Science.gov

Sample records for accelerating voltage pulse

  1. Note: Numerical simulation and experimental validation of accelerating voltage formation for a pulsed electron accelerator

    SciTech Connect

    Egorov, I.

    2014-06-15

    This paper describes the development of a computation model of a pulsed voltage generator for a repetitive electron accelerator. The model is based on a principle circuit of the generator, supplemented with the parasitics elements of the construction. Verification of the principle model was achieved by comparison of simulation with experimental results, where reasonable agreement was demonstrated for a wide range of generator load resistance.

  2. High voltage pulse conditioning

    DOEpatents

    Springfield, Ray M.; Wheat, Jr., Robert M.

    1990-01-01

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  3. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    NASA Astrophysics Data System (ADS)

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.

    2014-12-01

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator's vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator's vacuum-insulator stack (at a radius of 1.6 m) by using standard D -dot and B -dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator's magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z . These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed efficient

  4. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    DOE PAGES

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; et al

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs)more » and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that showed

  5. Voltage measurements at the vacuum post-hole convolute of the Z pulsed-power accelerator

    SciTech Connect

    Waisman, E. M.; McBride, R. D.; Cuneo, M. E.; Wenger, D. F.; Fowler, W. E.; Johnson, W. A.; Basilio, L. I.; Coats, R. S.; Jennings, C. A.; Sinars, D. B.; Vesey, R. A.; Jones, B.; Ampleford, D. J.; Lemke, R. W.; Martin, M. R.; Schrafel, P. C.; Lewis, S. A.; Moore, J. K.; Savage, M. E.; Stygar, W. A.

    2014-12-08

    Presented are voltage measurements taken near the load region on the Z pulsed-power accelerator using an inductive voltage monitor (IVM). Specifically, the IVM was connected to, and thus monitored the voltage at, the bottom level of the accelerator’s vacuum double post-hole convolute. Additional voltage and current measurements were taken at the accelerator’s vacuum-insulator stack (at a radius of 1.6 m) by using standard D-dot and B-dot probes, respectively. During postprocessing, the measurements taken at the stack were translated to the location of the IVM measurements by using a lossless propagation model of the Z accelerator’s magnetically insulated transmission lines (MITLs) and a lumped inductor model of the vacuum post-hole convolute. Across a wide variety of experiments conducted on the Z accelerator, the voltage histories obtained from the IVM and the lossless propagation technique agree well in overall shape and magnitude. However, large-amplitude, high-frequency oscillations are more pronounced in the IVM records. It is unclear whether these larger oscillations represent true voltage oscillations at the convolute or if they are due to noise pickup and/or transit-time effects and other resonant modes in the IVM. Results using a transit-time-correction technique and Fourier analysis support the latter. Regardless of which interpretation is correct, both true voltage oscillations and the excitement of resonant modes could be the result of transient electrical breakdowns in the post-hole convolute, though more information is required to determine definitively if such breakdowns occurred. Despite the larger oscillations in the IVM records, the general agreement found between the lossless propagation results and the results of the IVM shows that large voltages are transmitted efficiently through the MITLs on Z. These results are complementary to previous studies [R. D. McBride et al., Phys. Rev. ST Accel. Beams 13, 120401 (2010)] that

  6. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-Bing; Liu, Jin-Liang; Zhang, Hong-Bo; Feng, Jia-Huai; Qian, Bao-Liang

    2010-07-01

    The Blumlein pulse forming line (BPFL) consisting of an inner coaxial pulse forming line (PFL) and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA). The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  7. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  8. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  9. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  10. The Pulse Line Ion Accelerator Concept

    SciTech Connect

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  11. Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators

    NASA Astrophysics Data System (ADS)

    Cheng, Xin-bing; Liu, Jin-liang; Qian, Bao-liang; Zhang, Yu; Zhang, Hong-bo

    2009-11-01

    A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.

  12. Overview of The Pulse Line Ion Accelerator

    SciTech Connect

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-06-29

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  13. IBEX - a pulsed power accelerator that generates no prepulse

    SciTech Connect

    Ramirez, J.J.; Corley, J.P.; Mazarakis, M.G.

    1983-01-01

    Intense relativistic electron beams are produced in vacuum diodes driven by pulsed power accelerators. For pulse widths approx. 100 nsec, pulse forming lines (PPL) are used to generate the accelerating voltage pulse. This pulse is produced by sequential switching of stored energy through two or more stages. Capacitance and/or inductive coupling usually results in the generation of a low level prepulse voltage some time during the switching sequence. This prepulse is known to have a substantial effect on the performance of the vacuum diode during the main accelerating pulse. Most accelerators use various schemes for reducing this prepulse to acceptable levels. The Isolated Blumlein PPL concept was developed at Sandia to allow for the generation of the main accelerating pulse without generating a prepulse voltage. This concept was implemented into the IBEX accelerator that generates a 4 MV, 100 kA, 20 nsec output pulse. Design and performance data are presented.

  14. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  15. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  16. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  17. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  18. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  19. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  20. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  1. Sequentially pulsed traveling wave accelerator

    DOEpatents

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  2. Pulsed Plasma Accelerator Modeling

    NASA Technical Reports Server (NTRS)

    Goodman, M.; Kazeminezhad, F.; Owens, T.

    2009-01-01

    This report presents the main results of the modeling task of the PPA project. The objective of this task is to make major progress towards developing a new computational tool with new capabilities for simulating cylindrically symmetric 2.5 dimensional (2.5 D) PPA's. This tool may be used for designing, optimizing, and understanding the operation of PPA s and other pulsed power devices. The foundation for this task is the 2-D, cylindrically symmetric, magnetohydrodynamic (MHD) code PCAPPS (Princeton Code for Advanced Plasma Propulsion Simulation). PCAPPS was originally developed by Sankaran (2001, 2005) to model Lithium Lorentz Force Accelerators (LLFA's), which are electrode based devices, and are typically operated in continuous magnetic field to the model, and implementing a first principles, self-consistent algorithm to couple the plasma and power circuit that drives the plasma dynamics.

  3. Petawatt pulsed-power accelerator

    DOEpatents

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  4. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with long cathodes in a high power, quasi-steady MPD discharge show that the critical current for the onset of voltage fluctuations, which was previously shown to be a function of cathode area, approaches an asymptote for cathodes of very large surface area. Floating potential measurements and photographs of the discharge luminosity indicate that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance. Photoelectric measurements of particular argon neutral and ion transitions show that the higher electronic states are populated more heavily than would be calculated on the basis of Saha-Boltzmann equilibrium at the local electron temperature and number density. Preliminary optical depth measurements show that for a current of 4 kA and an argon mass flow of 12 g/sec, a population inversion exists between the upper and lower states of the 4880 A argon ion transition.

  5. Electrochemical microstructuring with short voltage pulses.

    PubMed

    Schuster, Rolf

    2007-01-01

    The application of short (nanosecond) voltage pulses between a tool electrode and a work piece immersed in an electrolyte solution allows the three-dimensional machining of electrochemically active materials with submicrometer resolution. The method is based on the finite charging time constant of the double-layer capacitance, which varies approximately linearly with the local separation between the electrode surfaces. Hence, the polarization of the electrodes during short pulses and subsequent electrochemical reactions are confined to regions where the electrodes are in sufficiently close proximity. This Minireview describes the principles behind electrochemical micro-structuring with short voltage pulses, and its current achievements and limitations. PMID:17111455

  6. Pulsed power accelerators for particle beam fusion

    SciTech Connect

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed.

  7. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  8. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-01-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  9. BANSHEE: High-voltage repetitively pulsed electron-beam driver

    SciTech Connect

    VanHaaften, F.

    1992-08-01

    BANSHEE (Beam Accelerator for a New Source of High-Energy Electrons) this is a high-voltage modulator is used to produce a high-current relativistic electron beam for high-power microwave tube development. The goal of the BANSHEE research is first to achieve a voltage pulse of 700--750 kV with a 1-{mu}s pulse width driving a load of {approximately}100 {Omega}, the pulse repetition frequency (PRF) of a few hertz. The ensuing goal is to increase the pulse amplitude to a level approaching 1 MV. We conducted tests using half the modulator with an output load of 200 {Omega}, up to a level of {approximately}650 kV at a PRF of 1 Hz and 525 kV at a PRF of 5 Hz. We then conducted additional testing using the complete system driving a load of {approximately}100 {Omega}.

  10. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  11. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac

  12. Coherent THz Pulses from Linear Accelerators

    SciTech Connect

    G.L. Carr; H. Loos; J.B. Murphy; T. Shaftan; B. Sheehy; X.-J. Wang; W.R. McKinney; M.C. Martin; G.P. Williams; K. Jordan; G. Neil

    2003-10-01

    Coherent THz pulses are being produced at several facilities using relativistic electrons from linear accelerators. The THz pulses produced at the Brookhaven accelerator have pulse energies exceeding 50 {micro}J and reach a frequency of 2 THz. The high repetition rate of the Jefferson Lab accelerator leads to an average THz power of 20 watts. Possible uses for these high power pulses are discussed.

  13. Count rate limitations in pulsed accelerator fields

    SciTech Connect

    Justus, Alan L

    2010-12-15

    This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields, in order to pre-establish appropriate limitations in use. Discussed are the 'narrow' pulse and the 'wide' pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse microstructure on the counting losses of the pulse-counting instrumentation. Examples are provided which highlight the various concepts and limitations.

  14. Linear induction accelerator and pulse forming networks therefor

    DOEpatents

    Buttram, Malcolm T.; Ginn, Jerry W.

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  15. Electrochemical nanostructuring with ultrashort voltage pulses.

    PubMed

    Kirchner, V; Xia, X; Schuster, R

    2001-05-01

    The application of nanosecond voltage pulses to electrodes provides three ways to conduct local electrochemistry on the micro- to nanometer scale. (1) The finite charging time of the double-layer capacity allows the machining of three-dimensional microstructures. (2) In an electrochemical scanning tunneling microscope, reactions are confined to the tunneling region, due to the depletion of the electrolyte in the tip--surface gap. (3) Ordering processes, following very fast electrochemical reactions, lead to unconventional island patterns on a surface. PMID:11352715

  16. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  17. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  18. Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason T.; Markusic, Tom E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    A major shift in paradigm in driving pulsed plasma thruster is necessary if the original goal of accelerating a plasma sheet efficiently to high velocities as a plasma "slug" is to be realized. Firstly, the plasma interior needs to be highly collisional so that it can be dammed by the plasma edge layer not (upstream) adjacent to the driving 'vacuum' magnetic field. Secondly, the plasma edge layer needs to be strongly magnetized so that its Hall parameter is of the order of unity in this region to ensure excellent coupling of the Lorentz force to the plasma. Thirdly, to prevent and/or suppress the occurrence of secondary arcs or restrike behind the plasma, the region behind the plasma needs to be collisionless and extremely magnetized with sufficiently large Hall parameter. This places a vacuum requirement on the bore conditions prior to the shot. These requirements are quantified in the paper and lead to the introduction of three new design parameters corresponding to these three plasma requirements. The first parameter, labeled in the paper as gamma (sub 1), pertains to the permissible ratio of the diffusive excursion of the plasma during the course of the acceleration to the plasma longitudinal dimension. The second parameter is the required Hall parameter of the edge plasma region, and the third parameter the required Hall parameter of the region behind the plasma. Experimental research is required to quantify the values of these design parameters. Based upon fundamental theory of the transport processes in plasma, some theoretical guidance on the choice of these parameters are provided to help designing the necessary experiments to acquire these data.

  19. High-voltage portable pulsed power supply fed by low voltage source

    NASA Astrophysics Data System (ADS)

    Rezanejad, Mohammad; Sheikholeslami, Abdolreza; Adabi, Jafar; Valinejad, Mohammadreza

    2016-05-01

    This article proposes a new structure of voltage multiplier for portable pulsed power applications. In this configuration, which is based on capacitor-diode voltage multiplier, the capacitors are charged by low AC input voltage and discharge through the load in series during pulse generation mode. The proposed topology is achieved by integrating of solid-state switches with conventional voltage multiplier, which can increase the low input voltage step by step and generate high-voltage high-frequency pulsed power across the load. After some discussion, simulations and experimental results are provided to verify the effectiveness of the proposed topology.

  20. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  1. High-voltage air-core pulse transformers

    SciTech Connect

    Rohwein, G.J.

    1981-08-01

    High voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The general types designed for high voltage pulse generation and energy transfer applications are described. Special emphasis is given to pulse charging systems which operate up to the multi-megavolt range. (WHK)

  2. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  3. An all solid-state high-voltage ns trigger generator based on magnetic pulse compression and transmission line transformer.

    PubMed

    Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Chen, Xinbing

    2013-09-01

    Innovative design of an all solid-state high-voltage ns trigger generator, based on magnetic pulse compression and transmission line transformer, is presented. The repetitive trigger pulse generator was developed to trigger a 700 kV trigatron, which has been used to pulse a repetitive intense electron beam accelerator with Tesla transformer charged double pulse forming lines (PFLs). Experimental results show that the trigger pulse generator could produce 180 kV 65 ns duration pulses with a rise time of 20 ns. The repetitive trigger pulses have nice uniform in the voltage waveform. The control time jitter is less then 3 ns. Owing to its good stability and low time jitter, the high-voltage trigger generator is an excellent candidate to trigger the repetitive accelerator.

  4. Development of a fast voltage control method for electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios

    2014-12-01

    The concept of a novel fast voltage control loop for tandem electrostatic accelerators is described. This control loop utilises high-frequency components of the ion beam current intercepted by the image slits to generate a correction voltage that is applied to the first few gaps of the low- and high-energy acceleration tubes adjoining the high voltage terminal. New techniques for the direct measurement of the transfer function of an ultra-high impedance structure, such as an electrostatic accelerator, have been developed. For the first time, the transfer function for the fast feedback loop has been measured directly. Slow voltage variations are stabilised with common corona control loop and the relationship between transfer functions for the slow and new fast control loops required for optimum operation is discussed. The main source of terminal voltage instabilities, which are due to variation of the charging current caused by mechanical oscillations of charging chains, has been analysed.

  5. High voltage pulse cable and connector experience in the kicker systems at SLAC

    SciTech Connect

    Harris, K.; Artusy, M.; Donaldson, A.; Mattison, T.

    1991-05-01

    The SLAC 2-mile linear accelerator uses a wide variety of pulse kicker systems that require high voltage cable and connectors to deliver pulses from the drivers to the magnet loads. Many of the drivers in the SLAC kicker systems use cable lengths up to 80 feet and are required to deliver pulses up to 40 kV, with rise and fall time on the order of 20 ns. Significant pulse degradation from the cable and connector assembly cannot be tolerated. Other drivers are required to deliver up to 80 kV, 20 {mu}s pulses over cables 20 feet long. Several combinations of an applicable high voltage cable and matching connector have been used at SLAC to determine the optimum assembly that meets the necessary specifications and is reliable. 14 refs., 3 figs., 1 tab.

  6. Pulsed power systems for the DARHT accelerators

    SciTech Connect

    Downing, J.N.; Parsons, W.M.; Earley, L.M.; Melton, J.G.; Moir, D.C.; Carlson, R.L.; Barnes, G.A.; Builta, L.A.; Eversole, S.A.; Keel, G.I.; Rader, D.C.; Romero, J.A.; Shurter, R.P.

    1991-01-01

    The Dual-Axis Radiographic Hydro Test (DARHT) Facility is being designed to produce high-resolution flash radiographs of hydrodynamics experiments. Two 16- to 20-MeV linear induction accelerators (LIA), with an included angle of 90{degree}, are used to produce intense bremsstrahlung x-ray pulses of short duration (60-ns flat-top). Each accelerator has a 4-MeV electron source that injects an electron beam into a series of 250-kV induction cells. The three major pulsed-power systems are the injectors, the induction-cell pulsed-power (ICPP) units, and the ICPP trigger systems, and are discussed in this paper. 11 refs., 5 figs, 3 tabs.

  7. Plasma Membrane Voltage Changes during Nanosecond Pulsed Electric Field Exposure

    PubMed Central

    Frey, W.; White, J. A.; Price, R. O.; Blackmore, P. F.; Joshi, R. P.; Nuccitelli, R.; Beebe, S. J.; Schoenbach, K. H.; Kolb, J. F.

    2006-01-01

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of ∼100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6–1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/μm penetrates into the interior of the cell and every organelle. PMID:16513782

  8. Plasma membrane voltage changes during nanosecond pulsed electric field exposure.

    PubMed

    Frey, W; White, J A; Price, R O; Blackmore, P F; Joshi, R P; Nuccitelli, R; Beebe, S J; Schoenbach, K H; Kolb, J F

    2006-05-15

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.

  9. High-voltage pulsed generators for electro-discharge technologies

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Sinebrykhov, V. A.

    2013-09-01

    A high-voltage pulse technology is one of effective techniques for the disintegration and milling of rocks, separation of ores and synthesized materials, recycling of building and elastoplastic materials. We present here the design and test results of two portable HV pulsed generators, designed for materials fragmentation, though some other technological applications are possible as well. Generator #1 consists of low voltage block, high voltage transformer, high voltage capacitive storage block, two electrode gas switch, fragmentation chamber and control system block. Technical characteristics of the #1 generator: stored energy in HV capacitors can be varied from 50 to 1000 J, output voltage up to 300 kV, voltage rise time ~ 50 ns, typical operation regime 1000 pulses bursts with a repetitive rate up to 10 Hz. Generator #2 is made on an eight stages Marx scheme with two capacitors (100 kV-400 nF) per stage, connected in parallel. Two electrode spark gap switches, operated in atmospheric air, are used in the Marx generator. Parameters of the generator: stored energy in capacitors 2÷8 kJ, amplitude of the output voltage 200÷400 kV, voltage rise time on a load 50÷100 ns, repetitive rate up to 0.5 Hz. The fragmentation process can be controlled within a wide range of parameters for both generators.

  10. Low Accelerating Voltage, X-ray Microanalysis: Benefits and Challenges

    NASA Astrophysics Data System (ADS)

    Mcswiggen, P.; Mori, N.; Takakura, M.; Nielsen, C.

    2011-12-01

    The development of the field emission (FE) electron gun has made it possible to generate extremely high, electron densities and as a result, an electron beam that is one-half to one-tenth the diameter of the conventional thermionic emission electron gun using a W filament or a LaB6 tip. In addition, with a Schottky thermal, field emission (TFE) electron gun, sufficient beam currents can be provided for trace element microanalyses. Now the challenge is to be able to take advantage of this smaller electron beam to provide X-ray analyses of comparable size areas. Using the typical operating conditions for X-ray microanalyses (15-20kV accelerating voltage), the electron beam scattering within the sample results in an analysis that is of a much larger area. However working at a low accelerating voltage, the amount of scatter is greatly reduced, resulting in an analytical area that can be about the size of the electron beam. The optimum accelerating voltage that will produce the smallest analytical volume is typically around 5-7 kV. At lower accelerating voltages, the size of the analytical area is controlled by the size of the electron beam, which increases with decreasing accelerating voltage. At higher accelerating voltages, the analytical area is controlled by the amount of scattering within the sample, which in turn is controlled by the accelerating voltage and the average atomic number of the material. The higher the accelerating voltage, the more scatter. Using a TFE electron gun at low accelerating voltages means it is possible to analyze areas in the range of 0.1 μm. However, working at low accelerating voltages can produce a new set of challenges when trying to obtain the best quality quantitative analyses. One problem comes from the fact that there are few X-ray lines available when using lower accelerating voltages. This is particularly problematic when using energy dispersive spectrometers (EDS), less so with wavelength dispersive spectrometers (WDS). With

  11. Breakdown voltage of discrete capacitors under single-pulse conditions

    NASA Technical Reports Server (NTRS)

    Domingos, H.; Scaturro, J.; Hayes, L.

    1981-01-01

    For electrostatic capacitors the breakdown voltage is inherently related to the properties of the dielectric, with the important parameters being the dielectric field strength which is related to the dielectric constant and the dielectric thickness. These are not necessarily related to the capacitance value and the rated voltage, but generally the larger values of capacitance have lower breakdown voltages. Foil and wet slug electrolytics can withstand conduction currents pulses without apparent damage (in either direction for foil types). For solid tantalums, damage occurs whenever the capacitor charges to the forming voltage.

  12. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  13. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    SciTech Connect

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-12-31

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r{sub {rho}} < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v{perpendicular}/c = {beta}{perpendicular} {le} 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs.

  14. Pulsed Inductive Plasma Acceleration: Performance Optimization Criteria

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2014-01-01

    Optimization criteria for pulsed inductive plasma acceleration are developed using an acceleration model consisting of a set of coupled circuit equations describing the time-varying current in the thruster and a one-dimensional momentum equation. The model is nondimensionalized, resulting in the identification of several scaling parameters that are varied to optimize the performance of the thruster. The analysis reveals the benefits of underdamped current waveforms and leads to a performance optimization criterion that requires the matching of the natural period of the discharge and the acceleration timescale imposed by the inertia of the working gas. In addition, the performance increases when a greater fraction of the propellant is initially located nearer to the inductive acceleration coil. While the dimensionless model uses a constant temperature formulation in calculating performance, the scaling parameters that yield the optimum performance are shown to be relatively invariant if a self-consistent description of energy in the plasma is instead used.

  15. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  16. High-voltage pulsed generator for dynamic fragmentation of rocks

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  17. High-voltage pulsed generator for dynamic fragmentation of rocks.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations. PMID:21034090

  18. A high voltage pulsed power supply for capillary discharge waveguide applications

    SciTech Connect

    Abuazoum, S.; Wiggins, S. M.; Issac, R. C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; Ganciu, M.

    2011-06-15

    We present an all solid-state, high voltage pulsed power supply for inducing stable plasma formation (density {approx}10{sup 18} cm{sup -3}) in gas-filled capillary discharge waveguides. The pulser (pulse duration of 1 {mu}s) is based on transistor switching and wound transmission line transformer technology. For a capillary of length 40 mm and diameter 265 {mu}m and gas backing pressure of 100 mbar, a fast voltage pulse risetime of 95 ns initiates breakdown at 13 kV along the capillary. A peak current of {approx}280 A indicates near complete ionization, and the r.m.s. temporal jitter in the current pulse is only 4 ns. Temporally stable plasma formation is crucial for deploying capillary waveguides as plasma channels in laser-plasma interaction experiments, such as the laser wakefield accelerator.

  19. Accumulated destructive effect of nanosecond repetitive voltage pulses on the insulated coatings of Fe-based nanocrystalline ribbon

    SciTech Connect

    Zhang, Yu; Liu, Jinliang

    2013-03-11

    Fe-based nanocrystalline ribbon is widely employed in pulsed power devices and accelerators. A temperature accumulation model is put forward to explain the accumulated destructive effect of discharge plasma bombardment on the TiO{sub 2} coatings of nanocrystalline ribbon under 50 Hz/100 ns voltage pulses. Experimental results revealed that the plasma channel expansion caused by air breakdown in the coating crack heated the coating repetitively, and the coating temperature was increased and accumulated around the crack. The fact that repetitive voltage pulses were more destructive than a single pulse with the same amplitude was caused by the intensified coating ablation under the temperature accumulation effect.

  20. A PC-controlled voltage pulse generator for electroanalytical applications

    NASA Astrophysics Data System (ADS)

    Heredia-López, Francisco J.; Góngora-Alfaro, José L.; Alvarez-Cervera, Fernando J.; Bata-García, José Luis

    1997-04-01

    We present the design of a voltage pulse generator controlled by an IBM or compatible AT Personal Computer (PC) capable of synthesizing some of the voltage pulse wave forms commonly used in electrochemical studies. The included signals are: differential pulse voltametry, differential normal pulse voltametry, and differential pulse amperometry. Additionally, a triangular wave form and a constant-voltage signal, used in the pretreatment of carbon fiber microelectrodes for neurochemical analysis, are also available. Operating the generator imposes a minimum of restrictions on the specification of the duration, amplitude, and type of wave shapes. Low-cost PC-based design allows for compatibility, portability, and versatility. The operating ranges of the wave form parameters for the three voltametric signals are: initial voltage, -0.9-+0.9 V; step amplitude, 0.1-900 mV; period, 6 ms-60 s; measuring pulse amplitude, 0.1-900 mV; measuring pulse duration, 2 ms-20 s; prepulse duration, 2 ms-20 s. In the electrode pretreatment mode, the operating ranges are: amplitude, 0-±5 V; duration, unlimited; frequency, 15-240 Hz. The generator uses its own time base for the generation of all signals, thereby rendering it independent of processor clock speed or power-line frequency. The results of the experimental evaluation indicate that the system is accurate within ±10% of the expected values, taking into account the errors associated with the signal synthesis and the digitizing process. The maximum achievable scan rate is 500 V/s, and the highest frequency for the triangular wave form is 240 Hz. Therefore, the pulse generator could be used for fast cyclic voltametry (FCV). FCV and other wave forms could be added through software modules, without any hardware changes. We conclude that the PC-based electrochemistry pulse generator represents an economical and flexible alternative for electroanalytical applications.

  1. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    PubMed

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  2. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  3. SECONDARY ELECTRON TRAJECTORIES IN HIGH-GRADIENT VACUUM INSULATORS WITH FAST HIGH-VOLTAGE PULSES

    SciTech Connect

    Chen, Y; Blackfield, D; Nelson, S D; Poole, B

    2010-04-21

    Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. Primary or secondary electrons (emitted from the insulator surface) can be deflected by magnetic fields from external sources, the high-current electron beam, the conduction current in the transmission line, or the displacement current in the insulator. These electrons are deflected either toward or away from the insulator surface and this affects the performance of the vacuum insulator. This paper shows the effects of displacement current from short voltage pulses on the performance of high gradient insulators. Generally, vacuum insulator failure is due to surface flashover, initiated by electrons emitted from a triple junction. These electrons strike the insulator surface thus producing secondary electrons, and can lead to a subsequent electron cascade along the surface. The displacement current in the insulator can deflect electrons either toward or away from the insulator surface, and affects the performance of the vacuum insulator when the insulator is subjected to a fast high-voltage pulse. Vacuum insulators composed of alternating layers of metal and dielectric, known as high-gradient insulators (HGIs), have been shown to withstand higher electric fields than conventional insulators. HGIs, being tolerant of the direct view of high-current electron and ion beams, and having desirable RF properties for accelerators, are a key enabling technology for the dielectric-wall accelerators (DWA) being developed at Lawrence Livermore National Laboratory (LLNL). Characteristically, insulator surface breakdown thresholds go up as the applied voltage pulse width decreases. To attain the highest accelerating gradient in the DWA, short accelerating voltage pulses are only applied locally, along the HGI accelerator tube, in sync with the charged particle bunch, and the effects of

  4. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  5. A compact, high-voltage pulsed charging system based on an air-core pulse transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm3, respectively.

  6. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively. PMID:26429466

  7. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively.

  8. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, Anthony N.; Watson, James A.; Sampayan, Stephen E.

    1994-01-01

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load.

  9. Voltage control in pulsed system by predict-ahead control

    DOEpatents

    Payne, A.N.; Watson, J.A.; Sampayan, S.E.

    1994-09-13

    A method and apparatus for predict-ahead pulse-to-pulse voltage control in a pulsed power supply system is disclosed. A DC power supply network is coupled to a resonant charging network via a first switch. The resonant charging network is coupled at a node to a storage capacitor. An output load is coupled to the storage capacitor via a second switch. A de-Q-ing network is coupled to the resonant charging network via a third switch. The trigger for the third switch is a derived function of the initial voltage of the power supply network, the initial voltage of the storage capacitor, and the present voltage of the storage capacitor. A first trigger closes the first switch and charges the capacitor. The third trigger is asserted according to the derived function to close the third switch. When the third switch is closed, the first switch opens and voltage on the node is regulated. The second trigger may be thereafter asserted to discharge the capacitor into the output load. 4 figs.

  10. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator.

    PubMed

    Shen, Yi; Wang, Wei; Liu, Yi; Xia, Liansheng; Zhang, Huang; Pan, Haifeng; Zhu, Jun; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2015-05-01

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper. PMID:26026561

  11. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator

    SciTech Connect

    Shen, Yi; Wang, Wei; Liu, Yi; Xia, Liansheng Zhang, Huang; Pan, Haifeng; Zhu, Jun; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2015-05-15

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.

  12. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Wang, Wei; Liu, Yi; Xia, Liansheng; Zhang, Huang; Pan, Haifeng; Zhu, Jun; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2015-05-01

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.

  13. Single base mismatch detection by microsecond voltage pulses.

    PubMed

    Fixe, F; Chu, V; Prazeres, D M F; Conde, J P

    2005-12-15

    A single square voltage pulse applied to metal electrodes underneath a silicon dioxide film upon which DNA probes are immobilized allows the discrimination of DNA targets with a single base mismatch during hybridization. Pulse duration, magnitude and slew rate of the voltage pulse are all key factors controlling the rates of electric field assisted hybridization. Although pulses with 1 V, lasting less than 1 ms and with a rise/fall times of 4.5 ns led to maximum hybridization of fully complementary strands, lack of stringency did not allow the discrimination of single base mismatches. However, by choosing pulse conditions that are slightly off the optimum, the selectivity for discriminating single base mismatches could be improved up to a factor approximately 5 when the mismatch was in the middle of the strand and up to approximately 1.5 when the mismatch was on the 5'-end and. These results demonstrate that hybridization with the appropriate electric field pulse provides a new, site-specific, approach to the discrimination of single nucleotide polymorphisms in the sub-millisecond time scale, for addressable DNA microarrays. PMID:16257657

  14. Multiple pulse resonantly enhanced laser plasma wakefield acceleration

    SciTech Connect

    Corner, L.; Walczak, R.; Nevay, L. J.; Dann, S.; Hooker, S. M.; Bourgeois, N.; Cowley, J.

    2012-12-21

    We present an outline of experiments being conducted at Oxford University on multiple-pulse, resonantly-enhanced laser plasma wakefield acceleration. This method of laser plasma acceleration uses trains of optimally spaced low energy short pulses to drive plasma oscillations and may enable laser plasma accelerators to be driven by compact and efficient fibre laser sources operating at high repetition rates.

  15. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  16. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  17. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect

    Krasnykh, A.; Kardo-Sysoev, A.; Arntz, F.; /Diversified Tech., Bedford

    2009-12-09

    The conclusions of this paper are: (1) The gradient of the SLIM-based technology is believed to be achievable in the same range as it is for the gradient of a modern rf-linac technology ({approx}100 MeV per meter). (2) The SLIM concept is based on the nsec TEM pulse mode operation with no laser or rf systems. (3) Main components of SLIM are not stressed while the energy is pumped into the induction system. Components can accept the hard environment conditions such as a radiation dose, mismatch, hard electromagnetic nose level, etc. Only for several nanoseconds the switch is OFF and produces a stress in the induction system. At that time, the delivery of energy to the beam takes place. (4) The energy in the induction system initially is storied in the magnetic field when the switch is ON. That fact makes another benefit: a low voltage power supplies can be used. The reliability of a lower voltage power supply is higher and they are cheaper. (5) The coreless SLIM concept offers to work in the MHz range of repetition rate. The induction system has the high electric efficiency (much higher than the DWA). (6) The array of lined up and activated SLIM cells is believed to be a solid state structure of novel accelerating technology. The electron-hole plasma in the high power solid state structure is precisely controlled by the electromagnetic process of a pulsed power supply.

  18. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  19. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  20. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  1. A compact post-acceleration beam chopper for a 4.5 MV Dynamitron pulsed neutron generator

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Fujisawa, M.; Baba, M.; Iwasaki, T.; Iwasaki, S.; Sakamoto, R.; Hirakawa, N.; Sugiyama, K.

    1994-08-01

    A post-acceleration beam chopper (PACS) has been installed for a 4.5 MV Dynamitron accelerator to improve the energy resolution of neutron time-of-flight (TOF) experiments by shortening the duration of the ion beam pulses. The PACS sweeps the accelerated ion pulses across a chopping slit and eliminates the tails of the beam pulses. It operates sinusoidally at a frequency of 8 MHz with a maximum voltage of 10 kV peak to peak in synchronization with the accelerated ion pulses. The high voltage generator of the PACS was constructed of commercially available amplifiers and components, which realized easy maintenance and low cost. The PACS proved to be very effective to improve the pulse shape and has been applied for double-differential neutron emission cross section measurements.

  2. A new linear inductive voltage adder driver for the Saturn Accelerator

    SciTech Connect

    Mazarakis, M.G.; Spielman, R.B.; Struve, K.W.; Long, F.W.

    2000-08-09

    Saturn is a dual-purpose accelerator. It can be operated as a large-area flash x-ray source for simulation testing or as a Z-pinch driver especially for K-line x-ray production. In the first mode, the accelerator is fitted with three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the current of all the modules is combined via a post-hole convolute arrangement and driven through a cylindrical array of very fine wires. We present here a point design for a new Saturn class driver based on a number of linear inductive voltage adders connected in parallel. A technology recently implemented at the Institute of High Current Electronics in Tomsk (Russia) is being utilized. In the present design we eliminate Marx generators and pulse-forming networks. Each inductive voltage adder cavity is directly fed by a number of fast 100-kV small-size capacitors arranged in a circular array around each accelerating gap. The number of capacitors connected in parallel to each cavity defines the total maximum current. By selecting low inductance switches, voltage pulses as short as 30-50-ns FWHM can be directly achieved. The voltage of each stage is low (100-200 kv). Many stages are required to achieve multi-megavolt accelerator output. However, since the length of each stage is very short (4-10 cm), accelerating gradients of higher than 1 MV/m can easily be obtained. The proposed new driver will be capable of delivering pulses of 15-MA, 36-TW, 1.2-MJ to the diode load, with a peak voltage of {minus}2.2 MV and FWHM of 40-ns. And although its performance will exceed the presently utilized driver, its size and cost could be much smaller ({approximately}1/3). In addition, no liquid dielectrics like oil or deionized water will be required. Even elimination of ferromagnetic material (by using air-core cavities) is a possibility.

