Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression
2015-10-01
invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates
LoRusso, Patricia M; Canetta, Renzo; Wagner, John A; Balogh, Erin P; Nass, Sharyl J; Boerner, Scott A; Hohneker, John
2012-11-15
Cancer cells contain multiple genetic changes in cell signaling pathways that drive abnormal cell survival, proliferation, invasion, and metastasis. Unfortunately, patients treated with single agents inhibiting only one of these pathways--even if showing an initial response--often develop resistance with subsequent relapse or progression of their cancer, typically via the activation of an alternative uninhibited pathway. Combination therapies offer the potential for inhibiting multiple targets and pathways simultaneously to more effectively kill cancer cells and prevent or delay the emergence of drug resistance. However, there are many unique challenges to developing combination therapies, including devising and applying appropriate preclinical tests and clinical trial designs, prioritizing which combination therapies to test, avoiding overlapping toxicity of multiple agents, and overcoming legal, cultural, and regulatory barriers that impede collaboration among multiple companies, organizations, and/or institutions. More effective strategies to efficiently develop combination cancer therapies are urgently needed. Thus, the Institute of Medicine's National Cancer Policy Forum recently convened a workshop with the goal of identifying barriers that may be impeding the development of combination investigational cancer therapies, as well as potential solutions to overcome those barriers, improve collaboration, and ultimately accelerate the development of promising combinations of investigational cancer therapies. ©2012 AACR.
Zhao, Yawei; Cui, Lianzhi; Pan, Yue; Shao, Dan; Zheng, Xiao; Zhang, Fan; Zhang, Hansi; He, Kan; Chen, Li
2017-12-01
Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy-induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation. The transwell system was used to mimic the co-culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy-treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE 2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot. Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE 2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3-iPLA 2 -AA-COX-2-PGE 2 pathway by inhibiting the expression of iPLA 2 and COX-2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE 2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment. Our observation suggested that Berberine could inhibit the chemotherapy-induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation. © 2017 John Wiley & Sons Ltd.
Martínez-Cruz, Ana Belén; Santos, Mirentxu; Lara, M Fernanda; Segrelles, Carmen; Ruiz, Sergio; Moral, Marta; Lorz, Corina; García-Escudero, Ramón; Paramio, Jesús M
2008-02-01
Squamous cell carcinomas (SCC) represent the most aggressive type of nonmelanoma skin cancer. Although little is known about the causal alterations of SCCs, in organ-transplanted patients the E7 and E6 oncogenes of human papillomavirus, targeting the p53- and pRb-dependent pathways, have been widely involved. Here, we report the functional consequences of the simultaneous elimination of Trp53 and retinoblastoma (Rb) genes in epidermis using Cre-loxP system. Loss of p53, but not pRb, produces spontaneous tumor development, indicating that p53 is the predominant tumor suppressor acting in mouse epidermis. Although the simultaneous inactivation of pRb and p53 does not aggravate the phenotype observed in Rb-deficient epidermis in terms of proliferation and/or differentiation, spontaneous SCC development is severely accelerated in doubly deficient mice. The tumors are aggressive and undifferentiated and display a hair follicle origin. Detailed analysis indicates that the acceleration is mediated by premature activation of the epidermal growth factor receptor/Akt pathway, resulting in increased proliferation in normal and dysplastic hair follicles and augmented tumor angiogenesis. The molecular characteristics of this model provide valuable tools to understand epidermal tumor formation and may ultimately contribute to the development of therapies for the treatment of aggressive squamous cancer.
Baumgarten, Keith M; Oliver, Harvey A; Foley, Jack; Chen, Ding-Geng; Autenried, Peter; Duan, Shanzhong; Heiser, Patrick
2013-05-01
There have been few scientific studies that have examined usage of human growth hormone to accelerate recovery from injury. The hypothesis of this study was that human growth hormone would accelerate tendon-to-bone healing compared with control animals treated with placebo in a rat model of acute rotator cuff injury repair. Seventy-two rats underwent repair of acute rotator cuff injuries and were randomized into the following postoperative dosing regimens: placebo, and human growth hormone at 0.1, 1, 2, 5, and 10 mg/kg/day, administered subcutaneously once per day for fourteen days (Protocol 1). An additional twenty-four rats were randomized to receive either (1) placebo or (2) human growth hormone at 5 mg/kg, administered subcutaneously twice per day for seven days preoperatively and twenty-eight days postoperatively (Protocol 2). All rats were killed twenty-eight days postoperatively. Mechanical testing was performed. Ultimate stress, ultimate force, stiffness, energy to failure, and ultimate distension were determined. For Protocol 1, analysis of variance testing showed no significant difference between the groups with regard to ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension. In Protocol 2, ultimate force to failure was significantly worse in the human growth hormone group compared with the placebo group (21.1 ± 5.85 versus 26.3 ± 5.47 N; p = 0.035). Failure was more likely to occur through the bone than the tendon-bone interface in the human growth hormone group compared with the placebo group (p = 0.001). No significant difference was found for ultimate stress, ultimate force, stiffness, energy to failure, or ultimate distension between the groups in Protocol 2. In this rat model of acute tendon-bone injury repair, daily subcutaneous postoperative human growth hormone treatment for fourteen days failed to demonstrate a significant difference in any biomechanical parameter compared with placebo. Furthermore, subcutaneous administration of 5 mg/kg of human growth hormone twice daily from seven days preoperatively until twenty-eight days postoperatively demonstrated lower loads to ultimate failure and a higher risk of bone fracture failure compared with placebo.
Effects of Deployment Investment on the Growth of the Biofuels Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Bush, Brian W.
2013-12-01
In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less
Pleil, Joachim; Giese, Roger
2017-09-07
Dogs have been studied for many years as a medical diagnostic tool to detect a pre-clinical disease state by sniffing emissions directly from a human or an in vitro biological sample. Some of the studies report high sensitivity and specificity in blinded case-control studies. However, in these studies it is completely unknown as to which suites of chemicals the dogs detect and how they ultimately interpret this information amidst confounding background odors. Herein, we consider the advantages and challenges of canine olfaction for early (meaningful) detection of cancer, and propose an experimental concept to narrow the molecular signals used by the dog for sample classification to laboratory-based instrumental analysis. This serves two purposes; first, in contrast to dogs, analytical methods could be quickly up-scaled for high throughput sampling. Second, the knowledge gained from identifying probative chemicals could be helpful in learning more about biochemical pathways and disease progression. We focus on exhaled breath aerosol, arguing that the semi-volatile fraction should be given more attention. Ultimately, we conclude that the interaction between dog-based and instrument-based research will be mutually beneficial and accelerate progress towards early detection of cancer by breath analysis.
Jwa, Nam-Soo; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Yonekura, Masami; Han, Oksoo; Iwahashi, Hitoshi; Rakwal, Randeep
2006-01-01
Rice, a first cereal crop whose draft genome sequence from two subspecies (japonica-type cv. Nipponbare and indica-type 93-11) was available in 2002, along with its almost complete genome sequence in 2005, has drawn the attention of researchers worldwide because of its immense impact on human existence. One of the most critical research areas in rice is to discern the self-defense mechanism(s), an innate property of all living organisms. The last few decades have seen scattered research into rice responses to diverse environmental stimuli and stress factors. Our understanding on rice self-defense mechanism has increased considerably with accelerated research during recent years mainly due to identification and characterization of several defense/stress-related components, genes, proteins and secondary metabolites. As these identified components have been used to study the defense/stress pathways, their compilation in this review will undoubtedly help rice (and others) researchers to effectively use them as a potential marker for better understanding, and ultimately, in defining rice (and plant) self-defense response pathways.
Power Supplies for High Energy Particle Accelerators
NASA Astrophysics Data System (ADS)
Dey, Pranab Kumar
2016-06-01
The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.
Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.
Trumbore, Conrad N
2016-09-06
Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.
Roadmap for creating an accelerated three-year medical education program
Leong, Shou Ling; Cangiarella, Joan; Fancher, Tonya; Dodson, Lisa; Grochowski, Colleen; Harnik, Vicky; Hustedde, Carol; Jones, Betsy; Kelly, Christina; Macerollo, Allison; Reboli, Annette C.; Rosenfeld, Melvin; Rundell, Kristen; Thompson, Tina; Whyte, Robert; Pusic, Martin
2017-01-01
ABSTRACT Medical education is undergoing significant transformation. Many medical schools are moving away from the concept of seat time to competency-based education and introducing flexibility in the curriculum that allows individualization. In response to rising student debt and the anticipated physician shortage, 35% of US medical schools are considering the development of accelerated pathways. The roadmap described in this paper is grounded in the experiences of the Consortium of Accelerated Medical Pathway Programs (CAMPP) members in the development, implementation, and evaluation of one type of accelerated pathway: the three-year MD program. Strategies include developing a mission that guides curricular development – meeting regulatory requirements, attaining institutional buy-in and resources necessary to support the programs, including student assessment and mentoring – and program evaluation. Accelerated programs offer opportunities to innovate and integrate a mission benefitting students and the public. Abbreviations: CAMPP: Consortium of accelerated medical pathway programs; GME: Graduate medical education; LCME: Liaison committee on medical education; NRMP: National residency matching program; UME: Undergraduate medical education PMID:29117817
Roadmap for creating an accelerated three-year medical education program.
Leong, Shou Ling; Cangiarella, Joan; Fancher, Tonya; Dodson, Lisa; Grochowski, Colleen; Harnik, Vicky; Hustedde, Carol; Jones, Betsy; Kelly, Christina; Macerollo, Allison; Reboli, Annette C; Rosenfeld, Melvin; Rundell, Kristen; Thompson, Tina; Whyte, Robert; Pusic, Martin
2017-01-01
Medical education is undergoing significant transformation. Many medical schools are moving away from the concept of seat time to competency-based education and introducing flexibility in the curriculum that allows individualization. In response to rising student debt and the anticipated physician shortage, 35% of US medical schools are considering the development of accelerated pathways. The roadmap described in this paper is grounded in the experiences of the Consortium of Accelerated Medical Pathway Programs (CAMPP) members in the development, implementation, and evaluation of one type of accelerated pathway: the three-year MD program. Strategies include developing a mission that guides curricular development - meeting regulatory requirements, attaining institutional buy-in and resources necessary to support the programs, including student assessment and mentoring - and program evaluation. Accelerated programs offer opportunities to innovate and integrate a mission benefitting students and the public. CAMPP: Consortium of accelerated medical pathway programs; GME: Graduate medical education; LCME: Liaison committee on medical education; NRMP: National residency matching program; UME: Undergraduate medical education.
NASA Astrophysics Data System (ADS)
Fei, Jiangfeng
2013-03-01
In 2006, JDRF launched the Artificial Pancreas Project (APP) to accelerate the development of a commercially-viable artificial pancreas system to closely mimic the biological function of the pancreas individuals with insulin-dependent diabetes, particularly type 1 diabetes. By automating detection of blood sugar levels and delivery of insulin in response to those levels, an artificial pancreas has the potential to transform the lives of people with type 1 diabetes. The 6-step APP development pathway serves as JDRF's APP strategic funding plan and defines the priorities of product research and development. Each step in the plan represents incremental advances in automation beginning with devices that shut off insulin delivery to prevent episodes of low blood sugar and progressing ultimately to a fully automated ``closed loop'' system that maintains blood glucose at a target level without the need to bolus for meals or adjust for exercise.
Plasma wakefield acceleration experiments at FACET II
NASA Astrophysics Data System (ADS)
Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.
2018-03-01
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.
Plasma wakefield acceleration experiments at FACET II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, C.; Adli, E.; An, W.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Plasma wakefield acceleration experiments at FACET II
Joshi, C.; Adli, E.; An, W.; ...
2018-01-12
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...
2014-11-02
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Discovering chemistry with an ab initio nanoreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less
Pfrommer, Andreas; Henning, Anke
2017-05-01
The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B 0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR. Copyright © 2017 John Wiley & Sons, Ltd.
GTA (ground test accelerator) Phase 1: Baseline design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedulesmore » and resource requirements are provided. (LEW)« less
Park, Sun-Ji; Kim, Jung-Hak; Kim, Tae-Shin; Lee, Sang-Rae; Park, Jeen-Woo; Lee, Seunghoon; Kim, Jin-Man; Lee, Dong-Seok
2017-07-01
Luteal regression is a natural and necessary event to regulate the reproductive process in all mammals. Prostaglandin F2α (PGF2α) is the main factor that causes functional and structural regression of the corpus luteum (CL). It is well known that PGF2α-mediated ROS generation is closely involved in luteal regression. Peroxiredoxin 2 (Prx2) as an antioxidant enzyme plays a protective role against oxidative stress-induced cell death. However, the effect of Prx2 on PGF2α-induced luteal regression has not been reported. Here, we investigated the role of Prx2 in functional and structural CL regression induced by PGF2α-mediated ROS using Prx2-deficient (-/-) mice. We found that PGF2α-induced ROS generation was significantly higher in Prx2-/- MEF cells compared with that in wild-type (WT) cells, which induced apoptosis by activating JNK-mediated apoptotic signaling pathway. Also, PGF2α treatment in the CL derived from Prx2-/- mice promoted the reduction of steroidogenic enzyme expression and the activation of JNK and caspase3. Compared to WT mice, serum progesterone levels and luteal expression of steroidogenic enzymes decreased more rapidly whereas JNK and caspase3 activations were significantly increased in Prx2-/- mice injected with PGF2α. However, the impaired steroidogenesis and PGF2α-induced JNK-dependent apoptosis were rescued by the addition of the antioxidant N-acetyl-L-cysteine (NAC). This is the first study to demonstrate that Prx2 deficiency ultimately accelerated the PGF2α-induced luteal regression through activation of the ROS-dependent JNK pathway. These findings suggest that Prx2 plays a crucial role in preventing accelerated luteal regression via inhibition of the ROS/JNK pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
McKenna, Rebekah; Thompson, Brian; Pugh, Shawn; Nielsen, David R
2014-08-21
Styrene is an important building-block petrochemical and monomer used to produce numerous plastics. Whereas styrene bioproduction by Escherichia coli was previously reported, the long-term potential of this approach will ultimately rely on the use of hosts with improved industrial phenotypes, such as the yeast Saccharomyces cerevisiae. Classical metabolic evolution was first applied to isolate a mutant capable of phenylalanine over-production to 357 mg/L. Transcription analysis revealed up-regulation of several phenylalanine biosynthesis pathway genes including ARO3, encoding the bottleneck enzyme DAHP synthase. To catalyze the first pathway step, phenylalanine ammonia lyase encoded by PAL2 from A. thaliana was constitutively expressed from a high copy plasmid. The final pathway step, phenylacrylate decarboxylase, was catalyzed by the native FDC1. Expression of FDC1 was naturally induced by trans-cinnamate, the pathway intermediate and its substrate, at levels sufficient for ensuring flux through the pathway. Deletion of ARO10 to eliminate the competing Ehrlich pathway and expression of a feedback-resistant DAHP synthase encoded by ARO4K229L preserved and promoted the endogenous availability precursor phenylalanine, leading to improved pathway flux and styrene production. These systematic improvements allowed styrene titers to ultimately reach 29 mg/L at a glucose yield of 1.44 mg/g, a 60% improvement over the initial strain. The potential of S. cerevisiae as a host for renewable styrene production has been demonstrated. Significant strain improvements, however, will ultimately be needed to achieve economical production levels.
NASA Astrophysics Data System (ADS)
Su, Ray Kai Leung; Lee, Chien-Liang
2013-06-01
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration- and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or nearcollapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.
Effects of Deployment Investment on the Growth of the Biofuels Industry. 2016 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Warner, Ethan S.; Stright, Dana
This report updates the 2013 report of the same title. Some text originally published in that report is retained and indicated in gray. In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstrationmore » and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scale biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model--a system dynamics model of the biomass to biofuels system--that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial growth impact on the development of the biofuels industry. Results also show that other conditions, such as accompanying incentives, have major impacts on the effectiveness of such investments. Results from the 2013 report are compared to new results. This report does not advocate for or against investments, incentives, or policies, but analyzes simulations of their hypothetical effects.« less
Campbell, Iain L
2005-04-01
Cytokines are plurifunctional mediators of cellular communication. The CNS biology of this family of molecules has been explored by transgenic approaches that targeted the expression of individual cytokine genes to specific cells in the CNS of mice. Such transgenic animals exhibit wide-ranging structural and functional alterations that are linked to the development of distinct neuroinflammatory responses and gene expression profiles specific for each cytokine. The unique actions of individual cytokines result from the activation of specific receptor-coupled cellular signal transduction pathways such as the JAK/STAT tyrosine kinase signaling cascade. The cerebral expression of various STATs, their activation, as well as that of the major physiological inhibitors of this pathway, SOCS1 and SOCS3, is highly regulated in a stimulus- and cell-specific fashion. The role of the key IFN signaling molecules STAT1 or STAT2 was studied in transgenic mice (termed GIFN) with astrocyte-production of IFN-alpha that were null or haploinsufficient for these STAT genes. Surprisingly, these animals developed either more severe and accelerated neurodegeneration with calcification and inflammation (GIFN/STAT1 deficient) or severe immunoinflammation and medulloblastoma (GIFN/STAT2 deficient). STAT dysregulation may result in a signal switch phenomenon in which one cytokine acquires the apparent function of an entirely different cytokine. Therefore, for cytokines such as the IFNs, the receptor-coupled signaling process is complex, involving the coexistence of multiple JAK/STAT as well as alternative pathways. The cellular compartmentalization and balance in the activity of these pathways ultimately determines the repertoire and nature of CNS cytokine actions.
Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U
2014-01-01
Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA.
Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin.
Aziz, Jazli; Shezali, Hafiz; Radzi, Zamri; Yahya, Noor Azlin; Abu Kassim, Noor Hayaty; Czernuszka, Jan; Rahman, Mohammad Tariqur
2016-01-01
Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks. © 2016 S. Karger AG, Basel.
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2013 CFR
2013-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2010 CFR
2010-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
49 CFR Appendix D to Part 238 - Requirements for External Fuel Tanks on Tier I Locomotives
Code of Federal Regulations, 2014 CFR
2014-10-01
... vertical acceleration of 2g, without exceeding the ultimate strength of the material. The load is assumed... maximize the vertical clearance between the top of the rail and the bottom of the fuel tank. (2) Load case... equivalent to one half the weight of the locomotive at a vertical acceleration of 2g, without exceeding the...
Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.
Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin
2015-10-15
Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. © The Author 2015. Published by Oxford University Press.
Smith, Kathleen B.; Tran, Linh M.; Tam, Brenna M.; Shurell, Elizabeth M.; Li, Yunfeng; Braas, Daniel; Tap, William D.; Christofk, Heather R.; Dry, Sarah M.; Eilber, Fritz C.; Wu, Hong
2014-01-01
Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care. PMID:23416162
Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs
Blachly, Patrick G.; de Oliveira, César A. F.; Williams, Sarah L.; McCammon, J. Andrew
2013-01-01
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. PMID:24367248
Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Grassellino, Anna; Martinello, Martina
2016-06-01
The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q 0 at high gradients.
ERIC Educational Resources Information Center
Pleasants, Rachel
2011-01-01
"Accelerating Opportunity" responds to the nation's growing need for improved pathways from Adult Basic Education (ABE) to credentials of value in the labor market. It builds on promising practices developed in "Breaking Through," an initiative of Jobs for the Future and the National Council for Workforce Education, and…
ERIC Educational Resources Information Center
LeClair, Elizabeth E.
2008-01-01
A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone…
Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Rao, Qing, E-mail: raoqing@gmail.com; Wang, Min
2009-09-04
Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation,more » and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.« less
Vaccine Development for Zika Virus-Timelines and Strategies.
Durbin, Anna P
2016-09-01
Zika virus is a mosquito-borne Flavivirus that spread rapidly through South and Central America in 2015 to 2016. Microcephaly has been causally associated with Zika virus infection during pregnancy and the World Health Organization declared Zika virus as a Public Health Emergency of International Concern. To address this crisis, many groups have expressed their commitment to developing a Zika virus vaccine. Different strategies for Zika virus vaccine development are being considered including recombinant live attenuated vaccines, purified inactivated vaccines (PIVs), DNA vaccines, and viral vectored vaccines. Important to Zika virus vaccine development will be the target group chosen for vaccination and which end point(s) is chosen for efficacy determination. The first clinical trials of Zika virus vaccine candidates will begin in Q3/4 2016 but the pathway to licensure for a Zika virus vaccine is expected to take several years. Efforts are ongoing to accelerate Zika virus vaccine development and evaluation with the ultimate goal of reducing time to licensure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
ERIC Educational Resources Information Center
Couturier, Lara K.
2012-01-01
In spring 2012, after a year of intensive data analysis and planning, the colleges participating in Completion by Design announced strategies for creating clear, structured routes through college for more students, often referred to as accelerated, structured pathways to completion. These strategies contain elements unique to each college, but all…
ERIC Educational Resources Information Center
Spaulding, Shayne; Martin-Caughey, Ananda
2015-01-01
This report presents findings from a survey of students enrolled in Accelerating Opportunity (AO) career pathways in spring 2014. AO provides grants to help community colleges create career pathway programs to enroll students with low basic skills into for-credit career and technical education courses to improve educational and employment…
[Accelerated postoperative recovery after colorectal surgery].
Alfonsi, P; Schaack, E
2007-01-01
Accelerated recovery programs are clinical pathways which outline the stages, and streamline the means, and techniques aiming toward the desired end a rapid return of the patient to his pre-operative physical and psychological status. Recovery from colo-rectal surgery may be slowed by the patient's general health, surgical stress, post-surgical pain, and post-operative ileus. Both surgeons and anesthesiologists participate throughout the peri-operative period in a clinical pathway aimed at minimizing these delaying factors. Key elements of this pathway include avoidance of pre-operative colonic cleansing, early enteral feeding, and effective post-operative pain management permitting early ambulation (usually via thoracic epidural anesthesia). Pre-operative information and motivation of the patient is also a key to the success of this accelerated recovery program. Studies of such programs have shown decreased duration of post-operative ileus and hospital stay without an increase in complications or re-admissions. The elements of the clinical pathway must be regularly re-evaluated and updated according to local experience and published data.
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and...
Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links
Samuel, Varman T.; Shulman, Gerald I.
2012-01-01
Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956
Optimized operation of dielectric laser accelerators: Multibunch
NASA Astrophysics Data System (ADS)
Hanuka, Adi; Schächter, Levi
2018-06-01
We present a self-consistent analysis to determine the optimal charge, gradient, and efficiency for laser driven accelerators operating with a train of microbunches. Specifically, we account for the beam loading reduction on the material occurring at the dielectric-vacuum interface. In the case of a train of microbunches, such beam loading effect could be detrimental due to energy spread, however this may be compensated by a tapered laser pulse. We ultimately propose an optimization procedure with an analytical solution for group velocity which equals to half the speed of light. This optimization results in a maximum efficiency 20% lower than the single bunch case, and a total accelerated charge of 1 06 electrons in the train. The approach holds promise for improving operations of dielectric laser accelerators and may have an impact on emerging laser accelerators driven by high-power optical lasers.
Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants
Ojini, Irene; Gammie, Alison
2015-01-01
Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers. PMID:26199284
Smith, Kathleen B; Tran, Linh M; Tam, Brenna M; Shurell, Elizabeth M; Li, Yunfeng; Braas, Daniel; Tap, William D; Christofk, Heather R; Dry, Sarah M; Eilber, Fritz C; Wu, Hong
2013-04-01
Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Community College Pathways: 2013-2014 Descriptive Report
ERIC Educational Resources Information Center
Sowers, Nicole; Yamada, Hiroyuki
2015-01-01
The Community College Pathways initiative consists of two pathways, Statway® and Quantway®, that accelerate post-secondary students' progress through their developmental mathematics sequence and a college-level course for credit. Launched in 2011, the Pathways have been remarkably successful, helping thousands of students achieve success in…
Increase in Ductility of High Carbon Steel Due to Accelerated Precipitation of Cementite
NASA Astrophysics Data System (ADS)
Ali, Muhammad; UlHaq, Ehsan; Ibrahim, Ather; Abdul Karim, Muhammad Ramzan; Ali, A.; Fayyaz, M.; Khera, F. K.
2017-09-01
Eutectoid steel AISI 1080 is studied after annealing at 850°C and thermal cycling treatment (TCT) that involves heating at a rate of 10 K/min to 775°C, holding for 10 min, and cooling at a rate of 95 K/min. An increase is established in the content of cementite precipitating over austenite grain boundaries, and relative elongation with retention of yield and ultimate strengths with an increase in number of TCT cycles. After five cycles relative elongation reaches 29% with ultimate strength of 670 MPa.
Ludwig, Kirk; Enker, Warren E; Delaney, Conor P; Wolff, Bruce G; Du, Wei; Fort, John G; Cherubini, Maryann; Cucinotta, James; Techner, Lee
2008-11-01
To investigate the efficacy and safety of alvimopan, 12 mg, administered orally 30 to 90 minutes preoperatively and twice daily postoperatively in conjunction with a standardized accelerated postoperative care pathway for managing postoperative ileus after bowel resection. This multicenter, randomized, placebo-controlled, double-blind, phase 3 trial enrolled adult patients undergoing partial bowel resection with primary anastomosis by laparotomy and scheduled to receive intravenous, opioid-based, patient-controlled analgesia. A standardized accelerated postoperative care pathway including early ambulation, oral feeding, and postoperative nasogastric tube removal was used to facilitate gastrointestinal (GI) tract recovery in all of the patients. The primary end point was time to GI-2 recovery (toleration of solid food and first bowel movement). Secondary end points included time to GI-3 recovery (toleration of solid food and first flatus or bowel movement), hospital discharge order written, and actual hospital discharge. Postoperative length of hospital stay based on calendar day of hospital discharge order written, opioid consumption, and overall postoperative ileus-related morbidity were recorded. Alvimopan, 12 mg, was well tolerated and significantly accelerated GI-2 recovery, GI-3 recovery, and actual hospital discharge compared with a standardized accelerated postoperative care pathway alone (hazard ratio = 1.5, 1.5, and 1.4, respectively; P < .001 for all). Time to hospital discharge order written as measured by hazard ratio (1.4) and by postoperative calendar days (mean for alvimopan, 5.2 days; mean for placebo, 6.2 days) was also accelerated. Opioid consumption was comparable between groups, and alvimopan was associated with reduced postoperative ileus-related morbidity compared with placebo. Alvimopan, 12 mg, administered 30 to 90 minutes before and twice daily after bowel resection is well tolerated, accelerates GI tract recovery, and reduces postoperative ileus-related morbidity without compromising opioid analgesia.
Ren, Xiang; Ma, Haiying; Qiu, Yuanyuan; Liu, Bo; Qi, Hui; Li, Zeyu; Kong, Hui; Kong, Li
2015-08-01
Thioredoxin (Trx), a 12 kDa protein, has different functions in different cellular environments, playing important anti-oxidative and anti-apoptotic roles and regulating the expression of transcription factors. Advanced glycation end products (AGEs) are a heterogeneous group of irreversible adducts from glucose-protein condensation reactions and are considered crucial to the development of diabetic nephropathy, retinopathy, neurodegeneration and atherosclerosis. The aim of this study was to use a Trx inhibitor to investigate the effects and mechanism of Trx down-regulation on AGE-induced Neuro2a cell apoptosis. Neuro2a cells were cultured in vitro and treated with different conditions. The apoptosis and proliferation of Neuro2a cells were detected using flow cytometry, DNA-Ladder and CCK8 assays. Rho 123 was used to detect the mitochondrial membrane potential. ROS generation and caspase3 activity were detected using a DCFH-DA probe and micro-plate reader. Western blotting and real-time PCR were used to detect the expression of proteins and genes. We found that the down-regulation of thioredoxin could accelerate AGE-induced apoptosis in Neuro2a cells. A possible underlying mechanism is that the down-regulation of thioredoxin stimulated the up-regulation of ASK1, p-JNK, PTEN, and Txnip, as well as the down-regulation of p-AKT, ultimately increasing ROS levels and caspase3 activity. Copyright © 2015. Published by Elsevier Ltd.
Status of vaccine research and development of vaccines for malaria.
Birkett, Ashley J
2016-06-03
Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
Xin, Xiaoru; Wu, Mengying; Meng, Qiuyu; Wang, Chen; Lu, Yanan; Yang, Yuxin; Li, Xiaonan; Zheng, Qidi; Pu, Hu; Gui, Xin; Li, Tianming; Li, Jiao; Jia, Song; Lu, Dongdong
2018-06-12
Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear. RT-PCR, Western blotting, Chromatin immunoprecipitation (CHIP) assay, RNA Immunoprecipitation (RIP) and tumorignesis test in vitro and in vivo were performed. HULC is negatively associated with expression of PTEN or miR15a in patients of human liver cancer. Moreover, HULC accelerates malignant progression of liver cancer cells in vitro and in vivo. Mechanistically, HULC increasesthe expression of P62 via decreasing mature miR15a. On the other hand, excessive HULC increases the expression of LC3 on the level of transcription and then activates LC3 through Sirt1 (a deacetylase). Notably, HULC enhanced the interplay between LC3 and ATG3. Furthermore, HULC also increases the expression of becline-1(autophagy related gene). Therefore, HULC increases the cellular autophagy by increasing LC3II dependent on Sirt1.Noteworthy, excessive HULC reduces the expression of PTEN, β-catenin and enhances the expression of SAPK/JUNK, PKM2, CDK2, NOTCH1, C-Jun in liver cancer cells. Of significance, our observations also revealed that HULC inhibited PTEN through ubiquitin-proteasome system mediated by autophagy-P62.Ultimately,HULC activates AKT-PI3K-mTOR pathway through inhibiting PTEN in human liver cancer cells. This study elucidates a novel mechanism that lncRNA HULC produces a vital function during hepatocarcinogenesis.
Effect of climate change on sowing and harvest dates of spring barley and maize in Poland
NASA Astrophysics Data System (ADS)
Marcinkowski, Paweł; Piniewski, Mikołaj
2018-04-01
Climate change and projected temperature increase is recognised to have significant impact on agricultural production and crop phenology. This study evaluated the climate change impact on sowing and harvest dates of spring barley and maize in the boundaries of two largest catchments in Poland - the Vistula and the Odra. For this purpose, an agro-hydrological Soil and Water Assessment Tool has been used, driven by climate forcing data provided within the Coordinated Downscaling Experiment - European Domain experiment projected to the year 2100 under two representative concentration pathways: 4.5 and 8.5. The projected warmer climate significantly affected the potential scheduling of agricultural practices, accelerating the occurrence of sowing and harvest dates. The rate of acceleration was dependent on the time horizon and representative concentration pathways scenario. In general, the rate of sowing/harvest advance was accelerating in time and, also from representative concentration pathways 4.5 to 8.5, reaching 23 days for spring barley and 30 days for maize (ensemble mean for the far future under representative concentration pathways 8.5).
Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics
NASA Astrophysics Data System (ADS)
Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.
2002-07-01
We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.
Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics
NASA Astrophysics Data System (ADS)
Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.
We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.
NASA Astrophysics Data System (ADS)
Poehlman, W. F. S.; Garland, Wm. J.; Stark, J. W.
1993-06-01
In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an "Operator's Companion" is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging.
Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig
2015-10-07
Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.
Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R. Craig
2015-01-01
Exposure to antibiotics induces the expression of mutagenic bacterial stress–response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress–response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. PMID:26446807
Degassing procedure for ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Moore, B. C.
1979-01-01
Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.
Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.
Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza
2017-10-01
Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.
The ultimate limits of the relativistic rocket equation. The Planck photon rocket
NASA Astrophysics Data System (ADS)
Haug, Espen Gaarder
2017-07-01
In this paper we look at the ultimate limits of a photon propulsion rocket. The maximum velocity for a photon propulsion rocket is just below the speed of light and is a function of the reduced Compton wavelength of the heaviest subatomic particles in the rocket. We are basically combining the relativistic rocket equation with Haug's new insight on the maximum velocity for anything with rest mass. An interesting new finding is that in order to accelerate any subatomic "fundamental" particle to its maximum velocity, the particle rocket basically needs two Planck masses of initial load. This might sound illogical until one understands that subatomic particles with different masses have different maximum velocities. This can be generalized to large rockets and gives us the maximum theoretical velocity of a fully-efficient and ideal rocket. Further, no additional fuel is needed to accelerate a Planck mass particle to its maximum velocity; this also might sound absurd, but it has a very simple and logical solution that is explained in this paper.
Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells
NASA Astrophysics Data System (ADS)
Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.
2012-08-01
Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.
The Ultimate Monte Carlo: Studying Cross-Sections With Cosmic Rays
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
2007-01-01
The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.
Laser Acceleration of Ions for Radiation Therapy
NASA Astrophysics Data System (ADS)
Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing
Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.
Event Reports Promoting Root Cause Analysis.
Pandit, Swananda; Gong, Yang
2016-01-01
Improving health is the sole objective of medical care. Unfortunately, mishaps or patient safety events happen during the care. If the safety events were collected effectively, they would help identify patterns, underlying causes, and ultimately generate proactive and remedial solutions for prevention of recurrence. Based on the AHRQ Common Formats, we examine the quality of patient safety incident reports and describe the initial data requirement that can support and accelerate effective root cause analysis. The ultimate goal is to develop a knowledge base of patient safety events and their common solutions which can be readily available for sharing and learning.
Martinez, Andres G.; Stuewig, Jeffrey; Tangney, June
2015-01-01
We describe and test a theoretical model in which individual differences in perspective-taking eventuate in crime reduction. Specifically, it is hypothesized that perspective-taking propensities influence the tendency to feel empathic-concern, thereby heightening proneness for guilt, which then ultimately inhibits criminal behavior (perspective-taking → empathic-concern → guilt-proneness → crime desistance). Data from two sources were analyzed: (1) a cross-sectional college sample and (2) a longitudinal sample of jail inmates. Overall, results lend credence to this model. Perspective-taking propensities ultimately “put the brakes” on criminal behavior via an affective pathway of empathic-concern and guilt-proneness. Discussion focuses on the nature of perspective-taking, its generative role in moral emotions, as well as potential applications for crime prevention. PMID:25324328
Obesity genetics in mouse and human: back and forth, and back again
Yazdi, Fereshteh T.; Clee, Susanne M.
2015-01-01
Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide. PMID:25825681
NASA Astrophysics Data System (ADS)
Cody, G. D.; Boctor, N. Z.; Hazen, R. M.; Brandes, J. A.; Morowitz, Harold J.; Yoder, H. S.
2001-10-01
Recent theories have proposed that life arose from primitive hydrothermal environments employing chemical reactions analogous to the reductive citrate cycle (RCC) as the primary pathway for carbon fixation. This chemistry is presumed to have developed as a natural consequence of the intrinsic geochemistry of the young, prebiotic, Earth. There has been no experimental evidence, however, demonstrating that there exists a natural pathway into such a cycle. Toward this end, the results of hydrothermal experiments involving citric acid are used as a method of deducing such a pathway. Homocatalytic reactions observed in the citric acid-H2O experiments encompass many of the reactions found in modern metabolic systems, i.e., hydration-dehydration, retro-Aldol, decarboxylation, hydrogenation, and isomerization reactions. Three principal decomposition pathways operate to degrade citric acid under thermal and aquathermal conditions. It is concluded that the acid catalyzed βγ decarboxylation pathway, leading ultimately to propene and CO2, may provide the most promise for reaction network reversal under natural hydrothermal conditions. Increased pressure is shown to accelerate the principal decarboxylation reactions under strictly hydrothermal conditions. The effect of forcing the pH via the addition of NaOH reveals that the βγ decarboxylation pathway operates even up to intermediate pH levels. The potential for network reversal (the conversion of propene and CO2 up to a tricarboxylic acid) is demonstrated via the Koch (hydrocarboxylation) reaction promoted heterocatalytically with NiS in the presence of a source of CO. Specifically, an olefin (1-nonene) is converted to a monocarboxylic acid; methacrylic acid is converted to the dicarboxylic acid, methylsuccinic acid; and the dicarboxylic acid, itaconic acid, is converted into the tricarboxylic acid, hydroaconitic acid. A number of interesting sulfur-containing products are also formed that may provide for additional reaction. The intrinsic catalytic qualities of FeS and NiS are also explored in the absence of CO. It was shown that the addition of NiS has a minimal effect in the product distribution, whereas the addition of FeS leads to the formation of hydrogenated and sulfur-containing products (thioethers). These results point to a simple hydrothermal redox pathway for citric acid synthesis that may have provided a geochemical ignition point for the reductive citrate cycle.
