during 1990. The meeting also enabled the group to review progress of five projects concerning a tritium exchange program, reprogramming of the database, a catalogue of measurement techniques, additional samples, and recharacterization of the current sample. There were presentations on recent advances in calorimetry and gamma-ray measurements.

  6. Thermal-oxidation of biodiesel by pressurized-differential scanning calorimetry: Effects of heating ramp rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, an alternative diesel fuel made from vegetable oils or animal fats with methanol or ethanol, is a mixture of relatively stable (saturated) and oxidatively unstable (unsaturated) long-chain fatty acid alkyl esters. During storage, oxidative degradation caused by contact with air is of utm...

  7. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  8. Identifying Hydrated Salts Using Simultaneous Thermogravimetric Analysis and Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Harris, Jerry D.; Rusch, Aaron W.

    2013-01-01

    simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to characterize colorless, hydrated salts with anhydrous melting points less than 1100 degrees C. The experiment could be used to supplement the lecture discussing gravimetric techniques. It is…

  9. PURITY AND HEAT OF FUSION DATA FOR ENVIRONMENTAL STANDARDS AS DETERMINED BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    Differential scanning calorimetry (DSC) has been applied to 273 environmental standards, including pesticides, herbicides and related compounds. embers of the following chemical classes were analyzed: rganophosphorus, organochlorine, phenol, triazine, uracil, phenoxy acid, urea, ...

  10. Calorimetry exchange program amendment to 3rd quarter CY92 report LLNL isotopic data

    SciTech Connect

    Barnett, T.M.

    1996-08-01

    This report is a series of ammendments to the Calorimetry Exchange Quarterly Data Report for third quarter CY1992. The ammendment is needed due to reporting errors encountered in the Lawrence Livermore National Laboratory isotopic data.

  11. Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Courses.

    ERIC Educational Resources Information Center

    Temme, Susan M.

    1995-01-01

    Describes an exercise designed to be used in an Advanced Placement (AP) chemistry course to accompany the study of thermodynamics. Uses Differential Scanning Calorimetry in teaching the concepts of thermochemistry and thermodynamics. (JRH)

  12. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  13. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  14. A Study of Concept Mapping as an Instructional Intervention in an Undergraduate General Chemistry Calorimetry Laboratory

    NASA Astrophysics Data System (ADS)

    Stroud, Mary W.

    This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.

  15. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  16. Development of GEM-Based Digital Hadron Calorimetry Using the SLAC KPiX Chip

    SciTech Connect

    White, A.; /Texas U., Arlington /Washington U., Seattle /Unlisted /SLAC

    2012-04-12

    The development of Digital Hadron Calorimetry for the SiD detector Concept for the International Linear Collider is described. The jet energy requirements of the ILC physics program are discussed. The concept of GEM-based digital hadron calorimetry is presented, followed by a description of, and results from, prototype detectors. Plans are described for the construction of 1m{sup 2} GEM-DHCAL planes to be tested as part of a future calorimeter stack.

  17. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  18. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    SciTech Connect

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  19. Isothermal calorimetry: impact of measurements error on heat of reaction and kinetic calculations.

    PubMed

    Papadaki, Maria; Nawada, Hosadu P; Gao, Jun; Fergusson-Rees, Andrew; Smith, Michael

    2007-04-11

    Heat flow and power compensation calorimetry measures the power generation of a reaction via an energy balance over an appropriately designed isothermal reactor. However, the measurement of the power generated by a reaction is a relative measurement, and calibrations are used to eliminate the contribution of a number of unknown factors. In this work the effect of the error in the measurement of temperature of electric power used in the calibrations and the heat transfer coefficient and baseline is assessed. It has been shown that the error in all aforementioned quantities reflects on the baseline and it can have a very serious impact on the accuracy of the measurement. The influence of the fluctuation of ambient temperature has been evaluated and a means of a correction that reduces its impact has been implemented. The temperature of dosed material is affected by the heat loses if reaction is performed at high temperature and low dosing rate. An experimental methodology is presented that can provide means of assessment of the actual temperature of the dosed material. Depending on the reacting system, the heat of evaporation could be included in the baseline, especially if non-condensable gases are produced during the course of the reaction. PMID:16919873

  20. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Stoliarov, Stanislav I.; Denlinger, Matthew; Masias, Alvaro; Snyder, Kent

    2015-04-01

    A lithium ion battery (LIB) subjected to external heat may fail irreversibly. Manifestations of this failure include venting of potentially combustible gases and aerosols followed by a rapid self-heating accompanied by ejection of the battery materials. It is important to be able to quantify the dynamics and energetics of this process to ensure safety of the energy storage systems utilizing LIBs. Here we report on development of a new experimental technique for the measurement of energetics of a thermally-induced battery failure. This technique, Copper Slug Battery Calorimetry (CSBC), was employed to investigate a widely utilized LIB of 2200 mAh capacity at various states of charge (SOC). It was shown that this techniques yields time and temperature resolved data on the rate of heat production inside the failing battery. The total energy generated inside the battery was found to increase with increasing SOC to the maximum value of 34.0 ± 1.8 kJ. To capture the energetics of flaming combustion of the materials ejected from the battery, CSBC was coupled with a cone calorimeter, which measures heat released in a non-premixed flame. The maximum amount of energy released by the battery through flaming combustion of ejected materials was found to be 97.5 ± 12.4 kJ.

  1. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  2. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  3. ION ACCELERATOR

    DOEpatents

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  4. Digital holographic interferometry: A novel optical calorimetry technique for radiation dosimetry

    SciTech Connect

    Cavan, Alicia; Meyer, Juergen

    2014-02-15

    Purpose: To develop and demonstrate the proof-of-principle of a novel optical calorimetry method to determine radiation absorbed dose in a transparent medium. Methods: The calorimetric property of water is measured during irradiation by means of an interferometer, which detects temperature-induced changes in the refractive index that can be mathematically related to absorbed dose. The proposed method uses a technique called digital holographic interferometry (DHI), which comprises an optical laser interferometer setup and consecutive physical reconstruction of the recorded wave fronts by means of the Fresnel transform. This paper describes the conceptual framework and provides the mathematical basis for DHI dosimetry. Dose distributions from a high dose rate Brachytherapy source were measured by a prototype optical setup to demonstrate the feasibility of the approach. Results: The developed DHI dosimeter successfully determined absorbed dose distributions in water in the region adjacent to a high dose rate Brachytherapy source. A temperature change of 0.0381 K across a distance of 6.8 mm near the source was measured, corresponding to a dose of 159.3 Gy. The standard deviation in a typical measurement set was ±3.45 Gy (corresponding to an uncertainty in the temperature value of ±8.3 × 10{sup −4} K). The relative dose fall off was in agreement with treatment planning system modeled data. Conclusions: First results with a prototype optical setup and a Brachytherapy source demonstrate the proof-of-principle of the approach. The prototype achieves high spatial resolution of approximately 3 × 10{sup −5} m. The general approach is fundamentally independent of the radiation type and energy. The sensitivity range determined indicates that the method is predominantly suitable for high dose rate applications. Further work is required to determine absolute dose in all three dimensions.

  5. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  6. Biological Manipulation of Migration Rate: The Use of Advanced Photoperiod to Accelerate Smoltification in Yearling Chinook Salmon, Annual Report of Research 1990.

    SciTech Connect

    Muir, William D.

    1992-06-01

    Research was conducted during 1990 to assess the feasibility of biologically manipulating physiological development and migratory behavior of yearling spring chinook salmon, Oncorhynchus tshawytscha. At Dworshak National Fish Hatchery, one treatment group was exposed to a 3-month advanced photoperiod schedule for 13 weeks preceding release to accelerate smolt development. Another group was exposed to the same advanced photoperiod schedule, but additionally was reared at an elevated water temperature (11.9{degrees}C) for 10 days prior to release. At Leavenworth National Fish Hatchery, a treatment group was exposed to a 3-month advanced photoperiod schedule for 17 weeks. Gill Na{sup +}-K{sup +}ATPase development and migratory performance were described for all groups. The treated fish which were the most physiologically advanced at release were detected in the highest proportions at collector dams and also migrated fastest downstream--similar to results obtained in 1988 and 1989.

  7. Classifying fractionated electrograms in human atrial fibrillation using monophasic action potentials and activation mapping: Evidence for localized drivers, rate acceleration, and nonlocal signal etiologies

    PubMed Central

    Narayan, Sanjiv M.; Wright, Matthew; Derval, Nicolas; Jadidi, Amir; Forclaz, Andrei; Nault, Isabelle; Miyazaki, Shinsuke; Sacher, Frédéric; Bordachar, Pierre; Clémenty, Jacques; Jaïs, Pierre; Haïssaguerre, Michel; Hocini, Mélèze

    2011-01-01

    BACKGROUND Complex fractionated electrograms (CFAEs) detected during substrate mapping for atrial fibrillation (AF) reflect etiologies that are difficult to separate. Without knowledge of local refractoriness and activation sequence, CFAEs may represent rapid localized activity, disorganized wave collisions, or far-field electrograms. OBJECTIVE The purpose of this study was to separate CFAE types in human AF, using monophasic action potentials (MAPs) to map local refractoriness in AF and multipolar catheters to map activation sequence. METHODS MAP and adjacent activation sequences at 124 biatrial sites were studied in 18 patients prior to AF ablation (age 57 ± 13 years, left atrial diameter 45 ± 8 mm). AF cycle length, bipolar voltage, and spectral dominant frequency were measured to characterize types of CFAE. RESULTS CFAE were observed at 91 sites, most of which showed discrete MAPs and (1) pansystolic local activity (8%); (2) CFAE after AF acceleration, often with MAP alternans (8%); or (3) nonlocal (far-field) signals (67%). A fourth CFAE pattern lacked discrete MAPs (17%), consistent with spatial disorganization. CFAE with discrete MAPs and pansystolic activation (consistent with rapid localized AF sites) had shorter cycle length (P <.05) and lower voltage (P <.05) and trended to have higher dominant frequency than other CFAE sites. Many CFAEs, particularly at the septa and coronary sinus, represented far-field signals. CONCLUSION CFAEs in human AF represent distinct functional types that may be separated using MAPs and activation sequence. In a minority of cases, CFAEs indicate localized rapid AF sites. The majority of CFAEs reflect far-field signals, AF acceleration, or disorganization. These results may help to interpret CFAE during AF substrate mapping. PMID:20955820

  8. Determination of Volatility of Ionic Liquids at the Nanoscale by means of Ultra-Fast Scanning Calorimetry - the Method

    NASA Astrophysics Data System (ADS)

    Ahrenberg, Mathias; Beck, Martin; Schmidt, Christin; Verevkin, Sergey P.; Kessler, Olaf; Kragl, Udo; Schick, Christoph

    2015-03-01

    We present a new method for the determination of the vapour pressure of low volatile compounds using differential fast scanning calorimetry. We have developed and proven this method using the ionic liquids [EMIm][NTf2] and [EMIm][NO3] at temperatures up to 750 K and in different atmospheres to distinguish between decomposition and evaporation1. It was demonstrated that evaporation is still the dominating process of mass loss even at temperatures 100 K above the onset of decomposition as measured with common techniques, e.g TGA. Since the method allows very high heating rates (up to 106 K/s)2, much higher temperatures can be reached in the measurement of the vapour pressure as compared to common devices without significant decomposition of the ionic liquid. Furthermore, this method represents an improvement of the boiling point estimation of ILs due to the large accessible temperature range of mass loss rate determination.

  9. The DREAM project—Towards the ultimate in calorimetry

    NASA Astrophysics Data System (ADS)

    Wigmans, Richard

    2010-05-01

    High-precision jet spectroscopy will be increasingly important in future high-energy accelerator experiments, particularly at a linear e+e- collider. The dual-readout technique makes it possible to meet and exceed the requirements on calorimeter performance in experiments at such a collider. The DREAM Collaboration is exploring the limits of the possibilities offered by this technique, by systematically eliminating the limiting factors, one after the other. Powerful tools in this context are the simultaneous measurement of scintillation light and Cherenkov light generated in the shower development process, and a detailed measurement of the time structure of the signals. In this talk, the latest results of this generic detector R&D project are presented. In particular, I report on the first tests of a hybrid dual-readout calorimeter system, in which a BGO crystal matrix served as the electromagnetic section.

  10. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Perichon, N.; Rapp, B.; Denoziere, M.; Daures, J.; Ostrowsky, A.; Bordy, J.-M.

    2013-05-01

    Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.

  11. Experimental test accelerator (ETA) II

    SciTech Connect

    Fessenden, T.J.; Atchison, W.L.; Birx, D.L.

    1981-03-06

    The Experimental Test Accelerator (ETA) is designed to produce a 10 kAmp electron beam at an energy of 4.5 MeV in 40 nsec pulses at an average rate of 2 pps. The accelerator also operates in bursts of 5 pulses spaced by as little as one millisec at an average rate of 5 pps. The machine is currently operating near 80% of its design values and has accumulated over 2.5 million pulses - mostly at a rate of one pps. The plasma cathode electron source, the remainder of the accelerator, and the operating characteristics of the machine are discussed.

  12. Accelerator on a Chip: How It Works

    SciTech Connect

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  13. Accelerator on a Chip: How It Works

    ScienceCinema

    None

    2014-07-16

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  14. Can reading rate acceleration improve error monitoring and cognitive abilities underlying reading in adolescents with reading difficulties and in typical readers?

    PubMed

    Horowitz-Kraus, Tzipi; Breznitz, Zvia

    2014-01-28

    Dyslexia is characterized by slow, inaccurate reading and by deficits in executive functions. The deficit in reading is exemplified by impaired error monitoring, which can be specifically shown through neuroimaging, in changes in Error-/Correct-related negativities (ERN/CRN). The current study aimed to investigate whether a reading intervention program (Reading Acceleration Program, or RAP) could improve overall reading, as well as error monitoring and other cognitive abilities underlying reading, in adolescents with reading difficulties. Participants with reading difficulties and typical readers were trained with the RAP for 8 weeks. Their reading and error monitoring were characterized both behaviorally and electrophysiologically through a lexical decision task. Behaviorally, the reading training improved "contextual reading speed" and decreased reading errors in both groups. Improvements were also seen in speed of processing, memory and visual screening. Electrophysiologically, ERN increased in both groups following training, but the increase was significantly greater in the participants with reading difficulties. Furthermore, an association between the improvement in reading speed and the change in difference between ERN and CRN amplitudes following training was seen in participants with reading difficulties. These results indicate that improving deficits in error monitoring and speed of processing are possible underlying mechanisms of the RAP intervention. We suggest that ERN is a good candidate for use as a measurement in evaluating the effect of reading training in typical and disabled readers. PMID:24316242

  15. Thomas Edison Accelerated Elementary School.

    ERIC Educational Resources Information Center

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  16. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    PubMed

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. PMID:23501718

  17. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: A kinetic approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K.; Mukherjee, Kakali; Saha, Bidyut

    2013-05-01

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  18. Indirect calorimetry in critically ill patients: role of the clinical dietitian in interpreting results.

    PubMed

    Porter, C; Cohen, N H

    1996-01-01

    Evaluation and interpretation of energy needs of critically ill patients require the expertise of clinical dietitians: Dietitians must be knowledgeable about the methods available to quantify energy needs and able to communicate effectively with physicians and nurses regarding nutritional requirements. Several prediction equations are available for calculating energy needs of critically ill patients. Indirect calorimetry is also used frequently to measure energy requirements in this patient population. This article defines when energy expenditure measured by indirect calorimetry may provide clinically useful information. Data obtained by indirect calorimetry must be interpreted carefully. Indirect calorimetry is based on the equations for oxidation of carbohydrate, protein, and fat. Errors in interpretation can be made when metabolic pathways other than oxidation dominate or when clinical conditions exist that affect carbon dioxide excretion from the lungs. Before incorporating data obtained from indirect calorimetry into a nutrition care plan, the clinical dietitian should carefully evaluate the following factors for a patient: clinical conditions when the measurement was made, desired weight loss or gain, tolerance to food or nutrition support, relationship between protein intake and energy need, and need for anabolism or growth. This article provides clinical examples illustrating how measured values compare with calculated values and recommendations for how to incorporate measured values into nutrition care plans. PMID:8537570

  19. Acceleration Studies

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.

    1993-01-01

    Work to support the NASA MSFC Acceleration Characterization and Analysis Project (ACAP) was performed. Four tasks (analysis development, analysis research, analysis documentation, and acceleration analysis) were addressed by parallel projects. Work concentrated on preparation for and implementation of near real-time SAMS data analysis during the USMP-1 mission. User support documents and case specific software documentation and tutorials were developed. Information and results were presented to microgravity users. ACAP computer facilities need to be fully implemented and networked, data resources must be cataloged and accessible, future microgravity missions must be coordinated, and continued Orbiter characterization is necessary.

  20. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  1. Black carbon quantification in charcoal-enriched soils by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Leifeld, Jens

    2015-04-01

    Black carbon (BC), the solid residue of the incomplete combustion of biomass and fossil fuels, is ubiquitous in soil and sediments, fulfilling several environmental services such as long-term carbon storage. BC is a particularly important terrestrial carbon pool due to its large residence time compared to thermally unaltered organic matter, which is largely attributed to its aromatic structure. However, BC refers to a wide range of pyrogenic products from partly charred biomass to highly condensed soot, with a degree of aromaticity and aromatic condensation varying to a large extend across the BC continuum. As a result, BC quantification largely depends on operational definitions, with the extraction efficiency of each method varying across the entire BC range. In our study, we investigated the adequacy of differential scanning calorimetry (DSC) for the quantification of BC in charcoal-enriched soils collected in the topsoil of pre-industrial charcoal kilns in forest and cropland of Wallonia, Belgium, where charcoal residues are mixed to uncharred soil organic matter (SOM). We compared the results to the fraction of the total organic carbon (TOC) resisting to K2Cr2O7 oxidation, another simple method often used for BC measurement. In our soils, DSC clearly discriminates SOM from chars. SOM is less thermally stable than charcoal and shows a peak maximum around 295°C. In forest and agricultural charcoal-enriched soils, three peaks were attributed to the thermal degradation of BC at 395, 458 and 523°C and 367, 420 and 502 °C, respectively. In cropland, the amount of BC calculated from the DSC peaks is closely related (slope of the linear regression = 0.985, R²=0.914) to the extra organic carbon content measured at charcoal kiln sites relative to the charcoal-unaffected adjacent soils, which is a positive indicator of the suitability of DSC for charcoal quantification in soil. The first BC peak, which may correspond to highly degraded charcoal, contributes to a

  2. Direct measurement of electron beam quality conversion factors using water calorimetry

    SciTech Connect

    Renaud, James Seuntjens, Jan; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  3. Plasma accelerator

    DOEpatents

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  4. Accelerated Achievement

    ERIC Educational Resources Information Center

    Ford, William J.