  3. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    PubMed

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  4. Pulsed Electromagnetic Acceleration of Plasma: A Review

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  5. Ionization and pulse lethargy effects in inverse Cherenkov accelerators

    SciTech Connect

    Sprangle, P.; Hubbard, R.F.,; Hafizi, B.,

    1997-05-01

    Ionization processes limit the accelerating gradient and place an upper limit on the pulse duration of the electromagnetic driver in the inverse Cherenkov accelerator (ICA). Group velocity slippage, i.e., pulse lethargy, on the other hand, imposes a lower limit on the pulse duration. These limits are obtained for two ICA configurations in which the electromagnetic driver (e.g., laser or millimeter wave source) is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. In either configuration the electromagnetic driving field is guided and has an axial electric field with phase velocity equal to the speed of light in vacuum, c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by tunneling and collisional ionization effects. Partial ionization of the dielectric liner or gas can lead to significant modification of the dispersive properties of the waveguide, altering the phase velocity of the accelerating field and causing particle slippage, thus disrupting the acceleration process. An additional limitation on the pulse duration is imposed since the group velocity of the driving pulse is less than c and the pulse slips behind the accelerated electrons. Hence for sufficiently short pulses the electrons outrun the pulse, terminating the acceleration. Limitations on the driver pulse duration and accelerating gradient, due to ionization and pulse lethargy, are estimated for the two ICA configurations. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m, 1 mm, and 1 cm wavelength electromagnetic driver. The combination of ionization and pulse lethargy effects impose severe limitations on the maximum energy gain in inverse Cherenkov accelerators. {copyright} {ital 1997} {ital The American Physical Society}

  6. Accelerating Thick Aluminum Liners Using Pulsed Power

    SciTech Connect

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-06-28

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane.

  7. Some Considerations on the Pulsed Electromagnetic Acceleration of Plasma

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Markusic, T. E.; Cassibry, J. T.; Sommers, J. C.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    In applying pulsed electromagnetic acceleration of plasma to space propulsion (known as pulsed plasma thrusters in the community), the mode of acceleration used has been mostly in the collisionless or near-collisionless regime. The preparation of the initial plasma is given scant attention. Collisional regime of accelerating the plasma, however, have been encountered in a variety of plasma accelerating devices. Both of these modes of acceleration are reviewed in a companion paper. In this paper, we discuss the considerations governing the controlled introduction and preparation of the initial plasma, so that the collisional mode of accelerating the plasma may be suitably enhanced.

  8. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    SciTech Connect

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-07-27

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 {Omega} load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs.

  9. Understanding High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    J.B., J; D.A., G; T.L., H; E.J., L; R.D., S; L.K., T; G.E., V

    2007-08-15

    High voltage insulation is one of the main areas of pulsed power research and development since the surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This is troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and where relatively long pulses, on the order of several microseconds, are required. Here we give a summary of our approach to modeling and simulation efforts and experimental investigations for understanding flashover mechanism. The computational work is comprised of both filed and particle-in-cell modeling with state-of-the-art commercial codes. Experiments were performed in using an available 100-kV, 10-{micro}s pulse generator and vacuum chamber. The initial experiments were done with polyethylene insulator material in the shape of a truncated cone cut at +45{sup o} angle between flat electrodes with a gap of 1.0 cm. The insulator was sized so there were no flashovers or breakdowns under nominal operating conditions. Insulator flashover or gap closure was induced by introducing a plasma source, a tuft of velvet, in proximity to the insulator or electrode.

  10. Miniature UV lamp excited by subnanosecond voltage pulses

    SciTech Connect

    Erofeev, M V; Baksht, E Kh; Tarasenko, Viktor F; Shut'ko, Yu V

    2010-08-27

    Energy, time, and spectral characteristics of emission of the second positive system of N{sub 2} molecules in gaseous nitrogen, Ar - N{sub 2} mixture, and air are investigated. An FPG-10 generator with voltage pulse FWHM of 200 and 400 ps and matched-load amplitudes of 14 and 6 kV, respectively, is used to excite gases. It is shown that excitation can be performed in two regimes using this generator. In the first regime a diffuse discharge is formed at atmospheric pressure, which opens ways to design miniature nanosecond UV lamps. A diffuse discharge is formed due to the generation of runaway electrons, with the aid of electrodes having a small radius of curvature and voltage pulses with a sharp leading edge. In the second regime an elevated average radiation power is obtained under excitation by a barrier discharge. However, the operating pressure is lower in this case, and the sizes of the emitting region and the UV pulse width significantly increase. (laser applications and other topics in quantum electronics)

  11. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    NASA Astrophysics Data System (ADS)

    Zhao, Quantang; Zhang, Z. M.; Yuan, P.; Cao, S. C.; Shen, X. K.; Jing, Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zong, Y.; Wang, Y. R.; Zhao, H. W.

    2013-11-01

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60-70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article.

  12. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    SciTech Connect

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D

    2007-03-05

    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  13. The COBRA accelerator pulsed-power driver for Cornell/Sandia ICF research

    SciTech Connect

    Smith, D.L.; Ingwersen, P.; Bennett, L.F.; Boyes, J.D.; Anderson, D.E.; Greenly, J.B.; Sudan, R.N.; Hammer, D.A.

    1995-07-01

    This paper introduces and describes the new Cornell Beam Research Accelerator, COBRA, the result of a three and one-half year collaboration. The flexible 4 to 5-MV, 100 to 250-kA, 46-ns pulse width accelerator is based on a four-cavity Inductive Voltage Adder (IVA) design. In addition to being a mix of new and existing components, COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 1800 about their vertical axis. Our tests with negative high voltage on the inner MITL stalk indicate that the vacuum power flow has established reasonable azimuthal symmetry within about 2 ns (or 0.6 m) after the cavity output cap. Preliminary results with the accelerator, single cavity, and MITL are presented alone, with the design details and circuit model predictions.

  14. Count rate limitations for pulse-counting instrumentation in pulsed accelerator fields.

    PubMed

    Justus, Alan L

    2012-01-01

    This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields in order to preestablish appropriate limitations in use. Discussed are the "narrow" pulse and the "wide" pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse fine microstructure on the counting losses of the pulse-counting instrumentation. In the narrow-pulse case, the accelerator pulse width is less than or equal to the instrument's dead time; whereas in the wide-pulse case, the accelerator pulse width is significantly longer than the instrument's dead time. Examples are provided that highlight the various concepts and limitations.

  15. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers.

    PubMed Central

    Kim, A M; Vergara, J L

    1998-01-01

    In voltage-clamp studies of single frog skeletal muscle fibers stained with the potentiometric indicator 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl] vinyl]pyridinium betaine (di-8 ANEPPS), fluorescence transients were recorded in response to both supercharging and step command pulses. Several illumination paradigms were utilized to study global and localized regions of the transverse tubule system (T-system). The rising phases of transients obtained from global illumination regions showed distinct accelerations when supercharging pulses were applied (95% of steady-state fluorescence achieved in 1.5 ms with supercharging pulses versus 14.6 ms with step pulses). When local transients were recorded at the edge of the muscle fiber, their kinetics resembled those of the applied waveform, but a similar relationship was not observed in transients from regions near the edge chosen to minimize the surface membrane contribution. We developed a model of the T-system capable of simulating membrane potential changes as a function of time and distance along the T-system cable and the associated fluorescence changes in regions corresponding to the experimental illumination strategies. A critical parameter was the access resistance term, for which values of 110-150 Omega.cm2 were adequate to fit the data. The results suggest that the primary mechanism through which supercharging pulses boost the kinetics of T-system voltage changes most likely involves their compensating the voltage attenuation across the access resistance at the mouth of the T-tubule. PMID:9746552

  16. Topics in high voltage pulsed power plasma devices and applications

    NASA Astrophysics Data System (ADS)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  17. High-voltage nanosecond pulses in a low-pressure radio-frequency discharge.

    PubMed

    Pustylnik, M Y; Hou, L; Ivlev, A V; Vasilyak, L M; Couëdel, L; Thomas, H M; Morfill, G E; Fortov, V E

    2013-06-01

    An influence of a high-voltage (3-17 kV) 20 ns pulse on a weakly-ionized low-pressure (0.1-10 Pa) capacitively coupled radiofrequency (RF) argon plasma is studied experimentally. The plasma evolution after pulse exhibits two characteristic regimes: a bright flash, occurring within 100 ns after the pulse (when the discharge emission increases by 2-3 orders of magnitude over the steady-state level), and a dark phase, lasting a few hundreds μs (when the intensity of the discharge emission drops significantly below the steady-state level). The electron density increases during the flash and remains very large at the dark phase. 1D3V particle-in-cell simulations qualitatively reproduce both regimes and allow for detailed analysis of the underlying mechanisms. It is found that the high-voltage nanosecond pulse is capable of removing a significant fraction of plasma electrons out of the discharge gap, and that the flash is the result of the excitation of gas atoms, triggered by residual electrons accelerated in the electric field of immobile bulk ions. The secondary emission from the electrodes due to vacuum UV radiation plays an important role at this stage. High-density plasma generated during the flash provides efficient screening of the RF field (which sustains the steady-state plasma). This leads to the electron cooling and, hence, onset of the dark phase.

  18. Characteristics for electrochemical machining with nanoscale voltage pulses.

    PubMed

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses. PMID:19504864

  19. Modeling the Pulse Line Ion Accelerator (PLIA): an algorithm for quasi-static field solution.

    SciTech Connect

    Friedman, A; Briggs, R J; Grote, D P; Henestroza, E; Waldron, W L

    2007-06-18

    The Pulse-Line Ion Accelerator (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a ''sheath helix'' model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.

  20. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  1. Light pressure acceleration with frequency-tripled laser pulse

    SciTech Connect

    Wang, Xiaofeng; Shen, Baifei E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei E-mail: zhxm@siom.ac.cn; Ji, Liangliang; Wang, Wenpeng; Zhao, Xueyan; Xu, Jiancai; Yu, Yahong; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang

    2014-08-15

    Light pressure acceleration of ions in the interaction of the frequency-tripled (3ω) laser pulse and foil target is studied, and a promising method to increase accelerated ion energy is shown. Results show that at a constant laser energy, much higher ion energy peak value is obtained for 3ω laser compared with that using the fundamental frequency laser. The effect of energy loss during frequency conversion on ion acceleration is considered, which may slightly decrease the acceleration effect.

  2. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    PubMed

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  3. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  4. Effect of DC voltage pulses on memristor behavior.

    SciTech Connect

    Evans, Brian R.

    2013-10-01

    Current knowledge of memristor behavior is limited to a few physical models of which little comprehensive data collection has taken place. The purpose of this research is to collect data in search of exploitable memristor behavior by designing and implementing tests on a HP Labs Rev2 Memristor Test Board. The results are then graphed in their optimal format for conceptualizing behavioral patterns. This series of experiments has concluded the existence of an additional memristor state affecting the behavior of memristors when pulsed with positively polarized DC voltages. This effect has been observed across multiple memristors and data sets. The following pages outline the process that led to the hypothetical existence and eventual proof of this additional state of memristor behavior.

  5. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT

    SciTech Connect

    Smith, D.L.; Johnson, D.L.; Boyes, J.D.

    1997-06-01

    As participants in the Technology Options Study for the second axis of the Dual Axis Radiographic HydroTest (DARHT) facility located at Los Alamos National Laboratories, the authors have considered several accelerator concepts based on the Inductive Voltage Adder (IVA) technology that is being used successfully at Sandia on the SABRE and HERMES-III facilities. The challenging accelerator design requirements for the IVA approach include: {ge}12-MeV beam energy; {approximately}60-ns electrical pulse width; {le}40-kA electron beam current; {approximately}1-mm diameter e-beam; four pulses on the same axis or as close as possible to that axis; and an architecture that fits within the existing building envelope. To satisfy these requirements the IVA concepts take a modular approach. The basic idea is built upon a conservative design for eight ferromagnetically isolated 2-MV cavities that are driven by two 3 to 4-{Omega} water dielectric pulse forming lines (PFLs) synchronized with laser triggered gas switches. The 100-{Omega} vacuum magnetically insulated transmission line (MITL) would taper to a needle cathode that produces the electron beam(s). After considering many concepts the authors narrowed their study to the following options: (A) Four independent single pulse drivers powering four single pulse diodes; (B) Four series adders with interleaved cavities feeding a common MITL and diode; (C) Four stages of series PFLs, isolated from each other by triggered spark gap switches, with single-point feeds to a common adder, MITL, and diode; and (D) Isolated PFLs with multiple-feeds to a common adder using spark gap switches in combination with saturable magnetic cores to isolate the non-energized lines. The authors will discuss these options in greater detail identifying the challenges and risks associated with each.

  6. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  7. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  8. RF pulse compression in the NLC test accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, T. L.

    At the Stanford Linear Accelerator Center (SLAC), the authors are designing a Next Linear Collider (NLC) with linacs powered by x-band klystrons with RF pulse compression. The design of the linac RF system is based on x-band prototypes which have been tested at high power, and on a systems-integration test - the Next Linear Collider Test Accelerator (NLCTA) - which is currently under construction at SLAC. This paper discusses some of the systems implications of RF pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by RF phase modulation, intrapulse variations in the linac beam energy.

  9. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  10. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  11. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    NASA Astrophysics Data System (ADS)

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-01

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  12. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  13. Microbunching and coherent acceleration of electrons by subcycle laser pulses

    SciTech Connect

    Rau, B.; Tajima, T.; Hojo, H.

    1997-05-01

    The pick up and acceleration of all plasma electrons irradiated by an intense, subcyclic laser pulse is demonstrated via analytical and numerical calculations. It is shown that the initial low emittance of the plasma electrons is conserved during the process of acceleration, leading to an extremely cold, bunched electron beam. Compression of the electron bunch along the longitudinal coordinate is naturally achieved due to the interaction of electrons and laser pulse. In this paper, the authors find the localized solutions to Maxwell`s equations of a subcyclic laser pulse and use these to determine the acceleration of charged particles and they suggest future application for this acceleration mechanism as low energy particle injector and as electron source for coherent x-ray generation.

  14. On the traceably accurate voltage calibration of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Colaux, J. L.; Terwagne, G.; Jeynes, C.

    2015-04-01

    We describe in detail a calibration method for the terminal voltage of small accelerators used for ion beam analysis, with the elastic resonance of 16O(α,α)16O at 3038 keV as the intrinsic measurement standard. The beam energy relative to this resonance is determined with a precision around 300 eV and an evaluated reproducibility of 1.0 keV. We show that this method is both robust and convenient, and demonstrate consistency with calibration relative to three other independent methods: using radioactive sources and using the resonant 27Al(p,γ)28Si and non-resonant 16O(p,γ)17F direct capture reactions. We re-evaluate the literature and show that the peak in the cross-section function is at 3038.1 ± 2.3 keV. By comparing the results obtained with 16O(α,α)16O to the other calibration methods we show that this uncertainty can be reduced to 1.3 keV.

  15. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  16. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  17. Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel.

    PubMed

    Mulholland, Michael D; Seidman, David N

    2011-12-01

    The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6-2 nJ pulse(-1) at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse(-1) at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm(-3) (voltage pulsing) to as small as 3.5 ± 0.8 nm(-3). Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

  18. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    NASA Astrophysics Data System (ADS)

    Sato, Masayuki

    2008-05-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  19. RF pulse compression in the NLC test accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, Theodore L.

    1995-07-01

    At the Stanford Linear Accelerator Center (SLAC), we are designing a Next Linear Collider (NLC) with linacs powered by X-band klystrons with rf pulse compression. The design of the linac rf system is based on X-band prototypes which have been tested at high power, and on a systems-integration test—the Next Linear Collider Test Accelerator (NLCTA)—which is currently under construction at SLAC. This paper discusses some of the systems implications of rf pulse compression, and the use of pulse compression in the NLCTA, both for peak power multiplication and for controlling, by rf phase modulation, intra-pulse variations in the linac beam energy.

  20. A cryogenic dose calorimeter for pulsed radiographic accelerators

    SciTech Connect

    Watson, S.A.; Kauppila, T.; Mueller, K.H.

    1994-10-01

    Calorimetry is the most direct, absolute technique for absorbed dose measurements. To improve the measurement accuracy for use with quantitative radiography, a calorimeter has been developed for LANL`s pulsed radiographic machines which produce Bremsstrahlung radiation fields of 50-200 Rad per pulse at 1 meter from the source. This paper describes the theory of operation, the calorimeter design, and presents results from the PHERMEX accelerator.

  1. Vacuum electron acceleration by using two variable frequency laser pulses

    SciTech Connect

    Saberi, H.; Maraghechi, B.

    2013-12-15

    A method is proposed for producing a relativistic electron bunch in vacuum via direct acceleration by using two frequency-chirped laser pulses. We consider the linearly polarized frequency-chiped Hermit-Gaussian 0, 0 mode lasers with linear chirp in which the local frequency varies linearly in time and space. Electron motion is investigated through a numerical simulation using a three-dimensional particle trajectory code in which the relativistic Newton's equations of motion with corresponding Lorentz force are solved. Two oblique laser pulses with proper chirp parameters and propagation angles are used for the electron acceleration along the z-axis. In this way, an electron initially at rest located at the origin could achieve high energy, γ=319 with the scattering angle of 1.02{sup ∘} with respect to the z-axis. Moreover, the acceleration of an electron in different initial positions on each coordinate axis is investigated. It was found that this mechanism has the capability of producing high energy electron microbunches with low scattering angles. The energy gain of an electron initially located at some regions on each axis could be greatly enhanced compared to the single pulse acceleration. Furthermore, the scattering angle will be lowered compared to the acceleration by using laser pulses propagating along the z-axis.

  2. Interplay of voltage and temperature acceleration of oxide breakdown for ultra-thin gate oxides

    NASA Astrophysics Data System (ADS)

    Wu, E.; Suñé, J.; Lai, W.; Nowak, E.; McKenna, J.; Vayshenker, A.; Harmon, D.

    2002-11-01

    In this work, we resolved several seemingly conflicting experimental observations regarding temperature dependence of oxide breakdown in the context of change of voltage acceleration factors with reducing voltages. It is found that voltage acceleration factor is temperature dependent at a fixed voltage while voltage acceleration factors are temperature independent at a fixed TBD. We unequivocally demonstrated that strong temperature dependence of time(charge)-to-breakdown, TBD( QBD), observed on ultra-thin gate oxides (<5 nm) is not a thickness effect as previously suggested. It is a consequence of two experimental facts: (1) voltage-dependent voltage acceleration and (2) temperature-independent voltage acceleration at a fixed TBD window. For the first time, time-to-breakdown at low temperature of -50 °C is reported. It is found that Weibull slopes are insensitive to temperature variations using accurate area-scaling method. The stress-induced leakage current (SILC) was used as a measure of defect-generation rate and critical defect density to investigate its correlation with the directly measured breakdown data, QBD( TBD). The comprehensive and statistical measurements of SILC at breakdown as a function of temperature are presented in detail for the first time. Based on these results, we conclude that SILC-based measurements cannot adequately explain the temperature dependence of oxide breakdown. Finally, we provide a global picture for time-to-breakdown in voltage and temperature domains constructed from two important empirical relations based on comprehensive experimental database.

  3. Radio-Frequency Pulse Compression for Linear Accelerators.

    NASA Astrophysics Data System (ADS)

    Nantista, Christopher Dennis

    Recent efforts to develop plans for an electron -positron linear collider with center-of-mass energy approaching a TeV have highlighted the need for sources capable of delivering hundreds of megawatts of peak rf drive power at X-band frequencies. This need has driven work in the area of rf pulse compression, which enhances the peak power available from pulsed rf tubes by compressing their output pulses in time, accumulating the available energy into shorter pulses. The classic means of rf pulse compression for linear accelerators is SLED. This technique is described, and the problem it presents for multibunch acceleration explained. Other pulse compression schemes, capable of producing suitable output pulses are explored, both theoretically and experimentally, in particular Binary Pulse Compression and SLED-II. The merits of each are considered with regard to gain, efficiency, complexity, size and cost. The development of some novel system components, along with the theory behind their design, is also discussed. The need to minimize copper losses in long waveguide runs led to the use of the circular TE_{01} propagation mode in over-moded guide, requiring much attention to mechanisms of coupling power between modes. The construction and commissioning of complete, high-power pulse compression systems is reported on, as well as their use in the testing of X-band accelerating structures, which, along with the X-band klystrons used, were developed at SLAC in parallel with the pulse compression work. The focus of the dissertation is on SLED-II, the favored scheme in some current linear accelerator designs. In addition to our experimental results, practical implementation considerations and design improvements are presented. The work to date has led to detailed plans for SLED-II systems to be used in the Next Linear Collider Test Accelerator, now under construction at SLAC. The prototype of the upgraded system is near completion. Descriptions of various rf pulse

  4. A Pulsed Power Supply with Sag Compensation using Controlled Gradational Voltage

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Yamada, Masaki; Tashiro, Shojirou; Iwata, Akihiko

    A pulsed power supply with sag compensation using controlled gradational voltage to increase the flatness of output waveforms has been developed.The sag compensation circuit consists of compensation units connected in series. Each compensation unit consists of capacitances, diodes, and semiconductor switches. The capacitances of each unit are charged with different voltages by 2n (V0, 2V0, 4V0, ···). The compensation voltages, which has 2n-1 steps, is generated by switching the semiconductor switches of each unit in a binary sequence. Using this method, compensation voltage waveforms up to 6.2kV with 31 steps can be obtained with 5 compensation units. The sag compensation circuit has been adapted to a direct switch type pulsed power supply, which generates 7kV pulsed voltage with a pulse width of 700μs, thus realizing sag compensation.

  5. Influence of acceleration voltage on scanning electron microscopy of human blood platelets.

    PubMed

    Pretorius, E

    2010-03-01

    Scanning electron microscopy (SEM) is used to view a variety of surface structures, molecules, or nanoparticles of different materials, ranging from metals, dental and medical instruments, and chemistry (e.g. polymer analysis) to biological material. Traditionally, the operating conditions of the SEM are very important in the material sciences, particularly the acceleration voltage. However, in biological sciences, it is not typically seen as an important parameter. Acceleration voltage allows electrons to penetrate the sample; thus, the higher the acceleration voltage the more penetration into the sample will occur. As a result, ultrastructural information from deeper layers will interfere with the actual surface morphology that is seen. Therefore, ultimately, if acceleration voltage is lower, a better quality of the surface molecules and structures will be produced. However, in biological sciences, this is an area that is not well-documented. Typically, acceleration voltages of between 5 and 20 kV are used. This manuscript investigates the influence of acceleration voltages ranging from 5 kV to as low as 300 V, by studying surface ultrastructure of a human platelet aggregate. It is concluded that, especially at higher magnifications, much more surface detail is visible in biological samples when using an acceleration voltage between 2 kV and 300 V.

  6. Monte Carlo Simulations of Microchannel Plate Detectors II: Pulsed Voltage Results

    SciTech Connect

    Kruschwitz, Craig A.; Wu, Ming; Rochau, Greg A.

    2011-02-11

    This paper is part of a continuing study of straight-channel microchannel plate (MCP)–based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage increases in sensitivity in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP.

  7. The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation

    NASA Astrophysics Data System (ADS)

    Cho, Sang Ho; Cheong, Sang Sun; Yokota, Mitsuhiro; Kaneko, Katsuhiko

    2016-10-01

    High-voltage pulse technology has been applied to rock excavation, liberation of microfossils, drilling of rocks, oil and water stimulation, cleaning castings, and recycling products like concrete and electrical appliances. In the field of rock mechanics, research interest has focused on the use of high-voltage pulse technology for drilling and cutting rocks over the past several decades. In the use of high-voltage pulse technology for drilling and cutting rocks, it is important to understand the fragmentation mechanism in rocks subjected to high-voltage discharge pulses to improve the effectiveness of drilling and cutting technologies. The process of drilling rocks using high-voltage discharge is employed because it generates electrical breakdown inside the rocks between the anode and cathode. In this study, seven rock types and a cement paste were electrically fractured using high-voltage pulse discharge to investigate their dielectric breakdown properties. The dielectric breakdown strengths of the samples were compared with their physical and mechanical properties. The samples with dielectric fractured were scanned using a high-resolution X-ray computed tomography system to observe the fracture formation associated with mineral constituents. The fracture patterns of the rock samples were analyzed using numerical simulation for high-voltage pulse-induced fragmentation that adopts the surface traction and internal body force conditions.

  8. Resistance-driven bunching mode of an accelerated ion pulse

    SciTech Connect

    Lee, E.P.

    1981-10-16

    Amplification of a longitudinal perturbation of an ion pulse in a linear induction accelerator is calculated. The simplified accelerator model consists only of an applied field (E/sub a/), distributed gap impedance per meter (R) and beam-pipe capacity per meter (C). The beam is treated as a cold, one-dimensional fluid. It is found that normal mode frequencies are nearly real, with only a very small damping rate proportional to R. This result is valid for a general current profile and is not restricted to small R. However, the mode structure exhibits spatial amplification from pulse head to tail by the factor exp(RCLv/sub o//2), where L is pulse length and v/sub 0/ is drift velocity. This factor is very large for typical HIF parameters. An initially small disturbance, when expanded in terms of the normal modes, is found to oscillate with maximum amplitude proportional to the amplification factor.

  9. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    NASA Astrophysics Data System (ADS)

    Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.

    2016-09-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.

  10. NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA - 77M prototype hall thruster built under the High Voltage Hall accelerator development project funded by the Science Mission Directorate ; potential use is propulsion for deep space science missions

  11. Accelerated esterification of free fatty acid using pulsed microwaves.

    PubMed

    Kim, Daeho; Choi, Jinju; Kim, Geun-Ju; Seol, Seung Kwon; Jung, Sunshin

    2011-07-01

    It was demonstrated that pulsed microwave irradiation is a more effective method to accelerate the esterification of free fatty acid with a heterogeneous catalyst than continuous microwave irradiation. A square-pulsed microwave with a 400 Hz repetition rate and a 10-20% duty cycle with the same energy as the continuous microwave were used in this study. The pulsed microwaves improved the esterification conversion from 39.9% to 66.1% after 15 min in comparison with the continuous microwave under the same reaction conditions. These results indicated that pulsed microwaves with repetitive strong power could enhance the efficiency of biodiesel production relative to the use of continuous microwave with mild power.

  12. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector.

    PubMed

    Taniguchi, M; Kashiwagi, M; Umeda, N; Dairaku, M; Takemoto, J; Tobari, H; Tsuchida, K; Yamanaka, H; Watanabe, K; Kojima, A; Hanada, M; Sakamoto, K; Inoue, T

    2012-02-01

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A∕m(2) (346 mA) where the 3 × 5 apertures were used. Measurement of the beam profile revealed that deflection of the H(-) ions was large and a part of the H(-) ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A∕m(2) (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A∕m(2)).

  13. Plasma acceleration processes in an ablative pulsed plasma thruster

    SciTech Connect

    Koizumi, Hiroyuki; Noji, Ryosuke; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2007-03-15

    Plasma acceleration processes in an ablative pulsed plasma thruster (APPT) were investigated. APPTs are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electric power requirements and simple, compact propellant system. The plasma acceleration mechanism, however, has not been well understood. In the present work, emission spectroscopy, high speed photography, and magnetic field measurements are conducted inside the electrode channel of an APPT with rectangular geometry. The successive images of neutral particles and ions give us a comprehensive understanding of their behavior under electromagnetic acceleration. The magnetic field profile clarifies the location where the electromagnetic force takes effect. As a result, it is shown that high density, ablated neutral gas stays near the propellant surface, and only a fraction of the neutrals is converted into plasma and electromagnetically accelerated, leaving the residual neutrals behind.

  14. Material acceleration estimation by four-pulse tomo-PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2014-08-01

    A tomographic PIV system is introduced for the instantaneous measurement of the material acceleration (material derivative of velocity). The system is conceived to operate with short temporal separation (microseconds) and is therefore suitable for applications up to the high-speed flow regimes. The method of operation consists of tomographic imaging of a measurement volume using three arrays of four CCD cameras and two double-pulse laser systems. Advantages and shortcomings of the approach with respect to the most commonly used method based on light polarization are discussed. Various approaches are compared to determine the optimal utilization of four-pulse data to measure the material acceleration: Eulerian and Lagrangian schemes are compared to the recently introduced fluid trajectory correlation (FTC) technique from the authors. A synthetic image test case of a translating vortex is used to compare the schemes with and without the presence of noise. The truncation errors and sensitivity to random noise for each scheme are highlighted. A discussion is also given on the dynamic range of the schemes. The four-pulse tomographic system is used to measure the separated wake of an axisymmetric truncated base with afterbody at a Reynolds number of 68 000. The system calibration accuracy and the baseline measurement uncertainty of the velocity are evaluated with a zero-time delay test. A novel criterion is introduced to establish the relative accuracy of the material derivative measurement, based on the curl of the material acceleration field. The results indicate that the four-pulse tomo-PIV approach suits the measurement of the material acceleration using a variety of estimation schemes. In particular, the FTC technique gives the lowest error levels and is well-suited to perform accurate material acceleration measurements.

  15. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge.

    PubMed

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.

  16. Digitally controlled pulse-level discriminator operates over wide voltage range

    NASA Technical Reports Server (NTRS)

    Cancro, C. A.

    1966-01-01

    Low power drain discriminator circuit generates an output pulse when an input pulse exceeds a discrete digitally controlled threshold voltage. The discriminator operates over a wide linear or nonlinear range of threshold levels. It uses several amplifier stages ahead of a fixed-reference threshold detector.

  17. Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge

    NASA Astrophysics Data System (ADS)

    Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.

    2015-11-01

    The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.

  18. A high voltage pulse generator for the mod-anode of the cluster klystron

    SciTech Connect

    Zhao, Yongxiang; Wang, Hai-peng

    1995-10-01

    A high voltage pulse generator using Zarem type was developed. The advantage of the Zarem type circuit is that it does not require a matched load. In our case the purser is dedicated to drive a mod-anode, which is a capacitive load. Therefore the Zarem type circuit is desirable. This report addresses systematically the R & D work, including the basic Principle and the designing consideration, the low voltage and high voltage experiments. A lot of irregular phenomena were observed, including ringing, pulse ``skirt`` and ``deficiency``. Also addressed are the analyses, simulation and solutions.

  19. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  20. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  1. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude

    NASA Astrophysics Data System (ADS)

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  2. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time. PMID:22852729

  3. Development of a novel voltage divider for measurement of sub-nanosecond rise time high voltage pulses

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Senthil, K.; Singh, S. K.; Kumar, Ranjeet; Sharma, Archana

    2016-02-01

    This paper is about the development of a copper sulphate based aqueous-electrolytic voltage divider for the measurement of high voltage pulses, 100 kV, with pulse widths of 1-2 ns and rise time <1 ns. Novel features are incorporated in the design of the divider, to meet the performance requirements for the application. Analytical calculations to justify design are described. Structural simulation of the divider is carried out using field wave simulation software to verify the effectiveness. A calibration procedure has been developed to calibrate the divider. Results obtained during calibration are subjected to statistical analysis to determine the confidence of measurement. Details of design, analysis, and simulation are described in this paper.

  4. Design of a Plasma Injector for a Pulsed Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Cassibry, J. T.; Thio, Y. C. F.; Markusic, T. E.; Sommers, J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    In recent years, a pulsed plasma accelerator has been proposed as a candidate stand-off driver for the formation of an imploding liner in magnetized target fusion. For a near-term physics exploratory experiment to study the feasibility of this standoff approach, a plasma accelerator has been proposed that requires the controlled introduction and preparation of the initial plasma for acceleration. This includes uniform injection of the propellant downstream of the breech with a high degree of ionization. The design of a plasma feed is presented, which injects a high conductivity, highly collisional propellant transverse to the conductor. The plasma injector is designed to establish an initial plasma with a moderate Hall parameter at the trailing edge of the plasma slug, high Hall parameter behind the slug for magnetic insulation, and a short diffusion length in comparison with characteristic dimensions of the plasma slug to avoid propellant loss at the trailing edge.

  5. Multi-MeV Electron Acceleration by Subterawatt Laser Pulses

    NASA Astrophysics Data System (ADS)

    Goers, A. J.; Hine, G. A.; Feder, L.; Miao, B.; Salehi, F.; Wahlstrand, J. K.; Milchberg, H. M.

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the ˜10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ˜0.5 nC is measured for energies >1 MeV . Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wave breaking, which can radiate more than ˜3 % of the laser energy in a ˜1 fs bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.

  6. Analysis of Voltage Signals from Superconducting Accelerator Magnets

    SciTech Connect

    Lizarazo, J.; Caspi, S.; Ferracin, P.; Joseph, J.; Lietzke, A. F.; Sabbi, G. L.; Wang, X.

    2009-10-30

    We present two techniques used in the analysis of voltage tap data collected during recent tests of superconducting magnets developed by the Superconducting Magnet Program at Lawrence Berkeley National Laboratory. The first technique was used on a quadrupole to provide information about quench origins that could not be obtained using the time-of-flight method. The second technique illustrates the use of data from transient flux imbalances occurring during magnet ramping to diagnose changes in the current-temperature margin of a superconducting cable. In both cases, the results of this analysis contributed to make improvements on subsequent magnets.

  7. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    NASA Technical Reports Server (NTRS)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  8. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  9. Adjustable, High Voltage Pulse Generator with Isolated Output for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Slobodov, Ilia

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high voltage pulse generator with isolated output for etch, sputtering, and ion implantation applications within the materials science and semiconductor processing communities. The output parameters are independently user adjustable: output voltage (0 - 2.5 kV), pulse repetition frequency (0 - 100 kHz), and duty cycle (0 - 100%). The pulser can drive loads down to 200 Ω. Higher voltage pulsers have also been tested. The isolated output allows the pulse generator to be connected to loads that need to be biased. These pulser generators take advantage modern silicon carbide (SiC) MOSFETs. These new solid-state switches decrease the switching and conduction losses while allowing for higher switching frequency capabilities. This pulse generator has applications for RF plasma heating; inductive and arc plasma sources; magnetron driving; and generation of arbitrary pulses at high voltage, high current, and high pulse repetition frequency. This work was supported in part by a DOE SBIR.

  10. A high-impedance attenuator for measurement of high-voltage nanosecond-range pulses.

    PubMed

    Yu, Binxiong; Liu, Jinliang; Zhang, Tianyang; Hong, Zhiqiang

    2013-05-01

    A novel kind of high-impedance cable attenuator for measurement of high-voltage ns-range pulses is investigated in this paper. The input and output ports of the proposed attenuator were both high-impedance ports, and good pulse response characteristics of the proposed attenuator were obtained with pulse response time less than 1 ns. According to the requirement of measurement, two attenuators with lengths at 14 m and 0.7 m were developed with response time of 1 ns and 20 ns, and the attenuation coefficient of 96 and 33.5, respectively. The attenuator with the length of 14 m was used as a secondary-stage attenuator of a capacitive divider to measure the high-voltage pulses at several hundred ns range. The waveform was improved by the proposed attenuator in contrast to the result only measured by the same capacitive divider and a long cable line directly. The 0.7 m attenuator was also used as a secondary-stage attenuator of a standard resistant divider for an accurate measurement of high-voltage pulses at 100 ns range. The proposed cable attenuator can be used to substitute the traditional secondary-stage attenuators for the measurement of high-voltage pulses.