Greater heritability of photosynthesis in maize grown under elevated ozone
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) pollution is estimated to reduce maize yields up to 10% in the US. O3 causes damage to cellular processes by forming reactive oxygen species that lead to reductions in photosynthetic capacity, accelerated leaf senescence, and ultimately a decrease in reproductive and economic...
ERIC Educational Resources Information Center
Gray, Denis; Sundstrom, Eric; Tornatzky, Louis G.; McGowen, Lindsey
2011-01-01
Cooperative research centres (CRCs) increasingly foster Triple Helix (industry-university-government) collaboration and represent significant vehicles for cooperation across sectors, the promotion of knowledge and technology transfer and ultimately the acceleration of innovation. A growing social science literature on CRCs focuses on their…
A mass filter based on an accelerating traveling wave.
Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred
2008-01-01
We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.
Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.
Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Eric R.; Hogan, Mark J.; /SLAC
Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less
NBIC: National Ballast Information Clearinghouse
and characteristics of this important pathway of biological invasion. Ultimately, NBIC data will be combined with on-the-ground biological survey data that track rates of marine invasions to determine the
Time-Dependent Behavior of High-Strength Kevlar and Vectran Webbing
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Doggett, William R.
2014-01-01
High-strength Kevlar and Vectran webbings are currently being used by both NASA and industry as the primary load-bearing structure in inflatable space habitation modules. The time-dependent behavior of high-strength webbing architectures is a vital area of research that is providing critical material data to guide a more robust design process for this class of structures. This paper details the results of a series of time-dependent tests on 1-inch wide webbing including an initial set of comparative tests between specimens that underwent realtime and accelerated creep at 65 and 70% of their ultimate tensile strength. Variability in the ultimate tensile strength of the webbings is investigated and compared with variability in the creep life response. Additional testing studied the effects of load and displacement rate, specimen length and the time-dependent effects of preconditioning the webbings. The creep test facilities, instrumentation and test procedures are also detailed. The accelerated creep tests display consistently longer times to failure than their real-time counterparts; however, several factors were identified that may contribute to the observed disparity. Test setup and instrumentation, grip type, loading scheme, thermal environment and accelerated test postprocessing along with material variability are among these factors. Their effects are discussed and future work is detailed for the exploration and elimination of some of these factors in order to achieve a higher fidelity comparison.
Lipoxygenase activity accelerates programmed spore germination in Aspergillus fumigatus
Gregory J. Fischer; William Bacon; Jun Yang; Jonathan M. Palmer; Taylor Dagenais; Bruce D. Hammock; Nancy P. Keller
2017-01-01
The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS) to germling (GL) and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of...
Accelerating Adverse Outcome Pathway Development via Systems Approaches
The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...
Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
2015-01-01
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less
Harris, Greg M.; Shazly, Tarek; Jabbarzadeh, Ehsan
2013-01-01
Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol) hydrogels using Dip Pen Nanolithography (DPN), we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs) spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa) hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine. PMID:24282570
Overview of recent trends and developments for BPM systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, M.; /Fermilab
2011-08-01
Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, servingmore » hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.« less
Osorio, Fernando G; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M P; López-Otín, Carlos
2012-10-15
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24(-/-) and Lmna(G609G/G609G) mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging.
Update on the Treatment of Early-Stage Triple-Negative Breast Cancer.
Sharma, Priyanka
2018-04-14
Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is associated with poor long-term outcomes compared to other breast cancer subtypes. Currently, chemotherapy remains the main modality of treatment for early-stage TNBC, as there is no approved targeted therapy for this subtype. The biologic heterogeneity of TNBC has hindered the development and evaluation of novel agents, but recent advancements in subclassifying TNBC have paved the way for further investigation of more effective systemic therapies, including cytotoxic and targeted agents. TNBC is enriched for germline BRCA mutation and for somatic deficiencies in homologous recombination DNA repair, the so-called "BRCAness" phenotype. Together, germline BRCA mutations and BRCAness are promising biomarkers of susceptibility to DNA-damaging therapy. Various investigational approaches are consequently being investigated in early-stage TNBC, including immune checkpoint inhibitors, platinum compounds, PI3K pathway inhibitors, and androgen receptor inhibitors. Due to the biological diversity found within TNBC, patient selection based on molecular biomarkers could aid the design of early-phase clinical trials, ultimately accelerating the clinical application of effective new agents. TNBC is an aggressive breast cancer subtype, for which multiple targeted approaches will likely be required for patient outcomes to be substantially improved.
Mitrovich, Milan J.; Diffendorfer, Jay E.; Fisher, Robert N.
2009-01-01
Habitat fragmentation is a significant threat to biodiversity worldwide. Habitat loss and the isolation of habitat fragments disrupt biological communities, accelerate the extinction of populations, and often lead to the alteration of behavioral patterns typical of individuals in large, contiguous natural areas. We used radio-telemetry to study the space-use behavior of the Coachwhip, a larger-bodied, wide-ranging snake species threatened by habitat fragmentation, in fragmented and contiguous areas of coastal southern California. We tracked 24 individuals at three sites over two years. Movement patterns of Coachwhips changed in habitat fragments. As area available to the snakes was reduced, individuals faced increased crowding, had smaller home-range sizes, tolerated greater home-range overlap, and showed more concentrated movement activity and convoluted movement pathways. The behavioral response shown by Coachwhips suggests, on a regional level, area-effects alone cannot explain observed extinctions on habitat fragments but, instead, suggests changes in habitat configuration are more likely to explain the decline of this species. Ultimately, if "edge-exposure" is a common cause of decline, then isolated fragments, appropriately buffered to reduce emigration and edge effects, may support viable populations of fragmentation-sensitive species.
Metabolomics for Plant Improvement: Status and Prospects
Kumar, Rakesh; Bohra, Abhishek; Pandey, Arun K.; Pandey, Manish K.; Kumar, Anirudh
2017-01-01
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement. PMID:28824660
Mapping the pathways of resistance to targeted therapies
Wood, Kris C.
2015-01-01
Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. Recently developed methods enable the direct and scalable identification of the signaling pathways capable of driving resistance in specific contexts. Using these methods, novel pathways of resistance to clinically approved drugs have been identified and validated. By combining systematic resistance pathway mapping methods with studies revealing biomarkers of specific resistance pathways and pharmacological approaches to block these pathways, it may be possible to rationally construct drug combinations that yield more penetrant and lasting responses in patients. PMID:26392071
Perspectives on the Use of Clinical Pathways in Oncology Care.
Chiang, Anne C; Ellis, Peter; Zon, Robin
2017-01-01
Pathways and guidelines are valuable tools to provide evidence-based care in oncology. Pathways may be more restrictive than guidelines because they attempt (where possible) to reduce cost, add efficiency, and remove unwarranted variability. Pathways offer an opportunity to measure, report, and improve quality of care; they can drive to evidence-based targeted therapy where appropriate; they can enhance efficiency through standardization; and, finally, they can be a vehicle to enhance participation in clinical trials. Pathway implementation requires understanding and commitment on the part of the physician and leadership as they may initially disrupt workflow, but ultimately have the ability to enhance patient care. ASCO criteria have been published for the development and implementation of high-quality oncology pathway programs. Future challenges for pathways include incorporation of molecular testing and appropriate targeted care in a real-time precision oncology approach.
2012-01-01
Particulate matter (PM) pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD). While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer. Not only would pollution reduction imperatives be more focused, but interventions which could reduce oxidative stress would become all the more important. PMID:22713210
Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis.
Liu, S; Tackmann, N R; Yang, J; Zhang, Y
2017-03-01
Inactivation of the adenomatous polyposis coli (APC) tumor suppressor is frequently found in colorectal cancer. Loss of APC function results in deregulation of the Wnt/β-catenin signaling pathway causing overexpression of the c-MYC oncogene. In lymphoma, both p19ARF and ribosomal proteins RPL11 and RPL5 respond to c-MYC activation to induce p53. Their role in c-MYC-driven colorectal carcinogenesis is unclear, as p19ARF deletion does not accelerate APC loss-triggered intestinal tumorigenesis. To determine the contribution of the ribosomal protein (RP)-murine double minute 2 (MDM2)-p53 pathway to APC loss-induced tumorigenesis, we crossed mice bearing MDM2 C305F mutation, which disrupts RPL11- and RPL5-MDM2 binding, with Apc min/+ mice, which are prone to intestinal tumor formation. Interestingly, loss of RP-MDM2 binding significantly accelerated colorectal tumor formation while having no discernable effect on small intestinal tumor formation. Mechanistically, APC loss leads to overexpression of c-MYC, RPL11 and RPL5 in mouse colonic tumor cells irrespective of MDM2 C305F mutation. However, notable p53 stabilization and activation were observed only in Apc min/+ ;Mdm2 +/+ but not Apc min/+ ;Mdm2 C305F/C305F colon tumors. These data establish that the RP-MDM2-p53 pathway, in contrast to the p19ARF-MDM2-p53 pathway, is a critical mediator of colorectal tumorigenesis following APC loss.
Accelerating Adverse Outcome Pathway (AOP) development via computationally predicted AOP networks
The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...
Accelerating Adverse Outcome Pathway Development Using Publicly Available Data Sources
The adverse outcome pathway (AOP) concept links molecular perturbations with organism and population-level outcomes to support high-throughput toxicity testing. International efforts are underway to define AOPs and store the information supporting these AOPs in a central knowledg...
The canonical Wnt signaling pathway in autism.
Zhang, Yinghua; Yuan, Xiangshan; Wang, Zhongping; Li, Ruixi
2014-01-01
Mounting attention is being focused on the canonical Wnt signaling pathway which has been implicated in the pathogenesis of autism in some our and other recent studies. The canonical Wnt pathway is involved in cell proliferation, differentiation and migration, especially during nervous system development. Given its various functions, dysfunction of the canonical Wnt pathway may exert adverse effects on neurodevelopment and therefore leads to the pathogenesis of autism. Here, we review human and animal studies that implicate the canonical Wnt signal transduction pathway in the pathogenesis of autism. We also describe the crosstalk between the canonical Wnt pathway and the Notch signaling pathway in several types of autism spectrum disorders, including Asperger syndrome and Fragile X. Further research on the crosstalk between the canonical Wnt signaling pathway and other signaling cascades in autism may be an efficient avenue to understand the etiology of autism and ultimately lead to alternative medications for autism-like phenotypes.
Nanomaterial disposal by incineration
As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...
Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects
Batchelor, Tracy T.; Reardon, David A.; de Groot, John F.; Wick, Wolfgang; Weller, Michael
2014-01-01
Glioblastoma is characterized by high expression levels of pro-angiogenic cytokines and microvascular proliferation, highlighting the potential value of treatments targeting angiogenesis. Antiangiogenic treatment likely achieves a beneficial impact through multiple mechanisms of action. Ultimately, however, alternative pro-angiogenic signal transduction pathways are activated leading to the development of resistance, even in tumors that initially respond. The identification of biomarkers or imaging parameters to predict response and to herald resistance is of high priority. Despite promising phase 2 clinical trial results and patient benefit in terms of clinical improvement and longer progression-free survival, an overall survival benefit has not been demonstrated in 4 randomized phase 3 trials of bevacizumab or cilengitide in newly diagnosed glioblastoma or cediranib or enzastaurin recurrent glioblastoma. However, future studies are warranted: predictive markers may allow appropriate patient enrichment, combination with chemotherapy may ultimately prove successful in improving overall survival, and novel agents targeting multiple pro-angiogenic pathways may prove effective. PMID:25398844
Martinez, Andres G; Stuewig, Jeffrey; Tangney, June P
2014-12-01
We describe and appraise a theoretical model in which individual differences in perspective-taking eventuate in crime reduction. Specifically, it is hypothesized that perspective-taking propensities influence the tendency to feel empathic-concern, thereby heightening proneness for guilt, which ultimately inhibits criminal behavior (perspective-taking → empathic-concern → guilt-proneness → crime desistance). Data from two sources were analyzed: (a) a cross-sectional college sample and (b) a longitudinal sample of jail inmates. Overall, results lend credence to this theoretical model: Perspective-taking propensities ultimately "put the brakes" on criminal behavior-via an emotional pathway of empathic-concern and then guilt-proneness. Discussion focuses on the nature of perspective-taking, its generative role for moral emotion and behavior, as well as potential applications for crime reduction. © 2014 by the Society for Personality and Social Psychology, Inc.
ERIC Educational Resources Information Center
Weissman, Evan; Butcher, Kristin F.; Schneider, Emily; Teres, Jedediah; Collado, Herbert; Greenberg, David
2011-01-01
Queensborough Community College and Houston Community College are two large, urban institutions that offer learning communities for their developmental math students, with the goals of accelerating students' progress through the math sequence and of helping them to perform better in college and ultimately earn degrees or certificates. They are…
ERIC Educational Resources Information Center
Weissman, Evan; Butcher, Kristin F.; Schneider, Emily; Teres, Jedediah; Collado, Herbert; Greenberg, David
2011-01-01
Queensborough Community College and Houston Community College are two large, urban institutions that offer learning communities for their developmental math students, with the goals of accelerating students' progress through the math sequence and of helping them to perform better in college and ultimately earn degrees or certificates. They are…
49 CFR 238.233 - Interior fittings and surfaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...
49 CFR 238.233 - Interior fittings and surfaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...
49 CFR 238.233 - Interior fittings and surfaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...
49 CFR 238.233 - Interior fittings and surfaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...
The Role of Substorms in Storm-time Particle Acceleration
NASA Astrophysics Data System (ADS)
Daglis, Ioannis A.; Kamide, Yohsuke
The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.
Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek
2016-01-01
This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less
Emittance Growth in the DARHT-II Linear Induction Accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.
2017-11-01
The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.
Will there be energy frontier colliders after LHC?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2016-09-15
High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less
Quantum limits to gravity estimation with optomechanics
NASA Astrophysics Data System (ADS)
Armata, F.; Latmiral, L.; Plato, A. D. K.; Kim, M. S.
2017-10-01
We present a table-top quantum estimation protocol to measure the gravitational acceleration g by using an optomechanical cavity. In particular, we exploit the nonlinear quantum light-matter interaction between an optical field and a massive mirror acting as mechanical oscillator. The gravitational field influences the system dynamics affecting the phase of the cavity field during the interaction. Reading out such a phase carried by the radiation leaking from the cavity, we provide an estimate of the gravitational acceleration through interference measurements. Contrary to previous studies, having adopted a fully quantum description, we are able to propose a quantum analysis proving the ultimate bound to the estimability of the gravitational acceleration and verifying optimality of homodyne detection. Noticeably, thanks to the light-matter decoupling at the measurement time, no initial cooling of the mechanical oscillator is demanded in principle.
Emittance Growth in the DARHT-II Linear Induction Accelerator
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; ...
2017-10-03
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Emittance Growth in the DARHT-II Linear Induction Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Inertial sensing microelectromechanical (MEM) safe-arm device
Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM
2009-05-12
Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.
Cell Signaling Pathways that Regulate Ag Presentation
Brutkiewicz, Randy R.
2016-01-01
Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation--a necessary first step in the activation of innate and adaptive T cells. In this brief review, I will discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s) if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity and cancer. PMID:27824592
Chapman, Daniel S; Makra, László; Albertini, Roberto; Bonini, Maira; Páldy, Anna; Rodinkova, Victoria; Šikoparija, Branko; Weryszko-Chmielewska, Elżbieta; Bullock, James M
2016-09-01
Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion. © 2016 John Wiley & Sons Ltd.
Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis
Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.
2018-01-01
Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372
The micronutrient genomics project: a community-driven knowledge base for micronutrient research
USDA-ARS?s Scientific Manuscript database
Micronutrients influence multiple metabolic pathways including oxidative and inflammatory processes. Optimum micronutrient supply is important for the maintenance of homeostasis in metabolism and, ultimately, for maintaining good health. With advances in systems biology and genomics technologies, it...
ERIC Educational Resources Information Center
Davis, Elisabeth; Smither, Cameron; Zhu, Bo; Stephan, Jennifer
2017-01-01
Acceleration programs are academically challenging courses in which high school students can simultaneously earn credit toward a high school diploma and a postsecondary degree (dual credit). These programs include Advanced Placement courses, concurrent-enrollment courses, Postsecondary Enrollment Options courses (a dual-enrollment program in…
Osorio, Fernando G.; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J.; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M.P.; López-Otín, Carlos
2012-01-01
Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24−/− and LmnaG609G/G609G mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging. PMID:23019125
NASA Technical Reports Server (NTRS)
Minor, L. B.; Lasker, D. M.; Backous, D. D.; Hullar, T. E.; Shelhamer, M. J. (Principal Investigator)
1999-01-01
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in five squirrel monkeys with intact vestibular function. The VOR evoked by steps of acceleration in darkness (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) began after a latency of 7.3 +/- 1.5 ms (mean +/- SD). Gain of the reflex during the acceleration was 14.2 +/- 5.2% greater than that measured once the plateau head velocity had been reached. A polynomial regression was used to analyze the trajectory of the responses to steps of acceleration. A better representation of the data was obtained from a polynomial that included a cubic term in contrast to an exclusively linear fit. For sinusoidal rotations of 0.5-15 Hz with a peak velocity of 20 degrees /s, the VOR gain measured 0.83 +/- 0.06 and did not vary across frequencies or animals. The phase of these responses was close to compensatory except at 15 Hz where a lag of 5.0 +/- 0.9 degrees was noted. The VOR gain did not vary with head velocity at 0.5 Hz but increased with velocity for rotations at frequencies of >/=4 Hz (0. 85 +/- 0.04 at 4 Hz, 20 degrees /s; 1.01 +/- 0.05 at 100 degrees /s, P < 0.0001). No responses to these rotations were noted in two animals that had undergone bilateral labyrinthectomy indicating that inertia of the eye had a negligible effect for these stimuli. We developed a mathematical model of VOR dynamics to account for these findings. The inputs to the reflex come from linear and nonlinear pathways. The linear pathway is responsible for the constant gain across frequencies at peak head velocity of 20 degrees /s and also for the phase lag at higher frequencies being less than that expected based on the reflex delay. The frequency- and velocity-dependent nonlinearity in VOR gain is accounted for by the dynamics of the nonlinear pathway. A transfer function that increases the gain of this pathway with frequency and a term related to the third power of head velocity are used to represent the dynamics of this pathway. This model accounts for the experimental findings and provides a method for interpreting responses to these stimuli after vestibular lesions.
ERIC Educational Resources Information Center
Edwards, Ann R.; Beattie, Rachel L.
2016-01-01
This paper focuses on two research-based frameworks that inform the design of instruction and promote student success in accelerated, developmental mathematics pathways. These are Learning Opportunities--productive struggle on challenging and relevant tasks, deliberate practice, and explicit connections, and Productive Persistence--promoting…
Crossroads of Wnt and Hippo in epithelial tissues.
Bernascone, Ilenia; Martin-Belmonte, Fernando
2013-08-01
Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling
Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.
2012-01-01
Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Quantum metrology and estimation of Unruh effect
Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng
2014-01-01
We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772
Luo, Dan; Møller, Birger Lindberg; Pateraki, Irini
2017-12-01
Diterpenoids are high value compounds characterized by high structural complexity. They constitute the largest class of specialized metabolites produced by plants. Diterpenoids are flexible molecules able to engage in specific binding to drug targets like receptors and transporters. In this review we provide an account on how the complex pathways for diterpenoids may be elucidated. Following plant pathway discovery, the compounds may be produced in heterologous hosts like yeasts and E. coli. Environmentally contained production in photosynthetic cells like cyanobacteria, green algae or mosses are envisioned as the ultimate future production system.
Lange, Bernd Markus; Rios-Estepa, Rigoberto
2014-01-01
The integration of mathematical modeling with analytical experimentation in an iterative fashion is a powerful approach to advance our understanding of the architecture and regulation of metabolic networks. Ultimately, such knowledge is highly valuable to support efforts aimed at modulating flux through target pathways by molecular breeding and/or metabolic engineering. In this article we describe a kinetic mathematical model of peppermint essential oil biosynthesis, a pathway that has been studied extensively for more than two decades. Modeling assumptions and approximations are described in detail. We provide step-by-step instructions on how to run simulations of dynamic changes in pathway metabolites concentrations.
Zhang, Xiaoyu; Sun, Ling; Shen, Yang; Tian, Mi; Zhao, Jing; Zhao, Yu; Li, Meiyan; Zhou, Xingtao
2017-07-01
This study aimed to compare the biomechanical and histopathologic effects of transepithelial and accelerated epithelium-off pulsed-light accelerated corneal collagen cross-linking (CXL). A total of 24 New Zealand rabbits were analyzed after sham operation (control) or transepithelial or epithelium-off operation (45 mW/cm for both). The transepithelial group was treated with pulsed-light ultraviolet A for 5 minutes 20 seconds, and the epithelium-off group was treated for 90 seconds. Biomechanical testing, including ultimate stress, Young modulus, and the physiological modulus, was analyzed. Histological changes were evaluated by light microscopy and transmission electron microscopy. The stress-strain curve was nonlinear in both accelerated transepithelial and epithelium-off CXL groups. The stress and elastic moduli were all significantly higher in both experimental groups compared with the control group (P < 0.05), whereas there were no significant differences between the 2 treatment groups (P > 0.05). Six months after the operation, hematoxylin and eosin staining and transmission electron microscopy showed that the subcutaneous collagen fibers were arranged in a regular pattern, and the fiber density was higher in the experimental groups. Both transepithelial and accelerated epithelium-off CXL produced biomechanical and histopathologic improvements, which were not significantly different between the 2 pulsed-light accelerated CXL treatments.
Future Gamma-Ray Imaging of Solar Eruptive Events
NASA Technical Reports Server (NTRS)
Shih, Albert
2012-01-01
Solar eruptive events, the combination of large solar flares and coronal mass ejections (CMEs), accelerate ions to tens of Gev and electrons to hundreds of MeV. The energy in accelerated particles can be a significant fraction (up to tens of percent) of the released energy and is roughly equipartitioned between ions and electrons. Observations of the gamma-ray signatures produced by these particles interacting with the ambient solar atmosphere probes the distribution and composition of the accelerated population, as well as the atmospheric parameters and abundances of the atmosphere, ultimately revealing information about the underlying physics. Gamma-ray imaging provided by RHESSI showed that the interacting approx.20 MeV/nucleon ions are confined to flare magnetic loops rather than precipitating from a large CME-associated shock. Furthermore, RHESSI images show a surprising, significant spatial separation between the locations where accelerated ions and electrons are interacting, thus indicating a difference in acceleration or transport processes for the two types of particles. Future gamma-ray imaging observations, with higher sensitivity and greater angular resolution, can investigate more deeply the nature of ion acceleration. The technologies being proven on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), a NASA balloon instrument, are possible approaches for future instrumentation. We discuss the GRIPS instrument and the future of studying this aspect of solar eruptive events.
Pollen Acceptance or Rejection: A Tale of Two Pathways.
Doucet, Jennifer; Lee, Hyun Kyung; Goring, Daphne R
2016-12-01
While the molecular and cellular basis of self-incompatibility leading to self-pollen rejection in the Brassicaceae has been extensively studied, relatively little attention has been paid to compatible pollen recognition and the corresponding cellular responses in the stigmatic papillae. This is now changing because research has started to uncover steps in the Brassicaceae 'basal compatible pollen response pathway' in the stigma leading to pollen hydration and germination. Furthermore, recent studies suggest that self-incompatible pollen activates both the basal compatible pathway and the self-incompatibility pathway in the stigma, with the self-incompatibility response ultimately prevailing to reject self-pollen. We review here recent discoveries in both pathways and discuss how compatible pollen is accepted by the stigma versus the rejection of self-incompatible pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laser-driven proton acceleration with nanostructured targets
NASA Astrophysics Data System (ADS)
Vallières, Simon; Morabito, Antonia; Veltri, Simona; Scisciò, Massimiliano; Barberio, Marianna; Antici, Patrizio
2017-05-01
Laser-driven particle acceleration has become a growing field of research, in particular for its numerous interesting applications. One of the most common proton acceleration mechanism that is obtained on typically available multi-hundred TW laser systems is based on the irradiation of thin solid metal foils by the intense laser, generating the proton acceleration on its rear target surface. The efficiency of this acceleration scheme strongly depends on the type of target used. Improving the acceleration mechanism, i.e. enhancing parameters such as maximum proton energy, laminarity, efficiency, monocromaticy, and number of accelerated particles, is heavily depending on the laser-to-target absorption, where obviously cheap and easy to implement targets are best candidates. In this work, we present nanostructured targets that are able to increase the absorption of light compared to what can be achieved with a classical solid (non-nanostructured) target and are produced with a method that is much simpler and cheaper than conventional lithographic processes. Several layers of gold nanoparticles were deposited on solid targets (aluminum, Mylar and multiwalled carbon nanotube buckypaper) and allow for an increased photon absorption. This ultimately permits to increase the laser-to-particle energy transfer, and thus to enhance the yield in proton production. Experimental characterization results on the nanostructured films are presented (UV-Vis spectroscopy and AFM), along with preliminary experimental proton spectra obtained at the JLF-TITAN laser facility at LLNL.
Whiffin, C J; Clarke, H; Brundrett, H; Baker, D; Whitehead, B
2018-01-01
Financial support for students entering nurse education programmes has typically been the responsibility of Governments who make a substantial contribution to tuition and/or living costs. However, where programmes are not funded by Government bodies, students must make alternative arrangements for financial support. This paper explores how a university worked with local employers to design, recruit and deliver an accelerated graduate entry nursing programme and how this philosophy of collaboration ultimately led to local health employers providing sponsorship for students. Therefore, we offer for debate the benefits of collaborative curriculum design and future considerations of attracting employer funding for graduate entry nursing programmes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human exposures to phthalate ester plasticizer compounds are widespread. Studies in rodents have demonstrated that in utero exposure to various phthalates throughout sexual differentiation (GD14-18) results in decreased fetal testicular androgen production, and ultimately leads t...
Ubiquitin-Modifying Enzymes and Regulation of the Inflammasome.
Kattah, Michael G; Malynn, Barbara A; Ma, Averil
2017-11-10
Ubiquitin and ubiquitin-modifying enzymes play critical roles in a wide variety of intracellular signaling pathways. Inflammatory signaling cascades downstream of TNF, TLR agonists, antigen receptor cross-linking, and cytokine receptors, all rely on ubiquitination events to direct subsequent immune responses. In the past several years, inflammasome activation and subsequent signal transduction have emerged as an excellent example of how ubiquitin signals control inflammatory responses. Inflammasomes are multiprotein signaling complexes that ultimately lead to caspase activation and release of the interleukin-1 (IL-1) family members, IL-1β and IL-18. Inflammasome activation is critical for the host's defense against pathogens, but dysregulation of inflammasomes may contribute to the pathogenesis of multiple diseases. Ultimately, understanding how various ubiquitin interacting proteins control inflammatory signaling cascades could provide new pathways for therapeutic intervention. Here we review specific ubiquitin-modifying enzymes and ubiquitination events that orchestrate inflammatory responses, with an emphasis on the NLRP3 inflammasome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klimas, P. C.
1981-01-01
Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.
COTS Ceramic Chip Capacitors: An Evaluation of the Parts and Assurance Methodologies
NASA Technical Reports Server (NTRS)
Sampson, Michael J.
2004-01-01
This viewgraph presentation profiles an experiment to evaluate the suitability of commercial off-the-shelf (COTS) ceramic chip capacitors for NASA spaceflight applications. The experiment included: 1) Voltage Conditioning ('Burn-In'); 2) Highly Accelerated Life Test (HALT); 3) Destructive Physical Analysis (DPA); 4) Ultimate Voltage Breakdown Strength. The presentation includes results for each of the capacitors used in the experiment.
Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem
Jonathan P. Benstead; Amy D. Rosemond; Wyatt F. Cross; J. Bruce Wallace; Susan L. Eggert; Keller Suberkropp; Vladislav Gulis; Jennifer L. Greenwood; Cynthia J. Tant
2009-01-01
Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-...
How Does the ASAP Model Align with Guided Pathways Implementation in Community Colleges?
ERIC Educational Resources Information Center
MDRC, 2016
2016-01-01
Community colleges that are exploring ways to dramatically improve outcomes for their students frequently seek a better understanding of the relationship between two "branded" approaches receiving significant publicity: Accelerated Study in Associate Programs (ASAP) and guided pathways. ASAP was created by the City University of New York…
Shim, J Y; Richard, A M
1997-01-01
The selective nephrotoxicity of halogenated alkenes has been attributed to a glutathione (GSH) S-conjugate pathway involving enzymatic hydrolysis to the cysteine S-conjugate and beta-lyase bioactivation to thiolates, which are presumed to give rise to the ultimate mutagenic or cytotoxic reactive species. Studies have shown that the brominated S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteine conjugates are mutagenic in the Ames test, whereas the nonbrominated analogues are nonmutagenic. While careful experimentation has contributed much to current understanding, the ultimate reactive species responsible for the differing mutagenic effects remain unknown. Computational methods were applied to the investigation of two proposed metabolic pathways leading from the thiolate to either a thiirane or thionoacyl fluoride intermediate, both electrophilic species presumed capable of binding to proteins or DNA. Studied were six F-, Cl-, and Br-substituted 2,2-dihalo-1,1-difluoroethane-1-thiolates (2,2-dihalo-DFETs). Pathway preference was determined for each thiolate by comparison of reaction energy profiles and activation energies. At all but the lowest level of ab initio theory, a thionoacyl fluoride pathway was predicted for 2,2-difluoro-DFET, while a thiirane pathway was energetically preferred for the brominated 2,2-dihalo-DFETs. These results offer a clear mechanism-based rationale for distinguishing 2,2-difluoro-DFET from the brominated 2,2-dihalo-DFETs, while the results are less clear for the 2,2-dichloro and 2-chloro-2-fluoro-DFETs, which at the highest level of ab initio treatment had a relatively small energy preference (2.4 kcal/mol) for the thiirane pathway. The predicted clear preference for a thiirane pathway for the brominated 2,2-dihalo-DFETs is not consistent with a recently proposed pathway involving alpha-thiolactone formation through a thionoacyl fluoride intermediate [Finkelstein, M. B., et al. (1995) J. Am. Chem. Soc. 117, 9590-9591], but is supported by results of a recent study providing experimental evidence for thiirane formation from the brominated 2,2-dihalo-DFETs [Finkelstein, M. B., et al. (1996) Chem. Res. Toxicol. 9, 227-231].
Ramamoorthi, Ganesan; Sivalingam, Nageswaran
2014-08-01
Colon cancer is one of the third most common cancer in man, the second most common cancer in women worldwide, and the second leading cause of mortality in the USA. There are a number of molecular pathways that have been implicated in colon carcinogenesis, including TGF-β/Smad signaling pathway. TGF-β (transforming growth factor-beta) signaling pathway has the potential to regulate various biological processes including cell growth, differentiation, apoptosis, extracellular matrix modeling, and immune response. TGF-β signaling pathway acts as a tumor suppressor, but alterations in TGF-β signaling pathway promotes colon cancer cell growth, migration, invasion, angiogenesis, and metastasis. Here we review the role of TGF-β signaling cascade in colon carcinogenesis and multiple molecular targets of curcumin in colon carcinogenesis. Elucidation of the molecular mechanism of curcumin on TGF-β signaling pathway-induced colon carcinogenesis may ultimately lead to novel and more effective treatments for colon cancer.
Halper, Sean M; Cetnar, Daniel P; Salis, Howard M
2018-01-01
Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.
On the shedding of impaled droplets: The role of transient intervening layers
NASA Astrophysics Data System (ADS)
Stamatopoulos, Christos; Schutzius, Thomas M.; Köppl, Christian J.; Hayek, Nicolas El; Maitra, Tanmoy; Hemrle, Jaroslav; Poulikakos, Dimos
2016-01-01
Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the “lifting” of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers.
On the shedding of impaled droplets: The role of transient intervening layers
Stamatopoulos, Christos; Schutzius, Thomas M.; Köppl, Christian J.; Hayek, Nicolas El; Maitra, Tanmoy; Hemrle, Jaroslav; Poulikakos, Dimos
2016-01-01
Maintaining the non-wetting property of textured hydrophobic surfaces is directly related to the preservation of an intervening fluid layer (gaseous or immiscible liquid) between the droplet and substrate; once displaced, it cannot be recovered spontaneously as the fully penetrated Wenzel wetting state is energetically favorable. Here, we identify pathways for the “lifting” of droplets from the surface texture, enabling a complete Wenzel-to-Cassie-Baxter wetting state transition. This is accomplished by the hemiwicking of a transient (limited lifetime due to evaporation) low surface tension (LST) liquid, which is capable of self-assembling as an intervening underlayer, lifting the droplet from its impaled state and facilitating a skating-like behavior. In the skating phase, a critical substrate tilting angle is identified, up to which underlayer and droplet remain coupled exhibiting a pseudo-Cassie-Baxter state. For greater titling angles, the droplet, driven by inertia, detaches itself from the liquid intervening layer and transitions to a traditional Cassie-Baxter wetting state, thereby accelerating and leaving the underlayer behind. A model is also presented that elucidates the mechanism of mobility recovery. Ultimately, this work provides a better understanding of multiphase mass transfer of immiscible LST liquid-water mixtures with respect to establishing facile methods towards retaining intervening layers. PMID:26743806
NASA Astrophysics Data System (ADS)
Tsanakas, John A.; Jaffre, Damien; Sicre, Mathieu; Elouamari, Rachid; Vossier, Alexis; de Salins, Jean-Edouard; Bechou, Laurent; Levrier, Bruno; Perona, Arnaud; Dollet, Alain
2014-09-01
This paper presents a preliminary study upon a novel approach proposed for highly accelerated ageing and reliability optimization of high concentrating photovoltaic (HCPV) cells and assemblies. The intended approach aims to overcome several limitations of some current accelerated ageing tests (AAT) adopted up today, proposing the use of an alternative experimental set-up for performing faster and more realistic thermal cycles, under real sun, without the involvement of environmental chamber. The study also includes specific characterization techniques, before and after each AAT sequence, which respectively provide the initial and final diagnosis on the condition of the tested sample. The acquired data from these diagnostic/characterization methods are then used as indices to determine both quantitatively and qualitatively the severity of degradation and, thus, the ageing level for each tested HCPV assembly or cell sample. Ultimate goal of such "initial diagnosis - AAT - final diagnosis" sequences is to provide the basis for a future work on the reliability analysis of the main degradation mechanisms and confident prediction of failure propagation in HCPV cells, by means of acceleration factor (AF) and mean-time-to-failure (MTTF) estimations.
Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.
2017-01-01
Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271
Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein
Vu, Trang T.; Zhou, Ji; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P.; Gross, Peter L.; Weitz, Jeffrey I.
2015-01-01
Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid–driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. PMID:25691157
ERIC Educational Resources Information Center
Dougherty, Shaun M.; Goodman, Joshua S.; Hill, Darryl V.; Litke, Erica G.; Page, Lindsay C.
2015-01-01
Taking algebra by eighth grade is considered an important milestone on the pathway to college readiness. We highlight a collaboration to investigate one district's effort to increase middle school algebra course-taking. In 2010, the Wake County Public Schools began assigning middle school students to accelerated math and eighth-grade algebra based…
How UV photolysis accelerates the biodegradation and mineralization of sulfadiazine (SD).