    2010-01-01

    This article focuses on the accelerated associate degree program at Ivy Tech Community College (Indiana) in which low-income students will receive an associate degree in one year. The three-year pilot program is funded by a $2.3 million grant from the Lumina Foundation for Education in Indianapolis and a $270,000 grant from the Indiana Commission…

  5. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  6. Particle acceleration

    NASA Technical Reports Server (NTRS)

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  7. Considerations on the design of front-end electronics for silicon calorimetry for the SSC (Superconducting Super Collider)

    SciTech Connect

    Wintenberg, A.L.; Bauer, M.L.; Britton, C.L. Jr.; Kennedy, E.J.; Todd, R.A. ); Berridge, S.C.; Bugg, W.M. )

    1990-01-01

    Some considerations are described for the design of a silicon-based sampling calorimetry detector for the Superconducting Super Collider (SSC). The use of silicon as the detection medium allows fast, accurate, and fine-grained energy measurements -- but for optimal performance, the front-end electronics must be matched to the detector characteristics and have the speed required by the high SSC interaction rates. The relation between the signal-to-noise ratio of the calorimeter electronics and the charge collection time, the preamplifier power dissipation, detector capacitance and leakage, charge gain, and signal shaping and sampling was studied. The electrostatic transformer connection was analyzed and found to be unusable for a tightly arranged calorimeter because of stray capacitance effects. The method of deconvolutional sampling was developed as a means for pileup correction following synchronous sampling and analog storage. 3 refs., 6 figs.

  8. Molecular mobility studies on the amorphous state of disaccharides. I-thermally stimulated currents and differential scanning calorimetry.

    PubMed

    Pinto, Susana S; Diogo, Hermínio P; Nunes, Teresa G; Moura Ramos, Joaquim J

    2010-08-16

    The relaxational processes in amorphous solid gentiobiose and cellobiose are studied by thermally stimulated depolarization currents (TSDC) in the temperature region from 108K up to 423K. The slow molecular mobility was characterized in the crystal and in the glassy state. The features of different motional components of the secondary relaxation have been monitored as a function of time as the glass structurally relaxes on aging. It is concluded that some modes of motion of this mobility are aging independent, while others are affected by aging. The value of the steepness index or fragility (T(g)-normalized temperature dependence of the relaxation time) was obtained by differential scanning calorimetry (DSC) from the analysis of the scanning rate dependency of T(g). PMID:20591418

  9. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  10. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  11. Body Acceleration as Indicator for Walking Economy in an Ageing Population

    PubMed Central

    Valenti, Giulio; Bonomi, Alberto G.; Westerterp, Klaas R.

    2015-01-01

    Background In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. Methods 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. Results On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). Conclusions The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane. PMID:26512982

  12. Cosmic Plasma Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Tajima, Toshiki; Takahashi, Yoshiyuki

    2002-10-01

    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f([epsilon]) [is proportional to] 1/[epsilon]2. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations. [copyright] 2002 American Institute of Physics

  13. Substituent Effects on Electrophilic Catalysis by the Carbonyl Group: Anatomy of the Rate Acceleration for PLP-Catalyzed Deprotonation of Glycine

    PubMed Central

    Crugeiras, Juan; Rios, Ana; Riveiros, Enrique; Richard, John P.

    2011-01-01

    First-order rate constants, determined by 1H NMR, are reported for deuterium exchange between solvent D2O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with 1H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants kDO for deprotonation of α-imino carbon by DO−. The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log kOL and pKa was made in estimating the following pKas for deprotonation of α-imino carbon: pKa = 22, glycine–acetone iminium ion; pKa = 27, glycine–benzaldehyde imine; pKa ≈ 23, glycine–benzaldehyde iminium ion; and, pKa = 25, glycine–salicylaldehyde iminium ion. The much lower pKa of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013–3021] for carbon deprotonation of the adduct between 5′-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α–pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O− ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analog. The extraordinary activity of DPL in catalysis of deprotonation of α–amino carbon results from the summation of these three smaller effects. PMID:21323335

  14. Bounds on halo-particle interactions from interstellar calorimetry

    NASA Technical Reports Server (NTRS)

    Chivukula, Sekhar R.; Cohen, Andrew G.; Dimopoulos, Savas; Walker, Terry P.

    1990-01-01

    It is shown that the existence of neutral interstellar clouds constrains the interaction of any particulate dark-matter candidate with atomic hydrogen to be quite small. Even for a halo particle of mass 1 PeV (10 to the 6 GeV), it is shown that the cross section with hydrogen must be smaller than the typical atomic cross section that is expected for a positively charged particle bound to an electron. The argument presented is that if the clouds are in equilibrium, then the rate at which energy is deposited by collisions with dark-matter particles must be smaller than the rate at which the cloud can cool. This argument is used to constrain the interaction cross section of dark matter with hydrogen. Remarks are made on the general viability of charged dark matter. Comments are also made on a bound which derives from the dynamical stability of the halo.

  15. THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.; Quataert, Eliot

    2010-07-01

    The far-infrared (FIR) and radio luminosities of star-forming galaxies are linearly correlated over a very wide range in star formation rate, from normal spirals like the Milky Way to the most intense starbursts. Using one-zone models of cosmic ray (CR) injection, cooling, and escape in star-forming galaxies, we attempt to reproduce the observed FIR-radio correlation (FRC) over its entire span. The normalization and linearity of the FRC, together with constraints on the CR population in the Milky Way, have strong implications for the CR and magnetic energy densities in star-forming galaxies. We show that for consistency with the FRC, {approx}2% of the kinetic energy from supernova explosions must go into high-energy primary CR electrons and that {approx}10%-20% must go into high-energy primary CR protons. Secondary electrons and positrons are likely comparable to or dominate primary electrons in dense starburst galaxies. We discuss the implications of our models for the magnetic field strengths of starbursts, the detectability of starbursts by Fermi, and CR feedback. Overall, our models indicate that both CR protons and electrons escape from low surface density galaxies, but lose most of their energy before escaping dense starbursts. The FRC is caused by a combination of the efficient cooling of CR electrons (calorimetry) in starbursts and a conspiracy of several factors. For lower surface density galaxies, the decreasing radio emission caused by CR escape is balanced by the decreasing FIR emission caused by the low effective UV dust opacity. In starbursts, bremsstrahlung, ionization, and inverse Compton cooling decrease the radio emission, but they are countered by secondary electrons/positrons and the dependence of synchrotron frequency on energy, both of which increase the radio emission. Our conclusions hold for a broad range of variations in our fiducial model, such as those including winds, different magnetic field strengths, and different diffusive escape

  16. Control of continuous polyhydroxybutyrate synthesis using calorimetry and flow cytometry.

    PubMed

    Maskow, Thomas; Müller, Susann; Lösche, Andreas; Harms, Hauke; Kemp, Richard

    2006-02-20

    The substrate-carbon flow can be controlled in continuous bioreactor cultures by the medium composition, for example, by the C/N ratio. The carbon distribution is optimal when a maximum fraction flows into the desired product and the residual is just sufficient to compensate for the dilution of the microbial catalyst. Undershooting of the latter condition is reflected immediately by changes in the Gibbs energy dissipation and cellular states. Two calorimetric measurement principles were applied to optimize the continuous synthesis of polyhydroxybutyrate (PHB) by Variovorax paradoxus DSM4065 during growth with constantly increasing supply rates of fructose or toxic phenol. Firstly, the changed slope of the heat production rate in a complete heat balanced bioreactor (CHB) indicated optimum carbon channeling into PHB. The extent of the alteration depended directly on the toxic properties of the substrate. Secondly, a flow through calorimeter was connected with the bioreactor as a "measurement loop." The optimum substrate carbon distribution was indicated by a sudden change in the heat production rate independent of substrate toxicity. The sudden change was explained mathematically and exploited for the long-term control of phenol conversion into PHB. LASER flow cytometry measurements distinguished between subpopulations with completely different PHB-content. Populations grown on fructose preserved a constant ratio of two subpopulations with double and quadruple sets of DNA. Cells grown on phenol comprised a third subpopulation with a single DNA set. Rising phenol concentrations caused this subpopulation to increase. It may thus be considered as an indicator of chemostress. PMID:16245347

  17. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    PubMed Central

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  18. Thermodynamic properties of diosgenin determined by oxygen-bomb calorimetry and DSC

    NASA Astrophysics Data System (ADS)

    Zhao, Ming-Rui; Wang, Hong-Jie; Wang, Shu-Yu; Yue, Xiao-Xin

    2014-12-01

    The combustion enthalpy of diosgenin was determined by oxygen-bomb calorimetry. The standard mole combustion enthalpy and the standard mole formation enthalpy have been calculated to be -16098.68 and -528.52 kJ mol-1, respectively. Fusion enthalpy and melting temperature for diosgenin were also measured to be -34.43 kJ mol-1 and 212.33°C, respectively, according to differential scanning calorimetry (DSC) data. These studies can provide useful thermodynamic data for this compound.

  19. The rates of change of the stochastic trajectories of acceleration variability are a good predictor of normal aging and of the stage of Parkinson's disease

    PubMed Central

    Torres, Elizabeth B.

    2013-01-01

    The accelerometer data from mobile smart phones provide stochastic trajectories that change over time. This rate of change is unique to each person and can be well-characterized by the continuous two-parameter family of Gamma probability distributions. Accordingly, on the Gamma plane each participant can be uniquely localized by the shape and the scale parameters of the Gamma probability distribution. The scatter of such points contains information that can unambiguously separate the normal controls (NC) from those patients with Parkinson's disease (PD) that are at a later stage of the disease. In general normal aging seems conducive of more predictable patterns of variation in the accelerometer data. Yet this trend breaks down in PD where the statistical signatures seem to be a more relevant predictor of the stage of the disease. Those patients at a later stage of the disease have more random and noisier patterns than those in the earlier stages, whose statistics resemble those of the older NC. Overall the peak rates of change of the stochastic trajectories of the accelerometer are a good predictor of the stage of PD and of the age of a “normally” aging individual. PMID:23882193

  20. A high-fat diet containing lard accelerates prostate cancer progression and reduces survival rate in mice: possible contribution of adipose tissue-derived cytokines.

    PubMed

    Cho, Han Jin; Kwon, Gyoo Taik; Park, Heesook; Song, Hyerim; Lee, Ki Won; Kim, Jung-In; Park, Jung Han Yoon

    2015-04-01

    To examine the effects of high-fat diet (HFD) containing lard on prostate cancer development and progression and its underlying mechanisms, transgenic adenocarcinoma mouse prostate (TRAMP) and TRAMP-C2 allograft models, as well as in vitro culture models, were employed. In TRAMP mice, HFD feeding increased the incidence of poorly differentiated carcinoma and decreased that of prostatic intraepithelial neoplasia in the dorsolateral lobes of the prostate, which was accompanied by increased expression of proteins associated with proliferation and angiogenesis. HFD feeding also led to increased metastasis and decreased survival rate in TRAMP mice. In the allograft model, HFD increased solid tumor growth, the expression of proteins related to proliferation/angiogenesis, the number of lipid vacuoles in tumor tissues, and levels of several cytokines in serum and adipose tissue. In vitro results revealed that adipose tissue-conditioned media from HFD-fed mice stimulated the proliferation and migration of prostate cancer cells and angiogenesis compared to those from control-diet-fed mice. These results indicate that the increase of adipose tissue-derived soluble factors by HFD feeding plays a role in the growth and metastasis of prostate cancer via endocrine and paracrine mechanisms. These results provide evidence that a HFD containing lard increases prostate cancer development and progression, thereby reducing the survival rate. PMID:25912035

  1. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  2. Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

    DOE PAGESBeta

    Thomas, John

    2016-04-05

    A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years (MY) 2016 through 2025 passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the needed rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the MY 2004 USmore » light-duty vehicle fleet to the MY 2014 fleet shows improved fuel economy (FE) of approximately 28% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of needed vehicle rate-of-change. A set of 40 same-model vehicle pairs for MY 2005 and MY 2015 is compared to examine changes in energy use and related technological change over the 10 year period. Powertrain improvements measured as increased vehicle efficiency, and vehicle mass-glider improvements measured as decreased tractive work requirements are quantified. The focus is first on conventional gasoline powertrain vehicles which currently dominate the market, with hybrids also examined due to their high potential importance for CAFE compliance. Most hybrid vehicles with significant sales in 2014 were represented in the study. Results show 10 years of progress for the studied vehicle set includes lowered tractive effort of about 5.6% and improved powertrain efficiency of about 16.5%. Further analysis shows that this high rate of past progress must increase by about 50% in order to meet the 2025 CAFE standards. Examination of where certain MY 2015 vehicle compare to CAFE regulations is offered as well as some simple conjecture on what is needed to meet regulations under

  3. Stochastic modeling of Lagrangian accelerations

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  4. Heart rate and pulmonary function while wearing the launch-entry crew escape suit (LES) during + Gx acceleration and simulated Shuttle launch

    NASA Technical Reports Server (NTRS)

    Krutz, Robert W., Jr.; Bagian, James P.; Burton, Russell R.; Meeker, Larry J.

    1990-01-01

    Space shuttle crewmembers have been equipped with a launch-entry crew escape system (LES) since the Challenger accident in 1986. Some crewmembers, wearing the new pressure suit, have reported breathing difficulties and increased effort to achieve the desired range of motion. This study was conducted to quantify the reported increased physical workloads and breathing difficulty associated with wearing the LES. Both veteran astronauts and centrifuge panel members were exposed to various + Gx profiles (including simulated shuttle launch) + Gx on the USAF School of Aerospace Medicine (USAFSAM) human-use centrifuge. Maximum heart rate data showed no increased workload associated with arm and head movement in the LES when compared to the flight suit/helmet ensemble (LEH). However, the LES did impose a significant increase in breathing difficulty beginning at +2.5 Gx which was demonstrated by a decrease in forced vital capacity and subjected questionnaries.

  5. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  6. Direct correlation of structure changes and thermal events in hydrated lipid established by simultaneous calorimetry and time-resolved x-ray diffraction.

    PubMed Central

    Chung, H; Caffrey, M

    1992-01-01

    In many lipid systems, polymorphic and mesomorphic behavior depends on sample thermal history. To establish unequivocally the structural origin of endothermic and exothermic events in such systems, we have performed simultaneous calorimetry and time-resolved x-ray diffraction (SCALTRD). To this end, aluminum calorimetry crucibles were used to contain the hydrated lipid sample, and the calorimeter was mounted with the base of the crucible oriented perpendicular to a synchrotron-derived focused monochromatic x-ray beam for SCALTRD data collection. Measurements were made with hydrated monoelaidin and 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) contained in hermetically sealed crucibles. Time-resolved x-ray diffraction (TRXRD) data were collected using an x-ray image intensifier/video system and a streak camera containing an x-ray sensitive image plate and/or film. SCALTRD analysis of the lamellar gel to lamellar liquid crystalline phase transition in hydrated monoelaidin gives identical progress curves by calorimetry and TRXRD at a scan rate of 1 degree C/min. At faster rates, calorimetry shows a broader phase transition that starts at a lower and ends at a higher temperature than is observed by TRXRD. The disparity arises in part because the x-ray beam used in TRXRD interrogates only a small portion of the sample, whereas the calorimeter responds to the entire sample volume. Because data collection times are relatively long, radiation damage is an important potential problem for SCALTRD measurements. Such an effect was observed with DEPE/water in that TRXRD shows the lamellar gel to lamellar liquid crystalline phase transition occurring at a lower temperature than observed by calorimetry. We speculate that the sample accumulates impurities locally as a result of radiation damage that has the effect of lowering the phase transition temperature at the site of interrogation by the x-ray beam. This "methods-in-combination" SCALTRD approach facilitates the

  7. BICEP's acceleration

    SciTech Connect

    Contaldi, Carlo R.

    2014-10-01

    The recent Bicep2 [1] detection of, what is claimed to be primordial B-modes, opens up the possibility of constraining not only the energy scale of inflation but also the detailed acceleration history that occurred during inflation. In turn this can be used to determine the shape of the inflaton potential V(φ) for the first time — if a single, scalar inflaton is assumed to be driving the acceleration. We carry out a Monte Carlo exploration of inflationary trajectories given the current data. Using this method we obtain a posterior distribution of possible acceleration profiles ε(N) as a function of e-fold N and derived posterior distributions of the primordial power spectrum P(k) and potential V(φ). We find that the Bicep2 result, in combination with Planck measurements of total intensity Cosmic Microwave Background (CMB) anisotropies, induces a significant feature in the scalar primordial spectrum at scales k∼ 10{sup -3} Mpc {sup -1}. This is in agreement with a previous detection of a suppression in the scalar power [2].

  8. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals.

    PubMed

    Fullmer, Susan; Benson-Davies, Sue; Earthman, Carrie P; Frankenfield, David C; Gradwell, Erica; Lee, Peggy S P; Piemonte, Tami; Trabulsi, Jillian

    2015-09-01

    When measurement of resting metabolic rate (RMR) by indirect calorimetry is necessary, following evidence-based protocols will ensure the individual has achieved a resting state. The purpose of this project was to update the best practices for measuring RMR by indirect calorimetry in healthy and non-critically ill adults and children found the Evidence Analysis Library of the Academy of Nutrition and Dietetics. The Evidence Analysis process described by the Academy of Nutrition and Dietetics was followed. The Ovid database was searched for papers published between 2003 and 2012 using key words identified by the work group and research consultants, studies used in the previous project were also considered (1980 to 2003), and references were hand searched. The work group worked in pairs to assign papers to specific questions; however, the work group developed evidence summaries, conclusion statements, and recommendations as a group. Only 43 papers were included to answer 21 questions about the best practices to ensure an individual is at rest when measuring RMR in the non-critically ill population. In summary, subjects should be fasted for at least 7 hours and rest for 30 minutes in a thermoneutral, quiet, and dimly lit room in the supine position before the test, without doing any activities, including fidgeting, reading, or listening to music. RMR can be measured at any time of the day as long as resting conditions are met. The duration of the effects of nicotine and caffeine and other stimulants is unknown, but lasts longer than 140 minutes and 240 minutes, respectively. The duration of the effects of various types of exercise on RMR is unknown. Recommendations for achieving steady state, preferred gas-collection devices, and use of respiratory quotient to detect measurement errors are also given. Of the 21 conclusions statements developed in this systemic review, only 5 received a grade I or II. One limitation is the low number of studies available to address the

  9. Mathematical analysis for radiometric calorimetry of a radiating sphere

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1982-01-01

    Equations are derived from which the temperature dependence of both the specific heat and the thermal diffusivity of a spherical sample of material can be calculated from observations of the time dependence of the surface temperature and the time-rate of energy loss from the sample as it cools. The derivation takes into account the nonuniformity of the interior temperature field of the sample, and the resulting equations can be applied not only to radiative cooling, but also to any other cooling mechanism that does not violate the assumed spherical symmetry. The analysis excludes change of phase, but it does take thermal expansion into account. To permit the making of estimates necessary for the design of radiative cooling experiments, a universal temperature-time cooling curve is derived for the post-transient cooling regime of a radiating sphere of any size with arbitrary, but constant, thermal parameters.