  11. 200 ns pulse high-voltage supply for terahertz field emission.

    PubMed

    Welsh, Gregor H; Turton, David A; Jones, David R; Jaroszynski, Dino A; Wynne, Klaas

    2007-04-01

    We present a method of generating 200 ns high-voltage (up to 40 kV) pulses operating at repetition rates of up to 100 kHz, which may be synchronized with laser pulses. These supplies are simple to make and were developed for ultrafast terahertz pulse generation from GaAs photoconductive antennas using a high-repetition-rate regeneratively amplified laser. We also show an improvement in signal-to-noise ratio over a continuous dc bias field and application of the supply to terahertz pulse generation. PMID:17477645

  12. Voltage spike detection in high field superconducting accelerator magnets

    SciTech Connect

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  13. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  14. Voltage holding study of 1 MeV accelerator for ITER neutral beam injector

    SciTech Connect

    Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Dairaku, M.; Takemoto, J.; Tobari, H.; Tsuchida, K.; Yamanaka, H.; Watanabe, K.; Kojima, A.; Hanada, M.; Sakamoto, K.; Inoue, T.

    2012-02-15

    Voltage holding test on MeV accelerator indicated that sustainable voltage was a half of that of ideal quasi-Rogowski electrode. It was suggested that the emission of the clumps is enhanced by a local electric field concentration, which leads to discharge initiation at lower voltage. To reduce the electric field concentration in the MeV accelerator, gaps between the grid supports were expanded and curvature radii at the support corners were increased. After the modifications, the accelerator succeeded in sustaining -1 MV in vacuum without beam acceleration. However, the beam energy was still limited at a level of 900 keV with a beam current density of 150 A/m{sup 2} (346 mA) where the 3 x 5 apertures were used. Measurement of the beam profile revealed that deflection of the H{sup -} ions was large and a part of the H{sup -} ions was intercepted at the acceleration grid. This causes high heat load on the grids and the breakdowns during beam acceleration. To suppress the direct interception, new grid system was designed with proper aperture displacement based on a 3D beam trajectory analysis. As the result, the beam deflection was compensated and the voltage holding during the beam acceleration was improved. Beam parameter of the MeV accelerator was increased to 980 keV, 185 A/m{sup 2} (427 mA), which is close to the requirement of ITER accelerator (1 MeV, 200 A/m{sup 2}).

  15. AC-loss considerations of a pulse SMES for an accelerator

    NASA Astrophysics Data System (ADS)

    Lyly, M.; Hiltunen, I.; Järvelä, J.; Korpela, A.; Lehti, L.; Stenvall, A.; Mikkonen, R.

    2010-06-01

    In particle accelerators quasi-DC superconducting magnets are used to keep particles in desired tracks. The needed rapid field variations of these high energy magnets require large energy bursts. If these bursts are taken from and fed back to the utility grid, its voltage is distorted and the quality of the electricity degrades. In addition, these bursts may decrease operation life time of generators and extra arrangements may be required by the electricity producers. Thus, an energy storage is an essential component for a cost-effective particle accelerator. Flywheels, capacitors and superconducting magnetic energy storage (SMES) are possible options for these relatively large and high power energy storages. Here we concentrate on AC-loss of a pulse SMES aiming to demonstrate the feasibility of NbTi SMES in a particle accelerator. The designing of a SMES requires highly reliable AC-loss simulations. In this paper, calorimetric AC-loss measurements of a NbTi magnet have been carried out to consider conductor's suitability in a pulse SMES. In addition, the measured results are compared with AC-loss simulations.

  16. Concept study of high volume food irradiation with a pulsed power accelerator

    SciTech Connect

    Turman, B.N.; Prestwich, K.R.; Neau, E.L.; Johnson, D.L.; Kensek, R.P.

    1993-12-31

    A concept study was initiated to establish technical requirements and processing cost estimates for a high power, high volume x-radiation food processing facility using pulsed power technology. The design study was directed toward a central processing plant that would transport and process the food products in standard pallets of 1.1m {times} 1.2m {times} 1.2m dimensions. The 1.2m depth of penetration, and a dose uniformity requirement of a factor of 2 between the maximum and minimum dose, led to a decision to employ x-radiation, produced from a 5 MeV electron beam. The electron beam is produced from a large-area cathode and accelerated by a multi-module pulsed power accelerator. The beam power for this design is 500 kW. An example application is developed for illustration, based on produce disinfestation at maximum exposure level of l00 krad and minimum exposure of 50 krad. In order to achieve this ratio of maximum to minimum dose, the pallet is rotated through 3609 while being exposed. The estimated process rate is approximately 30 metric tons/hour. The accelerator design was developed by scaling from the present high average power beam experiments in the Repetitive High Energy Pulsed Power (RHEPP) program, which will deliver an output of 350 kW in a 2.5 MeV beam. The high voltage is achieved by using 250 kV pulses that are added together with inductively-isolated adder cavities. This technology will be described, and results from the RHEPP experiments will be compared with the design requirements for the high power food processor application. Processing issues, technology limits, dose calculations, and cost estimates will be discussed.

  17. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  18. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses

    SciTech Connect

    Lu Xinpei; Laroussi, Mounir

    2006-09-15

    Nonequilibrium plasmas driven by submicrosecond high voltage pulses have been proven to produce high-energy electrons, which in turn lead to enhanced ionization and excitations. Here, we describe a device capable of launching a cold plasma plume in the surrounding air. This device, ''the plasma pencil,'' is driven by few hundred nanosecond wide pulses at repetition rates of a few kilohertz. Correlation between current-voltage characteristics and fast photography shows that the plasma plume is in fact a small bulletlike volume of plasma traveling at unusually high velocities. A model based on photoionization is used to explain the propagation kinetics of the plasma bullet under low electric field conditions.

  19. Ion-Hose Instability in Long Pulse Induction Accelerators

    SciTech Connect

    Caporaso, G J; McCarrick, J F

    2000-08-02

    The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions.

  20. Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhan, Yawen; Bian, Haidong; Li, Zhe; Tsang, Chun-Kwan; Lee, Chris; Cheng, Hua; Shu, Shiwei; Li, Yang Yang; Lu, Jian

    2014-07-01

    Dealloying is an important industrial technique for generating nanoporous metallic structures by selectively leaching out the more reactive metal component from an alloy material. A constant voltage is often applied to facilitate the dealloying process. Here we report the first study on dealloying with the application of a voltage waveform-specifically, pulsed voltage waveforms are applied for dealloying Ni-Cu alloys. It is found that pulsed dealloying voltage waveforms can exert a strong impact on the dealloying process by 1) significantly lowering the compositional threshold of the more reactive metal component for the dealloying reaction to take place, 2) more thoroughly removing the more reactive metal component and thus producing a porous metal of higher purity and higher porosity (volume fraction of voids), and 3) greatly affecting the morphology of the generated porous metal structure (e.g., leading to significantly thinner ligaments). The nanoporous metallic materials obtained by the pulsed voltage waveform enable supercapacitor electrodes of significantly better performance than the counterpart dealloyed with a constant voltage.

  1. Overview of LANL short-pulse ion acceleration activities

    SciTech Connect

    Flippo, Kirk A.; Schmitt, Mark J.; Offermann, Dustin; Cobble, James A.; Gautier, Donald; Kline, John; Workman, Jonathan; Archuleta, Fred; Gonzales, Raymond; Hurry, Thomas; Johnson, Randall; Letzring, Samuel; Montgomery, David; Reid, Sha-Marie; Shimada, Tsutomu; Gaillard, Sandrine A.; Sentoku, Yasuhiko; Bussman, Michael; Kluge, Thomas; Cowan, Thomas E.; Rassuchine, Jenny M.; Lowenstern, Mario E.; Mucino, J. Eduardo; Gall, Brady; Korgan, Grant; Malekos, Steven; Adams, Jesse; Bartal, Teresa; Chawla, Surgreev; Higginson, Drew; Beg, Farhat; Nilson, Phil; Mac Phee, Andrew; Le Pape, Sebastien; Hey, Daniel; Mac Kinnon, Andy; Geissel, Mattias; Schollmeier, Marius; Stephens, Rich

    2009-12-02

    An overview of Los Alamos National Laboratory's activities related to short-pulse ion acceleration is presented. LANL is involved is several projects related to Inertial Confinement Fusion (Fast Ignition) and Laser-Ion Acceleration. LANL has an active high energy X-ray backlighter program for radiographing ICF implosions and other High Energy Density Laboratory Physics experiments. Using the Trident 200TW laser we are currently developing high energy photon (>10 keV) phase contrast imaging techniques to be applied on Omega and the NIF. In addition we are engaged in multiple programs in laser ion acceleration to boost the ion energies and efficiencies for various potential applications including Fast Ignition, active material interrogation, and medical applications. Two basic avenues to increase ion performance are currently under study: one involves ultra-thin targets and the other involves changing the target geometry. We have recently had success in boosting proton energies above 65 MeV into the medical application range. Highlights covered in the presentation include: The Trident Laser System; X-ray Phase Contrast Imaging for ICF and HEDLP; Improving TNSA Ion Acceleration; Scaling Laws; Flat Targets; Thin Targets; Cone Targets; Ion Focusing;Trident; Omega EP; Scaling Comparisons; and, Conclusions.

  2. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    PubMed

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  3. DC Pulsed Atmospheric Micro Plasma using a Voltage Doubled Capacitive Ballast

    NASA Astrophysics Data System (ADS)

    Ha, Chang-Seung; Lee, Je-Hyun; Son, Eui-Jeong; Kim, Dong-Hyun; Lee, Hae June; Lee, Ho-Jun; PPRC Team

    2013-09-01

    An atmospheric plasma driven by the capacitive ballast circuit with voltage doubler has been developed. At first, the capacitors are charged and then the stored energy is injected into the electrode. At that time, the voltage is doubled by means of series connection switching. The switching device isolate the power from the plasma, therefore the discharge energy is effectively controlled by the stored energy in the capacitor. The role of voltage doubler is maintaining the charging voltage less than the firing voltage of the electrodes and providing sufficiently high voltage during the plasma generation. It eliminates parasitic discharge due to capacitive coupling between isolation switch and plasma electrodes. Proposed method allows stable operation of the μ-plasma under dielectric-free electrode as well as independent control of discharge voltage and energy. When the applied capacitance is varied as 1.2 nF, 10 nF and 22 nF at the voltage of 600V, the corresponding discharge energy per pulse is 168 μJ, 971 μJ, and 1.126 mJ respectively. For the fixed capacitance value, discharge duration decreases and peak current increases with the discharge voltage. The characteristics of the micro plasma are analyzed in terms of time-resolved images, spatio-temporally resolved OES and fluid simulations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0011136).

  4. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  5. Relativistic electron accelerations associated with the interplanetary pressure pulse

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yoshizumi; Saito, Shinji; Matsumoto, Yosuke; Hayashi, Masahiro; Amano, Takanobu; Seki, Kanako

    2016-04-01

    The radiation belt electron fluxes are highly variable, and various time scales for the flux enhancements are observed. The rapid flux enhancements of the outer belt electrons have been observed associated with the solar wind pressure pulse. In order to investigate such rapid flux enhancements, we conduct the code-coupling simulations of GEMSIS-RB test particle simulation [Saito et al., 2010] and GEMSIS-GM global MHD simulation [Matsumoto et al., 2010]. The GEMSIS-RB simulation calculates the 3-dimentional guiding-center motion of a number of test particles in the electric/magnetic fields provided from the GEMSIS-GM. After the arrival of the pressure pulse, the outer belt electrons in the dayside moves inward due to the drift resonance with inductive electric fields of the fast mode waves. Some of electrons are strongly accelerated within a few ten minutes and spiral patterns of drifted electrons can be observed. We may discuss the possibility to identify such selected acceleration of relativistic electrons by Van Allen Probes and upcoming ERG satellite.

  6. Ultrashort Electron Beam Pulses and Diagnosis by Advanced Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Iijima, H.; Muroya, Y.; Watanabe, T.; Hosokai, T.

    2003-08-01

    240fs 18 MeV low emittance(6 pai mm.mrad) electron beam was generated and its pulse shape was diagnosed by the S-band laser photocathode RF gun and linac. The maximum charge per bunch was 7 nC. This electron pulse was synchronized with 100fs 0.3TW Ti:Sapphire laser with the timing jitter of 330fs(rms). Recently, the Cu cathode(QE10∧-4) was replaced by Mg cathode(QE10∧-3). This system is utilized for radiation chemistry analysis for supercritical water. We have adopted the four diagnostic methods(femtosecond streak camera, coherent transition radiation interferometer, far-infrared polychromator, fluctuation method) and checked their time-resolution precisely. Further, we are doing the experiment on laser plasma cathode by 12TW 50fs laser and He gas jet. Laser plasma wakefield acceleration and electron injection via wavebreaking are planned. We have developed a new theory of self-injection scheme to generate ˜10fs electron pulse. We have already succeeded in observing 40 MeV low emittance electron beam of 14 nC.

  7. The effects of high-voltage pulse electric discharges on ion adsorption on activated carbons

    NASA Astrophysics Data System (ADS)

    Gafurov, M. M.; Sveshnikova, D. A.; Larin, S. V.; Rabadanov, K. Sh.; Shabanova, Z. E.; Yusupova, A. A.; Ramazanov, A. Sh.

    2008-07-01

    The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.

  8. [The disinfection and preservation of drinking water with low-voltage pulsed electrical discharges].

    PubMed

    Avchinnikov, A V; Rakhmanin, Iu A; Zhuk, E G

    1995-01-01

    Two-hour exposure to low-voltage (2.8 to 3 kV) pulsed electric discharges (PED) effectively (by 99.9999%) disinfected drinking water. Preservation of water with IED had a pronounced bactericidal effect in respect of numerous pathogenic and opportunistic microorganisms. The aftereffect of PED persists for at least 2 months.

  9. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Redondo, L. M.; Silva, J. Fernando; Canacsinh, H.; Ferrão, N.; Mendes, C.; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  10. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    PubMed

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  11. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  12. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  13. Development of a compact generator for gigawatt, nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ˜500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  14. Development of a compact generator for gigawatt, nanosecond high-voltage pulses.

    PubMed

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  15. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    PubMed

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  16. Laser triggering of water switches in terrawatt-class pulse power accelerators.

    SciTech Connect

    Woodworth, Joseph Ray; Johnson, David Lee (Titan Pulse Sciences, San Leandro, CA); Wilkins, Frank (Bechtel Nevada, Las Vegas, NV); Van De Valde, David (EG&G Technical Services, Albuquerque, NM); Sarkisov, Gennady Sergeevich; Zameroski, Nathan D.; Starbird, Robert L.

    2005-12-01

    Focused Beams from high-power lasers have been used to command trigger gas switches in pulse power accelerators for more than two decades. This Laboratory-Directed Research and Development project was aimed at determining whether high power lasers could also command trigger water switches on high-power accelerators. In initial work, we determined that focused light from three harmonics of a small pulsed Nd:YAG laser at 1064 nm, 532 nm, and 355 nm could be used to form breakdown arcs in water, with the lowest breakdown thresholds of 110 J/cm{sup 2} or 14 GW/cm{sup 2} at 532 nm in the green. In laboratory-scale laser triggering experiments with a 170-kV pulse-charged water switch with a 3-mm anode-cathode gap, we demonstrated that {approx}90 mJ of green laser energy could trigger the gap with a 1-{sigma} jitter of less than 2ns, a factor of 10 improvement over the jitter of the switch in its self breaking mode. In the laboratory-scale experiments we developed optical techniques utilizing polarization rotation of a probe laser beam to measure current in switch channels and electric field enhancements near streamer heads. In the final year of the project, we constructed a pulse-power facility to allow us to test laser triggering of water switches from 0.6- MV to 2.0 MV. Triggering experiments on this facility using an axicon lens for focusing the laser and a switch with a 740 kV self-break voltage produced consistent laser triggering with a {+-} 16-ns 1-{sigma} jitter, a significant improvement over the {+-} 24-ns jitter in the self-breaking mode.

  17. Ponderomotive acceleration of electrons by a laser pulse in magnetized plasma

    SciTech Connect

    Sharma, Anamika; Tripathi, V. K.

    2009-04-15

    Electron acceleration by a circularly polarized Gaussian laser pulse in magnetized plasma is investigated in the limit of frozen refractive index. The electron acceleration depends on the ratio of laser frequency to electron cyclotron frequency, amplitude of the laser pulse and plasma density. Near Doppler shifted cyclotron resonance the electron acquires maximum energy. In this scheme, 0.10 MeV electrons can be effectively accelerated to 1-100 MeV using moderate intensity laser pulse.

  18. Kinetic simulation of capacitively coupled plasmas driven by trapezoidal asymmetric voltage pulses

    SciTech Connect

    Diomede, Paola Economou, Demetre J.

    2014-06-21

    A kinetic Particle-In-Cell simulation with Monte Carlo Collisions was performed of a geometrically symmetric capacitively coupled, parallel-plate discharge in argon, driven by trapezoidal asymmetric voltage pulses with a period of 200 ns. The discharge was electrically asymmetric, making the ion energy distributions at the two electrodes different from one another. The fraction of the period (α), during which the voltage was kept at a constant (top-flat) positive value, was a critical control parameter. For the parameter range investigated, as α increased, the mean ion energy on the grounded electrode increased and the ions became more directional, whereas the opposite was found for the ions striking the powered electrode. The absolute value of the DC self-bias voltage decreased as α increased. Plasma instabilities, promoted by local double layers and electric field reversals during the time of the positive voltage excursion, were characterized by electron plasma waves launched from the sheath edge.

  19. Kinetic simulation of capacitively coupled plasmas driven by trapezoidal asymmetric voltage pulses

    NASA Astrophysics Data System (ADS)

    Diomede, Paola; Economou, Demetre J.

    2014-06-01

    A kinetic Particle-In-Cell simulation with Monte Carlo Collisions was performed of a geometrically symmetric capacitively coupled, parallel-plate discharge in argon, driven by trapezoidal asymmetric voltage pulses with a period of 200 ns. The discharge was electrically asymmetric, making the ion energy distributions at the two electrodes different from one another. The fraction of the period (α), during which the voltage was kept at a constant (top-flat) positive value, was a critical control parameter. For the parameter range investigated, as α increased, the mean ion energy on the grounded electrode increased and the ions became more directional, whereas the opposite was found for the ions striking the powered electrode. The absolute value of the DC self-bias voltage decreased as α increased. Plasma instabilities, promoted by local double layers and electric field reversals during the time of the positive voltage excursion, were characterized by electron plasma waves launched from the sheath edge.

  20. On the role of terahertz field acceleration and beaming of surface plasmon generated ultrashort electron pulses

    SciTech Connect

    Greig, S. R. Elezzabi, A. Y.

    2014-07-28

    A mechanism for control of the energy and pitch angle of surface plasmon accelerated electron pulses is proposed. Electrons generated via multi-photon absorption in a silver film on a glass prism are ponderomotively accelerated in the surface plasmon field excited by a 30 fs, 800 nm optical pulse. Through introduction of a single-cycle terahertz (THz) pulse, the energy spectrum and trajectory of the generated electron pulse can be controlled via the THz field strength. Generated electron pulses achieve peak kinetic energies up to 1.56 keV, while utilizing an incident optical field strength five times less than comparable plasmon accelerated electron pulses. These results demonstrate that THz pulses can be utilized to achieve tunable, high energy, trajectory controlled electron pulses necessary for various applications that require ultrafast electron pulse manipulation.

  1. Optimization of electric pulse amplitude and frequency in vitro for low voltage and high frequency electrochemotherapy.

    PubMed

    Shankayi, Zeinab; Firoozabadi, S M P; Hassan, Zohair Saraf

    2014-02-01

    During standard electrochemotherapy (ECT), using a train of 1,000 V/cm amplitude rectangular pulses with 1 Hz frequency, patients experience an unpleasant sensation and slight edema. According to the patients, muscle contractions provoked by high amplitude (about 1,000 V/cm) and low repetition frequency (1 Hz) pulses are the most unpleasant and painful sensations. Recently, ECT using low voltage and higher repetition frequency (LVHF) has been shown to be an effective tool for inhibiting tumor growth. The aim of the present study was to optimize electric pulse amplitude and repetition frequency for LVHF ECT by sampling the different sets of pulse parameters on cell viability and permeabilization. In ECT, a reversible effect based on high permeabilization is desirable. For this purpose, we used bleomycin to evaluate the permeabilization of K562 and MIA-PACA2 cells caused by low voltage (50-150 V/cm) and higher repetition frequency (4-6 kHz) electric pulses. We show that the reversible effect with electropermeabilization of the cells caused by LVHF ECT is accessible; this interaction is more effective for electric pulses with 70 V/cm amplitude. PMID:24271721

  2. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  3. Laser plasma accelerator driven by a super-Gaussian pulse

    NASA Astrophysics Data System (ADS)

    Ostermayr, Tobias; Petrovics, Stefan; Iqbal, Khalid; Klier, Constantin; Ruhl, Hartmut; Nakajima, Kazuhisa; Deng, Aihua; Zhang, Xiaomei; Shen, Baifei; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Tajima, Toshiki; Tajima

    2012-08-01

    A laser wakefield accelerator (LWFA) with a weak focusing force is considered to seek improved beam quality in LWFA. We employ super-Gaussian laser pulses to generate the wakefield and study the behavior of the electron beam dynamics and synchrotron radiation arising from the transverse betatron oscillations through analysis and computation. We note that the super-Gaussian wakefields radically reduce the betatron oscillations and make the electron orbits mainly ballistic over a single stage. This feature permits to obtain small emittance and thus high luminosity, while still benefitting from the low-density operation of LWFA (Nakajima et al. 2011 Phys. Rev. ST Accel. Beams 14, 091301), such as the reduced radiation loss, less number of stages, less beam instabilities, and less required wall plug power than in higher density regimes.

  4. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.

  5. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Ochiai, Yasushi; Murata, Takuya; Masugata, Katsumi

    2012-10-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device, multiple shot operations are realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm and length 25 mm. A capacitor bank of capacitance 3 μF and a charging voltage of 30 kV was used, and the wire was successfully exploded by a discharge current of 15 kA with a rise time of 5.3 μs. Plasma flux of ion current density around 70 A/cm2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7×104 m/ s, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of the ion current density distribution, the ion flow is found to be concentrated toward the direction where the ion acceleration gap is placed. From the experiment, the device is found to be acceptable for applying the PHIB accelerator.

  6. High-speed, high-voltage pulse generation using avalanche transistor.

    PubMed

    Yong-Sheng, Gou; Bai-Yu, Liu; Yong-Lin, Bai; Jun-Jun, Qin; Xiao-Hong, Bai; Bo, Wang; Bing-Li, Zhu; Chuan-Dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design. PMID:27250452

  7. High-speed, high-voltage pulse generation using avalanche transistor

    NASA Astrophysics Data System (ADS)

    Yong-sheng, Gou; Bai-yu, Liu; Yong-lin, Bai; Jun-jun, Qin; Xiao-hong, Bai; Bo, Wang; Bing-li, Zhu; Chuan-dong, Sun

    2016-05-01

    In this work, the conduction mechanism of avalanche transistors was demonstrated and the operation condition for generating high-speed pulse using avalanche transistors was illustrated. Based on the above analysis, a high-speed and high-voltage pulse (HHP) generating circuit using avalanche transistors was designed, and its working principle and process were studied. To improve the speed of the output pulse, an approach of reducing the rise time of the leading edge is proposed. Methods for selecting avalanche transistor and reducing the parasitic inductance and capacitance of printed circuit board (PCB) were demonstrated. With these instructions, a PCB with a tapered transmission line was carefully designed and manufactured. Output pulse with amplitude of 2 kV and rise time of about 200 ps was realized with this PCB mounted with avalanche transistors FMMT417, indicating the effectiveness of the HHP generating circuit design.

  8. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  9. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; Hanuka, Adi; Makasyuk, Igor V.; Peralta, Edgar A.; Soong, Ken; Byer, Robert L.; England, R. Joel

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m–1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m–1 was measured—a record for dielectric laser accelerators.

  10. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses.

    PubMed

    Wootton, Kent P; Wu, Ziran; Cowan, Benjamin M; Hanuka, Adi; Makasyuk, Igor V; Peralta, Edgar A; Soong, Ken; Byer, Robert L; Joel England, R

    2016-06-15

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m-1 accelerating gradients is possible only with laser pulse durations shorter than ∼1  ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Using this technique, an electron accelerating gradient of 690±100  MV m-1 was measured-a record for dielectric laser accelerators. PMID:27304266

  11. Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids

    NASA Astrophysics Data System (ADS)

    Griesbauer, J.; Bössinger, S.; Wixforth, A.; Schneider, M. F.

    2012-12-01

    Hydrated interfaces are ubiquitous in biology and appear on all length scales from ions and individual molecules to membranes and cellular networks. In vivo, they comprise a high degree of self-organization and complex entanglement, which limits their experimental accessibility by smearing out the individual phenomenology. The Langmuir technique, however, allows the examination of defined interfaces, the controllable thermodynamic state of which enables one to explore the proper state diagrams. Here we demonstrate that voltage and pressure pulses simultaneously propagate along monolayers comprised of either native pork brain or synthetic lipids. The excitation of pulses is conducted by the application of small droplets of acetic acid and monitored subsequently employing time-resolved Wilhelmy plate and Kelvin probe measurements. The isothermal state diagrams of the monolayers for both lateral pressure and surface potential are experimentally recorded, enabling us to predict dynamic voltage pulse amplitudes of 0.1-3 mV based on the assumption of static mechanoelectrical coupling. We show that the underlying physics for such propagating pulses is the same for synthetic and natural extracted (pork brain) lipids and that the measured propagation velocities and pulse amplitudes depend on the compressibility of the interface. Given the ubiquitous presence of hydrated interfaces in biology, our experimental findings seem to support a fundamentally new mechanism for the propagation of signals and communication pathways in biology (signaling), which is based neither on protein-protein or receptor-ligand interaction nor diffusion.

  12. Properties of dielectric-barrier-free atmospheric pressure microplasma driven by submicrosecond dc pulse voltage

    SciTech Connect

    Ha, Chang-Seung; Choi, Joon-Young; Kim, Dong-Hyun; Park, Chung-Hoo; Lee, Hae June; Lee, Ho-Jun

    2009-08-10

    Atmospheric pressure microplasma driven by dc pulse is developed. This device has a simple structure comprised of a flowing helium (He) feed gas and dielectric-free metal electrodes without an external current limiting resistor. It is shown that a stable glow mode plasma can be sustained without arc runaway by limiting the voltage pulse width to shorter than 300 ns. The properties of the device are reported in terms of discharge current waveforms, rotational temperature of N{sub 2}{sup +}, and spatiotemporally resolved optical emission characteristics.

  13. Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution.

    PubMed

    Kenney, Jason A; Hwang, Gyeong S

    2005-07-01

    A two-dimensional computational model is developed to describe electrochemical nanostructuring of conducting materials with ultrashort voltage pulses. The model consists of (1) a transient charging simulation to describe the evolution of the overpotentials at the tool and workpiece surfaces and the resulting dissolution currents and (2) a feature profile evolution tool which uses the level set method to describe either vertical or lateral etching of the workpiece. Results presented include transient currents at different separations between tool and workpiece, evolution of overpotentials and dissolution currents as a function of position along the workpiece, and etch profiles as a function of pulse duration. PMID:21727446

  14. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review.

    PubMed

    Batista Napotnik, Tina; Reberšek, Matej; Vernier, P Thomas; Mali, Barbara; Miklavčič, Damijan

    2016-08-01

    For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1-10ns, B: 11-100ns and C: 101-999ns. The analysis confirmed that the plasma membrane is more affected with longer pulses than with short pulses, seen best in uptake of dye molecules after applying single pulses. Additionally, we have reviewed measurements of nsEP and evaluations of the electric fields to which cells were exposed in these reports, and we provide recommendations for assessing nanosecond pulsed electric field effects in electroporation studies. PMID:26946156

  15. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review.

    PubMed

    Batista Napotnik, Tina; Reberšek, Matej; Vernier, P Thomas; Mali, Barbara; Miklavčič, Damijan

    2016-08-01

    For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1-10ns, B: 11-100ns and C: 101-999ns. The analysis confirmed that the plasma membrane is more affected with longer pulses than with short pulses, seen best in uptake of dye molecules after applying single pulses. Additionally, we have reviewed measurements of nsEP and evaluations of the electric fields to which cells were exposed in these reports, and we provide recommendations for assessing nanosecond pulsed electric field effects in electroporation studies.

  16. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    PubMed Central

    Mazzotta, Cosimo; Traversi, Claudio; Paradiso, Anna Lucia; Latronico, Maria Eugenia

    2014-01-01

    Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL) and continuous light accelerated corneal collagen crosslinking (cl-ACXL) with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA) with 8 minutes (1 sec. on/1 sec. off) of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA), corneal topography and aberrometry (CSO EyeTop, Florence, Italy), corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany), endothelial cells count (I-Conan Non Co Robot), and in vivo scanning laser confocal microscopy (Heidelberg, Germany) at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment. PMID:25165576

  17. Pulse voltage determination for electrostatic micro manipulation considering surface conductivity and adhesion of glass particle

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ryo; Hemthavy, Pasomphone; Takahashi, Kunio; Saito, Shigeki

    2015-05-01

    A model with surface conductivity and adhesional force is proposed to investigate the mechanism for electrostatic micro manipulation of a dielectric object using a single probe. The manipulation system consists of three elements: a conductive probe as a manipulator, a conductive plate as a substrate, and a dielectric particle as the target object for manipulation. The particle can be successfully picked up/placed if a rectangular pulse voltage is applied between the probe and the plate. The reliability of the picking up/placing operation is improved by applying a pulse voltage that is determined by a theoretical model considering surface conductivity and adhesion. To verify the theoretical prediction, manipulation experiment is conducted using soda-lime glass particles with radii of 20 μm and 40 μm.

  18. Exploring pulse-voltage-triggered optically induced electrohydrodynamic instability for femtolitre droplet generation

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Fei, Fei; Liu, Lianqing; Yu, Haibo; Yu, Peng; Wang, Yuechao; Lee, Gwo-Bin; Jung Li, Wen

    2014-06-01

    We present a multipoint "virtual dispenser" to draw femtolitre droplets from a dielectric fluidic thin film using pulse-voltage-triggered optically induced electrohydrodynamic instability (PVT-OEHI). The "virtual dispenser" generates instability nucleation sites by controlling the optically induced lateral electrical stress and thermocapillary flow inside an optoelectronics chip. A time scale analysis shows that the electrohydrodynamic (EHD) instability phenomenon is present; however, its external manifestation is suppressed by OEHI. We observed two droplet dispensing mechanisms which correspond to different EHD states: Taylor cone formation and optically induced EHD jet. The EHD states transition could be realized by adjusting the pulse voltage parameters to alter the morphology of dispensed micron-scale polymer droplets, which could then be formed into organized arrays of microlenses with controllable diameter and curvature based on surface tension effect.

  19. Rise time of voltage pulses in NbN superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Yu. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Yu.

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  20. Electron acceleration by few-cycle laser pulses with single-wavelength spot size.

    PubMed

    Dudnikova, G I; Bychenkov, V Yu; Maksimchuk, A; Mourou, G; Nees, J; Bochkarev, S G; Vshivkov, V A

    2003-02-01

    Generation of relativistic electrons from the interaction of a laser pulse with a high density plasma foil, accompanied by an underdense preplasma in front of it, has been studied with two-dimensional particle-in-cell (PIC) simulations for pulse durations comparable to a single cycle and for single-wavelength spot size. The electrons are accelerated predominantly in forward direction for a preplasma longer than the pulse length. Otherwise, both forward and backward electron accelerations occur. The primary mechanism responsible for electron acceleration is identified. Simulations show that the energy of the accelerated electrons has a maximum versus the pulse duration for relativistic laser intensities. The most effective electron acceleration takes place when the preplasma scale length is comparable to the pulse duration. Electron distribution functions have been found from PIC simulations. Their tails are well approximated by Maxwellian distributions with a hot temperature in the MeV range.

  1. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  2. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses.

    PubMed

    Marceau, Vincent; April, Alexandre; Piché, Michel

    2012-07-01

    Exact closed-form solutions to Maxwell's equations are used to investigate the acceleration of electrons in vacuum driven by ultrashort and nonparaxial radially polarized laser pulses. We show that the threshold power above which significant acceleration takes place is greatly reduced by using a tighter focus. Moreover, electrons accelerated by tightly focused single-cycle laser pulses may reach around 80% of the theoretical energy gain limit, about twice the value previously reported with few-cycle paraxial pulses. Our results demonstrate that the direct acceleration of electrons in vacuum is well within reach of current laser technology.

  3. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  4. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  5. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    SciTech Connect

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  6. The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube

    NASA Astrophysics Data System (ADS)

    Weng, Ming; Xu, Weijun; Wang, Rui

    2012-11-01

    A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tube and its working principles are described. Because of the phenomenon that the deformation process of the mercury film on the electrode surface lags behind the charging process, the mercury film deformation process affects the dynamic breakdown voltage of the tube directly. The deformation of the mercury film is observed microscopically, and the dynamic breakdown voltage of the tube is measured using an oscillograph. The results show that all the parameters in the charging process, such as charging resistance, charging capacitance and DC power supply, affect the dynamic breakdown voltage of the tube. Based on these studies, the output pulse amplitude can be controlled continuously and individually by adjusting the power supply voltage. When the DC power supply is adjusted from 7 kV to 10 kV, the dynamic breakdown voltage ranges from 6.5 kV to 10 kV. According to our research, a kind of sub-nanosecond pulse generator is made, with a pulse width ranging from 0.5 ns to 2.5 ns, a rise time from 0.32 ns to 0.58 ns, and a pulse amplitude that is adjustable from 1.5 kV to 5 kV.

  7. Comparison of High-voltage- with Standard-voltage Pulsed Radiofrequency of Gasserian Ganglion in the Treatment of Idiopathic Trigeminal Neuralgia.