Pan, Shihui; Yan, Ning; Liu, Xinyue; Wang, Wenbing; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E
2014-11-01
Sulfadiazine (SD), one of broad-spectrum antibiotics, exhibits limited biodegradation in wastewater treatment due to its chemical structure, which requires initial mono-oxygenation reactions to initiate its biodegradation. Intimately coupling UV photolysis with biodegradation, realized with the internal loop photobiodegradation reactor, accelerated SD biodegradation and mineralization by 35 and 71 %, respectively. The main organic products from photolysis were 2-aminopyrimidine (2-AP), p-aminobenzenesulfonic acid (ABS), and aniline (An), and an SD-photolysis pathway could be identified using C, N, and S balances. Adding An or ABS (but not 2-AP) into the SD solution during biodegradation experiments (no UV photolysis) gave SD removal and mineralization rates similar to intimately coupled photolysis and biodegradation. An SD biodegradation pathway, based on a diverse set of the experimental results, explains how the mineralization of ABS and An (but not 2-AP) provided internal electron carriers that accelerated the initial mono-oxygenation reactions of SD biodegradation. Thus, multiple lines of evidence support that the mechanism by which intimately coupled photolysis and biodegradation accelerated SD removal and mineralization was through producing co-substrates whose oxidation produced electron equivalents that stimulated the initial mono-oxygenation reactions for SD biodegradation.
Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium.
Ginsburg, Hagai
2009-01-01
The functional reconstruction of metabolic pathways from an annotated genome is a tedious and demanding enterprise. Automation of this endeavor using bioinformatics algorithms could cope with the ever-increasing number of sequenced genomes and accelerate the process. Here, the manual reconstruction of metabolic pathways in the functional genomic database of Plasmodium falciparum--Malaria Parasite Metabolic Pathways--is described and compared with pathways generated automatically as they appear in PlasmoCyc, metaSHARK and the Kyoto Encyclopedia for Genes and Genomes. A critical evaluation of this comparison discloses that the automatic reconstruction of pathways generates manifold paths that need an expert manual verification to accept some and reject most others based on manually curated gene annotation.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
Grignolo, Alberto; Mingping, Zhang
2018-01-01
Sweeping reforms in the largest markets of the Asia-Pacific region are transforming the regulatory and commercial landscape for foreign pharmaceutical companies. Japan, South Korea, and China are leading the charge, establishing mechanisms and infrastructure that both reflect and help drive international regulatory convergence and accelerate delivery of needed, innovative products to patients. In this rapidly evolving regulatory and commercial environment, drug developers can benefit from reforms and proliferating accelerated pathway (AP) frameworks, but only with regulatory and evidence-generation strategies tailored to the region. Otherwise, they will confront significant pricing and reimbursement headwinds. Although APAC economies are at different stages of development, they share a common imperative: to balance pharmaceutical innovation with affordability. Despite the complexity of meeting these sometimes conflicting demands, companies that focus on demonstrating and delivering value for money, and that price new treatments reasonably and sustainably, can succeed both for their shareholders and the region's patient population.
Diffusive Shock Acceleration and Turbulent Reconnection
NASA Astrophysics Data System (ADS)
Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos
2018-05-01
Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.
The converter mechanism of particle acceleration and the maximum energy of cosmic rays
NASA Astrophysics Data System (ADS)
Kocharovsky, Vl. V.; Aharonian, F. A.; Derishev, E. V.; Kocharovsky, V. V.
We consider the fundamental limits on the energy of particles accelerated by electromagnetic forces in various astrophysical objects [1]. We show that accelerator's parameters are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion) but also by the curvature and other types of radiative losses of accelerated particles. Optimization of these requirements in terms of accelerator's size and the magnetic field strength results in the ultimate lower limit on the overall source energy budget, which scales as the fifth power of attainable particle energy. It is demonstrated that the curvature gamma-rays accompanying the acceleration gives further restrictions for potential acceleration sites. We compare different acceleration mechanisms and show, that the converter mechanism, which we suggested earlier [2], is the least sensitive to the geometry of the magnetic field in accelerators and allows to reach cosmic-ray energies close to the fundamental limit. The converter mechanism works most efficiently in relativistic shocks or shear flows. It utilizes multiple conversions of charged particles into neutral ones (protons to neutrons and electrons/positrons to photons) and back by means of photon-induced reactions or inelastic nucleon- nucleon collisions. We discuss the properties of gamma-ray radiation, which accompanies acceleration of cosmic rays via the converter mechanism and can provide an evidence for the latter. 1. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 66, 023005 (2002). 2. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 68, 043003 (2003).
Cosmic Ray Acceleration by a Versatile Family of Galactic Wind Termination Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustard, Chad; Zweibel, Ellen G.; Cotter, Cory, E-mail: bustard@wisc.edu
2017-01-20
There are two distinct breaks in the cosmic ray (CR) spectrum: the so-called “knee” around 3 × 10{sup 15} eV and the so-called “ankle” around 10{sup 18} eV. Diffusive shock acceleration (DSA) at supernova remnant (SNR) shock fronts is thought to accelerate galactic CRs to energies below the knee, while an extragalactic origin is presumed for CRs with energies beyond the ankle. CRs with energies between 3 × 10{sup 15} and 10{sup 18} eV, which we dub the “shin,” have an unknown origin. It has been proposed that DSA at galactic wind termination shocks, rather than at SNR shocks, maymore » accelerate CRs to these energies. This paper uses the galactic wind model of Bustard et al. to analyze whether galactic wind termination shocks may accelerate CRs to shin energies within a reasonable acceleration time and whether such CRs can subsequently diffuse back to the Galaxy. We argue for acceleration times on the order of 100 Myr rather than a few billion years, as assumed in some previous works, and we discuss prospects for magnetic field amplification at the shock front. Ultimately, we generously assume that the magnetic field is amplified to equipartition. This formalism allows us to obtain analytic formulae, applicable to any wind model, for CR acceleration. Even with generous assumptions, we find that very high wind velocities are required to set up the necessary conditions for acceleration beyond 10{sup 17} eV. We also estimate the luminosities of CRs accelerated by outflow termination shocks, including estimates for the Milky Way wind.« less
NASA Technical Reports Server (NTRS)
Lasker, D. M.; Backous, D. D.; Lysakowski, A.; Davis, G. L.; Minor, L. B.
1999-01-01
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral plugging of the three semicircular canals. During the period (1-4 days) that animals were kept in darkness after plugging, the gain during steps of acceleration (3, 000 degrees /s(2), peak velocity = 150 degrees /s) was 0.61 +/- 0.14 (mean +/- SD) for contralesional rotations and 0.33 +/- 0.03 for ipsilesional rotations. Within 18-24 h after animals were returned to light, the VOR gain for contralesional rotations increased to 0. 88 +/- 0.05, whereas there was only a slight increase in the gain for ipsilesional rotations to 0.37 +/- 0.07. A symmetrical increase in the gain measured at the plateau of head velocity was noted after animals were returned to light. The latency of the VOR was 8.2 +/- 0. 4 ms for ipsilesional and 7.1 +/- 0.3 ms for contralesional rotations. The VOR evoked by sinusoidal rotations of 0.5-15 Hz, +/-20 degrees /s had no significant half-cycle asymmetries. The recovery of gain for these responses after plugging was greater at lower than at higher frequencies. Responses to rotations at higher velocities for frequencies >/=4 Hz showed an increase in contralesional half-cycle gain, whereas ipsilesional half-cycle gain was unchanged. A residual response that appeared to be canal and not otolith mediated was noted after plugging of all six semicircular canals. This response increased with frequency to reach a gain of 0.23 +/- 0.03 at 15 Hz, resembling that predicted based on a reduction of the dominant time constant of the canal to 32 ms after plugging. A model incorporating linear and nonlinear pathways was used to simulate the data. The coefficients of this model were determined from data in animals with intact vestibular function. Selective increases in the gain for the linear and nonlinear pathways predicted the changes in recovery observed after canal plugging. An increase in gain of the linear pathway accounted for the recovery in VOR gain for both responses at the velocity plateau of the steps of acceleration and for the sinusoidal rotations at lower peak velocities. The increase in gain for contralesional responses to steps of acceleration and sinusoidal rotations at higher frequencies and velocities was due to an increase in the gain of the nonlinear pathway. This pathway was driven into inhibitory cutoff at low velocities and therefore made no contribution for rotations toward the ipsilesional side.
A/R systems reduce delayed and denied reimbursements.
Escobar, Carlos
2007-01-01
The day-to-day benefits of a comprehensive billing and collections system are pro-active and preventive--administrators are increasingly learning that accelerating billings hastens collections and, ultimately, facility profitability. Effective billing and collections management services work closely with the facility, matching nightly "dumps" of patient files with transcripts. This marriage of otherwise disparate data creates a billing unit that reduces errors and ensures no billable procedures are lost. Ultimately, the goal of any medical practice that engages an ASP application or outsource solution is not to sit idly by while allowing a billing company to take control of a practice's revenue stream. The ability to track the billing process from transcript submission to payment provides a facility with all information necessary to manage cash flow, revenues, and even personal and practice financial planning.
Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia
2011-06-01
Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.
Wickrama, Kandauda A S; Lee, Tae Kyoung; O'Neal, Catherine Walker
2018-02-01
Recent research suggests that psychosocial resources and life stressors are mediating pathways explaining socioeconomic variation in young adults' health risks. However, less research has examined both these pathways simultaneously and their genetic moderation. A nationally representative sample of 11,030 respondents with prospective data collected over 13 years from the National Study of Adolescent to Adult Health was examined. First, the association between early cumulative socioeconomic adversity and young adults' (ages 25-34) cardiometabolic disease risk, as measured by 10 biomarkers, through psychosocial resources (educational attainment) and life stressors (accelerated transition to adulthood) was examined. Second, moderation of these pathways by the serotonin transporter linked polymorphic region gene (5-HTTLPR) was examined. There was evidence for the association between early socioeconomic adversity and young adults' cardiometabolic disease risk directly and indirectly through educational attainment and accelerated transitions. These direct and mediating pathways were amplified by the 5-HTTLPR polymorphism. These findings elucidate how early adversity can have an enduring influence on young adults' cardiometabolic disease risk directly and indirectly through psychosocial resources and life stressors and their genetic moderation. This information suggests that effective intervention and prevention programs should focus on early adversity, youth educational attainment, and their transition to young adulthood.
Code of Federal Regulations, 2011 CFR
2011-04-01
... that: (A) The stock does not have a maturity date; (B) The stock cannot be redeemed at the option of... G; (B) Subordinated debt if the original weighted average maturity of the subordinated debt is at... weighted average maturity of at least five years and that cannot be accelerated, except upon the occurrence...
An adverse outcome pathway (AOP) conceptually links a molecular initiating event with measureable key events at higher levels of biological organization that ultimately result in an adverse outcome. Development of an AOP requires experimental data and scientific expertise to ide...
Investigation of the Factors That Influence Undergraduate Student Chemistry Course Selection
ERIC Educational Resources Information Center
Hinds, Elsa M.; Shultz, Ginger V.
2018-01-01
The introductory chemistry sequence is a common pathway for undergraduates pursuing science, technology, engineering, and math (STEM) and prehealth careers. Student's academic decision-making has far-reaching consequences for their trajectory, including persistence in the major and ultimate career choice. This phenomenon was studied using a survey…
NASA Technical Reports Server (NTRS)
Lasker, D. M.; Hullar, T. E.; Minor, L. B.; Shelhamer, M. J. (Principal Investigator)
2000-01-01
The horizontal angular vestibuloocular reflex (VOR) evoked by high-frequency, high-acceleration rotations was studied in four squirrel monkeys after unilateral labyrinthectomy. Spontaneous nystagmus was measured at the beginning and end of each testing session. During the period that animals were kept in darkness (4 days), the nystagmus at each of these times measured approximately 20 degrees /s. Within 18-24 h after return to the light, the nystagmus (measured in darkness) decreased to 2.8 +/- 1.5 degrees /s (mean +/- SD) when recorded at the beginning but was 20.3 +/- 3.9 degrees /s at the end of the testing session. The latency of the VOR measured from responses to steps of acceleration (3,000 degrees /s(2) reaching a velocity of 150 degrees /s) was 8.4 +/- 0.3 ms for responses to ipsilesional rotations and 7.7 +/- 0.4 ms for contralesional rotations. During the period that animals were kept in darkness after the labyrinthectomy, the gain of the VOR measured during the steps of acceleration was 0.67 +/- 0.12 for contralesional rotations and 0.39 +/- 0.04 for ipsilesional rotations. Within 18-24 h after return to light, the VOR gain for contralesional rotations increased to 0.87 +/- 0.08, whereas there was only a slight increase for ipsilesional rotations to 0.41 +/- 0. 06. A symmetrical increase in the gain measured at the plateau of head velocity was noted after the animals were returned to light. The VOR evoked by sinusoidal rotations of 2-15 Hz, +/-20 degrees /s, showed a better recovery of gain at lower (2-4 Hz) than at higher (6-15 Hz) frequencies. At 0.5 Hz, gain decreased symmetrically when the peak amplitude was increased from 20 to 100 degrees /s. At 10 Hz, gain was decreased for ipsilesional half-cycles and increased for contralesional half-cycles when velocity was raised from 20 to 50 degrees /s. A model incorporating linear and nonlinear pathways was used to simulate the data. Selective increases in the gain for the linear pathway accounted for the recovery in VOR gain for responses at the velocity plateau of the steps of acceleration and for the sinusoidal rotations at lower peak velocities. The increase in gain for contralesional responses to steps of acceleration and sinusoidal rotations at higher frequencies and velocities was due to an increase in the contribution of the nonlinear pathway. This pathway was driven into cutoff and therefore did not affect responses for rotations toward the lesioned side.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2001-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.
Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes
NASA Technical Reports Server (NTRS)
Ofman, Leon
2000-01-01
The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.
Identification of JAK/STAT pathway regulators—Insights from RNAi screens
Müller, Patrick; Boutros, Michael; Zeidler, Martin P.
2008-01-01
While many core JAK/STAT pathway components have been discovered in Drosophila via classical genetic approaches, the identification of pathway regulators has been more challenging. Recently two cell-based RNAi screens for JAK/STAT pathway regulators have been undertaken using libraries of double-stranded RNAs targeting a large proportion of the predicted Drosophila transcriptome. While both screens identified multiple regulators, only relatively few loci are common to both data sets. Here we compare the two screens and discuss these differences. Although many factors are likely to be contributory, differences in the assay design are of key importance. Low levels of stimulation favouring the identification of negative pathway regulators and high levels of stimulation favouring the identification of positively acting factors. Ultimately, the results from both screens are likely to be largely complementary and have identified a range of novel candidate regulators of JAK/STAT pathway activity as a starting point for new research directions in the future. PMID:18586112
Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors.
Taniguchi, Toshiyasu; Tischkowitz, Marc; Ameziane, Najim; Hodgson, Shirley V; Mathew, Christopher G; Joenje, Hans; Mok, Samuel C; D'Andrea, Alan D
2003-05-01
Ovarian tumor cells are often genomically unstable and hypersensitive to cisplatin. To understand the molecular basis for this phenotype, we examined the integrity of the Fanconi anemia-BRCA (FANC-BRCA) pathway in those cells. This pathway regulates cisplatin sensitivity and is governed by the coordinate activity of six genes associated with Fanconi anemia (FANCA, FANCC, FANCD2, FANCE, FANCF and FANCG) as well as BRCA1 and BRCA2 (FANCD1). Here we show that the FANC-BRCA pathway is disrupted in a subset of ovarian tumor lines. Mono-ubiquitination of FANCD2, a measure of the function of this pathway, and cisplatin resistance were restored by functional complementation with FANCF, a gene that is upstream in this pathway. FANCF inactivation in ovarian tumors resulted from methylation of its CpG island, and acquired cisplatin resistance correlated with demethylation of FANCF. We propose a model for ovarian tumor progression in which the initial methylation of FANCF is followed by FANCF demethylation and ultimately results in cisplatin resistance.
NASA Astrophysics Data System (ADS)
Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.
2006-12-01
The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia
Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less
NASA Astrophysics Data System (ADS)
Checchin, Mattia
Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at the quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.
ERIC Educational Resources Information Center
Hargreaves, Jo; Blomberg, Davinia
2015-01-01
The nature of apprenticeships is changing. Increasing proportions of adult apprentices are prompting demand for various alternative pathways to completion. One option for an alternative pathway to accelerate completion is the use of recognition of prior learning (RPL) to identify existing skills and knowledge in combination with gap training. This…
Lee, Soung-Hoon; Seo, Seol Hwa; Lee, Dong-Hwan; Pi, Long-Quan; Lee, Won-Soo; Choi, Kang-Yell
2017-11-01
The Wnt/β-catenin pathway has been implicated in hair follicle development and hair regeneration in adults. We discovered that CXXC-type zinc finger protein 5 (CXXC5) is a negative regulator of the Wnt/β-catenin pathway involved in hair regrowth and wound-induced hair follicle neogenesis via an interaction with Dishevelled. CXXC5 was upregulated in miniaturized hair follicles and arrector pili muscles in human balding scalps. The inhibitory effects of CXXC5 on alkaline phosphatase activity and cell proliferation were demonstrated using human hair follicle dermal papilla cells. Moreover, CXXC5 -/- mice displayed accelerated hair regrowth, and treatment with valproic acid, a glycogen synthase kinase 3β inhibitor that activates the Wnt/β-catenin pathway, further induced hair regrowth in the CXXC5 -/- mice. Disrupting the CXXC5-Dishevelled interaction with a competitor peptide activated the Wnt/β-catenin pathway and accelerated hair regrowth and wound-induced hair follicle neogenesis. Overall, these findings suggest that the CXXC5-Dishevelled interaction is a potential target for the treatment of hair loss. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Converging Pathways in Lifespan Regulation
Narasimhan, Sri Devi; Yen, Kelvin; Tissenbaum, Heidi A.
2011-01-01
The processes that determine an organism’s lifespan are complex and poorly understood. Yet single gene manipulations and environmental interventions can substantially delay age-related morbidity. In this review, we focus on the two most potent modulators of longevity: insulin/insulin-like growth factor 1 (IGF-1) signaling and dietary restriction. The remarkable molecular conservation of the components associated with insulin/IGF-1 signaling and dietary restriction allow us to understand longevity from a multi-species perspective. We summarize the most recent findings on insulin/IGF-1 signaling and examine the proteins and pathways that reveal a more genetic basis for dietary restriction. Although insulin/IGF-1 signaling and dietary restriction pathways are currently viewed as being independent, we suggest that these two pathways are more intricately connected than previously appreciated. We highlight that numerous interactions between these two pathways can occur at multiple levels. Ultimately, both the insulin/IGF-1 pathway and the pathway that mediates the effects of dietary restriction have evolved to respond to the nutritional status of an organism, which in turn affects its lifespan. PMID:19674551
Hippo Pathway: An Emerging Regulator of Craniofacial and Dental Development.
Wang, J; Martin, J F
2017-10-01
The evolutionarily conserved Hippo signaling pathway is a vital regulator of organ size that fine-tunes cell proliferation, apoptosis, and differentiation. A number of important studies have revealed critical roles of Hippo signaling and its effectors Yap (Yes-associated protein) and Taz (transcriptional coactivator with PDZ binding motif) in tissue development, homeostasis, and regeneration, as well as in tumorigenesis. In addition, recent studies have shown evidence of crosstalk between the Hippo pathway and other key signaling pathways, such as Wnt signaling, that not only regulates developmental processes but also contributes to disease pathogenesis. In this review, we summarize the major discoveries in the field of Hippo signaling and what has been learned about its regulation and crosstalk with other signaling pathways, with a particular focus on recent findings involving the Hippo-Yap pathway in craniofacial and tooth development. New and exciting studies of the Hippo pathway are anticipated that will significantly improve our understanding of the molecular mechanisms of human craniofacial and tooth development and disease and will ultimately lead to the development of new therapies.
ATOM - Accelerating therapeutics through opportunities in medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcmahon, Benjamin Hamilton; Dotson, Paul Jeffrey
Create a new paradigm of drug discovery that would reduce the time from an identified drug target to clinical candidate from the current ~6 years to just 12 months. ATOM will develop, test, and validate a multidisciplinary approach to drug discovery in which modern science, technology and engineering, supercomputing, simulations, data science, and artificial intelligence are highly integrated into a single drug-discovery platform that can ultimately be shared with the drug development community at-large.
Early Induction of NRF2 Antioxidant Pathway by RHBDF2 Mediates Rapid Cutaneous Wound Healing
Hosur, Vishnu; Burzenski, Lisa M.; Stearns, Timothy M.; Farley, Michelle L.; Sundberg, John P.; Wiles, Michael V.; Shultz, Leonard D.
2017-01-01
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15 min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15 min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. PMID:28268192
Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.
Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D
2017-04-01
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein.
Vu, Trang T; Zhou, Ji; Leslie, Beverly A; Stafford, Alan R; Fredenburgh, James C; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P; Gross, Peter L; Weitz, Jeffrey I
2015-04-23
Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid-driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. © 2015 by The American Society of Hematology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiebel-Kalish, Hadas, E-mail: kalishhadas@gmail.com; Sackler School of Medicine, Tel Aviv University, Tel Aviv; Reich, Ehud
Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up atmore » our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.« less
NASA Technical Reports Server (NTRS)
Clendaniel, R. A.; Lasker, D. M.; Minor, L. B.; Shelhamer, M. J. (Principal Investigator)
2001-01-01
The horizontal angular vestibuloocular reflex (VOR) evoked by sinusoidal rotations from 0.5 to 15 Hz and acceleration steps up to 3,000 degrees /s(2) to 150 degrees /s was studied in six squirrel monkeys following adaptation with x2.2 magnifying and x0.45 minimizing spectacles. For sinusoidal rotations with peak velocities of 20 degrees /s, there were significant changes in gain at all frequencies; however, the greatest gain changes occurred at the lower frequencies. The frequency- and velocity-dependent gain enhancement seen in normal monkeys was accentuated following adaptation to magnifying spectacles and diminished with adaptation to minimizing spectacles. A differential increase in gain for the steps of acceleration was noted after adaptation to the magnifying spectacles. The gain during the acceleration portion, G(A), of a step of acceleration (3,000 degrees /s(2) to 150 degrees /s) increased from preadaptation values of 1.05 +/- 0.08 to 1.96 +/- 0.16, while the gain during the velocity plateau, G(V), only increased from 0.93 +/- 0.04 to 1.36 +/- 0.08. Polynomial fits to the trajectory of the response during the acceleration step revealed a greater increase in the cubic than the linear term following adaptation with the magnifying lenses. Following adaptation to the minimizing lenses, the value of G(A) decreased to 0.61 +/- 0.08, and the value of G(V) decreased to 0.59 +/- 0.09 for the 3,000 degrees /s(2) steps of acceleration. Polynomial fits to the trajectory of the response during the acceleration step revealed that there was a significantly greater reduction in the cubic term than in the linear term following adaptation with the minimizing lenses. These findings indicate that there is greater modification of the nonlinear as compared with the linear component of the VOR with spectacle-induced adaptation. In addition, the latency to the onset of the adapted response varied with the dynamics of the stimulus. The findings were modeled with a bilateral model of the VOR containing linear and nonlinear pathways that describe the normal behavior and adaptive processes. Adaptation for the linear pathway is described by a transfer function that shows the dependence of adaptation on the frequency of the head movement. The adaptive process for the nonlinear pathway is a gain enhancement element that provides for the accentuated gain with rising head velocity and the increased cubic component of the responses to steps of acceleration. While this model is substantially different from earlier models of VOR adaptation, it accounts for the data in the present experiments and also predicts the findings observed in the earlier studies.
ERIC Educational Resources Information Center
Mussi, María Alejandra; Actis, Luis A.; de Mendoza, Diego; Cybulski, Larisa E.
2014-01-01
A laboratory exercise was designed to illustrate how physical stimuli such as temperature and light are sensed and processed by bacteria to elaborate adaptive responses. In particular, we use the well-characterized Des pathway of "Bacillus subtilis" to show that temperature modulates gene expression, resulting ultimately in modification…
The US EPA ToxCast program is using in vitro high-throughput screening assays to profile the bioactivity of environmental chemicals, with the ultimate goal of predicting in vivo toxicity. We hypothesize that in modeling toxicity it will be more constructive to understand the pert...
Examining the Role of Corporate Sponsorship in the Public School System: Appropriate Pathways
ERIC Educational Resources Information Center
Potter, Maria
2012-01-01
To compensate for declining public school budgets, an increasing number of local public education organizations are soliciting and accepting financial support from U.S. corporations. There is considerable debate as to whether corporate involvement ultimately aids or hampers students' academic achievement, and there are many conflicting opinions as…
Hensel, Niko; Stockbrügger, Inga; Rademacher, Sebastian; Broughton, Natasha; Brinkmann, Hella; Grothe, Claudia; Claus, Peter
2014-03-01
Rho-kinase (ROCK) as well as extracellular signal regulated kinase (ERK) control actin cytoskeletal organization thereby regulating dynamic changes of cellular morphology. In neurons, motility processes such as axonal guidance and neurite outgrowth demand a fine regulation of upstream pathways. Here we demonstrate a bilateral ROCK-ERK information flow in neurons. This process is shifted towards an unidirectional crosstalk in a model of the neurodegenerative disease Spinal Muscular Atrophy (SMA), ultimately leading to neurite outgrowth dysregulations. As both pathways are of therapeutic relevance for SMA, our results argue for a combinatorial ROCK/ERK-targeting as a future treatment strategy. Copyright © 2013 Elsevier Inc. All rights reserved.
Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei
2017-08-16
Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ultimate Spectrum of Solar/Stellar Cosmic Rays
NASA Astrophysics Data System (ADS)
Struminsky, Alexei
2015-08-01
We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).
Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1
NASA Astrophysics Data System (ADS)
1982-05-01
A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.
Ultrasound and polar homogeneous reactions.
Tuulmets, A
1997-04-01
The effect of ultrasound on the rates of homogeneous heterolytic reactions not switched to a free radical pathway can be explained by the perturbation of the molecular organization of or the solvation in the reacting system. A quantitative analysis of the sonochemical acceleration on the basis of the microreactor concept was carried out. It was found that (1) the Diels-Alder reaction cannot be accelerated by ultrasound except when SET or free radical processes are promoted, (2) the rectified diffusion during cavitation cannot be responsible for the acceleration of reactions, and (3) the sonochemical acceleration of polar homogeneous reactions takes place in the bulk reaction medium. This implies the presence of a 'sound-field' sonochemistry besides the 'hot-spot' sonochemistry. The occurrence of a sonochemical deceleration effect can be predicted.
Considerations on Energy Frontier Colliders after LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2016-11-15
Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less
The Alfvén Mission for the ESA M5 Call
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Berthomier, Matthieu; Pottelette, Raymond; Forsyth, Colin
2017-04-01
The Alfvén mission will explore particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. In particular it will address the following three key questions. Alfvén will discover where and how particle acceleration occurs in strongly magnetized plasmas. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Several pathways of energy conversion have been proposed; to understand which are important, Alfvén will measure for the first time in a strongly magnetized plasma the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén discoveries will inform efforts to understand similar processes in other strongly magnetized plasmas, such as recent work to resolve paradoxes in models of solar flares. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. One of the most important consequences of particle acceleration in strong magnetic fields is the generation of non-thermal electromagnetic radiation. Some of the brightest astrophysical radio signals are from coherent generation in plasmas, which also occurs on every magnetized planet. Alfvén will make key measurements of Earth's powerful Auroral Kilometric Radiation (AKR) needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. The resulting discoveries will make a strong contribution to a better understanding of astrophysical radio sources. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Energy can be transported over vast distances in several forms regulated by the magnetic field, including Poynting flux of plasma waves, accelerated particle fluxes, and bulk plasma flows. A key to understanding the coupling between a magnetized object and the surrounding plasma is how the energy converts from one type to another. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. Alfvén will discover what combination of plasma and magnetic conditions controls the conversion of Poynting flux into particle energy at Earth. These conditions will be compared to those at the outer planets, illuminating the theoretical descriptions of energy deposition in these remote environments. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations. This has not previously been possible, but is now compelling and timely. It is a low risk mission that is compatible with the M5 cost cap.
The signaling pathways by which the Fas/FasL system accelerates oocyte aging.
Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He
2016-02-01
In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.
PTEN is a potent suppressor of small cell lung cancer.
Cui, Min; Augert, Arnaud; Rongione, Michael; Conkrite, Karina; Parazzoli, Susan; Nikitin, Alexander Yu; Ingolia, Nicholas; MacPherson, David
2014-05-01
Small cell lung carcinoma (SCLC) is a highly metastatic tumor type with neuroendocrine features and a dismal prognosis. PTEN mutations and PIK3CA activating mutations have been reported in SCLC but the functional relevance of this pathway is unknown. The PTEN/PIK3CA pathway was interrogated using an AdenoCre-driven mouse model of SCLC harboring inactivated Rb and p53. Inactivation of one allele of PTEN in Rb/p53-deleted mice led to accelerated SCLC with frequent metastasis to the liver. In contrast with the high mutation burden reported in human SCLC, exome analyses revealed a low number of protein-altering mutations in mouse SCLC. Inactivation of both alleles of PTEN in the Rb/p53-deleted system led to nonmetastatic adenocarcinoma with neuroendocrine differentiation. This study reveals a critical role for the PTEN/PI3K pathway in both SCLC and lung adenocarcinoma and provides an ideal system to test the phosphoinositide 3-kinase (PI3K) pathway inhibitors as targeted therapy for subsets of patients with SCLC. The ability of PTEN inactivation to accelerate SCLC in a genetic mouse model suggests that targeting the PTEN pathway is a therapeutic option for a subset of human patients with SCLC. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/early/2014/04/28/1541-7786.MCR-13-0554/F1.large.jpg. ©2014 AACR.
Beyond cause to consequence: The road from possible to core self-revision
Carroll, Patrick J.; Agler, Robert A.; Newhart, Daniel W.
2015-01-01
Two studies addressed the ultimate consequences and pathways running from repeated possible self-revisions to gradual revisions in core selves over time. As hypothesized, greater prior experiences of downward possible self-revision ultimately predicted greater subsequent declines in core self-integrity (e.g., greater self-doubt, lower self-esteem). However, also as hypothesized, this effect was mediated by the relative use of defensive vs. remedial attributions for past downward self-revision experiences. In closing, we unpack how the present work extends prior work by situating possible selves and motivated self-attributions as complementary systems that can slowly undermine as well as expand the integrity of core selves over time. PMID:26635509
NASA Astrophysics Data System (ADS)
Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.
2018-04-01
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, F.; Nie, Z.; Wu, Y. P.
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
Li, F.; Nie, Z.; Wu, Y. P.; ...
2018-02-22
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Lastly, numerical simulations that are in qualitative agreement with the experimentalmore » results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.« less
The Hippo Pathway Regulates Homeostatic Growth of Stem Cell Niche Precursors in the Drosophila Ovary
Sarikaya, Didem P.; Extavour, Cassandra G.
2015-01-01
The Hippo pathway regulates organ size, stem cell proliferation and tumorigenesis in adult organs. Whether the Hippo pathway influences establishment of stem cell niche size to accommodate changes in organ size, however, has received little attention. Here, we ask whether Hippo signaling influences the number of stem cell niches that are established during development of the Drosophila larval ovary, and whether it interacts with the same or different effector signaling pathways in different cell types. We demonstrate that canonical Hippo signaling regulates autonomous proliferation of the soma, while a novel hippo-independent activity of Yorkie regulates autonomous proliferation of the germ line. Moreover, we demonstrate that Hippo signaling mediates non-autonomous proliferation signals between germ cells and somatic cells, and contributes to maintaining the correct proportion of these niche precursors. Finally, we show that the Hippo pathway interacts with different growth pathways in distinct somatic cell types, and interacts with EGFR and JAK/STAT pathways to regulate non-autonomous proliferation of germ cells. We thus provide evidence for novel roles of the Hippo pathway in establishing the precise balance of soma and germ line, the appropriate number of stem cell niches, and ultimately regulating adult female reproductive capacity. PMID:25643260
NASA Astrophysics Data System (ADS)
Fung, Kenneth K. H.; Lewis, Geraint F.; Wu, Xiaofeng
2017-04-01
A vast wealth of literature exists on the topic of rocket trajectory optimisation, particularly in the area of interplanetary trajectories due to its relevance today. Studies on optimising interstellar and intergalactic trajectories are usually performed in flat spacetime using an analytical approach, with very little focus on optimising interstellar trajectories in a general relativistic framework. This paper examines the use of low-acceleration rockets to reach galactic destinations in the least possible time, with a genetic algorithm being employed for the optimisation process. The fuel required for each journey was calculated for various types of propulsion systems to determine the viability of low-acceleration rockets to colonise the Milky Way. The results showed that to limit the amount of fuel carried on board, an antimatter propulsion system would likely be the minimum technological requirement to reach star systems tens of thousands of light years away. However, using a low-acceleration rocket would require several hundreds of thousands of years to reach these star systems, with minimal time dilation effects since maximum velocities only reached about 0.2 c . Such transit times are clearly impractical, and thus, any kind of colonisation using low acceleration rockets would be difficult. High accelerations, on the order of 1 g, are likely required to complete interstellar journeys within a reasonable time frame, though they may require prohibitively large amounts of fuel. So for now, it appears that humanity's ultimate goal of a galactic empire may only be possible at significantly higher accelerations, though the propulsion technology requirement for a journey that uses realistic amounts of fuel remains to be determined.
Shigenaga, Alexandra M; Argueso, Cristiana T
2016-08-01
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drawnel, Faye Marie; Zhang, Jitao David; Küng, Erich; Aoyama, Natsuyo; Benmansour, Fethallah; Araujo Del Rosario, Andrea; Jensen Zoffmann, Sannah; Delobel, Frédéric; Prummer, Michael; Weibel, Franziska; Carlson, Coby; Anson, Blake; Iacone, Roberto; Certa, Ulrich; Singer, Thomas; Ebeling, Martin; Prunotto, Marco
2017-05-18
Today, novel therapeutics are identified in an environment which is intrinsically different from the clinical context in which they are ultimately evaluated. Using molecular phenotyping and an in vitro model of diabetic cardiomyopathy, we show that by quantifying pathway reporter gene expression, molecular phenotyping can cluster compounds based on pathway profiles and dissect associations between pathway activities and disease phenotypes simultaneously. Molecular phenotyping was applicable to compounds with a range of binding specificities and triaged false positives derived from high-content screening assays. The technique identified a class of calcium-signaling modulators that can reverse disease-regulated pathways and phenotypes, which was validated by structurally distinct compounds of relevant classes. Our results advocate for application of molecular phenotyping in early drug discovery, promoting biological relevance as a key selection criterion early in the drug development cascade. Copyright © 2017 Elsevier Ltd. All rights reserved.
How does patient-provider communication influence adherence to asthma medications?
Young, Henry N; Len-Rios, Maria E; Brown, Roger; Moreno, Megan M; Cox, Elizabeth
2017-04-01
To assess hypothesized pathways through which patient-provider communication impacts asthma medication adherence. A national sample of 452 adults with asthma reported assessments of patient-provider communication, proximal outcomes (understanding of asthma self-management, patient-provider agreement, trust in the clinician, involvement in care, motivation), and adherence to asthma medications. Structural equation modeling was used to examine hypothesized pathways. Significantly positive direct pathways were found between patient-provider communication and all proximal outcomes. Only positive indirect pathways, operating through trust and motivation, were found between patient-provider communication and medication adherence. Patient-provider communication influences many desirable proximal outcomes, but only influences adherence through trust and motivation. To promote better adherence to asthma medication regimens and, ultimately positive asthma outcomes, healthcare providers can focus on implementing communication strategies that strengthen patients' trust and increase patient motivation to use asthma medications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ketone body metabolism and cardiovascular disease
Cotter, David G.; Schugar, Rebecca C.