  10. Critical mechanical structure of superconducting high current coils for fast ramped accelerator magnets with high repetition rates in long term operation

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Schnizer, P.; Weiss, K.; Nyilas, A.; Mierau, A.; Sikler, G.

    2010-06-01

    The heavy ion synchrotron SIS100 is the core component of the Facility for Antiproton and Ion Research (FAIR) currently under construction at GSI in Darmstadt. It is rapidly cycled with a ramp rate of 4 T/s up to 2 T maximum field and a repetition frequency of 1 Hz. The superconducting coils of the Nuclotron-type magnets utilise a hollow cable cooled with a forced two phase helium flow. These coils must operate reliably over a period of at least 20 years and thus survive 2 · 10 load cycles. Intensive R&D is necessary to find the optimal solution preventing any possible damage of the coils by the fast pulsing loads over the life time taking into account the complex fine structure of the cable and coil designs as well as its sensitive influence on the field quality, AC loss generation and quench protection. We used FEM codes to analyse critical aspects of various design options and had manufactured coils for detailed mechanical tests. These tests on samples extracted from the coil are: thermal expansion measurements in all three directions on the cable package itself and its composite elements, compression tests and investigation of the Inter Laminar Shear Stress (ILSS). The stress strain behaviour of the cable package was measured along the transversal direction; the most important one to sustain the cycling load by Lorentz forces. A second sample was fatigue tested. Successful integral operation test results for the coil mechanics have been obtained within our first experimental runs on the prototype dipole magnets already started at GSI in the end of 2008.

  11. Levitation calorimetry. IV - The thermodynamic properties of liquid cobalt and palladium.

    NASA Technical Reports Server (NTRS)

    Treverton, J. A.; Margrave, J. L.

    1971-01-01

    Some of the thermodynamic properties of liquid cobalt and palladium investigated by means of levitation calorimetry are reported and discussed. The presented data include the specific heats and heats of fusion of the liquid metals, and the emissivities of the liquid metal surfaces.

  12. Protein Unfolding Coupled to Ligand Binding: Differential Scanning Calorimetry Simulation Approach

    ERIC Educational Resources Information Center

    Celej, Maria Soledad; Fidelio, Gerardo Daniel; Dassie, Sergio Alberto

    2005-01-01

    A comprehensive theoretical description of thermal protein unfolding coupled to ligand binding is presented. The thermodynamic concepts are independent of the method used to monitor protein unfolding but a differential scanning calorimetry is being used as a tool for examining the unfolding process.

  13. Time profile analysis of photodetector signals in multi read-out calorimetry with GHz samplers

    NASA Astrophysics Data System (ADS)

    Bedeschi, F.; Bitossi, M.; Carosi, R.; Incagli, M.; Pegna, R.; Scuri, F.

    2009-04-01

    We present possible applications of DAQ systems based on Domino Ring Samplers (DRS) for time profile analysis of photodetector signals used for present and future multiple read-out calorimeters. The example of an 80-channel system in preparation for dual read-out calorimetry (DREAM) is described.

  14. Monolithic front-end preamplifiers for a broad range of calorimetry applications

    SciTech Connect

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V. |

    1993-12-31

    The present paper summarizes the salient results of a research and development activity in the area of low noise preamplifiers for different applications in calorimetry. Design target for all circuits considered here are low noise, ability to cope with broad energy ranges and radiation hardness.

  15. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery

    SciTech Connect

    Sarfehnia, A.; Clasie, B.; Chung, E.; Lu, H. M.; Flanz, J.; Cascio, E.; Engelsman, M.; Paganetti, H.; Seuntjens, J.

    2010-07-15

    Purpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard. Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR {sup 192}Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility. The correction factors in water calorimetry were numerically calculated and various parameters affecting their magnitude and uncertainty were studied. The absorbed dose to water was compared to that obtained using an Exradin T1 Chamber based on the IAEA TRS-398 protocol. Results: The overall 1-sigma uncertainty on absorbed dose to water amounts to 0.4% and 0.6% in scattered and scanned proton water calorimetry, respectively. This compares to an overall uncertainty of 1.9% for currently accepted IAEA TRS-398 reference absorbed dose measurement protocol. The absorbed dose from water calorimetry agrees with the results from TRS-398 well to within 1-sigma uncertainty. Conclusions: This work demonstrates that a primary absorbed dose standard based on water calorimetry is feasible in scattered and scanned proton beams.

  16. Calorimetry exchange program quarterly data report for, January 1989--March 1989

    SciTech Connect

    Lyons, J.E.; McClelland, T.M.

    1996-08-01

    The goals of the calorimetry sample exchange program are to: discuss measurement differences; improve analytical methods; discuss new measurement capabilities; provide data to DOE on measurement capabilities to evaluate shipper-receiver differences; provide standardized materials as necessary; and provide a measurement control program for plutonium analysis. A sample of plutonium dioxide powder is available at each participating site for NDA analysis.

  17. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...

  18. Determination of caloric values of agricultural crops and crop waste by Adiabatic Bomb Calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorific values of agricultural crops and their waste were measured by adiabatic bomb calorimetry. Sustainable farming techniques require that all potential sources of revenue be utilized. A wide variety of biomass is beginning to be used as alternative fuels all over the world. The energy potentia...

  19. Isothermal Titration Calorimetry and Macromolecular Visualization for the Interaction of Lysozyme and Its Inhibitors

    ERIC Educational Resources Information Center

    Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.

    2015-01-01

    To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…

  20. Student Learning of Thermochemical Concepts in the Context of Solution Calorimetry.

    ERIC Educational Resources Information Center

    Greenbowe, Thomas J.; Meltzer, David E.

    2003-01-01

    Analyzes student performance on solution calorimetry problems in an introductory university chemistry class. Includes data from written classroom exams for 207 students and an extensive longitudinal interview with a student. Indicates learning difficulties, most of which appear to originate from failure to understand, that net increases and…

  1. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  2. Accelerators and the Accelerator Community

    SciTech Connect

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  3. Indirect Calorimetry During Ultradistance Running: A Case Report

    PubMed Central

    Dumke, Charles L.; Shooter, Lesli; Lind, Robert H.; Nieman, David C.

    2006-01-01

    The purpose was to determine the energy expenditure during ultradistance trail running. A portable metabolic unit was carried by a male subject for the first 64.5 km portion of the Western States 100 running race. Calibrations were done with known gases and volumes at ambient temperature, humidity and pressure (23-40.5 °C and 16-40% respectively). Altitude averaged 1692.8 ± 210 m during data collection. The male subject (36 yrs, 75 kg, VO2max of 67.0 ml·kg-1·min-1) had an average (mean ± SD) heart rate of 132 ± 9 bpm, oxygen consumption of 34.0 ± 6.8 ml·kg-1·min-1, RER of 0.91 ± 0.04, and VE of 86.0 ± 14.3 L·min-1 during the 21.7 km measuring period. This represented an average of 51% VO2max and 75% heart rate maximum. Energy expenditure was 12.6 ± 2.5 kcals·min-1, or 82.7 ± 16.6 kcals·km-1 (134 ± 27 kcals·mile-1) at 68.3 ± 12.5% carbohydrate. Extrapolation of this data would result in an energy expenditure of >13,000 kcals for the 160 km race, and an exogenous carbohydrate requirement of >250 kcal·hr-1. The energy cost of running for this subject on separate, noncompetitive occasions ranged from 64.9 ± 8.5 to 74.4 ± 5.5 kcals·km-1 (105 ± 14 to 120 ± 9 kcals·mile-1). Ultradistance trail running increases energy expenditure above that of running on nonundulating terrain, which may result in underestimating energy requirements during these events and subsequent undernourishment and suboptimal performance. Key Points The energy cost of running is elevated during ultradistance trail races compared to normal running conditions. This elevated energy cost results in a ~12% increase in energy expenditure for a given distance. Ad libitum energy intake may grossly underestimate the demand of ultradistance running in the conditions investigated in this paper, thus jeopardizing race performance. PMID:24357966

  4. Indirect calorimetry during ultradistance running: a case report.

    PubMed

    Dumke, Charles L; Shooter, Lesli; Lind, Robert H; Nieman, David C

    2006-01-01

    The purpose was to determine the energy expenditure during ultradistance trail running. A portable metabolic unit was carried by a male subject for the first 64.5 km portion of the Western States 100 running race. Calibrations were done with known gases and volumes at ambient temperature, humidity and pressure (23-40.5 °C and 16-40% respectively). Altitude averaged 1692.8 ± 210 m during data collection. The male subject (36 yrs, 75 kg, VO2max of 67.0 ml·kg(-1)·min(-1)) had an average (mean ± SD) heart rate of 132 ± 9 bpm, oxygen consumption of 34.0 ± 6.8 ml·kg(-1)·min(-1), RER of 0.91 ± 0.04, and VE of 86.0 ± 14.3 L·min(-1) during the 21.7 km measuring period. This represented an average of 51% VO2max and 75% heart rate maximum. Energy expenditure was 12.6 ± 2.5 kcals·min(-1), or 82.7 ± 16.6 kcals·km(-1) (134 ± 27 kcals·mile(-1)) at 68.3 ± 12.5% carbohydrate. Extrapolation of this data would result in an energy expenditure of >13,000 kcals for the 160 km race, and an exogenous carbohydrate requirement of >250 kcal·hr(-1). The energy cost of running for this subject on separate, noncompetitive occasions ranged from 64.9 ± 8.5 to 74.4 ± 5.5 kcals·km(-1) (105 ± 14 to 120 ± 9 kcals·mile(-1)). Ultradistance trail running increases energy expenditure above that of running on nonundulating terrain, which may result in underestimating energy requirements during these events and subsequent undernourishment and suboptimal performance. Key PointsThe energy cost of running is elevated during ultradistance trail races compared to normal running conditions.This elevated energy cost results in a ~12% increase in energy expenditure for a given distance.Ad libitum energy intake may grossly underestimate the demand of ultradistance running in the conditions investigated in this paper, thus jeopardizing race performance. PMID:24357966

  5. Development of a water calorimetry-based standard for absorbed dose to water in HDR {sup 192}Ir brachytherapy

    SciTech Connect

    Sarfehnia, Arman; Seuntjens, Jan

    2010-04-15

    Purpose: The aim of this article is to develop and evaluate a primary standard for HDR {sup 192}Ir brachytherapy based on 4 deg. C stagnant water calorimetry. Methods: The absolute absorbed dose to water was directly measured for several different Nucletron microSelectron {sup 192}Ir sources of air kerma strength ranging between 21 000 and 38 000 U and for source-to-detector separations ranging between 25 and 70 mm. The COMSOL MULTIPHYSICS software was used to accurately calculate the heat transport in a detailed model geometry. Through a coupling of the ''conduction and convection'' module with the ''Navier-Stokes incompressible fluid'' module in the software, both the conductive and convective effects were modeled. Results: A detailed uncertainty analysis resulted in an overall uncertainty in the absorbed dose of 1.90%(1{sigma}). However, this includes a 1.5% uncertainty associated with a nonlinear predrift correction which can be substantially reduced if sufficient time is provided for the system to come to a new equilibrium in between successive calorimetric runs, an opportunity not available to the authors in their clinical setting due to time constraints on the machine. An average normalized dose rate of 361{+-}7 {mu}Gy/(h U) at a source-to-detector separation of 55 mm was measured for the microSelectron {sup 192}Ir source based on water calorimetry. The measured absorbed dose per air kerma strength agreed to better than 0.8%(1{sigma}) with independent ionization chamber and EBT-1 Gafchromic film reference dosimetry as well as with the currently accepted AAPM TG-43 protocol measurements. Conclusions: This work paves the way toward a primary absorbed dose to water standard in {sup 192}Ir brachytherapy.

  6. Modulational effects in accelerators

    SciTech Connect

    Satogata, T.

    1997-12-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed.

  7. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  8. The Effect of Dose Rate on Composite Durability When Exposed to a Simulated Long-Term Lunar Radiation Environment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William

    2011-01-01

    Human exploration of space beyond low Earth orbit (LEO) requires a safe living and working environment for crew. Composite materials are one type of material being investigated by NASA as a multi-functional structural approach to habitats for long-term use in space or on planetary surfaces with limited magnetic fields and atmosphere. These materials provide high strength with the potential for decreased weight and increased radiation protection of crew and electronics when compared with conventional aluminum structures. However, these materials have not been evaluated in a harsh radiation environment, as would be experienced outside of LEO or on a planetary surface. Thus, NASA has been investigating the durability of select composite materials in a long-term radiation environment. Previously, NASA exposed composite samples to a simulated, accelerated 30-year radiation treatment and tensile stresses similar to those of a habitat pressure vessel. The results showed evidence of potential surface oxidation and enhanced cross-linking of the matrix. As a follow-on study, we performed the same accelerated exposure alongside an exposure with a decreased dose rate. The slower dose ]rate is comparable to a realistic scenario, although still accelerated. Strain measurements were collected during exposure and showed that with a fastdose rate, the strain decreased with time, but with a slow ]dose rate, the strain increased with time. After the radiation exposures, samples were characterized via tensile tests, flexure tests, Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). The results of these tests will be discussed.

  9. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry.

    PubMed

    Orava, J; Greer, A L; Gholipour, B; Hewak, D W; Smith, C E

    2012-04-01

    Differential scanning calorimetry (DSC) is widely used to study the stability of amorphous solids, characterizing the kinetics of crystallization close to the glass-transition temperature T(g). We apply ultrafast DSC to the phase-change material Ge(2)Sb(2)Te(5) (GST) and show that if the range of heating rates is extended to more than 10(4) K s(-1), the analysis can cover a wider temperature range, up to the point where the crystal growth rate approaches its maximum. The growth rates that can be characterized are some four orders of magnitude higher than in conventional DSC, reaching values relevant for the application of GST as a data-storage medium. The kinetic coefficient for crystal growth has a strongly non-Arrhenius temperature dependence, revealing that supercooled liquid GST has a high fragility. Near T(g) there is evidence for decoupling of the crystal-growth kinetics from viscous flow, matching the behaviour for a fragile liquid suggested by studies on oxide and organic systems. PMID:22426461

  10. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fleischhammer, Meike; Waldmann, Thomas; Bisle, Gunther; Hogg, Björn-Ingo; Wohlfahrt-Mehrens, Margret

    2015-01-01

    The differences in the safety behaviour between un-aged and aged high-power 18650 lithium-ion cells were investigated at the cell and material level by Accelerating Rate Calorimetry (ARC) and Simultaneous Thermal Analysis (STA). Commercial cells containing a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode, a carbon/graphite anode and a PP/PE/PP trilayer separator were aged by high-rate and low temperature cycling, leading to (i) mechanical deformation of the jelly roll and (ii) lithium plating on the anode. The results show a strong influence of the ageing history on the safety behaviour. While cycling at high current does not have a strong influence on the cell safety, lithium plating leads to a significant increase of heat formation during thermal runaway and thus to a higher hazard of safety.

  11. Methodological evaluation of indirect calorimetry data in lean and obese rats.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1993-11-01

    1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits

  12. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  13. Attention's Accelerator.

    PubMed

    Reinhart, Robert M G; McClenahan, Laura J; Woodman, Geoffrey F

    2016-06-01

    How do people get attention to operate at peak efficiency in high-pressure situations? We tested the hypothesis that the general mechanism that allows this is the maintenance of multiple target representations in working and long-term memory. We recorded subjects' event-related potentials (ERPs) indexing the working memory and long-term memory representations used to control attention while performing visual search. We found that subjects used both types of memories to control attention when they performed the visual search task with a large reward at stake, or when they were cued to respond as fast as possible. However, under normal circumstances, one type of target memory was sufficient for slower task performance. The use of multiple types of memory representations appears to provide converging top-down control of attention, allowing people to step on the attentional accelerator in a variety of high-pressure situations. PMID:27056975

  14. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  15. Superconducting rebalance acceleration and rate sensor

    NASA Technical Reports Server (NTRS)

    Torti, R.; Gerver, M.; Gondhalekar, V.; Maxwell, B.

    1994-01-01

    The goal of this program is the development of a high precision multisensor based on a high T(sub c) superconducting proof mass. The design of a prototype is currently underway. Key technical issues appear resolvable. High temperature superconductors have complicated, hysteretic flux dynamics but the forces on them can be linearly controlled for small displacements. Current data suggests that the forces on the superconductors decay over a short time frame and then stabilize, though very long term data is not available. The hysteretic force characteristics are substantial for large scale excursions, but do not appear to be an issue for the very small displacements required in this device. Sufficient forces can be exerted for non-contact suspension of a centimeter sized proof mass in a vacuum sealed nitrogen jacket cryostat. High frequency capacitive sensing using stripline technology will yield adequate position resolution for 0.1 micro-g measurements at 100 Hz. Overall, a reasonable cost, but very high accuracy, system is feasible with this technology.

  16. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    PubMed

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy. PMID:18196821

  17. An absorbed dose to water standard for HDR {sup 192}Ir brachytherapy sources based on water calorimetry: Numerical and experimental proof-of-principle

    SciTech Connect

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-15

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 ({sup 192}Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR {sup 192}Ir brachytherapy source was simulated using COMSOL MULTIPHYSICSTM software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k{sub c} was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502{+-}0.007) {mu}Gy/(s U) compares well with the TG-43 derived 0.505 {mu}Gy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR {sup 192}Ir brachytherapy.

  18. Thermal characterization of starch-water system by photopyroelectric technique and adiabatic scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Bentefour, E. H.; Jamée, P.; Chirtoc, M.; Glorieux, C.; Pitsi, G.; Thoen, J.

    2003-01-01

    Starch is one of the most important carbohydrate sources in human nutrition. For the thermal analysis of starch, techniques such as differential scanning calorimetry have been extensively used. As an alternative, we have applied a photopyroelectric (PPE) configuration and adiabatic scanning calorimetry (ASC) to study the thermal properties of starch-water systems. For this study we used nixtamalized corn flour and potato starch with different quantities of distilled water, in order to obtain samples with different moisture content. By using PPE and ASC methods we have measured, for each technique separately, the heat capacity by unit volume (ρcp) at room temperature for a corn flour sample at 90% moisture. The obtained values agree within experimental uncertainty. By using these techniques we also studied the thermal behavior of potato starch, at 80% moisture, in the temperature range where phase transitions occur. In this case the PPE signal phase could be used as a sensitive and versatile monitor for phase transitions.

  19. Inherent limitations of fixed-time, servo-controlled radiometric calorimetry

    SciTech Connect

    Wetzel, J.R.; Lemming, J.F.; Duff, M.F.