    PubMed

    Fang, Luo; Tao, Wang; Jingjing, Lu; Nan, Ji

    2015-09-01

    Although pulsed radiofrequency treatment (PRFT) has been used to treat trigeminal neuralgia (TN) safely, satisfactory improvement is lacking. Recently, much attention has been paid to the PRFT dose and intra-operative parameters. It has been reported that high-voltage PRFT could significantly reduce discogenic pain. However, there is no study investigating the effects of high-voltage PRFT on TN. The aim of this prospective, randomized, double-blinded study was to evaluate the efficacy and safety of high-voltage PRFT in comparison with standard-voltage PRFT for idiopathic TN. Sixty severe TN patients were randomly assigned to 2 groups treated with CT-guided standard- or high-voltage-pulsed radiofrequency (RF) of Gasserian ganglion, respectively, between January 2012 and July 2012. Numeric Rating Scales (NRS), carbamazepine dose, and side effects were evaluated at day 1, weeks 1 and 2, months 1, 3, and 6, and 1 year postoperative. There were 27 patients in the standard-voltage group and 26 patients in the high-voltage group who completed the 1-year follow-up study. The effective rates in the standard-voltage and high-voltage PRFT groups were 41% and 69%, respectively, at 1, 3, and 6 months postoperative (P = 0.037). The effective rate in the standard-voltage group decreased to 19% at 1-year postoperative, while in the high-voltage group remained at 69% (P = 0.000). No significant side effects were detected in both groups. In conclusion, CT-guided high-voltage PRFT is an effective and safe interventional therapeutic choice for idiopathic TN patients.

  8. Pulse-discharge plasmas for plasma-accelerator applications

    SciTech Connect

    Clayton, C. E.; Joshi, C.; Lopes, N. C.

    2012-12-21

    For particle-beam-driven plasma wakefield accelerators, a long and fully-ionized plasma is desirable. We describe an experiment at UCLA to develop a prototype of such plasma using a pulsed-current discharge. Scaling of the plasma density with glass-tube diameter and with discharge-circuit parameters is currently underway. We have found that 4 Torr of Argon can be fully ionized to a density of about 1.3 Multiplication-Sign 10{sup 17} cm{sup -3} when the current density in the 1 inch diameter, 1.2 meter-long tube is around 2 kA/cm{sup 2}, at least at one point along the discharge. The homogeneity of the plasma density in the longitudinal direction is crucial to prevent slippage of the driven plasma structures with the particles. Equally important are the transverse gradients since any dipole asymmetry in the transverse direction can lead to 'steering' of the particle beam. The longitudinal and transverse gradients may be a function of time into the discharge, the shape of the electrodes, the tube size, and the fractional ionization for a given fill pressure. These issues are currently under investigation.

  9. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  10. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core

    NASA Astrophysics Data System (ADS)

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  11. Effective post-acceleration of ion bunches in foils irradiated by ultra-intense laser pulses

    SciTech Connect

    Andreev, A. A.; Nickles, P. V.; Platonov, K. Yu

    2014-08-15

    Two-step laser acceleration of protons with two foils and two laser pulses is modelled and optimized. It is shown that a nearly mono-energetic distribution of proton bunches can be realized by a suitable parameter choice. Two-step acceleration schemes make it possible to obtain both higher efficiency and energy as compared to the acceleration with only one laser pulse of an energy equal to the sum of the energy of the two pulses. With the aid of our analytical model, the optimal distance between the two targets, the delay between the two laser pulses, and the parameters of the laser pulses are determined. Estimates and results of the modelling are proven with 2D PIC simulations of the acceleration of proton bunches moving through the second target.

  12. Ion acceleration in the RPA regime by shaped pulses

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2012-10-01

    Recently we presented a controllable pulse shaping by relativistic transparency in non-uniform, overdense plasmas [1]. In this shaping scheme, by tapering the density and thickness of an overdense plasma slab, the pulse front can be carved into various figures such as transversely flat or concave shape with longitudinally sharp pulse fronts. As an application of such a novel scheme of the pulse shaping, we studied the effects of the shaped pulse on ion beam energy, charge, and energy spread in the radiation pressure dominant regime. From the 2-dimensional PIC simulations, we observed that the flat pulse produces more energetic proton beam than a usual Gaussian beam, and concave pulse yields even more abundant proton beam. [4pt] [1] M.S. Hur et al., ``Versatile shaping of a relativistic laser pulse from a nonuniform overdense plasma,'' Phys. Plasmas, (accepted, to appear in 2012).

  13. Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas.

    PubMed

    Bin, J H; Ma, W J; Wang, H Y; Streeter, M J V; Kreuzer, C; Kiefer, D; Yeung, M; Cousens, S; Foster, P S; Dromey, B; Yan, X Q; Ramis, R; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2015-08-01

    Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration. PMID:26296119

  14. Photon acceleration in the amplified plasma density wake of two copropagating laser pulses

    SciTech Connect

    Raj, G.; Islam, M. R.; Ersfeld, B.; Jaroszynski, D. A.

    2010-07-15

    Photon acceleration of a laser pulse occurs in a medium with a space and time-varying permittivity. Using Hamiltonian formulation, a theoretical study of the frequency upshift of a probe laser pulse, which is considered as a 'quasiphoton' or 'test particle,' propagating through an amplified plasma density wake of two copropagating laser pulses, is presented. The linear superposition of wakefields studied using an analytical model shows that the presence of a controlling pulse amplifies the wake of a driver pulse. The amplified wake amplitude can be controlled by varying the delay between the two pulses. Two-dimensional particle-in-cell simulations demonstrate wake superposition due to the two copropagating laser pulses. A phase space analysis shows that the probe photon can experience a significant frequency upshift in the amplified density wake. Furthermore, the range of photon frequencies trapped and accelerated is determined by the amplitude of the density wake.

  15. Simulation of subnanosecond streamers in atmospheric-pressure air: Effects of polarity of applied voltage pulse

    NASA Astrophysics Data System (ADS)

    Babaeva, N. Yu.; Naidis, G. V.

    2016-08-01

    Results of simulation of subnanosecond streamer propagation in corona gap configuration, obtained in the framework of 2D fluid model, are presented. Effects related with the polarity of a voltage pulse applied to the stressed electrode are discussed. It is argued that these effects (dependence of the discharge current and propagation velocity on the polarity of applied voltage) observed in experiments can be attributed to the difference in initial (preceding the streamer formation) distributions of charged species inside the gap. This difference can be caused by preionization (at negative polarity) of the gas inside the discharge gap by runaway electrons. Calculated streamers have large widths (up to 1 cm) and move with velocities in the range of 109-1010 cm s-1, similar to experimental data.

  16. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  17. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Hansson, M.; Aurand, B.; Ekerfelt, H.; Persson, A.; Lundh, O.

    2016-09-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second pulse in relation to the main pulse. Furthermore, the peak energy of the electrons in the beams is controlled by moving the collision point along the optical axis of the main pulse, and thereby changing the acceleration length in the plasma.

  18. Electron tunnelling through single azurin molecules can be on/off switched by voltage pulses

    SciTech Connect

    Baldacchini, Chiara; Kumar, Vivek; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2015-05-04

    Redox metalloproteins are emerging as promising candidates for future bio-optoelectronic and nano-biomemory devices, and the control of their electron transfer properties through external signals is still a crucial task. Here, we show that a reversible on/off switching of the electron current tunnelling through a single protein can be achieved in azurin protein molecules adsorbed on gold surfaces, by applying appropriate voltage pulses through a scanning tunnelling microscope tip. The observed changes in the hybrid system tunnelling properties are discussed in terms of long-sustained charging of the protein milieu.

  19. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-06-01

    Theoretical study of heavy ion acceleration from sub-micron gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations, the time history of the laser pulse is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity 3 × 10 21 W / cm 2 , duration 32 fs, focal spot size 5 μm, and energy 27 J, the calculated reflection, transmission, and coupling coefficients from a 20 nm foil are 80%, 5%, and 15%, respectively. The conversion efficiency into gold ions is 8%. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon, and flux 2 × 10 11 ions / sr . An analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the radiation pressure acceleration regime and the onset of the target normal sheath acceleration regime. The numerical simulations and analytical model point to at least four technical challenges hindering the heavy ion acceleration: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration, and high reflectivity of the plasma. Finally, a regime suitable for heavy ion acceleration has been identified in an alternative approach by analyzing the energy absorption and distribution among participating species and scaling of conversion efficiency, maximum energy, and flux with laser intensity.

  20. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    SciTech Connect

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  1. Electrical breakdown of a dielectric on the voltage pulse trailing edge: Investigation in terms of the incubation time concept

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Morozov, V. A.; Smirnov, I. V.; Lukin, A. A.

    2015-12-01

    The time effects of electrical breakdown at the leading and trailing edges of a voltage pulse applied to an interelectrode gap are studied. The pulsed dielectric strengths of limestone, sandstone, clay, paraffin, and water are determined experimentally at fixed parameters of the voltage pulse and different lengths of the dielectric-filled interelectrode gap. Experimental data are explained in terms of a structure-time approach based on the incubation time criterion. It is found that breakdown occurs when a sufficient power impulse (electric energy) arises within a characteristic time rather than when the electric field reaches a limit.

  2. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  3. Accelerated cable life testing of EPR-insulated medium voltage distribution cables

    SciTech Connect

    Walton, M.D. ); Bernstein, B.S. ); Smith, J.T. III ); Thue, W.A. , Stuart, FL ); Groeger, J.H. )

    1994-07-01

    This paper presents results aimed at developing a reliable accelerated aging tank test for EPR-insulated cables. Aging was performed at 2 to 4 times rated voltage on load cycling to temperatures of 45 C, 60 C, 75 C, and 90 C at the conductor with water in the conductor strands and outside the cable. Results show that cable failure is more rapid at the highest electrical stress and lowest conductor load cycle temperature. Cables aged at higher temperatures and various levels of electrical stress rarely failed and retained in excess of 40% of their original breakdown strength after 1,500+ days of aging. Aging performed at 90 C load cycle temperature and 4 times rated voltage with air on the outside and water at the conductor of the cable showed more rapid loss of life than with water outside. Results indicate the optimum aging conditions for EPR-insulated cables in the accelerated cable life test (ACLT) differ significantly from those previously observed for XLPE-insulated cables, and that the appropriate test methodology for EPR-insulated cables requires additional study.

  4. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  5. Tuning of laser pulse shapes in grating-based compressors for optimal electron acceleration in plasmas

    SciTech Connect

    Toth, Cs.; Faure, J.; van Tilborg, J.; Geddes, C.G.R.; Schroeder, C.B.; Esare y, E.; Leemans, W.P.

    2003-01-22

    The temporal shape (rise time, fall time, skewness) of 50 - 200-fs Ti:sapphire laser pulses has been controlled by appropriate adjustment of a grating-pair compressor. It was found that the skewness of the laser pulse envelope is particularly sensitive to the third-order component of the spectral phase. Introducing such a third-order phase offset by detuning the grating pair relative to the optimum pulse compression settings allowed the generation of skewed pulses. As an example of an application, these skewed pulses were used to optimize a laser-plasma electron accelerator.

  6. High voltage pulsed current in collagen realignment, synthesis, and angiogenesis after Achilles tendon partial rupture

    PubMed Central

    Rampazo, Érika P.; Liebano, Richard E.; Pinfildi, Carlos Eduardo; Folha, Roberta A. C.; Ferreira, Lydia M.

    2016-01-01

    ABSTRACT Objective To verify the efficacy of high voltage pulsed current in collagen realignment and synthesis and in angiogenesis after the partial rupturing of the Achilles tendon in rats. Method Forty male Wistar rats were randomized into four groups of 10 animals each: sham, cathodic stimulation, anodic stimulation, and alternating stimulation. Their Achilles tendons were submitted to direct trauma by a free-falling metal bar. Then, the treatment was administered for six consecutive days after the injury. In the simulation group, the electrodes were positioned on the animal, but the device remained off for 30 minutes. The other groups used a frequency of 120 pps, sensory threshold, and the corresponding polarity. On the seventh day, the tendons were removed and sent for histological slide preparation for birefringence and Picrosirius Red analysis and for blood vessel quantification. Results No significant difference was observed among the groups regarding collagen realignment (types I or III collagen) or quantity of blood vessels. Conclusion High voltage pulsed current for six consecutive days was not effective in collagen realignment, synthesis, or angiogenesis after the partial rupturing of the Achilles tendon in rats. PMID:27556387

  7. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  8. A photon accelerator -- Large blueshifting of femtosecond pulses in semiconductors

    SciTech Connect

    Berezhiani, V.I.; Mahajan, S.M.; Murusidze, I.G.

    1997-04-01

    The availability of relatively high intensity (I > 10{sup 9}Wcm{sup {minus}2}) [but moderate ({approximately} nJ) total energy], femtosecond laser pulses with wavelengths ranging from the ultraviolet to the mid-infrared has opened the doors for a serious investigation of the nonlinear optical properties of matter on ultrashort time scales in a new parameter regime. Even small intensity-dependent nonlinearities can begin to play a major role in the overall electrodynamics, and in determining the fate of the propagating pulse. It is shown that a femtosecond pulse propagating near a two-photon transition in a semiconductor waveguide can undergo a large blueshift.

  9. A pulsed-power generator merging inductive voltage and current adders and its switch trigger application example.

    PubMed

    Li, Lee; Yafeng, Ge; Heqin, Zhong; Bin, Yu; Longjun, Xie

    2013-07-01

    A pulsed-power generator using inductive adder technology is proposed for the case of a discharge gap. The merit of this generator is to merge the pulsed-voltage and pulsed-current adders via the dual secondary windings with special circuit. For the nonlinear impedance in any discharge gap, the standalone voltage-pulse and current-pulse can be outputted successively by this generator. The proposed generator is especially useful for the common resolution of implementing pulse discharge at less cost. As an application example, a compact trigger prototype was developed to compatibly use in the gas-insulated and vacuum switches. Experiments achieved good results that the triggered switches showed stable performance and long life. If the basic circuit of this proposed generator is regarded as a pulsed-generating unit, a certain number of such units connected in parallel can be expected to form a general device with generating greater breakdown-voltage and sustained-current pulses for discharge gaps.

  10. A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation

    PubMed Central

    Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-01-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453

  11. Voltage compensation based calibration measurement of 3D-acceleration transducer in fall detection system for the elderly.

    PubMed

    Zheng, Li; Wang, Lu; He, Dianning; Geng, Ning; Geng, Ping; Guan, Dejun; Xu, Lisheng

    2014-01-01

    The fall detection algorithm, which can recognize the fall of human body by collecting the acceleration signals in different directions of the body, is an important part of fall detection system for the elderly. The system, however, may have errors during analyzing the acceleration signal, due to that the coordinate system of the transducer does not coincide with the one of human motion. Furthermore, voltage variation of the battery also influences the accuracy of the acceleration signal. Therefore, in this paper, a fall detection system based on the 3D-acceleration transducer MMA7260 is designed, which can calibrate the acceleration data through compensation of voltage and transformation of coordinates. Experiments illustrated that the proposed method can accurately transform the collected data from the coordinate system of the transducer to that of the human motion, and can recognize various postural changes in the course of the motion of human body.

  12. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  13. Thor: Modeling of a Megabar Class Pulsed Power Accelerator

    NASA Astrophysics Data System (ADS)

    Haill, T. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Stygar, W. A.; Brown, J. L.; Davis, J.-P.; Waisman, E. M.

    2015-06-01

    Thor is a compact, economical machine to drive megabar-class shockless compression material physics experiments and multi-mega-ampere HEDP experiments for the physics community. It is capable of driving peak currents up to 7 MA with rise times of 200-500 ns, resulting in material pressures between 1 to 5 Mbar depending upon the load design, and incorporates a pulse tailoring capability required to maintain shockless loading of many materials. Thor is modular in nature with 200 capacitive bricks triggered in groups by independent, de-coupled switches. The current pulse at the load is a simple linear combination of the 200 time-shifted basis pulses. This enables a variety of experiments including shockless compression experiments using smooth ramped pulses, shock-ramp compression experiments using tailored pulses, and strength measurement experiments using flat top pulses. This paper overviews the Thor design and describes an equivalent circuit model of the machine that drives MHD simulations of the load region. 3D ALEGRA MHD simulations explore topics such as the uniformity of the magnetic field along the stripline load and the design modifications to improve uniformity. Optimized current drives and simulations of the aforementioned applications are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's NNSA under Contract DE-AC04-94AL85000.

  14. Combined proton acceleration from foil targets by ultraintense short laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Yu, Tongpu; Ge, Xulei; Yang, Su; Wei, Wenqing; Yuan, Tao; Liu, Feng; Chen, Min; Liu, Jingquan; Li, Yutong; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-04-01

    Proton emission from solid foil targets irradiated by relativistically intense femtosecond laser pulses is studied experimentally. Broad plateaus in energy spectra are measured from micron-thick targets when the incident laser pulses have relatively low intensity contrasts. It is proposed that such proton spectra can be attributed to the combined processes of laser-driven collisionless shock acceleration and target normal sheath acceleration. Simple analytic estimation and two-dimensional particle-in-cell simulations are performed, which support our interpretation. The obtained plateau-shape spectrum may also serve as an effective tool to diagnose the plasma state and verify the ion acceleration mechanisms in laser-solid interactions.

  15. An all solid state pulse power source for high PRF induction accelerators

    SciTech Connect

    Kirbie, H., LLNL

    1998-06-01

    Researchers at the Lawrence Livermore National Laboratory (LLNL) are developing a flexible, all solid-state pulsed power source that will enable an induction accelerator to produce mulitkiloampere electron beams at a maximum pulse repetition frequency (prf) of 2 MHz. The prototype source consists of three, 15-kV, 4.8-kA solid-state modulators stacked in an induction adder configuration. Each modulator contains over 1300 field-effect transistors (FETs) that quickly connect and disconnect four banks of energy storage capacitors to a magnetic induction core. The FETs are commanded on and off by an optical signal that determines the duration of the accelerating pulse. Further electronic circuitry is provided that resets the magnetic cores in each modulator immediately after the accelerating pulse. The system produces bursts of five or more pulses with an adjustable pulse width that ranges from 200 ns to 2 {micro}s The pulse duty factor within a burst can be as high as 25% while still allowing time for the induction core to reset. The solid-state modulator described above is called ARM-II and is named for the Advanced Radiographic Machine (ARM)-a powerful radiographic accelerator that will be the principal diagnostic device for the future Advanced Hydrotest Facility (AHF).

  16. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  17. Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2

    NASA Astrophysics Data System (ADS)

    Pan, J.; Tan, Z. Y.; Wang, X. L.; Sha, C.; Nie, L. L.; Chen, X. X.

    2014-12-01

    In this work, the atmospheric-pressure dielectric barrier discharges in Ar and N2 excited by repetitive voltage pulses have been numerically studied using a 1D fluid model. The differences between the discharge characteristics for Ar and N2 have been presented when changing the parameters of the applied pulse voltage. In this work we present the following significant results. With an increase of the amplitude of the applied pulse voltage, the increase of the maximum discharge current density in Ar is evident, compared with N2; and the discharge mode changes from the weak atmospheric-pressure glow discharge (APGD) to the standard APGD for Ar, and from the atmospheric-pressure Townsend discharge to the APGD for N2. In addition, the increase of the averaged electron density in N2 is more evident than that in Ar, especially when the standard APGD occurs in N2. The increasing frequency leads to lower maximum discharge current density for Ar, however, the reverse is true for N2. With an increase of the pulse width of the applied pulse voltage, the averaged electron density and the maximum discharge current density change slightly in Ar, but they increase drastically in N2.

  18. Generation and measurement of ultrashort pulses from the Stanford Superconducting Accelerator free-electron laser

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-11-01

    The authors present results of frequency resolved optical gating (FROG) measurements on the Superconducting Accelerator (SCA) mid-IR free-electron laser (FEL) at Stanford. FROG retrieves complete amplitude and phase content of an optical pulse. First, they review the properties of FELs including the ability to tune wavelength and pulse length. In addition, the electron beam driving the FEL often affects the optical pulse shape. The SCA mid-IR FEL currently operates at wavelengths between 4 {micro}m and 10 {micro}m and its pulse length can be varied from 700 fs to 2 ps. They then describe details of the experimental layout and procedures particular to FELs and to the mid-IR. Finally, they show FROG measurements on the FEL including examples of nearly transform limited pulses, frequency chirped pulses, and pulses distorted by atmospheric water vapor absorption.

  19. Integer and fractional charge Lorentzian voltage pulses analyzed in the framework of photon-assisted shot noise

    NASA Astrophysics Data System (ADS)

    Dubois, J.; Jullien, T.; Grenier, C.; Degiovanni, P.; Roulleau, P.; Glattli, D. C.

    2013-08-01

    We study the injection n of electrons in a quantum conductor using voltage pulses applied on a contact. We particularly consider the case of Lorentzian voltage pulses. When carrying integer charge, they are known to provide electronic states with a minimal number of excitations, while any other type of pulses are accompanied with a neutral cloud of electron and hole excitations. We focus on the low-frequency shot noise arising when the excitations are partitioned by a single scatterer. Using periodic pulses, the physics can be discussed in the framework of the photon-assisted shot noise. Pulses of arbitrary shape and arbitrary charge are shown to give a marked minimum in the noise when the charge is an integer. The energy-domain characterization of the charge pulse excitations is also given using the shot-noise spectroscopy which reveals the asymmetrical energy spectrum of Lorentzian pulses. Finally, time-domain information is obtained from Hong-Ou-Mandel-type noise correlations when two trains of pulses generated on opposite contacts collide on the scatterer. For integer Lorentzian, the noise versus the time delay between pulse trains is shown to give a measure of the electron wave-packet autocorrelation function. In order to make contact with recent experiments, all the calculations are made at zero and finite temperatures.

  20. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    SciTech Connect

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  1. A simple method for the estimation of power losses in silicon iron sheets under alternating pulse voltage excitation

    SciTech Connect

    Amar, M.; Protat, F.

    1994-03-01

    The prediction of iron losses in magnetic steels submitted to alternating pulse voltages is studied and an efficient method is proposed. It is developed by coupling the pulse voltage form factor and the loss separation model. Prediction of iron losses becomes possible directly from the loss model corresponding to the sinusoidal flux density. This method is validated on silicon iron grain-oriented and nonoriented magnetic steels. The predetermined iron losses are coherent with those measured and this approach allows both simplicity and precision well appreciated by industry.

  2. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    PubMed

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  3. Fluid modeling of a high-voltage nanosecond pulsed xenon microdischarge

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-07-01

    A computational modeling study of high-voltage nanosecond pulsed microdischarge in xenon gas at 10 atm is presented. The discharge is observed to develop as two streamers originating from the cathode and the anode, and propagating toward each other until they merge to form a single continuous discharge channel. The peak plasma density obtained in the simulations is ˜1024 m-3, i.e., the ionization degree of plasma does not exceed 1%. The influence of the initial gas pre-ionization is established. It is seen that an increase in the seeded plasma density results in an increase in the streamer propagation velocity and an increase in the plasma density obtained after the merging of two streamers.

  4. Design and Modeling of Pulsed Power Accelerators Via Circuit Analysis

    1996-12-05

    SCREAMER simulates electrical circuits which may contain elements of variable resistance, capacitance and inductance. The user may add variable circuit elements in a simulation by choosing from a library of models or by writing a subroutine describing the element. Transmission lines, magnetically insulated transmission lines (MITLs) and arbitrary voltage and current sources may also be included. Transmission lines are modeled using pi-sections connected in series. Many models of switches and loads are included.

  5. Ion acceleration in a solitary wave by an intense picosecond laser pulse.

    PubMed

    Zhidkov, A; Uesaka, M; Sasaki, A; Daido, H

    2002-11-18

    Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.

  6. High voltage bulk GaN-based photoconductive switches for pulsed power applications

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Metzger, R.; Preble, E. A.; Evans, K. R.

    2013-03-01

    Switches are at the heart of all pulsed power and directed energy systems, which find utility in a number of applications. At present, those applications requiring the highest power levels tend to employ spark-gap switches, but these suffer from relatively high delay-times (~10-8 sec), significant jitter (variation in delay time), and large size. That said, optically-triggered GaN-based photoconductive semiconductor switches (PCSS) offer a suitably small form factor and are a cost-effective, versatile solution in which delay times and jitter can be extremely short. Furthermore, the optical control of the switch means that they are electrically isolated from the environment and from any other system circuitry, making them immune from electrical noise, eliminating the potential for inadvertent switch triggering. Our recent work shows great promise to extend high-voltage GaN-based extrinsic PCSS state-of-the-art performance in terms of subnanosecond response times, low on-resistance, high current carrying capacity and high blocking voltages. We discuss our recent results in this work.

  7. High voltage pulsed current stimulation of the sciatic nerve in rats: analysis by the SFI

    PubMed Central

    Leoni, Anita Sofia Leite; Mazzer, Nilton; Guirro, Rinaldo Roberto de Jesus; Jatte, Fernanda Guadallini; Chereguini, Paulo Augusto Costa; Monte-Raso, Vanessa Vilela

    2012-01-01

    Objective To analyze the efficiency of high voltage pulsed current (HVPC) with early application in three different sites, in the regeneration of the sciatic nerve in rats submitted to crush injury, the sciatic functional index (SFI) was used to assess the functional recovery. Methods After crushing of the nerve, 57 animals were submitted to cathodal HVPC at frequency of 50Hz and voltage of 100V, 20 minutes per day, 5 days per week. The rats were divided into five groups: control group; ganglion group; ganglion + muscle group; muscle group; and sham group. The SFI was determined weekly for seven weeks, from the preoperative period to the 6th postoperative week. Results Compared with the control group, the results showed a significantly better performance of group 2 for the first 3 weeks; group 3 showed significantly better performance in the third week; and group 4 showed a significantly negative performance during the 4th and 6th weeks. Conclusion Early application of HVPC had a positive effect in the treatment of the spinal cord region and the sciatic nerve root ganglion with a dispersive electrode on the contralateral lumbar region or on the gastrocnemius. However, HVPC had a negative effect in the treatment with an active electrode on the gastrocnemius and a dispersive electrode on the contralateral thigh. Level of evidence II, Prospective comparative study. PMID:24453588

  8. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  9. Effects of pulse duration and areal density on ultrathin foil acceleration

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Ji Liangliang; Wang Fengchao; Wen Meng; Wang Wenpeng; Xu Jiancai; Yu Yahong

    2010-06-15

    The influence of laser pulse duration and areal density of target in the interaction of a circularly polarized pulse with an ultrathin overdense foil is investigated. One-dimensional particle-in-cell simulation shows that with an appropriate laser-pulse rising front, the light pressure acceleration regime is effective even though the thin foil is transparent. As the laser intensity evolves, three stages in the acceleration process can be identified: at first the total reflection of the laser pulse, followed by partial reflection, and then near total reflection again due to the Doppler effect. The influences of the rising front of laser pulse and areal density of the ultrathin foil are investigated. It is found that an optimal laser pulse rising front exists for obtaining high (saturation) ion energy with the same laser energy within a short time. An optimal areal density also exists for obtaining the highest energy. For the same laser pulse, a higher areal density or a higher density with same areal density is more appropriate for obtaining a stationary state for making light pressure acceleration mechanism more effective.

  10. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  11. Effect of anodal high voltage pulsed current on edema formation in frog hind limbs.

    PubMed

    Fish, D R; Mendel, F C; Schultz, A M; Gottstein-Yerke, L M

    1991-10-01

    We have recently demonstrated that some forms of cathodal high voltage pulsed current (HVPC) curb posttraumatic edema formation in frog hind limbs. The purpose of this study was to determine, by assessing the capacity of anodal HVPC to curb posttraumatic edema formation, whether polarity is an important variable. Fourteen anesthetized bullfrogs were placed on large dispersive electrodes lining body slings that maintained the frogs' limbs in a dependent position throughout data collection. The frogs' feet were traumatized by impact following initial measurement of limb volumes. At the commencement of each of four 30-minute treatments, hind limbs were immersed in separate beakers and briefly stimulated until motor threshold was determined. One limb, randomly selected, received anodal HVPC at 90% of motor threshold and 120 pulses per second; the other limb served as a control. Treatments were followed by 30-minute rests. Limb volumes were measured by water displacement immediately after trauma and following each treatment and rest period. Data were expressed as changes from pretrauma volumes in milliliters per kilogram of body weight. A repeated-measures analysis of variance was used to test for treatment effect. Despite an aggressive series of treatments, virtually symmetrical bilateral edema occurred; therefore, no treatment effect was evident. This result contrasts with treatment effects previously reported for cathodal HVPC.

  12. Analysis of Fe Nanoparticles Using XPS Measurements Under D.C. or Pulsed-Voltage Bias

    SciTech Connect

    Suzer, Sefik; Baer, Donald R.; Engelhard, Mark H.

    2010-06-16

    The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shells has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and were analyzed after particle containing solutions were deposited on SiO2/Si substrates, and/or Au substrates. The particle and substrate combinations were subjected to ± 10V d.c. biasing in the form of square waves (SQW) pulses with 5V amplitude. The samples experienced variable degrees of charging for which low energy electrons at ~1 eV, 20μA and low energy Ar+ ions were used to minimize. Application of d.c. bias and/or square wave pulses drastically influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the surrounding solvent. Hence, acetone exhibits the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses gives information about the time constants of the processes involved, which led us postulate that these charging properties we probe in these systems, stem mainly from ionic movement(s).

  13. Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source

    NASA Astrophysics Data System (ADS)

    Xing, Qing-Zi; Du, Lei; Zheng, Shu-Xin; Guan, Xia-Ling; Li, Jian; Cai, Jin-Chi; Gong, Cun-Kui; Wang, Xue-Wu; Tang, Chuan-Xiang; James, Billen; James, Stovall; Lloyd, Young

    2013-05-01

    A four-vane radio-frequency quadrupole (RFQ) accelerator is under construction for the Compact Pulsed Hadron Source (CPHS) project at Tsinghua University. The 3 m-long RFQ will accelerate a 50keV proton beam from the ECR source to 3MeV, and deliver it to the downstream drift tube linac (DTL) with a peak current of 50mA, pulse length of 0.5 ms and beam duty factor of 2.5%. The inter-vane voltage is designed to increase with the longitudinal position to produce a short RFQ. Coupling plates are therefore not necessary. The cavity cross section and vane-tip geometry are tailored as a function of the longitudinal position, while limiting the peak surface electric field to 1.8 Kilpatrick. The RFQ is designed, manufactured, and installed at Tsinghua University. We also present the tuning and cold test results of the RFQ accelerator. After final tuning, the relative error of the quadrupole field is within 2%, and the admixture of the two dipole modes are less than 2% of the quadrupole mode.

  14. Chirped-Pulse Inverse Free Electron Laser: A Tabletop, High-Gradient Vacuum Laser Accelerator

    SciTech Connect

    Hartemann, F V; Troha, A L; Baldis, H A

    2001-03-05

    The inverse free-electron laser (IFEL) interaction is studied both theoretically and numerically in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. We show that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. A computer code which takes into account the three-dimensional nature of the interaction is currently in development and results are expected this Spring.

  15. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source. PMID:26521006

  16. Pulsed radiobiology with laser-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  17. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  18. Electron acceleration by linearly polarized twisted laser pulse with narrow divergence

    SciTech Connect

    Vaziri, Mohammad Sohaily, Sozha; Golshani, Mojtaba; Bahrampour, Alireza

    2015-03-15

    We numerically investigate the vacuum electron acceleration by a high-intensity linearly polarized twisted laser pulse. It is shown that the inherent spiral structure of a Laguerre-Gaussian laser pulse leads to improvement in trapping and acceleration of an electron to energies of the order of GeV in the off-axis case. Also, it is demonstrated that by employing a proper choice of initial injection parameters, the high-energetic electrons with very small scattering angles can be produced.

  19. Protons acceleration in thin CH foils by ultra-intense femtosecond laser pulses

    SciTech Connect

    Kosarev, I. N.

    2015-03-15

    Interaction of femtosecond laser pulses with the intensities 10{sup 21}, 10{sup 22 }W/cm{sup 2} with CH plastic foils is studied in the framework of kinetic theory of laser plasma based on the construction of propagators (in classical limit) for electron and ion distribution functions in plasmas. The calculations have been performed for real densities and charges of plasma ions. Protons are accelerated both in the direction of laser pulse (up to 1 GeV) and in the opposite direction (more than 5 GeV). The mechanisms of forward acceleration are different for various intensities.

  20. Break-out afterburner ion acceleration in the longer laser pulse length regime

    SciTech Connect

    Yin, L.; Albright, B. J.; Shah, R. C.; Palaniyappan, S.; Fernndez, J. C.; Jung, D.; Henig, A.; Bowers, K. J.; Hegelich, B. M.

    2011-06-15

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  1. Break-out afterburner ion acceleration in the longer laser pulse length regime

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Jung, D.; Shah, R. C.; Palaniyappan, S.; Bowers, K. J.; Henig, A.; Fern´ndez, J. C.; Hegelich, B. M.

    2011-06-01

    Kinetic simulations of break-out-afterburner (BOA) ion acceleration from nm-scale targets are examined in a longer pulse length regime than studied previously. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  2. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  3. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  4. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    PubMed

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (<10 Kg in weight) and is primed by a capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  5. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary

    NASA Astrophysics Data System (ADS)

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K.; Das, Rashmita; Deb, Pankaj; Prabaharan, T.; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (<10 Kg in weight) and is primed by a capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  6. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    PubMed

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (<10 Kg in weight) and is primed by a capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads. PMID:22047341

  7. Curvature-Driven Pore Growth in Charged Membranes during Charge-Pulse and Voltage-Clamp Experiments

    PubMed Central

    Kroeger, Jens H.; Vernon, Dan; Grant, Martin

    2009-01-01

    We find that curvature-driven growth of pores in electrically charged membranes correctly reproduces charge-pulse experiments. Our model, consisting of a Langevin equation for the time dependence of the pore radius coupled to an ordinary differential equation for the number of pores, captures the statistics of the pore population and its effect on the membrane conductance. The calculated pore radius is a linear, and not an exponential, function of time, as observed experimentally. Two other important features of charge-pulse experiments are recovered: pores reseal for low and high voltages but grow irreversibly for intermediate values of the voltage. Our set of coupled ordinary differential equations is equivalent to the partial differential equation used previously to study pore dynamics, but permits the study of longer timescales necessary for the simulations of voltage-clamp experiments. An effective phase diagram for such experiments is obtained. PMID:19186129

  8. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    NASA Astrophysics Data System (ADS)

    Hao, Kuan-Sheng; Huang, Song-Ling; Zhao, Wei; Wang, Shen

    2011-06-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.