2013-01-01
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451
Osiewacz, Heinz D; Brust, Diana; Hamann, Andrea; Kunstmann, Birgit; Luce, Karin; Müller-Ohldach, Mathis; Scheckhuber, Christian Q; Servos, Jörg; Strobel, Ingmar
2010-06-01
Work from more than 50 years of research has unraveled a number of molecular pathways that are involved in controlling aging of the fungal model system Podospora anserina. Early research revealed that wild-type strain aging is linked to gross reorganization of the mitochondrial DNA. Later it was shown that aging of P. anserina does also take place, although at a slower pace, when the wild-type specific mitochondrial DNA rearrangements do not occur. Now it is clear that a network of different pathways is involved in the control of aging. Branches of these pathways appear to be connected and constitute a hierarchical system of responses. Although cross talk between the individual pathways seems to be fundamental in the coordination of the overall system, the precise underlying interactions remain to be unraveled. Such a systematic approach aims at a holistic understanding of the process of biological aging, the ultimate goal of modern systems biology.
Gerson-Gurwitz, Adina; Wang, Shaohe; Sathe, Shashank; Green, Rebecca; Yeo, Gene W.; Oegema, Karen; Desai, Arshad
2016-01-01
SUMMARY Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition. PMID:27020753
Bacteria-Phagocyte Interactions: Emerging Tactics in an Ancient Rivalry
1990-01-01
afhitan. mechanisms by which microbes cvade the deposi- Mimicry of decay -accelerating factor aExample. T ’ruzi tion of immunogiobulin and complement on...their , Possible Isis of decay accelerating factor on host cell, surfaces have been well-studied (Table 2). For Example. Bacterial phospholipase example...activators of protein that mimics the action of decay accelerat- the alternate complement pathway 1171. ing factor (DAF) [261. This protein is part of a
Voxel-based Immersive Environments Immersive Environments
2000-05-31
3D accelerated hardware. While this method lends itself well to modem hardware, the quality of the resulting images was low due to the coarse sampling...pipes. We will use MPEG video compression when sending video over T1 line, whereas for 56K bit Internet connection, we can use one of the more...sent over the communication line. The ultimate goal is to send the immersive environment over the 56K bps Internet. Since we need to send audio and
Light-ion therapy in the U.S.: From the Bevalac to ??
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jose R.; Castro, Joseph R.
2002-09-24
While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joinedmore » by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.« less
Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification
NASA Technical Reports Server (NTRS)
Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.
2015-01-01
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.
Enhanced weathering strategies for stabilizing climate and averting ocean acidification
NASA Astrophysics Data System (ADS)
Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.
2016-04-01
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.
NASA Technical Reports Server (NTRS)
Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.
2015-01-01
Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.
Pruden, Amy; Amézquita, Alejandro; Collignon, Peter; Brandt, Kristian K.; Graham, David W.; Lazorchak, James M.; Suzuki, Satoru; Silley, Peter; Snape, Jason R.; Topp, Edward; Zhang, Tong; Zhu, Yong-Guan
2013-01-01
Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic-resistance determinants via environmental pathways, with the ultimate goal of extending the useful life span of antibiotics. We also examined incentives and disincentives for action. Methods: We focused on management options with respect to limiting agricultural sources; treatment of domestic, hospital, and industrial wastewater; and aquaculture. Discussion: We identified several options, such as nutrient management, runoff control, and infrastructure upgrades. Where appropriate, a cross-section of examples from various regions of the world is provided. The importance of monitoring and validating effectiveness of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. Conclusions: Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little or no cost. Some management options are synergistic with existing policies and goals. The anticipated benefit is an extended useful life span for current and future antibiotics. Although risk reductions are often difficult to quantify, the severity of accelerating worldwide morbidity and mortality rates associated with antibiotic resistance strongly indicate the need for action. PMID:23735422
The fetal programming of telomere biology hypothesis: an update
Entringer, Sonja; Buss, Claudia; Wadhwa, Pathik D.
2018-01-01
Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing–related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal–placental–fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions. This article is part of the theme issue ‘Understanding diversity in telomere dynamics’. PMID:29335381
The fetal programming of telomere biology hypothesis: an update.
Entringer, Sonja; de Punder, Karin; Buss, Claudia; Wadhwa, Pathik D
2018-03-05
Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'. © 2018 The Author(s).
USDA-ARS?s Scientific Manuscript database
We report on the cloning, sequencing, characterization, 3D modeling and docking of Aedes aegypti juvenile hormone acid methyl transferase (AeaJHAMT), the enzyme that converts juvenile hormone acid (JHA) into juvenile hormone (JH). Purified recombinant AeaJHAMT was extensively characterized for enzym...
T-cell costimulatory pathways in allograft rejection and tolerance.
Rothstein, David M; Sayegh, Mohamed H
2003-12-01
The destiny of activated T cells is critical to the ultimate fate of immune response. After encountering antigen, naïve T cells receive signal 1 through the T-cell receptor (TCR)-major histocompatibility complex (MHC) plus antigenic peptide complex and signal 2 through "positive" costimulatory molecules leading to full activation. "Negative" T-cell costimulatory pathways, on the other hand, function to downregulate immune responses. The purpose of this article is to review the current state of knowledge and recent advances in our understanding of the functions of the positive and negative T-cell costimulatory pathways in alloimmune responses. Specifically, we discuss the functions of the CD28:B7 and the tumor necrosis factor receptor (TNFR):tumor necrosis factor (TNF) family of molecules in allograft rejection and tolerance. We address the following important questions: are T-cell costimulatory pathways merely redundant or do they provide distinct and unique functions? What are the important and unique interactions between the various pathways? And, what are the effects and mechanisms of targeting of these pathways in different types and patterns of allograft rejection and tolerance models?
Assimilation of NAD(+) precursors in Candida glabrata.
Ma, Biao; Pan, Shih-Jung; Zupancic, Margaret L; Cormack, Brendan P
2007-10-01
The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection.
Asher, Elad; Reuveni, Haim; Shlomo, Nir; Gerber, Yariv; Beigel, Roy; Narodetski, Michael; Eldar, Michael; Or, Jacob; Hod, Hanoch; Shamiss, Arie; Matetzky, Shlomi
2015-01-01
The aim of this study was to compare in patients presenting with acute chest pain the clinical outcomes and cost-effectiveness of an accelerated diagnostic protocol utilizing contemporary technology in a chest pain unit versus routine care in an internal medicine department. Hospital and 90-day course were prospectively studied in 585 consecutive low-moderate risk acute chest pain patients, of whom 304 were investigated in a designated chest pain center using a pre-specified accelerated diagnostic protocol, while 281 underwent routine care in an internal medicine ward. Hospitalization was longer in the routine care compared with the accelerated diagnostic protocol group (p<0.001). During hospitalization, 298 accelerated diagnostic protocol patients (98%) vs. 57 (20%) routine care patients underwent non-invasive testing, (p<0.001). Throughout the 90-day follow-up, diagnostic imaging testing was performed in 125 (44%) and 26 (9%) patients in the routine care and accelerated diagnostic protocol patients, respectively (p<0.001). Ultimately, most patients in both groups had non-invasive imaging testing. Accelerated diagnostic protocol patients compared with those receiving routine care was associated with a lower incidence of readmissions for chest pain [8 (3%) vs. 24 (9%), p<0.01], and acute coronary syndromes [1 (0.3%) vs. 9 (3.2%), p<0.01], during the follow-up period. The accelerated diagnostic protocol remained a predictor of lower acute coronary syndromes and readmissions after propensity score analysis [OR = 0.28 (CI 95% 0.14-0.59)]. Cost per patient was similar in both groups [($2510 vs. $2703 for the accelerated diagnostic protocol and routine care group, respectively, (p = 0.9)]. An accelerated diagnostic protocol is clinically superior and as cost effective as routine in acute chest pain patients, and may save time and resources.
Asher, Elad; Reuveni, Haim; Shlomo, Nir; Gerber, Yariv; Beigel, Roy; Narodetski, Michael; Eldar, Michael; Or, Jacob; Hod, Hanoch; Shamiss, Arie; Matetzky, Shlomi
2015-01-01
Aims The aim of this study was to compare in patients presenting with acute chest pain the clinical outcomes and cost-effectiveness of an accelerated diagnostic protocol utilizing contemporary technology in a chest pain unit versus routine care in an internal medicine department. Methods and Results Hospital and 90-day course were prospectively studied in 585 consecutive low-moderate risk acute chest pain patients, of whom 304 were investigated in a designated chest pain center using a pre-specified accelerated diagnostic protocol, while 281 underwent routine care in an internal medicine ward. Hospitalization was longer in the routine care compared with the accelerated diagnostic protocol group (p<0.001). During hospitalization, 298 accelerated diagnostic protocol patients (98%) vs. 57 (20%) routine care patients underwent non-invasive testing, (p<0.001). Throughout the 90-day follow-up, diagnostic imaging testing was performed in 125 (44%) and 26 (9%) patients in the routine care and accelerated diagnostic protocol patients, respectively (p<0.001). Ultimately, most patients in both groups had non-invasive imaging testing. Accelerated diagnostic protocol patients compared with those receiving routine care was associated with a lower incidence of readmissions for chest pain [8 (3%) vs. 24 (9%), p<0.01], and acute coronary syndromes [1 (0.3%) vs. 9 (3.2%), p<0.01], during the follow-up period. The accelerated diagnostic protocol remained a predictor of lower acute coronary syndromes and readmissions after propensity score analysis [OR = 0.28 (CI 95% 0.14–0.59)]. Cost per patient was similar in both groups [($2510 vs. $2703 for the accelerated diagnostic protocol and routine care group, respectively, (p = 0.9)]. Conclusion An accelerated diagnostic protocol is clinically superior and as cost effective as routine in acute chest pain patients, and may save time and resources. PMID:25622029
Mahler, Simon A; Burke, Gregory L; Duncan, Pamela W; Case, Larry D; Herrington, David M; Riley, Robert F; Wells, Brian J; Hiestand, Brian C; Miller, Chadwick D
2016-01-22
Most patients presenting to US Emergency Departments (ED) with chest pain are hospitalized for comprehensive testing. These evaluations cost the US health system >$10 billion annually, but have a diagnostic yield for acute coronary syndrome (ACS) of <10%. The history/ECG/age/risk factors/troponin (HEART) Pathway is an accelerated diagnostic protocol (ADP), designed to improve care for patients with acute chest pain by identifying patients for early ED discharge. Prior efficacy studies demonstrate that the HEART Pathway safely reduces cardiac testing, while maintaining an acceptably low adverse event rate. The purpose of this study is to determine the effectiveness of HEART Pathway ADP implementation within a health system. This controlled before-after study will accrue adult patients with acute chest pain, but without ST-segment elevation myocardial infarction on electrocardiogram for two years and is expected to include approximately 10,000 patients. Outcomes measures include hospitalization rate, objective cardiac testing rates (stress testing and angiography), length of stay, and rates of recurrent cardiac care for participants. In pilot data, the HEART Pathway decreased hospitalizations by 21%, decreased hospital length (median of 12 hour reduction), without increasing adverse events or recurrent care. At the writing of this paper, data has been collected on >5000 patient encounters. The HEART Pathway has been fully integrated into health system electronic medical records, providing real-time decision support to our providers. We hypothesize that the HEART Pathway will safely reduce healthcare utilization. This study could provide a model for delivering high-value care to the 8-10 million US ED patients with acute chest pain each year. Clinicaltrials.gov NCT02056964; https://clinicaltrials.gov/ct2/show/NCT02056964 (Archived by WebCite at http://www.webcitation.org/6ccajsgyu).
Kurtz, S M; Siskey, R; Reitman, M
2010-05-01
The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.
The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, David
2003-01-01
The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.
Zhou, Yikang; Li, Gang; Dong, Junkai; Xing, Xin-Hui; Dai, Junbiao; Zhang, Chong
2018-05-01
Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2-5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of an artificial neural network (ANN) ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Vázquez-Juárez, E; Ramos-Mandujano, G; Lezama, R A; Cruz-Rangel, S; Islas, L D; Pasantes-Morales, H
2008-02-01
The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.
Meng, X; Carlson, NR; Dong, J; Zhang, Y
2016-01-01
The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf–Mdm2–p53 and the RP–Mdm2–p53 pathways might be a single p19Arf–RP–Mdm2–p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2C305F mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2C305F mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2C305F mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2C305F mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf–Mdm2–p53 and the RP–Mdm2–p53 are non-redundant pathways possessing similar capabilities to activate p53 upon c-Myc overexpression. PMID:25823025
An overview of bioinformatics methods for modeling biological pathways in yeast
Hou, Jie; Acharya, Lipi; Zhu, Dongxiao
2016-01-01
The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein–protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae. In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways in S. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. PMID:26476430
Gong, Ping; Hong, Huixiao; Perkins, Edward J
2015-01-01
Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.
Sebert, S P; Dellschaft, N S; Chan, L L Y; Street, H; Henry, M; Francois, C; Sharma, V; Fainberg, H P; Patel, N; Roda, J; Keisler, D; Budge, H; Symonds, M E
2011-07-01
Fetal growth restriction followed by accelerated postnatal growth contributes to impaired metabolic function in adulthood. The extent to which these outcomes may be mediated centrally within the hypothalamus, as opposed to in the periphery within the digestive tract, remains unknown. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and compared with controls also reared singly. From weaning, all offspring were maintained indoors until adulthood. A reduced litter size accelerated postnatal growth for only the first month of lactation. Independently from postnatal weight gain and later fat mass, R animals developed insulin resistance as adults. However, restricted accelerated offspring compared with both the control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin as adults, an adaptation which was accompanied by changes in energy sensing and cell proliferation within the abomasum. Additionally, although fetal restriction down-regulated gene expression of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-activated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the importance of diet in early life in regulating energy metabolism during adulthood.
Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng
2016-08-02
Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future.
Dynamic change of SGK expression and its role in neuron apoptosis after traumatic brain injury.
Wu, Xinmin; Mao, Hui; Liu, Jiao; Xu, Jian; Cao, Jianhua; Gu, Xingxing; Cui, Gang
2013-01-01
Activation of specific signaling pathways in response to mechanical trauma causes delayed neuronal apoptosis; GSK-3β/β-catenin signaling plays a critical role in the apoptosis of neurons in CNS diseases, SGK was discovered as a regulator of GSK-3β/β-catenin pathway, The goal of this study was to determine if the mechanism of cell death or survival mediated by the SGK/GSK-3β/β-catenin pathway is involved in a rat model of TBI. Here, an acute traumatic brain injury model was applied to investigate the expression change and possible roles of SGK, Expression of SGK, and total-GSK-3β, phospho-GSK3β on ser-9, beta-catenin, and caspase-3 were examined by immunohistochemistry and Western blot analysis. Double immunofluorescent staining was used to observe the SGK localizations. Si-RNA was performed to identify whether SGK regulates neuron apoptosis via GSK-3β/β-catenin pathway, ultimately inhibit caspase-3 activation. Temporally, SGK expression showed an increase pattern after TBI and reached a peak at day 3. Spatially, SGK was widely expressed in the neuron, rarely in astrocytes and oligodendrocytes; in addition, the expression patterns of active caspase-3 and phospho-GSK3β were parallel with that of SGK, at the same time, the expression of β-catenin shows similarity with SGK. In vitro, to further investigate the function of SGK, a neuronal cell line PC12 was employed to establish an apoptosis model. We analyzed the association of SGK with apoptosis on PC12 cells by western blot, immunofluorescent labeling and siRNA. the results implied that SGK plays an important role in neuron apoptosis via the regulation of GSK3β/β-catenin signaling pathway; ultimately inhibit caspase-3 activation. Taken together, we inferred traumatic brain injury induced an upregulation of SGK in the central nervous system, which show a protective role in neuron apoptosis.
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.
Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry
Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M.; Foght, Julia M.
2014-01-01
Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators. PMID:24711806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Lijie; Dong, Pingping; Liu, Longzi
Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstratedmore » that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.« less
Joshi, Pushkar S; Ghosh, Kunal K
2016-11-02
In this era of technology-driven global neuroscience initiatives, the role of the neurotechnology industry remains woefully ambiguous. Here, we explain why industry is essential to the success of these global initiatives, and how it can maximize the scientific impact of these efforts by (1) scaling and ultimately democratizing access to breakthrough neurotechnologies, and (2) commercializing technologies as part of integrated, end-to-end solutions that accelerate neuroscientific discovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Challenges and Plans for the Proton Injectors
NASA Astrophysics Data System (ADS)
Garoby, R.
The flexibility of the LHC injectors combined with multiple longitudinal beam gymnastics have significantly contributed to the excellent performance of the LHC during its first run, delivering beam with twice the ultimate brightness with 50 ns bunch spacing. To meet the requirements of the High Luminosity LHC, 25 ns bunch spacing is required, the intensity per bunch at injection has to double and brightness shall almost triple. Extensive hardware modifications or additions are therefore necessary in all accelerators of the injector complex, as well as new beam gymnastics.
Caffeine accelerates recovery from general anesthesia via multiple pathways.
Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng
2017-09-01
Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that caffeine is effective even at high levels of anesthetic. We also show that caffeine operates by both elevating intracellular cAMP levels and by blocking adenosine receptors. This complicated pharmacology makes caffeine especially effective in accelerating emergence from anesthesia. Copyright © 2017 the American Physiological Society.
Acidic Ca2+ stores in neurodegeneration
Lloyd-Evans, Emyr
2017-01-01
Lysosomes have emerged in the last decade as an immensely important intracellular site of Ca2+ storage and signalling. More recently there has been an increase in the number of new ion channels found to be functional on lysosomes and the potential roles that these signalling pathways might play in fundamental cellular processes are being uncovered. Defects in lysosomal function have been shown to result in changes in lysosomal Ca2+ homeostasis and ultimately can result in cell death. Several neurodegenerative diseases, from rare lysosomal storage diseases through to more common diseases of ageing, have recently been identified as having alterations in lysosomal Ca2+ homeostasis that may play an important role in neuronal excitotoxicity and ultimately cell death. This review will critically summarise these recent findings. PMID:28593104
Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Shang, Li; Nienhaus, G. Ulrich
2013-01-01
We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h. Electronic supplementary information (ESI) available: Effect of serum on the AuNC uptake by HeLa cells and colocalization result of AuNCs with the cell nucleus for 2-24 h. See DOI: 10.1039/c2nr33147k
Integrative pathway knowledge bases as a tool for systems molecular medicine.
Liang, Mingyu
2007-08-20
There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.
State Strategies to Scale Quality Work-Based Learning. NGA Paper
ERIC Educational Resources Information Center
Hauge, Kimberly; Parton, Brent
2016-01-01
Industries in every state are struggling to find qualified applicants for jobs, while job seekers too often find they lack the skills needed to enter or move along a career pathway to a good job. Preparing a workforce that is poised to meet the needs of businesses and ultimately to make the state more economically competitive is a top priority for…
NASA Astrophysics Data System (ADS)
Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; Deyoreo, James J.
2014-09-01
In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chunlong; Qi, Jiahui; Tao, Jinhui
2014-09-05
In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic interactions (EI) and hydrophobic interactions (HI), with HI playing the dominant role. While either strong EI or HI inhibit growth and suppress (104) face expression, correlations between peptoid-crystal binding energiesmore » and observed changes in calcite growth indicate moderate EI allow peptoids to weakly adsorb while moderate HI cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of (104) faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications.« less
Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.
2014-01-01
In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelletti, A.; /CERN; Dolgashev, V.
A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less
The ESS Superconducting RF Cavity and Cryomodule Cryogenic Processes
NASA Astrophysics Data System (ADS)
Darve, C.; Elias, N.; Molloy, S.; Bosland, P.; Renard, B.; Bousson, S.; Olivier, G.; Reynet, D.; Thermeau, J. P.
The European Spallation Source (ESS) is one of Europe's largest research infrastructures, tobring new insights to the grand challenges of science and innovation in fields as diverse as material and life sciences, energy, environmental technology, cultural heritage,solid-state and fundamental physics by the end of the decade. The collaborative project is funded by a collaboration of 17 European countries and is under design and construction in Lund, Sweden. A 5 MW, long pulse proton accelerator is used to reach this goal. The pulsed length is 2.86 ms and the repetition frequency is 14 Hz (4% duty cycle). The choice of SRF technology is a key element in the development of the ESS linear accelerator (linac). The superconducting linacis composed of one section of spoke cavity cryomodules(352.21 MHz) and two sections of elliptical cavity cryomodules (704.42 MHz). These cryomodules contain niobium SRF cavities operating at 2 K, cooled by the accelerator cryoplantthrough the cryogenic distribution system. This paper presents the superconducting RF cavity and cryomodule cryogenic processes, which are developed for the technology demonstrators and to be ultimately integrated for the ESS tunnel operation.
Testing Gravity and Cosmic Acceleration with Galaxy Clustering
NASA Astrophysics Data System (ADS)
Kazin, Eyal; Tinker, J.; Sanchez, A. G.; Blanton, M.
2012-01-01
The large-scale structure contains vast amounts of cosmological information that can help understand the accelerating nature of the Universe and test gravity on large scales. Ongoing and future sky surveys are designed to test these using various techniques applied on clustering measurements of galaxies. We present redshift distortion measurements of the Sloan Digital Sky Survey II Luminous Red Galaxy sample. We find that when combining the normalized quadrupole Q with the projected correlation function wp(rp) along with cluster counts (Rapetti et al. 2010), results are consistent with General Relativity. The advantage of combining Q and wp is the addition of the bias information, when using the Halo Occupation Distribution framework. We also present improvements to the standard technique of measuring Hubble expansion rates H(z) and angular diameter distances DA(z) when using the baryonic acoustic feature as a standard ruler. We introduce clustering wedges as an alternative basis to the multipole expansion and show that it yields similar constraints. This alternative basis serves as a useful technique to test for systematics, and ultimately improve measurements of the cosmic acceleration.
Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection
NASA Astrophysics Data System (ADS)
Liang, Ji; Lin, Yu; Johnson, Jay R.; Wang, Zheng-Xiong; Wang, Xueyi
2017-10-01
Our previous study on the generation and signatures of kinetic Alfvén waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfvénic. As a result of wave-particle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. The ions are heated in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the perpendicular ion temperature T⊥ and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with T⊥>T∥ . The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T∥>T⊥ .
Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Ji; Lin, Yu; Johnson, Jay R.
In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T $$\\perp$$>T $$\\parallel$$.« less
NASA Astrophysics Data System (ADS)
Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.
2015-12-01
The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key elements of substorm current spatial structure and temporal development, relationship to electric fields/potentials, plasma moment and distribution features, causal linkages to auroral emission features, and other properties will be discussed.
Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection
Liang, Ji; Lin, Yu; Johnson, Jay R.; ...
2017-09-19
In a previous study on the generation and signatures of kinetic Alfv en waves (KAWs) associated with magnetic reconnection in a current sheet revealed that KAWs are a common feature during reconnection [Liang et al. J. Geophys. Res.: Space Phys. 121, 6526 (2016)]. In this paper, ion acceleration and heating by the KAWs generated during magnetic reconnection are investigated with a three-dimensional (3-D) hybrid model. It is found that in the outflow region, a fraction of inflow ions are accelerated by the KAWs generated in the leading bulge region of reconnection, and their parallel velocities gradually increase up to slightly super-Alfv enic. As a result of waveparticle interactions, an accelerated ion beam forms in the direction of the anti-parallel magnetic field, in addition to the core ion population, leading to the development of non-Maxwellian velocity distributions, which include a trapped population with parallel velocities consistent with the wave speed. We then heat ions in both parallel and perpendicular directions. In the parallel direction, the heating results from nonlinear Landau resonance of trapped ions. In the perpendicular direction, however, evidence of stochastic heating by the KAWs is found during the acceleration stage, with an increase of magnetic moment μ. The coherence in the T more » $$\\perp$$ ion temperature and the perpendicular electric and magnetic fields of KAWs also provides evidence for perpendicular heating by KAWs. The parallel and perpendicular heating of the accelerated beam occur simultaneously, leading to the development of temperature anisotropy with the perpendicular temperature T $$\\perp$$>T $$\\parallel$$ temperature. The heating rate agrees with the damping rate of the KAWs, and the heating is dominated by the accelerated ion beam. In the later stage, with the increase of the fraction of the accelerated ions, interaction between the accelerated beam and the core population also contributes to the ion heating, ultimately leading to overlap of the beams and an overall anisotropy with T $$\\perp$$>T $$\\parallel$$.« less
Innate Immunity and Biomaterials at the Nexus: Friends or Foes.
Christo, Susan N; Diener, Kerrilyn R; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D
2015-01-01
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical "antigen." In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a "combined" immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Developing regulatory strategy for microbicides.
Nardi, Ronald; Arterburn, Linda; Carlton, Lisa
2014-01-01
Ever since the discovery that a virus was responsible for AIDS, prevention of HIV infection has been a drug/vaccine development target in therapeutic research. Microbicide products are a viable, globally applicable option; however, to date, no product has been approved anywhere in the world. Development of such a product will need to account for the changing disease landscape and will need to leverage available regulatory pathways to gain approvals in the developed world and emerging markets. In countries where the regulatory pathway is not clear which is the case in several emerging markets, sponsors will need to employ a flexible approach to gather and meet local regulatory requirements and ultimately gain product approvals.
Cancer cachexia: mediators, signaling, and metabolic pathways.
Fearon, Kenneth C H; Glass, David J; Guttridge, Denis C
2012-08-08
Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies. Copyright © 2012 Elsevier Inc. All rights reserved.
Molecular mechanism of Danshensu on platelet antiaggregation
NASA Astrophysics Data System (ADS)
Yu, Chen; Geng, Feng; Fan, Hua-Ying; Luan, Hai-Yun; Liu, Yue; Ji, Kai; Fu, Feng-Hua
2018-04-01
In this study, we detected the effect of Danshensu on PARs-PLCβsignaling pathway to elucidate molecular mechanism of Danshensu on platelet anti-aggregation. Our results demonstrate that Danshensu is able to decrease the levels of IP3, Ca2+ and AA secretion, which indicate that Danshensu may involve in PARs-PLCβ signaling pathways. Molecular docking study shows that Danshesu has similar polar interactions with PAR1 receptors as BMS200261 at the same position. The findings from our study enable a better understanding of Danshensu biological properties, which could ultimately lead to the development of multi-target antiplatelet natural medicine for the treatment and/or prevention of some thrombotic diseases.
Apparent cosmic acceleration from Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dam, Lawrence H.; Heinesen, Asta; Wiltshire, David L.
2017-11-01
Parameters that quantify the acceleration of cosmic expansion are conventionally determined within the standard Friedmann-Lemaître-Robertson-Walker (FLRW) model, which fixes spatial curvature to be homogeneous. Generic averages of Einstein's equations in inhomogeneous cosmology lead to models with non-rigidly evolving average spatial curvature, and different parametrizations of apparent cosmic acceleration. The timescape cosmology is a viable example of such a model without dark energy. Using the largest available supernova data set, the JLA catalogue, we find that the timescape model fits the luminosity distance-redshift data with a likelihood that is statistically indistinguishable from the standard spatially flat Λ cold dark matter cosmology by Bayesian comparison. In the timescape case cosmic acceleration is non-zero but has a marginal amplitude, with best-fitting apparent deceleration parameter, q_{0}=-0.043^{+0.004}_{-0.000}. Systematic issues regarding standardization of supernova light curves are analysed. Cuts of data at the statistical homogeneity scale affect light-curve parameter fits independent of cosmology. A cosmological model dependence of empirical changes to the mean colour parameter is also found. Irrespective of which model ultimately fits better, we argue that as a competitive model with a non-FLRW expansion history, the timescape model may prove a useful diagnostic tool for disentangling selection effects and astrophysical systematics from the underlying expansion history.
Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.
Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E
2015-10-06
Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.
Controlling under-actuated robot arms using a high speed dynamics process
NASA Technical Reports Server (NTRS)
Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)
1994-01-01
The invention controls an under-actuated manipulator by first obtaining predetermined active joint accelerations of the active joints and the passive joint friction forces of the passive joints, then computing articulated body qualities for each of the joints from the current positions of the links, and finally computing from the articulated body qualities and from the active joint accelerations and the passive joint forces, active joint forces of the active joints. Ultimately, the invention transmits servo commands to the active joint forces thus computed to the respective ones of the joint servos. The computation of the active joint forces is accomplished using a recursive dynamics algorithm. In this computation, an inward recursion is first carried out for each link, beginning with the outermost link in order to compute the residual link force of each link from the active joint acceleration if the corresponding joint is active, or from the known passive joint force if the corresponding joint is passive. Then, an outward recursion is carried out for each link in which the active joint force is computed from the residual link force if the corresponding joint is active or the passive joint acceleration is computed from the residual link force if the corresponding joint is passive.
Ultimate concerns in late modernity: Archer, Bourdieu and reflexivity.
Farrugia, David; Woodman, Dan
2015-12-01
Through a critique of Margaret Archer's theory of reflexivity, this paper explores the theoretical contribution of a Bourdieusian sociology of the subject for understanding social change. Archer's theory of reflexivity holds that conscious 'internal conversations' are the motor of society, central both to human subjectivity and to the 'reflexive imperative' of late modernity. This is established through critiques of Bourdieu, who is held to erase creativity and meaningful personal investments from subjectivity, and late modernity is depicted as a time when a 'situational logic of opportunity' renders embodied dispositions and the reproduction of symbolic advantages obsolete. Maintaining Archer's focus on 'ultimate concerns' in a context of social change, this paper argues that her theory of reflexivity is established through a narrow misreading and rejection of Bourdieu's work, which ultimately creates problems for her own approach. Archer's rejection of any pre-reflexive dimensions to subjectivity and social action leaves her unable to sociologically explain the genesis of 'ultimate concerns', and creates an empirically dubious narrative of the consequences of social change. Through a focus on Archer's concept of 'fractured reflexivity', the paper explores the theoretical necessity of habitus and illusio for understanding the social changes that Archer is grappling with. In late modernity, reflexivity is valorized just as the conditions for its successful operation are increasingly foreclosed, creating 'fractured reflexivity' emblematic of the complex contemporary interaction between habitus, illusio, and accelerating social change. © London School of Economics and Political Science 2015.
Accelerated nursing students and theater students: creating a safe environment by acting the part.
Cangelosi, Pamela R
2008-01-01
Traditional approaches to teaching basic nursing skills are being questioned for accelerated, or second-degree, nursing students. Since accelerated nursing students have demonstrated the ability to quickly assimilate new information and to transfer skills from a previous career into a new field, it is thought that they may benefit from teaching strategies that promote experiential learning. Through a hermeneutic phenomenological approach, this study inquired into the experiences of 22 accelerated baccalaureate nursing students to determine if narrative learning in a campus laboratory setting helped them integrate content from classroom and clinical practica and move quickly along the pathway to the competencies that are needed for safe nursing practice. Data analysis revealed the teaching/learning significance of narratives for these students and is identified in the theme, "Creating a Safe Environment".
NASA Astrophysics Data System (ADS)
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a source in the plasma sheet, and chorus waves. We show how sudden losses during outer belt dropout events are dominated at higher L-shells (L>~4) by magnetopause shadowing and outward radial transport, which is effective over the full ranges of energy and equatorial pitch angle of outer belt electrons, but at lower L-shells near the plasmapause, energy and pitch angle dependent losses can also occur and are consistent with rapid scattering by interactions between relativistic electrons and EMIC waves. We show cases demonstrating how these different processes occur simultaneously during active periods, with relative effects that vary as a function of L-shell and electron energy and pitch angle. Ultimately, our results highlight the complexity of competing source/acceleration, loss, and transport processes in Earth’s outer radiation belt and the necessity of using multipoint observations to disambiguate between them for future studies.
He, Yifan; Zhu, Jihong; Huang, Fang; Qin, Liu; Fan, Wenguo; He, Hongwen
2014-11-15
The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory behaviors and structural changes in related brain regions, in a mouse model of Alzheimer's disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learning and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltransferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic fibers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no significant differences in histology or behavior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present findings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer's disease, and indicate that tooth extraction should be avoided in these populations.
Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER.
Poet, Greg J; Oka, Ojore Bv; van Lith, Marcel; Cao, Zhenbo; Robinson, Philip J; Pringle, Marie Anne; Arnér, Elias Sj; Bulleid, Neil J
2017-03-01
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Mensonides, Femke I. C.; Brul, Stanley; Klis, Frans M.; Hellingwerf, Klaas J.; Teixeira de Mattos, M. Joost
2005-01-01
This paper reports on physiological and molecular responses of Saccharomyces cerevisiae to heat stress conditions. We observed that within a very narrow range of culture temperatures, a shift from exponential growth to growth arrest and ultimately to cell death occurred. A detailed analysis was carried out of the accumulation of trehalose and the activation of the protein kinase C1 (PKC1) (cell integrity) pathway in both glucose- and ethanol-grown cells upon temperature upshifts within this narrow range of growth temperatures. It was observed that the PKC1 pathway was hardly activated in a tps1 mutant that is unable to accumulate any trehalose. Furthermore, it was observed that an increase of the extracellular osmolarity during a continuous heat stress prevented the activation of the pathway. The results of these analyses support our hypothesis that under heat stress conditions the activation of the PKC1 pathway is triggered by an increase in intracellular osmolarity, due to the accumulation of trehalose, rather than by the increase in temperature as such. PMID:16085846
An overview of bioinformatics methods for modeling biological pathways in yeast.
Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin
2016-03-01
The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J
2018-06-14
Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O
2016-01-01
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423
Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O
2016-01-01
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.
Theorizing a model information pathway to mitigate the menstrual taboo.
Yagnik, Arpan
2017-12-13
The impact of menstruation on the society is directly seen in the educational opportunities, quality of life and professional endeavors of females. However, lack of menstrual hygiene management has indirect implication on the balance and development of the society and nation. This study is set in the Indian context. The researcher identifies actors with a potential of mitigating menstrual taboo and then theorizes an optimal information pathway to mitigate menstrual taboo. Diffusion of innovation, framing and agenda setting theories contribute as frameworks in the creation of an optimal pathway to dissolve the menstrual taboo. The actors identified in this model are scholars, health activists, students, NGOs, media, government, corporations and villages or communities. The determinants for the direction and the order of the pathway to diffuse knowledge and confidence among these actors are the ultimate goal and sustainability of the model, strengths and weaknesses of actors, and actors' extent of influence. Considering the absence of an existing alternate, this model pathway provides a solid framework purely from a theoretical perspective. Theoretically, this model pathway is possible, practical and optimal. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Control of Organ Growth by Patterning and Hippo Signaling in Drosophila
Irvine, Kenneth D.; Harvey, Kieran F.
2015-01-01
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell–cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved. PMID:26032720
Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal
2012-12-01
Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.
NASA Astrophysics Data System (ADS)
Okafor, A. Chukwujekwu; Natarajan, Shridhar
2014-02-01
Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.
Limpers, Annelies; van Royen-Kerkhof, Annet; van Roon, Joel A G; Radstake, Timothy R D J; Broen, Jasper C A
2014-02-01
Inflammatory fibrotic disorders have been of high interest both for dermatologists and rheumatologists. Although the phenotypic end stage of this group of diseases is ultimately the same, namely fibrosis, patients present with different clinical features and are often treated with distinct therapeutic modalities. This review addresses whether there is evidence for different underlying molecular pathways in the various inflammatory fibrotic diseases such as localized scleroderma, pediatric lichen sclerosus, adult lichen sclerosus, eosinophilic fasciitis and systemic sclerosis. To investigate this, a large number of gene expression microarray studies performed on skin or fibroblasts from patients with these aforementioned diseases were described, (re-)analysed, and compared. As suspected by the heterogeneous phenotype, most diseases showed unique gene expression features. Intriguingly, a clear overlap was observed between adult and pediatric lichen sclerosus and localized scleroderma, in antigen processing and the interferon pathway. Delineating the cause and consequence of these pathways may generate novel tools to better characterize and more effectively treat these patients.