    1987-01-01

    Interest has been shown in using fixed-time, servo-controlled calorimetry to shorten the measurement times for certain samples that require low precision values (3 to 5%). This type of calorimeter measurement could be particularly useful for screening scrap samples to determine whether there is a need for a more accurate measurement or for certain confirmatory measurements for which low precision numbers are sufficient. The equipment required for this type of measurement is a servo-controlled calorimeter and a preconditioning unit. Samples to be measured are placed in the preconditioning unit, which is maintained at the internal temperature of the calorimeter. The power value for the sample is determined at a fixed time after loading into the calorimeter, for example, 30 min. When a calorimeter is operated using a fixed cutoff time, there are additional sources of uncertainty that need to be considered. The major factors affecting the uncertainty of the calorimetry power values are discussed. 2 refs., 4 figs.

  20. Differential scanning calorimetry investigations on Eu-doped fluorozirconate-based glass ceramics

    PubMed Central

    Paßlick, C.; Ahrens, B.; Henke, B.; Johnson, J. A.; Schweizer, S.

    2010-01-01

    The properties of Eu-doped fluorochlorozirconate (FCZ) glass ceramics upon thermal processing and the influence of Eu-doping on the formation of BaCl2 nanocrystals therein have been investigated. Differential scanning calorimetry indicates that higher Eu-doping shifts the crystallization peak of the nanocrystals in the glass to lower temperatures, while the glass transition temperature remains constant. The activation energy and the thermal stability parameters for the BaCl2 crystallization are determined. PMID:21286235

  1. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  2. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  3. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  4. CALOR2012 XVth International Conference on Calorimetry in High Energy Physics

    SciTech Connect

    Akchurin, Nural .

    2015-05-04

    The International Conferences on Calorimetry in High Energy Physics, or the CALOR series, have always been where the calorimeter experts come together to review the state of calorimetry and bring forth new ideas every two years. The fteenth conference, CALOR2012, in Santa Fe was no exception. Although they were built roughly a decade ago, we are now witnessing the exceptional power of the LHC calorimeters and the crucial role they have been playing in the discovery of the 125 GeV Higgs-like boson. As we ruminate on the coming generation of experiments at the next (linear) collider and on the upgrades at the LHC, we are heartened by the substantial advances we made in calorimetry in the last decade. These advances will certainly help uncover new physics in the years to come, not only at colliders but also in astroparticle experiments that take advantage of natural elements such as air, water, and ice. The proceedings were published by the IOP in Journal of Physics, Vol 404 2011. The conference web site is calor2012.ttu.edu.

  5. Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry.

    PubMed

    Ahrenberg, Mathias; Brinckmann, Marcel; Schmelzer, Jürn W P; Beck, Martin; Schmidt, Christin; Kessler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2014-02-21

    The determination of vaporization enthalpies of extremely low volatility ionic liquids is challenging and time consuming due to the low values of vapor pressure. In addition, these liquids tend to decompose even at temperatures where the vapor pressure is still low. Conventional methods for determination of vaporization enthalpies are thus limited to temperatures below the decomposition temperature. Here we present a new method for the determination of vaporization enthalpies of such liquids using differential fast scanning calorimetry. We have developed and proven this method using [EMIm][NTf2] at temperatures of up to 750 K and in different atmospheres. It was demonstrated that evaporation is still the dominating process of mass loss even at such highly elevated temperatures. In addition, since the method allows very high heating rates (up to 10(5) K s(-1)), much higher temperatures can be reached in the measurement of the mass loss rate as compared to common devices without significant decomposition of the ionic liquid. We discuss the advantages and limits of this new method of vaporization enthalpy determination and compare the results with data obtained from established methods. PMID:24390395

  6. Assessing Mixing Quality of a Copovidone-TPGS Hot Melt Extrusion Process with Atomic Force Microscopy and Differential Scanning Calorimetry.

    PubMed

    Lamm, Matthew S; DiNunzio, James; Khawaja, Nazia N; Crocker, Louis S; Pecora, Anthony

    2016-02-01

    Atomic force microscopy (AFM) and modulated differential scanning calorimetry (mDSC) were used to evaluate the extent of mixing of a hot melt extrusion process for producing solid dispersions of copovidone and D-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000). In addition to composition, extrusion process parameters of screw speed and thermal quench rate were varied. The data indicated that for 10% TPGS and 300 rpm screw speed, the mixing was insufficient to yield a single-phase amorphous material. AFM images of the extrudate cross section for air-cooled material indicate round domains 200 to 700 nm in diameter without any observed alignment resulting from the extrusion whereas domains in extrudate subjected to chilled rolls were elliptical in shape with uniform orientation. Thermal analysis indicated that the domains were predominantly semi-crystalline TPGS. For 10% TPGS and 600 rpm screw speed, AFM and mDSC data were consistent with that of a single-phase amorphous material for both thermal quench rates examined. When the TPGS concentration was reduced to 5%, a single-phase amorphous material was achieved for all conditions even the slowest screw speed studied (150 rpm). PMID:26283196

  7. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  8. Objective and Longitudinal Assessment of Dermatitis After Postoperative Accelerated Partial Breast Irradiation Using High-Dose-Rate Interstitial Brachytherapy in Patients With Breast Cancer Treated With Breast Conserving Therapy: Reduction of Moisture Deterioration by APBI

    SciTech Connect

    Tanaka, Eiichi; Yamazaki, Hideya; Yoshida, Ken; Takenaka, Tadashi; Masuda, Norikazu; Kotsuma, Tadayuki; Yoshioka, Yasuo; Inoue, Takehiro

    2011-11-15

    Purpose: To objectively evaluate the radiation dermatitis caused by accelerated partial breast irradiation (APBI) using high-dose-rate interstitial brachytherapy. Patients and Methods: The skin color and moisture changes were examined using a newly installed spectrophotometer and corneometer in 22 patients who had undergone APBI using open cavity implant high-dose-rate interstitial brachytherapy (36 Gy in six fractions) and compared with the corresponding values for 44 patients in an external beam radiotherapy (EBRT) control group (50-60 Gy in 25-30 fractions within 5-6 weeks) after breast conserving surgery. Results: All values changed significantly as a result of APBI. The extent of elevation in a Asterisk-Operator (reddish) and reduction in L Asterisk-Operator (black) values caused by APBI were similar to those for EBRT, with slightly delayed recovery for 6-12 months after treatment owing to the surgical procedure. In contrast, only APBI caused a change in the b Asterisk-Operator values, and EBRT did not, demonstrating that the reduction in b Asterisk-Operator values (yellowish) depends largely on the surgical procedure. The changes in moisture were less severe after APBI than after EBRT, and the recovery was more rapid. The toxicity assessment using the Common Toxicity Criteria, version 3, showed that all dermatitis caused by APBI was Grade 2 or less. Conclusion: An objective analysis can quantify the effects of APBI procedures on color and moisture cosmesis. The radiation dermatitis caused by APBI using the present schedule showed an equivalent effect on skin color and a less severe effect on moisture than the effects caused by standard EBRT.

  9. Progress on plasma accelerators

    SciTech Connect

    Chen, P.

    1986-05-01

    Several plasma accelerator concepts are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA) and the Plasma Wake Field Accelerator (PWFA). Various accelerator physics issues regarding these schemes are discussed, and numerical examples on laboratory scale experiments are given. The efficiency of plasma accelerators is then revealed with suggestions on improvements. Sources that cause emittance growth are discussed briefly.

  10. Estimating resting metabolic rate by biologging core and subcutaneous temperature in a mammal.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Hetem, Robyn S; Fuller, Andrea; Mitchell, Duncan; Rouanet, Jean-Louis

    2015-05-01

    Tri-axial accelerometry has been used to continuously and remotely assess field metabolic rates in free-living endotherms. However, in cold environments, the use of accelerometry may underestimate resting metabolic rate because cold-induced stimulation of metabolic rate causes no measurable acceleration. To overcome this problem, we investigated if logging the difference between core and subcutaneous temperatures (ΔTc-s) could reveal the metabolic costs associated with cold exposure. Using implanted temperature data loggers, we recorded core and subcutaneous temperatures continuously in eight captive rabbits (Oryctolagus cuniculus) and concurrently measured their resting metabolic rate by indirect calorimetry, at ambient temperatures ranging from -7 to +25°C. ΔTc-s showed no circadian fluctuations in warm (+23°C) or cold (+5°C) environments implying that the ΔTc-s was not affected by an endogenous circadian rhythm in our laboratory conditions. ΔTc-s correlated well with resting metabolic rate (R(2)=0.77) across all ambient temperatures except above the upper limit of the thermoneutral zone (+25°C). Determining ΔTc-s could therefore provide a complementary approach for better estimating resting metabolic rate of animals within and below their thermoneutral zone. Combining data from accelerometers with such measures of body temperature could improve estimates of the overall field metabolic rate of free-living endotherms. PMID:25636902

  11. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  12. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  13. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons.

    PubMed

    Chokshi, Rina J; Zia, Hossein; Sandhu, Harpreet K; Shah, Navnit H; Malick, Waseem A

    2007-01-01

    The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug. PMID:17107929

  14. HEAT OF HYDRATION OF SALTSTONE MIXES-MEASUREMENT BY ISOTHERMAL CALORIMETRY

    SciTech Connect

    Harbour, J; Vickie Williams, V; Tommy Edwards, T

    2007-07-02

    This report provides initial results on the measurement of heat of hydration of Saltstone mixes using isothermal calorimetry. The results were obtained using a recently purchased TAM Air Model 3116 Isothermal Conduction Calorimeter. Heat of hydration is an important property of Saltstone mixes. Greater amounts of heat will increase the temperature of the curing mix in the vaults and limit the processing rate. The heat of hydration also reflects the extent of the hydraulic reactions that turn the fluid mixture into a ''stone like'' solid and consequently impacts performance properties such as permeability. Determining which factors control these reactions, as monitored by the heat of hydration, is an important goal of the variability study. Experiments with mixes of portland cement in water demonstrated that the heats measured by this technique over a seven day period match very well with the literature values of (1) seven day heats of hydration using the standard test method for heat of hydration of hydraulic cement, ASTM C 186-05 and (2) heats of hydration measured using isothermal calorimetry. The heats of hydration of portland cement or blast furnace slag in a Modular Caustic Side Solvent Extraction Unit (MCU) simulant revealed that if the cure temperature is maintained at 25 C, the amount of heat released over a seven day period is roughly 62% less than the heat released by portland cement in water. Furthermore, both the blast furnace slag and the portland cement were found to be equivalent in heat production over the seven day period in MCU. This equivalency is due to the activation of the slag by the greater than 1 Molar free hydroxide ion concentration in the simulant. Results using premix (a blend of 10% cement, 45% blast furnace slag, and 45% fly ash) in MCU, Deliquification, Dissolution and Adjustment (DDA) and Salt Waste Processing Facility (SWPF) simulants reveal that the fly ash had not significantly reacted (undergone hydration reactions) after seven

  15. Exercise Training During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.

    1999-01-01

    The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  16. Terahertz-driven linear electron acceleration.

    PubMed

    Nanni, Emilio A; Huang, Wenqian R; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m(-1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  17. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  18. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  19. Terahertz-driven linear electron acceleration

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  20. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    PubMed Central

    Verma, Pradeep; Dyckmans, Jens; Militz, Holger

    2008-01-01

    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide. PMID:18542949

  1. Acceleration mapping on Consort 5

    NASA Astrophysics Data System (ADS)

    Naumann, Robert J.

    1994-09-01

    The Consort 5 rocket carrying a set of commercial low-gravity experiments experienced a significant side thrust from an apparent burn-through of the second-stage motor just prior to cut-off. The resulting angular momentum could not be removed by the attitude rate control system, thus the payload was left in an uncontrollable rocking/tumbling mode. Although the primary low-gravity emphasis mission requirements could not be met, it was hoped that some science could be salvaged by mapping the acceleration field over the vehicle so that each investigator could correlate his or her results with the acceleration environment at his or her experiment location. This required some detective work to obtain the body rates and moment of inertia ratios required to solve the full set of Euler equations for a tri-axial rigid body. The techniques for acceleration mapping described in this paper may be applicable to other low-gravity emphasis missions.

  2. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-01-01

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  3. Accelerated glass reaction under PCT conditions

    SciTech Connect

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Bradley, C.R.

    1992-12-31

    Static leach tests similar to PCT (Product Consistency Test) were performed for up to 2 years to assess long-term reaction behavior of high-level nuclear waste glasses similar to those at Defense Waste Processing Facility. These tests show the reaction rate to decrease with the reaction time from an initially high rate to a low rate, but then to accelerate to a higher rate after reaction times of about 1 year, depending on glass surface area/leachant volume ratio used. Solution concentrations of soluble glass components increase as the reaction is accelerated, while release of other glass components into solution is controlled by secondary phases. Net result is that transformation of glass to stable phases is accelerated while the solution becomes enriched in soluble components not effectively contained in secondary phases. Rate becomes linear in time after the acceleration and may be similar to the initial forward rate. A current model of glass reaction predicts that the glass reaction will be accelerated upon the formation of secondary phases which lower the silicic acid solution concentration. These tests show total Si concentration to increase upon reaction acceleration, however, which may be due to the slightly higher pH attained with the acceleration. The sudden change in the reaction rate is likely due to secondary phase formation. 17 refs, 2 tabs, 3 figs.

  4. Electrostatic interactions in the binding pathway of a transient protein complex studied by NMR and isothermal titration calorimetry.

    PubMed

    Meneses, Erick; Mittermaier, Anthony

    2014-10-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  5. Determination of the Membrane Permeability to Water of Human Vaginal Mucosal Immune Cells at Subzero Temperatures Using Differential Scanning Calorimetry.

    PubMed

    Shu, Zhiquan; Hughes, Sean M; Fang, Cifeng; Hou, Zhiyuan; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-08-01

    To study mucosal immunity and conduct HIV vaccine trials, it is important to be able to cryopreserve mucosal specimens and recover them in functional viable form. Obtaining a good recovery depends, in part, on cooling the cells at the appropriate rate, which is determined by the rate of water transport across the cell membrane during the cooling process. In this study, the cell membrane permeabilities to water at subzero temperatures of human vaginal mucosal T cells and macrophages were measured using the differential scanning calorimetry method proposed by Devireddy et al. in 1998. Thermal histograms were measured before and after cell lysis using a Slow-Fast-Fast-Slow cooling program. The difference between the thermal histograms of the live intact cells and the dead lysed cells was used to calculate the temperature-dependent cell membrane permeability at subzero temperatures, which was assumed to follow the Arrhenius relationship, [Formula: see text], where Lpg is the permeability to water at the reference temperature (273.15 K). The results showed that Lpg = 0.0209 ± 0.0108 μm/atm/min and Ea = 41.5 ± 11.4 kcal/mol for T cells and Lpg = 0.0198 ± 0.0102 μm/atm/min and Ea = 38.2 ± 10.4 kcal/mol for macrophages, respectively, in the range 0°C to -40°C (mean ± standard deviation). Theoretical simulations predicted that the optimal cooling rate for both T cells and macrophages was about -3°C/min, which was proven by preliminary immune cell cryopreservation experiments. PMID:26977578

  6. Interaction of Bile Salts with Model Membranes Mimicking the Gastrointestinal Epithelium: A Study by Isothermal Titration Calorimetry.

    PubMed

    Coreta-Gomes, Filipe M; Martins, Patrícia A T; Velazquez-Campoy, Adrián; Vaz, Winchil L C; Geraldes, Carlos F G; Moreno, Maria João

    2015-08-25

    Bile salts (BS) are biosurfactants synthesized in the liver and secreted into the intestinal lumen where they solubilize cholesterol and other hydrophobic compounds facilitating their gastrointestinal absorption. Partition of BS toward biomembranes is an important step in both processes. Depending on the loading of the secreted BS micelles with endogeneous cholesterol and on the amount of cholesterol from diet, this may lead to the excretion or absorption of cholesterol, from cholesterol-saturated membranes in the liver or to gastrointestinal membranes, respectively. The partition of BS toward the gastrointestinal membranes may also affect the barrier properties of those membranes affecting the permeability for hydrophobic and amphiphilic compounds. Two important parameters in the interaction of the distinct BS with biomembranes are their partition coefficient and the rate of diffusion through the membrane. Altogether, they allow the calculation of BS local concentrations in the membrane as well as their asymmetry in both membrane leaflets. The local concentration and, most importantly, its asymmetric distribution in the bilayer are a measure of induced membrane perturbation, which is expected to significantly affect its properties as a cholesterol donor and hydrophobic barrier. In this work we have characterized the partition of several BS, nonconjugated and conjugated with glycine, to large unilamellar vesicles (LUVs) in the liquid-disordered phase and with liquid-ordered/liquid-disordered phase coexistence, using isothermal titration calorimetry (ITC). The partition into the liquid-disordered bilayer was characterized by large partition coefficients and favored by enthalpy, while association with the more ordered membrane was weak and driven only by the hydrophobic effect. The trihydroxy BS partitions less efficiently toward the membranes but shows faster translocation rates, in agreement with a membrane protective effect of those BS. The rate of translocation

  7. Electrostatic Interactions in the Binding Pathway of a Transient Protein Complex Studied by NMR and Isothermal Titration Calorimetry*

    PubMed Central

    Meneses, Erick; Mittermaier, Anthony

    2014-01-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  8. Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions

    PubMed Central

    Chiu, Michael H.; Prenner, Elmar J.

    2011-01-01

    Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications. PMID:21430954

  9. Using Isothermal Titration Calorimetry to Determine Thermodynamic Parameters of Protein–Glycosaminoglycan Interactions

    PubMed Central

    Dutta, Amit K.; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein–glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters—enthalpy, entropy, free energy (binding constant), and stoichiometry—from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein–GAG interactions. PMID:25325962

  10. Applying differential scanning calorimetry to characterize chemical-protective-clothing materials. Final report

    SciTech Connect

    Weidenbaum, S.S.

    1991-01-01

    The use of differential scanning calorimetry as a means of evaluating changes in polymers used to manufacture protective clothing was investigated. Separate enclosed Appendices give details of studies dealing with Vitron (R)/chlorobutyl laminate. These are preceded by a Summary which gives information dealing with Teflon-coated Nomex (Challenge (TM) 5100). The manner in which DSC graphs were affected by exposing the polymers to a variety of chemicals is the main subject of the report. However, some information dealing with thermogravimetric analysis (TGA), viscoelastic measurements and solubility parameters is also in the various appendices.