  9. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness. PMID:27125342

  10. Protecting and accelerating adiabatic passage with time-delayed pulse sequences.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-05-21

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na2 we show that: (i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; (ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and (iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  11. Optimal ion acceleration from ultrathin foils irradiated by a profiled laser pulse of relativistic intensity

    SciTech Connect

    Andreev, A. A.; Steinke, S.; Sokollik, T.; Schnuerer, M.; Nickles, P. V.; Avetsiyan, S. Ter; Platonov, K. Yu.

    2009-01-15

    Recent investigations of relativistic laser plasmas have shown that the energy transfer from the laser field to the kinetic ion energy and therefore the attainable maximum energy of the ions increases when ultrathin targets are irradiated by laser pulse without prepulse. In this paper, the influence of the target thickness and laser pulse contrast on the energy of the accelerated ions has been studied theoretically as well as experimentally. An optimum target was searched if a real laser pulse with a certain prepulse irradiates the target.

  12. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  13. Electron yield enhancement in a laser wakefield accelerator driven by asymmetric laser pulses

    SciTech Connect

    Leemans, W.P.; Catravas, P.; Esarey, E.; Geddes, C.G.R.; Toth, C.; Trines, R.; Schroeder, C.B.; Shadwick, B.A.; van Tilborg, J.; Faure, J.

    2002-08-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using > 10{sup 19} cm{sup -3} plasmas and a 10 TW, > 45 fs, Ti:Al{sub 2}O{sub 3} laser. Laser pulse shape was controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability and that frequency chirp is of minimal importance for the experimental parameters.

  14. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  15. High voltage hall accelerator propulsion system development for NASA science missions

    NASA Astrophysics Data System (ADS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  16. Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure

    SciTech Connect

    Lezhnin, K. V.; Kamenets, F. F.; Beskin, V. S.; Kando, M.; Esirkepov, T. Zh.; Bulanov, S. V.

    2015-03-15

    During ion acceleration by radiation pressure, a transverse inhomogeneity of an electromagnetic pulse leads to an off-axis displacement of the irradiated target, limiting the achievable ion energy. This effect is analytically described within the framework of a thin foil target model and with particle-in-cell simulations showing that the maximum energy of the accelerated ions decreases as the displacement from the axis of the target's initial position increases. The results obtained can be applied to the optimization of ion acceleration by the laser radiation pressure with mass-limited targets.

  17. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  18. On the g/2 Acceleration of a Pulse in a Vertical Chain

    ERIC Educational Resources Information Center

    Foster, Theodore; van Wyngaarden, Willem; Cary, Arthur; Mottmann, John

    2013-01-01

    We have frequently enhanced our department's laboratory experiment involving standing transverse waves in a taut horizontal cord. In addition to the standard experiment, students in these labs investigate the surprising concept that the acceleration of a pulse in a chain hanging vertically is a constant and is equal to half the acceleration…

  19. Magnetic flux expulsions and secular acceleration pulses at the core surface: is there a link? (Invited)

    NASA Astrophysics Data System (ADS)

    Chulliat, A.

    2010-12-01

    Recent observational studies based upon satellite data have shown that magnetic flux is being expelled from the core in several regions of the core surface. This phenomenon is observed below the South Atlantic Anomaly, where at least two reversed flux patches have been growing for several decades, including one under St Helena Island, and below the North polar region, where a small reversed flux patch has emerged in the 1990s, contributing to the acceleration of the North magnetic pole over the same time interval. Secular acceleration pulses are rapid surges in the second order derivative of the radial magnetic field at the core surface. The most recent pulse occurred in 2005 and was at the origin of the 2003 and 2007 geomagnetic jerks, defined as sudden changes in the field second derivative at the Earth’s surface. It was largest under St Helena and Cocos Islands. The simultaneous occurrences in the 2000s of a flux expulsion and an acceleration pulse under the St Helena region are intriguing. Both phenomena were also simultaneously observed under the North polar region in the 1990s. This presentation will (a) briefly review recent evidence in favor of the existence of magnetic flux expulsions and secular acceleration pulses at the core surface, and (b) discuss possible kinematic and dynamical links between both phenomena.

  20. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thrusters anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization.

  1. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  2. Simulation study on nitrogen vibrational kinetics in a single nanosecond pulse high voltage air discharge

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2016-05-01

    We report a simulation study on nitrogen vibrational kinetics N 2 ( X 1 Σg + , v = 0 - 12 ) in a single nanosecond pulse high voltage discharge in dry-air at a pressure of 100 Torr. Apart from the usual processes such as vibrational-vibrational exchange and vibrational-translational relaxation, the state-specific vibrational kinetics take into account the electronic-vibrational (E-V) process and chemical-vibrational process. The vibrational kinetics, coupled with electron Boltzmann equation solver, plasma chemical kinetics, and gas thermal balance are used to model the 100 ns discharge and its subsequent 10 ms afterglow. The self-consistent model shows good agreement with recent experimental results, with regard to time-resolved vibrational and translational temperature. According to the modeling results, The E-V mechanism has a small but non-negligible effect (about 2%) in rising of vibrational quanta in the early afterglow from 100 ns to 1μs. Another possible reason is the convective transport associated with the gas dynamic expansion in time delays around 1μs to 10 μs.

  3. Host-based data acquisition system to control pulsed facilities of the accelerator

    NASA Astrophysics Data System (ADS)

    Zamriy, V. N.

    2016-09-01

    The report discusses development of the host-based system to carry out timed measurements and data acquisition for the control of pulsed facilities of the accelerator. We consider modes of timing and allocation of operations of channels and the system node. The time of any working cycle of the pulsed facilities, rate of a data flow and an amount of serviced channels are coordinated with operation characteristics of the system node. Estimations of the readout rate of the data and the waiting time demonstrate the system efficiency. The technique has been developed to provide checking of groups of pulse parameters and control the facilities of the linear accelerator of electrons LUE-200 of the neutron source IREN.

  4. Paramount Deuteron Acceleration Using High-Intensity Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Yu, F.; Raymond, A.; Zulick, C.; Willingale, L.; Krushelnick, K.; Maksimchuk, A.; Petrov, G.; Davis, J.

    2012-10-01

    It has long been a challenge to efficiently generate laser-driven ion beams having none-proton ions as the dominant species since protons are generally present as contamination layers on the target surface. During recent experiments at the University of Michigan, ion beams composed mainly of deuterons were produced with only a small relative number of protons and oxygen ions. The experiments were performed with the 400 fs, 20 TW T-cubed laser which has focused intensity up to 4*10^19 W/cm^2 at 1053 nm and ASE intensity contrast of 10-7. The accelerated deuterons originate from liquid deuterium oxide deposited on both the front and rear surfaces of a cryogenically cooled Cu target (normally at -160C) by spraying ˜50 microliters of heavy water from 2 nozzles in the vicinity of the target's front and rear. The ion beams had a Maxwellian spectrum with maximum energy of 8 MeV for deuterons and 10 MeV for protons. Using a Thomson parabola ion spectrometer system combined with CR39 indicated that the forward-propagating deuteron beam had about 10^12 ions per steradian (integrated over spectrum). The FWHM of the beam was 20 degrees, ideal for applications involving neutron generation and isotope activation.

  5. Morphology and Electric Conductance Change Induced by Voltage Pulse Excitation in (GeTe)2/Sb2Te3 Superlattices

    PubMed Central

    Bolotov, Leonid; Saito, Yuta; Tada, Tetsuya; Tominaga, Junji

    2016-01-01

    Chalcogenide superlattice (SL) phase-change memory materials are leading candidates for non-volatile, energy-efficient electric memory where the electric conductance switching is caused by the atom repositioning in the constituent layers. Here, we study the time evolution of the electric conductance in [(GeTe)2/(Sb2Te3)1]4 SLs upon the application of an external pulsed electric field by analysing the structural and electrical responses of the SL films with scanning probe microscopy (SPM) and scanning probe lithography (SPL). At a low pulse voltage (1.6–2.3 V), a conductance switching delay of a few seconds was observed in some SL areas, where the switch to the high conductance state (HCS) is accompanied with an SL expansion under the strong electric field of the SPM probe. At a high pulse voltage (2.5–3.0 V), the HCS current was unstable and decayed in a few seconds; this is ascribed to the degradation of the HCS crystal phase under excessive heating. The reversible conductance change under a pulse voltage of opposite polarity emphasised the role of the electric field in the phase-transition mechanism. PMID:27618797

  6. Morphology and Electric Conductance Change Induced by Voltage Pulse Excitation in (GeTe)2/Sb2Te3 Superlattices.

    PubMed

    Bolotov, Leonid; Saito, Yuta; Tada, Tetsuya; Tominaga, Junji

    2016-01-01

    Chalcogenide superlattice (SL) phase-change memory materials are leading candidates for non-volatile, energy-efficient electric memory where the electric conductance switching is caused by the atom repositioning in the constituent layers. Here, we study the time evolution of the electric conductance in [(GeTe)2/(Sb2Te3)1]4 SLs upon the application of an external pulsed electric field by analysing the structural and electrical responses of the SL films with scanning probe microscopy (SPM) and scanning probe lithography (SPL). At a low pulse voltage (1.6-2.3 V), a conductance switching delay of a few seconds was observed in some SL areas, where the switch to the high conductance state (HCS) is accompanied with an SL expansion under the strong electric field of the SPM probe. At a high pulse voltage (2.5-3.0 V), the HCS current was unstable and decayed in a few seconds; this is ascribed to the degradation of the HCS crystal phase under excessive heating. The reversible conductance change under a pulse voltage of opposite polarity emphasised the role of the electric field in the phase-transition mechanism. PMID:27618797

  7. Morphology and Electric Conductance Change Induced by Voltage Pulse Excitation in (GeTe)2/Sb2Te3 Superlattices

    NASA Astrophysics Data System (ADS)

    Bolotov, Leonid; Saito, Yuta; Tada, Tetsuya; Tominaga, Junji

    2016-09-01

    Chalcogenide superlattice (SL) phase-change memory materials are leading candidates for non-volatile, energy-efficient electric memory where the electric conductance switching is caused by the atom repositioning in the constituent layers. Here, we study the time evolution of the electric conductance in [(GeTe)2/(Sb2Te3)1]4 SLs upon the application of an external pulsed electric field by analysing the structural and electrical responses of the SL films with scanning probe microscopy (SPM) and scanning probe lithography (SPL). At a low pulse voltage (1.6–2.3 V), a conductance switching delay of a few seconds was observed in some SL areas, where the switch to the high conductance state (HCS) is accompanied with an SL expansion under the strong electric field of the SPM probe. At a high pulse voltage (2.5–3.0 V), the HCS current was unstable and decayed in a few seconds; this is ascribed to the degradation of the HCS crystal phase under excessive heating. The reversible conductance change under a pulse voltage of opposite polarity emphasised the role of the electric field in the phase-transition mechanism.

  8. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  9. Railguns and plasma accelerators: arc armatures, pulse power sources and US patents

    SciTech Connect

    Friedrich, O.M. Jr.

    1980-11-01

    Railguns and plasma accelerators have the potential for use in many basic and applied research projects, such as in creating high-pressures for equation-of-state studies and in impact fusion. A brief review of railguns and plasma accelerators with references is presented. Railgun performance is critically dependent on armature operation. Plasma arc railgun armatures are addressed. Pulsed power supplies for multi-stage railguns are considered. This includes brief comments on the compensated pulsed alternator, or compulsator, rotating machinery, and distributed energy sources for railguns. References are given at the end of each section. Appendix A contains a brief review of the US Patents on multi-staging techniques for electromagnetic accelerators, plasma propulsion devices, and electric guns.

  10. Powerful high-voltage generators for FELTRON, the electrostatic-accelerator FEL amplifier for TeV colliders

    NASA Astrophysics Data System (ADS)

    Boscolo, I.; Giuliani, F.; Roche, M.

    1992-07-01

    One of the crucial issues of the new μ-wave source FELTRON is the high-voltage generator. FELTRON is a powerful electrostatic FEL providing μ-wave radiation at 20 GHz, with peak power of 200 MW, pulse length of 500 ns (derived in ten separate beams of 50 ns each) at a repetition rate of 1 kHz. This radiation power will feed the cavities of a high gradient linac for TeV colliders. The average power of the generator must be around 250 kW, at a voltage of 5 MV. A Cockroft-Walton having the "onion" configuration is presented. The features are compared with those of dynamitron and insulating core transformer generators. The operation principles and technological problems are discussed in view of pulsed FEL utilization.

  11. Parametric generation of energetic short mid-infrared pulses for dielectric laser acceleration

    NASA Astrophysics Data System (ADS)

    Wandel, S.; Xu, G.; Yin, Y.; Jovanovic, I.

    2014-12-01

    Laser-driven high-gradient electron acceleration in dielectric photonic structures is an enabling technology for compact and robust sources of tunable monochromatic x-rays. Such advanced x-ray sources are sought in medical imaging, security, industrial, and scientific applications. The use of long-wavelength pulses can mitigate the problem of laser-induced breakdown in dielectric structures at high optical intensities, relax the structure fabrication requirements, and allow greater pulse energy to be injected into the structure. We report on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength 5 μm, to be used as a pump for a dielectric photonic structure for laser-driven acceleration. The source is based on a two-stage parametric downconversion design, consisting of a β-BaB2O4-based 2.05 μm optical parametric amplifier (OPA) and a ZnGeP2-based 5 μm OPA. The 2.05 μm OPA is presently pumped by a standard Ti:sapphire chirped-pulse amplified laser, which will be replaced with direct laser pumping at wavelengths \\gt 2 μ m in the future. The design and performance of the constructed short-pulse mid-infrared source are described. The demonstrated architecture is also of interest for use in other applications, such as high harmonic generation and attosecond pulse production.

  12. Comparative study of SVPWM (space vector pulse width modulation) & SPWM (sinusoidal pulse width modulation) based three phase voltage source inverters for variable speed drive

    NASA Astrophysics Data System (ADS)

    Ahmed, Waheed; Usman Ali, Syed M.

    2013-12-01

    We have performed comparative studies of Space Vector Pulse Width Modulation (SVPWM) and Sinusoidal Pulse Width Modulation (SPWM) techniques utilizing MATLAB tools. During these investigations, we carried out intensive simulations, comprehensively analyzed the obtained results and compared the harmonic density, power factor (PF), & switching losses of SVPWM and SPWM. It has been observed during investigations that if the switching frequency is high then losses due to harmonics are negligible, thus based on obtained results we suggested that the SVPWM technique is a more reliable solution. Because SVPWM utilizes DC bus voltage more efficiently, generates less Total Harmonic Distortion (THD) and has higher output quality it provides flexible control of output voltage and output frequency for Variable Speed Drive (VSD).

  13. Space-time resolved density of helium metastable atoms in a nanosecond pulsed plasma jet: influence of high voltage and pulse frequency

    NASA Astrophysics Data System (ADS)

    Douat, Claire; Kacem, Issaad; Sadeghi, Nader; Bauville, Gérard; Fleury, Michel; Puech, Vincent

    2016-07-01

    Using tunable diode laser absorption spectroscopy, the spatio-temporal distributions of the helium He(23S1) metastable atoms’ density were measured in a plasma jet propagating in ambient air. The plasma jet was produced by applying short duration high voltage pulses on the electrodes of a DBD-like structure, at a repetition rate in the range 1–30 kHz. In addition to the metastable density, the spatial distribution of helium 587 nm emission intensity was also investigated to give insight into the excitation mechanisms of the He(33D) excited state inside the dielectric tube, in which no laser measurement can be performed. It is demonstrated that the shape of the radial distribution of helium He(23S1) metastable atoms strongly depends on the polarity of the applied voltage and on the repetition frequency. For positive applied voltages, a dramatic constriction of the excited species production is observed whenever the pulse repetition frequency is higher than 6 kHz, and the voltage higher than 5 kV. This shrinking of the jet structure induces an increase by one order of magnitude of the metastable atoms’ density in the jet centre which reaches values as high as 1014 cm‑3. Beyond a critical distance, associated to a transition between a positive streamer and a negative one, the distribution of the excited atoms gets back to an annular structure. For the negative polarity, no shrinking effect correlated to the pulse repetition frequency was observed. The on-axis constriction of the excited species for the high repetition rate and positive polarity is attributed to a memory effect induced by the negative ions, having a lifetime of hundreds of microseconds, left between successive pulses at the periphery of the helium gas flow.

  14. Space-time resolved density of helium metastable atoms in a nanosecond pulsed plasma jet: influence of high voltage and pulse frequency

    NASA Astrophysics Data System (ADS)

    Douat, Claire; Kacem, Issaad; Sadeghi, Nader; Bauville, Gérard; Fleury, Michel; Puech, Vincent

    2016-07-01

    Using tunable diode laser absorption spectroscopy, the spatio-temporal distributions of the helium He(23S1) metastable atoms’ density were measured in a plasma jet propagating in ambient air. The plasma jet was produced by applying short duration high voltage pulses on the electrodes of a DBD-like structure, at a repetition rate in the range 1-30 kHz. In addition to the metastable density, the spatial distribution of helium 587 nm emission intensity was also investigated to give insight into the excitation mechanisms of the He(33D) excited state inside the dielectric tube, in which no laser measurement can be performed. It is demonstrated that the shape of the radial distribution of helium He(23S1) metastable atoms strongly depends on the polarity of the applied voltage and on the repetition frequency. For positive applied voltages, a dramatic constriction of the excited species production is observed whenever the pulse repetition frequency is higher than 6 kHz, and the voltage higher than 5 kV. This shrinking of the jet structure induces an increase by one order of magnitude of the metastable atoms’ density in the jet centre which reaches values as high as 1014 cm-3. Beyond a critical distance, associated to a transition between a positive streamer and a negative one, the distribution of the excited atoms gets back to an annular structure. For the negative polarity, no shrinking effect correlated to the pulse repetition frequency was observed. The on-axis constriction of the excited species for the high repetition rate and positive polarity is attributed to a memory effect induced by the negative ions, having a lifetime of hundreds of microseconds, left between successive pulses at the periphery of the helium gas flow.

  15. Comment on ''Electron acceleration by a chirped Gaussian laser pulse in vacuum'' [Phys. Plasmas 13, 123108 (2006)

    SciTech Connect

    Gupta, D. N.; Hur, M. S.; Suk, H.

    2007-04-15

    Sohbatzadeh et al. [Phys. Plasmas 13, 123108 (2006)] have presented a scheme of vacuum electron acceleration by using a chirped Gaussian laser pulse. They assume a linear polarization of the laser pulse in this scheme. We point out that this might be an important assumption in their work and it can seriously influence the electron energy gain during laser acceleration. In this Comment, the circular polarization of a chirped laser pulse is employed and our results show higher electron energy gains.

  16. Determination of subcell open circuit voltages and Iph-Voc curves in multijunction solar cells by sequentially pulsed, monochromatic illumination

    NASA Astrophysics Data System (ADS)

    Rutzinger, M.; Nesswetter, H.; Lugli, P.; Bett, A. W.; Zimmermann, C. G.

    2016-06-01

    The open circuit voltages Voc of individual subcells in a multijunction solar cell are measured by illuminating a given subcell with a pulse of spatially homogeneous, nearly monochromatic light with a rising edge in the μs regime. The influence of luminescent coupling and semi-transparency on Voc is eliminated by over-illuminating all subcells below this subcell with a preceding light pulse. By using a suns-Voc approach, the two-diode model dark saturation currents of each subcell are extracted. The proposed method is verified experimentally as well as through simulations on three and four-junction solar cells.

  17. Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing

    SciTech Connect

    Albin, D.; del Cueto, J.

    2011-03-01

    In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

  18. MeV electron acceleration by sub-terawatt laser pulses in near critical density plasmas

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Hine, George; Feder, Linus; Miao, Bo; Salehi, Fatholah; Milchberg, Howard

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the 10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet where even sub-terawatt laser pulses are well above the critical power for relativistic self-focusing, and the 10 mJ pulses can drive a self-modulated wakefield accelerator. Total charge up to 0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of an intense, coherent, broadband light flash, associated with wavebreaking, which can radiate more than 3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production. This work supported by DTRA and the US Department of Energy.

  19. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  20. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Takezaki, Taichi; Takahashi, Kazumasa; Sasaki, Toru; Kikuchi, Takashi; Harada, Nob.

    2016-06-01

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell method have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.

  1. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    SciTech Connect

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.

    2014-05-15

    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame.

  2. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOEpatents

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  3. Splash plasma channels produced by picosecond laser pulses in argon gas for laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Mizuta, Y.; Hosokai, T.; Masuda, S.; Zhidkov, A.; Makito, K.; Nakanii, N.; Kajino, S.; Nishida, A.; Kando, M.; Mori, M.; Kotaki, H.; Hayashi, Y.; Bulanov, S. V.; Kodama, R.

    2012-12-01

    Short-lived, ˜10ps, deep plasma channels, with their lengths of ˜1mm and diameters of ˜20μm, are observed and characterized in Ar gas jets irradiated by moderate intensity, ˜1015-16W/cm2, laser pulses with a duration from subpicosecond to several picoseconds. The channels, upon 2D particle-in-cell simulations including ionization, fit well in the guiding of high intensity femtosecond laser pulses and, therefore, in laser wakefield acceleration with a controllable electron self-injection.

  4. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime

    NASA Astrophysics Data System (ADS)

    Zhou, M. L.; Yan, X. Q.; Mourou, G.; Wheeler, J. A.; Bin, J. H.; Schreiber, J.; Tajima, T.

    2016-04-01

    Prompted by the possibility to produce high energy, single-cycle laser pulses with tens of Petawatt (PW) power, we have investigated laser-matter interactions in the few optical cycle and ultra relativistic intensity regimes. A particularly interesting instability-free regime for ion production was revealed leading to the efficient coherent generation of short (femtosecond; 10 - 15 s ) monoenergetic ion bunches with a peak energy greater than GeV. Of paramount importance, the interaction is absent of the Rayleigh Taylor Instabilities and hole boring that plague techniques such as target normal sheath acceleration and radiation pressure acceleration.

  5. Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses

    SciTech Connect

    Henig, A.; Hoerlein, R.; Kiefer, D.; Jung, D.; Habs, D.; Steinke, S.; Schnuerer, M.; Sokollik, T.; Nickles, P. V.; Sandner, W.; Schreiber, J.; Hegelich, B. M.; Yan, X. Q.; Meyer-ter-Vehn, J.; Tajima, T.

    2009-12-11

    We present experimental studies on ion acceleration from ultrathin diamondlike carbon foils irradiated by ultrahigh contrast laser pulses of energy 0.7 J focused to peak intensities of 5x10{sup 19} W/cm{sup 2}. A reduction in electron heating is observed when the laser polarization is changed from linear to circular, leading to a pronounced peak in the fully ionized carbon spectrum at the optimum foil thickness of 5.3 nm. Two-dimensional particle-in-cell simulations reveal that those C{sup 6+} ions are for the first time dominantly accelerated in a phase-stable way by the laser radiation pressure.

  6. Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser

    SciTech Connect

    Coverdale, C.A.; Darrow, C.B.; Decker, C.D.; Mori, W.B.; Tzeng, K.C., Clayton, C.E.; Marsh, K.A.; Joshi, C.

    1995-04-27

    Experimental evidence for the acceleration of electrons in a relativistic plasma wave generated by Raman forward scattering (SRS-F) of a single-frequency short pulse laser are presented. A 1.053 {mu}m, 600 fsec, 5 TW laser was focused into a gas jet with a peak intensity of 8{times}10{sup 17} W/cm{sup 2}. At a plasma density of 2{times}10{sup 19} cm{sup {minus}3}, 2 MeV electrons were detected and their appearance was correlated with the anti-Stokes laser sideband generated by SRS-F. The results are in good agreement with 2-D PIC simulations. The use of short pulse lasers for making ultra-high gradient accelerators is explored.

  7. Controlling the betatron oscillations of a wakefield-accelerated electron beam by temporally asymmetric laser pulses

    SciTech Connect

    Nam, Inhyuk; Hur, Min Sup; Uhm, Han Sup; Hafz, Nasr A. M.; Suk, Hyyong

    2011-04-15

    Based on two-dimensional particle-in-cell simulations, we investigated the electron beam's transverse oscillations by temporally asymmetric laser pulses in laser wakefield acceleration. Of particular interest in this article are the effects of ultrashort laser pulses having sharp rising and slow falling time scales. In this situation, the accelerated electron beam interacts directly with the laser field and undergoes transverse oscillations due to a phase-slip with the laser field. This oscillation can be matched with the betatron oscillation due to the focusing force of the ions, which can lead to a large transverse oscillation amplitude due to the resonance between them. Furthermore, in this case, the electron beam can be microbunched at the laser wavelength, which may provide the possibility for generation of a coherent synchrotron radiation.

  8. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  9. Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    SciTech Connect

    Andreev, Stepan N; Rukhadze, Anri A; Tarakanov, V P; Yakutov, B P

    2010-01-31

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained. (effects of laser radiation on matter)

  10. Fabrication of one-dimensional alumina photonic crystals by anodization using a modified pulse-voltage method

    SciTech Connect

    Li, Shou-Yi; Wang, Jian; Wang, Gang; Wang, Ji-Zhou; Wang, Cheng-Wei

    2015-08-15

    Highlights: • The alumina multilayer structure with alternating high and low refractive index is fabricated. • This multilayer shows a strong photonic band gap (PBG) and vivid film colors. • The first PBG could be modulated easily by varying the duration time of constant high or low voltages. • Fabrication of the photonic crystal is obtained by directly electrochemical anodization. • The formation mechanism of multilayer is also discussed. - Abstract: The alumina nanolayer structure with alternating high and low porosities is conveniently fabricated by applying a modified pulse voltage waveform with constant high and low voltage. This structure shows the well-defined layer in a long-range structural periodicity leads to a strong photonic band gap (PBG) from visible to near infrared and brilliant film colors. Compared with the previous reported tuning method, this method is more simple and flexible in tuning the PBG of photonic crystals (PCs). The effect of duration time of high, low and 0 V voltages on PBG is discussed. The first PBG could be modulated easily from the visible to near infrared region by varying the duration time of constant high or low voltages. It is also found that the 0 V lasting for appropriate time is helpful to improve the quality of the PCs. The formation mechanism of multilayer is also discussed.

  11. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    SciTech Connect

    Kuramitsu, Y.; Sakawa, Y.; Takeda, K.; Tampo, M.; Takabe, H.; Nakanii, N.; Kondo, K.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Kitagawa, Y.

    2011-02-15

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of {approx}2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  12. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    PubMed

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer. PMID:21405912

  13. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    PubMed

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  14. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  15. Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-02-01

    A theoretical study complemented with published experimental data of proton acceleration from sub-micron (thickness < 1 μm) foils irradiated by ultra-high contrast ( >1010 ) short pulse lasers is presented. The underlying physics issues pertinent to proton acceleration are addressed using two-dimensional particle-in-cell simulations. For laser energy ɛ≤4 J (intensity I ≤5 ×1020 W/cm 2 ), simulation predictions agree with experimental data, both exhibiting scaling superior to Target Normal Sheath Acceleration's model. Anomalous behavior was observed for ɛ>4 J ( I >5 ×1020 W/cm 2 ), for which the measured maximum proton energies were much lower than predicted by scaling and these simulations. This unexpected behavior could not be explained within the frame of the model, and we conjecture that pre-pulses preceding the main pulse by picoseconds may be responsible. If technological issues can be resolved, energetic proton beams could be generated for a wide range of applications such as nuclear physics, radiography, and medical science.

  16. High-Field, {mu}J-Class THz Pulses from a Laser Wakefield Accelerator

    SciTech Connect

    Matlis, N. H.; Tilborg, J. van; Geddes, C. G. R.; Toth, Cs.; Schroeder, C. B.; Plateau, G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    We present observation and characterization of microjoule-MV/cm-level THz pulses from a laser wakefield accelerator. THz emitted as coherent transition radiation from the plasma-vacuum boundary is collected and refocused by off-axis parabolas to a test stand where a suite of diagnostics is performed, including energy measurement by a Golay cell and electro-optic sampling of the spatio-temporal electric field using a probe pulse split from the main laser. Frequency Domain Holography is also implemented for the first time to capture spatio-temporal field distributions in a single shot. The four techniques strongly corroborate detection of THz pulses of {approx}0.4 ps duration, with peak fields of several hundred kV/cm and energies of 5-10 {mu}J. The advantages and disadvantages of each technique are discussed.

  17. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    SciTech Connect

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T.; Chen, L. M.; Li, D. Z.; Chen, Z. Y.; Sheng, Z. M.; Zhang, J.

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  18. Sub-nanosecond time resolved light emission study for diffuse discharges in air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Tardiveau, P.; Magne, L.; Marode, E.; Ouaras, K.; Jeanney, P.; Bournonville, B.

    2016-10-01

    Pin-to-plane discharges in centimetre air gaps and standard conditions of pressure and temperature are generated under very high positive nanosecond scale voltage pulses. The experimental study is based on recordings of sub-nanosecond time resolved and Abel-processed light emission profiles and their complete correlation to electrical current waveforms. The effects of the voltage pulse features (amplitude between 20 and 90 kV, rise time between 2 and 5.2 ns, and time rate between 4 and 40 kV · ns‑1) and the electrode configuration (gap distance between 10 and 30 mm, pin radius between 10 and 200 µm, copper, molybdenum or tungsten pin material) are described. A three time period development can be found: a glow-like structure with monotonic light profiles during the first 1.5 ns whose size depends on time voltage rate, a shell-like structure with bimodal profiles whose duration and extension in space depends on rise time, and either diffuse or multi-channel regime for the connection to the cathode plane according to gap distance. The transition of the light from monotonic to bimodal patterns reveals the relative effects and dynamics of streamer space charge and external laplacian field. A classical 2D-fluid model for streamer propagation has been used and adapted for very high and steep voltage pulses. It shows the formation of a strong space charge (streamer) very close to the pin, but also a continuity of emission between the pin and the streamer, and electric fields higher than the critical ionization field (28 kV · cm‑1 in air) almost in the whole gap and very early in the discharge propagation.

  19. Pulsed Neutron Monitoring at High Energy Electron Accelerators with Silver Lined Proportional Counter

    NASA Astrophysics Data System (ADS)

    Dighe, P. M.; Ghodgaonkar, M. D.; Dhairyawan, M. P.; Haridas, P.

    2007-01-01

    To meet the challenging requirement of pulsed neutron background measurement, which is present around electron accelerators at the Indus-1 facility of the Raja Ramanna Centre for Advanced Technology (RRCAT) Indore, a silver lined proportional counter with 0.2cps/n cm-2s-1 thermal neutron sensitivity has been developed. The detector has been tested for its performance in continuous thermal neutron field at Apsara reactor and in pulsed neutron field at Indus-1 facility. The detector shows ±11% signal linearity at various reactor powers and follows the silver decay scheme during reactor scram experiment. Off-line measurements made in pulsed neutron background at the Indus-1 facility compare well with nuclear track detectors (CR-39). For monitoring on-line neutron flux, electronic gating circuit was used that can switch off the scalar counter unit during the prompt X-ray response of the detector taking trigger pulse from the accelerator and experiments showed that the neutron flux measured by the detector is in close agreement with CR-39 values.

  20. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    SciTech Connect

    Kalmykov, S. Y. Shadwick, B. A.; Davoine, X.; Lehe, R.; Lifschitz, A. F.

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  1. The LMF triaxial MITL voltage adder system

    SciTech Connect

    Mazarakis, M.G.; Smith, D.L.; Bennett, L.F.; Lockner, T.R.; Olson, R.E.; Poukey, J.W.

    1992-12-31

    The light-ion microfusion driver design consists of multiple accelerating modules fired in coincidence and sequentially in order to provide the desired ion energy, power pulse shape and energy deposition uniformity on an Inertial Confinement Fusion (ICF) target. The basic energy source is a number of Marx generators which, through the appropriate pulse power conditioning, provide the necessary voltage pulse wave form to the accelerating gaps or feeds of each module. The cavity gaps are inductively isolated, and the voltage addition occurs in the center conductor of the voltage adder which is the positive electrode while the electrons of the sheath flow closer to the outer cylinder which is the magnetically insulated cathode electrode. Each module powers a separate two-stage extraction diode which provides a low divergence ion beam. In order to provide the two separate voltage pulses required by the diode, a triaxial adder system is designed for each module. The voltage addition occurs in two separate MITLs. The center hollow cylinder (anode) of the second MITL also serves as the outer cathode electrode for the extension of the first voltage adder MITL. The voltage of the second stage is about twice that of the first stage. The cavities are connected in series to form the outer cylinder of each module. The accelerating modules are positioned radially in a symmetrical way around the fusion chamber. A preliminary conceptual design of the LMF modules with emphasis on the voltage adders and extension MITLs will be presented and discussed.

  2. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  3. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  4. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  5. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    SciTech Connect

    Friedman, A.; Barnard, J. J.; Cohen, R. H.; Grote, D. P.; Lund, S. M.; Sharp, W. M.; Faltens, A.; Henestroza, E.; Jung, J-Y.; Kwan, J. W.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Vay, J.-L.; Waldron, W. L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-07-20

    The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  6. Optimal proton acceleration from lateral limited foil sections and different laser pulse durations at relativistic intensity

    SciTech Connect

    Toncian, T.; Swantusch, M.; Toncian, M.; Willi, O.; Andreev, A. A.; Platonov, K. Y.

    2011-04-15

    The proton acceleration from a thin foil irradiated by a laser pulse at relativistic intensities is a process highly dependent on the electron dynamic at the rear side of the foil. By reducing the lateral size of the laser irradiated foil the hot electrons are confined in a small volume leading to an enhancement of both the maximum proton energy and the conversion efficiency in the target normal sheath acceleration regime. In this paper we demonstrate that an optimal lateral size of the target can be found. While a smaller target surface leads to a better hot electron confinement and enhances the Debye sheath accelerating the protons, it also leads to an increase of preplasma formation due to limited laser contrast available experimentally and hence to a decrease of the proton acceleration. The experimentally found optimum is in good agreement with analytic theory and 2D particle in cell simulations. In addition, the maximum proton energy as a function of pulse duration has been investigated. The experimental results fit to an analytical model.

  7. Physical processes at work in sub-30 fs, PW laser pulse-driven plasma accelerators: Towards GeV electron acceleration experiments at CILEX facility

    NASA Astrophysics Data System (ADS)

    Beck, A.; Kalmykov, S. Y.; Davoine, X.; Lifschitz, A.; Shadwick, B. A.; Malka, V.; Specka, A.