Precision laser automatic tracking system.
Lucy, R F; Peters, C J; McGann, E J; Lang, K T
1966-04-01
A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.
New challenges for text mining: mapping between text and manually curated pathways
Oda, Kanae; Kim, Jin-Dong; Ohta, Tomoko; Okanohara, Daisuke; Matsuzaki, Takuya; Tateisi, Yuka; Tsujii, Jun'ichi
2008-01-01
Background Associating literature with pathways poses new challenges to the Text Mining (TM) community. There are three main challenges to this task: (1) the identification of the mapping position of a specific entity or reaction in a given pathway, (2) the recognition of the causal relationships among multiple reactions, and (3) the formulation and implementation of required inferences based on biological domain knowledge. Results To address these challenges, we constructed new resources to link the text with a model pathway; they are: the GENIA pathway corpus with event annotation and NF-kB pathway. Through their detailed analysis, we address the untapped resource, ‘bio-inference,’ as well as the differences between text and pathway representation. Here, we show the precise comparisons of their representations and the nine classes of ‘bio-inference’ schemes observed in the pathway corpus. Conclusions We believe that the creation of such rich resources and their detailed analysis is the significant first step for accelerating the research of the automatic construction of pathway from text. PMID:18426550
Im, Hee-Jeong; Li, Xin; Muddasani, Prasuna; Kim, Gun-Hee; Davis, Francesca; Rangan, Jayanthi; Forsyth, Christopher B; Ellman, Michael; Thonar, Eugene J M A
2008-05-01
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway. (c) 2007 Wiley-Liss, Inc.
IM, HEE-JEONG; LI, XIN; MUDDASANI, PRASUNA; KIM, GUN-HEE; DAVIS, FRANCESCA; RANGAN, JAYANTHI; FORSYTH, CHRISTOPHER B.; ELLMAN, MICHAEL; THONAR, EUGENE JMA
2010-01-01
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK1-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1β accelerate matrix degradation via a neural pathway upregulation of substance P and NK1-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK1-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK1-R is, in part, through an IL-1β-dependent pathway. PMID:17960584
Effectiveness of Telerehabilitation for OIF/OEF returnees with Combat Related Trauma
2018-04-01
validated health outcome instruments that capture physical function, cognition, mental health status and integration into society. We have enrolled a total...community integration over time. 2) The presence of comorbid Post Traumatic Stress Disorders was a significant predictor in reported patient health 3...Individualized treatment pathways may be needed for rehabilitation and ultimate integration into society and 4) Veterans have expressed appreciation for
Patil, Abhijit A; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D; Roylance, Anthony; Kriplani, Deepti H; Myers, Katie N; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A; Collis, Spencer J
2014-08-15
Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge, where survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome.
Pachankis, John E.
2015-01-01
Developing and deploying separate treatments for separate conditions seems ill-suited to intervening upon the co-occurring, and possibly functionally similar, psychosocial conditions facing gay and bisexual men. This article argues for the need to create transdiagnostic interventions that reduce multiple syndemic conditions facing gay and bisexual men at the level of their shared source in minority stress pathways. This article first reviews psychosocial syndemic conditions affecting gay and bisexual men, then suggests pathways that might link minority stress to psychosocial syndemics based on recent advancements in emotion science, psychiatric nosology, and cognitive-affective neuroscience, and finally suggests cross-cutting psychosocial treatment principles to reduce minority stress–syndemic pathways among gay and bisexual men. Because minority stress serves as a common basis of all psychosocial syndemic conditions reviewed here, locating the pathways through which minority stress generates psychosocial syndemics and employing overarching treatment principles capable of simultaneously alleviating these pathways will ultimately create a transdiagnostic approach to improving gay and bisexual men’s health. Clinical research and training approaches are suggested to further validate the pathways suggested here, establish the efficacy of treatment approaches tied to those pathways, and generate effective methods for disseminating a transdiagnostic minority stress treatment approach for gay and bisexual men’s psychosocial syndemic health. PMID:26123065
Patil, Abhijit A.; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D.; Roylance, Anthony; Kriplani, Deepti H.; Myers, Katie N.; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A.; Collis, Spencer J.
2014-01-01
Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome. PMID:25071006
Bardoxolone brings Nrf2-based therapies to light.
Zhang, Donna D
2013-08-10
The targeted activation of nuclear factor erythroid-derived-2-like 2 (Nrf2) to alleviate symptoms of chronic kidney disease has recently garnered much attention. Unfortunately, the greatest clinical success to date, bardoxolone, failed in phase III clinical trial for unspecified safety reasons. The present letter to the editor discusses the clinical development of bardoxolone and explores potential reasons for the ultimate withdrawal from clinical trials. In particular, was the correct clinical indication pursued and would improved specificity have mitigated the safety concerns? Ultimately, it is concluded that the right clinical indication and heightened specificity will lead to successful Nrf2-based therapies. Therefore, the bardoxolone clinical results do not dampen enthusiasm for Nrf2-based therapies; rather it illuminates the clinical potential of the Nrf2 pathway as a drug target.
The PIP-II Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, M.; Burov, A.; Chase, B.
2017-03-01
The Proton Improvement Plan-II (PIP-II) encompasses a set of upgrades and improvements to the Fermilab accelerator complex aimed at supporting a world-leading neutrino program over the next several decades. PIP-II is an integral part of the strategic plan for U.S. High Energy Physics as described in the Particle Physics Project Prioritization Panel (P5) report of May 2014 and formalized through the Mission Need Statement approved in November 2015. As an immediate goal, PIP-II is focused on upgrades to the Fermilab accelerator complex capable of providing proton beam power in excess of 1 MW on target at the initiation of themore » Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) program, currently anticipated for the mid- 2020s. PIP-II is a part of a longer-term goal of establishing a high-intensity proton facility that is unique within the world, ultimately leading to multi-MW capabilities at Fermilab....« less
NASA Astrophysics Data System (ADS)
Baró, Jordi; Dahmen, Karin A.; Davidsen, Jörn; Planes, Antoni; Castillo, Pedro O.; Nataf, Guillaume F.; Salje, Ekhard K. H.; Vives, Eduard
2018-06-01
The total energy of acoustic emission (AE) events in externally stressed materials diverges when approaching macroscopic failure. Numerical and conceptual models explain this accelerated seismic release (ASR) as the approach to a critical point that coincides with ultimate failure. Here, we report ASR during soft uniaxial compression of three silica-based (SiO2 ) nanoporous materials. Instead of a singular critical point, the distribution of AE energies is stationary, and variations in the activity rate are sufficient to explain the presence of multiple periods of ASR leading to distinct brittle failure events. We propose that critical failure is suppressed in the AE statistics by mechanisms of transient hardening. Some of the critical exponents estimated from the experiments are compatible with mean field models, while others are still open to interpretation in terms of the solution of frictional and fracture avalanche models.
SIN accelerator, operational experience and improvement programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joho, W.; Olivo, M.; Stammbach, T.
1977-06-01
The SIN meson facility, in operation since 1974, consists of a 590 MeV ring cyclotron for protons and a 72 MeV injector cyclotron. The average beam current on target is presently about 50 ..mu..A, the peak being 112 ..mu..A. Extraction efficiency, once considered a severe handicap for cyclotrons, is now 99.6 to 99.9% for the ring cyclotron and about 90% for the injector. Many improvements in both accelerators allow single turn extraction in the ring cyclotron. The present current limit is given by the injector, while the ring itself could accept now a 600 ..mu..A beam, with 2 to 4more » mA as an ultimate limit. Some muon experiments require a pulsed beam with on-off times in the order of the lifetime of the muon. First trials with beam pulse frequencies of 200 and 400 kHz and a 50% duty cycle have been successful.« less
Basic coaxial mass driver reference design. [electromagnetic lunar launch
NASA Technical Reports Server (NTRS)
Kolm, H. H.
1977-01-01
The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state.
Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean
2016-12-20
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H 2 O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.
Multiple-mouse MRI with multiple arrays of receive coils.
Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A
2010-03-01
Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.
Is ΛCDM an effective CCDM cosmology?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, J.A.S.; Santos, R.C.; Cunha, J.V., E-mail: limajas@astro.iag.usp.br, E-mail: cliviars@gmail.com, E-mail: jvcunha@ufpa.br
We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating ΛCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [1] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to ΛCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality ofmore » the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because ΛCDM may be only an effective cosmology.« less
Manipulation of particles by weak forces
NASA Technical Reports Server (NTRS)
Adler, M. S.; Savkar, S. D.; Summerhayes, H. R.
1972-01-01
Quantitative relations between various force fields and their effects on the motion of particles of various sizes and physical characteristics were studied. The forces considered were those derived from light, heat, microwaves, electric interactions, magnetic interactions, particulate interactions, and sound. A physical understanding is given of the forces considered as well as formulae which express how the size of the force depends on the physical and electrical properties of the particle. The drift velocity in a viscous fluid is evaluated as a function of initial acceleration and the effects of thermal random motion are considered. A means of selectively sorting or moving particles by choosing a force system and/or environment such that the particle of interest reacts uniquely was developed. The forces considered and a demonstration of how the initial acceleration, drift velocity, and ultimate particle density distribution is affected by particle, input, and environmental parameters are tabulated.
Academic Provenance: Mapping Geoscience Students' Academic Pathways to their Career Trajectories
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Gonzales, L. M.; Keane, C. M.
2011-12-01
Targeted recruitment and retention efforts for the geosciences have become increasingly important with the growing concerns about program visibility on campuses, and given that geoscience degree production remains low relative to the demand for new geoscience graduates. Furthermore, understanding the career trajectories of geoscience degree recipients is essential for proper occupational placement. A theoretical framework was developed by Houlton (2010) to focus recruitment and retention efforts. This "pathway model" explicitly maps undergraduate students' geoscience career trajectories, which can be used to refine existing methods for recruiting students into particular occupations. Houlton's (2010) framework identified three main student population groups: Natives, Immigrants or Refugees. Each student followed a unique pathway, which consisted of six pathway steps. Each pathway step was comprised of critical incidents that influenced students' overall career trajectories. An aggregate analysis of students' pathways (Academic Provenance Analysis) showed that different populations' pathways exhibited a deviation in career direction: Natives indicated intentions to pursue industry or government sectors, while Immigrants intended to pursue academic or research-based careers. We expanded on Houlton's (2010) research by conducting a follow-up study to determine if the original participants followed the career trajectories they initially indicated in the 2010 study. A voluntary, 5-question, short-answer survey was administered via email. We investigated students' current pathway steps, pathway deviations, students' goals for the near future and their ultimate career ambitions. This information may help refine Houlton's (2010) "pathway model" and may aid geoscience employers in recruiting the new generation of professionals for their respective sectors.
Cellular Response to Ionizing Radiation: A MicroRNA Story
Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi
2012-01-01
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775
A genetic platform to model sarcomagenesis from primary adult mesenchymal stem cells
Guarnerio, Jlenia; Riccardi, Luisa; Taulli, Riccardo; Maeda, Takahiro; Wang, Guocan; Hobbs, Robin M.; Song, Min Sup; Sportoletti, Paolo; Bernardi, Rosa; Bronson, Roderick T.; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Lunardi, Andrea; Pandolfi, Pier Paolo
2015-01-01
The regulatory factors governing adult mesenchymal stem cells (MSCs) physiology and their tumorigenic potential are still largely unknown, which substantially delays the identification of effective therapeutic approaches for the treatment of aggressive and lethal form of MSC-derived mesenchymal tumors, such as undifferentiated sarcomas. Here we have developed a novel platform to screen and quickly identify genes and pathways responsible for adult MSCs transformation, modeled undifferentiated sarcoma in vivo, and, ultimately, tested the efficacy of targeting the identified oncopathways. Importantly, by taking advantage of this new platform, we demonstrate the key role of an aberrant LRF-DLK1-SOX9 pathway in the pathogenesis of undifferentiated sarcoma with important therapeutic implications. PMID:25614485
Reaction pathways in atomistic models of thin film growth
NASA Astrophysics Data System (ADS)
Lloyd, Adam L.; Zhou, Ying; Yu, Miao; Scott, Chris; Smith, Roger; Kenny, Steven D.
2017-10-01
The atomistic processes that form the basis of thin film growth often involve complex multi-atom movements of atoms or groups of atoms on or close to the surface of a substrate. These transitions and their pathways are often difficult to predict in advance. By using an adaptive kinetic Monte Carlo (AKMC) approach, many complex mechanisms can be identified so that the growth processes can be understood and ultimately controlled. Here the AKMC technique is briefly described along with some special adaptions that can speed up the simulations when, for example, the transition barriers are small. Examples are given of such complex processes that occur in different material systems especially for the growth of metals and metallic oxides.
Depletion of juvenile hormone esterase extends larval growth in Bombyx mori.
Zhang, Zhongjie; Liu, Xiaojing; Shiotsuki, Takahiro; Wang, Zhisheng; Xu, Xia; Huang, Yongping; Li, Muwang; Li, Kai; Tan, Anjiang
2017-02-01
Two major hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulate insect growth and development according to their precisely coordinated titres, which are controlled by both biosynthesis and degradation pathways. Juvenile hormone esterase (JHE) is the primary JH-specific degradation enzyme that plays a key role in regulating JH titers, along with JH epoxide hydrolase (JHEH) and JH diol kinase (JHDK). In the current study, a loss-of-function analysis of JHE in the silkworm, Bombyx mori, was performed by targeted gene disruption using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system. Depletion of B. mori JHE (BmJHE) resulted in the extension of larval stages, especially the penultimate and ultimate larval stages, without deleterious effects to silkworm physiology. The expression of JHEH and JHDK was upregulated in mutant animals, indicating the existence of complementary routes in the JH metabolism pathway in which inactivation of one enzyme will activate other enzymes. RNA-Seq analysis of mutant animals revealed that genes involved in protein processing in the endoplasmic reticulum and in amino acid metabolism were affected by BmJHE depletion. Depletion of JHE and subsequent delayed JH metabolism activated genes in the TOR pathway, which are ultimately responsible for extending larval growth. The transgenic Cas9 system used in the current study provides a promising approach for analysing the actions of JH, especially in nondrosophilid insects. Furthermore, prolonging larval stages produced larger larvae and cocoons, which is greatly beneficial to silk production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clinical Pathways and the Patient Perspective in the Pursuit of Value-Based Oncology Care.
Ersek, Jennifer L; Nadler, Eric; Freeman-Daily, Janet; Mazharuddin, Samir; Kim, Edward S
2017-01-01
The art of practicing oncology has evolved substantially in the past 5 years. As more and more diagnostic tests, biomarker-directed therapies, and immunotherapies make their way to the oncology marketplace, oncologists will find it increasingly difficult to keep up with the many therapeutic options. Additionally, the cost of cancer care seems to be increasing. Clinical pathways are a systematic way to organize and display detailed, evidence-based treatment options and assist the practitioner with best practice. When selecting which treatment regimens to include on a clinical pathway, considerations must include the efficacy and safety, as well as costs, of the therapy. Pathway treatment regimens must be continually assessed and modified to ensure that the most up-to-date, high-quality options are incorporated. Value-based models, such as the ASCO Value Framework, can assist providers in presenting economic evaluations of clinical pathway treatment options to patients, thus allowing the patient to decide the overall value of each treatment regimen. Although oncologists and pathway developers can decide which treatment regimens to include on a clinical pathway based on the efficacy of the treatment, assessment of the value of that treatment regimen ultimately lies with the patient. Patient definitions of value will be an important component to enhancing current value-based oncology care models and incorporating new, high-quality, value-based therapeutics into oncology clinical pathways.
Sudden Unexpected Death in Fetal Life Through Early Childhood
Kinney, Hannah C.; Willinger, Marian
2016-01-01
In March 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development held a workshop entitled “Sudden Unexpected Death in Fetal Life Through Early Childhood: New Opportunities.” Its objective was to advance efforts to understand and ultimately prevent sudden deaths in early life, by considering their pathogenesis as a potential continuum with some commonalities in biological origins or pathways. A second objective of this meeting was to highlight current issues surrounding the classification of sudden infant death syndrome (SIDS), and the implications of variations in the use of the term “SIDS” in forensic practice, and pediatric care and research. The proceedings reflected the most current knowledge and understanding of the origins and biology of vulnerability to sudden unexpected death, and its environmental triggers. Participants were encouraged to consider the application of new technologies and “omics” approaches to accelerate research. The major advances in delineating the intrinsic vulnerabilities to sudden death in early life have come from epidemiologic, neural, cardiac, metabolic, genetic, and physiologic research, with some commonalities among cases of unexplained stillbirth, SIDS, and sudden unexplained death in childhood observed. It was emphasized that investigations of sudden unexpected death are inconsistent, varying by jurisdiction, as are the education, certification practices, and experience of death certifiers. In addition, there is no practical consensus on the use of “SIDS” as a determination in cause of death. Major clinical, forensic, and scientific areas are identified for future research. PMID:27230764
Amara, Chandra S.; Fabritius, Christine; Houben, Astrid; Wolff, Lena I.; Hartmann, Christine
2017-01-01
The long bones of vertebrate limbs form by endochondral ossification, whereby mesenchymal cells differentiate into chondrogenic progenitors, which then differentiate into chondrocytes. Chondrocytes undergo further differentiation from proliferating to prehypertrophic, and finally to hypertrophic chondrocytes. Several signaling pathways and transcription factors regulate this process. Previously, we and others have shown in chicken that overexpression of an activated form of Calcium/calmodulin-dependent kinase II (CaMKII) results in ectopic chondrocyte maturation. Here, we show that this is not the case in the mouse. Although, in vitro Mef2c activity was upregulated by about 55-fold in response to expression of an activated form of CaMKII (DACaMKII), transgenic mice that expressed a dominant-active form of CaMKII under the control of the Col2a1 regulatory elements display only a very transient and mild phenotype. Here, only the onset of chondrocyte hypertrophy at E12.5 is accelerated. It is also this early step in chondrocyte differentiation that is temporarily delayed around E13.5 in transgenic mice expressing the peptide inhibitor CaM-KIIN from rat (rKIIN) under the control of the Col2a1 regulatory elements. Yet, ultimately DACaMKII, as well as rKIIN transgenic mice are born with completely normal skeletal elements with regard to their length and growth plate organization. Hence, our in vivo analysis suggests that CaMKII signaling plays a minor role in chondrocyte maturation in mice. PMID:28361052
Animal models to improve our understanding and treatment of suicidal behavior.
Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T
2017-04-11
Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.
Value increasing business model for e-hospital.
Null, Robert; Wei, June
2009-01-01
This paper developed a business value increasing model for electronic hospital (e-hospital) based on electronic value chain analysis. From this model, 58 hospital electronic business (e-business) solutions were developed. Additionally, this paper investigated the adoption patterns of these 58 e-business solutions within six US leading hospitals. The findings show that only 36 of 58 or 62% of the e-business solutions are fully or partially implemented within the six hospitals. Ultimately, the research results will be beneficial to managers and executives for accelerating e-business adoptions for e-hospital.
NASA Technical Reports Server (NTRS)
Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.
2007-01-01
The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.
Kulla, Hannes; Greiser, Sebastian; Benemann, Sigrid; Rademann, Klaus; Emmerling, Franziska
2016-07-14
A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes.
Ostojic, Ivan; Boll, Werner; Waterson, Michael J.; Chan, Tammy; Chandra, Rashmi; Pletcher, Scott D.; Alcedo, Joy
2014-01-01
In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan. PMID:24847072
NASA Astrophysics Data System (ADS)
Palchak, Amanda
2012-02-01
American Institute of Physics (AIP) Career Pathways is a new project funded by the National Science Foundation. One of the goals of AIP Career Pathways is to prepare students to compete for Science, Technology, Engineering, and Mathematics (STEM) careers with a bachelor's degree in physics. In order to do so, I reviewed and compiled useful resources on finding a STEM career with a bachelor's degree in physics. These resources not only supply the job seeker with job postings in STEM careers but also provide them with information on resumes, interviewing skills, and networking. Recently at the 2011 Industrial Physics Forum, I interviewed companies in the private sector to obtain a unique perspective on what types of skills potential employers expect an applicant to posses with a bachelor's degree in physics. Ultimately, these components will be used as supplements at student career workshops held at annual Society of Physics Students Zone Meetings.
Lemons, Michele L.
2017-01-01
A fictitious patient, Mr. Challenge, is admitted to the emergency room and displays symptoms consistent with damage to the central nervous system. In this problem-based learning case, students are challenged to determine the location of a lesion that is consistent with Mr. Challenge’s symptoms. Students discover details about Mr. Challenge’s symptoms while exploring three anatomical pathways: corticospinal tract, spinothalamic tract and medial lemniscal pathway. Students make predictions as to which of these pathways may be damaged in Mr. Challenge and defend their predictions based on their research of the function and anatomical location of these tracts. This ultimately leads the student to identifying a single lesion site that can account for Mr. Challenge’s symptoms. This case is executed in an undergraduate neuroscience course and would be useful in anatomy and physiology course, as well as other courses that serve students interested in health science related careers. PMID:28690440
Pathway-engineering for highly-aligned block copolymer arrays.
Choo, Youngwoo; Majewski, Paweł W; Fukuto, Masafumi; Osuji, Chinedum O; Yager, Kevin G
2017-12-21
While the ultimate driving force in self-assembly is energy minimization and the corresponding evolution towards equilibrium, kinetic effects can also play a very strong role. These kinetic effects, such as trapping in metastable states, slow coarsening kinetics, and pathway-dependent assembly, are often viewed as complications to be overcome. Here, we instead exploit these effects to engineer a desired final nano-structure in a block copolymer thin film, by selecting a particular ordering pathway through the self-assembly energy landscape. In particular, we combine photothermal shearing with high-temperature annealing to yield hexagonal arrays of block copolymer cylinders that are aligned in a single prescribed direction over macroscopic sample dimensions. Photothermal shearing is first used to generate a highly-aligned horizontal cylinder state, with subsequent thermal processing used to reorient the morphology to the vertical cylinder state in a templated manner. Finally, we demonstrate the successful transfer of engineered morphologies into inorganic replicas.
Stability limits and transformation pathways of α-quartz under high pressure
NASA Astrophysics Data System (ADS)
Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.
2017-03-01
Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.
McLelland, Gian-Luca; Soubannier, Vincent; Chen, Carol X; McBride, Heidi M; Fon, Edward A
2014-01-01
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mitophagy and is triggered by the generation of oxidative stress from within mitochondria. Wild-type but not PD-linked mutant parkin supports the biogenesis of a population of mitochondria-derived vesicles (MDVs), which bud off mitochondria and contain a specific repertoire of cargo proteins. These MDVs require PINK1 expression and ultimately target to lysosomes for degradation. We hypothesize that loss of this parkin- and PINK1-dependent trafficking mechanism impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins leading, over time, to the mitochondrial dysfunction noted in PD. PMID:24446486
Lemons, Michele L
2017-01-01
A fictitious patient, Mr. Challenge, is admitted to the emergency room and displays symptoms consistent with damage to the central nervous system. In this problem-based learning case, students are challenged to determine the location of a lesion that is consistent with Mr. Challenge's symptoms. Students discover details about Mr. Challenge's symptoms while exploring three anatomical pathways: corticospinal tract, spinothalamic tract and medial lemniscal pathway. Students make predictions as to which of these pathways may be damaged in Mr. Challenge and defend their predictions based on their research of the function and anatomical location of these tracts. This ultimately leads the student to identifying a single lesion site that can account for Mr. Challenge's symptoms. This case is executed in an undergraduate neuroscience course and would be useful in anatomy and physiology course, as well as other courses that serve students interested in health science related careers.
Bendix Andersen, Anne; Beedholm, Kirsten; Kolbæk, Raymond; Frederiksen, Kirsten
2018-06-01
When setting up patient pathways that cross health care sectors, professionals in emergency units strive to fulfill system requirements by creating efficient patient pathways that comply with standards for length of stay. We conducted an ethnographic field study, focusing on health professionals' collaboration, of 10 elderly patients with chronic illnesses, following them from discharge to their home or other places where they received health care services. We found that clock time not only governed the professionals' ways of collaborating, but acceleration of patient pathways also became an overall goal in health care delivery. Professionals' efforts to save time came to represent a "monetary value," leading to speedier planning of patient pathways and consequent risks of disregarding important issues when treating and caring for elderly patients. We suggest that such issues are significant to the future planning and improvement of patient pathways that involve elderly citizens who are in need of intersectoral health care delivery.
Accelerating Adverse Outcome Pathway Development Using ...
The adverse outcome pathway (AOP) concept links molecular perturbations with organism and population-level outcomes to support high-throughput toxicity testing. International efforts are underway to define AOPs and store the information supporting these AOPs in a central knowledgebase, however, this process is currently labor-intensive and time-consuming. Publicly available data sources provide a wealth of information that could be used to define computationally-predicted AOPs (cpAOPs), which could serve as a basis for creating expert-derived AOPs in a much more efficient way. Computational tools for mining large datasets provide the means for extracting and organizing the information captured in these public data sources. Using cpAOPs as a starting point for expert-derived AOPs should accelerate AOP development. Coupling this with tools to coordinate and facilitate the expert development efforts will increase the number and quality of AOPs produced, which should play a key role in advancing the adoption of twenty-first century toxicity testing strategies. This review article describes how effective knowledge management and automated approaches to AOP development can enhance and accelerate the development and use of AOPs. As the principles documented in this review are put into practice, we anticipate that the quality and quantity of AOPs available will increase substantially. This, in turn, will aid in the interpretation of ToxCast and other high-throughput tox
Use of eQTL Analysis for the Discovery of Target Genes Identified by GWAS
2013-04-01
the biologic pathways affected by these inherited factors, and ultimately to identify targets for disease prediction, risk stratification and...quality using an Agilent chip technology. Cases having a RIN number of 7.0 or greater were considered good quality. Once completed, the optimum set of...AD_________________ Award Number: W81XWH-11-1-0261 TITLE: Use of eQTL Analysis for the Discovery of
ERIC Educational Resources Information Center
Dempsey, Beth
2005-01-01
Literary festivals offer a unique proposition to libraries: host one, bring the reading public up-close and personal with writers of all kinds, and they will bask in the glory of that connection. Indeed, festivals can be the pathway for libraries to "own" the literary niche in their community. Bob Cannon, executive director of the Broward County…
Fractional Analysis of Escherichia coli O157:H7 by Mass Spectrometry-Based Proteomics
2012-10-01
column with the Dionex UltiMate 3000 (Thermo Scientific Dionex , Sunnyvale, CA). The resolved peptides were electrosprayed into a linear ion trap MS... chromatography -tandem mass spectrometry, followed by biochemical pathway mapping using the Kyoto Encyclopedia of Genes and Genomes. The fimbriae-specific subset...15. SUBJECT TERMS 3T3 murine fibroblasts Cell toxicity Liquid chromatography Mass spectrometry LC-MS Ricin Ricinus communis
2012-07-01
13. SUPPLEMENTARY NOTES 14. ABSTRACT The project studies the role of Hedgehog /Gli signaling in generating the androgen growth-independent...behavior of castration resistant prostate cancer and will test the ability of drugs that target Hedgehog or Gli as a means to suppress this behavior...advanced prostate cancer. The ultimate goal of the project is to define the mechanisms by which Hedgehog signaling molecules support aggressive
NASA Technical Reports Server (NTRS)
Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew
2013-01-01
High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.
NASA Astrophysics Data System (ADS)
Trantow, T.; Herzfeld, U. C.
2015-12-01
The Bering-Bagley Glacier System (BBGS), Alaska, one of the largest ice systems outside of Greenland and Antarctica, has recently surged (2011-2013), providing a rare opportunity to study the surge phenomenon in a large and complex system. Understanding fast-flowing glaciers and accelerations in ice flow, of which surging is one type, is critical to understanding changes in the cryosphere and ultimately changes in sea level. It is important to distinguish between types of accelerations and their consequences, especially between reversible or quasi-cyclic and irreversible forms of glacial acceleration, but current icesheet models treat all accelerating ice identically. Additionally, the surge provides an exceptional opportunity to study the influence of surface roughness and water content on return signals of altimeter systems. In this presentation, we analyze radar and laser altimeter data from CryoSat-2, NASA's Operation IceBridge (OIB), the ICESat Geoscience Laser Altimeter System (GLAS), ICESat-2's predecessor the Multiple Altimeter Beam Experimental Lidar (MABEL), and airborne laser altimeter and imagery campaigns by our research group. These measurements are used to study elevation, elevation change and crevassing throughout the glacier system. Analysis of the imagery from our airborne campaigns provides comprehensive characterizations of the BBGS surface over the course of the surge. Results from the data analysis are compared to numerical modeling experiments.
Mechanisms of load dependency of myocardial ischemia reperfusion injury
Mozaffari, Mahmood S; Liu, Jun Yao; Abebe, Worku; Baban, Babak
2013-01-01
Coronary artery disease and associated ischemic heart disease are prevalent disorders worldwide. Further, systemic hypertension is common and markedly increases the risk for heart disease. A common denominator of systemic hypertension of various etiologies is increased myocardial load/mechanical stress. Thus, it is likely that high pressure/mechanical stress attenuates the contribution of cardioprotective but accentuates the contribution of cardiotoxic pathways thereby exacerbating the outcome of an ischemia reperfusion insult to the heart. Critical events which contribute to cardiomyocyte injury in the ischemic-reperfused heart include cellular calcium overload and generation of reactive oxygen/nitrogen species which, in turn, promote the opening of the mitochondrial permeability transition pore, an important event in cell death. Increasing evidence also indicates that the myocardium is capable of mounting a robust inflammatory response which contributes importantly to tissue injury. On the other hand, cardioprotective maneuvers of ischemic preconditioning and postconditioning have led to identification of complex web of signaling pathways (e.g., reperfusion injury salvage kinase) which ultimately converge on the mitochondria to exert cytoprotection. The present review is intended to briefly describe mechanisms of cardiac ischemia reperfusion injury followed by a discussion of our work focused on how pressure/mechanical stress modulates endogenous cardiotoxic and cardioprotective mechanisms to ultimately exacerbate ischemia reperfusion injury. PMID:24224132
Innate Immunity and Biomaterials at the Nexus: Friends or Foes
Christo, Susan N.; Diener, Kerrilyn R.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.
2015-01-01
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation. PMID:26247017
NASA Astrophysics Data System (ADS)
Hule, Rohan; Thurman, Derek; Doufas, Antonios
Polyolefins occupy a significant volume of the polymer products portfolio in commodity and high value applications. Quantifying and optimizing structure-property relationships enables growth in new markets. It is well recognized that coupling lab-based, comprehensive methodologies with bulk properties of interest to industrial environments offer the greatest potential of technology advancement, ultimately leading to commercial success. It is imperative to recognize the existing gap of knowledge translation between lab measurements and industrial-scale operability. This study highlights experimental HDPEs synthesized from dual, single-site, co-supported catalysts that exhibit enhanced solid-state properties such as stiffness, impact and ESCR surpassing conventional trends. Commercial resins across distinct sub-families were included as well. Commonality amongst these resins is bimodality and broad MW distribution with well-defined splits and spreads. Investigations on commercially relevant parameters such as melt strength, melt elasticity and shear thinning established excellent performance for experimental bimodals, corroborating potential benefits compared to commercial HDPEs. To summarize, the effort highlights well-recognized pathways such as improvements in mechanical and melt properties that can be attributed to apposite tuning of polymer chain architecture and MW distribution with implications across myriad markets. Ultimately, this may serve as a pathway for producing innovative products that deliver business success and growth.
Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.
2013-01-01
The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245
Properties of the electron cloud in a high-energy positron and electron storage ring
Harkay, K. C.; Rosenberg, R. A.
2003-03-20
Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in amore » positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Furthermore, such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.« less
Heterostyly accelerates diversification via reduced extinction in primroses.
de Vos, Jurriaan M; Hughes, Colin E; Schneeweiss, Gerald M; Moore, Brian R; Conti, Elena
2014-06-07
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.
Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN
NASA Astrophysics Data System (ADS)
Delruelle, N.; Inglese, V.; Leclercq, Y.; Pirotte, O.; Williams, L.
2015-12-01
The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall.
Heterostyly accelerates diversification via reduced extinction in primroses
de Vos, Jurriaan M.; Hughes, Colin E.; Schneeweiss, Gerald M.; Moore, Brian R.; Conti, Elena
2014-01-01
The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower–pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification. PMID:24759859
Graf, Patricia M.; Wilson, Rory P.; Qasem, Lama; Hackländer, Klaus; Rosell, Frank
2015-01-01
Recent technological innovations have led to the development of miniature, accelerometer-containing electronic loggers which can be attached to free-living animals. Accelerometers provide information on both body posture and dynamism which can be used as descriptors to define behaviour. We deployed tri-axial accelerometer loggers on 12 free-ranging Eurasian beavers Castor fiber in the county of Telemark, Norway, and on four captive beavers (two Eurasian beavers and two North American beavers C. canadensis) to corroborate acceleration signals with observed behaviours. By using random forests for classifying behavioural patterns of beavers from accelerometry data, we were able to distinguish seven behaviours; standing, walking, swimming, feeding, grooming, diving and sleeping. We show how to apply the use of acceleration to determine behaviour, and emphasise the ease with which this non-invasive method can be implemented. Furthermore, we discuss the strengths and weaknesses of this, and the implementation of accelerometry on animals, illustrating limitations, suggestions and solutions. Ultimately, this approach may also serve as a template facilitating studies on other animals with similar locomotor modes and deliver new insights into hitherto unknown aspects of behavioural ecology. PMID:26317623
Soh, M C; Nelson-Piercy, C; Westgren, M; McCowan, L; Pasupathy, D
2017-11-01
Cardiovascular events (CVEs) are prevalent in patients with systemic lupus erythematosus (SLE), and it is the young women who are disproportionately at risk. The risk factors for accelerated cardiovascular disease remain unclear, with multiple studies producing conflicting results. In this paper, we aim to address both traditional and SLE-specific risk factors postulated to drive the accelerated vascular disease in this cohort. We also discuss the more recent hypothesis that adverse pregnancy outcomes in the form of maternal-placental syndrome and resultant preterm delivery could potentially contribute to the CVEs seen in young women with SLE who have fewer traditional cardiovascular risk factors. The pathophysiology of how placental-mediated vascular insufficiency and hypoxia (with the secretion of placenta-like growth factor (PlGF) and soluble fms-tyrosine-like kinase-1 (sFlt-1), soluble endoglin (sEng) and other placental factors) work synergistically to damage the vascular endothelium is discussed. Adverse pregnancy outcomes ultimately are a small contributing factor to the complex pathophysiological process of cardiovascular disease in patients with SLE. Future collaborative studies between cardiologists, obstetricians, obstetric physicians and rheumatologists may pave the way for a better understanding of a likely multifactorial aetiological process.
Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research.
Horowitz, Carol R; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N; Smith, Geoffrey W; Dudley, Joel; Manning, Rachel; Bickell, Nina A; Galvez, Maida P
2017-02-23
Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific "accelerators", tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators-digital health, big data, genomics and environmental health-and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.
NASA Astrophysics Data System (ADS)
Mumm, H. P.; Huber, M.; Bauder, W.; Abrams, N.; Deibel, C.; Huffer, C.; Huffman, P.; Schelhammer, K.; Janssens, R.; Jiang, C.; Scott, R.; Pardo, R.; Rehm, K.; Vondrasek, R.; Swank, C.; O'Shaughnessy, C.; Paul, M.; Yang, L.