  11. Kinetic analysis of gluconate phosphorylation by human gluconokinase using isothermal titration calorimetry.

    PubMed

    Rohatgi, Neha; Guðmundsson, Steinn; Rolfsson, Óttar

    2015-11-30

    Gluconate is a commonly encountered nutrient, which is degraded by the enzyme gluconokinase to generate 6-phosphogluconate. Here we used isothermal titration calorimetry to study the properties of this reaction. ΔH, KM and kcat are reported along with substrate binding data. We propose that the reaction follows a ternary complex mechanism, with ATP binding first. The reaction is inhibited by gluconate, as it binds to an Enzyme-ADP complex forming a dead-end complex. The study exemplifies that ITC can be used to determine mechanisms of enzyme catalyzed reactions, for which it is currently not commonly applied. PMID:26505675

  12. Energy storage capacity of reversible liquid phase Diels-Alder reactions as determined by drop calorimetry

    SciTech Connect

    Chung, C.P.

    1983-01-01

    Several Diels-Alder reactions were evaluated as possible candidates for energy storage. The goal was to use simple drop calorimetry to screen reactions and to identify those with high energy storage capacities. The dienes used were furan and substituted furans. The dienophiles used were maleic anhydride and substituted maleic anhydrides. Sixteen reactions have been examined. Three had energy storage capacities that were increased due to reaction (maleic anhydride and 2-methyl furan, maleic anhydride and 2-ethyl furan, maleic anhydride and 2,5-dimethyl furan). The remaining thirteen showed no increase in apparent heat capacity due to reaction.

  13. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    NASA Astrophysics Data System (ADS)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  14. Myths and Misconceptions of Acceleration

    ERIC Educational Resources Information Center

    Anderson, Daniel

    2008-01-01

    Accelerating students through school at a faster than normal rate is routinely met with skepticism and doubt pertaining to its effectiveness. In the research community, however, the topic is nearly dead. Research has continually supported this practice as effective when carefully implemented. This article attempts to debunk common myths (such as…

  15. ETA-II accelerator upgrades

    SciTech Connect

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator`s cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new ``zero-gap`` arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX).

  16. PREFACE: XIII International Conference on Calorimetry in High Energy Physics (CALOR 2008)

    NASA Astrophysics Data System (ADS)

    Livan, Michele

    2009-07-01

    The XIII International Conference on Calorimetry in High Energy Physics was held in Pavia, Italy, 26-30 May 2008, picking up the baton from the 2006 Conference in Chicago. The Conference took place in the unique environment of the Theresian Room of the University Library. The attendees were surrounded by over 40 000 books of general interest and culture, and had the opportunity to see precious volumes written by such people as Galileo, Volta and Faraday. The Workshop brought together more than 120 participants, including senior scientists as well as young physicists, confirming the central and ever-growing role of calorimeters in modern particle physics. The development of these detectors, as stressed by Professor Klaus Pretzl in his lectio magistralis, has made it possible to explore new frontiers in physics, and the present scenario is no exception to this rule. With the LHC experiments almost completely installed and ready to take data, the Conference was an ideal chance to review the status of the different projects, whose development has been followed and discussed throughout the entire Calor series, and to show that they are capable of meeting the design specifications. Other highlights were the performance and physics results of calorimeters installed in currently operating experiments. In the session on astrophysics and neutrinos, the contributions confirmed the key role of calorimeters in this sector and demonstrated their growing application even beyond the field of accelerator physics. Considerable time was devoted to the state-of-the-art techniques in the design and operation of the detectors, while the session on simulation addressed the importance of a thorough understanding of the shower development to meet the demanding requirements of present experiments. Finally, on the R&D side, the particle flow and dual read-out concepts confronted the challenges issued by the next generation of experiments. This complex material was reviewed in 83

  17. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  18. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  19. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  20. Terahertz-driven linear electron acceleration

    DOE PAGESBeta

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  1. High-current ion-ring accelerator

    SciTech Connect

    Sudan, R.N. )

    1993-03-15

    An accelerator concept is outlined which enables 10[sup 15] to 10[sup 18] ions in the form of a charge neutralized ion ring to be accelerated to GeV energies. A repetition rate of 10 Hz will deliver an average current in the range of 0.1 A.

  2. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    PubMed

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. PMID:26794364

  3. Thermal expansivities of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry.

    PubMed

    Pandharipande, Pranav P; Makhatadze, George I

    2015-04-01

    The main goal of this work was to provide direct experimental evidence that the expansivity of peptides, polypeptides and proteins as measured by pressure perturbation calorimetry (PPC), can serve as a proxy to characterize relative compactness of proteins, especially the denatured state ensemble. This is very important as currently only small angle X-ray scattering (SAXS), intrinsic viscosity and, to a lesser degree, fluorescence resonance transfer (FRET) experiments are capable of reporting on the compactness of denatured state ensembles. We combined the expansivity measurements with other biophysical methods (far-UV circular dichroism spectroscopy, differential scanning calorimetry, and small angle X-ray scattering). Three case studies of the effects of conformational changes on the expansivity of polypeptides in solution are presented. We have shown that expansivity appears to be insensitive to the helix-coil transition, and appears to reflect the changes in hydration of the side-chains. We also observed that the expansivity is sensitive to the global conformation of the polypeptide chain and thus can be potentially used to probe hydration of different collapsed states of denatured or even intrinsically disordered proteins. PMID:25602591

  4. Bridging Calorimetry and Simulation through Precise Calculations of Cucurbituril–Guest Binding Enthalpies

    PubMed Central

    2015-01-01

    We used microsecond time scale molecular dynamics simulations to compute, at high precision, binding enthalpies for cucurbit[7]uril (CB7) with eight guests in aqueous solution. The results correlate well with experimental data from previously published isothermal titration calorimetry studies, and decomposition of the computed binding enthalpies by interaction type provides plausible mechanistic insights. Thus, dispersion interactions appear to play a key role in stabilizing these complexes, due at least in part to the fact that their packing density is greater than that of water. On the other hand, strongly favorable Coulombic interactions between the host and guests are compensated by unfavorable solvent contributions, leaving relatively modest electrostatic contributions to the binding enthalpies. The better steric fit of the aliphatic guests into the circular host appears to explain why their binding enthalpies tend to be more favorable than those of the more planar aromatic guests. The present calculations also bear on the validity of the simulation force field. Somewhat unexpectedly, the TIP3P water yields better agreement with experiment than the TIP4P-Ew water model, although the latter is known to replicate the properties of pure water more accurately. More broadly, the present results demonstrate the potential for computational calorimetry to provide atomistic explanations for thermodynamic observations. PMID:25221445

  5. Reference dosimetry for light-ion beams based on graphite calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Duane, S; Bailey, M; Shipley, D; Bertrand, D; Romano, F; Cirrone, P; Cuttone, G; Vynckier, S

    2014-10-01

    Developments in hadron therapy require efforts to improve the accuracy of the dose delivered to a target volume. Here, the determination of the absorbed dose under reference conditions was analysed. Based on the International Atomic Energy Agency TRS-398 code of practice, for hadron beams, the combined standard uncertainty on absorbed dose to water under reference conditions, derived from ionisation chambers, is too large. This uncertainty is dominated by the beam quality correction factors, [Formula: see text], mainly due to the mean energy to produce one ion pair in air, wair. A method to reduce this uncertainty is to carry out primary dosimetry, using calorimetry. A [Formula: see text]-value can be derived from a direct comparison between calorimetry and ionometry. Here, this comparison is performed using a graphite calorimeter in an 80-MeV A(-1) carbon ion beam. Assuming recommended TRS-398 values of water-to-graphite stopping power ratio and the perturbation factor for an ionisation chamber, preliminary results indicate a wair-value of 35.5 ± 0.9 J C(-1). PMID:24336190

  6. A new approach for non-contact calorimetry: system identification using pseudo-white noise perturbation

    NASA Astrophysics Data System (ADS)

    Schetelat, Pascal; Etay, Jacqueline

    2011-07-01

    This paper presents a new technique for non-contact calorimetry measurement of specific heat capacity and thermal conductivity. Based on pseudo-white noise modulation and system identification, commonly used in electronics and communication engineering, this procedure can be used to measure the transfer function of the sample temperature variation due to heating power variation. The heat capacity and internal heat transfer coefficient are then determined using the equivalence between the identified transfer functions of the temperatures measured at two locations and the analytical model proposed by Fecht and Johnson (Rev Sci Instrum 62:1299-1303, 1991) and Wunderlich and Fecht (Measur Sci Technol 16:402-416, 2005). This inverse problem is solved numerically using a Gauss-Seidel algorithm. A numerical simulation of a non-contact modulated calorimetry experiment is used to demonstrate the relevance of this new technique for indirect measurement of the heat capacity and heat transfer coefficients of solid samples presenting large Biot numbers ( Bi > 0.4).

  7. Hydrogen atom density in narrow-gap microwave hydrogen plasma determined by calorimetry

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2016-02-01

    The density of hydrogen (H) atoms in the narrow-gap microwave hydrogen plasma generated under high-pressure conditions is expected to be very high because of the high input power density of the order of 104 W/cm3. For measuring the H atom density in such a high-pressure and high-density plasma, power-balance calorimetry is suited since a sufficient signal to noise ratio is expected. In this study, H atom density in the narrow-gap microwave hydrogen plasma has been determined by the power-balance calorimetry. The effective input power to the plasma is balanced with the sum of the powers related to the out-going energy per unit time from the plasma region via heat conduction, outflow of high-energy particles, and radiation. These powers can be estimated by simple temperature measurements using thermocouples and optical emission spectroscopy. From the power-balance data, the dissociation fraction of H2 molecules is determined, and the obtained maximum H atom density is (1.3 ± 0.2) × 1018 cm-3. It is found that the H atom density increases monotonically with increasing the energy invested per one H2 molecule within a constant plasma volume.

  8. On the interpretation of differential scanning calorimetry results for thermoelastic martensitic transformations: Athermal versus thermally activated kinetics

    SciTech Connect

    Van Humbeeck, J.; Planes, A.

    1996-05-01

    Experimentally, two distinct classes of martensitic transformations are considered: athermal and isothermal. In the former class, on cooling, at some well-defined start temperature (M{sub s}), isolated small regions of the martensitic product begin to appear in the parent phase. The transformation at any temperature appears to be instantaneous in practical time scales, and the amount of transformed material (x) does not depend on time, i.e., it increases at each step of lowering temperature. The transition is not completed until the temperature is lowered below M{sub f} (martensite finish temperature). The transformation temperatures are only determined by chemical (composition and degree of order) and microstructural factors. The external controlling parameter (T or applied stress) determines the free energy difference between the high and the low temperature phases, which provides the driving force for the transition. In the development of athermal martensite activation kinetics is secondary. Athermal martensite, as observed in the well known shape memory alloys Cu-Zn-Al, Cu-Al-Ni and Ni-Ti, cannot be attributed to a thermally activated mechanism for which kinetics are generally described by the Arrhenius rate equation. However, the latter has been applied by Lipe and Morris to results for the Martensitic Transformation of Cu-Al-Ni-B-Mn obtained by conventional Differential Scanning Calorimetry (DSC). It is the concern of the authors of this letter to point out the incongruences arising from the analysis of calorimetric results, corresponding to forward and reverse thermoelastic martensitic transformations, in terms of standard kinetic analysis based on the Arrhenius rate equation.

  9. PREFACE: 16th International Conference on Calorimetry in High Energy Physics (CALOR 2014)

    NASA Astrophysics Data System (ADS)

    Novotny, Rainer W.

    2015-02-01

    The XVIth International Conference on Calorimetry in High Energy Physics - CALOR 2014 - was held in Giessen, Germany from 6-11 April 2014 at the Science Campus of the University. It was hosted by the Justus-Liebig-University and the HIC for FAIR Helmholtz International Center. The series of conferences on calorimetry were started in 1990 at Fermilab and are focusing primarily on operating and future calorimeter systems within the Hadron and High-Energy Physics community without neglecting the impact on other fields such as Astrophysics or Medical Imaging. Confirmed by the impressive list of over 70 oral presentations, 5 posters and over 100 attendees, the field of calorimetry appears alive and attractive. The present volume contains the written contributions of almost all presentations which can be found at http://calor2014.de. Time slots of 15 or 30 minutes including discussion were allocated. The conference was accompanied by a small exhibition of several industrial companies related to the field. The day before the opening of the scientific program, Richard Wigmans gave an excellent and vivid tutorial on basic aspects on calorimetry meant as an introduction for students and conference attendees new in the field. The opening ceremony was used to give an impression of the present and future status and the scientific program of the new FAIR facility nearby at Darmstadt presented by Klaus Peters from GSI. The conference program of the first day was dedicated to the performance and required future upgrade of the LHC experiments, dominated by ATLAS, CMS and LHCb. The program of the next day contained specific aspects on electronics and readout as well as calorimetry in outer space. Several contributions discussed in detail new concepts for hadron calorimeters within the CALICE collaboration completed by a session on sampling calorimeters. The next sections were dedicated to operating and future calorimeters at various laboratories and covering a wide range of

  10. Accelerated dynamics simulations of nanotubes.

    SciTech Connect

    Uberuaga, B. P.; Stuart, S. J.; Voter, A. F.

    2002-01-01

    We report on the application of accelerated dynamics techniques to the study of carbon nanotubes. We have used the parallel replica method and temperature accelerated dynamics simulations are currently in progress. In the parallel replica study, we have stretched tubes at a rate significantly lower than that used in previous studies. In these preliminary results, we find that there are qualitative differences in the rupture of the nanotubes at different temperatures. We plan on extending this investigation to include nanotubes of various chiralities. We also plan on exploring unique geometries of nanotubes.

  11. Technology of magnetically driven accelerators

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Rogers, D. Jr.; Smith, M.W.

    1985-03-26

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability. 8 figs., 1 tab.

  12. Technology of magnetically driven accelerators

    SciTech Connect

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-10-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability.

  13. Acceleration schedules for a recirculating heavy-ion accelerator

    SciTech Connect

    Sharp, W.M.; Grote, D.P.

    2002-05-01

    Recent advances in solid-state switches have made it feasible to design programmable, high-repetition-rate pulsers for induction accelerators. These switches could lower the cost of recirculating induction accelerators, such as the ''small recirculator'' at Lawrence Livermore National Laboratory (LLNL), by substantially reducing the number of induction modules. Numerical work is reported here to determine what effects the use of fewer pulsers at higher voltage would have on the beam quality of the LLNL small recirculator. Lattices with different numbers of pulsers are examined using the fluid/envelope code CIRCE, and several schedules for acceleration and compression are compared for each configuration. For selected schedules, the phase-space dynamics is also studied using the particle-in-cell code WARP3d.

  14. Virtual gap dielectric wall accelerator

    SciTech Connect

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  15. Energetics of anhydrite, barite, celestine, and anglesite: a high-temperature and differential scanning calorimetry study

    NASA Astrophysics Data System (ADS)

    Majzlan, J.; Navrotsky, A.; Neil, J. M.

    2002-05-01

    The thermochemistry of anhydrous sulfates (anglesite, anhydrite, arcanite, barite, celestine) was investigated by high-temperature oxide melt calorimetry and differential scanning calorimetry. Complete retention and uniform speciation of sulfur in the solvent was documented by (a) chemical analyses of the solvent (3Na 2O · 4MoO 3) with dissolved sulfates, (b) Fourier transform infrared spectroscopy confirming the absence of sulfur species in the gases above the solvent, and (c) consistency of experimental determination of the enthalpy of drop solution of SO 3 in the solvent. Thus, the principal conclusion of this study is that high-temperature oxide melt calorimetry with 3Na 2O · 4MoO 3 solvent is a valid technique for measurement of enthalpies of formation of anhydrous sulfates. Enthalpies of formation (in kJ/mol) from the elements (ΔH fo) were determined for synthetic anhydrite (CaSO 4) (-1433.8 ± 3.2), celestine (SrSO 4) (-1452.1 ± 3.3), anglesite (PbSO 4) (-909.9 ± 3.4), and two natural barite (BaSO 4) samples (-1464.2 ± 3.7, -1464.9 ± 3.7). The heat capacity of anhydrite, barite, and celestine was measured between 245 and 1100 K, with low- and high-temperature Netzsch (DSC-404) differential scanning calorimeters. The results for each sample were fitted to a Haas-Fisher polynomial of the form C p(245 K < T < 1100 K) = a + bT + cT -2 + dT -0.5 + eT 2. The coefficients of the equation are as follows: for anhydrite a = 409.7, b = -1.764 × 10 -1, c = 2.672 × 10 6, d = -5.130 × 10 3, e = 8.460 × 10 -5; for barite, a = 230.5, b = -0.7395 × 10 -1, c = -1.170 × 10 6, d = -1.587 × 10 3, e = 4.784 × 10 -5; and for celestine, a = 82.1, b = 0.8831 × 10 -1, c = -1.213 × 10 6, d = 0.1890 × 10 3, e = -1.449 × 10 -5. The 95% confidence interval of the measured C p varies from 1 to 2% of the measured value at low temperature up to 2 to 5% at high temperature. The measured thermochemical data improve or augment the thermodynamic database for anhydrous

  16. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  17. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  18. Metabolic acceleration in Mediterranean Perciformes

    NASA Astrophysics Data System (ADS)

    Lika, Konstadia; Kooijman, Sebastiaan A. L. M.; Papandroulakis, Nikos

    2014-11-01

    Larval stages are considered the most critical of fish development. During a very short period of time (2 to 3 months), larvae undergo major morphoanatomical and functional changes in order to transform into juveniles while remaining functioning (developing, eating, surviving). Depending on species and environmental conditions, patterns in larval development may vary. We study the patterns of larval development for nine fish species of Perciformes reared under aquaculture conditions and compare them in terms of species-specific parameters derived from DEB theory. We extended the standard DEB model to include metabolic acceleration during the larval period, where maximum specific assimilation and energy conductance increase with length between birth and metabolic metamorphosis. Metabolic acceleration has as a consequence that larvae initially grow slower than juveniles and adults. Our results indicate that the species with higher acceleration have lower growth rates at birth and they also suggest that metabolic acceleration is related to spawning season. High metabolic acceleration of demersal species is associated with summer-autumn spawning in the Mediterranean, where temperature is high and food availability is low.

  19. ETA-II accelerator upgrades

    SciTech Connect

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator's cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new zero-gap'' arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX).