    2014-03-01

    Optimal regimes and physical processes at work are identified for the first round of laser wakefield acceleration experiments proposed at a future CILEX facility. The Apollon-10P CILEX laser, delivering fully compressed, near-PW-power pulses of sub-25 fs duration, is well suited for driving electron density wakes in the blowout regime in cm-length gas targets. Early destruction of the pulse (partly due to energy depletion) prevents electrons from reaching dephasing, limiting the energy gain to about 3 GeV. However, the optimal operating regimes, found with reduced and full three-dimensional particle-in-cell simulations, show high energy efficiency, with about 10% of incident pulse energy transferred to 3 GeV electron bunches with sub-5% energy spread, half-nC charge, and absolutely no low-energy background. This optimal acceleration occurs in 2 cm length plasmas of electron density below 1018 cm-3. Due to their high charge and low phase space volume, these multi-GeV bunches are tailor-made for staged acceleration planned in the framework of the CILEX project. The hallmarks of the optimal regime are electron self-injection at the early stage of laser pulse propagation, stable self-guiding of the pulse through the entire acceleration process, and no need for an external plasma channel. With the initial focal spot closely matched for the nonlinear self-guiding, the laser pulse stabilizes transversely within two Rayleigh lengths, preventing subsequent evolution of the accelerating bucket. This dynamics prevents continuous self-injection of background electrons, preserving low phase space volume of the bunch through the plasma. Near the end of propagation, an optical shock builds up in the pulse tail. This neither disrupts pulse propagation nor produces any noticeable low-energy background in the electron spectra, which is in striking contrast with most of existing GeV-scale acceleration experiments.

  8. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  9. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    PubMed

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  10. Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response.

    PubMed

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv(3.1) (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  11. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen

    2013-10-01

    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  12. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  13. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  14. Heavy ion acceleration driven by the Interaction between ultraintense Laser pulse and sub-micron foils

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; McGuffey, C.; Beg, F. N.; High Energy Density Group Team

    2015-11-01

    For ion acceleration at the intensity exceeding 1021W/cm2, Radiation Pressure Acceleration (RPA) could offer advantages over Target Normal Sheath Acceleration (TNSA) and Break-Out Afterburner (BOA). In this ultra-relativistic regime, target electrons become highly relativistic and the results are sensitive to many parameters. Especially for heavy ions acceleration, the understanding of the most important parameter effects is limited due to the lack of experiments and modeling. To further understand the key parameters and determine the most suitable regimes for efficient acceleration of heavy ions, we have carried out two-dimensional Particle-in-Cell simulations with the epoch code. In the simulations, effects of preplasma and optimal targets thicknesses for different laser pulse have been studied in detail. Based on the understanding of ion RPA, we propose some new target parameters to achieve higher ion energy. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  15. Key conditions for stable ion radiation pressure acceleration by circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Qiao, B.; Zepf, M.; Gibbon, P.; Borghesi, M.; Schreiber, J.; Geissler, M.

    2011-05-01

    Radiation pressure acceleration (RPA) theoretically may have great potential to revolutionize the study of laserdriven ion accelerators due to its high conversion efficiency and ability to produce high-quality monoenergetic ion beams. However, the instability issue of ion acceleration has been appeared to be a fundamental limitation of the RPA scheme. To solve this issue is very important to the experimental realization and exploitation of this new scheme. In our recent work, we have identified the key condition for efficient and stable ion RPA from thin foils by CP laser pulses, in particular, at currently available moderate laser intensities. That is, the ion beam should remain accompanied with enough co-moving electrons to preserve a local "bunching" electrostatic field during the acceleration. In the realistic LS RPA, the decompression of the co-moving electron layer leads to a change of local electrostatic field from a "bunching" to a "debunching" profile, resulting in premature termination of acceleration. One possible scheme to achieve stable RPA is using a multi-species foil. Two-dimensional PIC simulations show that 100 MeV/u monoenergetic C6+ and/or proton beams are produced by irradiation of a contaminated copper foil with CP lasers at intensities 5 × 1020W/cm2, achievable by current day lasers.

  16. Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

    SciTech Connect

    Allen, M

    2004-03-12

    The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W{micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass.At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W{micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.

  17. Increased efficiency of ion acceleration by using femtosecond laser pulses at higher harmonic frequency

    SciTech Connect

    Psikal, J.; Klimo, O.; Weber, S.; Margarone, D.

    2014-07-15

    The influence of laser frequency on laser-driven ion acceleration is investigated by means of two-dimensional particle-in-cell simulations. When ultrashort intense laser pulse at higher harmonic frequency irradiates a thin solid foil, the target may become re lativistically transparent for significantly lower laser pulse intensity compared with irradiation at fundamental laser frequency. The relativistically induced transparency results in an enhanced heating of hot electrons as well as increased maximum energies of accelerated ions and their numbers. Our simulation results have shown the increase in maximum proton energy and increase in the number of high-energy protons by a factor of 2 after the interaction of an ultrashort laser pulse of maximum intensity 7 × 10{sup 21 }W/cm{sup 2} with a fully ionized plastic foil of realistic density and of optimal thickness between 100 nm and 200 nm when switching from the fundamental frequency to the third harmonics.

  18. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets

    NASA Astrophysics Data System (ADS)

    Pugachev, L. P.; Andreev, N. E.; Levashov, P. R.; Rosmej, O. N.

    2016-09-01

    Optimization study for future experiments on interaction of petawatt laser pulses with foam targets was done by 3D PIC simulations. Densities in the range 0.5nc-nc and thicknesses in the range 100 - 500 μm of the targets were considered corresponding to those which are currently available. It is shown that heating of electrons mainly occurs under the action of the ponderomotive force of a laser pulse in which amplitude increases up to three times because of self-focusing effect in underdense plasma. Accelerated electrons gain additional energy directly from the high-frequency laser field at the betatron resonance in the emerging plasma density channels. For thicker targets a higher number of electrons with higher energies are obtained. The narrowing of the angular distribution of electrons for thicker targets is explained by acceleration in multiple narrow filaments. Obtained energies of accelerated electrons can be approximated by Maxwell distribution with the temperature 8.5 MeV. The charge carried by electrons with energies higher than 30 MeV is about 30 nC, that is 3-4 order of magnitude higher than the charge predicted by the ponderomotive scaling for the incident laser amplitude.

  19. DC-pulsed voltage electrochemical method based on duty cycle self-control for producing TERS gold tips

    NASA Astrophysics Data System (ADS)

    Vasilchenko, V. E.; Kharintsev, S. S.; Salakhov, M. Kh

    2013-12-01

    This paper presents a modified dc-pulsed low voltage electrochemical method in which a duty cycle is self tuned while etching. A higher yield of gold tips suitable for performing tip-enhanced Raman scattering (TERS) measurements is demonstrated. The improvement is caused by the self-control of the etching rate along the full surface of the tip. A capability of the gold tips to enhance a Raman signal is exemplified by TERS spectroscopy of single walled carbon nanotubes bundle, sulfur and vanadium oxide.

  20. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  1. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    SciTech Connect

    Lecz, Zs.; Andreev, A.

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  2. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator.

    PubMed

    Gopal, A; Herzer, S; Schmidt, A; Singh, P; Reinhard, A; Ziegler, W; Brömmel, D; Karmakar, A; Gibbon, P; Dillner, U; May, T; Meyer, H-G; Paulus, G G

    2013-08-16

    We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460 μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×10(19) W/cm(2)) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.

  3. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    SciTech Connect

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-15

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  4. Acceleration of electrons generated during ionization of a gas by a nearly flat profile laser pulse

    SciTech Connect

    Singh, Kunwar Pal

    2009-09-15

    A scheme of acceleration of electrons generated during ionization of krypton by nearly flat radial and nearly flat temporal laser pulse profiles has been suggested. The energy spectrum of the electrons suggests that energy of the electrons is higher for a nearly flat temporal profile than that for a nearly flat radial profile. The suppression of scattering of the electrons is better for a nearly flat radial profile than that for a nearly flat temporal profile. The energy of the electrons increases, scattering decreases, and beam quality improves with an increase in flatness of radial and temporal profiles.

  5. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    NASA Astrophysics Data System (ADS)

    Andreev, A.; Platonov, K.; Sharma, A.; Murakami, M.

    2015-09-01

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  6. An Experimental Study of a Low-Jitter Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Lee, Michael; Eskridge, Richard; Smith, James; Martin, Adam; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    An experimental plasma accelerator for a variety of applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 kilometers per second have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.

  7. An Experimental Study of a Self-Switching, Low-Jitter Pulsed Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael

    2001-10-01

    An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocites of 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra- low jitter" gun development is identified.

  8. Resistive foil edge grading for accelerator and other high voltage structures

    SciTech Connect

    Caporaso, George J.; Sampayan, Stephen F.; Sanders, David M.

    2014-06-10

    In a structure or device having a pair of electrical conductors separated by an insulator across which a voltage is placed, resistive layers are formed around the conductors to force the electric potential within the insulator to distribute more uniformly so as to decrease or eliminate electric field enhancement at the conductor edges. This is done by utilizing the properties of resistive layers to allow the voltage on the electrode to diffuse outwards, reducing the field stress at the conductor edge. Preferably, the resistive layer has a tapered resistivity, with a lower resistivity adjacent to the conductor and a higher resistivity away from the conductor. Generally, a resistive path across the insulator is provided, preferably by providing a resistive region in the bulk of the insulator, with the resistive layer extending over the resistive region.

  9. Direct acceleration of electrons by a circular polarized laser pulse with phase modulation

    SciTech Connect

    Zhu, Lun-Wu; Sheng, Zheng-Mao; Yu, M. Y.

    2013-11-15

    Electron acceleration by transversely echelon phase-modulated (EPM) circularly polarized (CP) intense laser pulse is investigated. Solution of the relativistic electron equations of motion shows that the CP EPM light wave structure can disrupt the harmonic response of a trapped electron not only in the transverse direction but also in the direction of laser propagation. In each laser cycle, there can be a net gain in the electron's transverse momentum, which is promptly converted into the forward direction by the Lorentz force. As a result, the electron can be trapped and accelerated in the favorable phase of the laser for a rather long time. Its momentum gain then accumulates and can eventually reach high levels. It is also found that with the CP EPM laser, the net acceleration of the electron is not sensitive to its initial position and velocity relative to the phase of the laser fields, so that such a laser can also be useful for accelerating thermal electron bunches to high energies.

  10. A pulse width modulated picket fence pulser to reduce accelerator start-up transients

    SciTech Connect

    Reass, William A; Balmes, Anthony A; Bradley, Joseph T; Netz, Dana; Sandoval, Jacob B

    2010-01-01

    This paper describes a solid state modulator used to control the input beam to the Los Alamos Neutron Science Center 'LANSCE' 800 MeV accelerator. This electrostatic Ground Level Deflector (GLD) chops the beam after the 750 keV injection energy. Two GLD's are utilized, one for the 'H+' beam and another for the 'H-' beam. These modulators are mounted on the vacuum beam pipe and directly operate sets of deflection plates. To minimize the accelerator beam start up transients, the beam is let into the accelerator cavity structures by a pulse width modulated picket fence operating between 0 and 12 kV. As the deflection plate structure appears as a capacitive load, a totem-pole switching network is utilized to facilitate rise and fall times of {approx}50 ns that is able to sink and source current to minimize beam induced sidewall activation. This paper will describe the system design and provides operational results as now presently utilized on the LANSCE accelerator system.

  11. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  12. Transmission line pulse properties for a bidirectional transient voltage suppression diode fabricated using low-temperature epitaxy

    NASA Astrophysics Data System (ADS)

    Bouangeune, Daoheung; Cho, Deok-Ho; Yun, Hyung-Joong; Shim, Kyu-Hwan; Choi, Chel-Jong

    2015-01-01

    Based on low temperature epitaxy technology, a bidirectional transient voltage suppression (TVS) diode with abrupt multi-junctions was developed. The bidirectional triggering voltage of ±16 V was controlled by the thickness and dopant concentration in the multi-junctions using a reduced-pressure chemical vapor deposition (RPCVD) process. The manufactured TVS diode showed a small leakage current density and dynamic resistance of less than 5.1 × 10-14 A/ µm2 and 1 O, respectively, which could be associated with the epitaxially grown abrupt multijunctions. The transmission line pulse (TLP) analysis results demonstrated that the bidirectional TVS diodes were capable of withstanding a peak pulse current of up to ±20 A or ±1.02 × 10-3 A/ µm2, which is equivalent to ±40 kV of the human body model (HBM) and ±12 kV of IEC61000-4-2 (IEC). Nevertheless, the electrostatic discharge (ESD) design window showed that bidirectional TVS diodes meet IEC level 4 standard ESD protection requirements (8 kV in contact discharge). In addition, because of the bidirectional structure, the TVS devices exhibited a small capacitance of 4.9 pF, which confirms that the TVS diode can be used for protecting high data rate communication lines (over 500 Mbps) from ESD shock.

  13. PULSE DURATION LENGTHENER

    DOEpatents

    Aiken, W.R.

    1958-02-01

    This patent pertains to pulse modifying apparatus and, more particularly, describes a device to provide a rise time and time base expander for signal pulses having a very short duration. The basic element of the device is a vacuum tube comprising a charged particie beam, grid control means, an accelerating electrode, a drift tube, and a collector electrode. As the short duration input pulse modulates the particle beam through the grid control means, the voltage between the drift tube and accelerating electrode is caused to vary, whereby the output signal from the collector is a pulse having longer rise time, expanded duration and proportionate characteristics of the original pulse. The invention is particuiarly useful where subsequent pulse circultry does not have the frequency bandwidth to handle the short duration pulse without distorting it.

  14. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    NASA Technical Reports Server (NTRS)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  15. Analysis of a modular generator for high-voltage, high-frequency pulsed applications, using low voltage semiconductors (<1 kV) and series connected step-up (1:10) transformers

    NASA Astrophysics Data System (ADS)

    Redondo, L. M.; Fernando Silva, J.; Margato, E.

    2007-03-01

    This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5kV modules, 800V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15kV/1A pulses with 5μs width, 10kHz repetition rate, with less than 1μs pulse rise time. Experimental results for resistive loads are presented and discussed.

  16. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    NASA Astrophysics Data System (ADS)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  17. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  18. Effect of Doppler-shifted photons on subnanosecond breakdown in high-voltage pulse discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2016-06-01

    The experiments in high-voltage open discharge in helium [1, 2] showed a controlled current growth rate of 500 A/(cm2ns) for an applied voltage of 20 kV and gas pressure of 6 Torr. A kinetic model of the subnanosecond breakdown is developed to analyze the mechanism of current growth, which takes into account the kinetics of electrons, ions, fast atoms and photons with a Doppler shift (DS). DS photons appear in discharge due to collisions of heavy particles. Using particle in cell simulations, we show a critical role of DS photons in the electron emission from the cathode during the breakdown. Our experimental and calculation results show a decrease of the breakdown time with increasing gas pressure from 3 Torr to 16 Torr.

  19. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    NASA Astrophysics Data System (ADS)

    Slutz, S. A.; Stygar, W. A.; Gomez, M. R.; Peterson, K. J.; Sefkow, A. B.; Sinars, D. B.; Vesey, R. A.; Campbell, E. M.; Betti, R.

    2016-02-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.

  20. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  1. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  2. Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse

    SciTech Connect

    Singh, K.P.

    2006-04-15

    Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

  3. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  4. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  5. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  6. [Hygienic assessment of the quality of drinking water conditioned by low-voltage pulsed electrical discharges].

    PubMed

    Avchinnikov, A V; Zhuk, E G; Rakhmanin, Iu A; Nekrasov, Iu V

    1996-01-01

    The purpose of this study was to make experimental and semifield examinations of the physical and chemical indices of the quality of water disinfected and preserved by low-voltage (2.8-3.0 kV) impulsive electric discharges by means of a MEI portable plant. The findings showed that the changes in the physical, chemical, and organoleptic properties of the treated water were insignificant. The water kept during 2 months met the requirements for drinking water. The above portable plant is recommended for water disinfection in self-contained objects.

  7. Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse

    SciTech Connect

    Kuramitsu, Y.; Sakawa, Y.; Takeda, K.; Tampo, M.; Takabe, H.; Nakanii, N.; Kondo, K.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Kitagawa, Y.

    2011-01-15

    The first report on a model experiment of cosmic ray acceleration by using intense laser pulses is presented. Large amplitude light waves are considered to be excited in the upstream regions of relativistic astrophysical shocks and the wakefield acceleration of cosmic rays can take place. By substituting an intense laser pulse for the large amplitude light waves, such shock environments were modeled in a laboratory plasma. A plasma tube, which is created by imploding a hollow polystyrene cylinder, was irradiated by an intense laser pulse. Nonthermal electrons were generated by the wakefield acceleration and the energy distribution functions of the electrons have a power-law component with an index of {approx}2. The maximum attainable energy of the electrons in the experiment is discussed by a simple analytic model. In the incoherent wakefield the maximum energy can be much larger than one in the coherent field due to the momentum space diffusion or the energy diffusion of electrons.

  8. Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhao, T. Z.; Behm, K.; He, Z.-H.; Maksimchuk, A.; Nees, J. A.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.

    2016-11-01

    The electron injection process into a plasma-based laser wakefield accelerator can be influenced by modifying the parameters of the driver pulse. We present an experimental study on the combined effect of the laser pulse duration, pulse shape, and frequency chirp on the electron injection and acceleration process and the associated radiation emission for two different gas types—a 97.5% He and 2.5% N2 mixture and pure He. In general, the shortest pulse duration with minimal frequency chirp produced the highest energy electrons and the most charge. Pulses on the positive chirp side sustained electron injection and produced higher charge, but lower peak energy electrons, compared with negatively chirped pulses. A similar trend was observed for the radiant energy. The relationship between the radiant energy and the electron charge remained linear over a threefold change in the electron density and was independent of the drive pulse characteristics. X-ray spectra showed that ionization injection of electrons into the wakefield generally produced more photons than self-injection for all pulse durations/frequency chirp and had less of a spread in the number of photons around the peak x-ray energy.

  9. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-10-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100- µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  10. Mineral Liberation of Magnetite-Precipitated Copper Slag Obtained via Molten Oxidation by Using High-Voltage Electrical Pulses

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-08-01

    Our proposed method, i.e., a controlled molten oxidation process under 1 vol pct oxygen, leads to selective precipitation of magnetite in a copper smelter slag for downstream iron separation. In the present study, the preroasted magnetite precipitated copper slag was treated via magnetite liberation, which was realized by using high-voltage electrical pulses. The mineral distribution was determined by using a laser microscope and its image analysis; and it revealed that the 100-µm under-sieve product contains approximately 70 pct of liberated mineral particles. The study affirms the positive outcome of using this new technology for comminution to obtain micrometer-scale particles that yield monominerals via selective liberation. Using magnetic separation, iron was capable of finally separating into high- and low-iron-bearing concentrate and tailing that can be used in specific applications.

  11. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    NASA Astrophysics Data System (ADS)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  12. Image processing for non-ratiometric measurement of membrane voltage using fluorescent reporters and pulsed laser illumination.

    PubMed

    Silve, Aude; Rocke, Sarah; Frey, Wolfgang

    2015-06-01

    The measurement of transmembrane voltages induced by pulsed electric field exposure can be achieved by using fluorescent dyes like ANNINE-6. Such approach requires a quantitative determination of the fluorescence intensity along the cell's membrane by image processing. When high temporal resolution is required, the illumination source is frequently a dye-laser which causes high fluctuations in the intensity of illumination which in turn affects the fluorescence intensity and thus the quality of the results. We propose an image processing technique that allows to overcome the fluctuations and to produce quantitative data. It uses the optical background noise as a correcting factor. Standard deviation in the fluctuations is thus efficiently reduced by at least a factor of 2.5. Additionally we draw attention to the fact that the parasitic component of the laser radiation (ASE) can also suppress fluctuations although it deteriorates wavelength precision.

  13. Laser wake-field acceleration in pre-formed plasma channel created by pre-pulse pedestal of terawatt laser pulse

    SciTech Connect

    Sanyasi Rao, Bobbili; Chakera, Juzer Ali; Naik, Prasad Anant; Kumar, Mukund; Gupta, Parshotam Dass

    2011-09-15

    The role of nanosecond duration pre-pulse pedestal (Amplified Spontaneous Emission (ASE) pre-pulse) in the propagation of 45 fs, 4 TW Ti:Sapphire laser pulse through a helium gas jet target has been investigated. We observed that the pre-pulse pedestal of about 1 ns duration and intensity 3 x 10{sup 12} W/cm{sup 2} creates pre-formed plasma with optical guiding channel like structure in the gas-jet at density around 3 x 10{sup 19} cm{sup -3}. Guiding of the 45 fs laser pulse (I{sub L} = 3 x 10{sup 18} W/cm{sup 2}) in the pre-formed plasma channel, over a distance much longer than the Rayleigh length was also observed. The guiding of the laser pulse resulted in the generation of high energy electron beam by laser wake-field acceleration of self-injected electrons. The accelerated electron beam was quasi-monoenergetic with peak energy up to 50 MeV, low divergence in the range of 3-6 mrad, and bunch charge up to 100 pC.

  14. Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum

    SciTech Connect

    Singh, K. P.

    2006-08-15

    Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.

  15. Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas.

    PubMed

    Marceau, Vincent; Varin, Charles; Brabec, Thomas; Piché, Michel

    2013-11-27

    We propose a simple laser-driven electron acceleration scheme based on tightly focused radially polarized laser pulses for the production of femtosecond electron bunches with energies in the few-hundreds-of-keV range. In this method, the electrons are accelerated forward in the focal volume by the longitudinal electric field component of the laser pulse. Three-dimensional test-particle and particle-in-cell simulations reveal the feasibility of generating well-collimated electron bunches with an energy spread of 5% and a temporal duration of the order of 1 fs. These results offer a route towards unprecedented time resolution in ultrafast electron diffraction experiments.

  16. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    SciTech Connect

    Borovskiy, A. V.; Galkin, A. L.; Kalashnikov, M. P.

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  17. Ion acceleration by intense, few-cycle laser pulses with nanodroplets

    SciTech Connect

    Di Lucchio, Laura; Andreev, Alexander A.; Gibbon, Paul

    2015-05-15

    The energy distribution of electrons and ions emerging from the interaction of a few-cycle Gaussian laser pulse with spherical nanoclusters is investigated with the aim of determining prospects for accelerating ions in this regime. It is found that the direct conversion of laser energy into dense attosecond electron nanobunches results in rapid charge separation and early onset of Coulomb-explosion-dominated ion dynamics. The ion core of the cluster starts to expand soon after the laser has crossed the droplet, the fastest ions attaining 10 s of MeV at relativistic intensities. The current investigation should serve as a guide for contemporary experiments, i.e., using state-of-the-art few-cycle ultraintense lasers and nanoclusters of solid density.

  18. Electromagnetic acceleration of material from a plate hit by a pulsed electron beam

    SciTech Connect

    Garcia, M.

    1998-04-16

    An intense pulsed electron beam traversing a thin metal plate creates a volume of dense plasma. Current flows in this plasma as a result of the charge and magnetic field introduced by the relativistic electrons. A magnetic field may linger after the electron beam pulse because of the conductivity of the material. This field decays by both diffusing out of the conducting matter and causing it to expand. If the magnetized matter is of low density and high conductivity it may expand quickly. Scaling laws for this acceleration are sought by analyzing the idealization of a steady axisymmetric flow. This case simplifies a general formulation based on both Euler`s and Maxwell`s equations. As an example, fluid with conductivity {sigma} = 8 x 10{sup 4} Siemens/m, density {rho} = 8 x 10{sup -3} kg/m{sup 3}, and initially magnetized to B = 1 Tesla can accelerate to v = 10{sup 4} m/s within a distance comparable to L = 1 mm and a time comparable to {sigma}{mu}L{sup 2} = 100 ns, which is the magnetic diffusion time. If instead, {sigma} = 8 x 10{sup 3} Siemens/m and {rho} = 8 x 10{sup -5} kg/m{sup 3} then v = 10{sup 5} m/s with a magnetic diffusion time {sigma}{mu}L{sup 2} = 10 ns. These idealized flows have R{sub M} = {sigma}{mu}vL = 1, where R{sub M} is the magnetic Reynolds number. The target magnetizes by a thermal electric effect.

  19. Discharge ignition in the diaphragm configuration supplied by DC non-pulsing voltage

    NASA Astrophysics Data System (ADS)

    Hlochová, L.; Hlavatá, L.; Kozáková, Z.; Krčma, F.

    2016-05-01

    This work deals with the ignition of the discharge in the diaphragm configuration generated in water solutions containing supporting NaCl electrolyte. The reactor has volume of 110 ml and it is made of polycarbonate. HV electrodes made of stainless steel are placed in this reactor. Ceramic (Shapal-MTM) diaphragm is placed in the barrier separating the cathode and the anode space. An electric power source supplies the reactor by constant DC voltage up to 4 kV and electric current up to 300 mA. The discharge ignition is compared in the reactor with different sizes of diaphragms. Measurements are carried out in electrolyte solutions with the same conductivity. Images of plasma streamers and bubble formation are taken by an ICCD camera iStar 734. Electrical characteristics are measured by an oscilloscope LeCroy LT 374 L in order to determine breakdown moments at different experimental conditions.

  20. Changes of the solution pH due to exposure by high-voltage electric pulses.

    PubMed

    Saulis, Gintautas; Lape, Remigijus; Praneviciūte, Rita; Mickevicius, Donatas

    2005-09-01

    The change of the pH of a NaCl solution (139-149 mM NaCl) buffered with 5-15 mM sodium phosphates (pH 7.4) during electromanipulation was studied. It has been determined that an increase in the pH value of electroporation solution of a whole chamber volume, caused by the application of electric field pulses, commonly used in cell electromanipulation procedures, can exceed 1-2 pH units. Several materials for the cathode were tested. In all cases a stainless steel anode was utilized. The aluminum cathode gave a two-fold greater DeltapH in comparison with platinum, copper or stainless steel cathodes. In addition, a substantial release of aluminum (up to 1 mg/l) from the cathode was observed. It has also been found that the shift in pH depended on the medium conductivity: DeltapH of the solution, in which sucrose was substituted for NaCl, was about 5 times less. On the basis of the results obtained here, to avoid the plausible undesirable consequences of the cathodic electrolysis processes, in particular under the conditions of strong electric treatment, it could be recommended that chambers with aluminum electrodes not be utilized and one should use strongly buffered solutions of low conductivity and alternating current (sine or square wave) bipolar electric pulses. PMID:15967404

  1. Novel pulsed particle accelerator for energy dependent positron re-emission experiments.

    PubMed

    Grill, Niklas; Piochacz, Christian; Zimnik, Samantha; Hugenschmidt, Christoph

    2016-05-01

    We report on a novel device for particle acceleration based on elevation of the potential energy of beam pulses. This so-called energy elevator is particularly beneficial if both the particle source and the sample have to be near ground potential due to experimental constraints. We applied this new technique to enable depth dependent measurements of re-emitted positrons using the surface spectrometer at the NEPOMUC positron beam facility. First, a two-stage bunching system is used to generate positron pulses with a repetition rate of 5 MHz and a duration of 1.663(5) ns before their energy is raised to several keV. The whole system was shown to work with an exceptional efficiency of 88%. We demonstrated the usability of our setup by investigating the positron re-emission spectra of Ni and Pd as function of positron implantation energy. For Ni the positron work function could be determined to be ΦNi (+)=-1.4(2)eV. In addition, as predicted by theory, our experimental findings imply a positive positron work function for Pd.

  2. Prediction of back-scatter radiations to a beam monitor chamber of medical linear accelerators by use of the digitized target-current-pulse analysis method.

    PubMed

    Suzuki, Yusuke; Hayashi, Naoki; Kato, Hideki; Fukuma, Hiroshi; Hirose, Yasujiro; Kawano, Makoto; Nishii, Yoshio; Nakamura, Masaru; Mukouyama, Takashi

    2013-01-01

    In small-field irradiation, the back-scattered radiation (BSR) affects the counts measured with a beam monitor chamber (BMC). In general, the effect of the BSR depends on the opened-jaw size. The effect is significantly large in small-field irradiation. Our purpose in this study was to predict the effect of BSR on LINAC output accurately with an improved target-current-pulse (TCP) technique. The pulse signals were measured with a system consisting of a personal computer and a digitizer. The pulse signals were analyzed with in-house software. The measured parameters were the number of pulses, the change in the waveform and the integrated signal values of the TCPs. The TCPs were measured for various field sizes with four linear accelerators. For comparison, Yu's method in which a universal counter was used was re-examined. The results showed that the variance of the measurements by the new method was reduced to approximately 1/10 of the variance by the previous method. There was no significant variation in the number of pulses due to a change in the field size in the Varian Clinac series. However, a change in the integrated signal value was observed. This tendency was different from the result of other investigations in the past. Our prediction method is able to define the cutoff voltage for the TCP acquired by digitizer. This functionality provides the capability of clearly classifying TCPs into signals and noise. In conclusion, our TCP analysis method can predict the effect of BSR on the BMC even for small-field irradiations.

  3. Production of Multi-Terawatt Time-Structured CO{sub 2} Laser Pulses for Ion Acceleration

    SciTech Connect

    Haberberger, Dan; Tochitsky, Sergei; Gong Chao; Joshi, Chan

    2010-11-04

    The UCLA Neptune Laboratory CO{sub 2} laser system has been recently upgraded to produce 3ps multi-terawatt 10{mu}m laser pulses. The laser energy is distributed over several 3 ps pulses separated by 18 ps. These temporally structured pulses are applied for laser driven ion acceleration in an H{sub 2} gas jet at a measured plasma density of 2x10{sup 19} cm{sup -3}. Protons in excess of 20 MeV have been observed in the forward direction and with energy spreads ({Delta}E/E{approx}10%).

  4. Acceleration of groundwater remediation by deep sweeps and vortex ejections induced by rapidly pulsed pumping

    NASA Astrophysics Data System (ADS)

    Kahler, David M.; Kabala, Zbigniew J.

    2016-05-01

    One key limiting factor to groundwater remediation is contaminant sequestered in pores whose contents do not mix well with the bulk flow. Mixing between well-connected (pores whose volume is flushed as water flows through the aquifer) and poorly connected pores (pores whose volume does not exchange readily when water flows through the aquifer) is of primary concern. Under steady flow, contaminants are effectively trapped in the poorly connected pores and are transferred only by molecular diffusion. This slow mixing process between pore types is a bottleneck to remediation. We present a novel rapidly pulsed pumping method that increases the mixing between these pore types. We do it in the context of pump-and-treat remediation because it is the most common remediation practice. In rapidly pulsed pumping, the increase in flow causes a deep sweep, which pushes the flow into poorly connected pores and sweeps out sequestered contaminants. The decrease in flow causes a vortex ejection, which causes the vortex within the poorly connected pore to emerge with contaminant. These actions are modeled with computational fluid mechanics to elucidate the individual mechanisms and determine how they function and interact. Cleanup of single and multiple poorly connected pore systems were simulated and show the acceleration possible. This technique can decrease the time and cost needed to remediate contaminated aquifers, which in the United States has been estimated to exceed $1 trillion. Since our rapidly pulsed pumping method enhances mixing between well-connected and poorly connected pores, it can be applied to other remediation schemes such as in situ methods.

  5. Novel Slow Extraction Scheme for Proton Accelerators Using Pulsed Dipole Correctors and Crystals

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2012-05-01

    Slow extraction of protons beams from circular accelerators is currently widely used for a variety of beam-based experiments. The method has some deficiencies including limited efficiency of extraction, radiation induced due to scattering on the electrostatic septa and limited beam pipe aperture, beam dynamics effects of space charge forces and magnet power supplies ripple. Here we present a novel slow extraction scheme employing a number of non-standard accelerator elements, such as Silicone crystal strips and pulsed stripline dipole correctors, and illustrate practicality of these examples at the 8 GeV proton Recycler Ring at Fermilab. The proposed method of non-resonant slow extraction of protons by bent crystals in combination with orbit fast deflectors shows great promise in simulations. We propose to initiate an R&D program in the Fermilab 8 GeV Recycler to address the key issues of the method: (a) feasibility of very short crystals - from few mm down to 0.2 mm; (b) their efficiency in the channelling and volume reflection regimes; (c) practical aspects of the fast deflectors.

  6. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  7. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  8. Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit.

    PubMed

    Pilla, A A; Mont, M A; Nasser, P R; Khan, S A; Figueiredo, M; Kaufman, J J; Siffert, R S

    1990-01-01

    The effect of ultrasound (US) on the rate of fibula osteotomy healing in 139 mature New Zealand white rabbits was assessed in this study. Bilateral midshaft fibular osteotomies were made using a 1-mm Gigli saw. US was noninvasively applied to one limb for 20 minutes daily, while the contralateral limb served as a control. A 2.5-cm PZT transducer was applied to both limbs, with the treated limb receiving a 200-microseconds burst of 1.5-MHz sine waves repeated at 1.0 kHz. The incident intensity was approximately 30 mW/cm2. Animals were killed at intervals between 14 and 28 days. Maximum strength increases (significant to p less than or equal to 0.01) ranged from 40 to 85% from postoperative day 14 to 23. On day 28, no significant difference in ultimate strength was noted. From day 17 through day 28, all US-treated fractures were as strong as intact bones (p less than or equal to 0.005). On the other hand, the ultimate strength of the control osteotomies attained intact values only by day 28. These results indicate that biomechanical healing is accelerated by a factor of nearly 1.7. This occurs with an overall acceleration of the healing curve in this fresh fracture model. If noninvasive low-intensity pulsed sine wave ultrasound can significantly accelerate bone repair in clinical application with an in-home treatment of 20 minutes daily, then US may be a useful adjunct for fracture care with a concomitant impact on patient morbidity.

  9. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    SciTech Connect

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-12-31

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10{sup 10}A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shots on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam.

  10. Acceleration of a solid-density plasma projectile to ultrahigh velocities by a short-pulse ultraviolet laser

    SciTech Connect

    Badziak, J.; Jablonski, S.

    2011-08-15

    It is shown by means of particle-in-cell simulations that a high-fluence ({>=}1 GJ/cm{sup 2}) solid-density plasma projectile can be accelerated up to sub-relativistic velocities by radiation pressure of an ultraviolet (UV) picosecond laser pulse of moderate values of dimensionless laser amplitude a{sub 0}{approx}10. The efficiency of acceleration by the UV laser is significantly higher than in the case of long-wavelength ({lambda} {approx} 1 {mu}m) driver of a comparable value of a{sub 0}, and the motion of the projectile is fairly well described by the ''Light Sail'' acceleration model.