2017-01-01
We report the development of an Accelerator Mass Spectrometry technique to measure the 3He/4He isotopic ratio using a radio frequency (RF) discharge source and the ATLAS facility at Argonne National Laboratory. Control over 3He/4He ratio in helium several orders of magnitude lower than natural abundance is critical for neutron lifetime and source experiments using liquid helium. Due to low ultimate beam currents, the ATLAS accelerator and beam line were tuned using a succession of species of the same M/q. A unique RF source was developed for the experiment due to large natural 3He backgrounds. Analog H_3 + and DH + molecular ions are eliminated by dissociation via a gold stripper foil near the detector. The stripped ions were dispersed in a magnetic spectrograph and 3He2 + ions counted in the focal plane detector. This technique is sensitive to 3 He /4 He ratios in the regime of 10-12 with backgrounds that appear to be below 10-14. The techniques used to reduce the backgrounds and remaining outstanding problems will be presented along with results from measurements on high purity 4He samples.
Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan
2016-10-01
Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.
Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong
2016-02-01
The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.
How rare bone diseases have informed our knowledge of complex diseases.
Johnson, Mark L
2016-01-01
Rare bone diseases, generally defined as monogenic traits with either autosomal recessive or dominant patterns of inheritance, have provided a rich database of genes and associated pathways over the past 2-3 decades. The molecular genetic dissection of these bone diseases has yielded some major surprises in terms of the causal genes and/or involved pathways. The discovery of genes/pathways involved in diseases such as osteopetrosis, osteosclerosis, osteogenesis imperfecta and many other rare bone diseases have all accelerated our understanding of complex traits. Importantly these discoveries have provided either direct validation for a specific gene embedded in a group of genes within an interval identified through a complex trait genome-wide association study (GWAS) or based upon the pathway associated with a monogenic trait gene, provided a means to prioritize a large number of genes for functional validation studies. In some instances GWAS studies have yielded candidate genes that fall within linkage intervals associated with monogenic traits and resulted in the identification of causal mutations in those rare diseases. Driving all of this discovery is a complement of technologies such as genome sequencing, bioinformatics and advanced statistical analysis methods that have accelerated genetic dissection and greatly reduced the cost. Thus, rare bone disorders in partnership with GWAS have brought us to the brink of a new era of personalized genomic medicine in which the prevention and management of complex diseases will be driven by the molecular understanding of each individuals contributing genetic risks for disease.
Stephens, Martin L.; Barrow, Craig; Andersen, Melvin E.; Boekelheide, Kim; Carmichael, Paul L.; Holsapple, Michael P.; Lafranconi, Mark
2012-01-01
The U.S. National Research Council (NRC) report on “Toxicity Testing in the 21st century” calls for a fundamental shift in the way that chemicals are tested for human health effects and evaluated in risk assessments. The new approach would move toward in vitro methods, typically using human cells in a high-throughput context. The in vitro methods would be designed to detect significant perturbations to “toxicity pathways,” i.e., key biological pathways that, when sufficiently perturbed, lead to adverse health outcomes. To explore progress on the report’s implementation, the Human Toxicology Project Consortium hosted a workshop on 9–10 November 2010 in Washington, DC. The Consortium is a coalition of several corporations, a research institute, and a non-governmental organization dedicated to accelerating the implementation of 21st-century Toxicology as aligned with the NRC vision. The goal of the workshop was to identify practical and scientific ways to accelerate implementation of the NRC vision. The workshop format consisted of plenary presentations, breakout group discussions, and concluding commentaries. The program faculty was drawn from industry, academia, government, and public interest organizations. Most presentations summarized ongoing efforts to modernize toxicology testing and approaches, each with some overlap with the NRC vision. In light of these efforts, the workshop identified recommendations for accelerating implementation of the NRC vision, including greater strategic coordination and planning across projects (facilitated by a steering group), the development of projects that test the proof of concept for implementation of the NRC vision, and greater outreach and communication across stakeholder communities. PMID:21948868
NASA Astrophysics Data System (ADS)
Bosch, Carl; Degirmenci, Soysal; Barlow, Jason; Mesika, Assaf; Politte, David G.; O'Sullivan, Joseph A.
2016-05-01
X-ray computed tomography reconstruction for medical, security and industrial applications has evolved through 40 years of experience with rotating gantry scanners using analytic reconstruction techniques such as filtered back projection (FBP). In parallel, research into statistical iterative reconstruction algorithms has evolved to apply to sparse view scanners in nuclear medicine, low data rate scanners in Positron Emission Tomography (PET) [5, 7, 10] and more recently to reduce exposure to ionizing radiation in conventional X-ray CT scanners. Multiple approaches to statistical iterative reconstruction have been developed based primarily on variations of expectation maximization (EM) algorithms. The primary benefit of EM algorithms is the guarantee of convergence that is maintained when iterative corrections are made within the limits of convergent algorithms. The primary disadvantage, however is that strict adherence to correction limits of convergent algorithms extends the number of iterations and ultimate timeline to complete a 3D volumetric reconstruction. Researchers have studied methods to accelerate convergence through more aggressive corrections [1], ordered subsets [1, 3, 4, 9] and spatially variant image updates. In this paper we describe the development of an AM reconstruction algorithm with accelerated convergence for use in a real-time explosive detection application for aviation security. By judiciously applying multiple acceleration techniques and advanced GPU processing architectures, we are able to perform 3D reconstruction of scanned passenger baggage at a rate of 75 slices per second. Analysis of the results on stream of commerce passenger bags demonstrates accelerated convergence by factors of 8 to 15, when comparing images from accelerated and strictly convergent algorithms.
Dusty-Plasma Particle Accelerator
NASA Technical Reports Server (NTRS)
Foster, John E.
2005-01-01
A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
Bardoxolone Brings Nrf2-Based Therapies to Light
2013-01-01
Abstract The targeted activation of nuclear factor erythroid-derived-2-like 2 (Nrf2) to alleviate symptoms of chronic kidney disease has recently garnered much attention. Unfortunately, the greatest clinical success to date, bardoxolone, failed in phase III clinical trial for unspecified safety reasons. The present letter to the editor discusses the clinical development of bardoxolone and explores potential reasons for the ultimate withdrawal from clinical trials. In particular, was the correct clinical indication pursued and would improved specificity have mitigated the safety concerns? Ultimately, it is concluded that the right clinical indication and heightened specificity will lead to successful Nrf2-based therapies. Therefore, the bardoxolone clinical results do not dampen enthusiasm for Nrf2-based therapies; rather it illuminates the clinical potential of the Nrf2 pathway as a drug target. Antioxid. Redox Signal. 19, 517–518. PMID:23227819
Optimum swimming pathways of fish spawning migrations in rivers
McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert
2012-01-01
Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-04-17
The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that controlmore » these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.« less
Clinically Applicable Inhibitors Impacting Genome Stability.
Prakash, Anu; Garcia-Moreno, Juan F; Brown, James A L; Bourke, Emer
2018-05-13
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Bierbaum, M; Grad, M O; Wulff, H; Kewenig, S; Schöffski, O
2014-04-01
Integrated treatment pathways are an appropriate means for increasing the quality of treatment and outcome via process optimization. Taking the POLIKUM Health Centers as an example, we intend to demonstrate how the implementation can be effected for the indication of anemia. The development and implementation were executed by an interdisciplinary workgroup in several workshops. In addition, the diagnoses and hemoglobin values of all patients with requests for hemograms were obtained and analyzed at two locations. Developing the pathway required significantly greater efforts than initially planned. The biggest challenge was to adequately map the complexity of the different forms of anemia and, concomitantly, to design a pathway that can actually be realized in everyday life. Moreover, evaluation of the patient data demonstrated that there are a large number of cases where existing anemias are not reflected in the respective diagnoses. While the ultimate effects of the new pathway cannot yet be assessed conclusively, it was possible to obtain valuable findings for practical use even at this point. Despite the limitations of the sample, the surprisingly high number of undetected anemias should give physicians cause for taking diagnostic measures even in patients with mild anemia.
Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway
Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran
2015-01-01
Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232
Greenslade, Jaimi H; Carlton, Edward W; Van Hise, Christopher; Cho, Elizabeth; Hawkins, Tracey; Parsonage, William A; Tate, Jillian; Ungerer, Jacobus; Cullen, Louise
2018-04-01
This diagnostic accuracy study describes the performance of 5 accelerated chest pain pathways, calculated with the new Beckman's Access high-sensitivity troponin I assay. High-sensitivity troponin I was measured with presentation and 2-hour blood samples in 1,811 patients who presented to an emergency department (ED) in Australia. Patients were classified as being at low risk according to 5 rules: modified accelerated diagnostic protocol to assess patients with chest pain symptoms using troponin as the only biomarker (m-ADAPT), the Emergency Department Assessment of Chest Pain Score (EDACS) pathway, the History, ECG, Age, Risk Factors, and Troponin (HEART) pathway, the No Objective Testing Rule, and the new Vancouver Chest Pain Rule. Endpoints were 30-day acute myocardial infarction and acute coronary syndrome. Measures of diagnostic accuracy for each rule were calculated. Data included 96 patients (5.3%) with acute myocardial infarction and 139 (7.7%) with acute coronary syndrome. The new Vancouver Chest Pain Rule and No Objective Testing Rule had high sensitivity for acute myocardial infarction (100%; 95% confidence interval [CI] 96.2% to 100% for both) and acute coronary syndrome (98.6% [95% CI 94.9% to 99.8%] and 99.3% [95% CI 96.1% to 100%]). The m-ADAPT, EDACS, and HEART pathways also yielded high sensitivity for acute myocardial infarction (96.9% [95% CI 91.1% to 99.4%] for m-ADAPT and 97.9% [95% CI 92.7% to 99.7%] for EDACS and HEART), but lower sensitivity for acute coronary syndrome (≤95.0% for all). The m-ADAPT, EDACS, and HEART rules classified more patients as being at low risk (64.3%, 62.5%, and 49.8%, respectively) than the new Vancouver Chest Pain Rule and No Objective Testing Rule (28.2% and 34.5%, respectively). In this cohort with a low prevalence of acute myocardial infarction and acute coronary syndrome, using the Beckman's Access high-sensitivity troponin I assay with the new Vancouver Chest Pain Rule or No Objective Testing Rule enabled approximately one third of patients to be safely discharged after 2-hour risk stratification with no further testing. The EDACS, m-ADAPT, or HEART pathway enabled half of ED patients to be rapidly referred for objective testing. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway
The mechanisms by which exposure to particulate matter increases the risk of cardiovascular events are not known. Recent human and animal data suggest that particulate matter may induce alterations in hemostatic factors. In this study we determined the mechanisms by which particu...
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F; Perez, Danny
2017-10-21
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
NASA Astrophysics Data System (ADS)
Huang, Rao; Lo, Li-Ta; Wen, Yuhua; Voter, Arthur F.; Perez, Danny
2017-10-01
Modern molecular-dynamics-based techniques are extremely powerful to investigate the dynamical evolution of materials. With the increase in sophistication of the simulation techniques and the ubiquity of massively parallel computing platforms, atomistic simulations now generate very large amounts of data, which have to be carefully analyzed in order to reveal key features of the underlying trajectories, including the nature and characteristics of the relevant reaction pathways. We show that clustering algorithms, such as the Perron Cluster Cluster Analysis, can provide reduced representations that greatly facilitate the interpretation of complex trajectories. To illustrate this point, clustering tools are used to identify the key kinetic steps in complex accelerated molecular dynamics trajectories exhibiting shape fluctuations in Pt nanoclusters. This analysis provides an easily interpretable coarse representation of the reaction pathways in terms of a handful of clusters, in contrast to the raw trajectory that contains thousands of unique states and tens of thousands of transitions.
A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.
Karim, Ashty S; Jewett, Michael C
2016-07-01
Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Female puberty acceleration by male odour in mice: neural pathway and behavioural consequences.
Jouhanneau, Mélanie; Szymanski, Laura A; Keller, Matthieu
2014-08-01
In female mice, exposure to male chemosignals results in early puberty onset characterized by advanced vaginal opening and higher uterine weight. Evidence suggests that the male chemosignals responsible for acceleration of female puberty are androgen-dependent, but not all of the compounds that contribute to puberty acceleration have been identified. The male chemosignals are primarily detected and processed by the vomeronasal system including the vomeronasal organ, the accessory olfactory bulb and the medial amygdala. By contrast, the mechanism by which this olfactory information is integrated in the hypothalamus is poorly understood. In this context, the recent identification of the neuropeptide kisspeptin as a gatekeeper of puberty onset may provide a good candidate neuropeptide system for the transmission of chemosensory information to the gonadotrope axis.
Strategies for Analyzing Sub-Micrometer Features with the FE-EPMA
NASA Astrophysics Data System (ADS)
McSwiggen, P.; Armstrong, J. T.; Nielsen, C.
2013-12-01
Changes in column design and electronics, as well as new types of spectrometers and analyzing crystals, have significantly advanced electron microprobes, in terms of stability, reproducibility and detection limits. A major advance in spatial resolution has occurred through the use of the field emission electron gun. The spatial resolution of an analysis is controlled by the diameter of the electron beam and the amount of scatter that takes place within the sample. The beam diameter is controlled by the column and type of electron gun being used. The accelerating voltage and the average atomic number/density of the sample control the amount of electron scatter within the sample. However a large electron interaction volume does not necessarily mean a large analytical volume. The beam electrons may spread out within a large volume, but if the electrons lack sufficient energy to produce the X-ray of interest, the analytical volume could be significantly smaller. Therefore there are two competing strategies for creating the smallest analytical volumes. The first strategy is to reduce the accelerating voltage to produce the smallest electron interaction volume. This low kV analytical approach is ultimately limited by the size of the electron beam itself. With a field emission gun, normally the smallest analytical area is achieved at around 5-7 kV. At lower accelerating voltages, the increase in the beam diameter begins to overshadow the reduction in internal scattering. For tungsten filament guns, the smallest analytical volume is reached at higher accelerating voltages. The second strategy is to minimize the overvoltage during the analysis. If the accelerating voltage is only 1-3 kV greater than the critical ionization energy for the X-ray line of interest, then even if the overall electron interaction volume is large, those electrons quickly loose sufficient energy to produce the desired X-rays. The portion of the interaction volume in which the desired X-rays will be produce will be very small and very near the surface. Both strategies have advantages and disadvantages depending on the ultimate goal of the analysis and the elements involved. This work will examine a number of considerations when attempting to decide which approach is best for a given analytical situation. These include: (1) the size of the analytical volumes, (2) minimum detection limits, (3) quality of the matrix corrections, (4) secondary fluorescence, (5) effects of surface contamination, oxide layers, and carbon coatings. This work is based on results largely from the Fe-Ni binary. A simple conclusion cannot be draw as to which strategy is better overall. The determination is highly system dependent. For many mineral systems, both strategies used in combination will produce the best results. Using multiple accelerating voltages to preform a single analysis allows the analyst to optimize their analytical conditions for each element individually.
Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian
2015-11-04
Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.
Accelerating Adverse Outcome Pathway (AOP) development ...
The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. However, the conventional process for assembly of these AOPs is time and resource intensive, and has been a rate limiting step for AOP use and development. Therefore computational approaches to accelerate the process need to be developed. We previously developed a method for generating computationally predicted AOPs (cpAOPs) by association mining and integration of data from publicly available databases. In this work, a cpAOP network of ~21,000 associations was established between 105 phenotypes from TG-GATEs rat liver data from different time points (including microarray, pathological effects and clinical chemistry data), 994 REACTOME pathways, 688 High-throughput assays from ToxCast and 194 chemicals. A second network of 128,536 associations was generated by connecting 255 biological target genes from ToxCast to 4,980 diseases from CTD using either HT screening activity from ToxCast for 286 chemicals or CTD gene expression changes in response to 2,330 chemicals. Both networks were separately evaluated through manual extraction of disease-specific cpAOPs and comparison with expert curation of the relevant literature. By employing data integration strategies that involve the weighting of n
Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway.
Yang, Rong-Hua; Qi, Shao-Hai; Shu, Bin; Ruan, Shu-Bin; Lin, Ze-Peng; Lin, Yan; Shen, Rui; Zhang, Feng-Gang; Chen, Xiao-Dong; Xie, Ju-Lin
2016-08-01
Chronic, non-healing wounds are a major complication of diabetes. Recently, various cell therapies have been reported for promotion of diabetic wound healing. Epidermal stem cells (ESCs) are considered a powerful tool for tissue therapy. However, the effect and the mechanism of the therapeutic properties of ESCs in the diabetic wound healing are unclear. Herein, to determine the ability of ESCs to diabetic wound healing, a dorsal skin defect in a streptozotocin (STZ)-induced diabetes mellitus (DM) mouse model was used. ESCs were isolated from mouse skin. We found that both the mRNA and protein levels of a Notch ligand Jagged1 (Jag1), Notch1 and Notch target gene Hairy Enhancer of Split-1 (Hes1) were significantly increased at the wound margins. In addition, we observed that Jag1 was high expressed in ESCs. Overexpression of Jag1 promotes ESCs migration, whereas knockdown Jag1 resulted in a significant reduction in ESCs migration in vitro Importantly, Jag1 overexpression improves diabetic wound healing in vivo These results provide evidence that ESCs accelerate diabetic wound healing via the Notch signalling pathway, and provide a promising potential for activation of the Notch pathway for the treatment of diabetic wound. © 2016 The Author(s).
Bueno, Clara; Lemke, Caitlin D; Criado, Gabriel; Baroja, Miren L; Ferguson, Stephen S G; Rahman, A K M Nur-Ur; Tsoukas, Constantine D; McCormick, John K; Madrenas, Joaquin
2006-07-01
The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.
Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLoache, William; Russ, Zachary; Samson, Jennifer
The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurementsmore » of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.« less
Mechanistic pathways of recognition of a solvent-inaccessible cavity of protein by a ligand
NASA Astrophysics Data System (ADS)
Mondal, Jagannath; Pandit, Subhendu; Dandekar, Bhupendra; Vallurupalli, Pramodh
One of the puzzling questions in the realm of protein-ligand recognition is how a solvent-inaccessible hydrophobic cavity of a protein gets recognized by a ligand. We address the topic by simulating, for the first time, the complete binding process of benzene from aqueous media to the well-known buried cavity of L99A T4 Lysozyme at an atomistic resolution. Our multiple unbiased microsecond-long trajectories, which were completely blind to the location of target binding site, are able to unequivocally identify the kinetic pathways along which benzene molecule meanders across the solvent and protein and ultimately spontaneously recognizes the deeply buried cavity of L99A T4 Lysozyme at an accurate precision. Our simulation, combined with analysis based on markov state model and free energy calculation, reveals that there are more than one distinct ligand binding pathways. Intriguingly, each of the identified pathways involves the transient opening of a channel of the protein prior to ligand binding. The work will also decipher rich mechanistic details on unbinding kinetics of the ligand as obtained from enhanced sampling techniques.
HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.
Yang, Rui; Wu, Yanan; Wang, Mei; Sun, Zhongfeng; Zou, Jiahua; Zhang, Yundong; Cui, Hongjuan
2015-04-10
Histone deacetylase 9 (HDAC9), a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions. We found that HDAC9 is over-expressed in prognostically poor glioblastoma patients. Knockdown HDAC9 decreased proliferation in vitro and tumor formation in vivo. HDAC9 accelerated cell cycle in part by potentiating the EGFR signaling pathway. Also, HDAC9 interacted with TAZ, a key downstream effector of Hippo pathway. Knockdown of HDAC9 decreased the expression of TAZ. We found that overexpressed TAZ in HDAC9-knockdown cells abrogated the effects induced by HDAC9 silencing both in vitro and in vivo. We demonstrated that HDAC9 promotes tumor formation of glioblastoma via TAZ-mediated EGFR pathway activation, and provide the evidence for promising target for the treatment of glioblastoma.
NOTCH pathway inactivation promotes bladder cancer progression
Maraver, Antonio; Fernandez-Marcos, Pablo J.; Cash, Timothy P.; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L.; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M.; Real, Francisco X.; Serrano, Manuel
2015-01-01
NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features. PMID:25574842
Gertner, Michael
2006-11-01
The innovation process is often more important than the original idea, particularly when the ultimate goal is to improve patient care through technologically advanced products. Many physicians have great ideas; unfortunately, many of these great ideas are never translated to patient care improvements because of a misunderstanding of "the next step." In many cases, the next step is a step backward to understand the real clinical problem: "the clinical need." With the clinical need in hand, the most efficient path to a product for improved patient care can then be derived. Often, the most efficient pathway involves an appreciation of many issues, including intellectual property, regulatory pathways, finance, and clinical trial strategies. The integration of these issues underlies innovation in biomedical technology.
Ubiquitination in the antiviral immune response.
Davis, Meredith E; Gack, Michaela U
2015-05-01
Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. Copyright © 2015 Elsevier Inc. All rights reserved.
Martirosian, Vahan; Chen, Thomas C; Lin, Michelle; Neman, Josh
2016-12-01
Medulloblastomas are the most common malignant pediatric brain tumors. Over the past several decades, a wide range of tumor-centric studies have identified genes and their regulators within signaling pathways that promote medulloblastoma growth. This review aims to raise awareness that transdisciplinary research between developmental neurobiology and cancer foundations can advance our current understanding of how the nervous system contributes to medulloblastomas. By leveraging current advances in neurodevelopment, microenvironment (including secreted neuropeptides), neurotransmitters, and axon guidance cues, we can uncover novel mechanisms used by the nervous system to promote medulloblastoma growth and spread. This will ultimately result in development of improved strategies for cancer prevention and treatment of pediatric patients with this devastating disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mechanism for Si–Si Bond Rupture in Single Molecule Junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haixing; Kim, Nathaniel T.; Su, Timothy A.
The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si–Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si–Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si–Si bond is ruptured using an applied voltage. We investigate this voltage induced Si–Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation ofmore » molecular vibrational modes by tunneling electrons leads to homolytic Si–Si bond rupture.« less
Mechanism for Si-Si Bond Rupture in Single Molecule Junctions.
Li, Haixing; Kim, Nathaniel T; Su, Timothy A; Steigerwald, Michael L; Nuckolls, Colin; Darancet, Pierre; Leighton, James L; Venkataraman, Latha
2016-12-14
The stability of chemical bonds can be studied experimentally by rupturing single molecule junctions under applied voltage. Here, we compare voltage-induced bond rupture in two Si-Si backbones: one has no alternate conductive pathway whereas the other contains an additional naphthyl pathway in parallel to the Si-Si bond. We show that in contrast to the first system, the second can conduct through the naphthyl group when the Si-Si bond is ruptured using an applied voltage. We investigate this voltage induced Si-Si bond rupture by ab initio density functional theory calculations and molecular dynamics simulations that ultimately demonstrate that the excitation of molecular vibrational modes by tunneling electrons leads to homolytic Si-Si bond rupture.
Pathologic and Therapeutic Implications for the Cell Biology of Parkin
Charan, Rakshita A.; LaVoie, Matthew J.
2015-01-01
Mutations in the E3 ligase parkin are the most common cause of autosomal recessive Parkinson's disease (PD), but it is believed that parkin dysfunction may also contribute to idiopathic PD. Since its discovery, parkin has been implicated in supporting multiple neuroprotective pathways, many revolving around the maintenance of mitochondrial health quality control and governance of cell survival. Recent advances across the structure, biochemistry, and cell biology of parkin have provided great insights into the etiology of parkin-linked and idiopathic PD and may ultimately generate novel therapeutic strategies to slow or halt disease progression. This review describes the various pathways in which parkin acts and the mechanisms by which parkin may be targeted for therapeutic intervention. PMID:25697646
Drug resistance to targeted therapies: déjà vu all over again.
Groenendijk, Floris H; Bernards, René
2014-09-12
A major limitation of targeted anticancer therapies is intrinsic or acquired resistance. This review emphasizes similarities in the mechanisms of resistance to endocrine therapies in breast cancer and those seen with the new generation of targeted cancer therapeutics. Resistance to single-agent cancer therapeutics is frequently the result of reactivation of the signaling pathway, indicating that a major limitation of targeted agents lies in their inability to fully block the cancer-relevant signaling pathway. The development of mechanism-based combinations of targeted therapies together with non-invasive molecular disease monitoring is a logical way forward to delay and ultimately overcome drug resistance development. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Mahler, Simon A.; Riley, Robert F.; Russell, Gregory B.; Hiestand, Brian C.; Hoekstra, James W.; Lefebvre, Cedric W.; Nicks, Bret A.; Cline, David M.; Askew, Kim L.; Bringolf, John; Elliott, Stephanie B.; Herrington, David M.; Burke, Gregory L.; Miller, Chadwick D.
2015-01-01
Objectives Accelerated diagnostic protocols (ADP), such as the HEART Pathway, are gaining popularity in emergency departments (EDs) as tools used to risk-stratify patients with acute chest pain. However, provider non-adherence may threaten the safety and effectiveness of ADPs. The objective of this study was to determine the frequency and impact of ADP non-adherence. Methods A secondary analysis of participants enrolled in the HEART Pathway RCT was conducted. This trial enrolled 282 adult ED patients with symptoms concerning for acute coronary syndrome without ST-elevation on electrocardiogram. Patients randomized to the HEART Pathway (N = 141) were included in this analysis. Outcomes included index visit disposition, non-adherence, and major adverse cardiac events (MACE) at 30 days. MACE was defined as death, myocardial infarction, or revascularization. Non-adherence was defined as: 1) under-testing: discharging a high-risk patient from the ED without objective testing (stress testing or coronary angiography); or 2) over-testing: admitting or obtaining objective testing on a low-risk patient. Results Non-adherence to the HEART Pathway occurred in 28 out of 141 patients (20%, 95% CI = 14% to 27%). Over-testing occurred in 19 of 141 patients (13.5%, 95% CI = 8% to 19%) and under-testing in 9 of 141 patients (6%, 95% CI = 3% to 12%). None of these 28 patients suffered MACE. The net effect of non-adherence was ten additional admissions among patients identified as low-risk and appropriate for early discharge (absolute decrease in discharge rate of 7%, 95% CI = 3% to 13%). Conclusions Real-time use of the HEART Pathway resulted in a non-adherence rate of 20%, mostly due to over-testing. None of these patients had MACE within 30 days. Non-adherence decreased the discharge rate, attenuating the HEART Pathway’s impact on health care use. PMID:26720295
Synthetic biology projects in vitro.
Forster, Anthony C; Church, George M
2007-01-01
Advances in the in vitro synthesis and evolution of DNA, RNA, and polypeptides are accelerating the construction of biopolymers, pathways, and organisms with novel functions. Known functions are being integrated and debugged with the aim of synthesizing life-like systems. The goals are knowledge, tools, smart materials, and therapies.
The Influence of Subglacial Hydrology on Arctic Tidewater Glaciers and Fjords
NASA Astrophysics Data System (ADS)
Schild, Kristin M.
Mass loss from the Greenland Ice Sheet has accelerated throughout the last decade, predominantly due to a quadrupling of ice discharge by iceberg calving, submarine melting, and meltwater runoff at marine-terminating outlet glaciers. The recent acceleration has been linked to the transport of increasing amounts of meltwater, fuelled by warming temperatures. These processes include enhanced basal sliding, inefficient subglacial drainage networks, and a warming of ocean waters in contact with the glacier terminus. Understanding the impact of meltwater on tidewater glacier dynamics, both subglacially and proglacially, is a key component in predicting glacier health and future sea level rise. However, the spatial and temporal magnitude of this meltwater impact is poorly understood. The goals of this dissertation are to identify how meltwater travels subglacially through a tidewater glacier system, establish a method to monitor tidewater glacier discharge remotely, and calculate the impact of subglacial discharge on terminus stability.. The inaccessibility of subglacial and terminus environments prohibits direct hydrological observations. We use combinations of remote sensing, reanalysis models, and in situ fjord data to accomplish these research goals by measuring indicators of subglacial meltwater discharge and fjord circulation (sediment plumes exiting the terminus and the movement of small icebergs in the fjord). By monitoring the timing and duration of plumes exiting a fast-flowing Greenland tidewater glacier, we found short-term variability in meltwater discharge, persistent subglacial pathways, and evidence of over-winter subglacial storage. Using glaciers in Svalbard, we established a new method to determine sediment concentration from Landsat-8 spectral reflectance, and used this sediment concentration to quantify relative seasonal meltwater discharge at tidewater glaciers. Finally, we used the movement of icebergs and ocean temperatures to establish a terminus submarine melt rate for along-terminus fjord circulation, and use this to isolate calving due solely to subglacial meltwater discharge. The results of this dissertation help answer larger questions concerning the controls of water flow under a glacier and how that flow, and fjord circulation, influence glacier stability. Ultimately these results will inform coupled ice-ocean-climate models to predict glacier melt and sea level rise.
Lü, Silin; Deng, Jiacheng; Liu, Huiying; Liu, Bo; Yang, Juan; Miao, Yutong; Li, Jing; Wang, Nan; Jiang, Changtao; Xu, Qingbo; Wang, Xian; Feng, Juan
2018-06-01
Inflammation mediated by activated T cells plays an important role in the initiation and progression of hyperhomocysteinemia (HHcy)-accelerated atherosclerosis in ApoE -/- mice. Homocysteine (Hcy) activates T cells to secrete proinflammatory cytokines, especially interferon (IFN)-γ; however, the precise mechanisms remain unclear. Metabolic reprogramming is critical for T cell inflammatory activation and effector functions. Our previous study demonstrated that Hcy regulates T cell mitochondrial reprogramming by enhancing endoplasmic reticulum (ER)-mitochondria coupling. In this study, we further explored the important role of glycolysis-mediated metabolic reprogramming in Hcy-activated CD4 + T cells. Mechanistically, Hcy-activated CD4 + T cell increased the protein expression and activity of pyruvate kinase muscle isozyme 2 (PKM2), the final rate-limiting enzyme in glycolysis, via the phosphatidylinositol 3-kinase/AKT/mechanistic target of rapamycin signaling pathway. Knockdown of PKM2 by small interfering RNA reduced Hcy-induced CD4 + T cell IFN-γ secretion. Furthermore, we generated T cell-specific PKM2 knockout mice by crossing LckCre transgenic mice with PKM2 fl/fl mice and observed that Hcy-induced glycolysis and oxidative phosphorylation were both diminished in PKM2-deficient CD4 + T cells with reduced glucose and lipid metabolites, and subsequently reduced IFN-γ secretion. T cell-depleted apolipoprotein E-deficient (ApoE -/- ) mice adoptively transferred with PKM2-deficient CD4 + T cells, compared to mice transferred with control cells, showed significantly decreased HHcy-accelerated early atherosclerotic lesion formation. In conclusion, this work indicates that the PKM2-dependent glycolytic-lipogenic axis, a novel mechanism of metabolic regulation, is crucial for HHcy-induced CD4 + T cell activation to accelerate early atherosclerosis in ApoE -/- mice. Metabolic reprogramming is crucial for Hcy-induced CD4 + T cell inflammatory activation. Hcy activates the glycolytic-lipogenic pathway in CD4 + T cells via PKM2. Targeting PKM2 attenuated HHcy-accelerated early atherosclerosis in ApoE -/- mice in vivo.
Detecting ionizing radiation with optical fibers down to biomedical doses
NASA Astrophysics Data System (ADS)
Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.
2013-10-01
We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.
2002-04-09
consolidated financial statements for fiscal years 2001 and 2000. Both the consolidated financial statements and this report are included in the fiscal year 2001 Financial Report of the United States Government, which was issued by the Department of the Treasury (Treasury) on March 29, 2002, and is available through GAO’s Internet site, at www.gao.gov. Work by the subcommittee has been a catalyst to facilitate government management reform over the past 5 years and will be critical to ultimately restoring the confidence of
Handbook of solar-terrestrial data systems, version 1
NASA Technical Reports Server (NTRS)
1991-01-01
The interaction between the solar wind and the earth's magnetic field creates a large magnetic cavity which is termed the magnetosphere. Energy derived from the solar wind is ultimately dissipated by particle acceleration-precipitation and Joule heating in the magnetosphere-ionosphere. The rate of energy dissipation is highly variable, with peak levels during geomagnetic storms and substorms. The degree to which solar wind and magnetospheric conditions control the energy dissipation processes remains one of the major outstanding questions in magnetospheric physics. A conference on Solar Wind-Magnetospheric Coupling was convened to discuss these issues and this handbook is the result.
Efficiency equations of the railgun
NASA Astrophysics Data System (ADS)
Sadedin, D. R.
1984-03-01
The feasibility of an employment of railguns for large scale applications, such as space launching, will ultimately be determined by efficiency considerations. The present investigation is concerned with the calculation of the efficiencies for constant current railguns. Elementary considerations are discussed, taking into account a simple condition for high efficiency, the magnetic field of the rails, and the acceleration force on the projectile. The loss in a portion of the rails is considered along with rail loss comparisons, applications to the segmented gun, rail losses related to the constant resistance per unit length, efficiency expressions, and arc, or muzzle voltage energy.
Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M; Kazan, Kemal
2015-01-01
Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects.
Cui, Yujie; Huang, Mingwei; He, Yingbo; Zhang, Shuyan; Luo, Yongzhang
2011-01-01
The link between lipoprotein metabolism and Alzheimer's disease (AD) has been established. Apolipoprotein A-IV (apoA-IV), a component of lipoprotein particles similar to apolipoprotein E, has been suggested to play an important role in brain metabolism. Although there are clinical debates on the function of its polymorphism in AD, the pathologic role of apoA-IV in AD is still unknown. Here, we report that genetic ablation of apoA-IV is able to accelerate AD pathogenesis in mice. In a mouse model that overexpresses human amyloid precursor protein (APP) and presenilin 1, genetic reduction of apoA-IV augments extracellular amyloid-β peptide (Aβ) burden and aggravates neuron loss in the brain. In addition, genetic ablation of apoA-IV also accelerates spatial learning deficits and increases the mortality of mice. We have found that apoA-IV colocalizes within Aβ plaques in APP/presenilin 1 transgenic mice and binds to Aβ in vitro. Subsequent studies show that apoA-IV in this model facilitates Aβ uptake in the Aβ clearance pathway mediated by astrocytes rather than the amyloidogenic pathway of APP processing. Taken together, we conclude that apoA-IV deficiency increases Aβ deposition and results in cognitive damage in the mouse model. Enhancing levels of apoA-IV may have therapeutic potential in AD treatment. PMID:21356380
Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal
2015-01-01
Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991
Myofibrillogenesis regulator 1 (MR-1): a potential therapeutic target for cancer and PNKD.
Wang, Junxia; Zhao, Wuli; Liu, Hong; He, Hongwei; Shao, Rongguang
2017-11-15
Human myofibrillogenesis regulator 1 (MR-1) is a functional gene also known as paroxysmal nonkinesigenic dyskinesia (PNKD). It is localised on human chromosome 2q35 and three different isomers, MR-1L, MR-1M and MR-1S, are formed by alternative splicing. MR-1S promotes cardiac hypertrophy and is closely related to cancer. MR-1S is overexpressed in haematologic and solid malignancies, such as hepatoma, breast cancer and chronic myelogenous leukaemia. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1S directly phosphorylates and activates the MEK-ERK-RSK pathway to accelerate cancer growth and facilitates metastasis by activating the MLC2-FAK-AKT pathway. Silencing MR-1 inhibits cancer cell proliferation and metastasis. MR-1S causes disordered cell differentiation, initiates malignant transformation and accelerates metastasis. MR-1 interacts with eukaryotic translation initiation factors and MRIP-1, which contains Ras GTPase, PH and zinc-containing ArfGap domains, as well as three ankyrin repeats. Mutations in the N-terminal region of MR-1L and MR-1S are the main causes of PNKD (a hereditary disease characterised by paroxysmal dystonic choreoathetosis) and targeting the mutated protein could provide symptomatic relief. These findings provide compelling evidence that MR-1 might be a diagnostic marker and therapeutic target for solid tumours, myelogenous leukaemia and PNKD.
Acylcarnitines: old actors auditioning for new roles in metabolic physiology
USDA-ARS?s Scientific Manuscript database
A number of challenges or perturbations in metabolic pathways lead to significant increases in plasma and tissue long-chain acylcarnitines (LCAC). The LCAC and other acylcarnitines rise, for instance, in the blood and muscle during exercise bouts, as tissue acyl-CoA pools change with accelerated met...