  20. Feasibility study on using fast calorimetry technique to measure a mass attribute as part of a treaty verification regime

    SciTech Connect

    Hauck, Danielle K; Bracken, David S; Mac Arthur, Duncan W; Santi, Peter A; Thron, Jonathan

    2010-01-01

    The attribute measurement technique provides a method for determining whether or not an item containing special nuclear material (SNM) possesses attributes that fall within an agreed upon range of values. One potential attribute is whether the mass of an SNM item is larger than some threshold value that has been negotiated as part of a nonproliferation treaty. While the historical focus on measuring mass attributes has been on using neutron measurements, calorimetry measurements may be a viable alternative for measuring mass attributes for plutonium-bearing items. Traditionally, calorimetry measurements have provided a highly precise and accurate determination of the thermal power that is being generated by an item. In order to achieve this high level of precision and accuracy, the item must reach thermal equilibrium inside the calorimeter prior to determining the thermal power of the item. Because the approach to thermal equilibrium is exponential in nature, a large portion of the time spent approaching equilibrium is spent with the measurement being within {approx}10% of its final equilibrium value inside the calorimeter. Since a mass attribute measurement only needs to positively determine if the mass of a given SNM item is greater than a threshold value, performing a short calorimetry measurement to determine how the system is approaching thermal equilibrium may provide sufficient information to determine if an item has a larger mass than the agreed upon threshold. In previous research into a fast calorimetry attribute technique, a two-dimensional heat flow model of a calorimeter was used to investigate the possibility of determining a mass attribute for plutonium-bearing items using this technique. While the results of this study looked favorable for developing a fast calorimetry attribute technique, additional work was needed to determine the accuracy of the model used to make the calculations. In this paper, the results from the current work investigating

  1. Thermophysical analysis of II-VI semiconductors by PPE calorimetry and lock-in thermography

    SciTech Connect

    Streza, M.; Dadarlat, D.; Strzałkowski, K.

    2013-11-13

    An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directly irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.

  2. Laboratory Annealing Experiments Of Refractory Silicate Grain Analogs Using Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Tsukamota, Katsuo; Kaito, Chihiro

    2010-01-01

    Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium-bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J per gram, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 micrometer feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.

  3. THE HYDROLYSIS AND OXIDATION BEHAVIOR OF LITHIUM BOROHYDRIDE AND MAGNESIUM HYDRIDE DETERMINED BY CALORIMETRY

    SciTech Connect

    Brinkman, K; Donald Anton, D; Joshua Gray, J; Bruce Hardy, B

    2008-03-13

    Lithium borohydride, magnesium hydride and the 2:1 'destabilized' ball milled mixtures (2LiBH{sub 4}:MgH{sub 2}) underwent liquid phase hydrolysis, gas phase hydrolysis and air oxidation reactions monitored by isothermal calorimetry. The experimentally determined heats of reaction and resulting products were compared with those theoretically predicted using thermodynamic databases. Results showed a discrepancy between the predicted and observed hydrolysis and oxidation products due to both kinetic limitations and to the significant amorphous character of observed reaction products. Gas phase and liquid phase hydrolysis were the dominant reactions in 2LiBH{sub 4}:MgH{sub 2} with approximately the same total energy release and reaction products; liquid phase hydrolysis displayed the maximum heat flow for likely environmental exposure with a peak energy release of 6 (mW/mg).

  4. Binding of chrysoidine to catalase: spectroscopy, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Yang, Bingjun; Hao, Fang; Li, Jiarong; Chen, Dongliang; Liu, Rutao

    2013-11-01

    Chrysoidine is an industrial azo dye and the presence of chrysoidine in water and food has become an environmental concern due to its negative effects on human beings. In this work, the interactions between chrysoidine and bovine liver catalase (BLC) were explored. Obvious loss in catalytic activity was observed after incubation of BLC with chrysoidine, and the inhibition effect of BLC was found to be of the non-competitive type. No profound conformational change of BLC occurs in the presence of chrysoidine as revealed by UV-vis absorption, circular dichroism and fluorescence spectroscopy studies. Isothermal titration calorimetry results indicate that catalase has two sets of binding sites for chrysoidine. Further, molecular docking simulations show that chrysoidine is located within the bottleneck in the main channel of the substrate to the active site of BLC, which explain the activity inhibition of BLC by chrysoidine. PMID:24001681

  5. Combined FPPE-PTR Calorimetry Involving TWRC Technique. Theory and Mathematical Simulations

    NASA Astrophysics Data System (ADS)

    Dadarlat, Dorin; Pop, Mircea Nicolae; Streza, Mihaela; Longuemart, Stephane; Depriester, Michael; Hadj Sahraoui, Abdelhak; Simon, Viorica

    2010-12-01

    Photopyroelectric calorimetry in the front detection configuration (FPPE) was combined with photothermal radiometry (PTR), in order to investigate dynamic thermal parameters of different layers of a detection cell. The layout of the detection cell consists of three layers: directly irradiated pyroelectric sensor, liquid layer, and solid backing material; and the scanning parameter is the thickness of the liquid layer (thermal-wave resonator cavity method). The theory developed for the two techniques indicates that both FPPE and PTR signals can lead, in the thermally thin regime for the sensor and liquid layer, to the direct measurement of the thermal diffusivity or effusivity of the sensor and/or liquid layer, or the thermal effusivity of the backing material. The two methods offer complementary results and/or reciprocally support each other.

  6. The design and PCB layout of the CDF Run 2 calorimetry readout module

    SciTech Connect

    Theresa Shaw et al.

    1999-11-05

    The CDF Calorimetry Readout module, called the ADMEM, has been designed to contain both the analog circuitry which digitizes the phototube charge pulses, and the digital logic which supports the readout of the results through the CDF Run 2 DAQ system. The ADMEM module is a 9Ux400mm VMEbus module, which is housed in a CDF VMEbus VIPA crate. The ADMEM must support near deadtimeless operation, with data being digitized and stored for possible readout every 132ns or 7.6 Mhz. This paper will discuss the implementation of the analog and digital portions of the ADMEM module, and how the board was laid out to avoid the coupling of digital noise into the analog circuitry.

  7. Dual-Readout Calorimetry for High-Quality Energy Measurements. Final Report

    SciTech Connect

    Wigmans, Richard; Nural, Akchurin

    2013-09-01

    This document constitutes the final report on the project Dual-Readout Calorimetry for High-Quality Energy Measurements. The project was carried out by a consortium of US and Italian physicists, led by Dr. Richard Wigmans (Texas tech University). This consortium built several particle detectors and tested these at the European Center for Nuclear Research (CERN) in Geneva, Switzerland. The idea arose to use scintillating crystals as dual-readout calorimeters. Such crystals were of course already known to provide excellent energy resolution for the detection of particles developing electromagnetic (em) showers. The efforts to separate the signals from scintillating crystals into scintillation and Cerenkov components led to four different methods by which this could be accomplished. These methods are based on a) the directionality, b) spectral differences, c) the time structure, and d) the polarization of the signals.

  8. Determination of the solubility of crystalline low molar mass compounds in polymers by differential scanning calorimetry.

    PubMed

    Rager, Timo

    2014-06-01

    A mathematical equation has been derived to calculate the liquidus for a binary system consisting of an amorphous polymer and a crystalline low molar mass compound. The experimental input to this equation is an interaction enthalpy, which is derived from the variation of the melting enthalpy with composition in differential scanning calorimetry (DSC) experiments. The predictive power of the equation has been tested with mixtures of acetylsalicylic acid, carbamazepine, or intraconazole with poly(ethylene glycol) as well as mixtures of carbamazepine with poly(acrylic acid), poly(hydroxystyrene), or poly(vinylpyrrolidone). It has been confirmed that the evaluation of the melting enthalpy in DSC is a suitable method to identify the preferred solute-polymer combinations for thermodynamically stable molecular dispersions. PMID:24723307

  9. Modulated calorimetry of poly(1,4-oxybenzoate), poly(2,6-oxynaphthoate), and their copolymers

    SciTech Connect

    Ma, J; Habenschuss, A; Wunderlich, B

    2008-01-01

    Poly(1,4-oxybenzoate) (POB) and poly(2,6-oxynaphthoate) (PON) and their copolymers which have a well-established phase diagram have been studied with temperature-modulated differential scanning calorimetry (TMDSC). All the analyzed polymers have more than one disordering transition between the glass transition (from 400 to 430 K) and decomposition (starting at 700 K). Above the glass transition, the reversible heat capacity, Cp, increases beyond that calculated from the crystallinity and the known Cp of the solid and melt. This is likely due to an increase of mobility within the crystals and/or a possible rigid-amorphous fraction (mainly for the copolymers). The disordering transitions are largely irreversible, supporting the observation that semicrystalline, linear macromolecules show decreasing amounts of locally reversible melting with increasing rigidity and crystal perfection.

  10. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.

    PubMed

    Kilmister, Rachel L; Faulkner, Peta; Downey, Mark O; Darby, Samuel J; Falconer, Robert J

    2016-01-01

    Isothermal titration calorimetry was applied to study the binding of purified proanthocyanidin oligomers to bovine serum albumin (BSA). The molecular weight of the proanthocyanidin oligomer had a major impact on its binding to BSA. The calculated change in enthalpy (ΔH) and association constant (Ka) became greater as the oligomer size increased then plateaued at the heptameric oligomer. These results support a model for precipitation of proteins by proanthocyanidin where increased oligomer size enhanced the opportunity for cross linkages between proteins ultimately forming sediment-able complexes. The authors suggest tannin binding to proteins is opportunistic and involves multiple sites, each with a different Ka and ΔH of binding. The ΔH of binding comprises both an endothermic hydrophobic interaction and exothermic hydrogen bond component. This suggests the calculated entropy value (ΔS) for tannin-protein interactions is subject to a systematic error and should be interpreted with caution. PMID:26212957

  11. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism. PMID:25953126

  12. The Frontier of Modern Calorimetry: Hardware Advances and Application in Particle Physics Analysis

    NASA Astrophysics Data System (ADS)

    Medvedeva, Tatiana

    While the last missing components of the SM puzzle seem to be successfully found, particle physicists remain hungry for what might be there, beyond the cosy boundaries of the well studies elementary particle world. However, the sophisticated technique of data analysis and acute Monte Carlo simulations remain fruitless. It appears that the successful intrusion into the realm, in which we were not welcome so far, may require a very different implication of effort. All those results might suggest, though banal, that we need an improvement on the hardware side. Indeed, the hadronic calorimeter of CMS is no competitor to its other state-of-art components. This obstacle in many cases significantly complicates the flow of the physics analysis. Besides, the era of high luminosity LHC operation in the offing is calling for the same. After exploration of the analysis debri with 8TeV collision data, we investigate various approaches for better calorimetry for the CMS detector.

  13. Use of Differential Scanning Calorimetry (DSC) in the Characterization of EPDM/PP Blends

    NASA Astrophysics Data System (ADS)

    Stelescu, Maria Daniela; Airinei, Anton; Grigoras, Cristian; Niculescu-Aron, Ileana-Gabriela

    2010-12-01

    New polyolefinic thermoplastic elastomers based on the ethylene-propylene-diene monomer (EPDM) and polypropylene (PP) containing an EPDM elastomer of the last generation (Nordel NDR 47130), obtained by polymerization in the gaseous phase with metallocene catalysis, were prepared and characterized. The melting and crystallization behavior of these blends was investigated by differential scanning calorimetry. It is observed that the melting temperature, crystallization temperature, and crystallinity degree increase with an increase of PP loading. The influence of the blend composition on the physico-mechanical characteristics was discussed using statistical processing of the experimental data. Two compatibilizing procedures were utilized to improve the physico-mechanical characteristics of the samples: an addition method using different compatibilizing agents and dynamical vulcanization with three types of crosslinking systems. Significant improvements of the tensile strength and tear strength were noted by dynamic crosslinking, and the best results were obtained using a crosslinking system based on phenolic resin and tin chloride.

  14. Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes.

    PubMed

    Siddiqui, Khawar Sohail; Ertan, Haluk; Charlton, Timothy; Poljak, Anne; Daud Khaled, A K; Yang, Xuexia; Marshall, Gavin; Cavicchioli, Ricardo

    2014-05-20

    The kinetic constants of a hybrid versatile-peroxidase (VP) which oxidizes complex polymeric humic substances (HS) derived from lignin (humic and fulvic acids) and industrial wastes were determined for the first time using isothermal titration calorimetry (iTC). The reaction conditions were manipulated to enable manganese-peroxidase (MnP) and/or lignin-peroxidase (LiP) activities to be evaluated. The peroxidase reactions exhibited varying degrees of product inhibition or activation; properties which have not previously been reported for VP enzymes. In contrast to previous work (Ertan et al., 2012) on small non-polymeric substrates (MnSO4, veratryl alcohol and dyes), all kinetic plots for polymeric HS were sigmoidal, lacked Michaelis-Menten characteristics, and were indicative of positive cooperativity. Under conditions when both LiP and MnP were active, the kinetic data fitted to a novel biphasic Hill Equation, and the rate of enzymatic reaction was significantly greater than the sum of individual LiP plus MnP activities implying synergistic activation. By employing size-exclusion chromatography and electrospray ionization mass spectrometry, the characteristics of the oxidative degradation products of the HS were also monitored. Our study showed that the allosteric behaviour of the VP enzyme promotes a high level of regulation of activity during the breakdown of model and industrial ligninolytic substrates. The work was extended to examine the kinetics of breakdown of industrial wastes (effluent from a pulp and paper plant, and fouled membrane solids extracted from a ground water treatment membrane) revealing unique, VP-mediated, kinetic responses. This work demonstrates that iTC can be successfully employed to study the kinetic properties of VP enzymes in order to devise reaction conditions optimized for oxidative degradation of HS present in materials used in a wide range of industries. PMID:24631722

  15. Technique for determination of accurate heat capacities of volatile, powdered, or air-sensitive samples using relaxation calorimetry

    NASA Astrophysics Data System (ADS)

    Marriott, Robert A.; Stancescu, Maria; Kennedy, Catherine A.; White, Mary Anne

    2006-09-01

    We introduce a four-step technique for the accurate determination of the heat capacity of volatile or air-sensitive samples using relaxation calorimetry. The samples are encapsulated in a hermetically sealed differential scanning calorimetry pan, in which there is an internal layer of Apiezon N grease to assist thermal relaxation. Using the Quantum Design physical property measurement system to investigate benzoic acid and copper standards, we find that this method can lead to heat capacity determinations accurate to ±2% over the temperature range of 1-300K, even for very small samples (e.g., <10mg and contributing ca. 20% to the total heat capacity).

  16. An investigation of student thinking regarding calorimetry, entropy, and the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Christensen, Warren Michael

    This thesis constitutes an investigation into student understanding of concepts in thermal physics in an introductory calculus-based university physics course. Nearly 90% of students enrolled in the course had previous exposure to thermodynamics concepts in chemistry and/or high-school physics courses. The two major thrusts of this work are (1) an exploration of student approaches to solving calorimetry problems involving two substances with differing specific heats, and (2) a careful probing of student ideas regarding certain aspects of entropy and the second law of thermodynamics. We present extensive free-response, interview, and multiple-choice data regarding students' ideas, collected both before and after instruction from a diverse set of course semesters and instructors. For topics in calorimetry, we found via interviews that students frequently get confused by, or tend to overlook, the detailed proportional reasoning or algebraic procedures that could lead to correct solutions. Instead, students often proceed with semi-intuitive reasoning that at times may be productive, but more often leads to inconsistencies and non-uniform conceptual understanding. Our investigation of student thinking regarding entropy suggests that prior to instruction, students have consistent and distinct patterns of incorrect or incomplete responses that often persist despite deliberate and focused efforts by the instructor. With modified instruction based on research-based materials, significant learning gains were observed on certain key concepts, e.g., that the entropy of the universe increases for all non-ideal processes. The methodology for our work is described, the data are discussed and analyzed, and a description is given of goals for future work in this area.

  17. Accelerating Particles with Plasma

    SciTech Connect

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  18. Improved plasma accelerator

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  19. Combustion in an acceleration field: A survey of Soviet literature

    NASA Technical Reports Server (NTRS)

    Radloff, S. J.; Osborn, J. R.

    1980-01-01

    The effect of an acceleration field on the burning rate of a solid propellant was measured from -900g's to +1000g's using both double base and ammonium perchlorate based propellants. The acceleration fields were simulated using a centrifuge device and the burning rate was recorded. Both metalized and non-metalized variations of each propellant were tested and it was found that acceleration fields affect the burning rate. For the most part the theoretical predictions and the experimental results agreed.

  20. Influence of the ambient acceleration field upon acute acceleration tolerance in chickens

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Spangler, W. L.; Rhode, E. A.; Burton, R. R.

    1979-01-01

    The paper measured the acceleration tolerance of domestic fowl (Rhode Island Red cocks), acutely exposed to a 6 Gz field, as the time over which a normal heart rate can be maintained. This period of circulatory adjustment ends abruptly with pronounced bradycardia. For chickens which previously have been physiologically adapted to 2.5 -G field, the acute acceleration tolerance is greatly increased. The influence of the ambient acceleration field on the adjustment of the circulatory system appears to be a general phenomenon.

  1. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  2. Far field acceleration

    SciTech Connect

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

  3. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  4. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  5. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  6. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  7. Spectroscopic evaluation of a freeze-dried vaccine during an accelerated stability study.

    PubMed

    Hansen, Laurent; Van Renterghem, Jeroen; Daoussi, Rim; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2016-07-01

    This research evaluates a freeze-dried live, attenuated virus vaccine during an accelerated stability study using Near Infrared (NIR) and Fourier Transform Infrared (FTIR) spectroscopy in addition to the traditional quality tests (i.e., potency assay and residual moisture analysis) and Modulated Differential Scanning Calorimetry (MDSC). Therefore, freeze-dried live, attenuated virus vaccines were stored during four weeks at 4°C (i.e., recommended storage condition) and at 37°C (i.e., accelerated storage condition) and weekly analyzed using these techniques. The potency assay showed that the virus titer decreased in two phases when the samples were stored at 37°C. The highest titer loss occurred during the first week storage at 37°C after which the degradation rate decreased. Both the residual moisture content and the relaxation enthalpy also increased according to this two-phase pattern during storage at 37°C. In order to evaluate the virus and its interaction with the amorphous stabilizer in the formulation (trehalose), the NIR spectra were analyzed via principal component analysis (PCA) using the amide A/II band (5029-4690cm(-1)). The FTIR spectra were also analyzed via PCA using the amide III spectral range (1350-1200cm(-1)). Analysis of the amide A/II band in the NIR spectra revealed that the titer decrease during storage was probably linked to a change of the hydrogen bonds (i.e., interaction) between the virus proteins and the amorphous trehalose. Analyzing the amide III band (FTIR spectra) showed that the virus destabilization was coupled to a decrease of the coated proteins β turn and an increase of α helix. During storage at 4°C, the titer remained constant, no enthalpic relaxation was observed and neither the Amide A/II band (NIR spectra) nor the Amide III band (FTIR spectra) varied. PMID:27102305

  8. Irreversible Thermal Denaturation of β-Hemocyanin of Helix pomatia and its Substructures Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Idakieva, Krassimira; Gielens, Constant; Siddiqui, Nurul I.; Doumanova, Lyubka; Vasseva, Boyka; Kostov, Georgi; Shnyrov, Valery L.