  11. Theory of quantum transport in disordered systems driven by voltage pulse

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyi; Chen, Xiaobin; Guo, Hong

    2016-08-01

    Predicting time-dependent quantum transport in the transient regime is important for understanding the intrinsic dynamic response of a nanodevice and for predicting the limit of how such a device can switch on or off a current. Theoretically, this problem becomes quite difficult to solve when the nanodevice contains disorder because the calculated transient current must be averaged over many disorder configurations. In this work, we present a theoretical formalism to calculate the configuration averaged time-dependent current flowing through a phase coherent device containing disorder sites where the transient current is driven by sharply turning on and off the external bias voltage. Our theory is based on the Keldysh nonequilibrium Green's function (NEGF) formalism and is applicable in the far from equilibrium nonlinear response quantum transport regime. The effects of disorder scattering are dealt with by the coherent potential approximation (CPA) extended in the time domain. We show that after approximations such as CPA and vertex corrections for calculating the multiple impurity scattering in the transient regime, the derived NEGFs perfectly satisfy a Ward identity. The theory is quantitatively verified by comparing its predictions to the exact solution for a tight-binding model of a disordered two-probe transport junction.

  12. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach.

    PubMed

    Ji, Sang-Hye; Choi, Ki-Hong; Pengkit, Anchalee; Im, Jun Sup; Kim, Ju Sung; Kim, Yong Hee; Park, Yeunsoo; Hong, Eun Jeong; Jung, Sun Kyung; Choi, Eun-Ha; Park, Gyungsoon

    2016-09-01

    In this study, we analyzed seed germination, seedling growth, and physiological aspects after treatment with high voltage nanosecond pulsed plasma and micro DBD plasma in spinach (Spinacia oleracea L.), a green leafy vegetable known to have low germination rate. Both germination and dry weight of seedlings increased after high voltage pulse shots were applied to spinach seeds. However seeds treated with many shots (10 shots) showed a decrease in germination rate and seedling growth. Seeds treated with air DBD plasma exhibited slightly higher germination and subsequent seedling growth than those treated with N2 plasma. Seed surface was degenerated after treated with high voltage pulsed plasma and micro DBD plasma but no significant difference in the degree of degeneration was observed among micro DBD plasma treatment time. Level of GA3 hormone and mRNA expression of an amylolytic enzyme-related gene in seeds were elevated 1 day after treatment with high voltage pulsed plasma. The relative amount of chlorophyll and total polyphenols in spinach seedlings grown from seeds treated with air DBD plasma was increased in 30 s, 1 min, and 3 min treatments. Taken together, our results suggest a possibility that plasma can enhance seed germination by triggering biochemical processes in seeds. PMID:26944552

  13. Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach.

    PubMed

    Ji, Sang-Hye; Choi, Ki-Hong; Pengkit, Anchalee; Im, Jun Sup; Kim, Ju Sung; Kim, Yong Hee; Park, Yeunsoo; Hong, Eun Jeong; Jung, Sun Kyung; Choi, Eun-Ha; Park, Gyungsoon

    2016-09-01

    In this study, we analyzed seed germination, seedling growth, and physiological aspects after treatment with high voltage nanosecond pulsed plasma and micro DBD plasma in spinach (Spinacia oleracea L.), a green leafy vegetable known to have low germination rate. Both germination and dry weight of seedlings increased after high voltage pulse shots were applied to spinach seeds. However seeds treated with many shots (10 shots) showed a decrease in germination rate and seedling growth. Seeds treated with air DBD plasma exhibited slightly higher germination and subsequent seedling growth than those treated with N2 plasma. Seed surface was degenerated after treated with high voltage pulsed plasma and micro DBD plasma but no significant difference in the degree of degeneration was observed among micro DBD plasma treatment time. Level of GA3 hormone and mRNA expression of an amylolytic enzyme-related gene in seeds were elevated 1 day after treatment with high voltage pulsed plasma. The relative amount of chlorophyll and total polyphenols in spinach seedlings grown from seeds treated with air DBD plasma was increased in 30 s, 1 min, and 3 min treatments. Taken together, our results suggest a possibility that plasma can enhance seed germination by triggering biochemical processes in seeds.

  14. Preparation of diamond-like carbon films using reactive Ar/CH4 high power impulse magnetron sputtering system with negative pulse voltage source for substrate

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2016-04-01

    Diamond-like carbon films were prepared using a reactive Ar/CH4 high-power impulse magnetron sputtering system with a negative pulse voltage source for the substrate, changing the CH4 fraction up to 15% in the total pressure range from 0.3 to 2 Pa. The magnitude of the negative pulse voltage for the substrate was also varied up to about 500 V. The hardness of films monotonically increased with increasing magnitude of the negative pulse voltage. The films with hardnesses between 16.5 and 23 GPa were prepared at total pressures less than 0.5 Pa and CH4 fractions less than 10% by applying an appropriate negative pulse voltage of 300-400 V. In X-ray photoelectron spectroscopy, the area ratio C-C sp3/(C-C sp2 + C-C sp3) in the C 1s core level was higher than 30% at pressures less than 0.5 Pa and CH4 fractions less than 15%. On the other hand, the films with hardnesses between 5 and 10 GPa were prepared with a relatively high growth rate at the partial pressures of CH4 higher than 0.1 Pa. However, the observation of the photoluminescence background in Raman spectroscopy indicated a relatively high hydrogen content.

  15. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  16. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    SciTech Connect

    Kyuregyan, A. S.

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  17. Laboratory study of the temporal evolution of the current-voltage characteristic of a probe in the wake of an object immersed in a pulsed flowing plasma

    NASA Technical Reports Server (NTRS)

    Meassick, S.; Chan, C.

    1992-01-01

    Measurements of the current-voltage characteristics of a Langmuir probe in the near wake of a disk immersed in a pulsed flowing plasma were made. A 1 cm diameter biasable sphere was placed in the ion-free near wake region of a 10 cm diameter disk immersed in a Mach 8 pulsed flowing plasma. The current-voltage characteristic of the sphere was observed as a function of time as the sphere bias was scanned from -5000 V to +1000 V. The collected current is found to be monotonically increasing with increasing positive bias voltage but exhibits a threshold voltage for current collection as the bias voltage becomes more negative. Potential measurements in the wake region were made for a sphere bias voltages below, at, and above the current collection threshold for a number of times during the wake formation period. The time evolution of the potential profile is shown to change as the sheath around the biased sphere is established. Predictions from the particle trajectory code SIMION are compared with data, showing excellent agreement in the prediction of the current collection threshold.

  18. Proton Acceleration to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    SciTech Connect

    Reed, S. A.; Bulanov, S. S.; Chvykov, V.; Kalinchenko, G.; Matsuoka, T.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Brantov, A.; Bychenkov, V. Yu.; Litzenberg, D. W.

    2006-11-27

    The acceleration of protons to therapeutic energies of over 200 MeV by short-pulse, high-intensity lasers requires very high temporal intensity contrast. We describe improvements to the contrast ratio of the laser pulse produced by a multi-terawatt chirped pulsed amplification (CPA) Ti:sapphire laser for the application of proton acceleration. The modified cross-polarized wave generation (XPW) technique has been implemented on the Hercules laser at the University of Michigan to reject the low-intensity amplified spontaneous emission (ASE) preceding the main laser pulse. We demonstrate that by using two BaF2 crystals, the XPW technique yields a 10-11 contrast ratio between the main peak and the ASE for a 50 TW laser system which can be maintained up to 500 TW. Such contrast may be sufficient for a preplasma-free interaction of 225 TW laser pulses with sub-micron thick foils at an intensity of {approx}10{sup 22} W/cm{sup 2}. Particle-in-cell (PIC) simulations were conducted under the anticipated experimental conditions: 6.75 J, 30 fs laser pulse without a prepulse, focused to a spot size of 1.2 microns (FWHM) on thin foils of varying thickness. The performed PIC simulations show that for a 0.2 {mu}m thick hydrogen foil protons with energy up to 200 MeV can be produced. In the case of the two-layer aluminum-hydrogen foil, the maximum energy of accelerated protons is about 150 MeV, but the flux-energy spectrum of the accelerated protons has a narrow peak at high energies, which may be more advantageous for medical applications.

  19. Calculated fraction of an incident current pulse that will be accelerated by an electron linear accelerator and comparisons with experimental data

    SciTech Connect

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Lewis, T.A.

    1986-05-01

    In a series of previous papers, calculated results obtained using a one-dimensional ballistic model were presented to aid in the design of a prebuncher for the Oak Ridge Electron Linear Accelerator. As part of this work, a model was developed to provide limits on the fraction of an incident current pulse that would be accelerated by the existing accelerator. In this paper experimental data on this fraction are presented and the validity of the model developed previously is tested by comparing calculated and experimental data. Part of the experimental data is used to fix the physical parameters in the model and then good agreement between the calculated results and the rest of the experimental data is obtained.

  20. High-voltage pulsed current stimulation enhances wound healing in diabetic rats by restoring the expression of collagen, α-smooth muscle actin, and TGF-β1.

    PubMed

    Kim, Tae Hoon; Cho, Hwi-Young; Lee, Suk Min

    2014-01-01

    Impaired wound healing is a common complication of diabetes mellitus and a major morbidity that leads to pain and severely diminished quality of life. Diabetic wounds are commonly associated with defective immune cell responses or abnormality of extracellular matrix. Various types of electrical stimulation interventions have been used to promote tissue healing. However, it is unclear whether high-voltage pulsed current stimulation (HVPCS) enhances diabetic wound healing. In this study, the effects of HVPCS on wound healing were investigated in diabetic rats. Three groups of rats (10 per group) were used: non-diabetic control, diabetic control, and diabetic rats that were administered HVPCS for 40 minutes daily for 1 week. Rats from control groups were administered sham interventions. Dorsal incision wounds were generated in all animals, and wound-healing rate was determined during one-week intervention. After interventions, we measured the relative expression levels of collagen type I (collagen-I), α-smooth muscle actin (α-SMA), and transforming growth factor-β1 (TGF-β1) mRNAs in the wounded skin. Wound closure was delayed in diabetic control rats compared to the non-diabetic control rats, and the diabetic control rats showed the reduced expression levels of collagen-I, α-SMA and TGF-β1 mRNAs. Importantly, compared to diabetic control rats, rats with HVPCS showed accelerated wound closure and healing (p < 0.01) and restored expression levels of collagen-I (p = 0.02), α-SMA (p = 0.04), and TGF-β1 (p = 0.01) mRNAs. In conclusion, HVPCS may be beneficial for enhancing the healing of diabetic wounds by restoring the expression levels of TGF-β1, collagen-I, and α-SMA. PMID:25169252

  1. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wang, Xue Qing; Zeng, Jing Hui

    2016-04-01

    Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  2. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B-H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  3. Mechanism of Fast Current Interruption in p -π -n Diodes for Nanosecond Opening Switches in High-Voltage-Pulse Applications

    NASA Astrophysics Data System (ADS)

    Sharabani, Y.; Rosenwaks, Y.; Eger, D.

    2015-07-01

    Step-recovery diodes operating in the snappy recovery regime are used as opening switches for generating narrow pulses with high-voltage amplitude. Physical modeling of the switching process is complex due to the large number of parameters involved, including diode structure, the extreme physical conditions, and the effect of external driving conditions. In this work, we address the problem by using a physical device simulator for solving the coupled device and electrical driving circuit equations. This method allows deciphering of the physical processes to take place in the diode during the fast current interruption phase. Herein we analyze the complete hard (snappy) reverse recovery process in short-base devices and determine the fast-transition-phase mechanism. It was found that the fast current interruption phase is constructed of two processes; the main parameters governing the switching time duration and the prepulse magnitude are the diode's reverse current density and its base-doping concentration. We describe the dependence of the switching performance in these parameters.

  4. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    SciTech Connect

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  5. Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.

  6. Direct spectroscopic observation of multiple-charged-ion acceleration by an intense femtosecond-pulse laser.

    PubMed

    Zhidkov, A G; Sasaki, A; Tajima, T; Auguste, T; D'Olivera, P; Hulin, S; Monot, P; Faenov, A Y; Pikuz, T A; Skobelev, I Y

    1999-09-01

    We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons.

  7. Creation of Pure Frozen Gas Targets for Ion Acceleration using Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    McCary, Edward; Stehr, Florian; Jiao, Xuejing; Quevedo, Hernan; Franke, Philip; Agustsson, Ronald; Oshea, Finn; Berry, Robert; Chao, Dennis; Woods, Kayley; Gautier, Donald; Letzring, Sam; Hegelich, Bjorn

    2015-11-01

    A system for shooting interchangeable frozen gas targets was developed at the University of Texas and will be tested at Los Alamos National Lab. A target holder which can hold up to five substrates used for target growing was cryogenically cooled to temperatures below 14 K. The target substrates consist of holes with diameters ranging from 15 μm-500 μm and TEM grids with micron scale spacing, across which films of ice are frozen by releasing small amounts of pure gas molecules directly into the vacuum target chamber. Frozen gas targets comprised of simple molecules like methane and single element gasses like hydrogen and deuterium will provide novel target configuations that will be compared with laser plasma interaction simulations. The targets will be shot with the ultra-intense short-pulse Trident laser. Accelerated ion spectra will be characterized using a Thomson Parabola with magnetic field strength of 0.92T and electric field strength of 30kV. Hydrogen targets will be additionally characterized using stacks of copper which become activated upon exposure to energetic protons resulting in a beta decay signal which be imaged on electron sensitive imaging plates to provide an energy spectrum and spacial profile of the proton beam. Details of target creation and pre-shot characterization will be presented.

  8. Ion Acceleration by Ultra-intense Laser Pulse Interacting with Double-layer Near-critical Density Plasma

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.; Takano, M.; Li, X. F.; Yu, Q.; Barada, D.; Ma, Y. Y.; Wang, P. X.

    2016-03-01

    A collimated ion beam is generated through the interaction between ultra-intense laser pulse and a double layer plasma. The maximum energy is above 1GeV and the total charge of high energy protons is about several tens of nC/μm. The double layer plasma is combined with an underdense plasma and a thin overdense one. The wakefield traps and accelerates a bunch of electrons to high energy in the first underdense slab. When the well collimated electron beam accelerated by the wakefield penetrates through the second overdense slab, it enhances target normal sheath acceleration (TNSA) and breakout after-burner (BOA) regimes. The mechanism is simulated and analyzed by 2.5 dimensional Particle-in-cell code. Compared with single target TNSA or BOA, both the acceleration gradient and energy transfer efficiency are higher in the double layer regime.

  9. Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad

    2016-04-01

    The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.

  10. Direct laser acceleration of electron by an ultra intense and short-pulsed laser in under-dense plasma

    SciTech Connect

    Li, Y. Y.; Gu, Y. J.; Zhu, Z.; Li, X. F.; Ban, H. Y.; Kong, Q.; Kawata, S.

    2011-05-15

    Direct laser acceleration (DLA) of electron by an ultra intense and short-pulsed laser interacting with under-dense plasma is investigated based on 2.5-dimensional particle-in-cell simulation. A high-density electron beam is generated by the laser longitudinal ponderomotive force. Although the total number of DLA electrons is significantly smaller than the number of electrons trapped in the bubble, the total charge of high-energy DLA electrons (E>800MeV) reaches 67 pC/{mu}m. It is found that the electron beam occurs in a two-stage acceleration, i.e., accelerated in vacuum by the laser directly soon after a DLA process in plasma. The beam is accelerated violently with effective acceleration gradient in 100 GeV/cm. The energy spectrum of electrons presents a Maxwellian distribution with the highest energy of about 3.1 GeV. The dependence of maximum electron energy and electric quantity with laser intensity, laser width, pulse duration, and initial plasma density are also studied.

  11. Direct observation of atomic columns in a Bi-2223 polycrystal by aberration-corrected STEM using a low accelerating voltage

    NASA Astrophysics Data System (ADS)

    Nagai, Takuro; Haruta, Mitsutaka; Kikuchi, Masashi; Zhang, Weizhu; Takeguchi, Masaki; Kimoto, Koji

    2014-05-01

    Aberration correction in scanning transmission electron microscopy (STEM) enables an atomic-scale probe size of ˜0.1 nm at a low accelerating voltage of 80 kV that avoids knock-on damage in materials including light elements such as oxygen. We used this advanced method of microscopy to directly observe atomic columns in a (Bi,Pb)2Sr2Ca2Cu3O10+δ (Bi-2223) superconducting wire produced by a powder-in-tube method. Using the atomic-number (Z) contrast mechanism, incoherent high-angle annular dark-field (HAADF) imaging clearly showed the atomic columns. Atomic displacements toward the boundary with a maximum magnitude of ˜0.26 nm enable each atomic layer to be continuous at edge grain boundaries (EGBs). The grains tend to be terminated with deficient (Bi,Pb)-O single layers at c-axis twist boundaries (TWBs) and small-angle asymmetrical tilt boundaries (ATBs); a quantitative HAADF analysis showed that the occupancies of the (Bi,Pb) sites around these boundaries are ˜0.66 and ˜0.72, respectively. Electron energy-loss spectroscopy (EELS) mapping successfully visualized atomic columns in the half-unit cell intergrowth of (Bi,Pb)2Sr2CaCu2O8+δ (Bi-2212) and (Bi,Pb)2Sr2Ca3Cu4O12+δ (Bi-2234) phases. Furthermore, the HAADF analysis indicated that the occupancy of the (Bi,Pb) sites is modulated between ˜0.88 and 1.0 along the diagonal direction of the primitive perovskite cell with the same period as the structural modulation.

  12. STATUS OF THE DIELECTRIC WALL ACCELERATOR

    SciTech Connect

    Caporaso, G J; Chen, Y; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Carroll, J; Cook, E; Falabella, S; Guethlein, G; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-04-22

    The dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL) uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system is capable of accelerating any charge to mass ratio particle. Applications of high gradient proton and electron versions of this accelerator will be discussed. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, photoconductive switches and compact proton sources.

  13. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  14. Effect of plasma profile on ion acceleration in the interaction of a short laser pulse with a thin overdense target

    SciTech Connect

    Kwon, Duck-Hee; Rhee, Yong-Joo; Lee, Sungman; Cha, Hyungki

    2008-06-15

    Energetic ion generation from the interaction of a short laser pulse with a thin overdense plasma accompanied by a preplasma and a rear side plasma gradient is investigated by particle-in-cell simulations. The dynamics of ion acceleration depending on the maximum density of the preplasma in front of the overdense plasma slab with a smooth density gradient at the rear side are presented and discussed by comparing a sharp rear side boundary case.

  15. Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

    SciTech Connect

    McBride, Ryan D.; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew R.; Jennings, Christopher Ashley; Slutz, Stephen A.; Rovang, Dean C.; Knapp, Patrick F.; Schmit, Paul F.; Awe, Thomas James; Hess, M. H.; Lemke, Raymond W.; Dolan, D. H.; Lamppa, Derek C.; Jobe, Marc Ronald Lee; Fang, Lu; Hahn, Kelly D.; Chandler, Gordon A.; Cooper, Gary Wayne; Ruiz, Carlos L.; Maurer, A. J.; Robertson, Grafton Kincannon; Cuneo, Michael E.; Sinars, Daniel; Tomlinson, Kurt; Smith, Gary; Paguio, Reny; Intrator, Tom; Weber, Thomas; Greenly, John

    2015-11-01

    We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing

  16. Pondermotive acceleration of electrons to GeV energies by a tightly focused ultra-short ultra-intense laser pulse

    NASA Astrophysics Data System (ADS)

    Tian, Youwei; Yu, Wei; Lu, Peixiang; He, Feng; Xu, Han

    2005-12-01

    Laser-driven pondermotive acceleration of electrons in vacuum has been considered using computer simulations. It is demonstrated that a low-energy free electron can be violently accelerated to final kinetic energy of GeV by a tightly focused ultra-short ultra-intense laser pulse. Suitable conditions that are crucial for this phenomenon to occur have been investigated. It is shown that selection of appropriate initial conditions like relative time delay between electron and the laser pulse, electron's incident angle and momentum, laser pulse duration and its focal spot size play important roles in the efficient acceleration scheme.

  17. A PC-PCL-based control system for the high-voltage pulsed-power operation of the Intense Diagnostic Neutral Beam (IDNB) Experiment

    SciTech Connect

    Gribble, R.

    1993-06-01

    A stand-alone, semiautomated control system for the high-voltage pulsed-power energy sources on the Intense Diagnostic Neutral Beam Experiment at Los Alamos National Laboratory using personal computer (PC) and programmable logic controller (PLC) technology has been developed and implemented. The control system, consisting of a PC with the graphic operator interface, the network connecting the PC to the PLC, the PLC, the PLC I/O modules, fiber-optic interfaces and software, is described.

  18. Femtosecond few-hundreds-of-keV electron pulses from direct laser acceleration in a low-density gas

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Marceau, Vincent; Brabec, Thomas; Piché, Michel

    2014-05-01

    Subrelativistic electrons are a valuable tool for high-resolution atomic and molecular imaging. In particular, electron pulses with energies ranging from 50 to 300 keV have been successfully used in time-resolved ultrafast electron diffraction (UED) experiments to probe physical phenomena on a subpicosecond time scale. Laser-driven electron acceleration has been proposed as an alternative to the static accelerator technology currently in use. In principle, it has several advantages: (i) the short wavelength of the accelerating field may lead to electron bunches with duration of the order of 10 fs or less; (ii) there is an intrinsic synchronization between the electron probe and the laser pump; and (iii) using a gas medium, the electron source is self-regenerating and could be used for UED experiments at high repetition rates. Using three-dimensional particle-in-cell simulations, we showed that 240-keV electron pulses with 1-fs initial duration and 5% energy spread could be produced by radially polarized laser pulses focused in a low-density hydrogen gas [Marceau et al., Phys. Rev. Lett. 111, 224801 (2013)]. The latest results suggest that 100-500 keV energy with similar duration is within reach of the actual laser technology.

  19. Infrared detection with high-{Tc} bolometers and response of Nb tunnel junctions to picosecond voltage pulses

    SciTech Connect

    Verghese, S.

    1993-05-01

    Oxide superconductors with high critical temperature {Tc} make sensitive thermometers for several types of infrared bolometers. The authors built composite bolometers with YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thermometers on sapphire substrates which have higher sensitivity than competing thermal detectors which operate at temperatures above 77 K. A 1 x 1 mm bolometer with gold black serving as the radiation absorber has useful sensitivity for wavelengths 20--100 {mu}m. A 3 x 3 mm bolometer with a bismuth film as the absorber operates from 20--100 {mu}m. High-{Tc} bolometers which are fabricated with micromachining techniques on membranes of Si or Si{sub 3}N{sub 4} have potential application to large-format arrays which are used for infrared imaging. A nonisothermal high-{Tc} bolometer can be fabricated on a membrane of yttria-stabilized zirconia (YSZ) which is in thermal contact with the heat sink along the perimeter of the membrane. A thermal analysis indicates that the YSZ membrane bolometer can have improved sensitivity compared to the sapphire bolometer for spectrometer applications. The quasiparticle tunneling current in a superconductor-insulator-superconductor (SIS) junction is highly nonlinear in the applied voltage. The authors have made the first measurement of the linear response of the quasiparticle current in a Nb/AlO{sub x}/Nb junction over a broad bandwidth from 75--200 GHz. Nonlinear measurements made with these pulses may provide information about the quasiparticle lifetime. Preliminary data from such measurements are presented.

  20. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  1. The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: Overview and examples of applications

    NASA Astrophysics Data System (ADS)

    Taccetti, N.; Giuntini, L.; Casini, G.; Stefanini, A. A.; Chiari, M.; Fedi, M. E.; Mandò, P. A.

    2002-04-01

    An electrostatic chopper has been installed at the KN 3000 accelerator in Florence to obtain short beam pulses with a number of particles per pulse whose average value can be chosen by varying the current intensity at the deflector plates input. Beam pulses can be obtained containing an average number of particles per pulse from less than one to thousands. The transmitted beam pulses can be as short as 200 ps FWHM, at a repetition rate up to about 100 kHz. Among the many applications of the facility, the direct measurement of energy loss and straggling of protons in Kapton and aluminium is reported. In this measurement, the facility has been tuned for transmission of mainly single-proton pulses; the beam energy is directly measured downstream with a good energy-resolution detector, without and with absorbers in front. In general, measurements of this kind can be directed both to study the basic processes of charged particles interactions in materials, or more practically to obtain the effective values of energy parameters useful in many IBA applications, avoiding the need to rely on simulations or theoretical estimates. Also briefly described is an application to Si-detector testing. In this case, the facility has been tuned for transmission of pulses containing many hundreds of protons of energy Ep=2.5 MeV and the detector is directly exposed to the pulses. Spectra containing equally spaced peaks at energies multiple of Ep are obtained and the response linearity of the detector plus electronics system can thus be checked.

  2. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  3. Effect of supply voltage and body-biasing on single-event transient pulse quenching in bulk fin field-effect-transistor process

    NASA Astrophysics Data System (ADS)

    Jun-Ting, Yu; Shu-Ming, Chen; Jian-Jun, Chen; Peng-Cheng, Huang; Rui-Qiang, Song

    2016-04-01

    Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61376109, 61434007, and 61176030).

  4. Low-voltage pulsed plasma discharges inside water using a bubble self-generating parallel plate electrode with a porous ceramic

    NASA Astrophysics Data System (ADS)

    Muradia, Sonia; Nagatsu, Masaaki

    2013-04-01

    Characteristics of pulsed bubbles discharges in water were investigated using parallel punched plate electrodes with a porous thin ceramic plate inserted between two metal plates. The micro-bubbles were generated just beneath the porous ceramic plate by flowing gas through it. The transition from spiky dielectric barrier discharges to pulsed glow discharges enables efficient bubble discharges at a relatively low voltage of 1.8 ˜ 4.0 kV of the 5 kHz square-waves with a pulse-width of about 750 ns. With 80% Ar and 20% O2 mixture gas at 4.0 kV, the 50 mg/l Indigo Carmine aqueous solution was efficiently decolorized within about 3 min.

  5. Pulse evolution and plasma-wave phase velocity in channel-guided laser-plasma accelerators.

    PubMed

    Benedetti, C; Rossi, F; Schroeder, C B; Esarey, E; Leemans, W P

    2015-08-01

    The self-consistent laser evolution of an intense, short-pulse laser exciting a plasma wave and propagating in a preformed plasma channel is investigated, including the effects of pulse steepening and energy depletion. In the weakly relativistic laser intensity regime, analytical expressions for the laser energy depletion, pulse self-steepening rate, laser intensity centroid velocity, and phase velocity of the plasma wave are derived and validated numerically. PMID:26382537

  6. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    PubMed

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  7. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    SciTech Connect

    Jiang, C.; Samnakay, R.; Balandin, A. A.; Rumyantsev, S. L.; Shur, M. S.

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  8. Conceptual design of a 1013 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Reisman, D. B.; Stoltzfus, B. S.; Austin, K. N.; Ao, T.; Benage, J. F.; Breden, E. W.; Cooper, R. A.; Cuneo, M. E.; Davis, J.-P.; Ennis, J. B.; Gard, P. D.; Greiser, G. W.; Gruner, F. R.; Haill, T. A.; Hutsel, B. T.; Jones, P. A.; LeChien, K. R.; Leckbee, J. J.; Lewis, S. A.; Lucero, D. J.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Root, S.; Savage, M. E.; Sceiford, M. E.; Spielman, R. B.; Waisman, E. M.; Wisher, M. L.

    2016-07-01

    We have developed a conceptual design of a next-generation pulsed-power accelerator that is optimized for megajoule-class dynamic-material-physics experiments. Sufficient electrical energy is delivered by the accelerator to a physics load to achieve—within centimeter-scale samples—material pressures as high as 1 TPa. The accelerator design is based on an architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. The prime power source of the accelerator consists of 600 independent impedance-matched Marx generators. Each Marx comprises eight 5.8-GW bricks connected electrically in series, and generates a 100-ns 46-GW electrical-power pulse. A 450-ns-long water-insulated coaxial-transmission-line impedance transformer transports the power generated by each Marx to a system of twelve 2.5-m-radius water-insulated conical transmission lines. The conical lines are connected electrically in parallel at a 66-cm radius by a water-insulated 45-post sextuple-post-hole convolute. The convolute sums the electrical currents at the outputs of the conical lines, and delivers the combined current to a single solid-dielectric-insulated radial transmission line. The radial line in turn transmits the combined current to the load. Since much of the accelerator is water insulated, we refer to it as Neptune. Neptune is 40 m in diameter, stores 4.8 MJ of electrical energy in its Marx capacitors, and generates 28 TW of peak electrical power. Since the Marxes are transit-time isolated from each other for 900 ns, they can be triggered at different times to construct-over an interval as long as 1 μ s -the specific load-current time history required for a given experiment. Neptune delivers 1 MJ and 20 MA in a 380-ns current pulse to an 18 -m Ω load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic

  9. Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Grigsby, F.; Peng, D.; Downer, M. C.

    2004-12-01

    By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.

  10. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix

    SciTech Connect

    Zhang Yu; Liu Jinliang; Fan Xuliang; Zhang Hongbo; Wang Shiwen; Feng Jiahuai

    2011-10-15

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  11. The Boeing photocathode accelerator magnetic pulse compression and energy recovery experiment

    SciTech Connect

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D.

    1995-12-31

    An 18 MeV, photocathode accelerator operating at 433 MHz is being commissioned for FEL applications. The accelerator consists of a two-cell RF photocathode imjector followed by four new multicell cavities. The two cell injector has previously been operated at a micropulse repetition frequency of 27 MHz, a micropulse charge of 5 nC and 25% duty factor.

  12. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses.

    PubMed

    Kim, Hyung Taek; Pae, Ki Hong; Cha, Hyuk Jin; Kim, I Jong; Yu, Tae Jun; Sung, Jae Hee; Lee, Seong Ku; Jeong, Tae Moon; Lee, Jongmin

    2013-10-18

    Laser-wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser-wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser-wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser-wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser-wakefield accelerator driven by PW laser pulses.

  13. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-01

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  14. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    SciTech Connect

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-15

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  15. The effect of the shape of single, sub-ms voltage pulses on the rates of surface immobilization and hybridization of DNA.

    PubMed

    Cabeça, R; Rodrigues, M; Prazeres, D M F; Chu, V; Conde, J P

    2009-01-01

    Electric fields generated by single square and sinusoidal voltage pulses with amplitudes below 2 V were used to assist the covalent immobilization of single-stranded, thiolated DNA probes, onto a chemically functionalized SiO2 surface and to assist the specific hybridization of single-stranded DNA targets with immobilized complementary probes. The single-stranded immobilized DNA probes were either covalently immobilized (chemisorption) or electrostatically adsorbed (physisorption) to a chemically functionalized surface. Comparing the speed of electric field assisted immobilization and hybridization with the corresponding control reactions (without electric field), an increase of several orders of magnitude is observed, with the reaction timescaled down from 1 to 2 h to a range between 100 ns and 1 ms. The influence of the shape of the voltage pulse (square versus sinusoidal) and its duration were studied for both immobilization and hybridization reactions. The results show that pulsed electric fields are a useful tool to achieve temporal and spatial control of surface immobilization and hybridization reactions of DNA. PMID:19417254

  16. Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses

    SciTech Connect

    Weng, S. M. Murakami, M.; Azechi, H.; Wang, J. W.; Tasoko, N.; Chen, M.; Sheng, Z. M.; Mulser, P.; Yu, W.; Shen, B. F.

    2014-01-15

    It is proposed that laser hole-boring at a steady speed in inhomogeneous overdense plasma can be realized by the use of temporally tailored intense laser pulses, producing high-fluence quasi-monoenergetic ion beams. A general temporal profile of such laser pulses is formulated for arbitrary plasma density distribution. As an example, for a precompressed deuterium-tritium fusion target with an exponentially increasing density profile, its matched laser profile for steady hole-boring is given theoretically and verified numerically by particle-in-cell simulations. Furthermore, we propose to achieve fast ignition by the in-situ hole-boring accelerated ions using a tailored laser pulse. Simulations show that the effective energy fluence, conversion efficiency, energy spread, and collimation of the resulting ion beam can be significantly improved as compared to those found with un-tailored laser profiles. For the fusion fuel with an areal density of 1.5 g cm{sup –2}, simulation indicates that it is promising to realize fast ion ignition by using a tailored driver pulse with energy about 65 kJ.

  17. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT

    PubMed Central

    Mazzotta, C; Traversi, C; Caragiuli, S; Rechichi, M

    2014-01-01

    Purpose To assess qualitative corneal changes and penetration of pulsed and continuous light accelerated crosslinking by in vivo confocal microscopy and corneal OCT. Methods A total of 20 patients affected from progressive keratoconus were enrolled in the study. Ten eyes of 10 patients underwent an epithelium-off pulsed-light accelerated corneal collagen crosslinking (PL-ACXL) by the KXL UV-A source (Avedro Inc.) with 8 min (1 s on/1 s off) of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off continuous-light accelerated corneal collagen crosslinking (CL-ACXL) at 30 mW/cm2 for 4 min. Riboflavin 0.1% dextran-free plus hydroxyl-propyl-methylcellulose solution (VibeX Rapid, Avedro Inc.) was used for a 10-min corneal soaking. Treated eyes were examined by in vivo scanning laser confocal analysis and spectral anterior segment OCT at 1, 3, and 6 months. Results Epithelial stratification and nerves regeneration improved in time, being complete at month 6 in both groups without endothelial damage. Keratocyte apoptosis in PL-ACXL was estimated at a mean depth of ∼200 μm, whereas an uneven demarcation line was detectable by confocal microscopy at a mean depth of 160 μm in CL-ACXL. Conclusion In vivo confocal microscopy and corneal OCT allowed a precise qualitative analysis of the cornea after epithelium-off PL-ACXL and CL-ACXL treatments. Apoptotic effect was higher in pulsed than in continuous light treatments, exceeding 200 μm in corneal stroma. According to different morphological data, the clinical efficacy of ACXL needs to be determined in a long-term follow-up and large cohort of patients. PMID:25060847

  18. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  19. Overview of non-invasive factors (low level laser and low intensity pulsed ultrasound) accelerating tooth movement during orthodontic treatment.

    PubMed

    Jawad, Mohammed Mahmood; Husein, Adam; Alam, Mohammad Khursheed; Hassan, Rozita; Shaari, Rumaizi

    2014-01-01

    The need for orthodontic treatment is increasing all the time. As the treatment is time consuming ranging from a year to several years, any method of reducing the period of treatment and increasing the quality of the tissue will be beneficial to patients. The use of non-invasive techniques such as low level laser therapy and low intensity pulsed ultasound in accelerating orthodontic tooth movement are promising. Thus, this overview study will help to generate more understanding about the background information and the possible applications of them in daily orthodontics, depending on previous literature searching for reviews and original research articles.