Collapsing permafrost coasts in the Arctic
NASA Astrophysics Data System (ADS)
Fritz, Michael; Lantuit, Hugues
2017-04-01
Arctic warming is exposing permafrost coastlines, which account for 34% of the Earth's coasts, to rapid thaw and erosion. Coastal erosion rates as high as 25 m yr-1 together with the large amount of organic matter frozen in permafrost are resulting in an annual release of 14.0 Tg (1012 gram) particulate organic carbon into the nearshore zone. The nearshore zone is the primary recipient of higher fluxes of carbon and nutrients from thawing permafrost. We highlight the crucial role the nearshore zone plays in Arctic biogeochemical cycling, as here the fate of the released material is determined to: (1) degrade into greenhouse gases, (2) fuel marine primary production, (3) be buried in nearshore sediments or (4) be transported offshore. With Arctic warming, coastal erosion fluxes have the potential to increase by an order of magnitude until 2100. Such increases would result in drastic impacts on global carbon fluxes and their climate feedbacks, on nearshore food webs and on local communities, whose survival still relies on marine biological resources. Quantifying the potential impacts of increasing erosion on coastal ecosystems is crucial for food security of northern residents living in Arctic coastal communities. We need to know how the traditional hunting and fishing grounds might be impacted by high loads of sediment and nutrients released from eroding coasts, and to what extent coastal retreat will lead to a loss of natural habitat. Quantifying fluxes of organic carbon and nutrients is required, both in nearshore deposits and in the water column by sediment coring and systematic oceanographic monitoring. Ultimately, this will allow us to assess the transport and degradation pathways of sediment and organic matter derived from erosion. We need to follow the complete pathway, which is multi-directional including atmospheric release, lateral transport, transitional retention in the food web, and ultimate burial in seafloor sediments. We present numbers of multi-year dissolved organic matter (DOM) fluxes from coastal erosion into the nearshore zone of the southern Canadian Beaufort Sea. We further explore removal and degradation patterns of DOM based on oceanographic monitoring of coastal waters. Ultimately, we present accumulation rates and biogeochemical properties of marine sediment sequences drilled off the Yukon coast to track the pathways of the eroded material.
Ultimately short ballistic vertical graphene Josephson junctions
Lee, Gil-Ho; Kim, Sol; Jhi, Seung-Hoon; Lee, Hu-Jong
2015-01-01
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale. PMID:25635386
Herrick, James; St Cyr, John
2008-01-01
Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.
Belenky, Peter; Racette, Frances G; Bogan, Katrina L; McClure, Julie M; Smith, Jeffrey S; Brenner, Charles
2007-05-04
Although NAD(+) biosynthesis is required for Sir2 functions and replicative lifespan in yeast, alterations in NAD(+) precursors have been reported to accelerate aging but not to extend lifespan. In eukaryotes, nicotinamide riboside is a newly discovered NAD(+) precursor that is converted to nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. In this study, we discovered that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends lifespan without calorie restriction. The mechanism of action of nicotinamide riboside is totally dependent on increased net NAD(+) synthesis through two pathways, the Nrk1 pathway and the Urh1/Pnp1/Meu1 pathway, which is Nrk1 independent. Additionally, the two nicotinamide riboside salvage pathways contribute to NAD(+) metabolism in the absence of nicotinamide-riboside supplementation. Thus, like calorie restriction in the mouse, nicotinamide riboside elevates NAD(+) and increases Sir2 function.
Harpur, Brock A; Zayed, Amro
2013-07-01
The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.
Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2017-01-01
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697
Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2017-02-22
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.
Magmas near the critical degassing pressure drive volcanic unrest towards a critical state
Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean
2016-01-01
During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed. PMID:27996976
Engineering the Big Chill: The story of JLab’s Central Helium Liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westfall, Catherine
This article tells the story of the Central Helium Liquefier (CHL) at the Thomas Jefferson National Accelerator Facility (JLab), one of the US National Laboratories. JLab’s successful superconducting radio frequency accelerator was only possible because a group of JLab engineers successfully tackled a complex of difficulties to build a cryogenic system that included the CHL, a task that required advancing the frontier of cryogenic technology. Ultimately, these cryogenic advances were applied far beyond JLab to the benefit of cutting-edge programs at other US national laboratories (Oak Ridge, Brookhaven, and the Facility for Rare Isotope Beams at MSU) as well asmore » NASA. In addition, this innovation story dramatizes the sort of engineer-driven technological problem solving that allows the successful launch and operation of experimental projects. Along the way, the CHL story also provides an important addition to our understanding of the role played by engineers and industry in creating knowledge at physics laboratories.« less
The tearing mode locking-unlocking mechanism to an external resonant field in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Fridström, R.; Menmuir, S.; Brunsell, P. R.
2014-10-01
The tearing mode (TM) locking and unlocking process due to an external resonant magnetic perturbation (RMP) is experimentally studied in EXTRAP T2R. The RMP produces a reduction of the natural TM velocity and ultimately the TM locking if a threshold in the RMP amplitude is exceeded. During the braking process, the TM slows down via a mechanism composed of deceleration and acceleration phases. During the acceleration phases, the TM can reach velocities higher than the natural velocity. Once the TM locking occurs, the RMP must be reduced to a small amplitude to obtain the TM unlocking, showing that the unlocking threshold is significantly smaller than the locking threshold and that the process is characterized by hysteresis. Experimental results are in qualitative agreement with a model that describes the locking-unlocking process via the balance of the electromagnetic torque produced by the RMP that acts to brake the TM and the viscous torque that tends to re-establish the unperturbed velocity.
Engineering the Big Chill: The story of JLab’s Central Helium Liquefier
Westfall, Catherine
2014-03-29
This article tells the story of the Central Helium Liquefier (CHL) at the Thomas Jefferson National Accelerator Facility (JLab), one of the US National Laboratories. JLab’s successful superconducting radio frequency accelerator was only possible because a group of JLab engineers successfully tackled a complex of difficulties to build a cryogenic system that included the CHL, a task that required advancing the frontier of cryogenic technology. Ultimately, these cryogenic advances were applied far beyond JLab to the benefit of cutting-edge programs at other US national laboratories (Oak Ridge, Brookhaven, and the Facility for Rare Isotope Beams at MSU) as well asmore » NASA. In addition, this innovation story dramatizes the sort of engineer-driven technological problem solving that allows the successful launch and operation of experimental projects. Along the way, the CHL story also provides an important addition to our understanding of the role played by engineers and industry in creating knowledge at physics laboratories.« less
Kenning, Matthes; Müller, Carsten H.G.
2017-01-01
The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules—evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes’ body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda. PMID:29158971
GEM*STAR: Time for an Alternative Way Forward
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2011-10-01
The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.
Kakinuma, Yoshihiko; Furihata, Mutsuo; Akiyama, Tsuyoshi; Arikawa, Mikihiko; Handa, Takemi; Katare, Rajesh G; Sato, Takayuki
2010-04-01
Our recent studies have indicated that acetylcholine (ACh) protects cardiomyocytes from prolonged hypoxia through activation of the PI3K/Akt/HIF-1alpha/VEGF pathway and that cardiomyocyte-derived VEGF promotes angiogenesis in a paracrine fashion. These results suggest that a cholinergic system plays a role in modulating angiogenesis. Therefore, we assessed the hypothesis that the cholinergic modulator donepezil, an acetylcholinesterase inhibitor utilized in Alzheimer's disease, exhibits beneficial effects, especially on the acceleration of angiogenesis. We evaluated the effects of donepezil on angiogenic properties in vitro and in vivo, using an ischemic hindlimb model of alpha7 nicotinic receptor-deleted mice (alpha7 KO) and wild-type mice (WT). Donepezil activated angiogenic signals, i.e., HIF-1alpha and VEGF expression, and accelerated tube formation in human umbilical vein endothelial cells (HUVECs). ACh and nicotine upregulated signal transduction with acceleration of tube formation, suggesting that donepezil promotes a common angiogenesis pathway. Moreover, donepezil-treated WT exhibited rich capillaries with enhanced VEGF and PCNA endothelial expression, recovery from impaired tissue perfusion, prevention of ischemia-induced muscular atrophy with sustained surface skin temperature in the limb, and inhibition of apoptosis independent of the alpha7 receptor. Donepezil exerted comparably more effects in alpha7 KO in terms of angiogenesis, tissue perfusion, biochemical markers, and surface skin temperature. Donepezil concomitantly elevated VEGF expression in intracardiac endothelial cells of WT and alpha7 KO and further increased choline acetyltransferase (ChAT) protein expression, which is critical for ACh synthesis in endothelial cells. The present study concludes that donepezil can act as a therapeutic tool to accelerate angiogenesis in cardiovascular disease patients. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia
2014-01-01
The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. PMID:24846630
Biomass for thermochemical conversion: targets and challenges
Tanger, Paul; Field, John L.; Jahn, Courtney E.; DeFoort, Morgan W.; Leach, Jan E.
2013-01-01
Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment. PMID:23847629
Hippo signaling promotes JNK-dependent cell migration.
Ma, Xianjue; Wang, Hongxiang; Ji, Jiansong; Xu, Wenyan; Sun, Yihao; Li, Wenzhe; Zhang, Xiaoping; Chen, Juxiang; Xue, Lei
2017-02-21
Overwhelming studies show that dysregulation of the Hippo pathway is positively correlated with cell proliferation, growth, and tumorigenesis. Paradoxically, the detailed molecular roles of the Hippo pathway in cell invasion remain debatable. Using a Drosophila invasion model in wing epithelium, we show herein that activated Hippo signaling promotes cell invasion and epithelial-mesenchymal transition through JNK, as inhibition of JNK signaling dramatically blocked Hippo pathway activation-induced matrix metalloproteinase 1 expression and cell invasion. Furthermore, we identify bantam -Rox8 modules as essential components downstream of Yorkie in mediating JNK-dependent cell invasion. Finally, we confirm that YAP (Yes-associated protein) expression negatively regulates TIA1 (Rox8 ortholog) expression and cell invasion in human cancer cells. Together, these findings provide molecular insights into Hippo pathway-mediated cell invasion and also raise a noteworthy concern in therapeutic interventions of Hippo-related cancers, as simply inhibiting Yorkie or YAP activity might paradoxically accelerate cell invasion and metastasis.
Thomas, Duncan C.; Zhang, Junfeng; Kipen, Howard M.; Rich, David Q.; Zhu, Tong; Huang, Wei; Hu, Min; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott R.; Eckel, Sandrah P.
2014-01-01
Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system. PMID:25502951
Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.
Singh, Vijay K; Pollard, Harvey B
2015-01-01
Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.
The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease.
Amaral, Marta; Outeiro, Tiago F; Scrutton, Nigel S; Giorgini, Flaviano
2013-06-01
Metabolites of the kynurenine pathway (KP), which arise from the degradation of tryptophan, have been studied in detail for over a century and garnered the interest of the neuroscience community in the late 1970s and early 1980s with work uncovering the neuromodulatory potential of this pathway. Much research in the following decades has found that perturbations in the levels of KP metabolites likely contribute to the pathogenesis of several neurodegenerative diseases. More recently, it has become apparent that targeting KP enzymes, in particular kynurenine 3-monooxygenase (KMO), may hold substantial therapeutic potential for these disorders. Here we provide an overview of the KP, the neuroactive properties of KP metabolites and their role in neurodegeneration. We also discuss KMO as a therapeutic target for these disorders, and our recent resolution of the crystallographic structure of KMO, which will permit the development of new and improved KMO inhibitors which may ultimately expedite clinical application of these compounds.
Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome
Singh, Vijay K; Pollard, Harvey B
2015-01-01
Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043
Autophagy: not good OR bad, but good AND bad.
Altman, Brian J; Rathmell, Jeffrey C
2009-05-01
Autophagy is a well-established mechanism to degrade intracellular components and provide a nutrient source to promote survival of cells in metabolic distress. Such stress can be caused by a lack of available nutrients or by insufficient rates of nutrient uptake. Indeed, growth factor deprivation leads to internalization and degradation of nutrient transporters, leaving cells with limited means to access extracellular nutrients even when plentiful.This loss of growth factor signaling and extracellular nutrients ultimately leads to apoptosis, but also activates autophagy, which may degrade intracellular components and provide fuel for mitochondrial bioenergetics. The precise metabolic role of autophagy and how it intersects with the apoptotic pathways in growth factor withdrawal, however, has been uncertain. Our recent findings ingrowth factor-deprived hematopoietic cells show that autophagy can simultaneously contribute to cell metabolism and initiate a pathway to sensitize cells to apoptotic death. This pathway may promote tissue homeostasis by ensuring that only cells with high resistance to apoptosis may utilize autophagy as a survival mechanism when growth factors are limiting and nutrient uptake decreases.
Calderone, Christopher T; Kowtoniuk, Walter E; Kelleher, Neil L; Walsh, Christopher T; Dorrestein, Pieter C
2006-06-13
The pksX gene cluster from Bacillus subtilis is predicted to encode the biosynthesis of an as yet uncharacterized hybrid nonribosomal peptide/polyketide secondary metabolite. We used a combination of biochemical and mass spectrometric techniques to assign functional roles to the proteins AcpK, PksC, PksL, PksF, PksG, PksH, and PksI, and we conclude that they act to incorporate an acetate-derived beta-methyl branch on an acetoacetyl-S-carrier protein and ultimately generate a Delta(2)-isoprenyl-S-carrier protein. This work highlights the power of mass spectrometry to elucidate the functions of orphan biosynthetic enzymes, and it details a mechanism by which single-carbon beta-branches can be inserted into polyketide-like structures. This pathway represents a noncanonical route to the construction of prenyl units and serves as a prototype for the intersection of isoprenoid and polyketide biosynthetic manifolds in other natural product biosynthetic pathways.
Sivakumar, Subramaniam; Anitha, Palanivel; Ramesh, Balsubramanian; Suresh, Gopal
2017-01-01
Insecticides are the toxic substances that are used to kill insects. The use of insecticides is believed to be one of the major factors behind the increase in agricultural productivity in the 20th century. The organophosphates are now the largest and most versatile class of insecticide used and Malathion is the predominant type utilized. The accumulation of Malathion in environment is the biggest threat to the environment because of its toxicity. Malathion is lethal to beneficial insects, snails, micro crustaceans, fish, birds, amphibians, and soil microorganisms. Chronic exposure of non-diabetic farmers to organophosphorus Malathion pesticides may induce insulin resistance, which might ultimately results in diabetes mellitus. Given the potential carcinogenic risk from the pesticides there is serious need to develop remediation processes to eliminate or minimize contamination in the environment. Biodegradation could be a reliable and cost effective technique for pesticide abatement. Since today as there were no metabolic pathway predicted for the degradation of organophosphates pesticide Malathion in KEGG database or in any of the other pathway databases. Thus in the present study, an attempt has been made to predict the microbial biodegradation pathway of Malathion using bioinformatics tools. The present study predicted the degradation pathway for Malathion. The present study also identifies, Streptomyces sp. and E.coli are capable of degrading Malathion through pathway prediction system. PMID:28584447
Sivakumar, Subramaniam; Anitha, Palanivel; Ramesh, Balsubramanian; Suresh, Gopal
2017-01-01
Insecticides are the toxic substances that are used to kill insects. The use of insecticides is believed to be one of the major factors behind the increase in agricultural productivity in the 20th century. The organophosphates are now the largest and most versatile class of insecticide used and Malathion is the predominant type utilized. The accumulation of Malathion in environment is the biggest threat to the environment because of its toxicity. Malathion is lethal to beneficial insects, snails, micro crustaceans, fish, birds, amphibians, and soil microorganisms. Chronic exposure of non-diabetic farmers to organophosphorus Malathion pesticides may induce insulin resistance, which might ultimately results in diabetes mellitus. Given the potential carcinogenic risk from the pesticides there is serious need to develop remediation processes to eliminate or minimize contamination in the environment. Biodegradation could be a reliable and cost effective technique for pesticide abatement. Since today as there were no metabolic pathway predicted for the degradation of organophosphates pesticide Malathion in KEGG database or in any of the other pathway databases. Thus in the present study, an attempt has been made to predict the microbial biodegradation pathway of Malathion using bioinformatics tools. The present study predicted the degradation pathway for Malathion. The present study also identifies, Streptomyces sp. and E.coli are capable of degrading Malathion through pathway prediction system.
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-01-01
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068
Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup
2016-02-03
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. James Clayton, Ph.D., Varian Medical Systems-Security & Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas
The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security & Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a "next-generation" mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possiblemore » the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the "next-generation" Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible.« less
Sprangers, Mirjam A.G.; Thong, Melissa S.Y.; Bartels, Meike; Barsevick, Andrea; Ordoñana, Juan; Shi, Qiuling; Wang, Xin Shelley; Klepstad, Pål; Wierenga, Eddy A.; Singh, Jasvinder A.; Sloan, Jeff A.
2014-01-01
Background There is compelling evidence of a genetic foundation of patient-reported QOL. Given the rapid development of substantial scientific advances in this area of research, the current paper updates and extends reviews published in 2010. Objectives The objective is to provide an updated overview of the biological pathways, candidate genes and molecular markers involved in fatigue, pain, negative (depressed mood) and positive (well-being/happiness) emotional functioning, social functioning, and overall QOL. Methods We followed a purposeful search algorithm of existing literature to capture empirical papers investigating the relationship between biological pathways and molecular markers and the identified QOL domains. Results Multiple major pathways are involved in each QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes involved in pain perception and the COMT gene is associated with multiple sorts of pain. The neurotransmitter and neuroplasticity theories have the strongest evidence for their relationship with depression. Oxytocin-related genes and genes involved in the serotonergic and dopaminergic pathways play a role in social functioning. Inflammatory pathways, via cytokines, also play an important role in overall QOL. Conclusions Whereas the current findings need future experiments and replication efforts, they will provide researchers supportive background information when embarking on studies relating candidate genes and/or molecular markers to QOL domains. The ultimate goal of this area of research is to enhance patients’ QOL. PMID:24604075
Sprangers, Mirjam A G; Thong, Melissa S Y; Bartels, Meike; Barsevick, Andrea; Ordoñana, Juan; Shi, Qiuling; Wang, Xin Shelley; Klepstad, Pål; Wierenga, Eddy A; Singh, Jasvinder A; Sloan, Jeff A
2014-09-01
There is compelling evidence of a genetic foundation of patient-reported quality of life (QOL). Given the rapid development of substantial scientific advances in this area of research, the current paper updates and extends reviews published in 2010. The objective was to provide an updated overview of the biological pathways, candidate genes, and molecular markers involved in fatigue, pain, negative (depressed mood) and positive (well-being/happiness) emotional functioning, social functioning, and overall QOL. We followed a purposeful search algorithm of existing literature to capture empirical papers investigating the relationship between biological pathways and molecular markers and the identified QOL domains. Multiple major pathways are involved in each QOL domain. The inflammatory pathway has the strongest evidence as a controlling mechanism underlying fatigue. Inflammation and neurotransmission are key processes involved in pain perception, and the catechol-O-methyltransferase (COMT) gene is associated with multiple sorts of pain. The neurotransmitter and neuroplasticity theories have the strongest evidence for their relationship with depression. Oxytocin-related genes and genes involved in the serotonergic and dopaminergic pathways play a role in social functioning. Inflammatory pathways, via cytokines, also play an important role in overall QOL. Whereas the current findings need future experiments and replication efforts, they will provide researchers supportive background information when embarking on studies relating candidate genes and/or molecular markers to QOL domains. The ultimate goal of this area of research is to enhance patients' QOL.
Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening
Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.
2012-01-01
Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056
Animal models to improve our understanding and treatment of suicidal behavior
Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T
2017-01-01
Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic–pituitary–adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio. PMID:28398339
Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E
2017-05-01
Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh's three-round proposal submission and review process as well as an online contest management tool to support the process. Ninety-two teams submitted video proposals in round one. Proposals included mobile applications (29; 32%), other information technology (19; 21%), and community program (22; 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over 12 months. In a 6-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces.
Chen, Chun-Han; Liao, Cho-Hwa; Chang, Ya-Ling; Guh, Jih-Hwa; Pan, Shiow-Lin; Teng, Che-Ming
2012-02-01
In this study, we investigated the anticancer effect of protopine on human hormone-refractory prostate cancer (HRPC) cells. Protopine exhibited an anti-proliferative effect by induction of tubulin polymerization and mitotic arrest, which ultimately led to apoptotic cell death. The data suggest that protopine increased the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex and that contributed to cell apoptosis by modulating mitochondria-mediated signaling pathways, such as Bcl-2 phosphorylation and Mcl-1 down-regulation. In conclusion, the data suggest that protopine is a novel microtubule stabilizer with anticancer activity in HRPC cells through apoptotic pathway by modulating Cdk1 activity and Bcl-2 family of proteins. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Menzies, Jennifer Z; McDonough, Kathleen; McAvoy, Drew; Federle, Thomas W
2017-02-01
The ultimate disposition of chemicals discarded down the drain can be substantially impacted by their fate in the sewer, but to date limited data have been published on the biodegradability of chemicals in sewer systems. The recently established OECD 314 guideline (Simulation tests to assess the biodegradability of chemicals discharged in wastewater, 2008) contains a simulation method (314A) for evaluating the biodegradation of chemicals in sewage under simulated sewer conditions. This research used the OECD 314A method to evaluate the rates and pathways of primary and ultimate biodegradation of a suite of 14 C-labeled homologues representing four classes of high volume surfactants including nonionic alkyl ethoxylates (AE), and anionic alkyl ethoxysulfates (AES), alkyl sulfate (AS) and linear alkyl benzene sulfonate (LAS). All the tested homologues exhibited >97 % loss of parent, formation of metabolites, and some level (16-94 %) of CO 2 production after being incubated 96-100 h in raw domestic wastewater. Comparison of C 12 E 3 , C 14 E 3 , and C 16 E 3 showed that the first order biodegradation rate was affected by alkyl chain length with rates ranging from 6.8 h -1 for C 12 E 3 to 0.49 h -1 for C 16 E 3 . Conversely, comparison of C 14 E 1 , C 14 E 3 , and C 14 E 9 showed that the number of ethoxy units did not impact the biodegradation rate. AES and AS degraded quickly with first order kinetic rates of 1.9-3.7 and 41 h -1 respectively. LAS did not exhibit first order decay kinetics and primary degradation was slow. Biodegradation pathways were also determined. This work shows that biodegradation in the sewer has a substantial impact on levels of surfactants and surfactant metabolites that ultimately reach wastewater treatment plants.
Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikhzada, Ahmad
As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less
The effects of Nitinol phases on corrosion and fatigue behavior
NASA Astrophysics Data System (ADS)
Denton, Melissa
The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.
Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian
2015-01-01
Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351
Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing.
Castilho, R M; Squarize, C H; Gutkind, J S
2013-09-01
The molecular circuitries controlling the process of skin wound healing have gained new significant insights in recent years. This knowledge is built on landmark studies on skin embryogenesis, maturation, and differentiation. Furthermore, the identification, characterization, and elucidation of the biological roles of adult skin epithelial stem cells and their influence in tissue homeostasis have provided the foundation for the overall understanding of the process of skin wound healing and tissue repair. Among numerous signaling pathways associated with epithelial functions, the PI3K/Akt/mTOR signaling route has gained substantial attention with the generation of animal models capable of dissecting individual components of the pathway, thereby providing a novel insight into the molecular framework underlying skin homeostasis and tissue regeneration. In this review, we focus on recent findings regarding the mechanisms involved in wound healing associated with the upregulation of the activity of the PI3K/Akt/mTOR circuitry. This review highlights critical findings on the molecular mechanisms controlling the activation of mTOR, a downstream component of the PI3K-PTEN pathway, which is directly involved in epithelial migration and proliferation. We discuss how this emerging information can be exploited for the development of novel pharmacological intervention strategies to accelerate the healing of critical size wounds. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Puy, Cristina; Tucker, Erik I; Ivanov, Ivan S; Gailani, David; Smith, Stephanie A; Morrissey, James H; Gruber, András; McCarty, Owen J T
2016-01-01
Factor (F) XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa) promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα), in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP) derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin. Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma. Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.
NASA Astrophysics Data System (ADS)
Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing
2017-03-01
By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.
The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing
Lee, Soung-Hoon; Kim, Mi-Yeon; Kim, Hyun-Yi; Lee, Young-Mi; Kim, Heesu; Nam, Kyoung Ae; Roh, Mi Ryung; Min, Do Sik; Chung, Kee Yang
2015-01-01
Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5−/− mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)–Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing. PMID:26056233
Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.
Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne
2018-06-08
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Roever, Stefan
2012-01-01
A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.
The "Alfvén" proposal for the European Space Agency M5 Mission Call
NASA Astrophysics Data System (ADS)
Berthomier, M.; Fazakerley, A. N.
2017-12-01
The Alfvén mission objective is to elucidate the particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. The Earth's Auroral Acceleration Region is a unique laboratory for investigating these processes. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere Coupling is to combine high-time resolution in situ measurements (as pioneered by FAST), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Alfvén will measure for the first time the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. Alfvén will make key measurements of Auroral Kilometric Radiation needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive suite of inter-calibrated particles and fields instruments, cutting edge auroral imaging, easily accessible orbits that frequently visit the region of scientific interest and straightforward operations.
Strategic larval decision-making in a bivoltine butterfly.
Friberg, Magne; Dahlerus, Josefin; Wiklund, Christer
2012-07-01
In temperate areas, insect larvae must decide between entering winter diapause or developing directly and reproducing in the same season. Long daylength and high temperature promote direct development, which is generally associated with a higher growth rate. In this work, we investigated whether the larval pathway decision precedes the adjustment of growth rate (state-independent), or whether the pathway decision is conditional on the individual's growth rate (state-dependent), in the butterfly Pieris napi. This species typically makes the pathway decision in the penultimate instar. We measured growth rate throughout larval development under two daylengths: slightly shorter and slightly longer than the critical daylength. Results indicate that the pathway decision can be both state-independent and state-dependent; under the shorter daylength condition, most larvae entered diapause, and direct development was chosen exclusively by a small subset of larvae showing the highest growth rates already in the early instars; under the longer daylength condition, most larvae developed directly, and the diapause pathway was chosen exclusively by a small subset of slow-growing individuals. Among the remainder, the choice of pathway was independent of the early growth rate; larvae entering diapause under the short daylength grew as fast as or faster than the direct developers under the longer daylength in the early instars, whereas the direct developers grew faster than the diapausers only in the ultimate instar. Hence, the pathway decision was state-dependent in a subset with a very high or very low growth rate, whereas the decision was state-independent in the majority of the larvae, which made the growth rate adjustment downstream from the pathway decision.
Jabbour, Mona; Curran, Janet; Scott, Shannon D; Guttman, Astrid; Rotter, Thomas; Ducharme, Francine M; Lougheed, M Diane; McNaughton-Filion, M Louise; Newton, Amanda; Shafir, Mark; Paprica, Alison; Klassen, Terry; Taljaard, Monica; Grimshaw, Jeremy; Johnson, David W
2013-05-22
The clinical pathway is a tool that operationalizes best evidence recommendations and clinical practice guidelines in an accessible format for 'point of care' management by multidisciplinary health teams in hospital settings. While high-quality, expert-developed clinical pathways have many potential benefits, their impact has been limited by variable implementation strategies and suboptimal research designs. Best strategies for implementing pathways into hospital settings remain unknown. This study will seek to develop and comprehensively evaluate best strategies for effective local implementation of externally developed expert clinical pathways. We will develop a theory-based and knowledge user-informed intervention strategy to implement two pediatric clinical pathways: asthma and gastroenteritis. Using a balanced incomplete block design, we will randomize 16 community emergency departments to receive the intervention for one clinical pathway and serve as control for the alternate clinical pathway, thus conducting two cluster randomized controlled trials to evaluate this implementation intervention. A minimization procedure will be used to randomize sites. Intervention sites will receive a tailored strategy to support full clinical pathway implementation. We will evaluate implementation strategy effectiveness through measurement of relevant process and clinical outcomes. The primary process outcome will be the presence of an appropriately completed clinical pathway on the chart for relevant patients. Primary clinical outcomes for each clinical pathway include the following: Asthma--the proportion of asthmatic patients treated appropriately with corticosteroids in the emergency department and at discharge; and Gastroenteritis--the proportion of relevant patients appropriately treated with oral rehydration therapy. Data sources include chart audits, administrative databases, environmental scans, and qualitative interviews. We will also conduct an overall process evaluation to assess the implementation strategy and an economic analysis to evaluate implementation costs and benefits. This study will contribute to the body of evidence supporting effective strategies for clinical pathway implementation, and ultimately reducing the research to practice gaps by operationalizing best evidence care recommendations through effective use of clinical pathways. ClinicalTrials.gov: NCT01815710.
Overcoming obstacles to repurposing for neurodegenerative disease
Shineman, Diana W; Alam, John; Anderson, Margaret; Black, Sandra E; Carman, Aaron J; Cummings, Jeffrey L; Dacks, Penny A; Dudley, Joel T; Frail, Donald E; Green, Allan; Lane, Rachel F; Lappin, Debra; Simuni, Tanya; Stefanacci, Richard G; Sherer, Todd; Fillit, Howard M
2014-01-01
Repurposing Food and Drug Administration (FDA)-approved drugs for a new indication may offer an accelerated pathway for new treatments to patients but is also fraught with significant commercial, regulatory, and reimbursement challenges. The Alzheimer’s Drug Discovery Foundation (ADDF) and the Michael J. Fox Foundation for Parkinson’s Research (MJFF) convened an advisory panel in October 2013 to understand stakeholder perspectives related to repurposing FDA-approved drugs for neurodegenerative diseases. Here, we present opportunities on how philanthropy, industry, and government can begin to address these challenges, promote policy changes, and develop targeted funding strategies to accelerate the potential of FDA-approved repurposed drugs. PMID:25356422
Acceleration across California: Shorter Pathways in Developmental English and Math
ERIC Educational Resources Information Center
Hern, Katie
2012-01-01
Developmental courses in English, math, and reading have an important purpose in higher education, especially in the open-access world of community colleges. These classes--also referred to as "remedial"--are intended to give less-prepared students a chance to catch up and meet the challenges of college-level coursework. However,…
ERIC Educational Resources Information Center
McKinney, Lyle; Burridge, Andrea; Mukherjee, Moumita
2017-01-01
Background/Context: Sub-baccalaureate certificates can provide an accelerated pathway to gainful employment for the unemployed or underemployed. Certificates represented only 6% of postsecondary awards in 1980, but today they represent 22% of all credentials awarded and have superseded associate's and master's degrees as the second most common…
Pathway to a compact SASE FEL device
NASA Astrophysics Data System (ADS)
Dattoli, G.; Di Palma, E.; Petrillo, V.; Rau, Julietta V.; Sabia, E.; Spassovsky, I.; Biedron, S. G.; Einstein, J.; Milton, S. V.
2015-10-01
Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.
Creating Resiliency and Pathways to Opportunity. Strategies for Transformative Change
ERIC Educational Resources Information Center
Powell, M.; Hatch, M. A.; Fians, E.; Shinert, A.; Richie, D.
2016-01-01
Like many colleges funded by the U.S. Department of Labor's TAACCCT program, the goal of the Northeast Resiliency Consortium (NRC) (a Round Three grantee) was to enhance the capacity of colleges to accelerate learning, ensure that students attain industry-recognized credentials, foster innovative employer partnerships, use new technologies, and…
TEMPO-promoted Pauson-Khand reaction. Single-electron activation of cobalt-carbonyl bonds?
Lagunas, Anna; Mairata I Payeras, Antoni; Jimeno, Ciril; Pericàs, Miquel A
2005-07-07
[reaction: see text] The Pauson-Khand reaction is notably accelerated by TEMPO. According to DFT calculations, TEMPO could trigger a radical, low-energy pathway for the reaction by facilitating the decarbonylation of doublet complexes arising either from a CO/nitroxide exchange or from nitroxide addition to a CO ligand.
Leadership in Australian Rural Schools: Bush Track, Fast Track
ERIC Educational Resources Information Center
Graham, Lorraine; Paterson, David; Miller, Judith
2008-01-01
Due to the difficulties inherent in staffing rural schools it is increasingly common for beginning teachers to fill school leadership roles early in their careers. The accelerated progression of some teachers impacts on the overall nature of leadership in rural schools and creates unique pathways, generally different from those available to…
Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice.
Messner, Christoph B; Driscoll, Paul C; Piedrafita, Gabriel; De Volder, Michael F L; Ralser, Markus
2017-07-11
The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.
Local strategies to prevent and treat osteoporosis.
Torstrick, F Brennan; Guldberg, Robert E
2014-03-01
Despite advances in systemic osteoporosis therapeutic outcomes, management of fragility fractures and implant fixation in osteoporotic bone remain difficult clinical challenges. Low initial bone density and a prolonged healing response can lead to fracture nonunion and aseptic implant loosening. Local treatment strategies could be used to prevent fracture, accelerate healing, and increase implant fixation by locally stimulating anabolic pathways or inhibiting catabolic pathways. Local strategies under investigation include direct drug release from injectable materials or implant surface coatings. Common locally delivered drugs include bisphosphonates, parathyroid hormone, and bone morphogenetic proteins, yet additional compounds targeting novel pathways in bone biology are also being actively explored. Mechanical stimulation via low intensity pulsed ultrasound, alone or in combination with drug therapy, may also prove effective to promote local bone healing and implant fixation within osteoporotic bone.
History and future of the scientific consensus on anthropogenic global warming
NASA Astrophysics Data System (ADS)
Reusswig, Fritz
2013-09-01
The article by Cook et al offers an interesting new methodological approach to the debate about (supposedly lacking) scientific consensus on global warming, showing that contrarian claims that there was no such consensus are clearly misleading. But once the attribution issue can be regarded as settled, new questions and controversies arise. They ultimately result from the different technological and organizational pathways towards a new global society model that takes its adverse climate change effects into account and seeks for new, but also risky solutions.
2016-12-30
Toxicity is expressed as percentage of toxicant- free activity 125 Figure 4.12-1. Panel A: (Bio)transformation pathways of DNAN in anaerobic incubations...O-demethylation of the methoxy group was confirmed by formation of formaldehye. Cell free extracts of the Bacillus culture yielded formation of 2...periodically until the production of methane became constant in the toxicant- free controls. The maximum specific methanogenic activity of the
Drappier, Melissa; Elliott, Ruth; Zhang, Rong; Weiss, Susan R.; Silverman, Robert H.
2018-01-01
The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A. PMID:29652922
Future Synchrotron Light Sources Based on Ultimate Storage Rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunhai; /SLAC
2012-04-09
The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we have made significant progress with the design of PEP-X, a USR that would inhabit the decommissioned PEP-II tunnel at SLAC. The enlargement of the dynamic aperture is largely a result of the cancellations of the 4th-order resonances in the 3rd-order achromats and the effective use of lattice optimization programs. In this paper, we will show those cancellations of the 4th-order resonances using an analytical approach based on the exponential Lie operators and the Poisson brackets. Wherever possible, our analytical results will be compared with their numerical counterparts. Using the derived formulae, we will construct 4th-order geometric achromats and use them as modules for the lattice of the PEP-X USR, noting that only geometric terms are canceled to the 4th order.« less
Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia
2014-05-19
The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Review of light-ion driver development for inertial fusion energy
NASA Astrophysics Data System (ADS)
Bluhm, H.; Hoppé, P.