    2007-09-01

    The thermal denaturation of β -hemocyanin from the gastropod Helix pomatia (β -HpH) at neutral pH was studied by means of differential scanning calorimetry (DSC). The denaturation was completely irreversible as judged by the absence of any endotherm on rescanning previously scanned samples. Two transitions, with apparent transition temperatures (Tm) of ca. 84 °C (main transition) and ca. 88 °C (minor transition), were detected by DSC in 20 mM MOPS buffer, containing 0.1 M NaCl, 5mM CaCl2 and 5 mM MgCl2 at pH 7.2 (buffer A), using a heating rate of 1.0 Kmin-1. Both Tm values were dependent on the scanning rate, suggesting that the thermal denaturation of β -HpH is a kinetically controlled process. The Tm and specific enthalpy values (ΔHcal) for the thermal denaturation of β -HpH were found to be independent of the protein concentration, indicating that the dissociation of the protein into monomers does not take place before the rate-determining step of the process of thermal unfolding started. A successive annealing procedure was applied to obtain the experimental deconvolution of the irreversible thermal transitions. These transitions are tentatively attributed to the denaturation of, respectively, the wall (main transition) and the collar of the β -HpH molecule. The activation energies (EA) of both transitions were found to be similar (about 500 kJ mol-1). In 130 mM glycine/NaOH buffer, pH 9.6 (buffer B), with β -HpH dissociated into subunits, the calorimetric profile had a more complex character. This could be ascribed to a different stability of the functional units (FUs) constituting the β -HpH subunit. FU d, which in the cylindrical didecameric β -HpH molecule is located in the wall, was markedly less stable than FU g, which belongs to the collar. The thermal denaturation of FUs d and g was described by the two-state irreversible model. On the basis of this model, the parameters of the Arrhenius equation were calculated.

  9. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  10. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  11. A Survey of Educational Acceleration Practices in Canada

    ERIC Educational Resources Information Center

    Kanevsky, Lannie

    2011-01-01

    A nationwide survey of Canadian school districts was undertaken to determine the extent to which 18 forms of acceleration were permitted and practiced. Of the high enrollment provinces, BC school districts' participation rates were highest in the most types of acceleration. A surprising number of districts did not allow some forms of acceleration.…

  12. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  13. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  14. Dissolution Rate Enhancement of Clarithromycin Using Ternary Ground Mixtures: Nanocrystal Formation

    PubMed Central

    Shahbaziniaz, Malihe; Foroutan, Seyed Mohsen; Bolourchian, Noushin

    2013-01-01

    Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight ratios of CLA: SLS: PVP were ground in a dry process by planetary ball mill using different grinding ball size. Following the dissolution rate study, physical properties of the best dissolved co-ground formulation was studied. The accelerated stability studies were also conducted on the co-ground formulation. The results revealed that the dissolution rate of ternary ground mixtures was much higher than that of the intact drug (p < 0.001). Decreasing the grinding ball size and weight with the same rotation speed resulted in particles with decreased dissolution. On the other hand, increasing the PVP concentration in the formulations reduced the drug dissolution. Dissolution efficiencies (DE10 and DE30) for the best dissolved formulation, which consisted of the equal ratio of each co-ground component, were 8.7 and 5 folds higher than the untreated CLA, respectively. This formulation formed nanocrystals with enhanced solubility after dispersing in water. X-ray diffraction, differential scanning calorimetry and infrared spectrophotometry confirmed no chemical interaction and phase transition during the process. Accelerated stability studies confirmed that the co-ground mixture almost remained unchanged in terms of dissolution rate, drug assay and particle size after exposing in stability conditions for three months. PMID:24523739

  15. Dissolution rate enhancement of clarithromycin using ternary ground mixtures: nanocrystal formation.

    PubMed

    Shahbaziniaz, Malihe; Foroutan, Seyed Mohsen; Bolourchian, Noushin

    2013-01-01

    Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight ratios of CLA: SLS: PVP were ground in a dry process by planetary ball mill using different grinding ball size. Following the dissolution rate study, physical properties of the best dissolved co-ground formulation was studied. The accelerated stability studies were also conducted on the co-ground formulation. The results revealed that the dissolution rate of ternary ground mixtures was much higher than that of the intact drug (p < 0.001). Decreasing the grinding ball size and weight with the same rotation speed resulted in particles with decreased dissolution. On the other hand, increasing the PVP concentration in the formulations reduced the drug dissolution. Dissolution efficiencies (DE10 and DE30) for the best dissolved formulation, which consisted of the equal ratio of each co-ground component, were 8.7 and 5 folds higher than the untreated CLA, respectively. This formulation formed nanocrystals with enhanced solubility after dispersing in water. X-ray diffraction, differential scanning calorimetry and infrared spectrophotometry confirmed no chemical interaction and phase transition during the process. Accelerated stability studies confirmed that the co-ground mixture almost remained unchanged in terms of dissolution rate, drug assay and particle size after exposing in stability conditions for three months. PMID:24523739

  16. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  17. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R.T.; Buksa, J.; Houts, M.

    1994-09-01

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  18. Kinetics of accelerator driven devices

    SciTech Connect

    Perry, R. T.; Buksa, John; Houts, Michael

    1995-09-15

    Kinetic calculations were made to show that subcritical accelerator driven devices are robust and stable. The calculations show that large changes in reactivity that would lead to an uncontrollable excursion in a reactor would lead only to a new power level in a subcritical device. Calculations were also made to show the rate of power changes resulting from startup and shutdown, and that methods also exist for continuously monitoring the reactivity of a subcritical system.

  19. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  20. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  1. Thermodynamic characteristics of the acid-base equilibria of taurine in aqueous solutions, according to calorimetry data

    NASA Astrophysics Data System (ADS)

    Gridchin, S. N.; Shekhanov, R. F.; Pyreu, D. F.

    2015-02-01

    Enthalpies of the neutralization and protonation of taurine (HL) are measured by direct calorimetry at 298.15 K and ionic strengths of 0.3, 0.5, and 1.0 (KNO3). The standard thermodynamic characteristics of HL protolytic equilibria are calculated.

  2. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  3. Acceleration in astrophysics

    SciTech Connect

    Colgate, S.A.

    1993-12-31

    The origin of cosmic rays and applicable laboratory experiments are discussed. Some of the problems of shock acceleration for the production of cosmic rays are discussed in the context of astrophysical conditions. These are: The presumed unique explanation of the power law spectrum is shown instead to be a universal property of all lossy accelerators; the extraordinary isotropy of cosmic rays and the limited diffusion distances implied by supernova induced shock acceleration requires a more frequent and space-filling source than supernovae; the near perfect adiabaticity of strong hydromagnetic turbulence necessary for reflecting the accelerated particles each doubling in energy roughly 10{sup 5} to {sup 6} scatterings with negligible energy loss seems most unlikely; the evidence for acceleration due to quasi-parallel heliosphere shocks is weak. There is small evidence for the expected strong hydromagnetic turbulence, and instead, only a small number of particles accelerate after only a few shock traversals; the acceleration of electrons in the same collisionless shock that accelerates ions is difficult to reconcile with the theoretical picture of strong hydromagnetic turbulence that reflects the ions. The hydromagnetic turbulence will appear adiabatic to the electrons at their much higher Larmor frequency and so the electrons should not be scattered incoherently as they must be for acceleration. Therefore the electrons must be accelerated by a different mechanism. This is unsatisfactory, because wherever electrons are accelerated these sites, observed in radio emission, may accelerate ions more favorably. The acceleration is coherent provided the reconnection is coherent, in which case the total flux, as for example of collimated radio sources, predicts single charge accelerated energies much greater than observed.

  4. ACCELERATION OF SMALL ASTROPHYSICAL GRAINS DUE TO CHARGE FLUCTUATIONS

    SciTech Connect

    Ivlev, A. V.; Morfill, G. E.; Lazarian, A.; Hoang, Thiem; Tsytovich, V. N.; De Angelis, U.

    2010-11-01

    We discuss a novel mechanism of dust acceleration which may dominate for particles smaller than {approx}0.1 {mu}m. The acceleration is caused by their direct electrostatic interactions arising from fluctuations of grain charges. The energy sources for the acceleration are the irreversible plasma processes occurring on the grain surfaces. We show that this mechanism of charge-fluctuation-induced acceleration likely affects the rate of grain coagulation and shattering of the population of small grains.

  5. Overview of SNS accelerator shielding analyses

    SciTech Connect

    Popova, I.; Gallmeier, F. X.; Ferguson, P.; Iverson, E.; Lu, W.

    2012-07-01

    The Spallation Neutron Source is an accelerator driven neutron scattering facility for materials research. During all phases of SNS development, including design, construction, commissioning and operation, extensive neutronics work was performed in order to provide adequate shielding, to assure safe facility operation from radiation protection point of view, and to optimize performance of the accelerator and target facility. Presently, most of the shielding work is concentrated on the beam lines and instrument enclosures to prepare for commissioning, safe operation and adequate radiation background in the future. Although the accelerator is built and in operation mode, there is extensive demand for shielding and activation analyses. It includes redesigning some parts of the facility, facility upgrades, designing additional structures, storage and transport containers for accelerator structures taken out of service, and performing radiation protection analyses and studies on residual dose rates inside the accelerator. (authors)

  6. Plasma inverse transition acceleration

    SciTech Connect

    Xie, Ming

    2001-06-18

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood, and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.

  7. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  8. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  9. Space Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This training video, presented by the Lewis Research Center's Space Experiments Division, gives a background and detailed instructions for preparing the space acceleration measurement system (SAMS) for use. The SAMS measures, conditions, and records forces of low gravity accelerations, and is used to determine the effect of these forces on various experiments performed in microgravity. Inertial sensors are used to measure positive and negative acceleration over a specified frequency range. The video documents the SAMS' uses in different configurations during shuttle missions.

  10. Wake field accelerators

    SciTech Connect

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered. (LEW)

  11. Accelerating into the future

    NASA Astrophysics Data System (ADS)

    Murray, Cherry

    2009-05-01

    Accelerator science has traditionally been associated with high-energy physics and nuclear physics. But the use of accelerators in other areas of science, as well as in medicine and industry, is steadily growing. Accelerators are now, for example, used to treat cancer using proton therapy, which can deposit radiation onto a tumour while causing much less damage to surrounding healthy tissue than with other treatment techniques.

  12. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. Miniaturization Techniques for Accelerators

    SciTech Connect

    Spencer, James E.

    2003-05-27

    The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

  15. A study of the use of lead fluoride for electromagnetic calorimetry

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.; Weingarten, A.B.; Anderson, D.F.; Ramberg, E.J.; Kuno, Y.; Macdonald, J.A.; Konaka, A.; Hutcheon, D.A.

    1992-12-31

    A study has been made on the properties of lead fluoride as a Cherenkov material for use in electromagnetic calorimetry. A prototype calorimeter module consisting of a 5 {times} 5 array of 2.1 {times} 2.1 {times} 18.5 cm{sup 3} crystals has been built and tested in a test beam at the Brookhaven AGS. Results are given on energy resolution, shower size and e/{pi} separation for electrons and pions in the range from 1--4 GeV. The light output has been measured to give {approx_gt} 1000 photoelectrons per MeV in good quality crystals, and to provide useful signals down to as low as 32 MeV. Measurements were also made on radiation damage in lead fluoride using {sup 60}Co gamma rays and high energy ionizing particles, as well as on thermoluminescence after irradiation. It was found that only modest damage occurs up to a level of {approximately} 30 Krad in large, calorimeter size crystals, and that the damage can be easily removed by optical bleaching.

  16. A study of the use of lead fluoride for electromagnetic calorimetry

    SciTech Connect

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.; Weingarten, A.B. ); Anderson, D.F.; Ramberg, E.J. ); Kuno, Y.; Macdonald, J.A.; Konaka, A.; Hutcheon, D.A. )

    1992-01-01

    A study has been made on the properties of lead fluoride as a Cherenkov material for use in electromagnetic calorimetry. A prototype calorimeter module consisting of a 5 [times] 5 array of 2.1 [times] 2.1 [times] 18.5 cm[sup 3] crystals has been built and tested in a test beam at the Brookhaven AGS. Results are given on energy resolution, shower size and e/[pi] separation for electrons and pions in the range from 1--4 GeV. The light output has been measured to give [approx gt] 1000 photoelectrons per MeV in good quality crystals, and to provide useful signals down to as low as 32 MeV. Measurements were also made on radiation damage in lead fluoride using [sup 60]Co gamma rays and high energy ionizing particles, as well as on thermoluminescence after irradiation. It was found that only modest damage occurs up to a level of [approximately] 30 Krad in large, calorimeter size crystals, and that the damage can be easily removed by optical bleaching.

  17. AC Calorimetry and Thermophysical Properties of Bulk Glass-Forming Metallic Liquids

    NASA Technical Reports Server (NTRS)

    Johnson, William L.

    2000-01-01

    Thermo-physical properties of two bulk metallic glass forming alloys, Ti34Zr11Cu47Ni8 (VIT 101) and Zr57Nb5Ni12.6Al10CU15.4 (VIT 106), were investigated in the stable and undercooled melt. Our investigation focused on measurements of the specific heat in the stable and undercooled liquid using the method of AC modulation calorimetry. The VIT 106 exhibited a maximum undercooling of 140 K in free radiative cooling. Specific heat measurements could be performed in stable melt down to an undercooling of 80 K. Analysis of the specific heat data indicate an anomaly near the equilibrium liquidus temperature. This anomaly is also observed in y the temperature dependencies of the external relaxation time, the specific volume, and the surface tension; it is tentatively attributed to a phase separation in the liquid state. The VIT 101 specimen exhibited a small undercooling of about 50 K. Specific heat measurements were performed in the stable and undercooled melt. These various results will be combined with ground based work such as the measurement of T-T-T curves in the electrostatic levitator and low temperature viscosity and specific heat measurements for modeling the nucleation kinetics of these alloys.

  18. Alternative Calorimetry Based on the Photothermoelectric (PTE) Effect: Application to Magnetic Nanofluids

    NASA Astrophysics Data System (ADS)

    Dadarlat, Dorin; Misse, Patrick R. N.; Maignan, Antoine; Guilmeau, Emmanuel; Turcu, Rodica; Vekas, Ladislau; Tudoran, Cristian; Depriester, Michael; Sahraoui, Abdelhak Hadj

    2015-09-01

    Photothermoelectric (PTE) calorimetry was applied for the first time for thermal characterization of liquids. Both back and front detection configurations, together with the thermal-wave resonator cavity (TWRC) scanning procedure, have been used in order to measure the thermal diffusivity and thermal effusivity of a particular magnetic nanofluid: carrier liquid—transformer oil, surfactant—oleic acid, nanoparticles' type—{Fe}3{O}4.The investigations were performed as a function of the nanoparticles' concentration. Small increases of thermal diffusivity (from 9.06× 10^{-8} {m}2{\\cdot } {s}^{-1} up to 9.84× 10^{-8} {m}2{\\cdot } {s}^{-1}) and thermal effusivity (from 450 {W}{\\cdot } {s}^{1/2}{\\cdot } {m}^{-2}{\\cdot } {K}^{-1} up to 520 {W}{\\cdot } {s}^{1/2}{\\cdot } {m}^{-2}{\\cdot } {K}^{-1}) with increasing concentration of {Fe}3{O}4 nanoparticles (from 0 up to 0.623 mg {Fe}3{O}4/{ml} fluid) were observed. The comparison with the photopyroelectric (PPE) method shows that PTE and PPE give similar results but, for the moment, PPE is more accurate.

  19. Interaction of oridonin with human serum albumin by isothermal titration calorimetry and spectroscopic techniques.

    PubMed

    Li, Xiangrong; Yang, Zhenhua

    2015-05-01

    Oridonin has been traditionally and widely used for treatment of various human diseases due to its uniquely biological, pharmacological and physiological functions. In this study, the interaction between oridonin and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC), in combination with fluorescence spectroscopy and UV-vis absorption spectroscopy. We found that the hydrogen bond and van der Waals force are the major binding forces in the binding of oridonin to HSA. The binding of oridonin to HSA is driven by favorable enthalpy and unfavorable entropy. Oridonin can quench the fluorescence of HSA through a static quenching mechanism. The binding constant between oridonin and HSA is moderate and the equilibrium fraction of unbound oridonin f(u) > 60%. Binding site I is found to be the primary binding site for oridonin. Additionally, oridonin may induce conformational changes of HSA and affect its biological function as the carrier protein. The results of the current study suggest that oridonin can be stored and transported from the circulatory system to reach its target organ to provide its therapeutic effects. But its side-effect in the clinics cannot be overlook. The study provides an accurate and full basic data for clarifying the binding mechanism of oridonin with HSA and is helpful for understanding its effect on protein function during the blood transportation process and its biological activity in vivo. PMID:25816984

  20. The Enthalpy of Decomposition of Hydrogen Peroxide: A General Chemistry Calorimetry Experiment

    NASA Astrophysics Data System (ADS)

    Marzzacco, Charles J.

    1999-11-01

    A calorimetry experiment involving the catalytic decomposition of aqueous hydrogen peroxide is presented. The experiment is simple, inexpensive, and colorful. In its simplest form, it can be performed in less than one hour; therefore, it is quite suitable for high school labs, which often have time restrictions. The chemicals required are household or commercial 3% H2O2(aq) and 0.50 M Fe(NO3)3(aq). Styrofoam cup calorimeters and thermometers with a range from 20 to 50 oC are also required. Ideally, the thermometers should be precise to 0.01 oC. The temperature of the H2O2 solution is monitored before and after the Fe(NO3)3 catalyst is added. The addition of the catalyst results in a color change and the evolution of heat and bubbles of oxygen. At the conclusion of the reaction, the color of the reaction mixture returns to that of the original Fe(NO3)3 solution. The heat change for the reaction is determined from the temperature change, the specific heat of the solution, and the calorimeter constant. The experimental enthalpy change for the reaction is in excellent agreement with the literature value.

  1. Effect of temperature on studtite stability: Thermogravimetry and differential scanning calorimetry investigations

    NASA Astrophysics Data System (ADS)

    Rey, A.; Casas, I.; Giménez, J.; Quiñones, J.; de Pablo, J.

    2009-03-01

    The main objective of this work is the study of the influence of temperature on the stability of the uranyl peroxide tetrahydrate (UO2O2 · 4H2O) studtite, which may form on the spent nuclear fuel surface as a secondary solid phase. Preliminary results on the synthesis of studtite in the laboratory at different temperatures have shown that the solid phases formed when mixing hydrogen peroxide and uranyl nitrate depends on temperature. Studtite is obtained at 298 K, meta-studtite (UO2O2 · 2H2O) at 373 K, and meta-schoepite (UO3 · nH2O, with n < 2) at 423 K. Because of the temperature effect on the stability of uranyl peroxides, a thermogravimetric (TG) study of studtite has been performed. The main results obtained are that three transformations occur depending on temperature. At 403 K, studtite transforms to meta-studtite, at 504 K, meta-studtite transforms to meta-schoepite, and, finally, at 840 K, meta-schoepite transforms to U3O8. By means of the differential scanning calorimetry the molar enthalpies of the transformations occurring at 403 and 504 K have been determined to be -42 ± 10 and -46 ± 2 kJ mol-1, respectively.