  20. Comparative study of ion acceleration by linearly polarized laser pulses from optimized targets of solid and near-critical density

    NASA Astrophysics Data System (ADS)

    Bychenkov, V. Yu; Brantov, A. V.; Govras, E. A.

    2016-03-01

    The results of a 3D optimization study of ion acceleration from ultrathin solid density foils (Brantov et al 2015 Phys. Rev. Spec. Top. Accel. Beams 18 021301) are complemented with an improved analytic model of the directed Coulomb explosion. Similarly to optimizing overdense targets, we also optimize low-density targets to obtain maximum ion energy, motivated by progress in producing a new generation of low-density slab targets whose density can be very homogeneous and as low as the relativistic critical density. Using 3D simulations, we show that for the same laser pulse, the ion energy can be significantly increased with low-density targets. A new acceleration mechanism is responsible for such an increase. This mechanism is described qualitatively, and it explains an advantage of low-density targets for high-energy ion production by lasers.

  1. Solving the quasi-static field model of the pulse-line accelerator; relationship to a circuit model

    SciTech Connect

    Friedman, A

    2006-02-01

    The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density [1, 2, 3, 4, 5, 6]. A recent note by R. J. Briggs [7] suggests that a ''sheath helix'' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from ''first principles'' without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author [8]. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed.

  2. Fast ion acceleration from thin foils irradiated by ultra-high intensity, ultra-high contrast laser pulses

    SciTech Connect

    Prasad, R.; Ter-Avetisyan, S.; Doria, D.; Quinn, K. E.; Romagnani, L.; Zepf, M.; Borghesi, M.; Andreev, A. A.; Brenner, C. M.; Gallegos, P.; Carroll, D. C.; McKenna, P.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Palmer, C. A. J.; Neely, D.; Green, J. S.; Foster, P. S.; Schreiber, J.; and others

    2011-09-19

    Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10{sup 20 }W/cm{sup 2}) and ultra-high contrast ({approx}10{sup 10}) laser pulses with 0.05-10 {mu}m thick Al foils at normal (0 deg.) and 35 deg. laser incidence is investigated. When decreasing the target thickness from 10 {mu}m down to 0.05 {mu}m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 deg.) laser incidence on the target. A laser energy conversion into protons of {approx}6.5% is estimated at 35 deg. laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work.

  3. Thermal and structural analysis of the LBL 10 x 40 cm long pulse accelerator and the 12 x 48 cm common long pulse accelerator for TFTR, doublet III-D, and MFTF-B

    SciTech Connect

    Wells, R.P.

    1985-11-01

    Stress and deflection of the grid rails of the existing, Lawrence Berkeley Laboratory (LBL) designed, 10 x 40 cm Long Pulse (neutral beam) Accelerator (40LPA) and the expanded 12 x 48 cm version, Common Long Pulse Source (CLPS), have been computed for a series of assumed heat load distributions. The combined stress from self-constraint of thermal expansion and rail holder reaction forces has been calculated. A simplification of the gradient grid rail holder was analyzed and was found to work as well or better than the original 40LPA design under the most probable operating conditions. Heat flux non-uniformity over the rail surface for both accelerator designs was estimated from 40LPA grid calorimetry data for arc and beam extraction operation. The extrapolated total heat load per rail for the CLPS was less than the 1.2 kW value used in this analysis. Under worst case assumptions, the maximum equivalent stress in any of the molybdenum grid rails was less than 20% of yield. For the anticipated heat load distribution on the gradient grid, the predicted deflection of the grid rail meets the 0.0457 mm position tolerance except under extremely non-uniform heat loads.

  4. Feasibility of electron cyclotron autoresonance acceleration by a short terahertz pulse.

    PubMed

    Salamin, Yousef I; Li, Jian-Xing; Galow, Benjamin J; Keitel, Christoph H

    2015-06-29

    A vacuum auto-resonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed. PMID:26191763

  5. Advanced accelerator theory development

    SciTech Connect

    Sampayan, S.E.; Houck, T.L.; Poole, B.; Tishchenko, N.; Vitello, P.A.; Wang, I.

    1998-02-09

    A new accelerator technology, the dielectric wall accelerator (DWA), is potentially an ultra compact accelerator/pulsed power driver. This new accelerator relies on three new components: the ultra-high gradient insulator, the asymmetric Blumlein and low jitter switches. In this report, we focused our attention on the first two components of the DWA system the insulators and the asymmetric Blumlein. First, we sought to develop the necessary design tools to model and scale the behavior of the high gradient insulator. To perform this task we concentrated on modeling the discharge processes (i.e., initiation and creation of the surface discharge). In addition, because these high gradient structures exhibit favorable microwave properties in certain accelerator configurations, we performed experiments and calculations to determine the relevant electromagnetic properties. Second, we performed circuit modeling to understand energy coupling to dynamic loads by the asymmetric Blumlein. Further, we have experimentally observed a non-linear coupling effect in certain asymmetric Blumlein configurations. That is, as these structures are stacked into a complete module, the output voltage does not sum linearly and a lower than expected output voltage results. Although we solved this effect experimentally, we performed calculations to understand this effect more fully to allow better optimization of this DWA pulse-forming line system.

  6. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  7. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Awe, T. J.; Bailey, J. E.; Bennett, N. L.; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Rovang, D. C.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.

    2015-11-01

    We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations

  8. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  9. Gain results for low voltage FEL

    SciTech Connect

    Shaw, A.; Stuart, R.A.; Al-Shamma`a, A.

    1995-12-31

    We have designed and constructed a low voltage (130 kV) FEL system capable of operating in the microwave frequency range for which the electron beam current is cw (rather than pulsed) in time at a level of {approximately} 12 mA. The gain of this system has been measured as a function of the electron beam accelerating voltage and current level, and the input microwave frequency (8-10 GHz). The results are compared with the predictions of a simple theoretical model.

  10. Stripline magnetic modulators for lasers and accelerators

    SciTech Connect

    Nunnally, W.C.

    1981-01-01

    The basics of magnetic modulators including magnetic element and circuit considerations as applied to accelerators and lasers requiring repetitive (1 to 10 kHz), high voltage (50 to 500 kV), short pulse (50 to 100 ns) are discussed. The scaling of energy losses and switching parameters with material are included.

  11. SCREAMER2.0. Design and Modeling of Pulsed Power Accelerators Via Circuit Analysis

    SciTech Connect

    Kiefer, M.L.; Widner, M.W.; Fugelso, K.L.; Struve, K.W.; Hsing, W.W.; Woodhall, H.

    1995-08-25

    SCREAMER simulates electrical circuits which may contain elements of variable resistance, capacitance and inductance. The user may add variable circuit elements in a simulation by choosing from a library of models or by writing a subroutine describing the element. Transmission lines, magnetically insulated transmission lines (MITLs) and arbitrary voltage and current sources may also be included. Transmission lines are modeled using pi-sections connected in series. Many models of switches and loads are included.

  12. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed. PMID:25259497

  13. Combined effect of constant high voltage electrostatic field and variable frequency pulsed electromagnetic field on the morphology of calcium carbonate scale in circulating cooling water systems.

    PubMed

    Zhao, Ju-Dong; Liu, Zhi-An; Zhao, Er-Jun

    2014-01-01

    Research on scale inhibition is of importance to improve the heat transfer efficiency of heat exchangers. The combined effect of high voltage electrostatic and variable frequency pulsed electromagnetic fields on calcium carbonate precipitation was investigated, both theoretically and experimentally. Using energy dispersive spectrum analysis, the predominant phase was found to be CaCO(3). The formed crystal phases mainly consist of calcite and aragonite, which is, in part, verified by theory. The results indicate that the setting of water flow velocity, and high voltage electrostatic and variable frequency pulsed electromagnetic fields is very important. Favorable values of these parameters can have a significant anti-scaling effect, with 68.95% of anti-scaling ratio for scale sample 13, while unfavorable values do not affect scale inhibition, but rather promoted fouling, such as scale sample 6. By using scanning electron microscopy analysis, when the anti-scaling ratio is positive, the particle size of scale was found to become smaller than that of untreated sample and the morphology became loose. The X-ray diffraction results verify that the good combined effect favors the appearance and growth of aragonite and restrains its transition to calcite. The mechanism for scale reduction is discussed.

  14. The Next Linear Collider Test Accelerator's RF Pulse Compression And Transmission

    SciTech Connect

    Tantawi, S.G.; Adelphson, C.; Holmes, S.; Lavine, Theodore L.; Loewen, R.J.; Nantista, C.; Pearson, C.; Pope, R.; Rifkin, J.; Ruth, R.D.; Vlieks, A.E.; /SLAC

    2011-09-14

    The overmoded rf transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit rf power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II* pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II. The NLC rf systems use low loss highly over-moded circular waveguides operating in the TE01 mode. The efficiency of the systems is sensitive to the mode purity of the mode excited inside these guides. We used the so called flower petal mode transducer [2] to excite the TE01 mode. This type of mode transducer is efficient, compact and capable of handling high levels of power. To make more efficient systems, we modified this device by adding several mode selective chokes to act as mode purifiers. To manipulate the rf signals we used these modified mode converters to convert back and forth between over-moded circular waveguides and single-moded WR90 rectangular waveguides. Then, we used the relatively simple rectangular waveguide components to do the actual manipulation of rf signals. For example, two mode transducers and a mitered rectangular waveguide bend comprise a 90 degree bend. Also, a magic tee and four mode transducers would comprise a four-port-hybrid, etc. We will discuss the efficiency of an rf transport system based on the above methodology. We also used this methodology in building the SLEDII pulse compression system. At SLAC we built 4 of these pulse systems. In this paper we describe the SLEDII system and compare the performance of these 4 systems at SLAC. We

  15. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  16. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  17. Mo-containing tetrahedral amorphous carbon deposited by dualfiltered cathodic vacuum arc with selective pulsed bias voltage

    SciTech Connect

    Pasaja, Nitisak; Sansongsiri, Sakon; Anders, Andre; Vilaithong,Thiraphat; Intasiri, Sawate

    2006-09-10

    Metal-containing tetrahedral amorphous carbon films were produced by dual filtered cathodic vacuum arc (FCVA) plasma sources operated in sequential pulsed mode. A negatively pulsed bias was applied to the substrate only when carbon plasma was generated. Films thickness was measured after deposition by profilometry. Glass slides with silver pads were used as substrate for the of the measurement sheet resistance. The microstructure and composition of the films were characterized by Raman spectroscopy and Rutherford backscattering, respectively. It found that the electrical resistivity decreases with an increase of the Mo content, which can be ascribed to an increase of sp2 content and an increase of the sp2 cluster size.

  18. Mo-containing tetrahedral amorphous carbon deposited by dualfiltered cathodic vacuum arc with selective pulsed bias voltage

    SciTech Connect

    Pasaja, Nitisak; Sansongsiri, Sakon; Intasiri, Sawate; Vilaithong, Thiraphat; Anders, Andre

    2007-01-24

    Metal-containing tetrahedral amorphous carbon films wereproduced by dual filtered cathodic vacuum arc plasma sources operatedinsequentially pulsed mode. Negatively pulsed bias was applied to thesubstrate when carbon plasma was generated, whereas it was absentwhen themolybdenum plasma was presented. Film thickness was measured afterdeposition by profilometry. Glass slides with silver padswere used assubstrates for the measurement of the sheet resistance. Themicrostructure and composition of the films were characterizedbyRamanspectroscopy and Rutherford backscattering, respectively. It was foundthat the electrical resistivity decreases with an increaseof the Mocontent, which can be ascribed to an increase of the sp2 content and anincrease of the sp2 cluster size.

  19. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  20. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  1. Ion Acceleration in a Solitary Wave by Laser Pulse with Ramping-up Amplitude

    NASA Astrophysics Data System (ADS)

    He, Min-Qing; Tripathi, Vipin; Liu, Chuan-Sheng; Shao, Xi; Liu, Tung-Chang; Su, Jao-Jang; Sheng, Zheng-Ming

    2012-10-01

    Recent work by Jung et al. demonstrated experimentally the acceleration of mono-energetic ion beam by solitary waves generated and maintained by laser light with ramping-up amplitude.footnotetextD. Jung, L. Yin, B.J. Albright, D.C. Gautier, R. H"orlein, D. Kiefer, A. Henig, R. Johnson, S. Letzring, S. Palaniyappan, R. Shah, T. Shimada, X.Q. Yan, K.J. Bowers, T. Tajima, J.C. Fern'andez, D. Habs, and B.M. Hegelich, Phys. Rev. Lett. 107,115002(2011). Theoretical model is developed in this work to study the formation of the solitary wave and effects of the radiation pressure force on a soliton in the accelerating plasma. 2D Particle-In-Cell (PIC) simulations are performed to compare and validate the theory. Differences in generating and maintaining solitary wave for laser with and without ramping-up amplitude are also investigated. We will also investigate effects of radiation pressure acceleration of plasma with near critical density.

  2. Photovoltaic on-demand high-voltage pulse generator as an on-board power source for electrostatic actuator array

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Bong; Allen, Mark G.; Rohatgi, Ajeet

    1999-09-01

    The use of amorphous silicon solar cell array high voltage power source as an on-demand wireless power source for electrostatically actuated 32 X 32 micromirror array is presented. The amorphous silicon solar cell array has been reported previously by authors of this paper. In this work, the solar cell array has been used to drive distributed electrostatic actuator array (micromirror array in this particular paper). A 32 X 32 micromirror array has been fabricated and the size of single micromirror is 200 micrometer X 200 micrometer. Static deflection test of micromirrors has been carried out and pull-in voltage of 44 V and releasing voltage of 30 V was found. The electrical output of the solar cell array has been directly connected to the 32 X 32 micromirror array to demonstrate a wireless powered distributed MEMS actuator array. A total solar cell array area of 0.3 cm2 (30 series-interconnected solar cells) were used to drive a part of 32 X 32 micromirror array (a total array area of 0.4 cm2). Motion of multiple numbers of micromirrors was reproducibly observed. The ultimate goal of this research is to achieve power-integrated autonomous MEMS using solar cell array as a miniaturized wireless on-board power source and distributed actuator array as a locomotive engine.

  3. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    SciTech Connect

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; Genoni, T. C.; Gomez, M. R.; Greiser, G. W.; Gruner, F. R.; Herrmann, M. C.; Hutsel, B. T.; Jennings, C. A.; Jobe, D. O.; Jones, B. M.; Jones, M. C.; Jones, P. A.; Knapp, P. F.; Lash, J. S.; LeChien, K. R.; Leckbee, J. J.; Leeper, R. J.; Lewis, S. A.; Long, F. W.; Lucero, D. J.; Madrid, E. A.; Martin, M. R.; Matzen, M. K.; Mazarakis, M. G.; McBride, R. D.; McKee, G. R.; Miller, C. L.; Moore, J. K.; Mostrom, C. B.; Mulville, T. D.; Peterson, K. J.; Porter, J. L.; Reisman, D. B.; Rochau, G. A.; Rochau, G. E.; Rose, D. V.; Savage, M. E.; Sceiford, M. E.; Schmit, P. F.; Schneider, R. F.; Schwarz, J.; Sefkow, A. B.; Sinars, D. B.; Slutz, S. A.; Spielman, R. B.; Stoltzfus, B. S.; Thoma, C.; Vesey, R. A.; Wakeland, P. E.; Welch, D. R.; Wisher, M. L.; Woodworth, J. R.; Bailey, J. E.; Rovang, D. C.

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  4. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

    DOE PAGES

    Stygar, W. A.; Awe, T. J.; Bennett, N L; Breden, E. W.; Campbell, E. M.; Clark, R. E.; Cooper, R. A.; Cuneo, M. E.; Ennis, J. B.; Fehl, D. L.; et al

    2015-11-30

    Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD

  5. Dusty-Plasma Particle Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  6. SCREAMm - modified code SCREAM to sumulate the acceleration of a pulsed beam through the superconducting linac

    SciTech Connect

    Eidelman, Yu.; Nagaitsev, S.; Solyak, N.; /Fermilab

    2011-07-01

    The code SCREAM - SuperConducting RElativistic particle Accelerator siMulation - was significantly modified and improved. Some misprints in the formulae used have been fixed and a more realistic expression for the vector-sum introduced. The realistic model of Lorentz-force detuning (LFD) is developed and will be implemented to the code. A friendly GUI allows various parameters of the simulated problem to be changed easily and quickly. Effective control of various output data is provided. A change of various parameters during the simulation process is controlled by plotting the corresponding graphs 'on the fly'. A large collection of various graphs can be used to illustrate the results.

  7. Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells.

    PubMed

    Handa, Taketo; Tex, David M; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-05-16

    We investigate the performance degradation mechanism of CH3NH3PbI3 perovskite solar cells under bias voltage in air and nitrogen atmospheres using photoluminescence and electroluminescence techniques. When applying forward bias, the power conversion efficiency of the solar cells decreased significantly in air, but showed no degradation in nitrogen atmosphere. Time-resolved photoluminescence measurements on these devices revealed that the application of forward bias in air accelerates the generation of non-radiative recombination centers in the perovskite layer buried in the device. We found a negative correlation between the electroluminescence intensity and the injected current intensity in air. The irreversible change of the perovskite grain surface in air initiates the degradation of the perovskite solar cells. PMID:27409964

  8. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  9. Resolution limitations from detector pulse width and jitter in a linear orthogonal-acceleration time-of-flight mass spectrometer.

    PubMed

    Coles, J N; Guilhaus, M

    1994-08-01

    Recent and ongoing advances in timing electronics together with the development of ionization techniques suited to time-of-flight mass spectrometry (TOF-MS) have contributed to renewed interest in this method of mass analysis. Whereas low resolving powers (m/†m < 500) were once an almost unavoidable drawback in TOF-MS, recent developments in instrument geometries have produced much higher resolving powers for many ion sources. The temporal width of detector pulses and jitter in timing electronics, however, lead to contributions to peak widths that are essentially independent of the mass-analyzer ion optics. The effective detector pulse width (†t d ≈ 1-10 ns typically) can be a limiting factor in the development of high resolution time-of-flight (TOF) instruments with modest drift lengths (∼1 m), It also reduces the mass resolution more seriously for light ions. This article presents a method for distinguishing the instrumental "ion arrival-time" resolution (R o) of a linear TOF mass analyzer from that which is locally measured at a particular mass, limited by the broadening of the detector pulse width and electronics. The method also provides an estimate of †t d, that is useful in determining the temporal performance of the detection system. The model developed here is tested with data from a recently constructed orthogonal-acceleration TOF mass spectrometer equipped with a commercially available transient recorder (a LeCroy 400-Msamplejs digital oscilloscope) from which we obtained R o = 4240 ± 100 [full width at half maximum (FWHM)) and †t d = 3.0 ± 0.1 ns (FWHM).

  10. Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    NASA Astrophysics Data System (ADS)

    Ostermayr, T. M.; Haffa, D.; Hilz, P.; Pauw, V.; Allinger, K.; Bamberg, K.-U.; Böhl, P.; Bömer, C.; Bolton, P. R.; Deutschmann, F.; Ditmire, T.; Donovan, M. E.; Dyer, G.; Gaul, E.; Gordon, J.; Hegelich, B. M.; Kiefer, D.; Klier, C.; Kreuzer, C.; Martinez, M.; McCary, E.; Meadows, A. R.; Moschüring, N.; Rösch, T.; Ruhl, H.; Spinks, M.; Wagner, C.; Schreiber, J.

    2016-09-01

    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2 -3 ×1020Wcm -2 . With a laser focal spot size of 10 μ m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 μ m . Maximum proton energies of ˜25 MeV are achieved for targets matching the focal spot size of 10 μ m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.

  11. Laser ion acceleration and neutron source in short-pulse solid- nanoparticle interaction

    NASA Astrophysics Data System (ADS)

    Nishihara, K.; Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Takagi, M.; Satoh, N.; Kawashima, T.; Kan, H.

    2016-03-01

    We propose both an efficient neutron source and an extremely high energy proton source using solid CD and CH nano-particles, respectively, irradiated by an intense laser light. With a use of 3-d PIC simulations, we obtain an optimum CD radius for a neutron source, 250 nm and required laser field of a=eE/mωc ≈ 2, which results in D-D reaction rate of <σv> = 2x10-16 cm3/s, corresponding to an effective deuteron temperature of 500 keV to 1MeV. Reduction of neutron yield by pre-expansion is discussed. In a range of a ≈100, laser radiation pressure surrounding the particles accelerates electrons in the forward direction. Protons following the electrons become directional high energy, for example, proton energy of 450 MeV is obtained within 130 fs in CH particle interaction with 700 nm in radius. More than 10% of total protons in CH-particles are accelerated forward. Proton energy continuously increases with time and with the increase of particle size and the direction is also collimated with time.

  12. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  13. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    NASA Astrophysics Data System (ADS)

    Klir, D.; Krasa, J.; Cikhardt, J.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Rezac, K.; Sila, O.; Skala, J.; Ullschmied, J.; Velyhan, A.

    2015-09-01

    Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 108 at the peak intensity of ≈3 × 1016 W/cm2. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the 2H(d,n)3He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 109 with the peak neutron fluence of (2.5 ± 0.5) × 108 n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 1014 deuterons in the 0.5-2.0 MeV energy range. The neutron yield of 2 × 109 at the laser energy of 600 J implied the production efficiency of 3 × 106 n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 1016 W/cm2. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.

  14. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures.

    PubMed

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-01-01

    Owing to the innate stabilization of built-in potential in p-n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas. PMID:27535351

  15. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    PubMed Central

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-01-01

    Owing to the innate stabilization of built-in potential in p–n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas. PMID:27535351

  16. New method of plasma immersion ion implantation and also deposition of industrial components using tubular fixture and plasma generated inside the tube by high voltage pulses

    NASA Astrophysics Data System (ADS)

    Ueda, Mario; Silva, Ataide Ribeiro da; Pillaca, Elver J. D. M.; Mariano, Samantha F. M.; Oliveira, Rogério de Moraes; Rossi, José Osvaldo; Lepienski, Carlos Mauricio; Pichon, Luc

    2016-01-01

    A new method of Plasma Immersion Ion Implantation (PIII) and deposition (PIII and D) for treating industrial components in the batch mode has been developed. A metal tubular fixture is used to allocate the components inside, around, and along the tube, exposing only the parts of each component that are to be ion implanted to the plasma. Hollow cathode-like plasma is generated only inside the tube filled with the desired gas, by applying high negative voltage pulses to the hollow cylindrical fixture which is insulated from the vacuum chamber walls. This is a very convenient method of batch processing of industrial parts by ion implantation, in which a large number of small to medium sized components can be treated by PIII and PIII and D, very quickly, efficiently, and also at low cost.

  17. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  18. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-08-01

    Owing to the innate stabilization of built-in potential in p–n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas.

  19. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Zhou, Peiqi; Gan, Zhikai; Huang, Xu; Mei, Chunlian; Huang, Meizhen; Xia, Yuxing; Wang, Hui

    2016-08-01

    Owing to the innate stabilization of built-in potential in p-n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas.

  20. Unsplit bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  1. Colliding pulse injection experiments in non-collinear geometryfor controlled laser plasma wakefield acceleration of electrons

    SciTech Connect

    Toth, Carl B.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans,Wim P.; Nakamura, Kei; Panasenko, Dmitriy; Schroeder, Carl B.; Bruhwiler,D.; Cary, J.R.

    2007-06-25

    An optical injection scheme for a laser-plasma basedaccelerator which employs a non-collinear counter-propagating laser beamto push background electrons in the focusing and acceleration phase viaponderomotive beat with the trailing part of the wakefield driver pulseis discussed. Preliminary experiments were performed using a drive beamof a_0 = 2.6 and colliding beam of a_1 = 0.8 both focused on the middleof a 200 mu m slit jet backed with 20 bar, which provided ~; 260 mu mlong gas plume. The enhancement in the total charge by the collidingpulse was observed with sharp dependence on the delay time of thecolliding beam. Enhancement of the neutron yield was also measured, whichsuggests a generation of electrons above 10 MeV.

  2. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2016-01-01

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm2/V s along with a sheet carrier density of 1.88 × 1013 cm-2 were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  3. Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Beomsoo; Kim, Sang-Yoon; Hwang, Jungho

    2014-12-01

    Drop-on-demand printing is receiving a great deal of interest in industrial applications; however, the desired pattern sizes are realized by trial and error, through repeated printing experiments with varied materials (ink and suspended particles), operating conditions (voltage, flow rate, nozzle-to-plate distance, etc.), and substrate wettability. Since this approach requires a great deal of time, cost, and effort, a more convenient and efficient method that will predict pattern sizes with a minimal number of experiments is needed. In this study, we patterned a series of Ag dots and lines using a pulsed voltage-applied electrohydrodynamic jet printing system and measured their sizes with an optical microscope. We then applied a model suggested by Stringer and Derby (J Eur Ceram Soc 29:913-918, 2009) and Gao and Sonin (Proc R Soc Lond Ser A 444:533-554, 1994) to predict the pattern sizes, comparing these predictions with the measured sizes. Finally, we demonstrated our methodology on disconnected line repairing.

  4. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    SciTech Connect

    Klir, D.; Krasa, J.; Velyhan, A.; Cikhardt, J.; Rezac, K.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Sila, O.

    2015-09-15

    Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 10{sup 8} at the peak intensity of ≈3 × 10{sup 16 }W/cm{sup 2}. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the {sup 2}H(d,n){sup 3}He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 10{sup 9} with the peak neutron fluence of (2.5 ± 0.5) × 10{sup 8 }n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 10{sup 14} deuterons in the 0.5–2.0 MeV energy range. The neutron yield of 2 × 10{sup 9} at the laser energy of 600 J implied the production efficiency of 3 × 10{sup 6 }n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 10{sup 16 }W/cm{sup 2}. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.

  5. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway.

    PubMed

    Xue, Hui; Zheng, Jun; Cui, Ziping; Bai, Xiufeng; Li, Gang; Zhang, Caidi; He, Sanhu; Li, Weihong; Lajud, Shayanne A; Duan, Yinzhong; Zhou, Hong

    2013-01-01

    The present study was designed to determine the underlying mechanism of low-intensity pulsed ultrasound (LIPUS) induced alveolar bone remodeling and the role of BMP-2 expression in a rat orthodontic tooth movement model. Orthodontic appliances were placed between the homonymy upper first molars and the upper central incisors in rats under general anesthesia, followed by daily 20-min LIPUS or sham LIPUS treatment beginning at day 0. Tooth movement distances and molecular changes were evaluated at each observation point. In vitro and in vivo studies were conducted to detect HGF (Hepatocyte growth factor)/Runx2/BMP-2 signaling pathways and receptor activator of NFκB ligand (RANKL) expression by quantitative real time PCR (qRT-PCR), Western blot and immunohistochemistry. At day 3, LIPUS had no effect on the rat orthodontic tooth movement distance and BMP-2-induced alveolar bone remodeling. However, beginning at day 5 and for the following time points, LIPUS significantly increased orthodontic tooth movement distance and BMP-2 signaling pathway and RANKL expression compared with the control group. The qRT-PCR and Western blot data in vitro and in vivo to study BMP-2 expression were consistent with the immunohistochemistry observations. The present study demonstrates that LIPUS promotes alveolar bone remodeling by stimulating the HGF/Runx2/BMP-2 signaling pathway and RANKL expression in a rat orthodontic tooth movement model, and LIPUS increased BMP-2 expression via Runx2 regulation.

  6. Low-intensity pulsed ultrasound accelerates nerve regeneration following inferior alveolar nerve transection in rats.

    PubMed

    Sato, Mai; Motoyoshi, Mitsuru; Shinoda, Masamichi; Iwata, Koichi; Shimizu, Noriyoshi

    2016-06-01

    Inferior alveolar nerve (IAN) injury, which is frequently caused by orofacial surgery or trauma, induces sensory loss in orofacial regions innervated by the IAN. However, no effective treatment for orofacial sensory loss currently exists. We determined whether sensory loss in facial skin above the mental foramen following IAN transection was recovered by exposure of the transected IAN to low-intensity pulsed ultrasound (LIPUS). Inferior alveolar nerve transection (IANX) was performed in 7-wk-old male Sprague-Dawley rats. On day 7 after IANX, the effect of daily LIPUS (from day 0) on the transected IAN, in terms of sensitivity to mechanical stimulation of the facial skin above the mental foramen, was examined. Moreover, the number of trigeminal ganglion (TG) neurons innervating the facial skin above the mental foramen of rats with IANX treated daily with LIPUS was counted using the retrograde neurotracing technique. Daily exposure of the transected IAN to LIPUS significantly promoted recovery of the head-withdrawal threshold in response to mechanical stimulation of the facial skin above the mental foramen, and the number of TG neurons innervating the facial skin above mental foramen was significantly increased in rats with IANX treated daily with LIPUS compared with sham or LIPUS-unexposed rats. Daily treatment of stumps of the transected IAN with LIPUS facilitated morphological and functional regeneration, suggesting that LIPUS is an effective and novel therapy for IAN injury. PMID:27058986

  7. Excitation of voltage oscillations in an induction voltage adder

    NASA Astrophysics Data System (ADS)

    Bruner, Nichelle; Genoni, Thomas; Madrid, Elizabeth; Welch, Dale; Hahn, Kelly; Oliver, Bryan

    2009-07-01

    The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories’ Radiographic Integrated Test Stand (RITS), the Atomic Weapons Establishment’s planned Hydrus Facility, and the Naval Research Laboratory’s Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-in-cell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper.

  8. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    SciTech Connect

    Volfbeyn, P.; Bekefi, G.

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  9. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators.

    SciTech Connect

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L. G.; Bell, John D.

    2004-08-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  10. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  11. Vestibular short latency responses to pulsed linear acceleration in unanesthetized animals

    NASA Technical Reports Server (NTRS)

    Jones, T. A.

    1992-01-01

    Linear acceleration transients were used to elicit vestibular compound action potentials in non-invasively prepared, unanesthetized animals for the first time (chicks, Gallus domesticus, n = 33). Responses were composed of a series of up to 8 dominant peaks occurring within 8 msec of the stimulus. Response amplitudes for 1.0 g stimulus ranged from 1 to 10 microV. A late, slow, triphasic, anesthesia-labile component was identified as a dominant response feature in unanesthetized animals. Amplitudes increased and latencies decreased as stimulus intensity was increased (MANOVA P less than 0.05). Linear regression slope ranges were: amplitudes = 1.0-5.0 microV/g; latencies = -300 to -1100 microseconds/g. Thresholds for single polarity stimuli (0.035 +/- 0.022 g, n = 11) were significantly lower than those of alternating polarity (0.074 +/- 0.028 g, n = 18, P less than 0.001). Bilateral labyrinthectomy eliminated responses whereas bilateral extirpation of cochleae did not significantly change response thresholds. Intense acoustic masking (100/104 dB SL) produced no effect in 2 animals, but did produce small to moderate effects on response amplitudes in 7 others. Changes were attributed to effects on vestibular end organs. Results of unilateral labyrinth blockade (tetrodotoxin) suggest that P1 and N1 preferentially reflect ipsilateral eighth nerve compound action potentials whereas components beyond approximately 2 msec reflect activity from vestibular neurons that depend on both labyrinths. The results demonstrate that short latency vestibular compound action potentials can be measured in unanesthetized, non-invasively prepared animals.

  12. MOA - The Magnetic Field Amplified Thruster, a Novel Concept for a Pulsed Plasma Accelerator

    SciTech Connect

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2008-01-21

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept is MOA - Magnetic field Oscillating Amplified thruster. Based on computer simulations, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR (www.qasar.at), the company in Vienna, which has been set up to further develop and test the Alfven wave technology and its applications.

  13. Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration

    SciTech Connect

    Malik, Hitendra K.

    2008-09-01

    Analytical expressions are obtained for the longitudinal field (wake field), density perturbation, and the potential behind microwave pulse propagating in a plasma filled rectangular waveguide with the pulse duration half of the electron plasma period. A feasibility study on wake field is carried out with rectangular pulse and its combination with Gaussian and triangular pulses under the effects of microwave pulse parameters and waveguide dimensions. It is inferred that the wake field in the waveguide cannot be attained when the length of rectangular microwave pulse is exactly equal to the plasma wavelength. A 1 ns short rectangular pulse with intensity of 250 kW/cm{sup 2} at the frequency of 5.03 GHz can excite the wake field of 1.0 MV/m in a waveguide with width of 6 cm and height of 4 cm. However, enhanced field is obtained when rectangular-triangular pulse (combination of rectangular and triangular pulses) is used. The field of wake gets weakened at higher microwave frequency and larger dimensions of the waveguide for other fixed parameters. However, a larger field is achieved when the pulse length of the microwave pulses is made shorter and/or intensity of the pulses is increased. A comparative study of the pulses shows that better results can be obtained with rectangular pulse (rectangular-Gaussian pulse: combination of rectangular and Gaussian pulses) if the microwave of shorter pulse duration (higher intensity) is available.

  14. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  15. Scintillation properties of the YVO4:Eu3+ compound in powder form: its application to dosimetry in radiation fields produced by pulsed mega-voltage photon beams.

    PubMed

    Martinez, Nahuel; Teichmann, Tobias; Molina, Pablo; Sommer, Marian; Santiago, Martin; Henniger, Jürgen; Caselli, Eduardo

    2015-12-01

    The investigation of scintillation properties of europium doped yttrium orthovanadate shows the suitability of this material for fiber-based dose rate measurements. All measurements were carried out with a 6 MV Varian linear accelerator. The temperature dependence of the signal is lower than that of the plastic scintillators reported so far. By measuring the afterglow of probes between Linac-pulses, the signal due to the stem effect can be successfully eliminated. Comparison of depth dose profiles in a water phantom for radiation field dimensions between 1 x 1 cm(2) and 10 x 10 cm(2) shows that the probes are suitable for small fields having dimensions up to 1 x 1 cm(2). The high light yield of probes having dimensions of 1 mm opens up the possibility for their use in spatially confined radiation fields, such as in intensity-modulated radiotherapy (IMRT) and volume-modulated radiation therapy (VMAT). PMID:25957990

  16. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect

    Offermann, Dustin Theodore

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  17. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, G.J.; Sampayan, S.E.; Kirbie, H.C.

    1998-10-13

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 12 figs.

  18. Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    1998-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  19. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  20. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.