2001-05-01
The concept of a light ion beam driver for Inertial Fusion Energy (IFE) is based on multi-terawatt, multi-megavolt pulsed power generators, two-stage ion acceleration and charge neutralised transport. In this paper we discuss the present status for each of these components and identify the main issues for research. Only modest extrapolations from presently available technologies seem necessary for the high voltage pulse generator. The greatest challenge of this approach is the accelerator, which will consist of two stages, the injector and the post-accelerator. Large progress has been made in understanding the physical phenomena occurring in the injector gap. This progress has become possible by new sophisticated diagnostics that allowed detailed temporally and spatially resolved measurements of field and particle densities in the acceleration gap and by relativistic fully electromagnetic PIC-simulation tools, that stimulated analytic models. The conclusions drawn from these studies, namely limiting the ion current density to small enhancements to reduce the beam divergence need still to be verified experimentally. Systematic experimental research on post-acceleration at high power and voltage must aim at a complete understanding of instabilities coupling from the injector to the post-accelerator and at limiting voltages and barriers for the extraction of unwanted ions from plasmas at the injection side. Ultimately the light ion approach requires rep-rateable large area ion sources with ion masses greater than 1 and particle energies around 30 MeV. Although different cleaning protocols were able to reduce the amount of parasitic ions in the Li beam from a LiF field emission source the achievements are still insufficient. A field of common interest between light and heavy ion beam driven fusion is beam transport from the accelerator to the target. Supposedly the most favourable concept for both approaches is self-pinched transport. Experimental evidence for self-pinched transport has recently been achieved in an experiment at NRL. Further experiments are needed to determine the dynamics and magnitude of net current formation, the efficiency of transport and the effect of bunching.
NASA Astrophysics Data System (ADS)
Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Mozer, F.; Frey, H. U.
2013-12-01
The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. These auroral acceleration processes in turn accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. The complex interplay between field-aligned current system formation, the development of parallel electric fields, and resultant changes in the plasma constituents that occur during substorms within or just above the auroral acceleration zone remain unclear. We present Cluster multi-point observations within the high-altitude acceleration region (> 3 Re altitude) at key instances during the development of a substorm. Of particular emphasis is on the time-development of the plasma, potentials and currents that occur therein with the aim of ascertaining high-altitude drivers of substorm active auroral acceleration processes and auroral emission consequences. Preliminary results show that the initial onset is dominated by Alfvenic activity as evidenced by the sudden occurrence of relatively intense, short-spatial scale Alfvenic currents and attendant energy dispersed, counterstreaming electrons poleward of the growth-phase arc. The Alfvenic currents are locally planar structures with characteristic thicknesses on the order of a few tens of kilometers. In subsequent passages by the other spacecraft, the plasma sheet region became hotter and thicker via the injection of new hot, dense plasma of magnetospheric origins poleward of the pre-existing growth phase arc. In association with the heating and/or thickening of the plasma sheet, the currents appeared to broaden to larger scales as Alfven dominated activity gave way to either inverted-V dominated or mixed inverted-V and Alfvenic behavior depending on location. The transition from Alfven dominated to inverted-V dominated current systems was quite rapid, occurring in the span of a few minutes. These results suggest that the Alfvenic activity may be an important precursor and perhaps may be playing an essential role in the development of inverted-V arc systems that form during substorms.
He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A.; Han, Jihong; Gao, Xuimei; Zhu, Yan
2016-01-01
Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways. PMID:27930695
He, Shuang; Zhao, Tiechan; Guo, Hao; Meng, Yanzhi; Qin, Gangjian; Goukassian, David A; Han, Jihong; Gao, Xuimei; Zhu, Yan
2016-01-01
Diabetic mellitus (DM) patients are at an increased risk of developing peripheral arterial disease (PAD). Danhong injection (DHI) is a Chinese patent medicine widely used for several cardiovascular indications but the mechanism of action is not well-understood. We investigated the therapeutic potential of DHI on experimental PAD in mice with chemically induced as well as genetic (KKAy) type 2 DM and the overlapping signaling pathways regulating both therapeutic angiogenesis and glucose homeostasis. Compared with normal genetic background wild type (WT) mice, both DM mice showed impaired perfusion recovery in hind-limb ischemia (HLI) model. DHI treatment significantly accelerated perfusion recovery, lowered blood glucose and improved glucose tolerance in both DM models. Bioluminescent imaging demonstrated a continuous ischemia-induced vascular endothelial growth factor receptor 2 (VEGFR-2) gene expressions with a peak time coincident with the maximal DHI stimulation. Flow cytometry analysis showed a DHI-mediated increase in endothelial progenitor cell (EPC) mobilization from bone marrow to circulating peripheral blood. DHI administration upregulated the expression of vascular endothelial growth factor A (VEGF-A) and VEGF receptor-2 (VEGFR-2) in ischemic muscle. A cross talk between ischemia-induced angiogenesis and glucose tolerance pathways was analyzed by Ingenuity Pathway Analysis (IPA) which suggested an interaction of VEGF-A/VEGFR-2 and peroxisome proliferator-activated receptor δ (PPARδ)/peroxisome proliferator-activated receptor γ (PPARγ) genes. We confirmed that upregulation of VEGF-A/VEGFR-2 by DHI promoted PPARδ gene expression in both type 2 diabetic mice. Our findings demonstrated that a multi-component Chinese medicine DHI effectively increased blood flow recovery after tissue ischemia in diabetic mice by promoting angiogenesis and improving glucose tolerance through a concomitant activation of VEGF-A/VEGFR-2 and PPARδ signaling pathways.
Dean, Elizabeth; Lomi, Constantina; Bruno, Selma; Awad, Hamzeh; O'Donoghue, Grainne
2011-01-01
In accordance with the WHO definition of health, this article examines the alarming discord between the epidemiology of hypertension, type 2 diabetes mellitus (T2DM), and obesity and the low profile of noninvasive (nondrug) compared with invasive (drug) interventions with respect to their prevention, reversal and management. Herein lies the ultimate knowledge translation gap and challenge in 21st century health care. Although lifestyle modification has long appeared in guidelines for medically managing these conditions, this evidence-based strategy is seldom implemented as rigorously as drug prescription. Biomedicine focuses largely on reducing signs and symptoms; the effects of the problem rather than the problem. This article highlights the evidence-based rationale supporting prioritizing the underlying causes and contributing factors for hypertension and T2DM, and, in turn, obesity. We argue that a primary focus on maximizing health could eliminate all three conditions, at best, or, at worst, minimize their severity, complications, and medication needs. To enable such knowledge translation and maximizing health outcome, the health care community needs to practice as an integrated team, and address barriers to effecting maximal health in all patients. Addressing the ultimate knowledge translation gap, by aligning the health care paradigm to 21st century needs, would constitute a major advance. PMID:21423684
Denver, R J
1997-04-01
Environmentally induced phenotypic plasticity allows developing organisms to respond adaptively to changes in their habitat. Desert amphibians have evolved traits which allow successful development in unpredictable environments. Tadpoles of these species can accelerate metamorphosis as their pond dries, thus escaping mortality in the larval habitat. This developmental response can be replicated in the laboratory, which allows elucidation of the underlying physiological mechanisms. Here I demonstrate a link between a classical neurohormonal stress pathway (involving corticotropin-releasing hormone, CRH) and the developmental response to habitat desiccation. Injections of CRH-like peptides accelerated metamorphosis in western spadefoot toad tadpoles. Conversely, treatment with two CRH antagonists, the CRH receptor antagonist alpha-helical CRH(9-41) and anti-CRH serum, attenuated the developmental acceleration induced by habitat desiccation. Tadpoles subjected to habitat desiccation exhibited elevated hypothalamic CRH content at the time when they responded developmentally to the declining water level. CRH injections elevated whole-body thyroxine, triiodothyronine, and corticosterone content, the primary hormonal regulators of metamorphosis. In contrast, alpha-helical CRH(9-41) reduced thyroid activity. These results support a central role for CRH as a neurohormonal transducer of environmental stimuli into the endocrine response which modulates the rate of metamorphosis. Because in mammals, increased fetal/placental CRH production may initiate parturition, and CRH has been implicated in precipitating preterm birth arising from fetal stress, this neurohormonal pathway may represent a phylogenetically ancient developmental regulatory system that allows the organism to escape an unfavorable larval/fetal habitat.
Li, Xian Liang; Man, Kwan; Ng, Kevin T; Lee, Terence K; Lo, Chung Mau; Fan, Sheung Tat
2004-09-01
Ischemia / reperfusion (I / R) injury is related to tissue graft energy status. Insulin, which is currently used in the University of Wisconsin (UW) preservation solution with insulin (UWI), is an anabolic hormone and was shown to exacerbate the hepatic I / R injury in our previous study. In this study, the energy status and regulation of metabolism genes by insulin were investigated in liver grafts preserved by UW solution. Insulin could significantly decrease adenosine triphosphate (ATP) level after 3 hours of preservation, as well as total adenine nucleotides (TANs) and energy charge (EC) levels. Energy regeneration deteriorated in the grafts preserved by insulin in terms of ATP and EC levels at 24 hours after transplantation. The insulin signal was transduced through the insulin receptor substrate-2 (IRS-2) pathway and the activity of IRS-2 was decreased gradually at the messenger ribonucleic acid (mRNA) level during cold preservation. Downstream targeting genes such as sterol regulatory element-binding protein-1c (SREBP-1c), glucokinase (GKC), and fatty acid synthase (FAS) genes, as well as phospho-glycogen synthase kinase-3beta (GSK-3beta) were activated and they showed the similar expression profiles during cold preservation. Lipoprotein metabolism was accelerated by insulin through upregulation of the activity of apolipoprotein C-III (Apo C-III) during cold preservation. The insulin-like growth factor-binding protein-1 pathway was inhibited during cold preservation. In conclusion, insulin in UW solution exacerbates hepatic I / R injury by energy depletion as the graft maintains its anabolic activity. The key enzyme activities of the energy-consuming process of glycogen and fatty acid synthesis as well as lipoprotein metabolism were accelerated by insulin through the IRS-2 / SREBP-1c pathway.
Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL Energy Recovery Linac
NASA Astrophysics Data System (ADS)
Méot, F.; Tsoupas, N.; Brooks, S.; Trbojevic, D.
2018-07-01
The Cornell-BNL Electron Test Accelerator (CBETA), a 150 MeV energy recovery linac (ERL) now in construction at Cornell, employs a fixed-field alternating gradient optics return loop: a single beam line comprised of FFAG cells, which accepts four recirculated energies. CBETA FFAG cell uses Halbach permanent magnet technology, its design studies have covered an extended period of time supported by extensive particle dynamics simulations using computed 3-D field map models. This approach is discussed, and illustrated here, based on the final stage in these beam dynamics studies, namely the validation of a ultimate, optimized design of the Halbach cell.
The recognition of potato varieties using of neural image analysis method
NASA Astrophysics Data System (ADS)
Przybył, K.; Górna, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Janczak, D.; Lewicki, A.
2015-07-01
The aim of this paper was to extract the representative features and generate an appropriate neural model for classification of varieties of edible potato. Potatoes of variety the Vineta and the Denar were the empirical object of this thesis. The main concept of the project was to develop and prepare an image database using the computer image analysis software. The choice of appropriate neural model the one which will have the greatest abilities to identify the selected variety. The aim of this project is ultimately to conduct assistance and accelerate work of the expert, who classifies and keeps different varieties of potatoes in heaps.
[Medical big data and precision medicine: prospects of epidemiology].
Song, J; Hu, Y H
2016-08-10
Since the development of high-throughput technology, electronic medical record system and big data technology, the value of medical data has caused more attention. On the other hand, the proposal of Precision Medicine Initiative opens up the prospect for medical big data. As a Tool-related Discipline, Epidemiology is, focusing on exploitation the resources of existing big data and promoting the integration of translational research and knowledge to completely unlocking the "black box" of exposure-disease continuum. It also tries to accelerating the realization of the ultimate goal on precision medicine. The overall purpose, however is to translate the evidence from scientific research to improve the health of the people.
2008-05-04
CAPE CANAVERAL, Fla. -- NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is moved toward the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-04
CAPE CANAVERAL, Fla. -- NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is moved into the Hazardous Processing Facility for fueling. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- At Astrotech in Titusville, Fla., photographers take photos of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft during a press showing. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. Photographers take closeup shots of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft during a press showing at Astrotech in Titusville, Fla. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
Online Analysis Enhances Use of NASA Earth Science Data
NASA Technical Reports Server (NTRS)
Acker, James G.; Leptoukh, Gregory
2007-01-01
Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians give NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft a final cleaning. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians conduct black light inspection on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians give NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft a final cleaning. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- A closeup of NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft during a press showing at Astrotech in Titusville, Fla. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians conduct black light inspection on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- TvTechnicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-04-25
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians conduct black light inspection on NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date is still to be determined. Photo credit: NASA/Jim Grossmann
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
2008-05-15
CAPE CANAVERAL, Fla. -- Technicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett
Using student satisfaction data to evaluate a new online accelerated nursing education program.
Gazza, Elizabeth A; Matthias, April
2016-10-01
As increasing numbers of students enroll in online education, institutions of higher education are responsible for delivering quality online courses and programs. Agencies that accredit institutions and programs require evidence of program quality, including student satisfaction. A large state university in the Southeastern United States transitioned an online nursing education degree completion, or Registered Nurse-to-Bachelor of Science in Nursing, program to an online accelerated format in order to meet the needs of working nurses and ultimately, increase the number of nurses prepared at the baccalaureate level. This article describes a descriptive, cross-sectional study that evaluated the effectiveness of the new online accelerated program using the quality indicator of student satisfaction. Ninety-one (32%) of the 284 students who were enrolled or had been enrolled in a course within the online accelerated degree completion program between fall 2013 session 1 and summer 2014 session participated in the study. The electronic Noel-Levitz Priorities Survey for Online Learners™ was used to measure student satisfaction with the program and associated services. Results provided insight into the students' satisfaction with the new program format and served as the basis for an interdepartmental program enhancement plan aimed at maintaining and enhancing student satisfaction and overall program quality. Findings indicated that measuring and evaluating student satisfaction can provide valuable information about the effectiveness of an online program. Recommendations for using the measurement tool in online program planning and studying student satisfaction in relation to retention and program completion were identified. Copyright © 2016 Elsevier Ltd. All rights reserved.
Source and seed populations for relativistic electrons: Their roles in radiation belt changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaynes, A. N.; Baker, D. N.; Singer, H. J.
Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August–September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13–22more » September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward interplanetary magnetic field (IMF), showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. Furthermore, if any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.« less
Source and seed populations for relativistic electrons: Their roles in radiation belt changes
Jaynes, A. N.; Baker, D. N.; Singer, H. J.; ...
2015-09-09
Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August–September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13–22more » September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward interplanetary magnetic field (IMF), showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. Furthermore, if any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.« less
NASA Astrophysics Data System (ADS)
Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.
2015-06-01
We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.
Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina
2016-09-01
During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Enhanced recovery pathways in pancreatic surgery: State of the art
Pecorelli, Nicolò; Nobile, Sara; Partelli, Stefano; Cardinali, Luca; Crippa, Stefano; Balzano, Gianpaolo; Beretta, Luigi; Falconi, Massimo
2016-01-01
Pancreatic surgery is being offered to an increasing number of patients every year. Although postoperative outcomes have significantly improved in the last decades, even in high-volume centers patients still experience significant postoperative morbidity and full recovery after surgery takes longer than we think. In recent years, enhanced recovery pathways incorporating a large number of evidence-based perioperative interventions have proved to be beneficial in terms of improved postoperative outcomes, and accelerated patient recovery in the context of gastrointestinal, genitourinary and orthopedic surgery. The role of these pathways for pancreatic surgery is still unclear as high-quality randomized controlled trials are lacking. To date, non-randomized studies have shown that care pathways for pancreaticoduodenectomy and distal pancreatectomy are safe with no difference in postoperative morbidity, leading to early discharge and no increase in hospital readmissions. Hospital costs are reduced due to better organization of care and resource utilization. However, further research is needed to clarify the effect of enhanced recovery pathways on patient recovery and post-discharge outcomes following pancreatic resection. Future studies should be prospective and follow recent recommendations for the design and reporting of enhanced recovery pathways. PMID:27605881
ERIC Educational Resources Information Center
Couturier, Lara K.
2012-01-01
Completion by Design, funded by the Bill & Melinda Gates Foundation, is a partnership between participating colleges and state-level policy organizations. The initiative's strong policy component seeks both to change policies in ways that support the colleges' change strategies and to spread the learning and ideas stemming from Completion by…
Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela
2011-01-01
Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011
Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P
2016-03-01
Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.
Molecular basis of physiological heart growth: fundamental concepts and new players
Maillet, Marjorie; van Berlo, Jop H.; Molkentin, Jeffery D.
2015-01-01
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications. PMID:23258295
Perrin, Paul B; Paredes, Alejandra Morlett; Olivera, Silvia Leonor; Lozano, Juan Esteban; Leal, Wendy Tatiana; Ahmad, Usman F; Arango-Lasprilla, Juan Carlos
2017-01-01
Research has begun to document the bivariate connections between pain in individuals with spinal cord injury (SCI) and various aspects of health related quality of life (HRQOL), such as fatigue, social functioning, mental health, and physical functioning. The purpose of this study was to construct and test a theoretical path model illuminating the stage-wise and sequential (cascading) HRQOL pathways through which pain increases physical disability in individuals with SCI in a sample from Colombia, South America. It was hypothesized that increased pain would lead to decreased energy, which would lead to decreased mental health and social functioning, which both would lead to emotional role limitations, which finally would lead to physical role limitations. A cross-sectional study assessed individuals with SCI (n = 40) in Neiva, Colombia. Participants completed a measure indexing various aspects of HRQOL. The path model overall showed excellent fit indices, and each individual path within the model was statistically significant. Pain exerted significant indirect effects through all possible mediators in the model, ultimately suggesting that energy, mental health, social functioning, and role limitations-emotional were likely pathways through which pain exerted its effects on physical disability in individuals with SCI. These findings uncover several potential nodes for clinical intervention which if targeted in the context of rehabilitation or outpatient services, could result in salubrious direct and indirect effects reverberating down the theoretical causal chain and ultimately reducing physical disability in individuals with SCI.
NASA Technical Reports Server (NTRS)
Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan
2012-01-01
Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.
New activators and inhibitors in the hair cycle clock: targeting stem cells’ state of competence
Plikus, Maksim V.
2014-01-01
Summary The timing mechanism of the hair cycle remains poorly understood. However, it has become increasingly clear that the telogen-to-anagen transition is controlled jointly by at least the bone morphogenic protein (BMP), WNT, fibroblast growth factor (FGF), and transforming growth factor (TGF)-β signaling pathways. New research shows that Fgf18 signaling in hair follicle stem cells synergizes BMP-mediated refractivity, whereas Tgf-β2 signaling counterbalances it. Loss of Fgf18 signaling markedly accelerates anagen initiation, whereas loss of Tgf-β2 signaling significantly delays it, supporting key roles for these pathways in hair cycle timekeeping. PMID:22499035
Plant metabolic clusters - from genetics to genomics.
Nützmann, Hans-Wilhelm; Huang, Ancheng; Osbourn, Anne
2016-08-01
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Mammalian O-Mannosylation Pathway: Glycan Structures, Enzymes, and Protein Substrates
2015-01-01
The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell–matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years, culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion of the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration of the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information. PMID:24786756
Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway
Williams, Andrea; Sarkar, Sovan; Cuddon, Paul; Ttofi, Evangelia K.; Saiki, Shinji; Siddiqi, Farah H.; Jahreiss, Luca; Fleming, Angeleen; Pask, Dean; Goldsmith, Paul; O’Kane, Cahir J.; Floto, R. Andres; Rubinsztein, David C.
2009-01-01
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases like Huntington’s disease. Autophagy induction with the mTOR inhibitor, rapamycin, accelerates clearance of these toxic substrates. As rapamycin has non-trivial side effects, we screened FDA-approved drugs to identify novel autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the Gi signaling activator clonidine, induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, where cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating Gsα, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced and we provide proof-of-principle for therapeutic relevance in Huntington’s disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+, like excitotoxicity, will inhibit autophagy, thus retarding clearance of aggregate-prone proteins. PMID:18391949
Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo
2009-10-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.
Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo
2009-01-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis. PMID:19651865
Oller, Jorge; Alfranca, Arántzazu; Méndez-Barbero, Nerea; Villahoz, Silvia; Lozano-Vidal, Noelia; Martín-Alonso, Mara; Arroyo, Alicia G.; Escolano, Amelia; Armesilla, Angel Luis
2015-01-01
Emerging evidence indicates that the metalloproteinase Adamts-1 plays a significant role in the pathophysiology of vessel remodeling, but little is known about the signaling pathways that control Adamts-1 expression. We show that vascular endothelial growth factor (VEGF), angiotensin-II, interleukin-1β, and tumor necrosis factor α, stimuli implicated in pathological vascular remodeling, increase Adamts-1 expression in endothelial and vascular smooth muscle cells. Analysis of the intracellular signaling pathways implicated in this process revealed that VEGF and angiotensin-II upregulate Adamts-1 expression via activation of differential signaling pathways that ultimately promote functional binding of the NFAT or C/EBPβ transcription factors, respectively, to the Adamts-1 promoter. Infusion of mice with angiotensin-II triggered phosphorylation and nuclear translocation of C/EBPβ proteins in aortic cells concomitantly with an increase in the expression of Adamts-1, further underscoring the importance of C/EBPβ signaling in angiotensin-II-induced upregulation of Adamts-1. Similarly, VEGF promoted NFAT activation and subsequent Adamts-1 induction in aortic wall in a calcineurin-dependent manner. Our results demonstrate that Adamts-1 upregulation by inducers of pathological vascular remodeling is mediated by specific signal transduction pathways involving NFAT or C/EBPβ transcription factors. Targeting of these pathways may prove useful in the treatment of vascular disease. PMID:26217013
The ever-evolving role of mTOR in translation.
Fonseca, Bruno D; Smith, Ewan M; Yelle, Nicolas; Alain, Tommy; Bushell, Martin; Pause, Arnim
2014-12-01
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Particle acceleration and turbulence in cosmic Ray shocks: possible pathways beyond the Bohm limit
NASA Astrophysics Data System (ADS)
Malkov, M. A.; Diamond, P. H.
2007-08-01
Diffusive shock acceleration is discussed in terms of its potential to accelerate cosmic rays (CR) to 1018 eV (beyond the ``knee,'' as observations suggest) and in terms of the related observational signatures (spectral features). One idea to reach this energy is to resonantly generate a turbulent magnetic field via accelerated particles much in excess of the background field. We identify difficulties with this scenario and suggest two separate mechanisms that can work in concert with one another leading to a significant acceleration enhancement. The first mechanism is based on a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to some specific (knee) momentum. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path. The velocity gradient is set by the knee-particles. The acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The knee (spectrum steepening) forms because particles above it are effectively confined to the shock only if they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This also maintains the steep velocity gradient and high acceleration rate. The second mechanism is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves.
Yang, Shun-Min; Chan, Yi-Lin; Hua, Kuo-Feng; Chang, Jia-Ming; Chen, Hui-Ling; Tsai, Yung-Jen; Hsu, Yu-Juei; Chao, Louis Kuoping; Feng-Ling, Yang; Tsai, Yu-Ling; Wu, Shih-Hsiung; Wang, Yih-Fuh; Tsai, Change-Ling; Chen, Ann; Ka, Shuk-Man
2014-08-01
Inflammatory reactions and oxidative stress are implicated in the pathogenesis of focal segmental glomerulosclerosis (FSGS), a common chronic kidney disease with relatively poor prognosis and unsatisfactory treatment regimens. Previously, we showed that osthole, a coumarin compound isolated from the seeds of Cnidium monnieri, can inhibit reactive oxygen species generation, NF-κB activation, and cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. In this study, we further evaluated its renoprotective effect in a mouse model of accelerated FSGS (acFSGS), featuring early development of proteinuria, followed by impaired renal function, glomerular epithelial cell hyperplasia lesions (a sensitive sign that precedes the development of glomerular sclerosis), periglomerular inflammation, and glomerular hyalinosis/sclerosis. The results show that osthole significantly prevented the development of the acFSGS model in the treated group of mice. The mechanisms involved in the renoprotective effects of osthole on the acFSGS model were mainly a result of an activated Nrf2-mediated antioxidant pathway in the early stage (proteinuria and ischemic collapse of the glomeruli) of acFSGS, followed by a decrease in: (1) NF-κB activation and COX-2 expression as well as PGE2 production, (2) podocyte injury, and (3) apoptosis. Our data support that targeting the Nrf2 antioxidant pathway may justify osthole being established as a candidate renoprotective compound for FSGS. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Kambara, Hiroto; Yu, Hongbo; Chai, Li; Silberstein, Leslie E; Cheng, Tao; Luo, Hongbo R
2017-04-01
Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1 + myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1 + myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.
Zhu, Haiyan; Kwak, Hyun-Jeong; Liu, Peng; Bajrami, Besnik; Xu, Yuanfu; Park, Shin-Young; Nombela-Arrieta, Cesar; Mondal, Subhanjan; Kambara, Hiroto; Yu, Hongbo; Chai, Li; Silberstein, Leslie E.; Cheng, Tao; Luo, Hongbo R.
2017-01-01
Summary Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. Here we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multi-photon intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced PTEN oxidation and deactivation leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in both infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation. PMID:28235862
Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.
Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai
2016-03-01
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Lee, Hae-Jin; Lee, Noo Ri; Jung, Minyoung; Kim, Dong Hye; Choi, Eung Ho
2015-12-01
Prolonged and/or repeated damage to the skin barrier followed by atopic dermatitis (AD) is an initial step in atopic march that ultimately progresses to respiratory allergy. Maintaining normal stratum corneum (SC) acidity has been suggested as a therapeutic or preventive strategy for barrier impairment caused by skin inflammation. We determined whether a representative AD murine model, NC/Nga mice, develops airway inflammation after repeated epicutaneous application followed by inhalation of house dust mite (HDM), implying atopic march, and whether prolongation of non-proper SC acidity accelerates respiratory allergy. HDM was applied to the skin of NC/Nga mice, accompanied by the application of neutral cream (pH 7.4) or acidic cream (pH 2.8) for 6 weeks. Intranasal inhalation of HDM was administered daily during the last 3 days. Repeated epicutaneous applications followed by inhalation of HDM in NC/Nga mice induced an atopic march-like progression from AD lesions to respiratory allergy. Concurrent neutral cream treatment accelerated or aggravated the allergic inflammation in the skin and respiratory system, whereas an acidic cream partially alleviated these symptoms. Collectively, we developed an atopic march in NC/Nga mice by HDM application, and found that prevention of a neutral environment in the SC may be an interventional method to inhibit the march.
Understanding and preventing contrast-induced acute kidney injury.
Fähling, Michael; Seeliger, Erdmann; Patzak, Andreas; Persson, Pontus B
2017-03-01
Contrast-induced acute kidney injury (CIAKI) occurs in up to 30% of patients who receive iodinated contrast media and is generally considered to be the third most common cause of hospital-acquired AKI. Accurate assessment of the incidence of CIAKI is obscured, however, by the use of various definitions for diagnosis, the different populations studied and the prophylactic measures put in place. A deeper understanding of the mechanisms that underlie CIAKI is required to enable reliable risk assessment for individual patients, as their medical histories will determine the specific pathways by which contrast media administration might lead to kidney damage. Here, we highlight common triggers that prompt the development of CIAKI and the subsequent mechanisms that ultimately cause kidney damage. We also discuss effective protective measures, such as rapidly acting oral hydration schemes and loop diuretics, in the context of CIAKI pathophysiology. Understanding of how CIAKI arises in different patient groups could enable a marked reduction in incidence and improved outcomes. The ultimate goal is to shape CIAKI prevention strategies for individual patients.
Bronchiolitis Obliterans Syndrome: The Achilles’ Heel of Lung Transplantation
Weigt, S. Samuel; DerHovanessian, Ariss; Wallace, W. Dean; Lynch, Joseph P.; Belperio, John A.
2016-01-01
Lung transplantation is a therapeutic option for patients with end-stage pulmonary disorders. Unfortunately, chronic lung allograft dysfunction (CLAD), most commonly manifest as bronchiolitis obliterans syndrome (BOS), continues to be highly prevalent and is the major limitation to long-term survival. The pathogenesis of BOS is complex and involves alloimmune and nonalloimmune pathways. Clinically, BOS manifests as airway obstruction and dyspnea that are classically progressive and ultimately fatal; however, the course is highly variable, and distinguishable phenotypes may exist. There are few controlled studies assessing treatment efficacy, but only a minority of patients respond to current treatment modalities. Ultimately, preventive strategies may prove more effective at prolonging survival after lung transplantation, but their remains considerable debate and little data regarding the best strategies to prevent BOS. A better understanding of the risk factors and their relationship to the pathological mechanisms of chronic lung allograft rejection should lead to better pharmacological targets to prevent or treat this syndrome. PMID:23821508
Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.
2017-01-01
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929
Turbulent Kinetic Energy in the Energy Balance of a Solar Flare
NASA Astrophysics Data System (ADS)
Kontar, E. P.; Perez, J. E.; Harra, L. K.; Kuznetsov, A. A.; Emslie, A. G.; Jeffrey, N. L. S.; Bian, N. H.; Dennis, B. R.
2017-04-01
The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component—the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ˜(0.5 - 1 )% of the energy released, its relatively rapid (˜1 - 10 s ) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.
Turbulent Kinetic Energy in the Energy Balance of a Solar Flare.
Kontar, E P; Perez, J E; Harra, L K; Kuznetsov, A A; Emslie, A G; Jeffrey, N L S; Bian, N H; Dennis, B R
2017-04-14
The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component-the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ∼(0.5-1)% of the energy released, its relatively rapid (∼1-10 s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.
Collisional Penrose process near the horizon of extreme Kerr black holes.
Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida
2012-09-21
Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.
Radioprotection by polysaccharides alone and in combination with aminothiols
NASA Astrophysics Data System (ADS)
Patchen, Myra L.; Macvittie, Thomas J.; Solberg, Brian D.; D'Alesandro, Michele M.; Brook, Itzhak
We demonstrated that glucan, a beta-1,3 polysaccharide immunomodulator, enhances survival of mice when administered before radiation exposure. Glucan's prophylactic survival-enhancing effects are mediated by several mechanisms including (1) increasing macrophage-mediated resistance to potentially lethal postirradiation opportunistic infections, (2) increasing the Do of hematopoietic progenitor cells, and (3) accelerating hematopoietic reconstitution. In addition, even when administered shortly after some otherwise lethal doses of radiation, glucan increases survival. Glucan's therapeutic survival-enhancing effects are also mediated through its ability to enhance macrophage function and to accelerate hematopoietic reconstitution; glucan's therapeutic potential, however, is ultimately dependent on the survival of a critical number of hematopoietic stem cells capable of responding to glucan's stimulatory effects. Preirradiation administration of the traditional aminothiol radioprotectants WR-2721 and WR-3689 has been previously demonstrated to be an extremely effective means to increase hematopoietic stem cell survival. Therapeutic glucan treatment administered in combination with preirradiation WR-2721 or WR-3689 treatment synergistically increases both hematopoietic reconstitution and survival. Such combined modality treatments offer new promise in treating acute radiation injury.
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Backeberg, N. R.; Iacoviello, F.; Rittner, M.; Jones, A. P.; Wheeler, J.; Day, R.; Vermeesch, P.; Shearing, P. R.; Striolo, A.
2017-12-01
The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry, which determines the finite length (or tortuosity) of the interconnected pathways through the porous/permeable phases in shales. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.
Understanding disease mechanisms with models of signaling pathway activities.
Sebastian-Leon, Patricia; Vidal, Enrique; Minguez, Pablo; Conesa, Ana; Tarazona, Sonia; Amadoz, Alicia; Armero, Carmen; Salavert, Francisco; Vidal-Puig, Antonio; Montaner, David; Dopazo, Joaquín
2014-10-25
Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine. Here we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets. The proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.
Food reward, hyperphagia, and obesity
Lenard, Natalie R.; Shin, Andrew C.
2011-01-01
Given the unabated obesity problem, there is increasing appreciation of expressions like “my eyes are bigger than my stomach,” and recent studies in rodents and humans suggest that dysregulated brain reward pathways may be contributing not only to drug addiction but also to increased intake of palatable foods and ultimately obesity. After describing recent progress in revealing the neural pathways and mechanisms underlying food reward and the attribution of incentive salience by internal state signals, we analyze the potentially circular relationship between palatable food intake, hyperphagia, and obesity. Are there preexisting individual differences in reward functions at an early age, and could they be responsible for development of obesity later in life? Does repeated exposure to palatable foods set off a cascade of sensitization as in drug and alcohol addiction? Are reward functions altered by secondary effects of the obese state, such as increased signaling through inflammatory, oxidative, and mitochondrial stress pathways? Answering these questions will significantly impact prevention and treatment of obesity and its ensuing comorbidities as well as eating disorders and drug and alcohol addiction. PMID:21411768
Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches
Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry
2014-01-01
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998
Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention
2009-01-01
CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism. PMID:19531241
Modular Activating Receptors in Innate and Adaptive Immunity.
Berry, Richard; Call, Matthew E
2017-03-14
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
Neuroplasticity in the auditory system.
Gil-Loyzaga, P
2005-01-01
An increasing interest on neuroplasticity and nerve regeneration within the auditory receptor and pathway has developed in recent years. The receptor and the auditory pathway are controlled by highly complex circuits that appear during embryonic development. During this early maturation process of the auditory sensory elements, we observe the development of two types of nerve fibers: permanent fibers that will remain to reach full-term maturity and other transient fibers that will ultimately disappear. Both stable and transitory fibers however, as well as developing sensory cells, express, and probably release, their respective neuro-transmitters that could be involved in neuroplasticity. Cell culture experiments have added significant information; the in vitro administration of glutamate or GABA to isolated spiral ganglion neurons clearly modified neural development. Neuroplasticity has been also found in the adult. Nerve regeneration and neuroplasticity have been demonstrated in the adult auditory receptors as well as throughout the auditory pathway. Neuroplasticity studies could prove interesting in the elaboration of current or future therapy strategies (e.g.: cochlear implants or stem cells), but also to really understand the pathogenesis of auditory or language diseases (e.g.: deafness, tinnitus, dyslexia, etc.).
My 65 years in protein chemistry.
Scheraga, Harold A
2015-05-01
This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein-protein interactions and to nucleic acids and to protein-nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena.
NASA Astrophysics Data System (ADS)
Putirka, K. D.
2016-12-01
A number of hypotheses have been offered to explain why volcanoes erupt. These include magma mixing, mafic recharge, or partial crystallization, any of which can drive parts or all of a system to vapor saturation, and so add to a magma's buoyancy. Age dates indicate long pre-eruption storage times for felsic magmas erupted at arcs, indicating that mafic recharge magmas, which can reinvigorate such systems, is a possible eruption trigger. However, plutonic systems reveal numerous recharge events that have no obvious ties to eruption (Coint et al. 2013; Putirka et al. 2014). And crystallization conditions at some arc systems support the implicit view, that recharge might be a necessary, but not a sufficient condition for eruption. At several Cascade volcanoes, Cpx and Amp crystals record coolings of 100-300oC. The Cpx grains derive exclusively from mafic enclaves, while Amp grains derive from both host and enclave materials. These considerable coolings call for a time lag following recharge, and indicate that vapor saturation is a proximal, although not necessarily an immediate cause of eruption. But we cannot discount recharge altogether. At the Cascades and at other arcs, Cpx crystalizes throughout the middle and upper crust, mostly from the surface down to 15 km. And high Fo olivine grains provide evidence for very hot magmas that intrude the upper mantle and lower crust, and possibly the middle crust, if hydrous. Volcanic pathways thus clearly extend into the middle crust, and at times, well below the Moho. It is unclear to what extent these deep pathways are hydraulically connected to the surface, or the role of deep-seated processes in initiating or sustaining eruptions. Progress in understanding these pathways, and triggering mechanisms, requires our differentiating "ultimate", "proximal" and "immediate" causes, and determining which of various magmatic processes provide necessary or sufficient conditions for eruption.
My 65 years in protein chemistry
Scheraga, Harold A.
2015-01-01
This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein–protein interactions and to nucleic acids and to protein–nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena. PMID:25850343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de
2015-02-24
High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanismsmore » for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.« less