  2. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    PubMed

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result. PMID:25618814

  3. Application of isothermal titration calorimetry as a tool to study natural product interactions.

    PubMed

    Callies, O; Hernández Daranas, A

    2016-07-28

    Covering: up to February 2015Over the past twenty-five years, isothermal titration calorimetry (ITC) has become a potent tool for the study a great variety of molecular interactions. This technique is able to provide a complete thermodynamic profile of an interaction process in a single experiment, with a series of advantages in comparison to other comparable techniques, such as less amount of sample or no need of chemical modification or labelling. It is thus not surprising that ITC has been applied to study the manifold types of interactions of natural products to get new insights into the molecular key factors implied in the complexation process of this type of compounds. This review provides an overview over the applications of ITC as a potent tool to investigate interactions of natural products with proteins, nucleic acids, oligosaccharides, and other types of receptors. The examples have been selected depending on the impact that this technique had during the investigation and revision of the interactions involved in the bioactivity of a compound, lead optimization or technical applications. PMID:27186603

  4. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  5. Comparative continuous-indirect-calorimetry study of two carbohydrates with different glycemic indices.

    PubMed

    Ritz, P; Krempf, M; Cloarec, D; Champ, M; Charbonnel, B

    1991-11-01

    Six healthy young men were studied by indirect calorimetry for 6 h after eating a meal composed of glucose or manioc starch (equivalent to 50 g dextrose). Blood was drawn every 30 min for 6 h to measure plasma glucose, free fatty acid (FFA), and insulin concentrations. The glycemic index of the starch was 57%. Plasma insulin and glucose concentrations were significantly higher from 150 to 210 min and FFA concentrations remained significantly lower from 210 to 360 min after starch than after glucose. Carbohydrate oxidation rose from a similar initial concentration for glucose and starch, to a constant concentration until 200 min before becoming significantly higher for the starch load until the end of the test. Total glucose oxidation was significantly higher with starch. Total fat oxidation did not differ after the two loads. A negative correlation was found between glucose oxidation and plasma FFA concentrations. Use of low-glycemic-index carbohydrates increases carbohydrate oxidation because of lower plasma FFA concentrations and fat oxidation. PMID:1951156

  6. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies.

    PubMed

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper. PMID:27089183

  7. Sub-picowatt resolution calorimetry with niobium nitride thin-film thermometer

    SciTech Connect

    Dechaumphai, Edward; Chen, Renkun

    2014-09-15

    High-resolution calorimetry has many important applications such as probing nanoscale thermal transport and studying the thermodynamics of biological and chemical systems. In this work, we demonstrated a calorimeter with an unprecedentedly high resolution at room temperature using a high-performance resistive thermometry material, niobium nitride (NbN{sub x}). Based on a theoretical analysis, we first showed that the heat flux resolution of a resistive-thermometry based calorimeter depends on the parasitic thermal conductance of the device and the temperature coefficient of resistance (TCR) of the thermometer, when the noise is limited by the Johnson noise. Based on this analysis, we then developed a calorimeter using NbN{sub x} as the thermometry material because it possesses both high TCR (∼0.67%/K) and a low thermal conductivity (k ∼ 1.1 W/m K). This calorimeter, when used with the modulated heating scheme, demonstrated an unprecedentedly high power resolution of 0.26 pW at room temperature. In addition, NbN{sub x} based resistive thermometry can also be extended to cryogenic temperature, where the TCR is shown to be significantly higher.

  8. CALOCUBE: an approach to high-granularity and homogenous calorimetry for space based detectors

    NASA Astrophysics Data System (ADS)

    Bongi, M.; Adriani, O.; Albergo, S.; Auditore, L.; Bagliesi, M. G.; Berti, E.; Bigongiari, G.; Boezio, M.; Bonechi, L.; Bonechi, S.; Bonvicini, V.; Bottai, S.; Brogi, P.; Carotenuto, G.; Cassese, A.; Castellini, G.; Cattaneo, P. W.; Cauz, D.; Cumani, P.; D'Alessandro, R.; Detti, S.; Fasoli, M.; Gregorio, A.; Lamberto, A.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Mezzasalma, A.; Miritello, M.; Mori, N.; Papini, P.; Pauletta, G.; Rappazzo, G. F.; Rappoldi, A.; Ricciarini, S.; Spillantini, P.; Starodubtsev, O.; Sulaj, A.; Tiberio, A.; Trifirò, A.; Trimarchi, M.; Vannuccini, E.; Vedda, A.; Zampa, G.; Zampa, N.; Zerbo, B.

    2015-02-01

    Future space experiments dedicated to the observation of high-energy gamma and cosmic rays will increasingly rely on a highly performing calorimetry apparatus, and their physics performance will be primarily determined by the geometrical dimensions and the energy resolution of the calorimeter deployed. Thus it is extremely important to optimize its geometrical acceptance, the granularity, and its absorption depth for the measurement of the particle energy with respect to the total mass of the apparatus which is the most important constraint for a space launch. The proposed design tries to satisfy these criteria while staying within a total mass budget of about 1.6 tons. Calocube is a homogeneous calorimeter instrumented with Cesium iodide (CsI) crystals, whose geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is more than adequate for optimal electromagnetic particle identification and energy measurement, whilst the interaction length is at least suficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. The design forms the basis of a three-year R&D activity which has been approved and financed by INFN. An overall description of the system, as well as results from preliminary tests on particle beams will be described.

  9. Characterization of moisture-protective polymer coatings using differential scanning calorimetry and dynamic vapor sorption.

    PubMed

    Bley, O; Siepmann, J; Bodmeier, R

    2009-02-01

    The aim of this study was to evaluate the moisture-protective ability of different polymeric coatings. Free films and film-coated tablets (with cores containing freeze-dried garlic powder) were prepared using aqueous solutions/dispersions of hydroxypropyl methylcellulose (HPMC), Opadry AMB [a poly(vinylalcohol)-based formulation] and Eudragit E PO [a poly(methacrylate-methylmethacrylate)]. The water content of the systems upon open storage at 75% relative humidity (RH) and 22 degrees C (room temperature) was followed gravimetrically. Furthermore, polymer powders, free films and coated tablets were analyzed by differential scanning calorimetry (DSC) and dynamic vapor sorption (DVS). The type of polymer strongly affected the resulting water uptake kinetics of the free films and coated tablets. DSC analysis revealed whether or not significant physical changes occurred in the coatings during storage, and whether the water vapor permeability was water concentration dependent. Using DVS analysis the critical glass transition RH of Opadry AMB powder and Opadry AMB-coated tablets at 25 degrees C could be determined: 44.0% and 72.9% RH. Storage below these threshold values significantly reduces water penetration. Thus, DVS and DSC measurements can provide valuable information on the nature of polymers used for moisture protection. PMID:18481311

  10. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry.

    PubMed

    Kocherbitov, Vitaly; Ulvenlund, Stefan; Kober, Maria; Jarring, Kjell; Arnebrant, Thomas

    2008-03-27

    The hydration of two different polymorphs of microcrystalline cellulose (cellulose I and II), as well as the hydration of amorphous cellulose was studied using water sorption calorimetry, gravimetric water vapor sorption, nitrogen sorption, and X-ray powder diffraction. Amorphous cellulose was prepared by means of ball-milling of microcrystalline cellulose (MCC). Whereas X-ray data showed the untreated MCC to consist of cellulose I, the amorphous cellulose was found to recrystallize into cellulose II after contact with water or water vapor at relative humidities (RHs) above 90%. Sorption isotherms show an increase of water sorption in the sequence cellulose I

  11. Application of isothermal titration calorimetry and column chromatography for identification of biomolecular targets.

    PubMed

    Zhou, Xingding; Kini, R Manjunatha; Sivaraman, J

    2011-02-01

    This protocol describes a method for identifying unknown target proteins from a mixture of biomolecules for a given drug or a lead compound. This method is based on a combination of chromatography and isothermal titration calorimetry (ITC) where ITC is used as a tracking tool. The first step involves the use of ITC to confirm the binding of ligand to a component in the biomolecular mixture. Subsequently, the biomolecular mixture is fractionated by chromatography, and the binding of the ligand with individual fractions (or subfractions) is verified by ITC. The iteration of chromatographic purification on the fractions combined with ITC results in identifying the target protein. This method is useful when the target protein or ligand is unknown and/or not amenable to labeling, chemical modification or immobilization. This protocol has been successfully used by our team and by others to identify both low-abundance and highly abundant target proteins present in biomolecular mixtures. With this protocol, it takes approximately 3-5 d to identify the target protein from a mixture. PMID:21293457

  12. High Temperature Heat Capacity of Alloy D9 Using Drop Calorimetry Based Enthalpy Increment Measurements

    NASA Astrophysics Data System (ADS)

    Banerjee, Aritra; Raju, S.; Divakar, R.; Mohandas, E.

    2007-02-01

    Alloy D9 is a void-swelling resistant nuclear grade austenitic stainless steel (SS) based on AISI type 316-SS in which titanium constitutes an added predetermined alloying composition. In the present study, the high-temperature enthalpy values of alloy D9 with three different titanium-to-carbon mass percent ratios, namely Ti/C = 4, 6, and 8, have been measured using inverse drop calorimetry in the temperature range from 295 to 1323 K. It is found that within the level of experimental uncertainty, the enthalpy values are independent of the Ti-C mass ratio. The temperature dependence of the isobaric specific heat C P is obtained by a linear regression of the measured enthalpy data. The measured C P data for alloy D9 may be represented by the following best-fit expression: C_P(J \\cdot kg^{-1}\\cdot K^{-1})= 431 + 17.7 × 10^{-2}T + 8.72 × 10^{-5}/T^2. It is found that the measured enthalpy and specific heat values exhibit good agreement with reported data on 316 and other related austenitic stainless steels.

  13. Prospects for true calorimetry on Kerr black holes in core-collapse supernovae and mergers

    SciTech Connect

    Putten, Maurice H. P. M. van; Kanda, Nobuyuki; Tagoshi, Hideyuki; Tatsumi, Daisuke; Masa-Katsu, Fujimoto; Della Valle, Massimo

    2011-02-15

    Observational evidence for black hole spin down has been found in the normalized light curves of long gamma-ray bursts in the BATSE catalog. Over the duration T{sub 90} of the burst, matter swept up by the central black hole is susceptible to nonaxisymmetries, producing gravitational radiation with a negative chirp. A time-sliced matched filtering method is introduced to capture phase coherence on intermediate time scales, {tau}, here tested by the injection of templates into experimental strain noise, h{sub n}(t). For TAMA 300, h{sub n}(f){approx_equal}10{sup -21} Hz{sup -1/2} at f=1 kHz gives a sensitivity distance for a reasonably accurate extraction of the trajectory in the time-frequency domain of about D{approx_equal}0.07-0.10 Mpc for the spin down of black holes of mass M=10-12M{sub {center_dot}} with {tau}=1 s. Extrapolation to advanced detectors implies D{approx_equal}35-50 Mpc for h{sub n}(f){approx_equal}2x10{sup -24} Hz{sup -1/2} around 1 kHz, which will open a new window to rigorous calorimetry on Kerr black holes.

  14. Probing the binding of procyanidin B3 to human serum albumin by isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Li, Xiangrong; Yan, Yunhui

    2015-02-01

    Proanthocyanidins are a mixture of monomers, oligomers, and polymers of flavan-3-ols that are widely distributed in the plant kingdom. One of the most widely studied proanthocyanidins is procyanidin B3. In this study, the interaction between procyanidin B3 and human serum albumin (HSA) was investigated using isothermal titration calorimetry (ITC). Thermodynamic investigations reveal that the hydrogen bond and van der Waals force are the major binding forces in the binding of procyanidin B3 to HSA. The binding of procyanidin B3 to HSA is driven by favorable enthalpy and unfavorable entropy. The obtained binding constant for procyanidin B3 with HSA is in the intermediate range and the equilibrium fraction of unbound procyanidin B3 fu > 90% at the physiological concentration of HSA shows that procyanidin B3 can be stored and transported from the circulatory system to reach its target site. The stoichiometric binding number n approximately equals to 1, suggesting that one molecule of procyanidin B3 combines with one molecule of HSA and no more procyanidin B3 binding to HSA occurs at the concentration used in this study.

  15. Simulating SiD Calorimetry: Software Calibration Procedures and Jet Energy Resolution

    SciTech Connect

    Cassell, Ron; /SLAC

    2009-02-23

    Simulated calorimeter performance in the SiD detector is examined. The software calibration procedures are described, as well as the perfect pattern recognition PFA reconstruction. Performance of the SiD calorimeters is summarized with jet energy resolutions from calorimetry only, perfect pattern recognition and the SiD PFA algorithm. Presented at LCWS08[1]. Our objective is to simulate the calorimeter performance of the SiD detector, with and without a Particle Flow Algorithm (PFA). Full Geant4 simulations using SLIC[2] and the SiD simplified detector geometry (SiD02) are used. In this geometry, the calorimeters are represented as layered cylinders. The EM calorimeter is Si/W, with 20 layers of 2.5mm W and 10 layers of 5mm W, segmented in 3.5 x 3.5mm{sup 2} cells. The HAD calorimeter is RPC/Fe, with 40 layers of 20mm Fe and a digital readout, segmented in 10 x 10mm{sup 2} cells. The barrel detectors are layered in radius, while the endcap detectors are layered in z(along the beam axis).

  16. DCal: A custom integrated circuit for calorimetry at the International Linear Collider

    SciTech Connect

    Hoff, James R.; Mekkaoui, Abderrazek; Yarema, Ray; Drake, Gary; Repond, Jose; /Argonne

    2005-10-01

    A research and development collaboration has been started with the goal of producing a prototype hadron calorimeter section for the purpose of proving the Particle Flow Algorithm concept for the International Linear Collider. Given the unique requirements of a Particle Flow Algorithm calorimeter, custom readout electronics must be developed to service these detectors. This paper introduces the DCal or Digital Calorimetry Chip, a custom integrated circuit developed in a 0.25um CMOS process specifically for this International Linear Collider project. The DCal is capable of handling 64 channels, producing a 1-bit Digital-to-Analog conversion of the input (i.e. hit/no hit). It maintains a 24-bit timestamp and is capable of operating either in an externally triggered mode or in a self-triggered mode. Moreover, it is capable of operating either with or without a pipeline delay. Finally, in order to permit the testing of different calorimeter technologies, its analog front end is capable of servicing Particle Flow Algorithm calorimeters made from either Resistive Plate Chambers or Gaseous Electron Multipliers.

  17. Investigations of cosmetic treatments on high-pressure differential scanning calorimetry.

    PubMed

    Marsh, J M; Clarke, C J; Meinert, K; Dahlgren, R M

    2007-01-01

    High Pressure Differential Scanning Calorimetry (HPDSC) can be used to gain information on both the degree of crystallinity in the intermediate filaments (IFs) and the structural rigidity of the surrounding matrix or intermediate filament associated proteins (IFAP) of the hair cortex. We have used HPDSC to measure changes in denaturation temperature (T(D)) and enthalpy (deltaH(D)) of the crystalline components after treatment with bleach products. Literature reports suggest that a decrease in peak denaturation temperature is indicative of permanent damage to the hair. However, changing the rigidity of the matrix surrounding the IFs, by temporarily changing electrostatic interactions, should also result in a similar decrease in peak temperature. The complex nature of bleach formulations including oxidants, alkalizers and salts suggests that several of the components could have a non-permanent affect on salt bridges and hydrogen bonds and hence rigidity or viscosity of the matrix. We have compared the denaturation temperature with levels of lightening (dL) and tensile properties of the fiber after treatment both before and after removal of actives from the fiber. It is evident that the HPDSC results are strongly influenced by formulation components and that these changes are reversible with extensive washing or dialysis. Combined with tensile data, it is proposed that a decrease in T(D) and deltaH(D) following treatment with bleach products can be due to both permanent and reversible changes to either the intermediate filaments or intermediate filament associated proteins of the hair fiber. PMID:17728932

  18. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.

    PubMed

    Lyngsie, Gry; Penn, Chad J; Hansen, Hans C B; Borggaard, Ole K

    2014-10-01

    Phosphorus eutrophication of lakes and streams, coming from drained farmlands, is a serious problem in areas with intensive agriculture. Installation of phosphate (P) sorbing filters at drain outlets may be a solution. The aim of this study was to improve the understanding of reactions involved in P sorption by three commercial P sorbing materials, i.e. Ca/Mg oxide-based Filtralite-P, Fe oxide-based CFH-12 and Limestone in two particle sizes (2-1 mm and 1-0.5 mm), by means of isothermal titration calorimetry (ITC), sorption isotherms, sequential extractions and SEM-EDS. The results indicate that P retention by CFH is due to surface complexation by rapid formation of strong Fe-P bonds. In contrast, retention of P by Filtralite-P and Limestone strongly depends on pH and time and is interpreted due to formation of calcium phosphate precipitate(s). Consequently, CFH can unambiguously be recommended as P retention filter material in drain outlets, whereas the use of Filtralite-P and Limestone has certain (serious) limitations. Thus, Filtralite-P has high capacity to retain P but only at alkaline pH (pH ≥ 10) and P retention by Limestone requires long-time contact and a high ratio between sorbent and sorbate. PMID:24833525

  19. A Universal Method for Fishing Target Proteins from Mixtures of Biomolecules using Isothermal Titration Calorimetry

    SciTech Connect

    Zhou, X.; Sun, Q; Kini, R; Sivaraman, J

    2008-01-01

    The most challenging tasks in biology include the identification of (1) the orphan receptor for a ligand, (2) the ligand for an orphan receptor protein, and (3) the target protein(s) for a given drug or a lead compound that are critical for the pharmacological or side effects. At present, several approaches are available, including cell- or animal-based assays, affinity labeling, solid-phase binding assays, surface plasmon resonance, and nuclear magnetic resonance. Most of these techniques are not easy to apply when the target protein is unknown and the compound is not amenable to labeling, chemical modification, or immobilization. Here we demonstrate a new universal method for fishing orphan target proteins from a complex mixture of biomolecules using isothermal titration calorimetry (ITC) as a tracking tool. We took snake venom, a crude mixture of several hundred proteins/peptides, as a model to demonstrate our proposed ITC method in tracking the isolation and purification of two distinct target proteins, a major component and a minor component. Identities of fished out target proteins were confirmed by amino acid sequencing and inhibition assays. This method has the potential to make a significant advancement in the area of identifying orphan target proteins and inhibitor screening in drug discovery and characterization.

  20. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    PubMed

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids. PMID:22435356